2013-09-03
Electrochemical Acidification Cell Part IV: Electrode Compartments of Cell Modified and Tested in Scaled-Up Mobile Unit September 3, 2013 Approved for public...OF ABSTRACT Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrochemical Acidification Cell Part IV: Electrode Compartments of Cell...Electrochemical acidification cell Carbon dioxide Hydrogen Polarity reversal An electrochemical acidification cell was scaled-up and integrated into a
Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes
NASA Astrophysics Data System (ADS)
Zhong, S.; Skyllas-Kazacos, M.
The electrochemical behaviour of the V(V)/V(IV) couple has been studied at a graphite disc electrode in sulfuric acid using both cyclic and rotating-disc voltammetry. The results from the latter technique have revealed that the cathodic and anodic characteristics of this redox couple are quite different. The diffusion coefficient for V(IV), 2.14×10-6 cm2 s-1, is independent of the vanadium concentration. For V(IV) oxidation, the electrode kinetic parameters i0 and α have values of 2.47×10-4 A cm-2 and 0.71, respectively. The exchange current density, i0, for the V(V)/V(IV) reaction has been obtained at both graphite felt and reticulated vitreous carbon electrodes.
NASA Astrophysics Data System (ADS)
Su, Wan-Ching; Chang, Ting-Chang; Liao, Po-Yung; Chen, Yu-Jia; Chen, Bo-Wei; Hsieh, Tien-Yu; Yang, Chung-I.; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan; Chang, Kuan-Chang; Tsai, Tsung-Ming
2017-03-01
This paper investigates the degradation behavior of InGaZnO thin film transistors (TFTs) under negative bias illumination stress (NBIS). TFT devices with two different source and drain layouts were exanimated: one having a parallel format electrode and the other with UI format electrode. UI means that source/drain electrodes shapes is defined as a forked-shaped structure. The I-V curve of the parallel electrode exhibited a symmetric degradation under forward and reverse sweeping in the saturation region after 1000 s NBIS. In contrast, the I-V curve of the UI electrode structure under similar conditions was asymmetric. The UI electrode structure also shows a stretch-out phenomenon in its C-V measurement. Finally, this work utilizes the ISE-Technology Computer Aided Design (ISE-TCAD) system simulations, which simulate the electron field and IV curves, to analyze the mechanisms dominating the parallel and UI device degradation behaviors.
Pinhole mediated electrical transport across LaTiO3/SrTiO3 and LaAlO3/SrTiO3 oxide hetero-structures
NASA Astrophysics Data System (ADS)
Kumar, Pramod; Dogra, Anjana; Toutam, Vijaykumar
2013-11-01
Metal-insulator-metal configuration of LaTiO3/SrTiO3 and LaAlO3/SrTiO3 hetero-structures between two dimensional electron gas formed at the interface and different area top electrodes is employed for Conductive Atomic force microscopy (CAFM) imaging, Current-Voltage (I-V), and Capacitance-Voltage (C-V) spectroscopy. Electrode area dependent I-V characteristics are observed for these oxide hetero-structures. With small area electrodes, rectifying I-V characteristics are observed, compared to, both tunneling and leakage current characteristics for large area electrodes. CAFM mapping confirmed the presence of pinholes on both surfaces. Resultant I-V characteristics have a contribution from both tunneling and leakage due to pinholes.
NASA Astrophysics Data System (ADS)
Bhowmik, R. N.; Siva, K. Venkata
2018-07-01
The samples of Ga-doped Cr2O3 system in rhombohedral crystal structure with space group R 3 bar C were prepared by chemical co-precipitation route and annealing at 800 °C. The current-voltage (I-V) curves exhibited many unique non-linear properties, e.g., hysteresis loop, resistive switching, and negative differential resistance (NDR). In this work, we report non-equilibrium properties of resistive switching and NDR phenomena. The non-equilibrium I-V characteristics were confirmed by repetiting measurement and time relaxation of current. The charge conduction process was understood by analysing the I-V curves using electrode-limited and bulk-limited charge conduction mechanisms, which were proposed for metal electrode/metal oxide/metal electrode structure. The I-V curves in the NDR regime and at higher bias voltage regime in our samples did not obey Fowler-Nordheim equation, which was proposed for charge tunneling mechanism in many thin film junctions. The non-equilibrium I-V phenomena were explained by considering the competitions between the injection of charge carriers from metal electrode to metal oxide, the charge flow through bulk material mediated by trapping/de-trapping and recombination of charge carriers at the defect sites of ions, the space charge effects at the junctions of electrodes and metal oxides, and finally, the out flow of electrons from metal oxide to metal electrode.
NASA Astrophysics Data System (ADS)
Gong, Jianying; Zhang, Xingwang; Wang, Xiaoping; Lei, Lecheng
2013-12-01
Oxidation of S(IV) to S(VI) in the effluent of a flue gas desulfurization(FGD) system is very critical for industrial applications of seawater FGD. This paper reports a pulsed corona discharge oxidation process combined with a TiO2 photocatalyst to convert S(IV) to S(VI) in artificial seawater. Experimental results show that the oxidation of S(IV) in artificial seawater is enhanced in the pulsed discharge plasma process through the application of TiO2 coating electrodes. The oxidation rate of S(IV) using Ti metal as a ground electrode is about 2.0×10-4 mol · L-1 · min-1, the oxidation rate using TiO2/Ti electrode prepared by annealing at 500°C in air is 4.5×10-4 mol · L-1 · min-1, an increase with a factor 2.25. The annealing temperature for preparing TiO2/Ti electrode has a strong effect on the oxidation of S(IV) in artificial seawater. The results of in-situ emission spectroscopic analysis show that chemically active species (i.e. hydroxyl radicals and oxygen radicals) are produced in the pulsed discharge plasma process. Compared with the traditional air oxidation process and the sole plasma-induced oxidation process, the combined application of TiO2 photocatalysts and a pulsed high-voltage electrical discharge process is useful in enhancing the energy and conversion efficiency of S(IV) for the seawater FGD system.
1986-05-30
nonuniform and in part not specified. The actual values of the calculable quantities listed in TABLE IV and obtained on the basis of 61 observations of...is zero. GROUND FOR Since there are no known data on frequency shifts of PPER ELECTRODE. WHEN USED crystals for such nonuniform fields and voltages...PROTECTED BY US COPYRIGHT’ distribution of motional activity. In practical IRE National Convention Record, Part 6, cases, the nonuniform mode shape
Resolving metal-molecule interfaces at single-molecule junctions
NASA Astrophysics Data System (ADS)
Komoto, Yuki; Fujii, Shintaro; Nakamura, Hisao; Tada, Tomofumi; Nishino, Tomoaki; Kiguchi, Manabu
2016-05-01
Electronic and structural detail at the electrode-molecule interface have a significant influence on charge transport across molecular junctions. Despite the decisive role of the metal-molecule interface, a complete electronic and structural characterization of the interface remains a challenge. This is in no small part due to current experimental limitations. Here, we present a comprehensive approach to obtain a detailed description of the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements. Contrary to conventional conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the energy alignment between the conduction orbital and the Fermi level of the electrode. This exhaustive statistical approach was employed to study single-molecule junctions of 1,4-benzenediamine (BDA), 1,4-butanediamine (C4DA), and 1,4-benzenedithiol (BDT). A single interfacial configuration was observed for both BDA and C4DA junctions, while three different interfacial arrangements were resolved for BDT. This multiplicity is due to different molecular adsorption sites on the Au surface namely on-top, hollow, and bridge. Furthermore, C4DA junctions present a fluctuating I-V curve arising from the greater conformational freedom of the saturated alkyl chain, in sharp contrast with the rigid aromatic backbone of both BDA and BDT.
Fabrication of Graphene on Kevlar Supercapacitor Electrodes
2011-05-01
fabricated with graphene to investigate its applicability for energy storage devices, as this carbon- based material has a large surface area and...Distribution List 14 iv List of Figures Figure 1. Dip-and-dry technique applied to Kevlar- based electrodes...2 Figure 2. Three-electrode system used for the CV measurements. The (1) working electrode was the Kevlar- based electrode; (2) the counter
Dönmez, Soner; Arslan, Fatma; Sarı, Nurşen; Kurnaz Yetim, Nurdan; Arslan, Halit
2014-04-15
In this study, a novel carbon paste electrode that is sensitive to glucose was prepared using the nanoparticles modified (4-Formyl-3-methoxyphenoxymethyl) with polystyren (FMPS) with L-Glycine-Pt(IV) complexes. Polymeric nanoparticles having Pt(IV) ion were prepared from (4-Formyl-3-methoxyphenoxymethyl) polystyren, glycine and PtCl4 by template method. Glucose oxidase enzyme was immobilized to a modified carbon paste electrode (MCPE) by cross-linking with glutaraldehyde. Determination of glucose was carried out by oxidation of enzymatically produced H2O2 at 0.5 V vs. Ag/AgCl. Effects of pH and temperature were investigated, and optimum parameters were found to be 8.0 and 55°C, respectively. Linear working range of the electrode was 5.0×10(-6)-1.0×10(-3) M, R(2)=0.997. Storage stability and operational stability of the enzyme electrode were also studied. Glucose biosensor gave perfect reproducible results after 10 measurements with 2.3% relative standard deviation. Also, it had good storage stability (gave 53.57% of the initial amperometric response at the end of 33th day). © 2013 Published by Elsevier B.V.
Khan, Asif Ali; Habiba, Umme; Khan, Anish
2009-01-01
Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II). PMID:20140082
Copper-mercury film electrode for cathodic stripping voltammetric determination of Se(IV).
Sladkov, Vladimir; David, François; Fourest, Blandine
2003-01-01
The copper-mercury film electrode has been suggested for the determination of Se(IV) in a wide range of concentration from 1x10(-9) to 1x10(-6) mol L(-1)by square-wave cathodic stripping voltammetry. Insufficient reproducibility and sensitivity of the mercury film electrode have been overcome by using copper(II) ions during the plating procedure. Copper(II) has been found to be reduced and form a reproducible copper-mercury film on a glassy carbon electrode surface. The plating potential and time, the concentration of copper(II) and the concentration of the supporting electrolyte have been optimised. Microscopy has been used for a study of the morphology of the copper-mercury film. It has been found that it is the same as for the mercury one. The preconcentration step consists in electrodeposition of copper selenide on the copper-mercury film. The relative standard deviation is 4.3% for 1x10(-6) mol L(-1) of Se(IV). The limit of detection is 8x10(-10) mol L(-1) for 5 min of accumulation.
Dong, Zong-Mu; Jin, Xin; Zhao, Guang-Chao
2018-05-30
The present study develops a rapid, simple and efficient method for the determination of type IV collagenase by using a specific peptide-modified quartz crystal microbalance (QCM). A small peptide (P1), contains a specific sequence (Pro-Gly) and a terminal cysteine, was synthetized and immobilized to the surface of QCM electrode via the reaction between Au and thiol of the cysteine. The peptide bond between proline and glycine can be specific hydrolyzed cleavage by type IV collagenase, which enabled the modified electrode with a high selectivity toward type IV collagenase. The cleaving process caused a frequency change of QCM to give a signal related to the concentration of type IV collagenase. The morphologies of the modified electrodes were characterized by scanning electron microscope (SEM) and the specific hydrolyzed cleavage process was monitored by QCM. When P1 was modified with gold nanoparticles (P1-Au NPs), the signal could be amplified to further enhance the sensitivity of the designed sensor due to the high-mass of the modified Au NPs. Compared the direct unamplified assay, the values obtained for the limit of detection for type IV collagenase was 0.96 ng mL -1 , yielding about 6.5 times of magnitude improvement in sensitivity. This signal enhanced peptide based QCM biosensor for type IV collagenase also showed good selectivity and sensitivity in complex matrix. Copyright © 2018 Elsevier B.V. All rights reserved.
Current rectification by self-assembled molecular quantum dots from first principles
NASA Astrophysics Data System (ADS)
Larade, Brian; Bratkovsky, Alexander
2003-03-01
We present results of first-principles calculations of the current rectification by self-assembled molecular quantum dots. Molecules of that kind should be synthesized with a central conjugated (narrow band-gap) part, and two peripheral saturated (wide band-gap) barrier groups of substantially different lengths L1 and L_2. The peripheral groups must end with chemical Â"anchorÂ" groups, enabling attachment of the molecule to the electrodes. In such molecules, if they are not longer than about 2-3 nm, the electron transport is likely to proceed by resonant tunneling through molecular orbitals (MO) centered on the conjugated part of the molecule (Â"quantum dotÂ") [1,2]. Generally, either LUMO (lowest unoccupied MO) or HOMO (highest occupied MO) will be most transparent to the tunneling electrons because of their different coupling to electrodes. We have studied (i) single benzene ring C6H6 [2] and (ii) naphthalene C10H8, separated from gold electrodes by alkane chains of different lengths with the use of the non-equilibrium Green's function method and self-consistent density-functional theory. The results show significant changes in electron density and potential distribution in the vicinity of molecule-electrode contact. In the case of a naphthalene quantum dot, separated from electrodes by asymmetric alkane groups (CH2)2 and (CH2)6, the I-V curve shows current rectification on the order of ˜ 10^2. [1] A.M. Bratkovsky and P.E. Kornilovitch, Phys. Rev. B (2002), to be published. [2] P. E. Kornilovitch, A.M. Bratkovsky, and R.S. Williams, Phys. Rev. B 66, 165436 (2002).
Qiao, Ruimin; Wray, L. Andrew; Kim, Jung -Hyun; ...
2015-11-11
The LiNi 0.5Mn 1.5O 4 spinel is an appealing cathode material for next generation rechargeable Li-ion batteries due to its high operating voltage of ~4.7 V (vs Li/Li +). Although it is widely believed that the full range of electrochemical cycling involves the redox of Ni(II)/(IV), it has not been experimentally clarified whether Ni(III) exists as the intermediate state or a double-electron transfer takes place. Here, combined with theoretical calculations, we show unambiguous spectroscopic evidence of the Ni(III) state when the LiNi 0.5Mn 1.5O 4 electrode is half charged. This provides a direct verification of single-electron-transfer reactions in LiNi 0.5Mnmore » 1.5O 4 upon cycling, namely, from Ni(II) to Ni(III), then to Ni(IV). Additionally, by virtue of its surface sensitivity, soft X-ray absorption spectroscopy also reveals the electrochemically inactive Ni 2+ and Mn 2+ phases on the electrode surface. Our work provides the long-awaited clarification of the single-electron transfer mechanism in LiNi 0.5Mn 1.5O 4 electrodes. Furthermore, the experimental results serve as a benchmark for further spectroscopic characterizations of Ni-based battery electrodes.« less
Charge Transfer in Multiple Site Chemical Systems.
1985-05-30
oxidation either chemically (using excess Ce+(IV)) or electrochemically (using a reticulated vitreous carbon electrode potentiostated at +1.20 V vs.. SCE...The resulting polymers form fairly stable, electrochemically active films on the cxidizing electrode, which can be Pt, SnO2 or vitreous carbon ...surface, including platinum and glassy carbon electrodes. The redox couples incorporated include polypyrydyl omplexes of iron, ruthenium and osmium
Electrochemistry of uranium in molten LiF-CaF2
NASA Astrophysics Data System (ADS)
Nourry, C.; Souček, P.; Massot, L.; Malmbeck, R.; Chamelot, P.; Glatz, J.-P.
2012-11-01
This article is focused on the electrochemical behaviour of U ions in molten LiF-CaF2 (79-21 wt.%) eutectic. On a W electrode, U(III) is reduced in one step to U metal and U(III) can be also oxidised to U(IV). Both systems were studied by cyclic and square wave voltammetry. Reversibility of both systems for both techniques was verified and number of exchanged electrons was determined, as well as diffusion coefficients for U(III) and U(IV). The results are in a good agreement with previous studies. On a Ni electrode, the depolarisation effect due to intermetallic compounds formation was observed. Electrorefining of U metal in a melt containing U and Gd ions was carried out using a reactive Ni electrode with promising results.
Degenerate doping of metallic anodes
Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E
2015-05-12
Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.
Ion sputter textured graphite electrode plates
NASA Technical Reports Server (NTRS)
Curren, A. N.; Forman, R.; Sovey, J. S.; Wintucky, E. G. (Inventor)
1983-01-01
A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. Electrode plates of this material are used in multistage depressed collectors. An ion flux having an energy between 500 iV and 1000 iV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spires. Such textured surfaces are especially useful as anode collector plates in high tube devices.
NASA Astrophysics Data System (ADS)
Poulsen, M. G.; Larsen, M. J.; Andersen, S. M.
2017-03-01
Electrodes of Proton Exchange Membrane Fuel Cells (PEMFCs), consisting of catalyst-coated gas diffusion layers, were subjected to an optimized ion exchange procedure, in which tin (IV) oxide (SnO2) nanoparticles were introduced into them. Both methanol and sulfuric acid were tested as ion exchange solvents. SnO2 has previously been shown to exhibit radical scavenging abilities towards radicals inside the electrocatalyst layers. Its presence inside the electrodes was confirmed using X-ray photoelectron spectroscopy and X-ray fluorescence. After exposure to an accelerated stress test in a three-electrode setup, the electrodes containing SnO2 were found to have retained approximately 73.0% of their original Pt, while only 53.2% was retained in electrodes treated identically, but without Sn. Similarly, the SnO2-treated electrodes also experienced a smaller loss in electrochemical surface area in comparison to before the accelerated stress test. A membrane electrode assembly (MEA) constructed with a SnO2-containing anode was evaluated over 500 h. The results showed remarkably reduced OCV decay rate and end of test hydrogen crossover compared to the control MEA, indicating that SnO2 aids in impeding membrane thinning and pinhole formation. The results point toward a positive effect of SnO2 on fuel cell durability, by reducing the degradation of the membrane as well as of the ionomer in the electrocatalyst layer.
Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H
2013-10-01
The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. Copyright © 2013. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kondo, Takeshi
2007-12-01
Current-voltage (I-V) characteristics of organic molecular glasses and solution processable materials embedded between two electrodes were studied to find materials possessing high charge-carrier mobilities and to design organic memory devices. The comparison studies between TOF, FET and SCLC measurements confirm the validity of using analyses of I-V characteristics to determine the mobility of organic semiconductors. Hexaazatrinaphthylene derivatives tri-substituted by electron withdrawing groups were characterized as potential electron transporting molecular glasses. The presence of two isomers has important implications for film morphology and effective mobility. The statistical isomer mixture of hexaazatrinaphthylene derivatized with pentafluoro-phenylmethyl ester is able to form amorphous films, and electron mobilities with the range of 10--2 cm2/Vs are observed in their I-V characteristics. Single-layer organic memory devices consisting of a polymer layer embedded between an Al electrode and ITO modified with Ag nanodots (Ag-NDs) prepared by a solution-based surface assembly demonstrated a potential capability as nonvolatile organic memory device with high ON/OFF switching ratios of 10 4. This level of performance could be achieved by modifying the ITO electrodes with some Ag-NDs that act as trapping sites, reducing the current in the OFF state. Based upon the observed electrical characteristics, the currents of the low-resistance state can be attributed to a tunneling through low-resistance pathways of metal particles originating from the metal top electrode in the organic layer and that the high-resistance state is controlled by charge trapping by the metal particles including Ag-NDs. In an alternative approach, complex films of AgNO3: hexaazatrinaphthylene derivatives were studied as the active layers for all-solution processed and air-stable organic memory devices. Rewritable memory effects were observed in the devices comprised of a thin polymer dielectric layer deposited on the bottom electrode, the complex film, and a conducting polymer film as the top electrode. The electrical characteristics indicate that the accumulation of Ag+ ions at the interface of the complex film and the top electrode may contribute to the switching effect.
NASA Astrophysics Data System (ADS)
Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.
2018-01-01
We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).
Resonant tunneling via a Ru-dye complex using a nanoparticle bridge junction.
Nishijima, Satoshi; Otsuka, Yoichi; Ohoyama, Hiroshi; Kajimoto, Kentaro; Araki, Kento; Matsumoto, Takuya
2018-06-15
Nonlinear current-voltage (I-V) characteristics is an important property for the realization of information processing in molecular electronics. We studied the electrical conduction through a Ru-dye complex (N-719) on a 2-aminoethanethiol (2-AET) monolayer in a nanoparticle bridge junction system. The nonlinear I-V characteristics exhibited a threshold voltage at around 1.2 V and little temperature dependence. From the calculation of the molecular states using density functional theory and the energy alignment between the electrodes and molecules, the conduction mechanism in this system was considered to be resonant tunneling via the HOMO level of N-719. Our results indicate that the weak electronic coupling of electrodes and molecules is essential for obtaining nonlinear I-V characteristics with a clear threshold voltage that reflect the intrinsic molecular state.
Battery and fuel cell electrodes containing stainless steel charging additive
Zuckerbrod, David; Gibney, Ann
1984-01-01
An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.
Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer.
Jung, Jaehyo; Lee, Jihoon; Shin, Siho; Kim, Youn Tae
2017-10-23
In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signal is then digitized by the processor. The configuration of the power and ground of the printed circuit board (PCB) layer is divided into digital and analog parts to minimize the noise interference of each part. The proposed analyzer occupies an area of 5.9 × 3.25 cm² with a current resolution of 0.4 nA. A potential of 0~2.1 V can be applied between the working and the counter electrodes. The results of this study showed the accuracy of the proposed analyzer by measuring the Ruthenium(III) chloride ( Ru III ) concentration in 10 mM phosphate-buffered saline (PBS) solution with a pH of 7.4. The measured data can be transmitted to a PC or a mobile such as a smartphone or a tablet PC using the included Bluetooth module. The proposed analyzer uses a 3.7 V, 120 mAh lithium polymer battery and can be operated for 60 min when fully charged, including data processing and wireless communication.
Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer
Lee, Jihoon; Shin, Siho; Kim, Youn Tae
2017-01-01
In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signal is then digitized by the processor. The configuration of the power and ground of the printed circuit board (PCB) layer is divided into digital and analog parts to minimize the noise interference of each part. The proposed analyzer occupies an area of 5.9 × 3.25 cm2 with a current resolution of 0.4 nA. A potential of 0~2.1 V can be applied between the working and the counter electrodes. The results of this study showed the accuracy of the proposed analyzer by measuring the Ruthenium(III) chloride (RuIII) concentration in 10 mM phosphate-buffered saline (PBS) solution with a pH of 7.4. The measured data can be transmitted to a PC or a mobile such as a smartphone or a tablet PC using the included Bluetooth module. The proposed analyzer uses a 3.7 V, 120 mAh lithium polymer battery and can be operated for 60 min when fully charged, including data processing and wireless communication. PMID:29065534
Apparatus and method for the electrolysis of water
Greenbaum, Elias
2015-04-21
An apparatus for the electrolytic splitting of water into hydrogen and/or oxygen, the apparatus comprising: (i) at least one lithographically-patternable substrate having a surface; (ii) a plurality of microscaled catalytic electrodes embedded in said surface; (iii) at least one counter electrode in proximity to but not on said surface; (iv) means for collecting evolved hydrogen and/or oxygen gas; (v) electrical powering means for applying a voltage across said plurality of microscaled catalytic electrodes and said at least one counter electrode; and (vi) a container for holding an aqueous electrolyte and housing said plurality of microscaled catalytic electrodes and said at least one counter electrode. Electrolytic processes using the above electrolytic apparatus or functional mimics thereof are also described.
Recent advances of flexible hybrid perovskite solar cells
NASA Astrophysics Data System (ADS)
Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk
2017-11-01
Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.
Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.
2003-10-21
A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartamil-Bueno, S. J., E-mail: s.j.cartamilbueno@tudelft.nl, E-mail: rbolivar@ugr.es; Rodríguez-Bolívar, S., E-mail: s.j.cartamilbueno@tudelft.nl, E-mail: rbolivar@ugr.es
2015-06-28
The effects of tensile strain on the current-voltage (I-V) characteristics of hydrogenated-edge armchair graphene nanoribbons are investigated by using DFT theory. The strain is introduced in two different ways related to the two types of systems studied in this work: in-plane strained systems (A) and out-of-plane strained systems due to bending (B). These two kinds of strain lead to make a distinction among three cases: in-plane strained systems with strained electrodes (A1) and with unstrained electrodes (A2), and out-of-plane homogeneously strained systems with unstrained, fixed electrodes (B). The systematic simulations to calculate the electronic transmission between two electrodes were focusedmore » on systems of 8 and 11 dimers in width. The results show that the differences between cases A2 and B are negligible, even though the strain mechanisms are different: in the plane case, the strain is uniaxial along its length; while in the bent case, the strain is caused by the arc deformation. Based on the study, a new type of nanoelectromechanical system solid state switching device is proposed.« less
A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feron, K., E-mail: Krishna.Feron@csiro.au; Fell, C. J.; CSIRO Energy Flagship, Newcastle, NSW 2300
2014-12-07
We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known tomore » remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects.« less
LaBombard, B; Lyons, L
2007-07-01
A new method for the real-time evaluation of the conditions in a magnetized plasma is described. The technique employs an electronic "mirror Langmuir probe" (MLP), constructed from bipolar rf transistors and associated high-bandwidth electronics. Utilizing a three-state bias wave form and active feedback control, the mirror probe's I-V characteristic is continuously adjusted to be a scaled replica of the "actual" Langmuir electrode immersed in a plasma. Real-time high-bandwidth measurements of the plasma's electron temperature, ion saturation current, and floating potential can thereby be obtained using only a single electrode. Initial tests of a prototype MLP system are reported, proving the concept. Fast-switching metal-oxide-semiconductor field-effect transistors produce the required three-state voltage bias wave form, completing a full cycle in under 1 mus. Real-time outputs of electron temperature, ion saturation current, and floating potential are demonstrated, which accurately track an independent computation of these values from digitally stored I-V characteristics. The MLP technique represents a significant improvement over existing real-time methods, eliminating the need for multiple electrodes and sampling all three plasma parameters at a single spatial location.
NASA Astrophysics Data System (ADS)
Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan
2017-09-01
In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5 × 10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98 × 10-7 M to 1.0 × 10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.
Boosting water oxidation layer-by-layer.
Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H
2016-04-07
Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.
Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode
NASA Astrophysics Data System (ADS)
Mageshwari, K.; Han, Sanghoo; Park, Jinsub
2016-05-01
In this paper, we investigate the electrical properties of a CuO-ITO heterojunction diode with the use of a graphene transparent electrode by current-voltage (I-V) characteristics. CuO thin films were deposited onto an ITO substrate by a simple sol-gel spin coating method and annealed at 500 °C. The x-ray diffraction pattern of the CuO thin films revealed the polycrystalline nature of CuO and exhibited a monoclinic crystal structure. FESEM images showed a uniform and densely packed particulate morphology. The optical band gap of CuO thin films estimated using UV-vis absorption spectra was found to be 2.50 eV. The I-V characteristics of the fabricated CuO-ITO heterojunction showed a well-defined rectifying behavior with improved electrical properties after the insertion of graphene. The electronic parameters of the heterostructure such as barrier height, ideality factor and series resistance were determined from the I-V measurements, and the possible current transport mechanism was discussed.
Large-Area, Ensemble Molecular Electronics: Motivation and Challenges.
Vilan, Ayelet; Aswal, Dinesh; Cahen, David
2017-03-08
We review charge transport across molecular monolayers, which is central to molecular electronics (MolEl), using large-area junctions (NmJ). We strive to provide a wide conceptual overview of three main subtopics. First, a broad introduction places NmJ in perspective to related fields of research and to single-molecule junctions (1mJ) in addition to a brief historical account. As charge transport presents an ultrasensitive probe for the electronic perfection of interfaces, in the second part ways to form both the monolayer and the contacts are described to construct reliable, defect-free interfaces. The last part is dedicated to understanding and analyses of current-voltage (I-V) traces across molecular junctions. Notwithstanding the original motivation of MolEl, I-V traces are often not very sensitive to molecular details and then provide a poor probe for chemical information. Instead, we focus on how to analyze the net electrical performance of molecular junctions, from a functional device perspective. Finally, we point to creation of a built-in electric field as a key to achieve functionality, including nonlinear current-voltage characteristics that originate in the molecules or their contacts to the electrodes. This review is complemented by a another review that covers metal-molecule-semiconductor junctions and their unique hybrid effects.
Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N.
2014-01-01
Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater, and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053•Iv + 0.059 (−122 A/m3 ≤ Iv ≤ 244 A/m3) where k1 and Iv are the pseudo first-order rate constant (min−1) and volume normalized current (A/m3), respectively. Persulfate is mainly decomposed by Fe2+ produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe3+ reduction on the cathode. SO4•− and •OH co-contribute to TCE degradation, but •OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192
Toxic Hazards Research Unit Annual Technical Report: 1974
1974-07-01
Deuterium Fluoride 130 iv TABLE OF CONTENTS (CONT’D) Section Page Use of Ion Selective Electrodes in Inhalation Toxicology 135 Analysis of Coal Tar...Chamber Atmospheres 144 Tissue Coal Tar Analysis 145 Fractionation of Crude Coal Tar 146 Blood Cyanide (CN - ) Analysis 155 Engineering Programs 162...flask temperature 134 21 System for analysis of chamber contaminant concentration by specific ion electrode 137 22 Simplified scheme of coal tar
Determination of platinum in mineral raw materials by switching chronoamperometry
NASA Astrophysics Data System (ADS)
Pakrieva, E.; Oskina, Y.; Ustinova, E.
2014-08-01
The technique of platinum (IV) determination in mineral raw materials with the application of switching chronoamperometry has been offered. The graphite electrode impregnated with polyethylene was used as the working electrode. The hydrolytic precipitation method with 3% NaOH solution has been developed to separate platinum from the sample matrix. The use of switching chronoamperometry applied to the assessment of the platinum content in geological objects has been demonstrated.
NASA Astrophysics Data System (ADS)
Micka, K.; Mrha, J.; Klapste, B.
1980-06-01
The active layer of plastic-bonded nickel oxide electrodes undergoes expansion during discharging and contraction during charging; the latter however does not fully compensate for the expansion. These volume changes can be made reversible by the action of an external pressure. The electro-chemical behavior of the conductive components, carbon black and graphite, shows more or less severe corrosion during anodic current loading.
2014-05-01
Defense Threat Reduction Agency Research and Development Counter WMD Technologies Test Support Division 1680 Texas Street SE Kirtland AFB, NM...Device Prototype Final Report iv | List of Figures List of Figures Figure 3-1. Print screen of the STL file of a hollow microneedle design in Alibre...electrochemical characterization of gold electrode (n = 8) array with oxide dielectric defined working electrodes with 1 mM [Fe(CN)6] 3- in 0.1 M potassium
NASA Astrophysics Data System (ADS)
Nurosyid, F.; Furqoni, L.; Supriyanto, A.; Suryana, R.
2016-11-01
The working electrode based on semiconductor TiO2 DSSC has been fabricated by screen printing method. This study aim is to determine the effect of the screen type on TiO2 layer as the working electrode of DSSC. Screen used for deposition of TiO2 has the types of; T- 49, T-55 and T-61. TiO2 layer was sintered at temperature of 500°C. DSSC structure was composed of semiconductor TiO2 adsorbed dye, an electrolyte solution and a platinum counter electrode. TiO2 layer thickness was characterized by Scanning Electron Microscopy (SEM), while the absorbance was characterized using UV-Vis spectrophotometer and the electrical properties of DSSC were characterized by Keithley I-V measurement. TiO2 layer fabricated by screen T-49 had the biggest thickness that was 3.2 ± 0.3 μm and the highest UV-Vis absorbance wave at the peak wavelength of 315 nm with the absorbance value was 1.7. The I-V characterization showed that the sample fabricated by screen T-49 obtained the greatest efficiency that was 1.0 × 10-1%
Occhipinti, Rossana; Boron, Walter F.
2014-01-01
Human carbonic anhydrase IV (CA IV) is GPI-anchored to the outer membrane surface, catalyzing CO2/HCO3− hydration-dehydration. We examined effects of heterologously expressed CA IV on intracellular-pH (pHi) and surface-pH (pHS) transients caused by exposing oocytes to CO2/HCO3−/pH 7.50. CO2 influx causes a sustained pHi fall and a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA IV increases magnitudes of maximal rate of pHi change (dpHi/dt)max, and maximal pHS change (ΔpHS) and decreases time constants for pHi changes (τpHi) and pHS relaxations (τpHS). Decreases in time constants indicate that CA IV enhances CO2 fluxes. Extracellular acetazolamide blocks all CA IV effects, but not those of injected CA II. Injected acetazolamide partially reduces CA IV effects. Thus, extracellular CA is required for, and the equivalent of cytosol-accessible CA augments, the effects of CA IV. Increasing the concentration of the extracellular non-CO2/HCO3− buffer (i.e., HEPES), in the presence of extracellular CA or at high [CO2], accelerates CO2 influx. Simultaneous measurements with two pHS electrodes, one on the oocyte meridian perpendicular to the axis of flow and one downstream from the direction of extracellular-solution flow, reveal that the downstream electrode has a larger (i.e., slower) τpHS, indicating [CO2] asymmetry over the oocyte surface. A reaction-diffusion mathematical model (third paper in series) accounts for the above general features, and supports the conclusion that extracellular CA, which replenishes entering CO2 or consumes exiting CO2 at the extracellular surface, enhances the gradient driving CO2 influx across the cell membrane. PMID:24965590
Effects of surface coating of Y(OH) 3 on the electrochemical performance of spherical Ni(OH) 2
NASA Astrophysics Data System (ADS)
Fan, Jing; Yang, Yifu; Yu, Peng; Chen, Weihua; Shao, Huixia
The effects of surface coating of Y(OH) 3 on the electrochemical performance of spherical Ni(OH) 2 were studied by cyclic voltammetry (CV) with soft-embedded electrode (SE-E). The coating was performed by chemical surface precipitation under different conditions. The structure, morphology, chemical composition and electrochemical properties of two different samples with surface coating of Y(OH) 3 were characterized and compared. The results show that a two-step oxidation process exists in the oxidation procedure of spherical Ni(OH) 2 corresponding to the formation of Ni(III) and Ni(IV), respectively. The conversion of Ni(III) to Ni(IV) is regarded as a side reaction in which Ni(IV) species is not stable. The presence of Y(OH) 3 on the particle surface can restrain the side reactions, especially the formation of Ni(IV). The application of coated Ni(OH) 2 to sealed Ni-MH batteries yielded a charge acceptance of about 88% at 60 °C. The results manifest that the high-temperature performance of Ni(OH) 2 electrode is related to the distribution of the adding elements in surface oxide layer of Ni(OH) 2, the sample with dense and porous coating surface, larger relative surface content and higher utilization ratio of yttrium is more effective.
The Sodium Exposure Test Cell to determine operating parameters for AMTEC electrochemical cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.A.; Williams, R.M.; Lara, L.
1998-07-01
The Sodium Exposure Test Cell (SETC) is a non-power producing cell which has been developed to evaluate and test components of the electrochemical cell in an Alkali Metal Thermal to Electric Converter. Performance and time dependence of performance of the electrode and the electrolyte in AMTEC cells can be tested in an SETC, and performance parameters which correlate with those taken from AMTEC operation can be calculated from data taken in an SETC. The components of the AMTEC electrochemical cell which are evaluated in an SETC are the electrode, {beta}{double{underscore}prime}-alumina solid electrolyte (BASE), the current collection network, and the containment.more » The components are held in low pressure sodium vapor at a temperature which reflects their operating conditions in an AMTEC device, and operating parameters determined. Electrodes and BASE are evaluated by measuring current-voltage (IV) characteristics and using Electrochemical Impedance Spectroscopy (EIS). Using these techniques, electrode performance parameters such as the exchange current (B), the morphology factor (G), and contact resistance between electrode and current collection network can be determined. The ionic conductivity (s) of BASE can also be determined. IV curves and EIS measurements are made at intervals over periods of several hundreds of hours in order to evaluate degradation of AMTEC electrochemical cell components. Electrode and BASE are analyzed after an SETC experiment using Scanning Electron Microscopy, Electron Dispersive Spectroscopy, and X-Ray Diffraction. These techniques allow evaluation of interaction of materials and changes in the composition and structure of materials. The purpose of these experiments is determination of the changes of operating parameters as a function of time in order to predict the operating lifetime of AMTEC cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liezers, Martin; Lehn, Scott A; Olsen, Khris B
2009-10-01
Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO 3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by themore » applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.« less
Reference electrode for strong oxidizing acid solutions
Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.
1990-01-01
A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.
NASA Astrophysics Data System (ADS)
Mathew, Prijil; Sajith Mathews, T.; Kurian, P. J.; Chattopadyay, P. K.
2018-05-01
Hysteresis in discharge current is produced in a low-pressure, magnetic field free, Glow discharge plasma by varying discharge voltage. The variation in area of the hysteresis loops with pressure, electrode distance and load resistor studied. To understand, the nonlinear behaviour of the I-V characteristics, the changes in gas resistance with electrode voltage, pressure and load resistor were studied. After many trials we propose the best suitable empirical equation for the exponential decrease of the gas resistance with electrode voltage as; R = Rmin + Ae-0.008V, which is a novel one and matches well with our experimental results.
Microwave Plasma Propulsion Systems for Defensive Counter-Space
2007-09-01
microwave/ECR-based propulsion system. No electron cathode or neutralizer is needed. There are no electrodes to erode, sputter or damage. Measurement of...without the need for a cathode neutralizer, a wide range of performance parameters can be achieved by selecting the size and length of the resonance...EC • Earth Coverage Antenna NCA • Narrow coverege Antenna LNA • Low Noise Amplifier Rx • Receive Tx =Transmit IV IV TI.IO CMOI Figure 53
Bifunctional air electrodes containing elemental iron powder charging additive
Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.
1982-01-01
A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.
Gating electrical transport through DNA molecules that bridge between silicon nanogaps.
Takagi, Shogo; Takada, Tadao; Matsuo, Naoto; Yokoyama, Shin; Nakamura, Mitsunobu; Yamana, Kazushige
2012-03-21
DNA electronic devices were prepared on silicon-based three-terminal electrodes. Both ends of DNA molecules (400 bp long, mixed sequences) were bridged via chemical bonds between the source-drain nanogap (120 nm) electrodes. S-Shaped I-V curves were obtained and the electric current can be modulated by the gate voltage. The DNA molecules act as semiconducting p-type nanowires in the three-terminal device. This journal is © The Royal Society of Chemistry 2012
Real-time management of faulty electrodes in electrical impedance tomography.
Hartinger, Alzbeta E; Guardo, Robert; Adler, Andy; Gagnon, Hervé
2009-02-01
Completely or partially disconnected electrodes are a fairly common occurrence in many electrical impedance tomography (EIT) clinical applications. Several factors can contribute to electrode disconnection: patient movement, perspiration, manipulations by clinical staff, and defective electrode leads or electronics. By corrupting several measurements, faulty electrodes introduce significant image artifacts. In order to properly manage faulty electrodes, it is necessary to: 1) account for invalid data in image reconstruction algorithms and 2) automatically detect faulty electrodes. This paper presents a two-part approach for real-time management of faulty electrodes based on the principle of voltage-current reciprocity. The first part allows accounting for faulty electrodes in EIT image reconstruction without a priori knowledge of which electrodes are at fault. The method properly weights each measurement according to its compliance with the principle of voltage-current reciprocity. Results show that the algorithm is able to automatically determine the valid portion of the data and use it to calculate high-quality images. The second part of the approach allows automatic real-time detection of at least one faulty electrode with 100% sensitivity and two faulty electrodes with 80% sensitivity enabling the clinical staff to fix the problem as soon as possible to minimize data loss.
40 CFR Appendix IV to Part 266 - Reference Air Concentrations*
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...
40 CFR Appendix IV to Part 266 - Reference Air Concentrations*
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...
40 CFR Appendix IV to Part 266 - Reference Air Concentrations*
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...
40 CFR Appendix IV to Part 266 - Reference Air Concentrations*
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...
Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi
2016-05-04
Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta
Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less
Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta; ...
2017-10-21
Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less
Surface Chemistry of Nano-Structured Mixed Metal Oxide Films
2012-12-11
surface chemical and catalytic properties of the films, and finally (iv) we also investigated some of these materials as electrodes for the photo-oxidation of water and as anode materials for lithium ion batteries .
19 CFR Annex IV to Part 351 - Deadlines for Parties in Antidumping Administrative Reviews
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 3 2010-04-01 2010-04-01 false Deadlines for Parties in Antidumping Administrative Reviews IV Annex IV to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex IV Annex IV to Part 351—Deadlines for Parties...
19 CFR Annex IV to Part 351 - Deadlines for Parties in Antidumping Administrative Reviews
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 3 2013-04-01 2013-04-01 false Deadlines for Parties in Antidumping Administrative Reviews IV Annex IV to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex IV Annex IV to Part 351—Deadlines for Parties...
19 CFR Annex IV to Part 351 - Deadlines for Parties in Antidumping Administrative Reviews
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 3 2014-04-01 2014-04-01 false Deadlines for Parties in Antidumping Administrative Reviews IV Annex IV to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex IV Annex IV to Part 351—Deadlines for Parties...
19 CFR Annex IV to Part 351 - Deadlines for Parties in Antidumping Administrative Reviews
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 3 2012-04-01 2012-04-01 false Deadlines for Parties in Antidumping Administrative Reviews IV Annex IV to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex IV Annex IV to Part 351—Deadlines for Parties...
19 CFR Annex IV to Part 351 - Deadlines for Parties in Antidumping Administrative Reviews
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 3 2011-04-01 2011-04-01 false Deadlines for Parties in Antidumping Administrative Reviews IV Annex IV to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex IV Annex IV to Part 351—Deadlines for Parties...
Techniques For Mass Production Of Tunneling Electrodes
NASA Technical Reports Server (NTRS)
Kenny, Thomas W.; Podosek, Judith A.; Reynolds, Joseph K.; Rockstad, Howard K.; Vote, Erika C.; Kaiser, William J.
1993-01-01
Techniques for mass production of tunneling electrodes developed from silicon-micromachining, lithographic patterning, and related microfabrication processes. Tunneling electrodes named because electrons travel between them by quantum-mechanical tunneling; tunneling electrodes integral parts of tunneling transducer/sensors, which act in conjunction with feedback circuitry to stabilize tunneling currents by maintaining electrode separations of order of 10 Angstrom. Essential parts of scanning tunneling microscopes and related instruments, and used as force and position transducers in novel microscopic accelerometers and infrared detectors.
1991-05-31
Corporation High Precision Nonlinear Computer Modelling Technique for Quartz Crystal Oscillators ............... 341 R. Brendel, F. Djian, CNRS & E. Robert...34) A.1.5% IV.1 Results of the computations for resonators having circular electrodes. The model was applied to compute the resonances 0f-.I frequencies...having circular electrodes. *- I The model was applied to compute the resonances frequencies of the fundamental mode and of its anharmonics ,odel and
[Potentiometric concentration determination of cyanide ions in waste water].
Börner, J; Martin, G; Götz, C
1990-06-01
Electrodic systems, consist of gold or silver and metals of the IV, or V, subsidiary groups of the periodic system of elements are qualified for that, because they based strength of their electrodic steepness, selectivity, potentionel stability and sensibility by destination of cyanid ions in waste-water. We are going to introduce a fast-analysis-method for cyanid ions in waste-water of technical processes, which had been tested practically by the continuous control of limits, demanded by the legislator.
46 CFR Appendix IV to Part 150 - Data Sheet
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Data Sheet IV Appendix IV to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, App. IV Appendix IV to Part 150—Data Sheet EC02FE91.080 EC02FE91.081 ...
46 CFR Appendix IV to Part 150 - Data Sheet
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Data Sheet IV Appendix IV to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, App. IV Appendix IV to Part 150—Data Sheet EC02FE91.080 EC02FE91.081 ...
46 CFR Appendix IV to Part 150 - Data Sheet
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Data Sheet IV Appendix IV to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, App. IV Appendix IV to Part 150—Data Sheet EC02FE91.080 EC02FE91.081 ...
46 CFR Appendix IV to Part 150 - Data Sheet
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Data Sheet IV Appendix IV to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, App. IV Appendix IV to Part 150—Data Sheet EC02FE91.080 EC02FE91.081 ...
46 CFR Appendix IV to Part 150 - Data Sheet
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Data Sheet IV Appendix IV to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, App. IV Appendix IV to Part 150—Data Sheet EC02FE91.080 EC02FE91.081 ...
1979-08-24
5.0 GRAVITY DATA 6.0 BORING LOGS 7.0 TRENCH AND TEST PIT LOGS 8.0 SURFICIAL SAMPLE LOGS 9.0 LABORATORY TEST RESULTS DRAWINGS IN POCKET 1 ACTIVITY...IV ELECTRODE SPACING - AS/2 ( METERIS ) 5 10 20 40 so 80 100 400 - , - - - 200 ____ _ _ _ _ - 100 II 80 ~as 40 46 2I0 leil 110 20 40 30 60 100 200 400...DEPARTMENT OF THE AIR FORCE - SAISO 441.9 2LDm NATIONAL, INC-L2 JUL 79 AFV-18 SECTION 5.0 GRAVITY DATA- FN-TR-27-IV -EXPLANATIONS OF GRAVITY DATA
40 CFR Appendix IV to Part 600 - Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Reserved IV Appendix IV to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Appendix IV to Part 600 [Reserved] ...
Rollefson, Janet B.; Stephen, Camille S.; Tien, Ming; Bond, Daniel R.
2011-01-01
Transposon insertions in Geobacter sulfurreducens GSU1501, part of an ATP-dependent exporter within an operon of polysaccharide biosynthesis genes, were previously shown to eliminate insoluble Fe(III) reduction and use of an electrode as an electron acceptor. Replacement of GSU1501 with a kanamycin resistance cassette produced a similarly defective mutant, which could be partially complemented by expression of GSU1500 to GSU1505 in trans. The Δ1501 mutant demonstrated limited cell-cell agglutination, enhanced attachment to negatively charged surfaces, and poor attachment to positively charged poly-d-lysine- or Fe(III)-coated surfaces. Wild-type and mutant cells attached to graphite electrodes, but when electrodes were poised at an oxidizing potential inducing a positive surface charge (+0.24 V versus the standard hydrogen electrode [SHE]), Δ1501 mutant cells detached. Scanning electron microscopy revealed fibrils surrounding wild-type G. sulfurreducens which were absent from the Δ1501 mutant. Similar amounts of type IV pili and pilus-associated cytochromes were detected on both cell types, but shearing released a stable matrix of c-type cytochromes and other proteins bound to polysaccharides. The matrix from the mutant contained 60% less sugar and was nearly devoid of c-type cytochromes such as OmcZ. The addition of wild-type extracellular matrix to Δ1501 cultures restored agglutination and Fe(III) reduction. The polysaccharide binding dye Congo red preferentially bound wild-type cells and extracellular matrix material over mutant cells, and Congo red inhibited agglutination and Fe(III) reduction by wild-type cells. These results demonstrate a crucial role for the xap (extracellular anchoring polysaccharide) locus in metal oxide attachment, cell-cell agglutination, and localization of essential cytochromes beyond the Geobacter outer membrane. PMID:21169487
NASA Astrophysics Data System (ADS)
Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina
2016-09-01
Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.
Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.
2014-01-01
ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235
Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...
2014-10-28
Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less
40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles IV Appendix IV to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. IV Appendix IV to Part 600...
12 CFR Appendix IV to Part 27 - Home Loan Data Submission
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Home Loan Data Submission IV Appendix IV to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. IV Appendix IV to Part 27—Home Loan Data Submission ER21JN94.003 ER21JN94...
12 CFR Appendix IV to Part 27 - Home Loan Data Submission
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Home Loan Data Submission IV Appendix IV to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. IV Appendix IV to Part 27—Home Loan Data Submission ER21JN94.003 ER21JN94...
12 CFR Appendix IV to Part 27 - Home Loan Data Submission
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Home Loan Data Submission IV Appendix IV to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. IV Appendix IV to Part 27—Home Loan Data Submission ER21JN94.003 ER21JN94...
12 CFR Appendix IV to Part 27 - Home Loan Data Submission
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Home Loan Data Submission IV Appendix IV to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. IV Appendix IV to Part 27—Home Loan Data Submission ER21JN94.003 ER21JN94...
12 CFR Appendix IV to Part 27 - Home Loan Data Submission
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Home Loan Data Submission IV Appendix IV to Part 27 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY FAIR HOUSING HOME LOAN DATA SYSTEM Pt. 27, App. IV Appendix IV to Part 27—Home Loan Data Submission ER21JN94.003 ER21JN94...
Vasilow, T.R.; Zymboly, G.E.
1991-12-17
An electrode is deposited on a support by providing a porous ceramic support tube having an open end and closed end; masking at least one circumferential interior band inside the tube; evacuating air from the tube by an evacuation system, to provide a permeability gradient between the masked part and unmasked part of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating over the unmasked support part and a tapered coating over the masked part. 2 figures.
Electroless-plated Ni pattern with catalyst printing on indium-gallium-zinc oxide surface
NASA Astrophysics Data System (ADS)
Onoue, Miki; Ogura, Shintaro; Kusaka, Yasuyuki; Fukuda, Nobuko; Yamamoto, Noritaka; Kojima, Keisuke; Chikama, Katsumi; Ushijima, Hirobumi
2017-05-01
Electroless plated metals have been used for wiring and electrodes in the manufacture of electronic devices. To obtain plated patterns, etching and photoresist are generally used. However, through catalyst patterning by printing, we can obtain metal patterns without etching and photoresists by electroless plating. Solution-processed indium-gallium-zinc oxide (IGZO) has received significant attention for showing high performance and ease of preparation in air atmosphere. In this study, we prepared an electroless plated pattern by catalyst printing as electrodes of IGZO TFT. There are few reports on the application of plated metal electrodes prepared by catalyst printing to the source and drain electrodes of IGZO TFT. The prepared IGZO TFT exhibits a typical current-voltage (I-V) curve. The plated electrodes caused many problems such as performance degradation. However, our result showed that the plated metal electrodes can drive IGZO TFT. In addition, we confirm plated metal growth into the catalyst layer by cross sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) of the plated Ni. We discuss the relevance of the measured work function (WF) of the electrode materials and the performance of IGZO TFT.
NASA Astrophysics Data System (ADS)
Fishkova, T. Ya.
2018-01-01
An optimal set of geometric and electrical parameters of a high-aperture electrostatic charged-particle spectrograph with a range of simultaneously recorded energies of E/ E min = 1-50 has been found by computer simulation, which is especially important for the energy analysis of charged particles during fast processes in various materials. The spectrograph consists of two coaxial electrodes with end faces closed by flat electrodes. The external electrode with a conical-cylindrical form is cut into parts with potentials that increase linearly, except for the last cylindrical part, which is electrically connected to the rear end electrode. The internal cylindrical electrode and the front end electrode are grounded. In the entire energy range, the system is sharply focused on the internal cylindrical electrode, which provides an energy resolution of no worse than 3 × 10-3.
Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device
NASA Astrophysics Data System (ADS)
Ahmadi, Ramin; Ahmadi, Mohamad Taghi; Ismail, Razali
2018-04-01
Owing to the specific properties such as high mobility, ballistic carrier transport and light emission, carbon nano-particles (CNPs) have been employed in nanotechnology applications. In the presented work, the CNPs are synthesized by using the pulsed arc discharge method between two copper electrodes. The rectifying behaviour of produced CNPs is explored by assuming an Ohmic contact between the CNPs and the electrodes. The synthesized sample is characterized by electrical investigation and modelling. The current-voltage (I-V) relationship is investigated and bright visible light emission from the produced CNPs was measured. The electroluminescence (EL) intensity was explored by changing the distance between two electrodes. An incremental behaviour on EL by a resistance gradient and distance reduction is identified.
Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dares, C. J.; Lapides, A. M.; Mincher, B. J.
A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium frommore » nuclear waste streams.« less
NASA Astrophysics Data System (ADS)
Pepłowski, A.; Grudziński, D.; Raczyński, T.; Wróblewski, G.; Janczak, D.; Jakubowska, M.
2017-08-01
Electrodes for measuring pH of the solution were fabricated by the means of screen-printing technology. Potentiometric sensors' layers comprised of composite with polymer matrix and graphene nanoplatelets/ruthenium (IV) oxide nanopowder as functional phase. Transceivers were printed on the elastic PMMA foil. Regarding potential application of the sensors in the wearable devices, dynamic response of the electrodes to changing ultraviolet radiation levels was assessed, since RuO2 is reported to be UV-sensitive. Observed changes of the electrodes' potential were of sub-millivolt magnitude, being comparable to simultaneously observed signal drift. Given this stability under varying UV conditions and previously verified good flexibility, fabricated sensors meet the requirements for wearable applications.
Current collapse in tunneling transport through benzene.
Hettler, M H; Wenzel, W; Wegewijs, M R; Schoeller, H
2003-02-21
We investigate the electrical transport through a system of benzene coupled to metal electrodes by electron tunneling. Using electronic structure calculations, a semiquantitative model for the pi electrons of the benzene is derived that includes general two-body interactions. After exact diagonalization of the benzene model the transport is computed using perturbation theory for weak electrode-benzene coupling (golden rule approximation). We include the effect of an applied electric field on the molecular states, as well as radiative relaxation. We predict a current collapse and strong negative differential conductance due to a "blocking" state when the electrode is coupled to the para-position of benzene. In contrast, for coupling to the meta-position, a series of steps in the I-V curve is found.
Electron transfer dynamics of bistable single-molecule junctions.
Danilov, Andrey V; Kubatkin, Sergey E; Kafanov, Sergey G; Flensberg, Karsten; Bjørnholm, Thomas
2006-10-01
We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical analysis of the switching events, we show that a 300 meV mode mediates the transition between the two states. We propose that breaking and reformation of a S-H bond in the contact zone between molecule and electrode explains the observed bistability.
Electrical properties study under radiation of the 3D-open-shell-electrode detector
NASA Astrophysics Data System (ADS)
Liu, Manwen; Li, Zheng
2018-05-01
Since the 3D-Open-Shell-Electrode Detector (3DOSED) is proposed and the structure is optimized, it is important to study 3DOSED's electrical properties to determine the detector's working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC) and it's upgrade, the High Luminosity (HL-LHC) at CERN. In this work, full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V) characteristics, capacitance-voltage (C-V) characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED's electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.
NASA Astrophysics Data System (ADS)
Gu, W.; Heil, P. E.; Choi, H.; Kim, K.
2010-12-01
The I-V characteristics of flow-limited field-injection electrostatic spraying (FFESS) were investigated, exposing a new way to predict and control the specific spraying modes from single-jet to multi-jet. Monitoring the I-V characteristics revealed characteristic drops in the current upon formation of an additional jet in the multi-jet spraying mode. For fixed jet numbers, space-charge-limited current behaviour was measured which was attributed to space charge in the dielectric liquids between the needle electrode and the nozzle opening. The present work establishes that FFESS can, in particular, generate stable multiple jets and that their control is possible through monitoring the I-V characteristics. This can allow for automatic control of the FFESS process and expedite its future scientific and industrial applications.
Samarium (III) Selective Membrane Sensor Based on Tin (IV) Boratophosphate
Mittal, Susheel K.; Sharma, Harish Kumar; Kumar, Ashok S. K.
2004-01-01
A number of Sm (III) selective membranes of varying compositions using tin (IV) boratophosphate as electroactive material were prepared. Polyvinyl chloride, polystyrene and epoxy resin were used as binding materials. Membrane having composition of 40% exchanger and 60% epoxy resin exhibited best performance. This membrane worked well over a wide concentration range of 1×10-5M to 1×10-1 M of samarium ions with a Super-Nernstian slope of 40 mV/decade. It has a fast response time of less than 10 seconds and can be used for at least six months without any considerable divergence in potentials. The proposed sensor revealed good selectivities with respect to alkali, alkaline earth, some transition and rare earth metal ions and can be used in the pH range of 4.0-10.0. It was used as an indicator electrode in the potentiometric titration of Sm (III) ions against EDTA. Effect of internal solution was studied and the electrode was successfully used in non-aqueous media, too.
NASA Astrophysics Data System (ADS)
Caliskan, Serkan
2018-05-01
Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.
Vasilow, Theodore R.; Zymboly, Gregory E.
1991-01-01
An electrode is deposited on a support by providing a porous ceramic support tube (10) having an open end (14) and closed end (16); masking at least one circumferential interior band (18 and 18') inside the tube; evacuating air from the tube by an evacuation system (30), to provide a permeability gradient between the masked part (18 and 18') and unmasked part (20) of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating (42) over the unmasked support part (20) and a tapered coating over the masked part (18 and 18').
Barrett, J A; Lynch, V D; Balkon, J; Wolf, P S
1986-06-01
The ability to continuously monitor the delicate balance between blood flow and oxygen consumption would be a great asset in the study of myocardial ischemia. The present study was performed, in anesthetized dogs, to validate the use of encased polargraphic oxygen electrodes in the study of myocardial ischemia. Polargraphic oxygen electrodes were placed in the area to be rendered ischemic at fixed tissue depths of 3 mm (epicardium) and 9 mm (endocardium). Endocardial and epicardial oxygen tensions as well as the ratio of endocardial to epicardial oxygen tension and left circumflex coronary flow were monitored. Ischemia was induced by decreasing left circumflex coronary flow by 50%. Upon completion of a 20-min poststenotic period, endocardial pO2, endocardial/epicardial ratio, and coronary flow were significantly decreased (59 +/- 7, 52 +/- 7, and 55 +/- 4%, respectively) whereas epicardial pO2 was slightly decreased. Nitroglycerin (10 micrograms/kg, i.v.) markedly increased endocardial pO2 and endocardial/epicardial ratio above poststenotic control (13 +/- 5 mmHg and 64 +/- 10%, respectively) whereas epicardial pO2 was not significantly decreased. The increases in endocardial pO2 occurred at a point where coronary flow and mean arterial pressure were not significantly changed. Conversely, dipyridamole (125 micrograms/kg, i.v.) significantly increased coronary flow (26 +/- 2 ml/min/100 g) although it did not appreciably alter endocardial or epicardial pO2. It is concluded that encased polargraphic oxygen electrodes provide a quantitative method for determination of oxygen tension in the ischemic myocardium.
Lin, Yen-Heng; Ho, Kai-Siang; Yang, Chin-Tien; Wang, Jung-Hao; Lai, Chao-Sung
2014-06-02
The number and position of assembled nanowires cannot be controlled using most nanowire sensor assembling methods. In this paper, we demonstrate a high-yield, highly flexible platform for nanowire sensor assembly using a combination of optically induced dielectrophoresis (ODEP) and conventional dielectrophoresis (DEP). With the ODEP platform, optical images can be used as virtual electrodes to locally turn on a non-contact DEP force and manipulate a micron- or nano-scale substance suspended in fluid. Nanowires were first moved next to the previously deposited metal electrodes using optical images and, then, were attracted to and arranged in the gap between two electrodes through DEP forces generated by switching on alternating current signals to the metal electrodes. A single nanowire can be assembled within 24 seconds using this approach. In addition, the number of nanowires in a single nanowire sensor can be controlled, and the assembly of a single nanowire on each of the adjacent electrodes can also be achieved. The electrical properties of the assembled nanowires were characterized by IV curve measurement. Additionally, the contact resistance between the nanowires and electrodes and the stickiness between the nanowires and substrates were further investigated in this study.
Mixed addenda polyoxometalate "solutions" for stationary energy storage.
Pratt, Harry D; Anderson, Travis M
2013-11-28
A series of redox flow batteries utilizing mixed addenda (vanadium and tungsten), phosphorus-based polyoxometalates (A-α-PV3W9O40(6-), B-α-PV3W9O40(6-), and P2V3W15O62(9-)) were prepared and tested. Cyclic voltammetry and bulk electrolysis experiments on the Keggin compounds (A-α-PV3W9O40(6-) and B-α-PV3W9O40(6-)) established that the vanadium centers of these compounds could be used as the positive electrode (PV(IV)3W(VI)9O40(9-)/PV(V)3W(VI)9O40(6-)), and the tungsten centers could be used as the negative electrode (PV(IV)3W(VI)9O40(9-)/PV(IV)3W(V)3W(VI)6O40(12-)) since these electrochemical processes are separated by about 1 V. The results showed that A-α-PV3W9O40(6-) (where A indicates adjacent, corner-sharing vanadium atoms) had coulombic efficiencies (charge in divided by charge out) above 80%, while the coulombic efficiency of B-α-PV3W9O40(6-) (where B indicates adjacent edge-sharing vanadium atoms) fluctuated between 50% and 70% during cycling. The electrochemical yield, a measurement of the actual charge or discharge observed in comparison with the theoretical charge, was between 40% and 50% for A-α-PV3W9O40(6-), and (31)P NMR showed small amounts of PV2W10O40(5-) and PVW11O40(4-) formed with cycling. The electrochemical yield for B-α-PV3W9O40(6-) decreased from 90% to around 60% due to precipitation of the compound on the electrode, but there were no decomposition products detected in the solution by (31)P NMR, and infrared data on the electrode suggested that the cluster remained intact. Testing of P2V3W15O62(9-) (Wells-Dawson structure) suggested higher charge density clusters were not as suitable as the Keggin structures for a redox flow battery due to the poor stability and inaccessibility of the highly reduced materials.
76 FR 36095 - Defense Transportation Regulation, Part IV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... with the Defense Personal Property Program (DP3) Phase III Domestic Small Shipments (dS2) and... Regulation, Part IV Web site at http://www.transcom.mil/dtr/part-iv/phaseiii.cfm . All identified changes... based on completion of Defense Personal Property System (DPS) Phase III programming projected for FY15...
Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis
March, Gregory; Nguyen, Tuan Dung; Piro, Benoit
2015-01-01
Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form), or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene) or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins), enzymes or whole cells. PMID:25938789
Reducing Stiffness and Electrical Losses of High Channel Hybrid Nerve Cuff Electrodes
2001-10-25
Electrodes were developed. These electrodes consisted of a micromachined polyimide -based thin-film structure with integrated electrode contacts and...electrodes, mechanical properties were enhanced by changing the method of joining silicone and polyimide from using one part silicone adhesive to...gold, platinum, platinum black, polyimide , silicone, polymer bonding I. INTRODUCTION Cuff-type electrodes are probably the most commonly used neural
NASA Astrophysics Data System (ADS)
Yen, Shih-Hsiang; Hung, Yu-Chen; Yeh, Ping-Hung; Su, Ya-Wen; Wang, Chiu-Yen
2017-09-01
ZnS nanowires were synthesized via a vapor-liquid-solid mechanism and then fabricated into a single-nanowire field-effect transistor by focused ion beam (FIB) deposition. The field-effect electrical properties of the FIB-fabricated ZnS nanowire device, namely conductivity, mobility and hole concentration, were 9.13 Ω-1 cm-1, 13.14 cm2 V-1 s-1and 4.27 × 1018 cm-3, respectively. The photoresponse properties of the ZnS nanowires were studied and the current responsivity, current gain, response time and recovery time were 4.97 × 106 A W-1, 2.43 × 107, 9 s and 24 s, respectively. Temperature-dependent I-V measurements were used to analyze the interfacial barrier height between ZnS and the FIB-deposited Pt electrode. The results show that the interfacial barrier height is as low as 40 meV. The energy-dispersive spectrometer elemental line scan shows the influence of Ga ions on the ZnS nanowire surface on the FIB-deposited Pt contact electrodes. The results of temperature-dependent I-V measurements and the elemental line scan indicate that Ga ions were doped into the ZnS nanowire, reducing the barrier height between the FIB-deposited Pt electrodes and the single ZnS nanowire. The small barrier height results in the FIB-fabricated ZnS nanowire device acting as a high-gain photosensor.
Process for dezincing galvanized steel
Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.
1998-01-01
A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.
Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Travis W.
2010-01-31
The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressuresmore » and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.« less
Farahmandi, C. J.; Dispennette, J. M.; Blank, E.; Kolb, A. C.
1999-05-25
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH[sub 3]CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.
2002-09-17
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C Joseph [San Diego, CA; Dispennette, John M [Oceanside, CA; Blank, Edward [San Diego, CA; Kolb, Alan C [Rancho Santa Fe, CA
1999-05-25
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.
1999-01-19
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C.J.; Dispennette, J.M.; Blank, E.; Kolb, A.C.
1999-01-19
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH{sub 3}CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.
Recovery of Li from alloys of Al- Li and Li- Al using engineered scavenger compounds
Riley, W. D.; Jong, B. W.; Collins, W. K.; Gerdemann, S. J.
1994-01-01
A method of producing lithium of high purity from lithium aluminum alloys using an engineered scavenger compound, comprising: I) preparing an engineered scavenger compound by: a) mixing and heating compounds of TiO2 and Li2CO3 at a temperature sufficient to dry the compounds and convert Li.sub.2 CO.sub.3 to Li.sub.2 O; and b) mixing and heating the compounds at a temperature sufficient to produce a scavenger Li.sub.2 O.3TiO.sub.2 compound; II) loading the scavenger into one of two electrode baskets in a three electrode cell reactor and placing an Al-Li alloy in a second electrode basket of the three electrode cell reactor; III) heating the cell to a temperature sufficient to enable a mixture of KCl-LiCl contained in a crucible in the cell to reach its melting point and become a molten bath; IV) immersing the baskets in the bath until an electrical connection is made between the baskets to charge the scavenger compound with Li until there is an initial current and voltage followed by a fall off ending current and voltage; and V) making a connection between the basket electrode containing engineered scavenger compound and a steel rod electrode disposed between the basket electrodes and applying a current to cause Li to leave the scavenger compound and become electrodeposited on the steel rod electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haining; Li, Weiping; Liu, Huicong
2010-07-15
A suitable deposition method of CdS is necessary for the high performance CdS-sensitized ZnO electrodes. In this paper, chemical bath deposition (CBD) and sequential chemical bath deposition (S-CBD) methods were used to deposit CdS on ZnO mesoporous films for ZnO/CdS electrodes. The analysis results of XRD patterns and UV-vis spectroscopy indicated that CBD deposition method leaded to the dissolving of ZnO mesoporous films in deposition solution and thickness reduction of ZnO/CdS electrodes. Absorption in visible region by the ZnO/CdS electrodes with CdS deposition by S-CBD was enhanced as deposition cycles increased due to the stability of ZnO mesoporous films inmore » the S-CBD deposition solutions. The results of photocurrent-voltage (I-V) measurement showed that the performance of ZnO/CdS electrodes with CdS deposition by CBD first increased and then decreased as deposition time increased, and the greatest short-circuit current (J{sub sc}) was obtained at the deposition time of 4 min. The performance of ZnO/CdS electrodes with CdS deposition by S-CBD increased as deposition cycles increased, and both open-circuit voltage (V{sub oc}) and J{sub sc} were greater than those electrodes with CdS deposition by CBD when the deposition cycles of S-CBD were 10 or greater. These results indicated that S-CBD is a more suitable method for high performance ZnO/CdS electrodes. (author)« less
Ni, D
1992-12-01
A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.
NASA Astrophysics Data System (ADS)
Li, Debin; Gu, Jianhua; Chye, Yewhee; Lederman, David; Kabulski, Jarod; Gannett, Peter; Tracy, Timothy
2006-03-01
There is a growing interest in measuring the conductivity of electron-transfer proteins. The cytochrome P450 (CP450) enzymes represent an important class of heme-containing enzymes. Immobilizing CP450 enzymes on a surface can be used for studying a single enzyme with respect to electron transfer. The spin state of the heme iron can change upon binding of a substrate. In our experiment, CP450 (diameter ˜ 5 nm) has been bonded to a metal surface. Nano-electrodes (gap < 10 nm) were fabricated by defining a bridge via e-beam lithography and then breaking the junction by electromigration at low temperatures. We have examined the electronic properties of CP450 by itself and after binding CP450 with flurbiprofen. The room temperature I-V conductivity is reminiscent to cyclic voltammetry measurements, indicating the presence of strong ionic transfer. At lower temperatures (100 K) the I-V characteristics indicate electronic transport dominated by tunneling processes. The conductive AFM is an additional method used to examine the enzyme's electronic properties. The results from two methods will be discussed..
Current voltage perspective of an organic electronic device
NASA Astrophysics Data System (ADS)
Mukherjee, Ayash K.; Kumari, Nikita
2018-05-01
Nonlinearity in current (I) - voltage (V) measurement is a well-known attribute of two-terminal organic device, irrespective of the geometrical or structural arrangement of the device. Most of the existing theories that are developed for interpretation of I-V data, either focus current-voltage relationship of charge injection mechanism across the electrode-organic material interface or charge transport mechanism through the organic active material. On the contrary, both the mechanisms work in tandem charge conduction through the device. The transport mechanism is further complicated by incoherent scattering from scattering centres/charge traps that are located at the electrode-organic material interface and in the bulk of organic material. In the present communication, a collective expression has been formulated that comprises of all the transport mechanisms that are occurring at various locations of a planar organic device. The model has been fitted to experimental I-V data of Au/P3HT/Au device with excellent degree of agreement. Certain physical parameters such as the effective area of cross-section and resistance due to charge traps have been extracted from the fit.
Preparation of indium tin oxide contact to n-CdZnTe gamma-ray detector
NASA Astrophysics Data System (ADS)
Li, Leqi; Xu, Yadong; Zhang, Binbin; Wang, Aoqiu; Dong, Jiangpeng; Yu, Hui; Jie, Wanqi
2018-03-01
The nonmetal electrode material Indium Tin Oxide (ITO) has advantages of excellent conductivity, higher adhesion, and interface stability, showing potential to replace the metallic contacts for fabrication of CdZnTe (CZT) X/γ-ray detectors. In this work, high quality ITO electrodes for n-type CZT crystals were prepared by magnetron sputtering under a sputtering power of 75 W and a sputtering pressure of 0.6 Pa. A low dark current of ˜1 nA is achieved for the 5 × 5 × 2 mm3 ITO/CZT/ITO planar device under 100 V bias. The characteristics of Schottky contact are presented in the room temperature I-V curves, which are similar to those of the Au contact detectors. Based on the thermoelectric emission theory, the contact barrier and resistance of ITO electrodes are evaluated to be 0.902-0.939 eV and 0.87-3.56 × 108 Ω, respectively, which are consistent with the values of the Au electrodes. The ITO/CZT/ITO structure detector exhibits a superior energy resolution of 6.5% illuminated by the uncollimated 241Am @59.5 keV γ-ray source, which is comparable to the CZT detector with Au electrodes.
Unraveling the Reactivity of Minium toward Bicarbonate and the Role of Lead Oxides Therein.
Ayalew, Eyasu; Janssens, Koen; De Wael, Karolien
2016-02-02
Understanding the reactivity of (semiconductor) pigments provides vital information on how to improve conservation strategies for works of art to avoid rapid degradation of the pigments. This study focuses on the photoactivity of minium (Pb3O4), a semiconductor pigment that gives rise to strong discoloration phenomena upon exposure to various environmental conditions. For demonstrating its photoactivity, an electrochemical setup with a minium-modified graphite electrode (C|Pb3O4) was used. It is confirmed that minium is a p-type semiconductor that is photoactive during illumination and becomes inactive in the dark. Raman measurements confirm the formation of degradation products. The photoactivity of a semiconductor pigment is partly defined by the presence of lead oxide (PbO) impurities; these introduce new states in the original band gap. It will be experimentally evidenced that the presence of PbO particles in minium leads to an upward shift of the valence band that reduces the band gap. Thus, upon photoexcitation, the electron/hole separation is more easily initialized. The PbO/Pb3O4 composite electrodes demonstrate a higher reductive photocurrent compared to the photocurrent registered at pure PbO or Pb3O4-modified electrodes. Upon exposure to light with energy close to and above the band gap, electrons are excited from the valence band to the conduction band to initialize the reduction of Pb(IV) to Pb(II), resulting in the initial formation of PbO. However, in the presence of bicarbonate ions, a significantly higher photoreduction current is recorded because the PbO reacts further to form hydrocerussite. Therefore, the presence of bicarbonates in the environment stimulates the photodecomposition process of minium and plays an important role in the degradation process.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...
Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam
2012-08-16
Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.
Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode
2015-01-01
Luminescence‐based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid‐state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle‐based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. PMID:26113255
Simulations of Atmospheric Plasma Arcs
NASA Astrophysics Data System (ADS)
Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael
2017-10-01
We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.
New sulphiding method for steel and cast iron parts
NASA Astrophysics Data System (ADS)
Tarelnyk, V.; Martsynkovskyy, V.; Gaponova, O.; Konoplianchenko, Ie; Dovzyk, M.; Tarelnyk, N.; Gorovoy, S.
2017-08-01
A new method for sulphiding steel and cast iron part surfaces by electroerosion alloying (EEA) with the use of a special electrode is proposed, which method is characterized in that while manufacturing the electrode, on its surface, in any known manner (punching, threading, pulling, etc.), there is formed at least a recess to be filled with sulfur as a consistent material, and then there is produced EEA by the obtained electrode without waiting for the consistent material to become dried.
Observation of spin-polarized electron transport in Alq3 by using a low work function metal
NASA Astrophysics Data System (ADS)
Jang, Hyuk-Jae; Pernstich, Kurt P.; Gundlach, David J.; Jurchescu, Oana D.; Richter, Curt. A.
2012-09-01
We present the observation of magnetoresistance in Co/Ca/Alq3/Ca/NiFe spin-valve devices. Thin Ca layers contacting 150 nm thick Alq3 enable the injection of spin-polarized electrons into Alq3 due to the engineering of the band alignment. The devices exhibit symmetric current-voltage (I-V) characteristics indicating identical metal contacts on Alq3, and up to 4% of positive magnetoresistance was observed at 4.5 K. In contrast, simultaneously fabricated Co/Alq3/NiFe devices displayed asymmetric I-V curves due to the different metal electrodes, and spin-valve effects were not observed.
Strobel, Sebastian; Hernández, Rocío Murcia; Hansen, Allan G; Tornow, Marc
2008-09-17
We report the fabrication and characterization of vertical nanogap electrode devices using silicon-on-insulator substrates. Using only standard silicon microelectronic process technology, nanogaps down to 26 nm electrode separation were prepared. Transmission electron microscopy cross-sectional analysis revealed the well defined material architecture of the nanogap, comprising two electrodes of dissimilar geometrical shape. This asymmetry is directly reflected in transport measurements on molecule-nanoparticle hybrid systems formed by self-assembling a monolayer of mercaptohexanol on the electrode surface and the subsequent dielectrophoretic trapping of 30 nm diameter Au nanoparticles. The observed Coulomb staircase I-V characteristic measured at T = 4.2 K is in excellent agreement with theoretical modelling, whereby junction capacitances of the order of a few 10(-18) farad and asymmetric resistances of 30 and 300 MΩ, respectively, are also supported well by our independent estimates for the formed double barrier tunnelling system. We propose our nanoelectrode system for integrating novel functional electronic devices such as molecular junctions or nanoparticle hybrids into existing silicon microelectronic process technology.
MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor.
Tehrani, Ramin M A; Ab Ghani, Sulaiman
2012-01-01
A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Sample Addendum to Maritime Administration Capital Construction Fund Agreement IV Appendix IV to Part 390 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... 390—Sample Addendum to Maritime Administration Capital Construction Fund Agreement This Agreement...
Okandan, Murat; Wessendorf, Kurt O.
2007-12-11
An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.
2015-05-19
Reduction of U(VI) to U(IV) on mineral surfaces has been considered as a one-step two electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one electron reduction to U(V) without further progression to U(IV). We investigated the mechanisms of uranium reduction by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4 . The one electron reduction of U(VI) was first confirmed using the cyclic voltammetry method. Formation of nano-size uranium precipitates on the surface of magnetite at reducing potentials and dissolution of the solids at oxidizing potentials were observedmore » by in situ electrochemical AFM. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from 0.1 ~ 0.9 V (vs. Ag/AgCl) showed the presence of only U(V) and U(VI). The highest amount of U(V) relative to U(VI) was prepared at 0.7 V, where the longest average U–Oaxial distance of 2.05 ± 0.01 Å was evident in the same sample revealed by EXAFS analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of 0.9 V, which favors the one-electron reduction mechanism. U(V) did not disproportionate but stabilized on magnetite through precipitation of mixed-valence state U(VI)/U(V) solids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retnaningsih, Lilis, E-mail: lilisretna@gmail.com; Muliani, Lia
2016-04-19
This study has been conducted synthesis of TiO{sub 2} nanoparticle powders and ZnO nanoparticle powder into a paste to be in this research, dye-sensitive solar cells (DSSC) was produced by TiO{sub 2} nanopowder and ZnO nanopowder synthesis to make paste that is applied as electrode. This electrode works based on photon absorbed by dye and transferred to different composition of TiO{sub 2}/ ZnO particle. Properties of DSSC are affected by fabrication method, parameter and dimension of TiO{sub 2} / ZnO nanoparticles, technique and composition of TiO{sub 2} / ZnO paste preparation is important to get the higher performance of DSSC.more » Doctor blade is a method for electrode coating on glass substrate. The electrode was immersed into dye solution of Z907 and ethanol. From the experiment, the effect of TiO{sub 2} and ZnO nanopowder mixture for electrode was investigated. XRD characterization show anatase and rutile phase, which sintered TiO{sub 2}/ZnO has intensity more than 11,000. SEM characterization shows the composition of 20% TiO{sub 2} / 80% ZnO has better porosity. Higher efficiency that is investigated by I-V measurement using Sun Simulator.« less
Tanks Versus Infantry in a Smoke Environment (TISE)
1978-08-01
maneuvering toward stationary armor vehicles in an attempt to detect and recognize them. Finally, Part IV trials were limited free - play , two-sided...long. Each armor vehicle lane (average 40 meters in width) was marked on the ground by white tape. These markings were removed for part IV free - play trials...recognize them. Data were collected from both sides. (4) Part IV was free - play , force-on-force engagement trials. Defensive positions were tactically
Modelisation of the SECMin molten salts environment
NASA Astrophysics Data System (ADS)
Lucas, M.; Slim, C.; Delpech, S.; di Caprio, D.; Stafiej, J.
2014-06-01
We develop a cellular automata modelisation of SECM experiments to study corrosion in molten salt media for generation IV nuclear reactors. The electrodes used in these experiments are cylindrical glass tips with a coaxial metal wire inside. As the result of simulations we obtain the current approach curves of the electrodes with geometries characterized by several values of the ratios of glass to metal area at the tip. We compare these results with predictions of the known analytic expressions, solutions of partial differential equations for flat uniform geometry of the substrate. We present the results for other, more complicated substrate surface geometries e. g. regular saw modulated surface, surface obtained by Eden model process, ...
Carbon Nanotube Tower-Based Supercapacitor
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya (Inventor)
2012-01-01
A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.
Flexible retinal electrode array
Okandan, Murat [Albuquerque, NM; Wessendorf, Kurt O [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM
2006-10-24
An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.
NASA Astrophysics Data System (ADS)
Tahir, Dahlang; Satriani, Wilda; Gareso, P. L.; Abdullah, B.
2018-03-01
DSSC (Dye-Sensitized Solar Cell) prototype has been investigated using Jatropha leaves and purple Chrysanthemum flowers as natural dyes. DSSC consists of working electrode and counter electrode. A working electrode composed of semiconductor nanoparticles TiO2 that has been coated with dye molecules. Dye molecules serve as light photon catchers, while semiconductor nanoparticles TiO2 function to absorb and forward photons into electrons. In the electrode counter given catalyst carbon, serves to accelerate the reaction kinetics of triiodide reduction process on transparent conductive oxide (TCO). DSSC using TiO2 as a semiconductor material and natural dyes as sensitizer from Jatropha leaves and purple Chrysanthemum flowers are successful produced. The physical properties of the working electrode have been determined by using XRD and the chemical properties of the TiO2 powder and dye powder using FTIR and dye solution using UV-Vis. The resulted fabrications are also examined its I-V characteristics. The best performance is generated by mixed dye 1.91 x 10-3 % compared than those DSSC for dye extracted from Jatropha leaves or purple Chrysanthemum. The characterization results show that the higher of the absorption wavelength of the DSSC efficiency is high.
Razmi, H; Heidari, H
2009-05-01
This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.
Santos-Almeida, Fernanda Machado; Girão, Henrique; da Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens
2015-01-15
We investigated the effects of acute pyridostigmine (PYR) treatment, an acetylcholinesterase inhibitor, on arterial pressure (AP), heart rate (HR), cardiac sympathovagal balance, and the incidence of arrhythmias during the first 4 h after myocardial infarction (MI) in anesthetized rats. Male Wistar rats were implanted with catheters into the femoral artery and vein for AP recordings and drug administration. Rats received the autonomic receptor blockers methyl-atropine (1 mg/kg iv) and propranolol (2 mg/kg iv) at intervals of 15 min, 1 h after saline (n=16) or PYR (0.25 mg/kg iv, n=18), to indirectly assess sympathovagal balance. Acute treatment with PYR increased cardiac vagal (86±7 vs. 44±5 beats/min) and decreased sympathetic tone (-31±8 vs. -69±7 beats/min). Different animals were implanted with ECG electrodes and catheters. A large MI was induced via left coronary artery ligation after basal recordings. Rats received PYR (n=14) or saline (n=14) 10-15 min after MI, and the recordings lasted up to 4 h. In part of the animals, hearts were removed for connexin43 quantification after all procedures. MI elicited a fall in AP (-45±5 mmHg), a progressive rise in HR (26±14 beats/min), and an increase in corrected QT interval (33±13 ms). PYR elicited a prompt bradycardia (-50±14 beats/min) that returned to basal levels over time, and it prevented the lengthening of the corrected QT interval. Treatment with PYR increased by ∼20% the occurrence of rats free of arrhythmias after MI. MI markedly decreased connexin43 in left ventricles, and PYR treatment partially prevented this decrease. Copyright © 2015 the American Physiological Society.
PREPARATION AND ELECTRICAL PROPERTIES OF BiFeO3/La0.7Sr0.3MnO3 MULTILAYERS
NASA Astrophysics Data System (ADS)
Zhu, Huiwen; Wang, Shunli; Li, Xiaoyun
2013-07-01
(La0.7Sr0.3MnO3 12 nm/BiFeO3 12 nm)10 was grown on SrTiO3 (001) substrate using rf magnetron sputtering. The structure analysis indicated that BiFeO3/La0.7Sr0.3MnO3 multilayers were highly (001)-oriented. Compared with bottom La0.7Sr0.3MnO3 electrode, the top La0.7Sr0.3MnO3 electrode displayed a rougher surface. The electric transport characteristics of the sample were investigated mainly at low temperature, and it was found that the sample exhibited resistance-temperature curves similar to those of La0.7Sr0.3MnO3 with the exception of an upturn at lower temperature region. Furthermore, a nonlinear I-V curve, which is characteristic of a tunneling conduction mechanism, was observed at 50 K. At higher temperature, the I-V curves were found to be diode-like. When the temperature was further increased to 300 K, the sample showed a space charge limited conduction (SCLC) characteristic.
NASA Astrophysics Data System (ADS)
Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.
2017-06-01
Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles IV Appendix IV to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles IV Appendix IV to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR...
Electrode Processes in Porous Electrodes.
1985-11-26
F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As
Forward and inverse effects of the complete electrode model in neonatal EEG
Lew, S.; Wolters, C. H.
2016-01-01
This paper investigates finite element method-based modeling in the context of neonatal electroencephalography (EEG). In particular, the focus lies on electrode boundary conditions. We compare the complete electrode model (CEM) with the point electrode model (PEM), which is the current standard in EEG. In the CEM, the voltage experienced by an electrode is modeled more realistically as the integral average of the potential distribution over its contact surface, whereas the PEM relies on a point value. Consequently, the CEM takes into account the subelectrode shunting currents, which are absent in the PEM. In this study, we aim to find out how the electrode voltage predicted by these two models differ, if standard size electrodes are attached to a head of a neonate. Additionally, we study voltages and voltage variation on electrode surfaces with two source locations: 1) next to the C6 electrode and 2) directly under the Fz electrode and the frontal fontanel. A realistic model of a neonatal head, including a skull with fontanels and sutures, is used. Based on the results, the forward simulation differences between CEM and PEM are in general small, but significant outliers can occur in the vicinity of the electrodes. The CEM can be considered as an integral part of the outer head model. The outcome of this study helps understanding volume conduction of neonatal EEG, since it enlightens the role of advanced skull and electrode modeling in forward and inverse computations. NEW & NOTEWORTHY The effect of the complete electrode model on electroencephalography forward and inverse computations is explored. A realistic neonatal head model, including a skull structure with fontanels and sutures, is used. The electrode and skull modeling differences are analyzed and compared with each other. The results suggest that the complete electrode model can be considered as an integral part of the outer head model. To achieve optimal source localization results, accurate electrode modeling might be necessary. PMID:27852731
40 CFR Appendix IV to Part 261 - Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary Materials Wording of the instruments. Appendix IV to Part 261 [Reserved for Radioactive Waste Test Methods] ...
40 CFR 85.2114 - Basis of certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... an alternative, the aftermarket part manufacturer may use a different durability procedure if it can..., appendix IV. As an alternative, the aftermarket part manufacturer may use a different durability procedure..., appendix IV can be used. As an alternative, the aftermarket part manufacturer may use a different...
Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.
Simeone, Felice Carlo; Rampi, Maria Anita
2010-01-01
Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of produced results, are convenient test-beds for molecular electronics and represent a useful complement to physics-based experimental methods.
Charoenkitamorn, Kanokwan; Chaiyo, Sudkate; Chailapakul, Orawon; Siangproh, Weena
2018-04-03
In this work, for the first time, manganese (IV) oxide-modified screen-printed graphene electrodes (MnO 2 /SPGEs) were developed for the simultaneous electrochemical detection of coenzyme Q10 (CoQ10) and α-lipoic acid (ALA). This sensor exhibits attractive benefits such as simplicity, low production costs, and disposability. Cyclic voltammetry (CV) was used to characterize the electrochemical behavior of the analyte and investigate the capacitance and electroactive surface area of the unmodified and modified electrode surfaces. The electrochemical behavior of CoQ10 and ALA on MnO 2 /SPGEs was also discussed. Additionally, square wave anodic stripping voltammetry (SWASV) was used for the quantitative determination of CoQ10 and ALA. Under optimal conditions, the obtained signals are linear in the concentration range from 2.0 to 75.0 μg mL -1 for CoQ10 and 0.3-25.0 μg mL -1 for ALA. The low limits of detection (LODs) were found to be 0.56 μg mL -1 and 0.088 μg mL -1 for CoQ10 and ALA, respectively. Moreover, we demonstrated the utility and applicability of the MnO 2 /SPGE sensor through simultaneous measurements of CoQ10 and ALA in dietary supplements. The sensor provides high accuracy measurements, exhibiting its high potential for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Current-voltage characteristics of dendrimer light-emitting diodes
NASA Astrophysics Data System (ADS)
Stevenson, S. G.; Samuel, I. D. W.; Staton, S. V.; Knights, K. A.; Burn, P. L.; Williams, J. H. T.; Walker, Alison B.
2010-09-01
We have investigated current-voltage (I-V) characteristics of unipolar and bipolar organic diodes that use phosphorescent dendrimers as the emissive organic layer. Through simulation of the measured I-V characteristics we were able to determine the device parameters for each device structure studied, leading to a better understanding of injection and transport behaviour in these devices. It was found that the common practice of assuming injection barriers are equal to the difference between bare electrode work functions and molecular orbital levels is unsuitable for the devices considered here, particularly for gold contacts. The studies confirm that different aromatic units in the dendrons can give significant differences in the charge transporting properties of the dendrimers.
Anomalous I-V curve for mono-atomic carbon chains
NASA Astrophysics Data System (ADS)
Song, Bo; Sanvito, Stefano; Fang, Haiping
2010-10-01
The electronic transport properties of mono-atomic carbon chains were studied theoretically using a combination of density functional theory and the non-equilibrium Green's functions method. The I-V curves for the chains composed of an even number of atoms and attached to gold electrodes through sulfur exhibit two plateaus where the current becomes bias independent. In contrast, when the number of carbon atoms in the chain is odd, the electric current simply increases monotonically with bias. This peculiar behavior is attributed to dimerization of the chains, directly resulting from their one-dimensional nature. The finding is expected to be helpful in designing molecular devices, such as carbon-chain-based transistors and sensors, for nanoscale and biological applications.
Two-plateau rechargeable sodium/sulfur(IV) molten chloroaluminate cell
NASA Astrophysics Data System (ADS)
Mamantov, G.; Tanemoto, K.; Ogata, Y.
1983-07-01
Studies of the two-discharge plateau Na/S(IV) chloroaluminate cell are reported. Attention was given to reticulated vitreous carbon (RVC) as the positive electrode current collector instead of a tungsten spiral. A sulfur concentration on the order of 0.3 m was employed to avoid voltage oscillations by lowering the acidity changes during discharge. The ratio of the coulomb content of the first plateau to that at the second was determined to be about two. The second plateau was more discernible at 250 C than at 220 C. Voltage oscillations were eliminated with the RVC current collector and an energy density of 457 W-hr/kg was achieved with no deterioration of the materials being observed.
20 CFR 410.591 - Eligibility for services and supplies under part C of title IV of the act.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Eligibility for services and supplies under part C of title IV of the act. 410.591 Section 410.591 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of...
40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sample Fuel Economy Labels for 2008... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 and Later Model Year...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Types of Information for the Nomination of Sites as Suitable for Characterization IV Appendix IV to Part 960 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR..., diapirism, tilting, subsidence, faulting, and volcanism. • Estimate of the geothermal gradient. • Estimate...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Wastes Excluded From Lab Packs Under...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Wastes Excluded From Lab Packs Under...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Wastes Excluded From Lab Packs Under...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Wastes Excluded From Lab Packs Under...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. IV Appendix IV to Part 268—Wastes Excluded From Lab Packs Under the Alternative Treatment... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Wastes Excluded From Lab Packs Under...
45 CFR 310.0 - What does this part cover?
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMPUTERIZED TRIBAL IV-D SYSTEMS AND OFFICE AUTOMATION General Provisions § 310.0 What does this part cover... and Office Automation including: (a) The automated systems options for comprehensive Tribal IV-D... and Office Automation in § 310.15 of this part; (d) The conditions for funding the installation...
Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode.
Wolfbeis, Otto S
2015-08-01
Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. © 2015 The Author. Bioessays published by WILEY Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cari; Supriyanto, Agus; Mahfudli Fadli, Ulfa; Bayu Prasada, Ashari
2016-04-01
Dye sensitized Solar Cells (DSSC) is one of the electric cells photochemical consisting of photoelectrode, dye, counter electrode, and electrolyte. The aims of the research to determine of the optical and electrical characteristic of the extract Sansevieria trifasciata, Pandanus amaryllifolius, and Cassia angustifolia. The study is also aimed to determine the effect of natural dyes extract to increase the efficiency of solar cells based DSSC. Sandwich structures formed in the sample consisted of working electrode pair Titanium dioxide (TiO2) and the counter electrode platinum (Pt). Dye extraction process is performed by stirring for 1 hour and then allowed to stand for 24 hours. Absorbance test is measure by using UV-Vis spectrophotometer Lambda 25, conductivity test by using a two-point probes Elkahfi 100, and characterization of current and voltage (I-V) by using a Keithley 2602A. The results showed that the greatest efficiency of 0.160% at Dye Pandanus amaryllifolius.
NASA Astrophysics Data System (ADS)
Sakai, Masamichi; Takao, Hiraku; Matsunaga, Tomoyoshi; Nishimagi, Makoto; Iizasa, Keitaro; Sakuraba, Takahito; Higuchi, Koji; Kitajima, Akira; Hasegawa, Shigehiko; Nakamura, Osamu; Kurokawa, Yuichiro; Awano, Hiroyuki
2018-03-01
We have proposed an enhancement mechanism of the Hall effect, the signal of which is amplified due to the generation of a sustaining mode of spin current. Our analytic derivations of the Hall resistivity revealed the conditions indispensable for the observation of the effect: (i) the presence of the transverse component of an effective electric field due to spin splitting in chemical potential in addition to the longitudinal component; (ii) the simultaneous presence of holes and electrons each having approximately the same characteristics; (iii) spin-polarized current injection from magnetized electrodes; (iv) the boundary condition for the transverse current (J c, y = 0). The model proposed in this study was experimentally verified by using van der Pauw-type Hall devices consisting of the nonmagnetic bipolar conductor YH x (x ≃ 2) and TbFeCo electrodes. Replacing Au electrodes with TbFeCo electrodes alters the Hall resistivity from the ordinary Hall effect to the anomalous Hall-like effect with an enhancement factor of approximately 50 at 4 T. We interpreted the enhancement phenomenon in terms of the present model.
Work function measurements of copper nanoparticle intercalated polyaniline nanocomposite thin films
NASA Astrophysics Data System (ADS)
Patil, U. V.; Ramgir, Niranjan S.; Bhogale, A.; Debnath, A. K.; Muthe, K. P.; Gadkari, S. C.; Kothari, D. C.
2017-05-01
The nature of contact between the electrode and the sensing material plays a crucial role in governing the sensing mechanism. Thin films of polyaniline (PANI) and copper-polyaniline nanocomposite (NC) have been deposited at room temperatures by in-situ oxidative polymerization of aniline in the presence of Cu nanoparticles. For sensing applications a thin film Au (gold) ˜100 nm is deposited and used as a conducting electrode. To understand the nature of contact (i.e., ohmic or Schottky) the work function of the conducting polyaniline and nanocomposite films were measured using Kelvin Probe method. I-V characteristics of PANI and NC films investigated at room temperatures further corroborates and confirms the formation of Ohmic contact as evident from work function measurements.
Current rectification in a single molecule diode: the role of electrode coupling.
Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás
2015-07-24
We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.
Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer
2014-01-01
A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952
Current rectification in a single molecule diode: the role of electrode coupling
NASA Astrophysics Data System (ADS)
Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás
2015-07-01
We demonstrate large rectification ratios (\\gt 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 105 A cm-2. By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.
Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle
NASA Astrophysics Data System (ADS)
Jin, Zhiwen; Liu, Guo; Wang, Jizheng
2013-05-01
Uniform Au nanoparticles (NPs) are formed by thermally depositing nominal 2-nm thick Au film on a 10-nm thick polyimide film formed on a Al electrode, and then covered by a thin polymer semiconductor film, which acts as an energy barrier for electrons to be injected from the other Al electrode (on top of polymer film) into the Au NPs, which are energetically electron traps in such a resistive random access memory (RRAM) device. The Au NPs based RRAM device exhibits estimated retention time of 104 s, cycle times of more than 100, and ON-OFF ratio of 102 to 103. The carrier transport properties are also analyzed by fitting the measured I-V curves with several conduction models.
Tunneling studies of compositionally modulated PB/Fe films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wawro, A.; Witek, A.; Majewski, J.
1988-01-01
Preliminary results of preparation and investigation of compositionally modulated Pb/Fe films are reported. These films have been used as electrodes in Al/Al/sub 2/O/sub 3//{kappa}(Pb/Fe) tunnel junctions and the tunnelling characteristics I-V, dV/dI and d/sup 2/V/d/I/sup 2/ vs V have been studied in dependence on the modulation period.
Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode
NASA Astrophysics Data System (ADS)
Mamedov, R. K.; Aslanova, A. R.
2018-06-01
The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.
Electrode array for neural stimulation
Wessendorf, Kurt O [Albuquerque, NM; Okandan, Murat [Edgewood, NM; Stein, David J [Albuquerque, NM; Yang, Pin [Albuquerque, NM; Cesarano, III, Joseph; Dellinger, Jennifer [Albuquerque, NM
2011-08-16
An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.
Human Rehabilitation Techniques. Project Papers. Volume IV, Part B.
ERIC Educational Resources Information Center
Dudek, R. A.; And Others
Volume IV, Part B of a six-volume final report (which covers the findings of a research project on policy and technology related to rehabilitation of disabled individuals) presents a continuation of papers (Part A) giving an overview of project methodology, much of the data used in projecting consequences and policymaking impacts in project…
NASA Astrophysics Data System (ADS)
Zeng, Zheng; Liu, Yiyang; Zhang, Wendi; Chevva, Harish; Wei, Jianjun
2017-08-01
This work reports on a finding of mT magnetic field induced energy storage enhancement of MnO2-based supercapacitance electrodes (magneto-supercapacitor). Electrodes with MnO2 electrochemically deposited at electrospun carbon nanofibers (ECNFs) film are studied by cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and life cycle stability tests in the presence/absence of milli-Tesla (mT) magnetic fields derived by Helmholtz coils. In the presence of a 1.34 mT magnetic field, MnO2/ECNFs shows a magneto-enhanced capacitance of 141.7 F g-1 vs. 119.2 F g-1 (∼19% increase) with absence of magnetic field at a voltage sweeping rate of 5 mV s-1. The mechanism of the magneto-supercapacitance is discussed and found that the magnetic susceptibility of the MnO2 significantly improves the electron transfer of a pseudo-redox reaction of Mn(IV)/Mn(III) at the electrode, along with the magnetic field induced impedance effect, which may greatly enhance the interface charge density, facilitate electrolyte transportation, and improve the efficiency of cation intercalation/de-intercalation of the pseudocapacitor under mT-magnetic field exposure, resulting in enhancement of energy storage capacitance and longer charge/discharge time of the MnO2/ECNFs electrode without sacrificing its life cycle stability.
ERIC Educational Resources Information Center
Puerto Rico State Dept. of Education, Hato Rey. Area for Vocational and Technical Education.
This guide is intended for instructing secondary students in the occupation of clinical services coordinator in a hospital. The first part contains four units on the following subjects: the occupation of clinical services coordinator; interpersonal relationships; ethical/legal aspects; and communications (telephone, intercom, and others). For each…
Yamada, Toshishige; Yamada, Hidenori; Lohn, Andrew J; Kobayashi, Nobuhiko P
2011-02-04
Detailed electron transport analysis is performed for an ensemble of conical indium phosphide nanowires bridging two hydrogenated n(+)-silicon electrodes. The current-voltage (I-V) characteristics exhibit a Coulomb staircase in the dark with a period of ∼ 1 V at room temperature. The staircase is found to disappear under light illumination. This observation can be explained by assuming the presence of a tiny Coulomb island, and its existence is possible due to the large surface depletion region created within contributing nanowires. Electrons tunnel in and out of the Coulomb island, resulting in the Coulomb staircase I-V. Applying light illumination raises the electron quasi-Fermi level and the tunneling barriers are buried, causing the Coulomb staircase to disappear.
Lalo, Hélène; Bon-Saint-Côme, Yémima; Plano, Bernard; Etienne, Mathieu; Walcarius, Alain; Kuhn, Alexander
2012-02-07
The elaboration of an original composite bimetallic macroporous electrode containing a site-selective sol-gel deposit is reported. Regular colloidal crystals, obtained by a modified Langmuir-Blodgett approach, are used as templates for the electrogeneration of the desired metals in the form of a well-defined layered bimetallic porous electrode. This porous matrix shows a spatially modulated electroactivity which is subsequently used as a strategy for targeted electrogeneration of a sol-gel deposit, exclusively in one predefined part of the porous electrode.
Tsui, C K; Boedo, J A; Stangeby, P C
2018-01-01
A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter l p , and the model is thus referred to as the "perimeter sheath expansion method." l p is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ∼ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ∼ 0 and for V = V f .
NASA Astrophysics Data System (ADS)
Tsui, C. K.; Boedo, J. A.; Stangeby, P. C.; TCV Team
2018-01-01
A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter lp, and the model is thus referred to as the "perimeter sheath expansion method." lp is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ˜ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ˜ 0 and for V = Vf.
Caliskan, S; Laref, A
2014-07-14
Spin-polarized transport properties are determined for pentacene sandwiched between Ni surface electrodes with various anchoring ligands. These calculations are carried out using spin density functional theory in tandem with a non-equilibrium Green's function technique. The presence of a Se atom at the edge of the pentacene molecule significantly modifies the transport properties of the device because Se has a different electronegativity than S. Our theoretical results clearly show a larger current for spin-up electrons than for spin-down electrons in the molecular junction that is attached asymmetrically across the Se linker at one side of the Ni electrodes (in an APL magnetic orientation). Moreover, this molecular junction exhibits pronounced NDR as the bias voltage is increased from 0.8 to 1.0 V. However, this novel NDR behavior is only detected in this promising pentacene molecular device. The NDR in the current-voltage (I-V) curve results from the narrowness of the density of states for the molecular states. The feasibility of controlling the TMR is also predicted in these molecular device nanostructures. Spin-dependent transmission calculations show that the sign and strength of the current-bias voltage characteristics and the TMR could be tailored for the organic molecule devices. These molecular junctions are joined symmetrically and asymmetrically between Ni metallic probes across the S and Se atoms (at the ends of the edges of the pentacene molecule). Our theoretical findings show that spin-valve phenomena can occur in these prototypical molecular junctions. The TMR and NDR results show that nanoscale junctions with spin valves could play a vital role in the production of novel functional molecular devices.
Kataoka, M; Nishimura, K; Kambara, T
1983-12-01
A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 muM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.
Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik
2011-04-01
A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.
Durability of implanted electrodes and leads in an upper-limb neuroprosthesis.
Kilgore, Kevin L; Peckham, P Hunter; Keith, Michael W; Montague, Fred W; Hart, Ronald L; Gazdik, Martha M; Bryden, Anne M; Snyder, Scott A; Stage, Thomas G
2003-01-01
Implanted neuroprosthetic systems have been successfully used to provide upper-limb function for over 16 years. A critical aspect of these implanted systems is the safety, stability, and-reliability of the stimulating electrodes and leads. These components are (1) the stimulating electrode itself, (2) the electrode lead, and (3) the lead-to-device connector. A failure in any of these components causes the direct loss of the capability to activate a muscle consistently, usually resulting in a decrement in the function provided by the neuroprosthesis. Our results indicate that the electrode, lead, and connector system are extremely durable. We analyzed 238 electrodes that have been implanted as part of an upper-limb neuroprosthesis. Each electrode had been implanted at least 3 years, with a maximum implantation time of over 16 years. Only three electrode-lead failures and one electrode infection occurred, for a survival rate of almost 99 percent. Electrode threshold measurements indicate that the electrode response is stable over time, with no evidence of electrode migration or continual encapsulation in any of the electrodes studied. These results have an impact on the design of implantable neuroprosthetic systems. The electrode-lead component of these systems should no longer be considered a weak technological link.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Degao; Sheridan, Matthew V.; Shan, Bing
2017-08-30
In a Dye Sensitized Photoelectrosynthesis Cell (DSPEC) the relative orientation of catalyst and chromophore play important roles. Here we introduce a new, robust, Atomic Layer Deposition (ALD) procedure for the preparation of assemblies on wide bandgap semiconductors. In the procedure, phosphonated metal complex precursors react with metal ion bridging to an external chromophore or catalyst to give assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units as bridges. The procedure has been extended to chromophore-catalyst assemblies for water oxidation catalysis. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes water splitting with an incident photon conversion efficiency (IPCE)more » of 17.1% at 440 nm. Reduction of water at a Ni(II)-based catalyst on NiO films has been shown to give H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.« less
Effect of electronic coupling of Watson-Crick hopping in DNA poly(dA)-poly(dT)
NASA Astrophysics Data System (ADS)
Risqi, A. M.; Yudiarsah, E.
2017-07-01
Charge transport properties of poly(dA)-poly(dT) DNA has been studied by using thigh binding Hamiltonian approach. Molecule DNA that we use consist of 32 base pair of adenine (A) and thymine (T) and backbone is consist of phosphate and sugar. The molecule DNA is contacted electrode at both ends. Charge transport in molecule DNA depend on the environment, we studied the effect of electronic coupling of Watson-Crick hopping in poly(dA)-poly(dT) DNA to transmission probability and characteristic I-V. The electronic coupling constant influence charge transport between adenine-thymine base pairs at the same site. Transmission probability is studied by using transfer matrix and scattering matrix method, and the result of transmission probability is used to calculate the characteristic I-V by using formula Landauer Buttiker. The result shows that when the electronic coupling increase then transmission probability and characteristic I-V increase slightly.
Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.
2013-02-01
Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.
Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO2) thin films
NASA Astrophysics Data System (ADS)
Nordin, N.; Hashim, U.; Azizah, N.
2016-07-01
Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.
Chen, Kai-Huang; Tsai, Tsung-Ming; Cheng, Chien-Min; Huang, Shou-Jen; Chang, Kuan-Chang; Liang, Shu-Ping; Young, Tai-Fa
2017-01-01
In this study, the hopping conduction distance and bipolar switching properties of the Gd:SiOx thin film by (radio frequency, rf) rf sputtering technology for applications in RRAM devices were calculated and investigated. To discuss and verify the electrical switching mechanism in various different constant compliance currents, the typical current versus applied voltage (I-V) characteristics of gadolinium oxide RRAM devices was transferred and fitted. Finally, the transmission electrons’ switching behavior between the TiN bottom electrode and Pt top electrode in the initial metallic filament forming process of the gadolinium oxide thin film RRAM devices for low resistance state (LRS)/high resistance state (HRS) was described and explained in a simulated physical diagram model. PMID:29283368
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, M.H.; Lederman, S.; Sforza, P.
1980-01-01
This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limitmore » of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.« less
20 CFR 634.3 - Eligible recipients.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR LABOR MARKET INFORMATION PROGRAMS UNDER TITLE IV, PART E OF THE JOB TRAINING PARTNERSHIP ACT Comprehensive Labor Market Information System § 634.3 Eligible recipients. (a) For funds appropriated pursuant to JTPA title IV, part E...
76 FR 22878 - Defense Transportation Regulation, Part IV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
... Military Services, DFAS and SDDC. In addition, the proposed electronic billing processes will compliment... in the Defense Transportation Regulation (DTR) Part IV (DTR 4500.9R). This process proposes mandatory... Transportation Service Providers (TSP). Implementation of electronic payments for NTS at all Military Services...
Technical tips: Electrode application and preventing skin breakdown techniques.
Berlin, Fira; Carlile, Jennifer A; de Burgo, Maria I; Rochon, Adrienne; Wagner, Esperanza E; Sellers, Martha C; Worrell, Amanda R; Andal, E Lauren C; Woods, Latina R
2011-09-01
The recording electrodes including their precise location, their ability to record during movements that can be intense during a convulsive seizure, and their capability to record for several days without causing skin breakdown are an integral part of long-term EEG recording. Many of the facets of EEG technology have changed dramatically with the introduction of digital EEG. But the electrode and the electrode/skin interface have not had many dramatic changes. The technologist still looks for ways to ensure correct electrode placement, good recording capabilities, and a patient with healthy skin when the electrodes are removed. This Technical Tips features ideas and experiences from several technologists. These technologists express suggestions and opinions which are accepted in Technical Tips.
NASA Astrophysics Data System (ADS)
Bilici, Mihai A.; Haase, John R.; Boyle, Calvin R.; Go, David B.; Sankaran, R. Mohan
2016-06-01
We report on the existence of a smooth transition from field emission to a self-sustained plasma in microscale electrode geometries at atmospheric pressure. This behavior, which is not found at macroscopic scales or low pressures, arises from the unique combination of large electric fields that are created in microscale dimensions to produce field-emitted electrons and the high pressures that lead to collisional ionization of the gas. Using a tip-to-plane electrode geometry, currents less than 10 μA are measured at onset voltages of ˜200 V for gaps less than 5 μm, and analysis of the current-voltage (I-V) relationship is found to follow Fowler-Nordheim behavior, confirming field emission. As the applied voltage is increased, gas breakdown occurs smoothly, initially resulting in the formation of a weak, partial-like glow and then a self-sustained glow discharge. Remarkably, this transition is essentially reversible, as no significant hysteresis is observed during forward and reverse voltage sweeps. In contrast, at larger electrode gaps, no field emission current is measured and gas breakdown occurs abruptly at higher voltages of ˜400 V, absent of any smooth transition from the pre-breakdown condition and is characterized only by glow discharge formation.
Kadish, Karl M; Frémond, Laurent; Burdet, Fabien; Barbe, Jean-Michel; Gros, Claude P; Guilard, Roger
2006-04-01
A series of heterobinuclear cofacial porphyrin-corrole dyads containing a Co(IV) corrole linked by one of four different spacers in a face-to-face arrangement with an Fe(III) or Mn(III) porphyrin have been examined as catalysts for the electroreduction of O(2) to H(2)O and/or H(2)O(2) when adsorbed on the surface of a graphite electrode in air-saturated aqueous solutions containing 1M HClO(4). The examined compounds are represented as (PCY)M(III)ClCo(IV)Cl where P is a porphyrin dianion, C is a corrole trianion and Y is a biphenylene (B), 9,9-dimethylxanthene (X), dibenzofuran (O) or anthracene (A) spacer. The catalytic behavior of the seven investigated dyads in the two heterobimetallic (PCY)MClCoCl series of catalysts is compared on one hand to what was previously reported for related dyads with a single Co(III) corrole macrocycle linked to a free-base porphyrin with the same set of linking bridges, (PCY)H(2)Co, and on the other hand to dicobalt porphyrin-corrole dyads of the form (PCY)Co(2) which were shown to efficiently electrocatalyze the four electron reduction of O(2) at a graphite electrode in acid media. Comparisons between the four series of porphyrin-corrole dyads, (PCY)Co(2), (PCY)H(2)Co, (PCY)FeClCoCl and (PCY)MnClCoCl, show that in all cases the biscobalt dyads catalyze O(2) electroreduction at potentials more positive by an average 110mV as compared to the related series of compounds containing a Co(III) or Co(IV) corrole macrocycle linked to a free-base metalloporphyrin or a metalloporphyrin with an Fe(III) or Mn(III) central metal ion. The data indicates that the E(1/2) values where electrocatalysis is initiated is related to the initial site of electron transfer, which is the Co(III)/Co(II) porphyrin reduction process in the case of (PCY)Co(2) and the Co(IV)/Co(III) corrole reduction in the case of (PCY)MnClCoCl, (PCY)FeClCoCl and (PCY)H(2)Co. The overall data also suggests that the catalytically active form of the biscobalt dyad in (PCY)Co(2) contains a Co(II) porphyrin and a Co(IV) corrole.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2011-01-01
The majority of solid tantalum capacitors are produced by high-temperature sintering of a fine tantalum powder around a tantalum wire followed by electrolytic anodization that forms a thin amorphous Ta2O5 dielectric layer and pyrolysis of manganese nitrite on the oxide to create a conductive manganese dioxide electrode. A contact to tantalum wire is used as anode terminal and to the manganese layer as a cathode terminal of the device. This process results in formation of an asymmetric Ta -- Ta2O5 -- MnO2 capacitor that has different characteristics at forward (positive bias applied to tantalum) and reverse (positive bias applied to manganese cathode) voltages. Reverse bias currents might be several orders of magnitude larger than forward leakage currents so I-V characteristics of tantalum capacitors resemble characteristics of semiconductor rectifiers. Asymmetric I-V characteristics of Ta -- anodic Ta2O5 systems have been observed at different top electrode materials including metals, electrolytes, conductive polymers, and manganese oxide thus indicating that this phenomenon is likely related to the specifics of the Ta -- Ta2O5 interface. There have been multiple attempts to explain rectifying characteristics of capacitors employing anodic tantalum pentoxide dielectrics. A brief review of works related to reverse bias (RB) behavior of tantalum capacitors shows that the mechanism of conduction in Ta -- Ta2O5 systems is still not clear and more testing and analysis is necessary to understand the processes involved. If tantalum capacitors behave just as rectifiers, then the assessment of the safe reverse bias operating conditions would be a relatively simple task. Unfortunately, these parts can degrade with time under reverse bias significantly, and this further complicates analysis of the I-V characteristics and establishing safe operating areas of the parts. On other hand, time dependence of reverse currents might provide additional information for investigation of the processes under reverse bias conditions. In practice, there were instances when, due to unforeseen events, the system operated at conditions when capacitors experience periodically a relatively small reverse bias for some time followed by normal, forward bias conditions. In such a case an assessment should be made on the degree to which these capacitors are degraded by application of low-voltage reverse bias, and whether this degradation can be reversed by normal operating conditions. In this study, reverse currents in different types of tantalum capacitors were monitored at different reverse voltages below 15%VR and temperatures in the range from room to 145 C for up to 150 hours to get better understanding of the degradation process and determine conditions favorable to the unstable mode of operation. The reversibility of RB degradation has been evaluated after operation of the capacitors at forward bias conditions. The effect of reverse bias stress (RBS) on reliability at normal operating conditions was evaluated using highly accelerated life testing at voltages of 1.5VR and 2 VR and by analysis of changes in distributions of breakdown voltages. Possible mechanisms of RB degradation are discussed.
Systems and methods for producing low work function electrodes
Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Kahn, Antoine; Meyer, Jens; Shim, Jae Won; Marder, Seth R.
2015-07-07
According to an exemplary embodiment of the invention, systems and methods are provided for producing low work function electrodes. According to an exemplary embodiment, a method is provided for reducing a work function of an electrode. The method includes applying, to at least a portion of the electrode, a solution comprising a Lewis basic oligomer or polymer; and based at least in part on applying the solution, forming an ultra-thin layer on a surface of the electrode, wherein the ultra-thin layer reduces the work function associated with the electrode by greater than 0.5 eV. According to another exemplary embodiment of the invention, a device is provided. The device includes a semiconductor; at least one electrode disposed adjacent to the semiconductor and configured to transport electrons in or out of the semiconductor.
Dielectric Constant and Loss Data Part 2
1975-12-01
fluoride, single crystal, Melamine - formaldehyde resins , Columbia Univ., P.R.-75 IV-21,22,112; V-8,88 Manganese-magnesium ferrite, Melamine GMG, IV-2i...butylperoxy) Urea - formaldehyde resins , IV-23 hexane, P.R.-197 U.S. Army Engineering Research and War Dept., Picatinny Arsenal, see Dev. Lab., Fort...IV.-36 irradiated, P.R,-161 "Bakelite" polyvinyl chloride- "Amplifilm," IV-14; V-74 acetate, see "Vinylites" Axiiliine- formaldehyde resins , IV-21
NASA Astrophysics Data System (ADS)
Thakur, Anil; Kashyap, Rajinder
2018-05-01
Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.
48 CFR 1315.204-570 - Part IV representations and instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Part IV representations and instructions. 1315.204-570 Section 1315.204-570 Federal Acquisition Regulations System DEPARTMENT.... Contracting officers shall tailor the provision to suit their acquisition. (3) The contracting officer shall...
48 CFR 1315.204-570 - Part IV representations and instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Part IV representations and instructions. 1315.204-570 Section 1315.204-570 Federal Acquisition Regulations System DEPARTMENT.... Contracting officers shall tailor the provision to suit their acquisition. (3) The contracting officer shall...
48 CFR 1315.204-570 - Part IV representations and instructions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Part IV representations and instructions. 1315.204-570 Section 1315.204-570 Federal Acquisition Regulations System DEPARTMENT.... Contracting officers shall tailor the provision to suit their acquisition. (3) The contracting officer shall...
48 CFR 1315.204-570 - Part IV representations and instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Part IV representations and instructions. 1315.204-570 Section 1315.204-570 Federal Acquisition Regulations System DEPARTMENT.... Contracting officers shall tailor the provision to suit their acquisition. (3) The contracting officer shall...
48 CFR 1315.204-570 - Part IV representations and instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Part IV representations and instructions. 1315.204-570 Section 1315.204-570 Federal Acquisition Regulations System DEPARTMENT.... Contracting officers shall tailor the provision to suit their acquisition. (3) The contracting officer shall...
Enter the Madcap Prince of Wales: Students Directing "Henry IV, Part I."
ERIC Educational Resources Information Center
Earthman, Elise Ann
1993-01-01
Argues that William Shakespeare's "Henry IV, Part I" is an appropriate and useful text for secondary English classrooms. Shows how the play lends itself to performance-based instruction. Outlines ways of accomplishing student engagement, using film versions, and assigning written work. (HB)
NASA Astrophysics Data System (ADS)
Jahangiri, Mojtaba; Yousefiazari, Ehsan; Ghalamboran, Milad
2017-12-01
Pressure sensor is one of the most commonly used sensors in the research laboratories and industries. These are generally categorized in three different classes of absolute pressure sensors, gauge pressure sensors, and differential pressure sensors. In this paper, we fabricate and assess the pressure sensitivity of the current vs. voltage diagrams in a graphite/ZnO/graphite structure. Zinc oxide layers are deposited on highly oriented pyrolytic graphite (HOPG) substrates by sputtering a zinc target under oxygen plasma. The top electrode is also a slice of HOPG which is placed on the ZnO layer and connected to the outside electronic circuits. By recording the I-V characteristics of the device under different forces applied to the top HOPG electrode, the pressure sensitivity is demonstrated; at the optimum biasing voltage, the device current changes 10 times upon changing the pressure level on the top electrode by 20 times. Repeatability and reproducibility of the observed effect is studied on the same and different samples. All the materials used for the fabrication of this pressure sensor are biocompatible, the fabricated device is anticipated to find potential applications in biomedical engineering.
Neuro-Prosthetic Implants With Adjustable Electrode Arrays
NASA Technical Reports Server (NTRS)
Whitacre, Jay; DelCastillo, Linda Y.; Mojarradi, Mohammad; Johnson, Travis; West, William; Andersen, Richard
2006-01-01
Brushlike arrays of electrodes packaged with application-specific integrated circuits (ASICs) are undergoing development for use as electronic implants especially as neuro-prosthetic devices that might be implanted in brains to detect weak electrical signals generated by neurons. These implants partly resemble the ones reported in Integrated Electrode Arrays for Neuro-Prosthetic Implants (NPO-21198), NASA Tech Briefs, Vol. 27, No. 2 (February 2003), page 48. The basic idea underlying both the present and previously reported implants is that the electrodes would pick up signals from neurons and the ASICs would amplify and otherwise preprocess the signals for monitoring by external equipment. The figure presents a simplified and partly schematic view of an implant according to the present concept. Whereas the electrodes in an implant according to the previously reported concept would be microscopic wires, the electrodes according to the present concept are in the form of microscopic needles. An even more important difference would be that, unlike the previously reported concept, the present concept calls for the inclusion of microelectromechanical actuators for adjusting the depth of penetration of the electrodes into brain tissue. The prototype implant now under construction includes an array of 100 electrodes and corresponding array of electrode contact pads formed on opposite faces of a plate fabricated by techniques that are established in the art of microelectromechanical systems (MEMS). A mixed-signal ASIC under construction at the time of reporting the information for this article will include 100 analog amplifier channels (one amplifier per electrode). On one face of the mixed-signal ASIC there will be a solder-bump/micro-pad array that will have the same pitch as that of the electrode array, and that will be used to make the electrical and mechanical connections between the electrode array and the ASIC. Once the electrode array and the ASIC are soldered together, the remaining empty space between them will be filled with a biocompatible epoxy, the remaining exposed portions of the ASIC will be covered with micromachined plates for protection against corrosive bodily fluids, and then the ASIC and its covering micromachined plates will be coated with parylene
NASA Astrophysics Data System (ADS)
Nam, Yoonseung; Hwang, Inrok; Oh, Sungtaek; Lee, Sangik; Lee, Keundong; Hong, Sahwan; Kim, Jinsoo; Choi, Taekjib; Ho Park, Bae
2013-04-01
We investigated the asymmetric current-voltage (I-V) characteristics and accompanying unipolar resistive switching of pure ZnO and Mn(1%)-doped ZnO (Mn:ZnO) films sandwiched between Pt electrodes. After electroforming, a high resistance state of the Mn:ZnO capacitor revealed switchable diode characteristics whose forward direction was determined by the polarity of the electroforming voltage. Linear fitting of the I-V curves highlighted that the rectifying behavior was influenced by a Schottky barrier at the Pt/Mn:ZnO interface. Our results suggest that formation of conducting filaments from the cathode during the electroforming process resulted in a collapse of the Schottky barrier (near the cathode), and rectifying behaviors dominated by a remnant Schottky barrier near the anode.
1998-03-31
plasma focus discharges. Part of the tests summarized here address methods and means for achieving controlled variations of the current sheath (CS) structure via electrode geometry modifications. CS parameters are monitored with multiple magnetic probes in the case of cylindrical - and open-funnel electrode
78 FR 18325 - Defense Transportation Regulation, Part IV
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... received in connection with the Defense Personal Property Program (DP3) Phase III Direct Procurement Method... at http://www.transcom.mil/dtr/part-iv/phaseiii.cfm (DPM SECTION). All identified changes will be... Defense Personal Property System (DPS) Phase III programming projected for FY17. FOR FURTHER INFORMATION...
20 CFR 410.101 - Introduction.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV.... The regulations in this part 410 (Regulation No. 10 of the Social Security Administration) relate to the provisions of part B (Black Lung Benefits) of title IV of the Federal Coal Mine Health and Safety...
Code of Federal Regulations, 2010 CFR
2010-10-01
... records for monitoring Computerized Tribal IV-D Systems and Office Automation? 310.40 Section 310.40... COMPUTERIZED TRIBAL IV-D SYSTEMS AND OFFICE AUTOMATION Accountability and Monitoring Procedures for... monitoring Computerized Tribal IV-D Systems and Office Automation? In accordance with Part 95 of this title...
Quality assurance, an administrative means to a managerial end: Part IV.
Clark, G B
1992-01-01
This is the fourth and final part of a series of articles on laboratory quality surveillance. Part I addressed the historical background of medical quality assurance. Part II covered surveillance guidelines of the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) and the College of American Pathologists with emphasis on quality assurance (QA) and the ten-step process. Part III focused on the JCAHO transition from QA to quality assessment and improvement. Part IV concludes the series by discussing the systematic identification of quality indicators in the total quality management and continuous quality improvement environment.
Nanowire-Based Electrode for Acute In Vivo Neural Recordings in the Brain
Suyatin, Dmitry B.; Wallman, Lars; Thelin, Jonas; Prinz, Christelle N.; Jörntell, Henrik; Samuelson, Lars; Montelius, Lars; Schouenborg, Jens
2013-01-01
We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo. PMID:23431387
NASA Astrophysics Data System (ADS)
Dupas-Bruzek, C.; Dréan, P.; Derozier, D.
2009-10-01
Chronic nerve recording and stimulation became possible through the use of implanted electrodes cuffs. In particular, self-sizing spiral electrode cuffs limit mechanical damage to the tissue: these have been shown to be suitable for long term implantation in animal and in man. However, up to now, such electrode cuffs were handmade and were hardly reproducible. They possessed a small number of electrodes (dot contacts), each being linked to its own wire. In order to improve the selectivity of nerve recording and/or stimulation (functional electrical stimulation), the numbers of electrodes and tracks have to be increased within the same electrode cuff surface. To fulfill this requirement, we have developed a fabrication process that uses an UV laser to induce surface modification, which activates the silicone rubber and is used with a mask to give high definition tracks and electrodes. After this primary step, silicone rubber is immersed in a Pt autocatalytic bath leading to a selective Pt metallization of the laser activated tracks and electrodes. We report our process as well as the results on the Pt metallization, including its morphology, how the DC resistance of Pt tracks depends on the laser used and the irradiation conditions, and also the electrical resistance of Pt tracks submitted to Scotch tape tests or to imposed strains. We show that (i) the type of laser and the irradiation conditions have a strong influence on the nucleation and growth rate of platinum and thus on the DC resistance of the tracks, (ii) the tracks of width 400 μm and thickness 10 μm have a sheet resistivity of 0.2 Ω/sq, (iii) DC resistance does not change much during a 6 month soak in saline, (iv) strains above 2% breaks the track continuity, and (v) when strains below 53% are relaxed, the DC resistance returns to a low value. This recovery from large tensile strains means that nerve cuffs with such metallization could be handled by the surgeon without great care before and during implantation.
Kurita, Ryoji; Yanagisawa, Hiroyuki; Kamata, Tomoyuki; Kato, Dai; Niwa, Osamu
2017-06-06
This paper reports an on-chip electrochemical assessment of the DNA methylation status in genomic DNA on a conductive nanocarbon film electrode realized with combined bisulfite restriction analysis (COBRA). The film electrode consists of sp 2 and sp 3 hybrid bonds and is fabricated with an unbalanced magnetron (UBM) sputtering method. First, we studied the effect of the sp 2 /sp 3 ratio of the UBM nanocarbon film electrode with p-aminophenol, which is a major electro-active product of the labeling enzyme from p-aminophenol phosphate. The signal current for p-aminophenol increases as the sp 2 content in the UBM nanocarbon film electrode increases because of the π-π interaction between aromatic p-aminophenol and the graphene-like sp 2 structure. Furthermore, the capacitative current at the UBM nanocarbon film electrode was successfully reduced by about 1 order of magnitude thanks to the angstrom-level surface flatness. Therefore, a high signal-to-noise ratio was achieved compared with that of conventional electrodes. Then, after performing an ELISA-like hybridization assay with a restriction enzyme, we undertook an electrochemical evaluation of the cytosine methylation status in DNA by measuring the oxidation current derived from p-aminophenol. When the target cytosine in the analyte sequence is methylated (unmethylated), the restriction enzyme of HpyCH4IV is able (unable) to cleave the sequence, that is, the detection probe cannot (can) hybridize. We succeeded in estimating the methylation ratio at a site-specific CpG site from the peak current of a cyclic voltammogram obtained from a PCR product solution ranging from 0.01 to 1 nM.
Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T
2013-01-15
Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.
Self-Assembled Carbon-Polyoxometalate Composites for Electrochemical Capacitors
NASA Astrophysics Data System (ADS)
Genovese, Matthew
The development of high performance yet cost effective energy storage devices is critical for enabling the growth of important emerging sectors from the internet of things to grid integration of renewable energy. Material costs are by far the largest contributor to the overall cost of energy storage devices and thus research into cost effective energy storage materials will play an important role in developing technology to meet real world storage demands. In this thesis, low cost high performance composite electrode materials for supercapacitors (SCs) have been developed through the surface modification of electrochemically double layer capacitive (EDLC) carbon substrates with pseudocapacitive Polyoxometalates (POMs). Significant fundamental contributions have been made to the understanding of all components of the composite electrode including the POM active layer, cation linker, and carbon substrate. The interaction of different POM chemistries in solution has been studied to elucidate the novel ways in which these molecules combine and the mechanism underlying this combination. A more thorough understanding regarding the cation linker's role in electrode fabrication has been developed through examining the linker properties which most strongly affect electrode performance. The development of porosity in biomass derived carbon materials has also been examined leading to important insights regarding the effect of substrate porosity on POM modification and electrochemical properties. These fundamental contributions enabled the design and performance optimization of POM-carbon composite SC electrodes. Understanding how POMs combine in solution, allowed for the development of mixed POM molecular coatings with tunable electrochemical properties. These molecular coatings were used to modify low cost biomass derived carbon substrates that had been structurally optimized to accommodate POM molecules. The resulting electrode composites utilizing low cost materials fabricated through simple scalable techniques demonstrated (i) high capacitance (361 F g-1), (ii) close to ideal pseudocapacitive behavior, (iii) stable cycling, and (iv) good rate performance.
Abel, Taylor J; Varela Osorio, René; Amorim-Leite, Ricardo; Mathieu, Francois; Kahane, Philippe; Minotti, Lorella; Hoffmann, Dominique; Chabardes, Stephan
2018-04-20
OBJECTIVE Robot-assisted stereoelectroencephalography (SEEG) is gaining popularity as a technique for localization of the epileptogenic zone (EZ) in children with pharmacoresistant epilepsy. Here, the authors describe their frameless robot-assisted SEEG technique and report preliminary outcomes and relative complications in children as compared to results with the Talairach frame-based SEEG technique. METHODS The authors retrospectively analyzed the results of 19 robot-assisted SEEG electrode implantations in 17 consecutive children (age < 17 years) with pharmacoresistant epilepsy, and compared these results to 19 preceding SEEG electrode implantations in 18 children who underwent the traditional Talairach frame-based SEEG electrode implantation. The primary end points were seizure-freedom rates, operating time, and complication rates. RESULTS Seventeen children (age < 17 years) underwent a total of 19 robot-assisted SEEG electrode implantations. In total, 265 electrodes were implanted. Twelve children went on to have EZ resection: 4 demonstrated Engel class I outcomes, whereas 2 had Engel class II outcomes, and 6 had Engel class III-IV outcomes. Of the 5 patients who did not have resection, 2 underwent thermocoagulation. One child reported transient paresthesia associated with 2 small subdural hematomas, and 3 other children had minor asymptomatic intracranial hemorrhages. There were no differences in complication rates, rates of resective epilepsy surgery, or seizure freedom rates between this cohort and the preceding 18 children who underwent Talairach frame-based SEEG. The frameless robot-assisted technique was associated with shorter operating time (p < 0.05). CONCLUSIONS Frameless robot-assisted SEEG is a safe and effective means of identifying the EZ in children with pharmacoresistant partial epilepsy. Robot-assisted SEEG is faster than the Talairach frame-based method, and has equivalent safety and efficacy. The former, furthermore, facilitates more electrode trajectory possibilities, which may improve the localization of epileptic networks.
Method of preparing a positive electrode for an electrochemical cell
Tomczuk, Zygmunt
1979-01-01
A method of preparing an electrochemical cell including a metal sulfide as the positive electrode reactant and lithium alloy as the negative electrochemical reactant with an alkali metal, molten salt electrolyte is disclosed which permits the assembly to be accomplished in air. The electrode reactants are introduced in the most part as a sulfide of lithium and the positive electrode metal in a single-phase compound. For instance, Li.sub.2 FeS.sub.2 is a single-phase compound that is produced by the reaction of Li.sub.2 S and FeS. This compound is an intermediate in the positive electrode cycle from FeS.sub.2 to Fe and Li.sub.2 S. Its use minimizes volumetric changes from the assembled to the charged and discharged conditions of the electrode and minimizes electrode material interaction with air and moisture during assembly.
40 CFR 52.2465 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., 2FSD, and pre-dryer 3FSD from Part IV, Rule EX-4, Section 4.41(i) until December 15, 1981, submitted on...) Appendix K (7) Appendix N (8) Appendix P (9) Appendix R I., II.B., II.D., II.E., II.F., II.G., II.H., II.I...) Amendments to Part I, Subpart 1.01 (Certain Terms Defined) and to Part IV, Section 4.52 (former Section 4.705...
Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.
Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei
2010-07-27
A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordin, N.; Azizah, N.; Hashim, U., E-mail: uda@unimap.edu.my
2016-07-06
Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO{sub 2}) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM.more » Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.« less
Highly efficient binuclear ruthenium catalyst for water oxidation.
Sander, Anett C; Maji, Somnath; Francàs, Laia; Böhnisch, Torben; Dechert, Sebastian; Llobet, Antoni; Meyer, Franc
2015-05-22
Water splitting is one of the key steps in the conversion of sunlight into a usable renewable energy carrier such as dihydrogen or more complex chemical fuels. Developing rugged and highly efficient catalysts for the oxidative part of water splitting, the water oxidation reaction generating dioxygen, is a major challenge in the field. Herein, we introduce a new, and rationally designed, pyrazolate-based diruthenium complex with the highest activity in water oxidation catalysis for binuclear systems reported to date. Single-crystal X-ray diffraction showed favorable preorganization of the metal ions, well suited for binding two water molecules at a distance adequate for OO bond formation; redox titrations as well as spectroelectrochemistry allowed characterization of the system in several oxidation states. Low oxidation potentials reflect the trianionic character of the elaborate compartmental pyrazolate ligand furnished with peripheral carboxylate groups. Water oxidation has been mediated both by a chemical oxidant (Ce(IV) )-by means of manometry and a Clark electrode for monitoring the dioxygen production-and electrochemically with impressive activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mariner IV Mission to Mars. Part I
NASA Technical Reports Server (NTRS)
James, Jack N.
1965-01-01
This technical report is a series of individual papers documenting the Mariner-Mars project from its beginning in 1962 following the successful Mariner-Venus mission. Part I is pre-encounter data. It includes papers on the design, development, and testing of Mariner IV, as well as papers detailing methods of maintaining communication with and obtaining data from the spacecraft during flight, and expected results during encounter with Mars. Part 11, post-encounter data, to be published later, will consist of documentation of the events taking place during Mariner IV's encounter with Mars and thereafter. The Mariner-Mars mission, the culmination of an era of spacecraft development, has contributed much new technology to be used in future projects.
NASA Astrophysics Data System (ADS)
Al-Saadi, Osamah; Schmidt, Volkmar; Becken, Michael; Fritsch, Thomas
2017-04-01
Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non-invasive techniques are very useful in saving time, costs, and efforts. Both 2D and 3D ERT techniques are used to obtain detailed images of subsurface anomalies. In two surveyed areas near Nonnweiler (Germany), we present the results of the full 3D setup with a roll-along technique and of the quasi-3D setup (parallel and orthogonal profiles in dipole-dipole configuration). In area A, a dipole-dipole array with 96 electrodes in a uniform rectangular survey grid has been used in full 3D to investigate a presumed Roman building. A roll-along technique has been utilized to cover a large part of the archaeological site with an electrode spacing of 1 meter and with 0.5 meter for a more detailed image. Additional dense parallel 2D profiles have been carried out in dipole-dipole array with 0.25 meter electrode spacing and 0.25 meter between adjacent profiles in both direction for higher- resolution subsurface images. We have designed a new field procedure, which used an electrode array fixed in a frame. This facilitates efficient field operation, which comprised 2376 electrode positions. With the quasi 3D imaging, we confirmed the full 3D inversion model but at a much better resolution. In area B, dense parallel 2D profiles were directly used to survey the second target with also 0.25 meter electrode spacing and profiles separation respectively. The same field measurement design has been utilized and comprised 9648 electrode positions in total. The quasi-3D inversion results clearly revealed the main structures of the Roman construction. These ERT inversion results coincided well with the archaeological excavation, which has been done in some parts of this area. The ERT result successfully images parts from the walls and also smaller internal structures of the Roman building.
NASA Astrophysics Data System (ADS)
Vidal, F.; Busson, B.; Six, C.; Pluchery, O.; Tadjeddine, A.
2002-04-01
The Pt( hkl)/methanol in acidic solution interface which constitutes a model of the anodic part of a fuel cell is studied by infrared-visible sum frequency generation vibrational spectroscopy. Methanol dissociative adsorption leads to CO poisoning of the Pt electrode surfaces. The structure of the CO/Pt( hkl) interface depends strongly on the orientation of the surface electrode.
Nerve Growth Factor Dependent Changes in Electrophysiology Measured in a Neurotrophic Electrode
2001-10-25
required for neuroprosthetic systems is developing rapidly. We have systems capable of simultaneously recording 10s of channels of neuronal data, computers...on the face, on the shoulder or torso, and a few on the hind limb . To date, we have recorded from a single implant 3 of 4 Fig. 3 Comparison of non...producing neurite extension in a chick DRG preparation. IV. DISCUSSION One of the important advances required before neuroprosthetics can become a
Method and tool for expanding tubular members by electro-hydraulic forming
Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis
2013-10-29
An electro-hydraulic forming tool having one or more electrodes for forming parts with sharp corners. The electrodes may be moved and sequentially discharged several times to form various areas of the tube. Alternatively, a plurality of electrodes may be provided that are provided within an insulating tube that defines a charge area opening. The insulating tube is moved to locate the charge area opening adjacent one of the electrodes to form spaced locations on a preform. In other embodiments, a filament wire is provided in a cartridge or supported by an insulative support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Lee, Sungsik; Brown, Dennis E.
Ultrafine manganese oxide-decorated carbon nanofibers (MnOn-CNF) as a new type of electrode materials are facilely fabricated by direct conversion of Mn, Zn-trimesic acid (H3BTC) metal organic framework fibers (Mn-ZnBTC). The construction and evolution of Mn-ZnBTC precursors are investigated by SEM and in situ high-energy XRD. The manganese oxides are highly dispersed onto the porous carbon nanofibers formed simultaneously, verified by TEM, X-ray absorption fine structure (XAFS), Raman, ICP-AES and N2 adsorption techniques. As expected, the resulting MnOn-CNF composites are highly stable, and can be cycled up to 5000 times with a high capacitance retention ratio of 98% in electrochemical capacitormore » measurements. They show a high capacitance of up to 179 F g–1 per mass of the composite electrode, and a remarkable capacitance of up to 18290 F g–1 per active mass of the manganese(IV) oxide, significantly exceeding the theoretical specific capacitance of manganese(IV) oxide (1370 F g–1). The maximum energy density is up to 19.7 Wh kg–1 at the current density of 0.25 A g–1, even orders higher than those of reported electric double-layer capacitors and pseudocapacitors. The excellent capacitive performance can be ascribed to the joint effect of easy accessibility, high porosity, tight contact and superior conductivity integrated in final MnOn-CNF composites.« less
Ryu, Taekhee; Lansac, Yves; Jang, Yun Hee
2017-07-12
A fullerene derivative with five hydroxyphenyl groups attached around a pentagon, (4-HOC 6 H 4 ) 5 HC 60 (1), has shown an asymmetric current-voltage (I-V) curve in a conducting atomic force microscopy experiment on gold. Such molecular rectification has been ascribed to the asymmetric distribution of frontier molecular orbitals over its shuttlecock-shaped structure. Our nonequilibrium Green's function (NEGF) calculations based on density functional theory (DFT) indeed exhibit an asymmetric I-V curve for 1 standing up between two Au(111) electrodes, but the resulting rectification ratio (RR ∼ 3) is insufficient to explain the wide range of RR observed in experiments performed under a high bias voltage. Therefore, we formulate a hypothesis that high RR (>10) may come from molecular orientation switching induced by a strong electric field applied between two electrodes. Indeed, molecular dynamics simulations of a self-assembled monolayer of 1 on Au(111) show that the orientation of 1 can be switched between standing-up and lying-on-the-side configurations in a manner to align its molecular dipole moment with the direction of the applied electric field. The DFT-NEGF calculations taking into account such field-induced reorientation between up and side configurations indeed yield RR of ∼13, which agrees well with the experimental value obtained under a high bias voltage.
77 FR 41891 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
....regulations.gov ; or in person at the Docket Management Facility between 9 a.m. and 5 p.m., Monday through... surface (ailerons, rudder, and elevator) and corrective actions if necessary. The customer bulletins also... mils). For Model G-IV airplanes: Gulfstream IV Customer Bulletin 223, including Part I and Part II...
NASA Astrophysics Data System (ADS)
Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; Jiménez-Olarte, Daniel; Sastré-Hernández, Jorge; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio
2018-04-01
In this Part 2 of this series of articles, the procedure proposed in Part 1, namely a new parameter extraction technique of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is applied to CdS-CdTe and CIGS-CdS solar cells. First, the Cheung method is used to obtain the series resistance (R s ) and the ideality factor n. Afterwards, procedures A and B proposed in Part 1 are used to obtain R sh and I sat . The procedure is compared with two other commonly used procedures. Better accuracy on the simulated I-V curves used with the parameters extracted by our method is obtained. Also, the integral percentage errors from the simulated I-V curves using the method proposed in this study are one order of magnitude smaller compared with the integral percentage errors using the other two methods.
Development of a Portable Blood Sugar Apparatus and GOD Enzyme Strip.
Zhen-Cheng, Chen; Yu-Qian, Zhao; Jing-Tian, Tang; Ling-Yun, Li
2005-01-01
A pocket blood sugar apparatus tested by enzyme electrode, which was designed using carbon and silver plasma as conducting materials. Both the work and reference electrodes are applied to the parts of enzyme electrode. The glucose oxidase is taken as the medium of blood sugar measuring. And the range of measuring glucose is about 50mg/dL - 500mgl/dL. It has better linear for the results and fit coefficient arrives at 0.985. Its sensitivity of measurement is higher than current glucose biosensor obviously. A single chip microcomputer, AD mu C812, is used for central control processor of the instrument parts. It measures the output of microampere level currency, which is conduced by blood sugar reacting with the glucose oxidase on the enzyme electrode. And at the same time, the microampere level currency is amplified, processed. Then the results are displayed on LCD. The apparatus are better for measuring blood sugar, and the results are consistent with what the large biochemical instruments get.
Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2017-07-29
We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.
Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2017-01-01
We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode. PMID:28773237
Theory of Dielectric Elastomers
2010-10-25
partly in the air and partly in a dielectric liquid . The applied voltage causes the liquid to rise to a height h. The height results from the...balance of the Maxwell stress and the weight of the liquid . The Maxwell stress parallel to the electrodes in the air is 2/2Eaa , where a is the...permittivity of the air. The Maxwell stress parallel to the electrodes in the liquid is 2/2Ell , where l is the permittivity of the liquid
Micromachined devices for interfacing neurons
NASA Astrophysics Data System (ADS)
Stieglitz, Thomas; Beutel, Hansjoerg; Blau, Cornelia; Meyer, Joerg-Uwe
1998-07-01
Micromachining technologies were established to fabricate microelectrode arrays and devices for interfacing parts of the central or peripheral nervous system. The devices were part of a neural prosthesis that allows simultaneous multichannel recording and multisite stimulation of neurons. Overcoming the brittle mechanics of silicon devices and challenging housing demands close to the nerve we established a process technology to fabricate light-weighted and highly flexible polyimide based devices. Platinum and iridium thin-film electrodes were embedded in the polyimide. With reactive ion etching we got the possibility to simply integrate interconnections and to form nearly arbitrary outer shapes of the devices. We designed multichannel devices with up to 24 electrodes in the shape of plates, hooks and cuffs for different applications. In vitro tests exhibited stable electrode properties and no cytotoxicity of the materials and the devices. Sieve electrodes were chronically implanted in rats to interface the regenerating sciatic nerve. After six months, recordings and stimulation of the nerve via electrodes on the micro-device proved functional reinnervation of the limb. Concentric circular structures were designed for a retina implant for the blind. In preliminary studies in rabbits, evoked potentials in the visual cortex corresponded to stimulation sites of the implant.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 2 2010-10-01 2010-10-01 false What start-up costs are allowable for Tribal IV-D... ENFORCEMENT (IV-D) PROGRAM Tribal IV-D Program Funding § 309.150 What start-up costs are allowable for Tribal IV-D programs carried out under § 309.65(b) of this part? Federal funds are available for costs of...
Electroshock protection circuit
NASA Technical Reports Server (NTRS)
Heskett, H.; Meincer, J.; Inglis, A. L.
1973-01-01
Circuit was developed to prevent accidental shock through electrodes used to test subjects as part of Skylab program. This circuit is placed between electrical apparatus and electrode that is attached to patient's body. Thus, patient is effectively protected from dangerous electrical shock that might be caused by failure in electrical apparatus.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Turnkey III Program Description Pt. 904, Subpt. B, App. IV Appendix IV to Subpart B of Part 904—Promissory... of (1) the Homeowner's purchase price, (2) the costs incidental to his acquisition of ownership, (3...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Turnkey III Program Description Pt. 904, Subpt. B, App. IV Appendix IV to Subpart B of Part 904—Promissory... of (1) the Homeowner's purchase price, (2) the costs incidental to his acquisition of ownership, (3...
Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.
Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei
2014-01-08
A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications.
NASA Astrophysics Data System (ADS)
Riyanto; Agustiningsih, W. A.
2018-04-01
Disinfection of coliform and E. Coli in water has been performed by electrolysis using carbon electrodes. Carbon electrodes were used as an anode and cathode with a purity of 98.31% based on SEM-EDS analysis. This study was conducted using electrolysis powered by electric field using carbon electrode as the anode and cathode. Electrolysis method was carried out using variations of time (30, 60, 90, 120 minutes at a voltage of 5 V) and voltage (5, 10, 15, 20 V for 30 minutes) to determine the effect of the disinfection of the bacteria. The results showed the number of coliform and E. coli in water before and after electrolysis was 190 and 22 MPN/100 mL, respectively. The standards quality of drinking water No. 492/Menkes/Per/IV/2010 requires the zero content of coliform and E. Coli. Electrolysis with the variation of time and potential can reduce the number of coliforms and E. Coli but was not in accordance with the standards. The effect of hydrogen peroxide (H2O2) to the electrochemical disinfection was determined using UV-Vis spectrophotometer. The levels of H2O2 formed increased as soon after the duration of electrolysis voltage but was not a significant influence to the mortality of coliform and E.coli.
NASA Astrophysics Data System (ADS)
Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu
2016-05-01
Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q.
2014-05-05
A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO{sub 3}/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO{sub 3} containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from −1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount tomore » 10{sup 2}. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.« less
Spinal conduction block by intrathecal ketamine in dogs.
Iida, H; Dohi, S; Tanahashi, T; Watanabe, Y; Takenaka, M
1997-07-01
In addition to its use for intravenous (I.V.) anesthesia, ketamine can provide pain relief in humans when administered spinally. To elucidate the mechanisms of intrathecal (I.T.) ketamine analgesia, we observed differences in the effects of I.V. and I.T. ketamine on intraspinal evoked potentials (ISEPs) in 28 dogs anesthetized with pentobarbital. Bipolar extradural electrodes were inserted at the cervical and lumbar regions of the spinal cord for recording descending ISEPs represented by the two negative deflections, Waves I and II. I.V. ketamine 2 and 10 mg/ kg did not affect the amplitude and latency of Wave I, whereas the large dose (10 mg/kg) significantly decreased the amplitude but not the latency of Wave II. I.T. ketamine 1 and 5 mg/kg caused significant dose-dependent decreases in both Wave I and II amplitudes and prolongations of both Wave I and II latencies. These I.T. effects on ISEPs are consistent with previous in vitro observations that ketamine blocks axonal conduction. We conclude that axonal conduction block may contribute to the analgesic mechanism of I.T. ketamine.
Biyiklioglu, Zekeriya; Alp, Hakan
2015-11-21
A novel type of peripherally tetra-substituted as well as axially disubstituted silicon(iv) phthalocyanine containing electropolymerizable ligands was designed and synthesized for the first time. Axial bis-hydroxy silicon phthalocyanine 2 was prepared from 2(3),9(10),16(17),23(24)-tetrakis-{2-[3-(diethylamino)phenoxy]ethoxy}phthalocyanine 1 in dichloromethane by using 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU) and trichlorosilane. Peripherally tetra and axially di-substituted silicon phthalocyanine 4 was synthesized from 2(3),9(10),16(17),23(24)-tetrakis-{2-[3-(diethylamino)phenoxy]ethoxy}silicon(iv)phthalocyanine dihydroxide 2 with 1-(3-chloropropyl)-4-phenylpiperazine 3 in toluene in the presence of NaH at 120 °C. These complexes were fully characterized by various spectroscopy techniques such as (1)H-NMR, (13)C-NMR, IR, UV-Vis, and MALDI-TOF spectroscopy and elemental analysis as well. Electropolymerization properties of silicon(IV) phthalocyanine complexes were investigated by cyclic and square wave voltammetry. Electrochemical studies reveal that silicon(IV) phthalocyanine complexes were electropolymerized on the working electrode during the anodic potential scan. This study is the first example of electropolymerization of both peripherally tetra and axially di-substituted silicon phthalocyanines on the same molecule.
NASA Astrophysics Data System (ADS)
Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.
2000-06-01
We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.
2014-01-01
Mesoporous tungsten trioxide (WO3) was prepared from tungstic acid (H2WO4) as a tungsten precursor with dodecylamine (DDA) as a template to guide porosity of the nanostructure by a solvothermal technique. The WO3 sample (denoted as WO3-DDA) prepared with DDA was moulded on an electrode to yield efficient performance for visible-light-driven photoelectrochemical (PEC) water oxidation. Powder X-ray diffraction (XRD) data of the WO3-DDA sample calcined at 400°C indicate a crystalline framework of the mesoporous structure with disordered arrangement of pores. N2 physisorption studies show a Brunauer-Emmett-Teller (BET) surface area up to 57 m2 g-1 together with type IV isotherms and uniform distribution of a nanoscale pore size in the mesopore region. Scanning electron microscopy (SEM) images exhibit well-connected tiny spherical WO3 particles with a diameter of ca. 5 to 20 nm composing the mesoporous network. The WO3-DDA electrode generated photoanodic current density of 1.1 mA cm-2 at 1.0 V versus Ag/AgCl under visible light irradiation, which is about three times higher than that of the untemplated WO3. O2 (1.49 μmol; Faraday efficiency, 65.2%) was evolved during the 1-h photoelectrolysis for the WO3-DDA electrode under the conditions employed. The mesoporous electrode turned out to work more efficiently for visible-light-driven water oxidation relative to the untemplated WO3 electrode. PMID:25313301
Study on bayes discriminant analysis of EEG data.
Shi, Yuan; He, DanDan; Qin, Fang
2014-01-01
In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions. In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%. Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
.... The increased FMAP is available for expenditures under part E of title IV (including Foster Care... temporary increase in FMAP rates for Medicaid and title IV-E Foster Care, Adoption Assistance and... are not part of the calculation process. Expenditures for which the increased FMAP is not available...
Tin Whisker Risk Assessment of TDRSS IV Transponder Units 101 and 102
NASA Technical Reports Server (NTRS)
Zellitti, Ron; Royse, Jeff; Jackson, Steve
2000-01-01
This report documents the plating requirements for the electrical and mechanical parts used in the TDRSS IV transponder manufactured by MOTOROLA, INC., SSG, SSSD. The intent of this report is to identify any electrical, electromechanical or mechanical part that does not have adequate requirements to prevent the use of a pure tin finish.
77 FR 70373 - Cost of Living Adjustment to Satellite Carrier Compulsory License Royalty Rates
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... ROYALTY FEES FOR SECONDARY TRANSMISSIONS BY SATELLITE CARRIERS 0 1. The authority citation for part 386... revising paragraphs (b)(1)(iv) and (b)(2)(iv) as follows: Sec. 386.2 Royalty fee for secondary transmission... LIBRARY OF CONGRESS Copyright Royalty Board 37 CFR Part 386 [Docket No. 2012-8 CRB Satellite COLA...
Actively Experiencing Shakespeare: Students "Get on Their Feet" for "Henry IV, Part One."
ERIC Educational Resources Information Center
Meyer, Herbert M.; Thomsen, Lee
1999-01-01
Discusses how a literature and multimedia course for 11th and 12th graders used active-learning experiences to engage students with Shakespeare's "Henry IV, Part One." Describes how shouting Hal's soliloquy; constructing a chart of character relations; rewriting a scene in their own words; performing, filming, and critiquing a scene; and…
Projects and Programs: Libraries and Learning Resources-1978-1979. Standards ESEA IV, PART B.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of School Libraries.
These standards are intended to assist local school districts in New York State in selecting educational resources and audiovisual equipment and in providing for testing, guidance, and counseling services under Title IV, Part B of the Elementary and Secondary Education Act. The main purpose of the standards is to establish qualitative and…
Electrode/workpiece combinations
NASA Astrophysics Data System (ADS)
Benedict, J. J.
1989-10-01
Of the many machine tool operations available in the shop today, plunge cut Electrical Discharge Machining (EDM) has become an increasingly useful method of materials fabrication. It is a necessary tool for the research and development type of work performed at the Lawrence Livermore National Laboratory (LLNL). With advancing technology, plunge cut EDMs are more efficient, faster, have greater accuracy and are able to produce better surface finishes. They have been in the past and will continue to be an important part of the production of quality parts in both the Precision and NC Shop. It should be kept in mind that as a non-traditional machining process, EDMing is a time consuming process that can be a very expensive method of producing parts. For this reason, it must be used in the most efficient manner in order to make it a cost-effective means of fabrication, although technology has advanced to the point of state-of-the-art equipment, there is currently a void in available technical information needed for use with this process. The type of information sought after concerns the area of electrode/workpiece combinations. This is in reference to the task of choosing the correct electrode material for the specific workpiece material encountered. A brief description of the EDM process will help in understanding the electrode/workpiece relationship.
2004-12-01
placenta localization 1. Chromic chloride 2. Chromium disodium edetate 3. Labeled human serum albumin 4. Sodium chromate labeled red blood cells...orally 4. Iodinated fibrinogen, i.v. or in vitro 5. Iodinated human serum albumin (IHSA) 6. Iodinated levothyroxine , i.v. or in vitro 7...Iodinated liothyronine, in vitro 8. Iodinated povidone, i.v. 9. Iodinated rose Bengal, i.v. 10. Sodium iodide, orally or i.v. 5. 0.74 MBq (0.02 mCi
Krachunov, Sammy; Casson, Alexander J.
2016-01-01
Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise. PMID:27706094
3D Printed Dry EEG Electrodes.
Krachunov, Sammy; Casson, Alexander J
2016-10-02
Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.
Free Radical Damage and Noise-Induced Hearing Loss: in vivo in situ Sensing
2008-07-01
e.g. imploding, locally nucleating bubbles23-26 ), leading to cellular damage? While ROS can kill cells, they are also part of the apoptotic cascade...reverse side. Electrodes are gold on Kaptonill substrates. Reference electrodes (Ir/IrxOy) are electrodeposited from IrC13 solution. Working
Fabrication and characterization of the organic rectifying junctions by electrolysis
NASA Astrophysics Data System (ADS)
Karimov, Khasan; Ahmad, Zubair; Ali, Rashid; Noor, Adnan; Akmal, M.; Najeeb, M. A.; Shakoor, R. A.
2017-08-01
Unlike the conventional solution processable deposition techniques, in this study, we propose a novel and economical method for the fabrication of organic rectifying junctions. The solutions of the orange dye, copper phthalocyanine and NaCl were deposited on the surface-type interdigitated silver electrodes using electrolysis technique. Using the current-voltage (I-V) characteristics, the presence of rectifying behavior in the samples has been confirmed. This phenomenon, in principle, can be used for fabrication of the diodes, transistors and memory devices.
NASA Technical Reports Server (NTRS)
Tufts, Bruce J.; Casagrande, Louis G.; Lewis, Nathan S.; Grunthaner, Frank J.
1990-01-01
Correlations between the surface chemistry of etched, (100) oriented n-GaAs electrodes and their subsequent photoelectrochemical behavior have been probed by high-resolution X-ray photoelectron spectroscopy. GaAs photoanodes were chemically treated to prepare either an oxide-free near stoichiometric surface, a surface enriched in zero-valent arsenic or a substrate-oxide terminated surface. The current-voltage (I-V) behavior of each surface type was subsequently monitored in contact with several electrolytes.
1980-01-01
OF THIS PAOE(3tn Dea afm 20. Contd. It is possible that space charges are also present in the’film. However, the distribution of space charges in the...the discontinuities so that space charge effects may cause field perturbations. On the other hand, the corona charging procedure may drive ions into...trapped space charge effects; (iv) tunnelling of charge from the electrodes to empty traps; (v) hopping of charge carriers through localized states. The
From Vacuum Tubes to a Semiconductor Triode
NASA Astrophysics Data System (ADS)
Mil'shtein, S.
2005-06-01
Current study presents a brief review of an electronic technology evolution: from vacuum tubes, to transistors, to a novel, recently developed semiconductor triode, where electrons travel vertically about 600 angstroms from the filament to the anode. We plotted I-V and transfer curves for the semiconductor triodes. The very first prototypes proved to carry a maximum gain of about 15db and fT=8GHz. Filaments of variable length were produced to study mutual electrostatic interaction of the electrodes in the triode.
Numerical algorithm for optimization of positive electrode in lead-acid batteries
NASA Astrophysics Data System (ADS)
Murariu, Ancuta Teodora; Buimaga-Iarinca, Luiza; Morari, Cristian
2017-12-01
The positive electrode in lead-acid batteries is one of the most sensitive parts of the whole battery, since it is affected by various aggresive chemical processes during its life. Therefore, an optimal design of the positive electrode of the battery may have as efect a dramatic improvement of the properties of the battery - such as total capacity or endurance during its life. Our efforts dedicated to this goal cover a range of rather complex tasks, from the design based on numerical analysis to statistic analysis. We present the structure of the software implementation and the results obtained for three types of positive electrodes.
Increasing the endurance of electrodes of heating salt tanks
NASA Astrophysics Data System (ADS)
Kulikov, A. I.
1997-05-01
Electrodes used for heating, melting, and sustaining the requisite temperature regime in salt tanks for heat treatment of metals and alloys operate under severe conditions (heating to 1300°C, aggressive medium of the melts of salts of alkali and alkali-earth metals). This causes early failure of the electrodes, and the heat treatment unit is stopped for repair. For example, the design service life of electrodes for SVS 2.3/13I tanks is two months, but as a rule it does not exceed one month of continuous operation. The replacement of conventional low-carbon electrode steel (for example, of grade 10) by a more expensive heat- and corrosion-resistant steel has not proved effective but rather increased the cost of the electrodes and hence the cost of the produced parts. In this connection, it is interesting to get acquainted with works devoted to increasing the service life of salt-tank electrodes for heat treatment shops of machine-building and tool plants. The present paper describes such an attempt.
3D electrode localization on wireless sensor networks for wearable BCI.
Figueiredo, C P; Dias, N S; Hoffmann, K P; Mendes, P M
2008-01-01
This paper presents a solution for electrode localization on wearable BCI radio-enabled electrodes. Electrode positioning is a common issue in any electrical physiological recording. Although wireless node localization is a very active research topic, a precise method with few centimeters of range and a resolution in the order of millimeters is still to be found, since far-field measurements are very prone to error. The calculation of 3D coordinates for each electrode is based on anchorless range-based localization algorithms such as Multidimensional Scaling and Self-Positioning Algorithm. The implemented solution relies on the association of a small antenna to measure the magnetic field and a microcontroller to each electrode, which will be part of the wireless sensor network module. The implemented solution is suitable for EEG applications, namely the wearable BCI, with expected range of 20 cm and resolution of 5 mm.
DIVWAG Model Documentation. Volume II. Programmer/Analyst Manual. Part 4.
1976-07-01
Model Constant Data Deck Structure . .. .... IV-13-A-40 Appendix B. Movement Model Program Descriptions . .. .. . .IV-13-B-1 1. Introduction...Data ................ IV-15-A-17 11. Airmobile Constant Data Deck Structure .. ...... .. IV-15-A-30 Appendix B. Airmobile Model Program Descriptions...Make no changes. 12. AIRMOBILE CONSTANT DATA DECK STRUCTURE . The deck structure required by the Airmobile Model constant data load program and the data
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Part of a series of eight student learning modules in vocational agriculture, this booklet deals with crop-related activities. The first section is on harvesting methods and equipment. The following portions address the handling, grading, and packing of crops; and the classification and selection of fruits, vegetables, and ornamental plants. There…
Inkjet-printing of non-volatile organic resistive devices and crossbar array structures
NASA Astrophysics Data System (ADS)
Sax, Stefan; Nau, Sebastian; Popovic, Karl; Bluemel, Alexander; Klug, Andreas; List-Kratochvil, Emil J. W.
2015-09-01
Due to the increasing demand for storage capacity in various electronic gadgets like mobile phones or tablets, new types of non-volatile memory devices have gained a lot of attention over the last few years. Especially multilevel conductance switching elements based on organic semiconductors are of great interest due to their relatively simple device architecture and their small feature size. Since organic semiconductors combine the electronic properties of inorganic materials with the mechanical characteristics of polymers, this class of materials is suitable for solution based large area device preparation techniques. Consequently, inkjet based deposition techniques are highly capable of facing preparation related challenges. By gradually replacing the evaporated electrodes with inkjet printed silver, the preparation related influence onto device performance parameters such as the ON/OFF ratio was investigated with IV measurements and high resolution transmission electron microscopy. Due to the electrode surface roughness the solvent load during the printing of the top electrode as well as organic layer inhomogeneity's the utilization in array applications is hampered. As a prototypical example a 1diode-1resistor element and a 2×2 subarray from 5×5 array matrix were fully characterized demonstrating the versatility of inkjet printing for device preparation.
NASA Astrophysics Data System (ADS)
Zhang, Wenzeng; Chen, Nian; Wang, Bin; Cao, Yipeng
2005-01-01
Rocket engine is a hard-core part of aerospace transportation and thrusting system, whose research and development is very important in national defense, aviation and aerospace. A novel vision sensor is developed, which can be used for error detecting in arc length control and seam tracking in precise pulse TIG welding of the extending part of the rocket engine jet tube. The vision sensor has many advantages, such as imaging with high quality, compactness and multiple functions. The optics design, mechanism design and circuit design of the vision sensor have been described in detail. Utilizing the mirror imaging of Tungsten electrode in the weld pool, a novel method is proposed to detect the arc length and seam tracking error of Tungsten electrode to the center line of joint seam from a single weld image. A calculating model of the method is proposed according to the relation of the Tungsten electrode, weld pool, the mirror of Tungsten electrode in weld pool and joint seam. The new methodologies are given to detect the arc length and seam tracking error. Through analyzing the results of the experiments, a system error modifying method based on a linear function is developed to improve the detecting precise of arc length and seam tracking error. Experimental results show that the final precision of the system reaches 0.1 mm in detecting the arc length and the seam tracking error of Tungsten electrode to the center line of joint seam.
NASA Astrophysics Data System (ADS)
Cavazos, A. R.; Taillefert, M.; Glass, J. B.
2016-12-01
The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.
ERIC Educational Resources Information Center
Lieberman, Lauren; Lucas, Mark; Jones, Jeffery; Humphreys, Dan; Cody, Ann; Vaughn, Bev; Storms, Tommie
2013-01-01
"Helping General Physical Educators and Adapted Physical Educators Address the Office of Civil Rights Dear Colleague Guidance Letter: Part IV--Sport Groups" provides the the following articles: (1) "Sport Programming Offered by Camp Abilities and the United States Association for Blind Athletes" (Lauren Lieberman and Mark…
A wearable 12-lead ECG acquisition system with fabric electrodes.
Haoshi Zhang; Lan Tian; Huiyang Lu; Ming Zhou; Haiqing Zou; Peng Fang; Fuan Yao; Guanglin Li
2017-07-01
Continuous electrocardiogram (ECG) monitoring is significant for prevention of heart disease and is becoming an important part of personal and family health care. In most of the existing wearable solutions, conventional metal sensors and corresponding chips are simply integrated into clothes and usually could only collect few leads of ECG signals that could not provide enough information for diagnosis of cardiac diseases such as arrhythmia and myocardial ischemia. In this study, a wearable 12-lead ECG acquisition system with fabric electrodes was developed and could simultaneously process 12 leads of ECG signals. By integrating the fabric electrodes into a T-shirt, the wearable system would provide a comfortable and convenient user interface for ECG recording. For comparison, the proposed fabric electrode and the gelled traditional metal electrodes were used to collect ECG signals on a subject, respectively. The approximate entropy (ApEn) of ECG signals from both types of electrodes were calculated. The experimental results show that the fabric electrodes could achieve similar performance as the gelled metal electrodes. This preliminary work has demonstrated that the developed ECG system with fabric electrodes could be utilized for wearable health management and telemedicine applications.
2017-08-01
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6360--17-9743 Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrolytic...Cation Exchange Module (E-CEM) Part V: E-CEM Effluent Discharge Composition as a Function of Electrode Water Composition August 1, 2017 Approved for...Office of Naval Research Arlington, Virginia Dennis r. HarDy Nova Research Inc. Alexandria, Virginia i REPORT DOCUMENTATION PAGE Form
Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants
NASA Astrophysics Data System (ADS)
Wilke, R. G. H.; Khalili Moghadam, G.; Lovell, N. H.; Suaning, G. J.; Dokos, S.
2011-08-01
Active multi-electrode arrays are used in vision prostheses, including optic nerve cuffs and cortical and retinal implants for stimulation of neural tissue. For retinal implants, arrays with up to 1500 electrodes are used in clinical trials. The ability to convey information with high spatial resolution is critical for these applications. To assess the extent to which spatial resolution is impaired by electric crosstalk, finite-element simulation of electric field distribution in a simplified passive tissue model of the retina is performed. The effects of electrode size, electrode spacing, distance to target cells, and electrode return configuration (monopolar, tripolar, hexagonal) on spatial resolution is investigated in the form of a mathematical model of electric field distribution. Results show that spatial resolution is impaired with increased distance from the electrode array to the target cells. This effect can be partly compensated by non-monopolar electrode configurations and larger electrode diameters, albeit at the expense of lower pixel densities due to larger covering areas by each stimulation electrode. In applications where multi-electrode arrays can be brought into close proximity to target cells, as presumably with epiretinal implants, smaller electrodes in monopolar configuration can provide the highest spatial resolution. However, if the implantation site is further from the target cells, as is the case in suprachoroidal approaches, hexagonally guarded electrode return configurations can convey higher spatial resolution. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward
A method of making a double layer capacitior includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodesmore » are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two arts of the capacitor case are conductive and function as the capacitor terminals.« less
Triboelectric-based harvesting of gas flow energy and powerless sensing applications
NASA Astrophysics Data System (ADS)
Taghavi, Majid; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia; Mattoli, Virgilio
2014-12-01
In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening.
Energy conversion research and development with diminiodes
NASA Technical Reports Server (NTRS)
Morris, J. F.
1974-01-01
Diminiodes are variable-gap cesium diodes with plane miniature guarded electrodes. These converters allow thermionic evaluations of tiny pieces of rare solids. In addition to smallness, diminiode advantages comprise simplicity, precision, fabrication ease, parts interchangeability, cleanliness, full instrumentation, direct calibration, ruggedness, and economy. Diminiodes with computerized thermionic performance mapping make electrode screening programs practical.
20 CFR 410.591 - Eligibility for services and supplies under part C of title IV of the act.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of... DOL regulations covering the time period in which the miner must file with DOL for these benefits are published at 20 CFR part 725. (Sec. 411, Federal Coal Mine Health and Safety Act of 1969, as amended; 85...
ERIC Educational Resources Information Center
Gonyea, Adrian C.
The instructor's guide provides a review for those preparing to take Part IV of the Certified Professional Secretary (CPS) examination. Course content can also help secretaries update their skills in accounting and business mathematics. Organized into lessons with objectives, content outline, and teaching suggestions and references, the units…
NASA Astrophysics Data System (ADS)
Uke, Santosh J.; Akhare, Vijay P.; Bambole, Devidas R.; Bodade, Anjali B.; Chaudhari, Gajanan N.
2017-08-01
In this smart edge, there is an intense demand of portable electronic devices such as mobile phones, laptops, smart watches etc. That demands the use of such components which has light weight, flexible, cheap and environmental friendly. So that needs an evolution in technology. Supercapacitors are energy storage devices emerging as one of the promising energy storage devices in the future energy technology. Electrode material is the important part of supercapacitor. There is much new advancement in types of electrode materials as for supercapacitor. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides and their composites as an electrodes material for supercapacitor.
NASA Astrophysics Data System (ADS)
Stishkov, Yu. K.; Zakir'yanova, R. E.
2018-04-01
We have solved the problem of injection-type through electrohydrodynamic (EHD) flow in a closed channel. We have considered a model of a liquid with four types of ions. It is shown that a through EHD flow without internal vortices in the electrode gap is formed for the ratio 2 : 1 of the initial injection current from the electrodes in the channel. The structure of the flow in different parts of the channel and the integral characteristics of the flow have been analyzed. It is shown that for a quadratic function of injection at the electrodes, the current-voltage characteristic of the flow is also quadratic.
Electrochemical machining process for forming surface roughness elements on a gas turbine shroud
Lee, Ching-Pang; Johnson, Robert Alan; Wei, Bin; Wang, Hsin-Pang
2002-01-01
The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.
MIS diode structure in As/+/ implanted CdS
NASA Technical Reports Server (NTRS)
Hutchby, J. A.
1977-01-01
Structure made by As implantation of carefully prepared high-conductivity CdS surfaces followed by Pt deposition and 450 C anneal display rectifying, although substantially different, I-V characteristics in the dark and during illumination with subband-gap light. Structures prepared in the same way on an unimplanted portion of the substrate have similar I-V characteristics, except that the forward turnover voltage for an illuminated unimplanted diode is much smaller than that for an implanted diode. It is suggested that the charge conduction in both structures is dominated by hole and/or electron tunneling through a metal-semiconductor potential barrier. The tunneling processes appear to be quite sensitive to subband-gap illumination, which causes the dramatic decreases of turnover voltages and apparent series resistances. The difference in turnover voltage appears to be caused by interface states between the Pt electrode and the implanted layer, which suggests a MIS model.
Preparation of uniaxially aligned TiO2 ultrafine fibers by electrospinning.
Nien, Yu-Hsun; Tsai, Yan-Sheng; Wang, Jia-Yi; Syu, Shu-Ping
2012-11-01
TiO2 nanofibers are often produced by electrospinning using a collector consisting of two parallel electrodes. In this work, a high speed rotating drum was used as a collector to produce uniaxially aligned TiO2 ultrafine fibers. The apparatus to manufacture uniaxially aligned TiO2 ultrafine fiber consisted of a high-speed roller, a high-voltage power supply, a controllable syringe pump and a syringe. Titanium (IV) isopropoxide and polyvinylpyrrolidone were used as precursor and auxiliary, respectively. Titanium (IV) isopropoxide and polyvinylpyrrolidone were well mixed with other essential reagents to form the polymer solution. The polymer solution was poured into the syringe and pumped at various flow rates. The electrospun ultrafine fibers collected on the roller were heat treated up to 600 degrees C and the uniaxially aligned TiO2 ultrafine fibers were formed and characterized using scanning electron microscope and X-ray diffraction.
NASA Astrophysics Data System (ADS)
Bodeux, Romain; Gervais, Monique; Wolfman, Jérôme; Gervais, François
2014-09-01
CaCu3Ti4O12 (CCTO) thin films were grown by pulsed laser deposition on Pt and La0.9Sr1.1NiO4 (LSNO) bottom electrodes. The electrical characteristics of the CCTO/Pt and CCTO/LSNO Schottky junctions have been analyzed by impedance spectroscopy, capacitance-voltage (C-V) and current-voltage (I-V) measurements as a function of frequency (40 Hz-1 MHz) and temperature (300-475 K). Similar results were obtained for the two Schottky diodes. The conduction mechanism through the Schottky junctions was described using a thermionic emission model and the electrical parameters were determined. The strong deviation from the ideal I-V characteristics and the increase in capacitance at low frequency for -0.5 V bias are in agreement with the presence of traps near the interfaces. Results point toward the important effect of defects generated at the interface by deposition of CCTO.
Oscillations in the permanganate oxidation of glycine in a stirred flow reactor.
Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós
2013-09-19
Oscillatory behavior is reported in the permanganate oxidation of glycine in the presence of Na2HPO4 in a stirred flow reactor. In near-neutral solutions, long-period sustained oscillations were recorded in the potential of a Pt electrode and in the light absorbance measured at λ = 418 and 545 nm, characteristic wavelengths for following the evolution of the intermediate [Mn(IV)] and reagent [MnO4(-) ] during the course of the reaction. No evidence of bistability was found. The chemical and physical backgrounds of the oscillatory phenomenon are discussed. In the oscillatory cycle, the positive feedback is attributed to the autocatalytic formation of a soluble Mn(IV) species, whereas the negative feedback arises from its removal from the solution in the form of solid MnO2. A simple model is suggested that qualitatively simulates the experimental observations in batch runs and the dynamics that appears in the flow system.
Williams, Kenneth H; Bargar, John R; Lloyd, Jonathan R; Lovley, Derek R
2013-06-01
Adding organic electron donors to stimulate microbial reduction of highly soluble U(VI) to less soluble U(IV) is a promising strategy for immobilizing uranium in contaminated subsurface environments. Studies suggest that diagnosing the in situ physiological status of the subsurface community during uranium bioremediation with environmental transcriptomic and proteomic techniques can identify factors potentially limiting U(VI) reduction activity. Models which couple genome-scale in silico representations of the metabolism of key microbial populations with geochemical and hydrological models may be able to predict the outcome of bioremediation strategies and aid in the development of new approaches. Concerns remain about the long-term stability of sequestered U(IV) minerals and the release of co-contaminants associated with Fe(III) oxides, which might be overcome through targeted delivery of electrons to select microorganisms using in situ electrodes. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki
By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection bymore » accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.« less
20 CFR Appendix IV to Subpart C of... - Earnings Needed for a Year of Coverage After 1950
Code of Federal Regulations, 2010 CFR
2010-04-01
... 1950 IV Appendix IV to Subpart C of Part 404 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Pt. 404... Minimum Social Security Earnings to Qualify for a Year of Coverage After 1950 for Purposes of the— Year...
Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications
NASA Technical Reports Server (NTRS)
Prakash, Jai; Tryk, Donald; Yeager, Ernest
1990-01-01
The lead ruthenate pyrochlore Pb2Ru2O6.5, in both high- and low-area forms, has been characterized using thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, cyclic voltammetry, and O2 reduction and generation kinetic-mechanistic studies. Mechanisms are proposed. Compounds in which part of the Ru is substituted with Ir have also been prepared. They exhibit somewhat better performance for O2 reduction in porous, gas-fed electrodes than the unsubstituted compound. The anodic corrosion resistance of pyrochlore-based porous electrodes was improved by using two different anionically conducting polymer overlayers, which slow down the diffusion of ruthenate and plumbate out of the electrode. The O2 generation performance was improved with both types of electrodes. With a hydrogel overlayer, the O2 reduction performance was also improved.
NASA Astrophysics Data System (ADS)
Gazzarri, J. I.; Kesler, O.
In the first part of this two-paper series, we presented a numerical model of the impedance behaviour of a solid oxide fuel cell (SOFC) aimed at simulating the change in the impedance spectrum induced by contact degradation at the interconnect-electrode, and at the electrode-electrolyte interfaces. The purpose of that investigation was to develop a non-invasive diagnostic technique to identify degradation modes in situ. In the present paper, we appraise the predictive capabilities of the proposed method in terms of its robustness to uncertainties in the input parameters, many of which are very difficult to measure independently. We applied this technique to the degradation modes simulated in Part I, in addition to anode sulfur poisoning. Electrode delamination showed the highest robustness to input parameter variations, followed by interconnect oxidation and interconnect detachment. The most sensitive degradation mode was sulfur poisoning, due to strong parameter interactions. In addition, we simulate several simultaneous two-degradation-mode scenarios, assessing the method's capabilities and limitations for the prediction of electrochemical behaviour of SOFC's undergoing multiple simultaneous degradation modes.
Fukuda, Kenjiro; Someya, Takao
2017-07-01
Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engagement of groups in family medicine board maintenance of certification.
Fisher, Dena M; Brenner, Christopher J; Cheren, Mark; Stange, Kurt C
2013-01-01
The American Board of Medical Specialties' Performance in Practice ("Part IV") portion of Maintenance of Certification (MOC) requirement provides an opportunity for practicing physicians to demonstrate quality improvement (QI) competence. However, specialty boards' certification of one physician at a time does not tap into the potential of collective effort. This article shares learning from a project to help family physicians work in groups to meet their Part IV MOC requirement. A year-long implementation and evaluation project was conducted. Initially, 348 members of a regional family physician organization were invited to participate. A second path was established through 3 health care systems and a county-wide learning collaborative. Participants were offered (1) a basic introduction to QI methods, (2) the option of an alternative Part IV MOC module using a patient experience survey to guide QI efforts, (3) practice-level improvement coaching, (4) support for collaboration and co-learning, and (5) provision of QI resources. More physicians participated through group (66) than individual (12) recruitment, for a total of 78 physicians in 20 practices. Participation occurred at 3 levels: individual, intrapractice, and interpractice. Within the 1-year time frame, intrapractice collaboration occurred most frequently. Interpractice and system-level collaboration has begun and continues to evolve. Physicians felt that they benefited from access to a practice coach and group process. Practice-level collaboration, access to a practice coach, flexibility in choosing and focusing improvement projects, tailored support, and involvement with professional affiliations can enhance the Part IV MOC process. Specialty boards are likely to discover productive opportunities from working with practices, professional organizations, and health care systems to support intra- and interpractice collaborative QI work that uses Part IV MOC requirements to motivate practice improvement.
Detection of X-ray spectra and images by Timepix
NASA Astrophysics Data System (ADS)
Urban, M.; Nentvich, O.; Stehlikova, V.; Sieger, L.
2017-07-01
X-ray monitoring for astrophysical applications mainly consists of two parts - optics and detector. The article describes an approach based on a combination of Lobster Eye (LE) optics with Timepix detector. Timepix is a semiconductor detector with 256 × 256 pixels on one electrode and a second electrode is common. Usage of the back-side-pulse from an common electrode of pixelated detector brings the possibility of an additional spectroscopic or trigger signal. In this article are described effects of the thermal stabilisation, and the cooling effect of the detector working as single pixel.
Laurila, Tomi; Rautiainen, Antti; Sintonen, Sakari; Jiang, Hua; Kaivosoja, Emilia; Koskinen, Jari
2014-01-01
The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiOx and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogude, N. A.; Bradleu, J. D.
1996-12-01
Four areas that present difficulty among high school pupils and tertiary level students in relation to the processes that take place in operating electrochemical cells were identified (1). These are (i) conduction in the electrolyte, (ii) electrical neutrality, (iii) electrode processes and terminology, and (iv) aspects relating to cell emf, current, and cell components. A 20-item questionnaire was designed to determine how widespread misconceptions in these areas were. The prevalence and possible causes of misconceptions in two of the four areas - namely, conduction in the electrolyte and electrical neutrality - were reported (2). In this paper, we report on the difficulties experienced by students in relation to electrode processes and terminology and aspects of cell components, cell emf, and current. In relation to electrode processes and terminology, excerpts from interviews with precollege and college students as well as the responses of a larger group of students are discussed. The discussion relating to cell components, cell emf, and current presents a response to standard textbook questions by precollege and college students and interviews conducted with postgraduate higher diploma in education (HDE-PG) students. The interviews were conducted with postgraduate students after the precollege and college students were unable to verbalize their views, especially on cell emf and current. The possible causes of the misunderstandings and the questions used to elicit the misunderstandings in these two areas are presented.
NASA Astrophysics Data System (ADS)
Yang, Yuan; Chevallier, Sylvain; Wiart, Joe; Bloch, Isabelle
2014-12-01
To enforce a widespread use of efficient and easy to use brain-computer interfaces (BCIs), the inter-subject robustness should be increased and the number of electrodes should be reduced. These two key issues are addressed in this contribution, proposing a novel method to identify subject-specific time-frequency characteristics with a minimal number of electrodes. In this method, two alternative criteria, time-frequency discrimination factor ( TFDF) and F score, are proposed to evaluate the discriminative power of time-frequency regions. Distinct from classical measures (e.g., Fisher criterion, r 2 coefficient), the TFDF is based on the neurophysiologic phenomena, on which the motor imagery BCI paradigm relies, rather than only from statistics. F score is based on the popular Fisher's discriminant and purely data driven; however, it differs from traditional measures since it provides a simple and effective measure for quantifying the discriminative power of a multi-dimensional feature vector. The proposed method is tested on BCI competition IV datasets IIa and IIb for discriminating right and left hand motor imagery. Compared to state-of-the-art methods, our method based on both criteria led to comparable or even better classification results, while using fewer electrodes (i.e., only two bipolar channels, C3 and C4). This work indicates that time-frequency optimization can not only improve the classification performance but also contribute to reducing the number of electrodes required in motor imagery BCIs.
An Implanted Upper-Extremity Neuroprosthesis Using Myoelectric Control
Kilgore, Kevin L.; Hoyen, Harry A.; Bryden, Anne M.; Hart, Ronald L.; Keith, Michael W.; Peckham, P. Hunter
2009-01-01
Purpose The purpose of this study was evaluate the potential of a second-generation implantable neuroprosthesis that provides improved control of hand grasp and elbow extension for individuals with cervical level spinal cord injury. The key feature of this system is that users control their stimulated function through electromyographic (EMG) signals. Methods The second-generation neuroprosthesis consists of 12 stimulating electrodes, 2 EMG signal recording electrodes, an implanted stimulator-telemeter device, an external control unit, and a transmit/receive coil. The system was implanted in a single surgical procedure. Functional outcomes for each subject were evaluated in the domains of body functions and structures, activity performance, and societal participation. Results Three individuals with C5/C6 spinal cord injury received system implantation with subsequent prospective evaluation for a minimum of 2 years. All 3 subjects demonstrated that EMG signals can be recorded from voluntary muscles in the presence of electrical stimulation of nearby muscles. Significantly increased pinch force and grasp function was achieved for each subject. Functional evaluation demonstrated improvement in at least 5 activities of daily living using the Activities of Daily Living Abilities Test. Each subject was able to use the device at home. There were no system failures. Two of 6 EMG electrodes required surgical revision because of suboptimal location of the recording electrodes. Conclusions These results indicate that a neuroprosthesis with implanted myoelectric control is an effective method for restoring hand function in midcervical level spinal cord injury. Type of study/level of evidence Therapeutic IV. PMID:18406958
Wang, Yan; Qu, Qunting; Li, Guangchao; Gao, Tian; Qian, Feng; Shao, Jie; Liu, Weijie; Shi, Qiang; Zheng, Honghe
2016-11-01
Currently, the specific capacity and cycling performance of various MoS 2 /carbon-based anode materials for Na-ion storage are far from satisfactory due to the insufficient structural stability of the electrode, incomplete protection of MoS 2 by carbon, difficult access of electrolyte to the electrode interior, as well as inactivity of the adopted carbon matrix. To address these issues, this work presents the rational design and synthesis of 3D interconnected and hollow nanocables composed of multiwalled carbon@MoS 2 @carbon. In this architecture, (i) the 3D nanoweb-like structure brings about excellent mechanical property of the electrode, (ii) the ultrathin MoS 2 nanosheets are sandwiched between and doubly protected by two layers of porous carbon, (iii) the hollow structure of the primary nanofibers facilitates the access of electrolyte to the electrode interior, (iv) the porous and nitrogen-doping properties of the two carbon materials lead to synergistic Na-storage of carbon and MoS 2 . As a result, this hybrid material as the anode material of Na-ion battery exhibits fast charge-transfer reaction, high utilization efficiency, and ultrastability. Outstanding reversible capacity (1045 mAh g -1 ), excellent rate behavior (817 mAh g -1 at 7000 mA g -1 ), and good cycling performance (747 mAh g -1 after 200 cycles at 700 mA g -1 ) are obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dandavino, S.; Ataman, C.; Ryan, C. N.; Chakraborty, S.; Courtney, D.; Stark, J. P. W.; Shea, H.
2014-07-01
Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1-100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm-2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10-30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.
The effects of blood vessels on electrocorticography
NASA Astrophysics Data System (ADS)
Bleichner, M. G.; Vansteensel, M. J.; Huiskamp, G. M.; Hermes, D.; Aarnoutse, E. J.; Ferrier, C. H.; Ramsey, N. F.
2011-08-01
Electrocorticography, primarily used in a clinical context, is becoming increasingly important for fundamental neuroscientific research, as well as for brain-computer interfaces. Recordings from these implanted electrodes have a number of advantages over non-invasive recordings in terms of band width, spatial resolution, smaller vulnerability to artifacts and overall signal quality. However, an unresolved issue is that signals vary greatly across electrodes. Here, we examine the effect of blood vessels lying between an electrode and the cortex on signals recorded from subdural grid electrodes. Blood vessels of different sizes cover extensive parts of the cortex causing variations in the electrode-cortex connection across grids. The power spectral density of electrodes located on the cortex and electrodes located on blood vessels obtained from eight epilepsy patients is compared. We find that blood vessels affect the power spectral density of the recorded signal in a frequency-band-specific way, in that frequencies between 30 and 70 Hz are attenuated the most. Here, the signal is attenuated on average by 30-40% compared to electrodes directly on the cortex. For lower frequencies this attenuation effect is less pronounced. We conclude that blood vessels influence the signal properties in a non-uniform manner.
Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David
2012-10-02
Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.
2014-09-26
A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has beenmore » used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
Development of DBD plasma actuators: The double encapsulated electrode
NASA Astrophysics Data System (ADS)
Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos
2015-04-01
Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.
Johnson, Alicia S.; Anderson, Kari B.; Halpin, Stephen T.; Kirkpatrick, Douglas C.; Spence, Dana M.; Martin, R. Scott
2012-01-01
In Part I of a two-part series, we describe a simple, and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and micropipettors for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis. PMID:23120747
International VLBI Service for Geodesy and Astrometry 2012 Annual Report
NASA Technical Reports Server (NTRS)
Baver, Karen D.; Behrend, Dirk; Armstrong, Kyla L.
2013-01-01
This volume of reports is the 2012 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2012 Annual Report documents the work of the IVS components for the calendar year 2012, our fourteenth year of existence. The reports describe changes, activities, and progress ofthe IVS. Many thanks to all IVS components who contributed to this Annual Report. With the exception of the first section and parts of the last section (described below), the contents of this Annual Report also appear on the IVS Web site athttp:ivscc.gsfc.nasa.gov/publications/ar2012
ERIC Educational Resources Information Center
Americans for Indian Opportunity, Inc., Albuquerque, NM.
Included in this report on the 1977 Title IV Part A Technical Assistance conference held in Albuquerque are: (1) a descriptive narrative of conference events; (2) a summary of the 120 evaluation responses; and (3) the resolutions adopted by conference participants as a specific vehicle to make their concerns known to the Office of Indian Education…
Flight Attendant Fatigue. Part IV. Analysis of Incident Reports
2009-12-01
Flight Attendant Fatigue, Part IV: Analysis of Incident Reports Kali Holcomb Katrina Avers Lena Dobbins Joy Banks Lauren Blackwell Thomas Nesthus...Incident Reports 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Holcomb K, Avers K, Dobbins L, Banks J...observed by erC members of the flight attendant ASAP programs, a survey was developed. Surveys were distributed via e -Mail to 23 participants for
Metallic Electrode: Semiconducting Nanotube Junction Model
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Biegel, Bryon (Technical Monitor)
2001-01-01
A model is proposed for two observed current-voltage (I-V) patterns in an experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 ('97)]. We claim that there are two contact modes for a tip (metal) -nanotube semi conductor) junction depending whether the alignment of the metal and semiconductor band structure is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this picture to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor (Zhou et al., Appl. Phys. Lett. 76, 1597 ('00)], and show that two independent metal-semiconductor junctions connected in series are responsible for the observed behavior.
NASA Astrophysics Data System (ADS)
Nagaraju, G.; Ravindranatha Reddy, K.; Rajagopal Reddy, V.
2017-11-01
The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights (BH) of as-deposited and 200 °C annealed SBDs are 0.80 eV ( I-V)/0.93 eV (C-V) and 0.87 eV (I-V)/1.03 eV (C-V). However, the BH rises to 0.99 eV (I-V)/ 1.18 eV(C-V) and then slightly deceases to 0.92 eV (I-V)/1.03 eV (C-V) after annealing at 300 °C and 400 °C. The utmost BH is attained after annealing at 300 °C and thus the optimum annealing for SBD is 300 °C. By applying Cheung’s functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung’s and Ψ S-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the N SS decreases up to 300 °C annealing and then slightly increases after annealing at 400 °C. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.
17 CFR Table IV to Subpart E of... - Civil Monetary Penalty Inflation Adjustments
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Civil Monetary Penalty Inflation Adjustments IV Table IV to Subpart E of Part 201 Commodity and Securities Exchanges SECURITIES AND... Securities and Exchange Commission: 15 U.S.C. 77t(d) For natural person 2001 $6,500 $7,500 For any other...
Li, Yongping; Lao, Jie; Zhao, Xin; Tian, Dong; Zhu, Yi; Wei, Xiaochun
2014-01-01
The distance between the two electrode tips can greatly influence the parameters used for recording compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spacings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance between two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed significantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no significant change. Different distances between recording and stimulating sites did not produce significant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential. PMID:25206798
2011-07-13
Expected I-V curve of the CNT- metal Schottky barrier; (c), Band diagrams of Aluminum and the p-type doped CNT film; (d) – (f), The band diagrams of the Al...I-V Characteristics of the CNT- metal Schottky barrier. The CNT- metal Schottky diode turns on at ~ 0.5V. The Fermi-level of the CNF film is...Figure 9. Simplified energy band diagrams of the CNT and metal interface: (a) before contact; (b) after contact. A barrier V0 is formed between the
First-principles study of length dependence of conductance in alkanedithiols
NASA Astrophysics Data System (ADS)
Zhou, Y. X.; Jiang, F.; Chen, H.; Note, R.; Mizuseki, H.; Kawazoe, Y.
2008-01-01
Electronic transport properties of alkanedithiols are calculated by a first-principles method based on density functional theory and nonequilibrium Green's function formalism. At small bias, the I-V characteristics are linear and the resistances conform to the Magoga's exponential law. The calculated length-dependent decay constant γ which reflects the effect of internal molecular structure is in accordance with most experiments quantitatively. Also, the calculated effective contact resistance R0 is in good agreement with the results of repeatedly measuring molecule-electrode junctions [B. Xu and N. Tao, Science 301, 1221 (2003)].
Zeigler, J.M.
1985-07-30
Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III and/or IV), e.g., WCl/sub 6/ x (organo-Li, organo-Mg or polysilanes). The resultant silylated polymers are of heretofore unachievable, high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions. They can be used as electrodes in batteries.
LOW TEMPERATURE EFFECTS ON HIGH VOLTAGE BREAKDOWN AT SMALL GAPS. PART I
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGeeter, D.J.
1962-05-16
Experiments were performed that examined the effect of electrode cooling on breakdown. Cooling the cathode to liquid N/sub 2/ temperature reduced the d-c electron current, thereby increasing the voltage breakdown value. Tests involving cooling of only one electrode indicated that only the cathode was affected. Cooling was found to be of probable value if the flaking problem were removed when the cathode has a high field region. The data indicated that breakdown would not necessarily be improved for all electrode geometries, especially when the data do not approach the Trump-Van de Graaff curve against which the data were plotted. Effectsmore » of electrode polishing and outgassing were also studied. (D.C.W.)« less
Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils
Lindgren, Eric R.; Mattson, Earl D.
1995-01-01
There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.
Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils
Lindgren, E.R.; Mattson, E.D.
1995-07-25
An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.
2012-12-30
View of radiation monitor,Intra-Vehicular Tissue Equivalent Proportional Counter (IV-TEPC),relocated to NOD2 P3,Part Number (P/N): SEG33120960-301,Serial Number (S/N): 1002,in the Node 2. Photo was taken during Expedition 34.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju
2010-01-01
Alloy 617 is currently considered as a leading candidate material for high temperature components in the Gen IV Nuclear Reactor Systems. Because of the unprecedented severe working conditions beyond its commercial service experience required by the Gen IV systems, the alloy faces various challenges in both mechanical and metallurgical properties. This paper, as Part I of the discussion, is focused on the challenges and issues in the mechanical properties of Alloy 617 for the intended nuclear application. Considerations are given in details in its mechanical property data scatter, low creep strength in the desired high temperature range, lack of longtermmore » creep curves, high loading rate dependency, and preponderant tertiary creep. Some research and development activities are suggested with discussions on their viability to satisfy the Gen IV Nuclear Reactor System needs in near future and in the long run.« less
The Mediterranean Crucible, 1942-1943: Did Technology or Tenets Achieve Air Superiority
2012-06-01
messages of critical Luftwaffe communications. The decryption, analysis, and dissemination of messages from the German Enigma coding machine, facilitated...the ability to “read the Luftwaffe [Enigma] keys in North Africa from the first day of their introduction” in the theater.5 This system, code ...IRIS no. 118168, in USAF Collection, AFHRA, Part IV, 1. 21 AWPD-42, Part IV, 1. superiority which enables its possessor to conduct air
ERIC Educational Resources Information Center
Bock, Geoffrey; And Others
This segment of the national evaluation study of the Follow Through Planned Variation Model describes each of the 17 models represented in the study and reports the results of analyses of 4 years of student performance data for each model. First a purely descriptive synthesis of findings is presented for each model, with interpretation of the data…
Invisible Base Electrode Coordinates Approximation for Simultaneous SPECT and EEG Data Visualization
NASA Astrophysics Data System (ADS)
Kowalczyk, L.; Goszczynska, H.; Zalewska, E.; Bajera, A.; Krolicki, L.
2014-04-01
This work was performed as part of a larger research concerning the feasibility of improving the localization of epileptic foci, as compared to the standard SPECT examination, by applying the technique of EEG mapping. The presented study extends our previous work on the development of a method for superposition of SPECT images and EEG 3D maps when these two examinations are performed simultaneously. Due to the lack of anatomical data in SPECT images it is a much more difficult task than in the case of MRI/EEG study where electrodes are visible in morphological images. Using the appropriate dose of radioisotope we mark five base electrodes to make them visible in the SPECT image and then approximate the coordinates of the remaining electrodes using properties of the 10-20 electrode placement system and the proposed nine-ellipses model. This allows computing a sequence of 3D EEG maps spanning on all electrodes. It happens, however, that not all five base electrodes can be reliably identified in SPECT data. The aim of the current study was to develop a method for determining the coordinates of base electrode(s) missing in the SPECT image. The algorithm for coordinates approximation has been developed and was tested on data collected for three subjects with all visible electrodes. To increase the accuracy of the approximation we used head surface models. Freely available model from Oostenveld research based on data from SPM package and our own model based on data from our EEG/SPECT studies were used. For data collected in four cases with one electrode not visible we compared the invisible base electrode coordinates approximation for Oostenveld and our models. The results vary depending on the missing electrode placement, but application of the realistic head model significantly increases the accuracy of the approximation.
Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan
2016-01-01
Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected. PMID:28335275
Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan
2016-08-15
Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.
NASA Astrophysics Data System (ADS)
Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit
2017-09-01
Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.
Guasch, Laura; Sala, Esther; Ojeda, María José; Valls, Cristina; Bladé, Cinta; Mulero, Miquel; Blay, Mayte; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard
2012-01-01
Background Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV. Methodology/Principal Findings Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors. Conclusions/Significance Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors. PMID:23028712
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2011 CFR
2011-07-01
... part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed either dry... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2013 CFR
2013-07-01
... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2014 CFR
2014-07-01
... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2012 CFR
2012-07-01
... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2010 CFR
2010-07-01
... part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed either dry... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
Bootstrapped two-electrode biosignal amplifier.
Dobrev, Dobromir Petkov; Neycheva, Tatyana; Mudrov, Nikolay
2008-06-01
Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation. Low-voltage and low-power tendencies prevail. A two-electrode biopotential amplifier, designed for low-supply voltage (2.7-5.5 V), is presented. This biomedical amplifier design has high differential and sufficiently low common mode input impedances achieved by means of positive feedback, implemented with an original interface stage. The presented circuit makes use of passive components of popular values and tolerances. The amplifier is intended for use in various two-electrode applications, such as Holter monitors, external defibrillators, ECG monitors and other heart beat sensing biomedical devices.
Infrared nanoantenna apparatus and method for the manufacture thereof
Peters, David W.; Davids, Paul; Leonhardt, Darin; Kim, Jin K.; Wendt, Joel R.; Klem, John F.
2014-06-10
An exemplary embodiment of the present invention is a photodetector comprising a semiconductor body, a periodically patterned metal nanoantenna disposed on a surface of the semiconductor body, and at least one electrode separate from the nanoantenna. The semiconductor body comprises an active layer in sufficient proximity to the nanoantenna for plasmonic coupling thereto. The nanoantenna is dimensioned to absorb electromagnetic radiation in at least some wavelengths not more than 12 .mu.m that are effective for plasmonic coupling into the active layer. The electrode is part of an electrode arrangement for obtaining a photovoltage or photocurrent in operation under appropriate stimulation.
OGLE-IV Transient Search report 31 December 2016, part 1
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Hamanowicz, A.; Kostrzewa-Rutkowska, Z.; Klencki, J.; Sitek, M.; Udalski, A.; Kozlowski, S.; Ulaczyk, K.; Soszynski, I.; Mroz, P.; Szymanski, M. K.; Poleski, R.; Pietrukowicz, P.; Pawlak, M.; Skowron, J.
2016-12-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces discovery of 52 transients discovered in last three months.
OGLE-IV Transient Search report 31 December 2016, part 2
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Hamanowicz, A.; Kostrzewa-Rutkowska, Z.; Klencki, J.; Sitek, M.; Udalski, A.; Kozlowski, S.; Ulaczyk, K.; Soszynski, I.; Mroz, P.; Szymanski, M. K.; Poleski, R.; Pietrukowicz, P.; Pawlak, M.; Skowron, J.
2016-12-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces discovery of 46 transients discovered in last three months.
Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4
NASA Astrophysics Data System (ADS)
Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott
2016-08-01
One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.
Gutowski, Stacie M.; Shoemaker, James T.; Templeman, Kellie L.; Wei, Yang; Latour, Robert A.; Bellamkonda, Ravi V.; LaPlaca, Michelle C.; García, Andrés J.
2015-01-01
Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes. PMID:25617126
NASA Astrophysics Data System (ADS)
Dong, Wentao; Zhu, Chen; Hu, Wei; Xiao, Lin; Huang, Yong'an
2018-01-01
Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces (HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography (sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation (such as >30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger, back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely. Project supported by the National Natural Science Foundation of China (Nos. 51635007, 91323303).
Method of doping interconnections for electrochemical cells
Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.
1990-01-01
A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.
Reducing interaction in simultaneous paired stimulation with CI.
Vellinga, Dirk; Bruijn, Saskia; Briaire, Jeroen J; Kalkman, Randy K; Frijns, Johan H M
2017-01-01
In this study simultaneous paired stimulation of electrodes in cochlear implants is investigated by psychophysical experiments in 8 post-lingually deaf subjects (and one extra subject who only participated in part of the experiments). Simultaneous and sequential monopolar stimulation modes are used as references and are compared to channel interaction compensation, partial tripolar stimulation and a novel sequential stimulation strategy named phased array compensation. Psychophysical experiments are performed to investigate both the loudness integration during paired stimulation at the main electrodes as well as the interaction with the electrode contact located halfway between the stimulating pair. The study shows that simultaneous monopolar stimulation has more loudness integration on the main electrodes and more interaction in between the electrodes than sequential stimulation. Channel interaction compensation works to reduce the loudness integration at the main electrodes, but does not reduce the interaction in between the electrodes caused by paired stimulation. Partial tripolar stimulation uses much more current to reach the needed loudness, but shows the same interaction in between the electrodes as sequential monopolar stimulation. In phased array compensation we have used the individual impedance matrix of each subject to calculate the current needed on each electrode to exactly match the stimulation voltage along the array to that of sequential stimulation. The results show that the interaction in between the electrodes is the same as monopolar stimulation. The strategy uses less current than partial tripolar stimulation, but more than monopolar stimulation. In conclusion, the paper shows that paired stimulation is possible if the interaction is compensated.
Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors
NASA Technical Reports Server (NTRS)
Lauver, M. R.
1978-01-01
Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.
Optimization of active cell area on the dye-sensitized solar cell efficiency
NASA Astrophysics Data System (ADS)
Putri, A. W.; Nurosyid, F.; Supriyanto, Agus
2017-11-01
This study is aimed to obtain optimal active area producing high efficiency of DSSC module. The DSSC structure is constructed of TiO2 as working electrode, dye as photosensitizer, platinum as counter electrode, and electrolyte as electron transfer media. TiO2 paste was deposited on Fluorine-doped Tin Oxide (FTO) by screen printing method. Meanwhile, platinum was also coated on FTO via brush painting method. Keithley I-V meter was performed to characterize DSSC electrical property. The active area of each cell was varied of 4.5 cm2, 9 cm2, and 13.5 cm2. Each cell was assembled into a module using an external series connection of Z type. The module was consisted of 12 cells, 6 cells, and 4 cells with module active area of 54 cm2. The optimal active area of DSSC cell is 4.5 cm2 resulting 0.4149% efficiency. In addition, the highest efficiency of DSSC module is 0.2234% acquired by 6 cells assembling.
Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique
NASA Astrophysics Data System (ADS)
Leiterer, Christian; Broenstrup, Gerald; Jahr, Norbert; Urban, Matthias; Arnold, Cornelia; Christiansen, Silke; Fritzsche, Wolfgang
2013-05-01
One major challenge for the technological use of nanostructures is the control of their electrical and optoelectronic properties. For that purpose, extensive research into the electrical characterization and therefore a fast and reliable way of contacting these structures are needed. Here, we report on a new, dielectrophoresis (DEP)-based technique, which enables to apply sufficient and reliable contact to individual nanostructures, like semiconducting nanowires (NW), easily and without the need for lithography. The DEP contacting technique presented in this article can be done without high-tech equipment and monitored in situ with an optical microscope. In the presented experiments, individual SiNWs are trapped and subsequently welded between two photolithographically pre-patterned electrodes by applying varying AC voltages to the electrodes. To proof the quality of these contacts, I-V curves, photoresponse and photoconductivity of a single SiNW were measured. Furthermore, the measured photoconductivity in dependence on the wavelength of illuminated light and was compared with calculations predicting the absorption spectra of an individual SiNW.
NASA Astrophysics Data System (ADS)
Bai, Z. Q.; Lu, Y. H.; Shen, L.; Ko, V.; Han, G. C.; Feng, Y. P.
2012-05-01
Transport properties of giant magnetoresistance (MR) junction consisting of trilayer Co2CrSi/Cu2CrAl/Co2CrSi Heusler alloys (L21) are studied using first-principles approach based on density functional theory and the non-equilibrium Green's function method. Highly conductive channels are found in almost the entire k-plane when the magnetizations of the electrodes are parallel, while they are completely blocked in the antiparallel configuration, which leads to a high magnetoresistance ratio (the pessimistic MR ratio is nearly 100%). Furthermore, the calculated I-V curve shows that the device behaves as a good spin valve with a considerable disparity in currents under the parallel and antiparallel magnetic configurations of the electrodes. The Co2CrSi/Cu2CrAl/Co2CrSi junction could be useful for high-performance all-metallic current-perpendicular-to-plane giant magnetoresistance reading head for the next generation high density magnetic storage.
NASA Astrophysics Data System (ADS)
Raturi, Ashish; Choudhary, Sudhanshu
2016-11-01
First principles calculations of spin-dependent electronic transport properties of magnetic tunnel junction (MTJ) consisting of MgO adsorbed graphene nanosheet sandwiched between two CrO2 half-metallic ferromagnetic (HMF) electrodes is reported. MgO adsorption on graphene opens bandgap in graphene nanosheet which makes it more suitable for use as a tunnel barrier in MTJs. It was found that MgO adsorption suppresses transmission probabilities for spin-down channel in case of parallel configuration (PC) and also suppresses transmission in antiparallel configuration (APC) for both spin-up and spin-down channel. Tunnel magneto-resistance (TMR) of 100% is obtained at all bias voltages in MgO adsorbed graphene-based MTJ which is higher than that reported in pristine graphene-based MTJ. HMF electrodes were found suitable to achieve perfect spin filtration effect and high TMR. I-V characteristics for both parallel and antiparallel magnetization states of junction are calculated. High TMR suggests its usefulness in spin valves and other spintronics-based applications.
Biomolecule/nanomaterial hybrid systems for nanobiotechnology.
Tel-Vered, Ran; Yehezkeli, Omer; Willner, Itamar
2012-01-01
The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.
Distributed stimulation increases force elicited with functional electrical stimulation
NASA Astrophysics Data System (ADS)
Buckmire, Alie J.; Lockwood, Danielle R.; Doane, Cynthia J.; Fuglevand, Andrew J.
2018-04-01
Objective. The maximum muscle forces that can be evoked using functional electrical stimulation (FES) are relatively modest. The reason for this weakness is not fully understood but could be partly related to the widespread distribution of motor nerve branches within muscle. As such, a single stimulating electrode (as is conventionally used) may be incapable of activating the entire array of motor axons supplying a muscle. Therefore, the objective of this study was to determine whether stimulating a muscle with more than one source of current could boost force above that achievable with a single source. Approach. We compared the maximum isometric forces that could be evoked in the anterior deltoid of anesthetized monkeys using one or two intramuscular electrodes. We also evaluated whether temporally interleaved stimulation between two electrodes might reduce fatigue during prolonged activity compared to synchronized stimulation through two electrodes. Main results. We found that dual electrode stimulation consistently produced greater force (~50% greater on average) than maximal stimulation with single electrodes. No differences, however, were found in the fatigue responses using interleaved versus synchronized stimulation. Significance. It seems reasonable to consider using multi-electrode stimulation to augment the force-generating capacity of muscles and thereby increase the utility of FES systems.
Mechanisms of electrode induced injury. Part 2: Clinical experience.
Patterson, Terry; Stecker, Mark M; Netherton, Brett L
2007-06-01
In the previous paper in this series, basic mechanisms of electrode related injuries were discussed. In this paper, the discussion begins with some of the clinical aspects of burns. This is followed by a summary of the clinical literature on injuries produced by surface and subdermal electrodes. This clinical literature demonstrates that most electrode burns are related to the presence of high frequency electric fields (RF) created either by an electrosurgical unit or a magnetic resonance imaging (MRI) scanner. A smaller number of lesions are produced by low current, long duration direct current (DC) stimulation and during high current stimulation such as defibrillation. A discussion of the clinical complications from indwelling intracranial electrodes centers on electrodes placed for deep brain stimulation (DBS) that are currently used therapeutically in a wide array of neurologic disorders. The probability of considering a post-implant MRI scan is high and the safety of such scans is the focus of discussion. A very small number of adverse incidents have indicated a downward revision in the specific absorption rate recommendations for MRI examination with those patients who present with indwelling DBS leads and internal pulse generators. Continued vigilance when any type of electrode is used is important.
Apparatus for inspecting fuel elements
Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.
1986-01-01
Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Apparatus for inspecting fuel elements
Kaiser, B.J.; Oakley, D.J.; Groves, O.J.
1984-12-21
This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Cold starting of fluorescent lamps - part II: experiments on glow times and electrode damaging
NASA Astrophysics Data System (ADS)
Langer, Reinhard; Paul, Irina; Hilscher, Achim; Horn, Siegfried; Tidecks, Reinhard
2017-01-01
In the present work we present experiments on cold start and the resulting electrode damaging (reducing lamp life) of AC driven fluorescent lamps. The crucial parameter is the glow time, determined from time resolved measurements of lamp voltage and current. The relation between the energy consumed during glow phase and the glow time is studied. It turns out that there is no common threshold of energy until the glow-to-arc transition takes place, but strong energy input into the lamp yields short glow times. The transient behaviour from the glow to the arc regime is investigated and the stable operation points of the arc discharge are determined, yielding an arc discharge voltage-current characteristics of the lamp type investigated. The electrode damage is investigated as a function of the open source voltage and the ballast resistance. Subsequent cold starts lead to an increase of the glow time due to electrode damaging, i.e., the electrode damage accumulates. Different regeneration procedures and their effectiveness are compared. Regeneration burning turns out to be more effective than heating up the electrode. A criterion for avoiding high electrode damage is obtained, indicating that the average power during glow time should exceed 20 W.
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore
2003-11-18
The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.
NASA Astrophysics Data System (ADS)
Fine, D. A.; Reeve, D. A.; Dickus, R. A.
1984-12-01
An inexpensive, portable, digital voltammeter has been designed and built at NWC. The instrument is intended for use with a silver wire working electrode. The voltammeter was built in response to a need on the part of Navy facilities for the monitoring of effluent water from the carbon column cleanup process used to remove propyleneglycoldinitrate from Otto fuel waste water. The instrument may also be used for the monitoring of contaminants such as nitroglycerin, dinitrotoluene, trinitrotoluene and nitroguanidine. This report describes in detail the construction, circuitry, software and operational features of the instrument.
Study of electrode slice forming of bicycle dynamo hub power connector
NASA Astrophysics Data System (ADS)
Chen, Dyi-Cheng; Jao, Chih-Hsuan
2013-12-01
Taiwan's bicycle industry has been an international reputation as bicycle kingdom, but the problem in the world makes global warming green energy rise, the development of electrode slice of hub dynamo and power output connector to bring new hope to bike industry. In this study connector power output to gather public opinion related to patent, basis of collected documents as basis for design, structural components in least drawn to power output with simple connector. Power output of this study objectives connector hope at least cost, structure strongest, highest efficiency in output performance characteristics such as use of computer-aided drawing software Solid works to establish power output connector parts of 3D model, the overall portfolio should be considered part types including assembly ideas, weather resistance, water resistance, corrosion resistance to vibration and power flow stability. Moreover the 3D model import computer-aided finite element analysis software simulation of expected the power output of the connector parts manufacturing process. A series of simulation analyses, in which the variables relied on first stage and second stage forming, were run to examine the effective stress, effective strain, press speed, and die radial load distribution when forming electrode slice of bicycle dynamo hub.
Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance
NASA Astrophysics Data System (ADS)
Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.
2016-11-01
This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively.
Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, D. A.; Yee, S. M. M.; Savinov, M.; Nuzhnyy, D.; Petzelt, J.; Kamba, S.; Prokeš, J.
2016-04-01
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and alternating current (ac) conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness, and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four-contact van der Pauw direct current conductivity measurements and bulk conductivity values extracted from two-contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature.
Electrode effects in dielectric spectroscopy measurements on (Nb +In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, David; Yee, Susan; Savinov, Maxim; Nuzhnyy, Dimitri; Petzelt, Jan; Kamba, Stanislav; Prokes, Jan
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and ac conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four contact van der Pauw dc conductivity measurements and bulk conductivity values extracted from two contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature. Nserc, Czech Science Foundation (Project 15-08389S).
Twenty kW fuel cell units of compact design. Part 4: Accompanying research and development
NASA Astrophysics Data System (ADS)
Mund, K.
1980-10-01
Models describing the electrochemical kinetics at porous H2 and O2 electrodes using Raney nickel and silver catalysts were developed and their parameters determined by means of stationary and impedance measurements. A correct description of the hydrogen electrode with a Raney nickel catalyst is shown to encompass proper consideration of both diffusion in the pore electrolyte and surface diffusion. Impedance measurements yield a surface diffusion coefficient of 10 sub-8 cm2 S sub-1. The addition of titanium to the catalyst results in decreased electrode polarization and higher stability. Highly active doped silver catalysts are shown to allow high current densities and diaphragm resistances as low as 3 ohm cm at the oxygen electrode. Service tests show adequate stability of the catalysts.
Colloidal systems and interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, S.; Morrison, E.D.
1988-01-01
This book is an excellent, four-part introductory text and sourcebook for those who want to acquire a quick background in , or brush up on, the physical properties and behavior of colloidal dispersions and interfaces. Part I covers properties of particles and techniques for determining particle size and surface area. Part II concentrates on the properties of interfaces, with brief subsections on insoluble monolayers, surface active solutes in aqueous and non-aqueous media, and the thermodynamics of adsorption at interfaces. Part III considers attractive and repulsive interactions, colloid stability (DLVO theory), and kinetics of coagulation. Part IV applies these concepts tomore » emulsions, foams, and suspensions. The sections on colloid rheology, interfacial tensions, Marangoni effects, and calculation of Hamaker constants are particularly good, as are Part IV and the numerous examples of practical applications used throughout the book to illustrate the concepts.« less
2016-04-01
with Al top electrodes and Cu bottom electrodes. ................... 9 Figure 4. SPICE netlist structure...memory elements play a part in logic gate. 4.4.2 Simulation SPICE Simulation Program for Integrated Circuits Emphasis ( SPICE ) is a general-purpose...analog circuit simulator that was developed at the Electronics Research Laboratory of the University of California, Berkeley [6]. In 1975, SPICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Gu, Meng; Nie, Zimin
Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRBmore » cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.« less
NASA Astrophysics Data System (ADS)
Cai, Duanjun; Wang, Huachun; Huang, Youyang; Wu, Chenping; Chen, Xiaohong; Gao, Na; Wei, Tongbo T.; Wang, Junxi; Li, Shuping; Kang, Junyong
2016-09-01
Metal nanowire networks hold a great promise, which have been supposed the only alternative to ITO as transparent electrodes for their excellent performance in touch screen, LED and solar cell. It is well known that the difficulty in making transparent ohmic electrode to p-type high-Al-content AlGaN conducting layer has highly constrained the further development of UV LEDs. On the IWN-2014, we reported the ohmic contact to n, p-GaN with direct graphene 3D-coated Cu nanosilk network and the fabrication of complete blue LED. On the ICNS-2015, we reported the ohmic contact to n-type AlGaN conducting layer with Cu@alloy nanosilk network. Here, we further demonstrate the latest results that a novel technique is proposed for fabricating transparent ohmic electrode to high-Al-content AlGaN p-type conducting layer in UV LEDs using Cu@alloy core-shell nanosilk network. The superfine copper nanowires (16 nm) was synthesized for coating various metals such as Ni, Zn, V or Ti with different work functions. The transmittance showed a high transparency (> 90%) over a broad wavelength range from 200 to 3000 nm. By thermal annealing, ohmic contact was achieved on p-type Al0.5Ga0.5N layer with Cu@Ni nanosilk network, showing clearly linear I-V curve. By skipping the p-type GaN cladding layer, complete UV LED chip was fabricated and successfully lit with bright emission at 276 nm.
Shewanella secretes flavins that mediate extracellular electron transfer
Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.
2008-01-01
Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736
Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup
NASA Astrophysics Data System (ADS)
Vilitis, O.; Muzikante, I.; Rutkis, M.; Vembris, A.
2012-01-01
In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.
NASA Astrophysics Data System (ADS)
Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio
2018-04-01
A new proposal for the extraction of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is given. First, the Cheung method is extended to obtain the series resistance (R s ), the ideality factor (n) and an upper limit for I sat . In this article which is Part 1 of two parts, two procedures are proposed to obtain fitting values for R sh and I sat within some voltage range. These two procedures are used in two simulated I-V curves (one in darkness and the other one under illumination) to recover the known solar cell parameters R sh , R s , n, I sat and the light current I lig and test its accuracy. The method is compared with two different common parameter extraction methods. These three procedures are used and compared in Part 2 in the I-V curves of CdS-CdTe and CIGS-CdS solar cells.
Development of a trans-admittance mammography (TAM) using 60×60 electrode array
NASA Astrophysics Data System (ADS)
Zhao, Mingkang; Liu, Qin; In Oh, Tong; Woo, Eung Je; Seo, Jin Keun
2010-04-01
We have developed a trans-admittance mammography (TAM) system as a supplementary or alternative method of the X-ray mammography to diagnose the breast cancer. Mechanical structure of the system is similar to the X-ray mammography with the breast placed between two plates. The pair of plates is movable to accommodate breasts with different sizes and rotatable to provide multiple images with different projection angles. Without using ionizing radiation, it acquires a projection image of tissue admittivity values. One plate is a flat solid electrode where we apply a constant sinusoidal voltage with a variable frequency. The other is equipped with 60×60 array of current-sensing electrodes, of which potentials are kept at the signal reference level. The electrode array is connected to six switching modules and each module routes current signals from 600 electrodes to two ammeter modules. Each ammeter module includes six channels of ammeters and each one of them comprises an independent current-to-voltage converter, voltage amplifier, ADC and digital phase-sensitive demodulator. Each ammeter sequentially measures exit currents from 50 electrodes chosen by the corresponding switching module. An FPGA controls six ammeters to collect real- and imaginary-parts of trans-admittance data from 300 electrodes. A separate FPGA arbitrates data and command exchanges between a DSP-based main controller and ammeter modules. It also generates a sinusoidal voltage signal to be applied to the breast. All the 3600 complex current data from 12 ammeter modules are transferred to the main controller, which is interfaced to a PC through an isolated USB. The system is provided with a program to display real- and imaginary-parts of measured trans-admittance maps. The measured maps at multiple frequencies are incorporated into a frequency-difference anomaly detection algorithm. In this paper, we describe the design and construction of the system.
Finite element modeling of the electromechanical coupling in ionic polymer transducers
NASA Astrophysics Data System (ADS)
Akle, Barbar; Habchi, Wassim; Wallmersperger, Thomas; Leo, Donald
2010-04-01
Several researchers are actively studying Ionomeric polymer transducers (IPT) as a large strain low voltage Electro- Active Polymer (EAP) actuator. EAPs are devices that do not contain any moving parts leading to a potential large life time. Furthermore, they are light weight and flexible. An IPT is made of an ion saturated polymer usually Nafion, sandwiched between two electrodes made of a mixture of Nafion and electrically conductive particles usually RuO2 or platinum. Nafion is an acid membrane in which the cations are mobile while the anions are covalently fixed to the polymer structure. Upon the application of an electric potential on the order of 2V at the electrodes the mobile positive ions migrate towards the cathode leading to bending strains in the order of 5%. Our earlier studies demonstrate that the cations develop thin boundary layers around the electrode. Later developments in this finite element model captured the importance of adding particles in the electrode. This study presents the electromechanical coupling in ionic polymer transducers. Since all our earlier models were restricted to the electro-chemical part, here we will introduce the chemomechanical coupling. This coupling is performed based on previous studies (Akle and Leo) in which the authors experimentally showed that the mechanical strain in IPTs is proportional to a linear term and a quadratic term of the charge accumulated at the electrode. The values of the linear and quadratic terms are extracted from experimental data.
OGLE-IV Transient Search report 25 September 2017 part 2
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Gromadzki, M.; Hamanowicz, A.; Rybicki, K.; Klencki, J.; Kozlowski, S.; Udalski, A.; Poleski, R.; Szymanski, M. K.; Skowron, J.; Ulaczyk, K.; Pawlak, M.; Mroz, P.; Soszynski, I.; Pietrukowicz, P.; Sitek, M.; Ihanec, N.
2017-09-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces discovery of 49 new on-going and recently finished transients discovered since Jan 2017.
OGLE-IV Transient Search report 25 September 2017 part 1
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Gromadzki, M.; Hamanowicz, A.; Rybicki, K.; Klencki, J.; Kozlowski, S.; Udalski, A.; Poleski, R.; Szymanski, M. K.; Skowron, J.; Ulaczyk, K.; Pawlak, M.; Mroz, P.; Soszynski, I.; Pietrukowicz, P.; Sitek, M.; Ihanec, N.
2017-09-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces discovery of 50 new on-going and recently finished transients discovered since Jan 2017.
Technique of electrical stimulation of the vestibular analyzer under clinical conditions
NASA Technical Reports Server (NTRS)
Khechinashvili, S. N.; Zargaryan, B. M.; Karakozov, K. G.
1980-01-01
Vestibular reactions appear under the action of direct current (dc) on the labyrinth of man and animals. A decrease of the stimulation effect of dc on the extralabyrinthine nervous formations in the suggested method is achieved by the use of electric pulses with steep front and back parts, as well as by previous anesthetization of the skin in the electrode application area by means of novocain solution electrophoresis. For this purpose a pulse producer giving trapezoid pulses with smoothly changing fronts and duration was constructed. With the help of an interrupter it is possible to stop the current increase instantly, and stimulation is performed at the level of the pulse 'plateau'. To induce vestibular reactions under monopolar stimulation, it is necessary to apply the current twice as high as that with bipolar electrode position. The use of short pulses with steep front and back parts for electrode stimulation of the vestibular analyzer is considered to be inexpedient.
Transport Modeling for Metallic Electrode: Semiconducting Nanotube Systems
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Biegel, Bryan (Technical Monitor)
2001-01-01
Recently, current-voltage (I-V) characteristics have been reported by Collins et al. for a system with a scanning tunneling microscope (STM) tip and a carbon nanotube. The STM tip was driven forward into a film of many entangled nanotubes on a substrate, and then was retracted, so that one of nanotubes bridged the STM and the film. I-V characteristics had two different patterns for different heights. One showed large dI/ dV with V greater than 0, small dI/dV with V less than 0, and I = 0 near V = 0 (type-I), while the other showed rectification, i.e., I does not equal 0 only with V less than 0 (type-II), with the tip grounded. We propose a physical mechanism to explain the observed I-V patterns. We consider that the observed characteristics strongly reflected the nature of the tip (metal) - nanotube (semiconductor) contact. The other end of the nanotube was entangled well in the film, and simply provided a good Ohmic contact. We will argue that there are two different contact modes: vacuum gap and touching modes, depending on the presence or absence of a tiny vacuum gap d approx. 0.1 - 0.2 nm at the junction. These modes may be related to physisorption and chemisorption, respectively. Once admitting their existence, it is naturally shown that I-V characteristics are type-I in the vacuum gap mode, and type-II in the touching mode. We argue that the nanotube had to be an n-type semiconductor judging from the I-V characteristics, contrary to often observed p-type in the transistor applications, where p-type is probably due to the oxidation in air or the trapped charges in the silicon dioxide. Additional information is contained in the original extended abstract.
HVDC Ground Electrodes and Tectonic Setting
NASA Astrophysics Data System (ADS)
Freire, P. F.; Pereira, S. Y.
2017-12-01
Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be developed.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, D.H.; Thresh, H.R.
1980-06-24
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.
Long life nickel electrodes for a nickel-hydrogen cell. I Initial performance
NASA Technical Reports Server (NTRS)
Lim, H. S.; Verzwyvelt, S. A.; Blaser, C.; Keener, K. M.
1983-01-01
In order to develop a long life nickel electrode for a Ni/H2 cell, an investigation was begun to study the effects of sinter structure and active material loading level on the long life performance of nickel electrodes. This paper is a report on the initial performance of these electrodes as a part of an accelerated life test program. Seven different types of nickel plaques were made which included three levels of both their mechanical strength and median pore size. These plaques were impregnated with three levels of active material loading. The resultant electrodes were tested by a 200-cycle stress test which was conducted in flooded electrolyte, and also for initial performance in a Ni/H2 boiler plate cell. An interesting and unexpected observation was that an increased initial utilization of the active material was due more to its complete discharge to the lower average oxidation state than its increased charge acceptance in the charged state.
Design and construction of the artificial patient module for testing bioimpedance measuring devices
NASA Astrophysics Data System (ADS)
Młyńczak, Marcel; Pariaszewska, Katarzyna; Niewiadomski, Wiktor; Cybulski, Gerard
2013-10-01
The purpose of this study was to describe the design of the electronic module for testing bioimpedance measuring devices, for example impedance cardiographs or impedance pneumographs. Artificial Patient was conceived as an electronic equivalent of the impedance of skin-electrode interface and the impedance between electrodes - measured one. Different approaches in imitating a resistance of skin and an impedance of electrode-skin connection were presented. The module was adapted for frequently applied tetrapolar electrode configuration. Therefore the design do not enclose the elements simulating impedance between skin and receiver electrodes due to negligible effect of this impedance on the current flow through the receiver. The Artificial Patient enables testing either application generators, or receiver parts, particularly the level of noise and distortions of the signal. Use of digitally controlled potentiometer allows simulating different tissue resistances changes such as constant values, very-low-frequency and low-frequency changes corresponding to those caused by breathing or heart activity. Also it allows distorting signals in order to test algorithms of artifacts attenuation.
Er Effect of Low Molecular Liquid Crystal on One-Sided Patterned Electrodes
NASA Astrophysics Data System (ADS)
Kikuchi, Takehito; Inoue, Akio; Furusho, Junji; Kawamuki, Ryohei
Several kinds of ER fluids (ERF) have been developed and have been applied to some mechatronics devices and processing technologies. In many conventional applications of ERFs, these devices consist of bilateral electrodes to apply electric field in ERF. However, the electric field of several kV/mm may be necessary to generate an ER effect sufficiently for practical purposes. The gap between a pair of electrodes should be, therefore, maintained narrowly and exactly for fears of short-circuit. At the same time, this electrode system also requires an interconnection on driving parts. To improve these disadvantages, we proposed "one-sided patterned electrode" (OSPE) systems in previous works. In this report, we confirmed the flow characteristics of low molecular liquid crystal (LMLC) on OSPE. Next, we also confirmed the different characteristics depending on the pattern type. Depending on results of electro-static analysis, we conclude that such a difference may results from the directors of LC molecules derived by electric field.
Application of polymer sensitive MRI sequence to localization of EEG electrodes.
Butler, Russell; Gilbert, Guillaume; Descoteaux, Maxime; Bernier, Pierre-Michel; Whittingstall, Kevin
2017-02-15
The growing popularity of simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) opens up the possibility of imaging EEG electrodes while the subject is in the scanner. Such information could be useful for improving the fusion of EEG-fMRI datasets. Here, we report for the first time how an ultra-short echo time (UTE) MR sequence can image the materials of an MR-compatible EEG cap, finding that electrodes and some parts of the wiring are visible in a high resolution UTE. Using these images, we developed a segmentation procedure to obtain electrode coordinates based on voxel intensity from the raw UTE, using hand labeled coordinates as the starting point. We were able to visualize and segment 95% of EEG electrodes using a short (3.5min) UTE sequence. We provide scripts and template images so this approach can now be easily implemented to obtain precise, subject-specific EEG electrode positions while adding minimal acquisition time to the simultaneous EEG-fMRI protocol. T1 gel artifacts are not robust enough to localize all electrodes across subjects, the polymers composing Brainvision cap electrodes are not visible on a T1, and adding T1 visible materials to the EEG cap is not always possible. We therefore consider our method superior to existing methods for obtaining electrode positions in the scanner, as it is hardware free and should work on a wide range of materials (caps). EEG electrode positions are obtained with high precision and no additional hardware. Copyright © 2016 Elsevier B.V. All rights reserved.
Kolarcik, Christi L.; Catt, Kasey; Rost, Erika; Albrecht, Ingrid N.; Bourbeau, Dennis; Du, Zhanhong; Kozai, Takashi D.Y.; Luo, Xiliang; Weber, Douglas J.; Cui, X. Tracy
2015-01-01
Objective The dorsal root ganglion (DRG) is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. Approach Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multiwall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as the result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. Main Results Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. Significance This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities. PMID:25485675
NASA Astrophysics Data System (ADS)
Kolarcik, Christi L.; Catt, Kasey; Rost, Erika; Albrecht, Ingrid N.; Bourbeau, Dennis; Du, Zhanhong; Kozai, Takashi D. Y.; Luo, Xiliang; Weber, Douglas J.; Cui, X. Tracy
2015-02-01
Objective. The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. Approach. Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. Main results. Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. Significance. This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.
Negative differential resistance in BN co-doped coaxial carbon nanotube field effect transistor
NASA Astrophysics Data System (ADS)
Shah, Khurshed A.; Parvaiz, M. Shunaid
2016-12-01
The CNTFETs are the most promising advanced alternatives to the conventional FETs due to their outstanding structure and electrical properties. In this paper, we report the I-V characteristics of zig-zag (4, 0) semiconducting coaxial carbon nanotube field effect transistor (CNTFET) using the non-equilibrium Green's function formalism. The CNTFET is co-doped with two, four and six boron-nitrogen (BN) atoms separately near the electrodes using the substitutional doping method and the I-V characteristics were calculated for each model using Atomistic Tool Kit software (version 13.8.1) and its virtual interface. The results reveal that all models show negative differential resistance (NDR) behavior with the maximum peak to valley current ratio (PVCR) of 3.2 at 300 K for the four atom doped model. The NDR behavior is due to the band to band tunneling (BTBT) in semiconducting CNTFET and decreases as the doping in the channel increases. The results are beneficial for next generation designing of nano devices and their potential applications in electronic industry.
NASA Astrophysics Data System (ADS)
Makinistian, Leonardo; Albanesi, Eduardo A.
2013-06-01
We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green's function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I-V curves), revealing features of potential applicability in spintronics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... Part II: Lifelong Learning and Self-Assessment Part III: Cognitive Expertise Part IV: Practice...: Licensure and Professional Standing Part II: Lifelong Learning and Self-Assessment Part III: Cognitive...\\ The MOC assesses physicians' commitment to lifelong learning according to the following six core...
49 CFR 383.113 - Required skills.
Code of Federal Regulations, 2014 CFR
2014-10-01
... inspected to ensure a safe operating condition of each part, including: (i) Engine compartment; (ii) Cab/engine start; (iii) Steering; (iv) Suspension; (v) Brakes; (vi) Wheels; (vii) Side of vehicle; (viii... they will activate in emergency situations; (iv) With the engine running, make sure that the system...
49 CFR 383.113 - Required skills.
Code of Federal Regulations, 2012 CFR
2012-10-01
... inspected to ensure a safe operating condition of each part, including: (i) Engine compartment; (ii) Cab/engine start; (iii) Steering; (iv) Suspension; (v) Brakes; (vi) Wheels; (vii) Side of vehicle; (viii... they will activate in emergency situations; (iv) With the engine running, make sure that the system...
49 CFR 383.113 - Required skills.
Code of Federal Regulations, 2013 CFR
2013-10-01
... inspected to ensure a safe operating condition of each part, including: (i) Engine compartment; (ii) Cab/engine start; (iii) Steering; (iv) Suspension; (v) Brakes; (vi) Wheels; (vii) Side of vehicle; (viii... they will activate in emergency situations; (iv) With the engine running, make sure that the system...
49 CFR 383.113 - Required skills.
Code of Federal Regulations, 2011 CFR
2011-10-01
... inspected to ensure a safe operating condition of each part, including: (i) Engine compartment; (ii) Cab/engine start; (iii) Steering; (iv) Suspension; (v) Brakes; (vi) Wheels; (vii) Side of vehicle; (viii... they will activate in emergency situations; (iv) With the engine running, make sure that the system...
Micro-drive and headgear for chronic implant and recovery of optoelectronic probes.
Chung, Jinho; Sharif, Farnaz; Jung, Dajung; Kim, Soyoun; Royer, Sebastien
2017-06-05
Silicon probes are multisite electrodes used for the electrophysiological recording of large neuronal ensembles. Optoelectronic probes (OEPs) are recent upgrades that allow, in parallel, the delivery of local optical stimuli. The procedures to use these delicate electrodes for chronic experiments in mice are still underdeveloped and typically assume one-time uses. Here, we developed a micro-drive, a support for OEPs optical fibers, and a hat enclosure, which fabrications consist in fitting and fastening together plastic parts made with 3D printers. Excluding two parts, all components and electrodes are relatively simple to recover after the experiments, via the loosening of screws. To prevent the plugging of OEPs laser sources from altering the stability of recordings, the OEPs fibers can be transiently anchored to the hat via the tightening of screws. We test the stability of recordings in the mouse hippocampus under three different conditions: acute head-fixed, chronic head-fixed, and chronic freely moving. Drift in spike waveforms is significantly smaller in chronic compared to acute conditions, with the plugging/unplugging of head-stage and fiber connectors not affecting much the recording stability. Overall, these tools generate stable recordings of place cell in chronic conditions, and make the recovery and reuse of electrode packages relatively simple.
Optimization of Neuromodulation for Bladder Control in a Rat Cystitis Model.
Su, Xin; Nickles, Angela; Nelson, Dwight E
2016-01-01
In a bladder overactivity model of cystitis induced by intravesical infusion of acetic acid (a.a.), several parameters of spinal nerve stimulation (SNS) were optimized using continuous infusion cystometry. The optimal stimulation was further characterized through measurements of urodynamic function using single-fill cystometry. In anesthetized male rats, a cannula was placed into the bladder dome for saline or 0.3% a.a. infusion and intravesical pressure monitoring. For SNS, two teflon-coated stainless steel electrodes were placed bilaterally under each of the L6 spinal nerves, and current stimulation was controlled independently using two Grass stimulators. Stimulation of 1 Hz or 50 Hz at motor threshold (Tmot ) was ineffective for altering bladder activities, but 10-Hz SNS increased the infused volume (IV) in a stimulation intensity-dependent fashion (P < 0.01, mixed model repeated analysis). Pairwise comparisons of IV differences to each stimulation intensity show that IV during 1 × Tmot stimulation was significantly larger than 0 × Tmot (no stim, P = 0.001), while the IV during 2 × Tmot stimulation was significantly larger than other intensities tested (P < 0.01). The mean IV (±SEM) during 0 × Tmot (no stim), 0.5 × Tmot , 1 × Tmot , and 2 × Tmot were 0.23 ± 0.04 mL, 0.25 ± 0.03 mL, 0.26 ± 0.03 mL, and 0.40 ± 0.04 mL, respectively. In single-fill cystometry, 10-Hz SNS at 1 × Tmot and 2 × Tmot stimulation increased the IV, or voiding duration and threshold pressure. SNS did not produce significant effects on basal pressure and micturition pressure. SNS significantly attenuates hypersensitive micturition reflex; 10 Hz and high-intensity stimulation are mostly effective. Acute peripheral nerve activation increases the functional bladder capacity, which may be via mechanisms on the afferent arm of the bladder micturition reflex. © 2015 International Neuromodulation Society.
Electrofluorescence polarity in a molecular diode
NASA Astrophysics Data System (ADS)
Petrov, E. G.; Leonov, V. A.; Shevchenko, E. V.
2017-11-01
The kinetic equations describing the transmission of an electron in the molecular compound "electrode 1-molecule-electrode 2" (1M2 system) are derived using the method of a nonequilibrium density matrix. The steady-state transmission regime is considered, for which detailed analysis of the kinetics of electrofluorescence formation in systems with symmetric and asymmetric couplings between the molecule and the electrodes is carried out. It is shown that the optically active state of the molecule is formed as a result of electron hops between the molecule and each of the electrodes, as well as due to inelastic interelectrode tunneling of the electron. The electrofluorescence power for a molecular diode (asymmetric 1M2 system) depends on the polarity of the voltage bias applied to the electrodes. The polarity is explained using a model in which the optically active part of the molecule (chromophore group) is represented by the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Two mechanisms of the emergence of polarity are revealed. One mechanism is associated with nonidentical Stark shifts of the HOMO and LUMO levels relative to the Fermi levels of the electrodes. The second mechanism is associated with the fact that the rates of an electron hopping between HOMO (LUMO) and one of the electrodes are much higher than the rates of such a hopping with the other electrode. The conditions in which each mechanism can be implemented experimentally are indicated.
Capacitive Behavior of Single Gallium Oxide Nanobelt
Cai, Haitao; Liu, Hang; Zhu, Huichao; Shao, Pai; Hou, Changmin
2015-01-01
In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure. PMID:28793506
NASA Astrophysics Data System (ADS)
Fontana, Laura; Fratoddi, Ilaria; Matassa, Roberto; Familiari, Giuseppe; Venditti, Iole; Batocchio, Chiara; Magnano, Elena; Nappini, Silvia; Leahu, Grigore; Belardini, Alessandro; Li Voti, Roberto; Sibilia, Concita
2017-05-01
For the development of new generation portable electronic devices, the realization of thin and flexible electrodes have a crucial role. Conductive organic systems can address this issue in different ways. Indeed, conductance in organic molecules were studied in different papers starting from seminal papers in last 70's [1] up to recent ones [2]. Among organic species, conduction and electronic characteristics of Fluorene derivatives were studied in different configurations [3,4]. Unfortunately, the conductance of organic materials is limited by charge transport mechanism [5]. Hybrid system with organic conductive compounds covalently linked with metal centres can lead to enhanced conductivity [6]. Here we synthesized gold and silver nanoparticles (AuNPs and AgNPs) stabilized with a fluorene thiolate derivative, namely 9,9-Didodecyl-2,7-bis(acetylthio)fluorene (FL). In the synthesis process the metal nanoparticles (MNPs) size results to be around 5 nm in diameter [7]. When deposited on a planar substrate, the hybrid compound form a regular network of MNPs separated each other by fluorene spacers covalently linked by thiol groups [8]. We deposited the network on substrate with two interdigitated electrodes in order to measure conductive properties (I-V characteristics). In I-V measurements it results to be that AgNPs based network is 200 times more conductive than AuNPs one. Selective oxidation of AgNPs network close to positive electrodes gives rise to a Schottky diode behavior in the I-V characteristic that could find potential applications in nano-electronics devices. The fluorescence and extinction spectra of FL-AgNPs and FL-AuNPs where characterised. References [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977). [2] Hylke B. Akkerman, Paul W. M. Blom, Dago M. de Leeuw and Bert de Boer, Nature 441, 69 (2006). [3] Rajendra Prasad Kalakodimi, Aletha M. Nowak, and Richard L. McCreery, Chem. Mater. 17, 4939 (2005). [4] J. Wu, K. Mobley, and R. L. Mc Creery, J. Chem. Phys. 126, 024704 (2007). [5] Cristina Hermosa, Jose Vicente Álvarez, Mohammad-Reza Azani, Carlos J. Gómez-García, Michelle Fritz, Jose M. Soler, Julio Gómez-Herrero, Cristina Gómez-Navarro and Félix Zamora, Nature Commun. 4, 1709 (2013). DOI: 10.1038/ncomms2696. [6] Nunzio Tuccitto, Violetta Ferri, Marco Cavazzini, Silvio Quici, Genady Zhavnerko, Antonino Licciardello and Maria Anita Rampi, Nature Mater. 8, 41 (2009). [7] Quintiliani, M., Bassetti, M., Pasquini, C., et al. J. Mater. Chem. C, 2014, (2), pp. 2517-2527. [8] R. Matassa, G. Familiari, E. Battaglione, Concita Sibilia et al., Nanoscale, 2016,8, 18161-18169.
Kisban, S; Herwik, S; Seidl, K; Rubehn, B; Jezzini, A; Umiltà, M A; Fogassi, L; Stieglitz, T; Paul, O; Ruther, P
2007-01-01
This paper reports on a novel type of silicon-based microprobes with linear, two and three dimensional (3D) distribution of their recording sites. The microprobes comprise either single shafts, combs with multiple shafts or 3D arrays combining two combs with 9, 36 or 72 recording sites, respectively. The electrical interconnection of the probes is achieved through highly flexible polyimide ribbon cables attached using the MicroFlex Technology which allows a connection part of small lateral dimensions. For an improved handling, probes can be secured by a protecting canula. Low-impedance electrodes are achieved by the deposition of platinum black. First in vivo experiments proved the capability to record single action potentials in the motor cortex from electrodes close to the tip as well as body electrodes along the shaft.
Dielectric properties of lung tissue as a function of air content.
Nopp, P; Rapp, E; Pfützner, H; Nakesch, H; Ruhsam, C
1993-06-01
Dielectric measurements were made on lung samples with different electrode systems in the frequency range 5 kHz-100 kHz. In the case of plate electrodes and spot electrodes, the effects of electrode polarization were partly corrected. An air filling factor F is defined, which is determined from the mass and volume of the sample. The results indicate that the electrical properties of lung tissue are highly dependent on the condition of the tissue. Furthermore they show that the conductivity sigma as well as the relative permittivity epsilon r decreases with increasing F. This is discussed using histological material. Using a simple theoretical model, the decrease of sigma and epsilon r is explained by the thinning of the alveolar walls as well as by the deformation of the epithelial cells and blood vessels through the expansion of the alveoli.
Electrode erosion in steady-state electric propulsion engines
NASA Technical Reports Server (NTRS)
Pivirotto, Thomas J.; Deininger, William D.
1988-01-01
The anode and cathode of a 30 kW class arcjet engine were sectioned and analyzed. This arcjet was operated for a total time of 573 hr at power levels between 25 and 30 kW with ammonia at flow rates of 0.25 and 0.27 gm/s. The accumulated run time was sufficient to clearly establish erosion patterns and their causes. The type of electron emission from various parts of the cathode surface was made clear by scanning electron microscope analysis. A scanning electron microscope was used to study recrystallization on the hot anode surface. These electrodes were made of 2 percent thoriated tungsten and the surface thorium content and gradient perpendicular to the surfaces was determined by quantitative microprobe analysis. The results of this material analysis on the electrodes and recommendations for improving electrode operational life time are presented.
Modeling of Current-Voltage Characteristics in Large Metal-Semiconducting Carbon Nanotube Systems
NASA Technical Reports Server (NTRS)
Yamada, Toshishige; Biegel, Bryon A. (Technical Monitor)
2000-01-01
A model is proposed for two observed current-voltage (I-V) patterns in recent experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 (1997)]. We claim that there are two contact modes for a tip (metal)-nanotube (semiconductor) junction depending whether the alignment of the metal and the semiconductor band structures is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this model to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor with metallic electrodes at low temperature [Zhou et al., Appl. Phys. Lett. 76, 1597 (2000)], and show that two independent metal-semiconductor junctions in series are responsible for the observed behavior.
NASA Astrophysics Data System (ADS)
Setiyanto, H.; Adyatmika, I. M.; Syaifullah, M. M.; Zulfikar, M. A.; Buchari
2018-05-01
Nonylphenol ethoxylate (NPE-10) is one type of non-ionic surfactants from the class of alkylphenol ethoxylate (APE). This compound is already tightened their use in European Union countries. However, these surfactants are still used widely in Indonesia because the price is relatively cheap. Consequently, these compounds can accumulate in aquatic environments. NPE-10 can disrupt aquatic ecosystems. This study aimed to describe the electro-oxidation process of NPE-10 based on the parameters of a potential difference, concentration of NPE-10, concentration of Ce (III), and oxidation time. The result of oxidation NPE-10 was measured by the amount of current generated from voltammetry technique. Studies of cyclic voltammetry using carbon paste electrodes illustrates the potential value of the oxidation of Ce (III) / Ce (IV) of 1.25 V and the reduction potential value of Ce (IV) / Ce (III) of 1.192 V. NPE-10 are electroactive irreversible because it only provides the potential value of oxidation at 1.44 V. Percent of total degradation of 84.96% was obtained at electro-oxidation of 500 ppm NPE-10 by the addition of 0.015 M Ce (III) for 90 minutes at 0.2 M H2SO4and the use of potential of 6 V.
Campaign best practice in intravenous therapy.
Baldwin, Wayne; Murphy, Jayne; Shakespeare, David; Kelly, Chris; Fox, Louise; Kelly, Matthew
Intravenous therapy is an integral part of nursing care but is associated with a high risk of infection. This article outlines a campaign that aimed to increase awareness of best practice for IV therapy and reduce the risks of healthcare-associated IV infections in hospital and community settings.
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2016-11-04
Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2016-01-01
Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019
The report “National Water Infrastructure Adaptation Assessment” is comprised of four parts (Part I to IV), each in an independent volume. The Part I report presented herein describes a preliminary regulatory and technical analysis of water infrastructure and regulations in the ...
Electrolytic smelting of lunar rock for oxygen, iron, and silicon
NASA Technical Reports Server (NTRS)
Haskin, Larry A.; Colson, Russell O.; Lindstrom, David J.; Lewis, Robert H.; Semkow, Krystyna W.
1992-01-01
Preliminary studies of the electrochemical properties of silicate melts such as those available from heating of lunar mare soils indicate that conductivities are high enough for design of a practical electrolytic cell. The nature and kinetics of the electrode reactions, which involve reduction of Fe(++) and Si(IV) and oxidation of silicate anions as the primary, product-forming reactions, are also satisfactory. A survey of the efficiencies for production (amount of product for a given current) of O2, Fe(sup 0), and Si(sup 0) as functions of potential and of electrolyte composition indicate that conditions can be chosen to yield high production efficiencies. We also conclude that electronic conductivity does not occur to a significant extent. Based on these data, a cell with electrodes of 30 sq m in area operating between 1 and 5V with a current between 1.6 and 3.5(10)(exp 5) A for a mean power requirement of 0.54 MW and total energy use of approximately 13 MWhr per 24-hr day would produce 1 ton of O2, 0.81 ton of Fe(sup 0), 0.65 ton of Si(sup 0) (as Fe(sup 0)-Si(sup 0) alloy), and about 3.5 tons of silicate melt of altered composition per 24 hr. Adjustable distance between electrodes could offer flexibility with respect to feedstock and power source.
Paraquat-Melanin Redox-Cycling: Evidence from Electrochemical Reverse Engineering.
Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Bentley, William E; Payne, Gregory F
2016-08-17
Parkinson's disease is a neurodegenerative disorder associated with oxidative stress and the death of melanin-containing neurons of the substantia nigra. Epidemiological evidence links exposure to the pesticide paraquat (PQ) to Parkinson's disease, and this link has been explained by a redox cycling mechanism that induces oxidative stress. Here, we used a novel electrochemistry-based reverse engineering methodology to test the hypothesis that PQ can undergo reductive redox cycling with melanin. In this method, (i) an insoluble natural melanin (from Sepia melanin) and a synthetic model melanin (having a cysteinyldopamine-melanin core and dopamine-melanin shell) were entrapped in a nonconducting hydrogel film adjacent to an electrode, (ii) the film-coated electrode was immersed in solutions containing PQ (putative redox cycling reductant) and a redox cycling oxidant (ferrocene dimethanol), (iii) sequences of input potentials (i.e., voltages) were imposed to the underlying electrode to systematically engage reductive and oxidative redox cycling, and (iv) output response currents were analyzed for signatures of redox cycling. The response characteristics of the PQ-melanin systems to various input potential sequences support the hypothesis that PQ can directly donate electrons to melanin. This observation of PQ-melanin redox interactions demonstrates an association between two components that have been individually linked to oxidative stress and Parkinson's disease. Potentially, melanin's redox activity could be an important component in understanding the etiology of neurological disorders such as Parkinson's disease.
Porous SnO2-CuO nanotubes for highly reversible lithium storage
NASA Astrophysics Data System (ADS)
Cheong, Jun Young; Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Kim, Il-Doo
2018-01-01
Facile synthesis of rationally designed structures is critical to realize a high performance electrode for lithium-ion batteries (LIBs). Among different candidates, tin(IV) oxide (SnO2) is one of the most actively researched electrode materials due to its high theoretical capacity (1493 mAh g-1), abundance, inexpensive costs, and environmental friendliness. However, severe capacity decay from the volume expansion and low conductivity of SnO2 have hampered its use as a feasible electrode for LIBs. Rationally designed SnO2-based nanostructures with conductive materials can be an ideal solution to resolve such limitations. In this work, we have successfully fabricated porous SnO2-CuO composite nanotubes (SnO2-CuO p-NTs) by electrospinning and subsequent calcination step. The porous nanotubular structure is expected to mitigate the volume expansion of SnO2, while the as-formed Cu from CuO upon lithiation allows faster electron transport by improving the low conductivity of SnO2. With a synergistic effect of both Sn and Cu-based oxides, SnO2-CuO p-NTs deliver stable cycling performance (91.3% of capacity retention, ∼538 mAh g-1) even after 350 cycles at a current density of 500 mA g-1, along with enhanced rate capabilities compared with SnO2.
Yamamuro, Kazuhiko; Ota, Toyosaku; Iida, Junzo; Nakanishi, Yoko; Matsuura, Hiroki; Uratani, Mitsuhiro; Okazaki, Kosuke; Kishimoto, Naoko; Tanaka, Shohei; Kishimoto, Toshifumi
2016-08-30
Few objective biological measures of pharmacological treatment efficacy exist for attention deficit/hyperactivity disorder (ADHD). Although we have previously demonstrated that event-related potentials (ERPs) reflect the effects of osmotic-release methylphenidate in treatment of naïve pediatric patients with ADHD, whether this is true for the therapeutic effects of atomoxetine (ATX) is unknown. Here, we used the Japanese version of the ADHD rating-scale IV to evaluate 14 patients with ADHD, and compared their ERP data with 14 age- and sex-matched controls. We measured P300 and mismatch negativity (MMN) components during an auditory oddball task before treatment (treatment naïve) and after 2 months of ATX treatment. Compared with controls, P300 components at baseline were attenuated and prolonged in the ADHD group at Fz (fronto-central), Cz (centro-parietal), Pz (parietal regions), C3 and C4 electrodes. ATX treatment reduced ADHD symptomology, and after 2 months of treatment, P300 latencies at Fz, Cz, Pz, C3, and C4 electrodes were significantly shorter than those at baseline. Moreover, MMN amplitudes at Cz and C3 electrodes were significantly greater than those at baseline. Thus, ERPs may be useful for evaluating the pharmacological effects of ATX in pediatric and adolescent patients with ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hou, Jin-Le; Luo, Wen; Guo, Yao; Zhang, Ping; Yang, Shen; Zhu, Qin-Yu; Dai, Jie
2017-06-05
A unique titanium oxo cluster with a ferrocene ligand was synthesized and characterized by single crystal X-ray analysis. Six ferrocene carboxylates coordinate to a D 3d Ti 6 O 6 core to be a redox active cluster 1, [Ti 6 O 6 (O i Pr) 6 (O 2 CFc) 6 ]. An analogue 2, [Ti 6 O 6 (O i Pr) 6 (O 2 C i Bu) 6 ], where the redox active ferrocene group is replaced by isobutyrate, is also reported as a contrast. The six ferrocene moieties in 1 are structurally identical to give a main redox wave at E 1/2 = 0.62 V in dichloromethane investigated by cyclic voltammetry. Photocurrent responses using electrodes of clusters 1 and 2 were studied, and the response properties of 1 are better than those of 2. The electronic spectra and theoretical calculations indicate that charge transfer occurs from ferrocene to Ti(IV) in 1, and the presence of the ferrocene moiety gives efficient electron excitation and charge separation. Cluster 1 is a cooperative system of TiO cluster and redox active ferrocene. Photocurrent response properties of an electrode of 1 for four saccharides, glucose, fructose, maltose, and sucrose, were tested, and only reducing sugars were responsive. The electrode of 2 is also photocurrent responsive to saccharides, but the current densities are lower than those of redox active 1.
Willis Lamb, Jr., the Hydrogen Atom, and the Lamb Shift
1955, Lamb won the Nobel Prize in Physics for his discoveries concerning "the fine structure of , May 7 - September 30, 1979 Fine Structure of the Hydrogen Atom, Part I; Part II; Part III; Part IV ; Part V; Part VI (from Physical Review 1950-1953) Microwave Technique for Determining the Fine Structure
Olofsson, Sara; Norrlid, Hanna; Karlsson, Eva; Wilking, Ulla; Ragnarson Tennvall, Gunnel
2016-10-01
Trastuzumab is part of the standard treatment for HER2-positive breast cancer. The aim of this study was to estimate the societal value of trastuzumab administered through subcutaneous (SC) injection compared to intravenous (IV) infusion. Female patients with HER2-positive breast cancer receiving SC or IV trastuzumab were consecutively enrolled from five Swedish oncology clinics from 2013 to 2015. Data on time and resource utilization was collected prospectively using patient and nurse questionnaires. Societal costs were calculated by multiplying the resource use by its corresponding unit price, including direct medical costs (pharmaceuticals, materials, nurse time, etc.), direct non-medical costs (transportation) and indirect costs (production loss, lost leisure time). Costs were reported separately for patients receiving trastuzumab for the first time and non-first time ("subsequent treatment"). In total, 101 IV and 94 SC patients were included in the study. The societal costs were lower with SC administration. For subsequent treatments the cost difference was €117 (IV €2099; SC €1983), partly explained by a higher time consumption both for nurses (14 min) and patients (23 min) with IV administration. Four IV and 16 SC patients received trastuzumab for the first time and were analysed separately, resulting in a difference in societal costs of €897 per treatment. A majority of patients preferred SC to IV administration. SC administration resulted in both less direct medical costs and indirect costs, and was consequently less costly than IV administration from a societal perspective in a Swedish setting. Copyright © 2016 Elsevier Ltd. All rights reserved.
Selective electrical interfaces with the nervous system.
Rutten, Wim L C
2002-01-01
To achieve selective electrical interfacing to the neural system it is necessary to approach neuronal elements on a scale of micrometers. This necessitates microtechnology fabrication and introduces the interdisciplinary field of neurotechnology, lying at the juncture of neuroscience with microtechnology. The neuroelectronic interface occurs where the membrane of a cell soma or axon meets a metal microelectrode surface. The seal between these may be narrow or may be leaky. In the latter case the surrounding volume conductor becomes part of the interface. Electrode design for successful interfacing, either for stimulation or recording, requires good understanding of membrane phenomena, natural and evoked action potential generation, volume conduction, and electrode behavior. Penetrating multimicroelectrodes have been produced as one-, two-, and three-dimensional arrays, mainly in silicon, glass, and metal microtechnology. Cuff electrodes circumvent a nerve; their selectivity aims at fascicles more than at nerve fibers. Other types of electrodes are regenerating sieves and cone-ingrowth electrodes. The latter may play a role in brain-computer interfaces. Planar substrate-embedded electrode arrays with cultured neural cells on top are used to study the activity and plasticity of developing neural networks. They also serve as substrates for future so-called cultured probes.
Rahman, Tanzilur; Ichiki, Takanori
2017-10-13
The fabrication of miniaturized electrical biosensing devices can enable the rapid on-chip detection of biomarkers such as miRNA molecules, which is highly important in early-stage cancer detection. The challenge in realizing such devices remains in the miniaturization of the reference electrodes, which is an integral part of electrical detection. Here, we report on a novel thin film Ag/AgCl reference electrode (RE) that has been fabricated on top of a Au-sputtered glass surface, which was coated with a self-assembled monolayer (SAM) of 6-mercepto-1-hexanol (MCH). The electrode showed very little measurement deviation (-1.5 mv) from a commercial Ag/AgCl reference electrode and exhibited a potential drift of only ± 0.2 mV/h. In addition, the integration of this SAM-modified microfabricated thin film RE enabled the rapid detection (<30 min) of miRNA (let-7a). The electrode can be integrated seamlessly into a microfluidic device, allowing the highly stable and fast measurement of surface potential and is expected to be very useful for the development of miniature electrical biosensors.
Nanocomposite Electrodes for Advanced Lithium Batteries: The LiFePO4 Cathode
2001-11-01
The LiFePO4 Cathode DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Nanocomposite Electrodes for Advanced Lithium Batteries: The LiFePO4 Cathode Shoufeng Yang, Yanning Song, Peter Y. Zavalij and M. Stanley Whittingham...Institute for Materials Research, Binghamton University, Binghamton, NY 13902-1600, U.S.A. ABSTRACT LiFePO4 was successfully synthesized by high temperature
1994-02-01
electrochemical formation and removal of oxide films is of broadbased practical as well as fundamental importance. Studies of noble metals, such as gold and...atomic level. At the current state of development of STM, monocrystalline gold electrodes provide efficacious choices of systems, partly in view of...several in-situ STM studies have focussed on the surface morphological changes attending oxidation and rereduction of single-crystal gold electrodes
Motor outcome and electrode location in deep brain stimulation in Parkinson's disease.
Koivu, Maija; Huotarinen, Antti; Scheperjans, Filip; Laakso, Aki; Kivisaari, Riku; Pekkonen, Eero
2018-05-30
To evaluate the efficacy and adverse effects of subthalamic deep brain stimulation (STN-DBS) in patients with advanced Parkinson's disease (PD) and the possible correlation between electrode location and clinical outcome. We retrospectively reviewed 87 PD-related STN-DBS operations at Helsinki University Hospital (HUH) from 2007 to 2014. The changes of Unified Parkinson's Disease Rating Scale (UPDRS) part III score, Hoehn & Yahr stage, antiparkinson medication, and adverse effects were studied. We estimated the active electrode location in three different coordinate systems: direct visual analysis of MRI correlated to brain atlas, location in relation to the nucleus borders and location in relation to the midcommisural point. At 6 months after operation, both levodopa equivalent doses (LEDs; 35%, Wilcoxon signed-rank test = 0.000) and UPDRS part III scores significantly decreased (38%, Wilcoxon signed-rank test = 0.000). Four patients (5%) suffered from moderate DBS-related dysarthria. The generator and electrodes had to be removed in one patient due to infection (1%). Electrode coordinates in the three coordinate systems correlated well with each other. On the left side, more ventral location of the active contact was associated with greater LED decrease. STN-DBS improves motor function and enables the reduction in antiparkinson medication with an acceptable adverse effect profile. More ventral location of the active contact may allow stronger LED reduction. Further research on the correlation between contact location, clinical outcome, and LED reduction is warranted. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
34 CFR 668.26 - End of an institution's participation in the Title IV, HEA programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... institution's students; (2) The institution loses its institutional eligibility under 34 CFR part 600; (3) The...) All financial, performance, and other reports required by appropriate Title IV, HEA program... Aid Report to the institution or when an institution has received a valid institutional student...
12 CFR Appendix A to Part 1720 - Policy Guidance; Minimum Safety and Soundness Requirements
Code of Federal Regulations, 2011 CFR
2011-01-01
... effectively and to model the effect of differing interest rate scenarios on the Enterprise's financial... liquidity under varying scenarios. IV. Information technology. An Enterprise should establish and implement... functions; iv. Adequate testing and review of audited areas together with adequate documentation of findings...
Title IV Indian Education Program Evaluation 1986-87.
ERIC Educational Resources Information Center
Albuquerque Public Schools, NM. Planning, Research and Accountability.
Albuquerque (New Mexico) public schools used a Title IV Part A grant to improve academic and behavioral functioning of American Indian elementary and secondary school students. The program's focus was tutoring provided to 899 Indian students from Canoncito Navajo Reservation, the Isleta Pueblo, and the city. A project coordinator, a resource…
Title IV Indian Education Program Evaluation, 1985-86.
ERIC Educational Resources Information Center
Albuquerque Public Schools, NM. Planning, Research and Accountability.
Public schools in Albuquerque, New Mexico, used a Title IV Part A grant to assist American Indian elementary and secondary school students in receiving passing grades and improving school-related behaviors. Canoncito Navajo Reservation, the Isleta Pueblo, and urban Indian students in Albuquerque participated in the program. Personnel consisted of…
14 CFR 61.5 - Certificates and ratings issued under this part.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (iii) Glider. (iv) Lighter-than-air. (v) Powered-lift. (vi) Powered parachute. (vii) Weight-shift...—Airplane. (ii) Instrument—Helicopter. (iii) Instrument—Powered-lift. (c) The following ratings are placed.... (iii) Glider. (iv) Powered-lift. (2) Airplane class ratings— (i) Single-engine. (ii) Multiengine. (3...
14 CFR 61.5 - Certificates and ratings issued under this part.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (iii) Glider. (iv) Lighter-than-air. (v) Powered-lift. (vi) Powered parachute. (vii) Weight-shift...—Airplane. (ii) Instrument—Helicopter. (iii) Instrument—Powered-lift. (c) The following ratings are placed.... (iii) Glider. (iv) Powered-lift. (2) Airplane class ratings— (i) Single-engine. (ii) Multiengine. (3...
45 CFR 309.01 - What does this part cover?
Code of Federal Regulations, 2011 CFR
2011-10-01
... Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT... CHILD SUPPORT ENFORCEMENT (IV-D) PROGRAM Tribal IV-D Program: General Provisions § 309.01 What does this... Social Security Act. Section 455(f) of the Act authorizes direct grants to Indian Tribes and Tribal...
Multiscale modelling of a composite electroactive polymer structure
NASA Astrophysics Data System (ADS)
Wang, P.; Lassen, B.; Jones, R. W.; Thomsen, B.
2010-12-01
Danfoss PolyPower has developed a tubular actuator comprising a dielectric elastomer sheet with specially shaped compliant electrodes rolled into a tube. This paper is concerned with the modelling of this kind of tubular actuator. This is a challenging task due to the system's multiscale nature which is caused by the orders of magnitude difference between the length and thickness of the sheets as well as the thickness of the electrodes and the elastomer in the sheets. A further complication is the presence of passive parts at both ends of the actuator, i.e. areas without electrodes which are needed in order to avoid short circuits between negative and positively charged electrodes on the two sides of the sheet. Due to the complexities in shape and size it is necessary to introduce some simplifying assumptions. This paper presents a set of models where the three-dimensional problem has been reduced to two-dimensional problems, ensuring that the resulting models can be handled numerically within the framework of the finite element method. These models have been derived by expressing Navier's equation in elliptical cylindrical coordinates in order to take full advantage of the special shape of these actuators. Emphasis is placed on studying the passive parts of the actuator, as these degrade the effectiveness of the actuator. Two approaches are used here to model the passive parts: a spring-stiffness analogy model and a longitudinal section model of the actuator. The models have been compared with experimental results for the force-elongation characteristics of the commercially available PolyPower 'InLastor push' actuator. The comparison shows good agreement between model and experiments for the case where the passive parts were taken into account. One of the models developed is subsequently used to study geometric effects—specifically the effect of changing the ellipticity of the tubular actuator on the actuator's performance is investigated.
[Contact dermatitis from polyacrylate in TENS electrode].
Weber-Muller, F; Reichert-Penetrat, S; Schmutz, J-L; Barbaud, A
2004-05-01
Transcutaneous electric nerve stimulation (TENS) is useful for many chronic pains. It induces few serious side effects, but skin reactions are not rare. We report on two cases of contact dermatitis due to TENS electrodes by sensitization to the acrylate in TENS conductive gel. A 50 year-old man suffered from post-traumatic lumbar pair. He developed eczematous lesions on the sites where the TENS electrodes were applied. Patch tests were positive with the TENS gel, with ethylene glycol dimethylacrylate (2 p. 100 petrolatum) and ethyl-acrylate (2 p. 100 petrolatum) on day 2 and 4 readings. A 54 Year-old man had a paralysis of the foot elevator following rupture of an aneurysm. After 2 months, he had an eczema on the sites where the TENS electrodes were applied. Patch tests were negative with the TENS electrodes but positive with 2-hydroxyethyl acrylate (0.1 p. 100 petrolatum), triethyleneglycol diacrylate (0.1 p. 100 petrolatum), 2-hydroxyethyl methacrylate (2 p. 100 petrolatum) and 2-hydroxypropyl methacrylate (2 p. 100 petrolatum) on day 2 and 4 readings. TENS transmits small electrical currents through the skin that induce the depolarization of the affected sensory nerve endings. They have few serious side effects but skin reactions such as irritation, burns or allergy to propylene glycol in the electrode gel, to the rubber of the electrodes (mercaptobenzothiazole) or to the metallic part of the electrodes, i.e. nickel, are not uncommon. To our knowledge, only one case of an allergy to the polyacrylates of TENS electrode gel has been previously reported in the literature. We emphasize that acrylate could be the main sensitizer in the more recently commercialized TENS electrodes and will propose alternative ways of treating patients sensitized to acrylate and who require treatment with TENS.
Groppe, David M; Bickel, Stephan; Dykstra, Andrew R; Wang, Xiuyuan; Mégevand, Pierre; Mercier, Manuel R; Lado, Fred A; Mehta, Ashesh D; Honey, Christopher J
2017-04-01
Intracranial electrical recordings (iEEG) and brain stimulation (iEBS) are invaluable human neuroscience methodologies. However, the value of such data is often unrealized as many laboratories lack tools for localizing electrodes relative to anatomy. To remedy this, we have developed a MATLAB toolbox for intracranial electrode localization and visualization, iELVis. NEW METHOD: iELVis uses existing tools (BioImage Suite, FSL, and FreeSurfer) for preimplant magnetic resonance imaging (MRI) segmentation, neuroimaging coregistration, and manual identification of electrodes in postimplant neuroimaging. Subsequently, iELVis implements methods for correcting electrode locations for postimplant brain shift with millimeter-scale accuracy and provides interactive visualization on 3D surfaces or in 2D slices with optional functional neuroimaging overlays. iELVis also localizes electrodes relative to FreeSurfer-based atlases and can combine data across subjects via the FreeSurfer average brain. It takes 30-60min of user time and 12-24h of computer time to localize and visualize electrodes from one brain. We demonstrate iELVis's functionality by showing that three methods for mapping primary hand somatosensory cortex (iEEG, iEBS, and functional MRI) provide highly concordant results. COMPARISON WITH EXISTING METHODS: iELVis is the first public software for electrode localization that corrects for brain shift, maps electrodes to an average brain, and supports neuroimaging overlays. Moreover, its interactive visualizations are powerful and its tutorial material is extensive. iELVis promises to speed the progress and enhance the robustness of intracranial electrode research. The software and extensive tutorial materials are freely available as part of the EpiSurg software project: https://github.com/episurg/episurg. Copyright © 2017 Elsevier B.V. All rights reserved.
A preliminary study on atrial epicardial mapping signals based on Graph Theory.
Sun, Liqian; Yang, Cuiwei; Zhang, Lin; Chen, Ying; Wu, Zhong; Shao, Jun
2014-07-01
In order to get a better understanding of atrial fibrillation, we introduced a method based on Graph Theory to interpret the relations of different parts of the atria. Atrial electrograms under sinus rhythm and atrial fibrillation were collected from eight living mongrel dogs with cholinergic AF model. These epicardial signals were acquired from 95 unipolar electrodes attached to the surface of the atria and four pulmonary veins. Then, we analyzed the electrode correlations using Graph Theory. The topology, the connectivity and the parameters of graphs during different rhythms were studied. Our results showed that the connectivity of graphs varied from sinus rhythm to atrial fibrillation and there were parameter gradients in various parts of the atria. The results provide spatial insight into the interaction between different parts of the atria and the method may have its potential for studying atrial fibrillation. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Unwin, Patrick R; Güell, Aleix G; Zhang, Guohui
2016-09-20
Carbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites. With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particular features on a surface to be targeted and models of structure-activity to be developed and tested on a wide range of length scales and time scales. When high resolution electrochemical imaging data are combined with information from other microscopy and spectroscopy techniques applied to the same area of an electrode surface, in a correlative-electrochemical microscopy approach, highly resolved and unambiguous pictures of electrode activity are revealed that provide new views of the electrochemical properties of carbon materials. With a focus on major sp(2) carbon materials, graphite, graphene, and single walled carbon nanotubes (SWNTs), this Account summarizes recent advances that have changed understanding of interfacial electrochemistry at carbon electrodes including: (i) Unequivocal evidence for the high activity of the basal surface of highly oriented pyrolytic graphite (HOPG), which is at least as active as noble metal electrodes (e.g., platinum) for outer-sphere redox processes. (ii) Demonstration of the high activity of basal plane HOPG toward other reactions, with no requirement for catalysis by step edges or defects, as exemplified by studies of proton-coupled electron transfer, redox transformations of adsorbed molecules, surface functionalization via diazonium electrochemistry, and metal electrodeposition. (iii) Rationalization of the complex interplay of different factors that determine electrochemistry at graphene, including the source (mechanical exfoliation from graphite vs chemical vapor deposition), number of graphene layers, edges, electronic structure, redox couple, and electrode history effects. (iv) New methodologies that allow nanoscale electrochemistry of 1D materials (SWNTs) to be related to their electronic characteristics (metallic vs semiconductor SWNTs), size, and quality, with high resolution imaging revealing the high activity of SWNT sidewalls and the importance of defects for some electrocatalytic reactions (e.g., the oxygen reduction reaction). The experimental approaches highlighted for carbon electrodes are generally applicable to other electrode materials and set a new framework and course for the study of electrochemical and interfacial processes.
NASA Astrophysics Data System (ADS)
Hiram Moon, Parry; Eberle Spencer, Domina
2005-09-01
Preface; Nomenclature; Historical introduction; Part I. Holors: 1. Index notation; 2. Holor algebra; 3. Gamma products; Part II. Transformations: 4. Tensors; 5. Akinetors; 6. Geometric spaces; Part III. Holor Calculus: 7. The linear connection; 8. The Riemann-Christoffel tensors; Part IV. Space Structure: 9. Non-Riemannian spaces; 10. Riemannian space; 11. Euclidean space; References; Index.
Tack, Liew Weng; Azam, Mohd Asyadi; Seman, Raja Noor Amalina Raja
2017-04-06
Single-walled carbon nanotubes (SWCNTs) and metal oxides (MOs), such as manganese(IV) oxide (MnO 2 ), cobalt(II, III) oxide (Co 3 O 4 ), and nickel(II) oxide (NiO) hybrid structures, have received great attention because of their promising application in lithium-ion batteries (LIBs). As electrode materials for LIBs, the structure of SWCNT/MOs provides high power density, good electrical conductivity, and excellent cyclic stability. In this work, first-principles calculations were used to investigate the structural and electronic properties of MOs attached to (5, 5) SWCNT and Li-ion adsorption to SWCNT/metal oxide composites as electrode materials in LIBs. Emphasis was placed on the synergistic effects of the composite on the electrochemical performance of LIBs in terms of adsorption capabilities and charge transfer of Li-ions attached to (5, 5) SWCNT and metal oxides. Also, Li adsorption energy on SWCNTs and three different metal oxides (NiO, MnO 2 , and Co 3 O 4 ) and the accompanying changes in the electronic properties, such as band structure, density of states and charge distribution as a function of Li adsorption were calculated. On the basis of the calculation results, the top C atom was found to be the most stable position for the NiO and MnO 2 attachment to SWCNT, while the Co 3 O 4 molecule, the Co 2+ , was found to be the most stable attachment on SWCNT. The obtained results show that the addition of MOs to the SWCNT electrode enables an increase in specific surface area and improves the electronic conductivity and charge transfer of an LIB.
Chandramohan, S; Kang, Ji Hye; Ryu, Beo Deul; Yang, Jong Han; Kim, Seongjun; Kim, Hynsoo; Park, Jong Bae; Kim, Taek Yong; Cho, Byung Jin; Suh, Eun-Kyung; Hong, Chang-Hee
2013-02-01
This paper reports on the evaluation of the impact of introducing interlayers and postmetallization annealing on the graphene/p-GaN ohmic contact formation and performance of associated devices. Current-voltage characteristics of the graphene/p-GaN contacts with ultrathin Au, Ni, and NiO(x) interlayers were studied using transmission line model with circular contact geometry. Direct graphene/p-GaN interface was identified to be highly rectifying and postmetallization annealing improved the contact characteristics as a result of improved adhesion between the graphene and the p-GaN. Ohmic contact formation was realized when interlayer is introduced between the graphene and p-GaN followed by postmetallization annealing. Temperature-dependent I-V measurements revealed that the current transport was modified from thermionic field emission for the direct graphene/p-GaN contact to tunneling for the graphene/metal/p-GaN contacts. The tunneling mechanism results from the interfacial reactions that occur between the metal and p-GaN during the postmetallization annealing. InGaN/GaN light-emitting diodes with NiO(x)/graphene current spreading electrode offered a forward voltage of 3.16 V comparable to that of its Ni/Au counterpart, but ended up with relatively low light output power. X-ray photoelectron spectroscopy provided evidence for the occurrence of phase transformation in the graphene-encased NiO(x) during the postmetallization annealing. The observed low light output is therefore correlated to the phase change induced transmittance loss in the NiO(x)/graphene electrode. These findings provide new insights into the behavior of different interlayers under processing conditions that will be useful for the future development of opto-electronic devices with graphene-based electrodes.
Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.
Chen, Gen; Yan, Litao; Luo, Hongmei; Guo, Shaojun
2016-09-01
Rechargeable lithium-ion batteries (LIBs), as one of the most important electrochemical energy-storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon-nanomaterials-supported heterostructured anode materials; ii) conducting-polymer-coated electrode materials; iii) inorganic transition-metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high-performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lane, John I; Witte, Robert J; Driscoll, Colin L W; Shallop, Jon K; Beatty, Charles W; Primak, Andrew N
2007-08-01
To use the improved resolution available with 64-slice multidetector computed tomography (MDCT) in vivo to localize the cochlear implant electrode array within the basal turn. Sixty-four-slice MDCT examinations of the temporal bones were retrospectively reviewed in 17 patients. Twenty-three implants were evaluated. Tertiary referral facility. All patients with previous cochlear implantation evaluated at our center between January 2004 and March 2006 were offered a computed tomographic examination as part of the study. In addition, preoperative computed tomographic examinations in patients being evaluated for a second bilateral device were included. Sixty-four-slice MDCT examination of the temporal bones. Localization of the electrode array within the basal turn from multiplanar reconstructions of the cochlea. Twenty-three implants were imaged in 17 patients. We were able to localize the electrode array within the scala tympani within the basal turn in 10 implants. In 3 implants, the electrode array was localized to the scala vestibuli. Migration of the electrode array from scala tympani to scala vestibuli was observed in three implants. Of the 7 implants in which localization of the electrode array was indeterminate, all had disease entities that obscured the definition of the normal cochlear anatomy. Sixty-four-slice MDCT with multiplanar reconstructions of the postoperative cochlea after cochlear implantation allows for accurate localization of the electrode array within the basal turn where normal cochlear anatomy is not obscured by the underlying disease process. Correlating the position of the electrode in the basal turn with surgical technique and implant design could be helpful in improving outcomes.
Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers
Thorbergsson, Palmi Thor; Ekstrand, Joakim; Friberg, Annika; Granmo, Marcus; Pettersson, Lina M. E.; Schouenborg, Jens
2016-01-01
Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved. PMID:27159159
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, Don H.; Thresh, Henry R.
1982-01-01
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.
Fuel cell and membrane therefore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aindow, Tai-Tsui
A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially alignedmore » with the high value direction of the flow field plate.« less
Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.
2002-01-01
An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.
NASA Astrophysics Data System (ADS)
Nikapitiya, N. Y. Jagath B.; Nahar, Mun Mun; Moon, Hyejin
2017-12-01
This letter reports two novel electrode design considerations to satisfy two very important aspects of EWOD operation—(1) Highly consistent volume of generated droplets and (2) Highly improved accuracy in the generated droplet volume. Considering the design principles investigated two novel designs were proposed; L-junction electrode design to offer high throughput droplet generation and Y-junction electrode design to split a droplet very fast while maintaining equal volume of each part. Devices of novel designs were fabricated and tested, and the results are compared with those of conventional approach. It is demonstrated that inaccuracy and inconsistency of droplet volume dispensed in the device with novel electrode designs are as low as 0.17 and 0.10%, respectively, while those of conventional approach are 25 and 0.76%, respectively. The dispensing frequency is enhanced from 4 to 9 Hz by using the novel design.
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.
Surface modification of active material structures in battery electrodes
Erickson, Michael; Tikhonov, Konstantin
2016-02-02
Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, H.S.; Zelter, G.R.; Allison, D.U.
1997-12-01
Multi-component AB{sub 5} hydrides are attractive replacements for the cadmium electrode in nickel-cadmium batteries. The archetype compound of the AB{sub 5} alloy class is LaNi{sub 5}, but in a typical battery electrode mischmetal is substituted for La and Ni is substituted in part by variety of metals. This paper deals with the effect on cycle life upon the partial substitution of various lanthanides for La and Sn, In, Al, Co, and Mn for Ni. The presence of Ce was shown to enhance cycle life as did Sn in some cases. An electrode of La{sub 0.67}Ce{sub 0.33}B{sub 5} alloy gave overmore » 3,500 cycles (to specific capacity of 200 mAh/g), indicating that it is a very attractive alloy for a practical Ni/MH{sub x} cell.« less
DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE
Luce, J.S.
1960-01-01
A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.
Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission
Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.
2013-01-01
We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840
NASA Astrophysics Data System (ADS)
Arndt, U. W.; Willis, B. T. M.
2009-06-01
Preface; Acknowledgements; Part I. Introduction; Part II. Diffraction Geometry; Part III. The Design of Diffractometers; Part IV. Detectors; Part V. Electronic Circuits; Part VI. The Production of the Primary Beam (X-rays); Part VII. The Production of the Primary Beam (Neutrons); Part VIII. The Background; Part IX. Systematic Errors in Measuring Relative Integrated Intensities; Part X. Procedure for Measuring Integrated Intensities; Part XI. Derivation and Accuracy of Structure Factors; Part XII. Computer Programs and On-line Control; Appendix; References; Index.
Stochastic information transfer from cochlear implant electrodes to auditory nerve fibers
NASA Astrophysics Data System (ADS)
Gao, Xiao; Grayden, David B.; McDonnell, Mark D.
2014-08-01
Cochlear implants, also called bionic ears, are implanted neural prostheses that can restore lost human hearing function by direct electrical stimulation of auditory nerve fibers. Previously, an information-theoretic framework for numerically estimating the optimal number of electrodes in cochlear implants has been devised. This approach relies on a model of stochastic action potential generation and a discrete memoryless channel model of the interface between the array of electrodes and the auditory nerve fibers. Using these models, the stochastic information transfer from cochlear implant electrodes to auditory nerve fibers is estimated from the mutual information between channel inputs (the locations of electrodes) and channel outputs (the set of electrode-activated nerve fibers). Here we describe a revised model of the channel output in the framework that avoids the side effects caused by an "ambiguity state" in the original model and also makes fewer assumptions about perceptual processing in the brain. A detailed comparison of how different assumptions on fibers and current spread modes impact on the information transfer in the original model and in the revised model is presented. We also mathematically derive an upper bound on the mutual information in the revised model, which becomes tighter as the number of electrodes increases. We found that the revised model leads to a significantly larger maximum mutual information and corresponding number of electrodes compared with the original model and conclude that the assumptions made in this part of the modeling framework are crucial to the model's overall utility.
Nondestructive In Situ Measurement Method for Kernel Moisture Content in Corn Ear.
Zhang, Han-Lin; Ma, Qin; Fan, Li-Feng; Zhao, Peng-Fei; Wang, Jian-Xu; Zhang, Xiao-Dong; Zhu, De-Hai; Huang, Lan; Zhao, Dong-Jie; Wang, Zhong-Yi
2016-12-20
Moisture content is an important factor in corn breeding and cultivation. A corn breed with low moisture at harvest is beneficial for mechanical operations, reduces drying and storage costs after harvesting and, thus, reduces energy consumption. Nondestructive measurement of kernel moisture in an intact corn ear allows us to select corn varieties with seeds that have high dehydration speeds in the mature period. We designed a sensor using a ring electrode pair for nondestructive measurement of the kernel moisture in a corn ear based on a high-frequency detection circuit. Through experiments using the effective scope of the electrodes' electric field, we confirmed that the moisture in the corn cob has little effect on corn kernel moisture measurement. Before the sensor was applied in practice, we investigated temperature and conductivity effects on the output impedance. Results showed that the temperature was linearly related to the output impedance (both real and imaginary parts) of the measurement electrodes and the detection circuit's output voltage. However, the conductivity has a non-monotonic dependence on the output impedance (both real and imaginary parts) of the measurement electrodes and the output voltage of the high-frequency detection circuit. Therefore, we reduced the effect of conductivity on the measurement results through measurement frequency selection. Corn moisture measurement results showed a quadric regression between corn ear moisture and the imaginary part of the output impedance, and there is also a quadric regression between corn kernel moisture and the high-frequency detection circuit output voltage at 100 MHz. In this study, two corn breeds were measured using our sensor and gave R ² values for the quadric regression equation of 0.7853 and 0.8496.
Cracking Problems and Mechanical Characteristics of PME and BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2018-01-01
Most failures in MLCCs are caused by cracking that create shorts between opposite electrodes of the parts. A use of manual soldering makes this problem especially serious for space industry. Experience shows that different lots of ceramic capacitors might have different susceptibility to cracking under manual soldering conditions. This simulates a search of techniques that would allow revealing capacitors that are most robust to soldering-induced stresses. Currently, base metal electrode (BME) capacitors are introduced to high-reliability applications as a replacement of precious metal electrode (PME) parts. Understanding the difference in the susceptibility to cracking between PME and BME capacitors would facilitate this process. This presentation gives a review of mechanical characteristics measured in-situ on MLCCs that includes flexural strength, Vickers hardness, indentation fracture toughness, and the board flex testing and compare characteristics of BME and PME capacitors. A history case related to cracking in PME capacitors that caused flight system malfunctions and mechanisms of failure are considered. Possible qualification tests that would allow evaluation of the resistance of MLCCs to manual soldering are suggested and perspectives related to introduction of BME capacitors discussed.
Biosensors for termite control
NASA Astrophysics Data System (ADS)
Farkhanda, M.
2013-12-01
Termites are major urban pests in Pakistan and cause damage to wooden structures and buildings. Termite management has two parts: prevention and control. The most difficult part of termite control is termite detection as most of them are subterranean in Pakistan and have tunneling habit.Throughout the world, chemical termiticides are going to be replaced by baits, microwave and sensor technology. Termite species are distinct biologically and have specific foraging behaviors. Termite Detection Radar, Moisture meter and Remote Thermal Sensor with Laser are available throughout the world. These can detect termites underground and use fewer chemicals than traditional methods. For wooden buildings, a termite sensor and an intrusion detection system for detecting termites are designed. A pair of electrodes is disposed inside the container. A pair of terminals is connected to these electrodes, these extend outside the container. Termites are detected by a change of conductivity between the electrodes, when termites are detected a warning device generates a warning signal. In Pakistan, there is dire need to develop such biosensoring devices locally, then apply control methods that would save money and protect the environment.
40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions
Code of Federal Regulations, 2011 CFR
2011-07-01
... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...
40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions
Code of Federal Regulations, 2014 CFR
2014-07-01
... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...
40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions
Code of Federal Regulations, 2013 CFR
2013-07-01
... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...
40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions
Code of Federal Regulations, 2010 CFR
2010-07-01
... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...
40 CFR Appendix C to Part 438 - Metal-Bearing Operations Definitions
Code of Federal Regulations, 2012 CFR
2012-07-01
... chromium. (1) In phosphate conversion, coatings are applied for one or more of the following reasons: to... electrolysis. The part is one of the electrodes and the electrolyte is usually alkaline. Electrolytic alkaline... during salt bath descaling includes spent process solutions, quenches, and rinses. Shot Tower—Lead Shot...
Mihajlović, Lj V; Mihajlović, R P; Antonijević, M M; Vukanović, B V
2004-11-15
The possibility of applying natural monocrystaline pyrite as a sensor for the potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine was investigated. The potential of this electrode in N,N-dimethylformamide, methylpyrrolidone and pyridine exhibits a sub-Nernst dependence. In N,N-dimethylformamide the slope (mV/pH) is 39.0 and in methylpyrrolidone it is 45.0. The potential jumps at the titration end-point obtained in the titration of weak acids are higher than those obtained by the application of a glass electrode as the indicator electrode The potential in the course of the titration and at the titration end-point (TEP) are rapidly established. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agents for these titrations. The results obtained in the determination of the investigated weak acids deviate by 0.1-0.35% with respect to those obtained by using a glass electrode as the indicator electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepomnyashchii, Alexander B.; Kolesov, Grigory; Parkinson, Bruce A.
Interdigitated array electrodes (IDAs) were used to produce steady-state electrogenerated chemiluminescence (ECL) by annihilation of oxidized and reduced forms of a substituted boron dipyrromethene (BODIPY) dye, 9,10-diphenylanthracene (DPA), and ruthenium(II) tris(bypiridine) (Ru-(bpy)32+). Digital simulations were in good agreement with the experimentally obtained currents and light outputs. Coreactant experiments, using tri-n-propylamine and benzoyl peroxide as a sacrificial homogeneous reductant or oxidant, show currents corresponding to electrode reactions of the dyes and not the oxidation or reduction of the coreactants. The results show that interdigitated arrays can produce stable ECL where the light intensity is magnified due to the larger currents asmore » a consequence of feedback between generator and collector electrodes in the IDA. The light output for ECL is around 100 times higher than that obtained with regular planar electrodes with similar area. This material is based upon work supported as part of the Center of Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.
1997-11-11
A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.
Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.
1997-01-01
A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.
Use of a Soluble Anode in Electrodeposition of Thick Bismuth Telluride Layers
NASA Astrophysics Data System (ADS)
Maas, M.; Diliberto, S.; de Vaulx, C.; Azzouz, K.; Boulanger, C.
2014-10-01
Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (˜400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.
Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics
NASA Astrophysics Data System (ADS)
Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet
2015-03-01
Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.
Effect of sintering temperatures and screen printing types on TiO2 layers in DSSC applications
NASA Astrophysics Data System (ADS)
Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Hidayat, Jojo; Suryana, Risa
2016-03-01
Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO2 layer as a working electrode in DSSC. TiO2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.
Electrohydrodynamic Flows in Electrochemical Systems
NASA Technical Reports Server (NTRS)
Saville, D. A.
2005-01-01
Recent studies have established a new class of assembly processes with colloidal suspensions. Particles are driven together to form large crystalline structures in both dc and ac fields. The current work centers on this new class of flows in ac fields. In the research carried out under the current award, it was established that: (i) Small colloidal particles crystallize near an electrode due to electrohydrodynamic flows induced by an sinusoidally varying applied potential. (ii) These flows originate due to disturbances in the electrode polarization layer arising from the presence of the particles. Inasmuch as the charge and the field strength both scale on the applied field, the flows are proportional to the square of the applied voltage. (iii) Suspensions of two different sorts of particles can be crystallized and will form well-ordered binary crystals. (iv) At high frequencies the EHD flows die out. Thus, with a homogeneous system the particles become widely spaced due to dipolar repulsion. With a binary suspension, however, the particles may become attractive due to dipolar attraction arising from differences in electrokinetic dipoles. Consequently binary crystals form at both high and low frequencies.
NASA Astrophysics Data System (ADS)
Merzougui, Moufida; Ouari, Kamel; Weiss, Jean
2016-09-01
The oxovanadium (IV) complex ;VOL; of a tetradentate Schiff base ligand derived from the condensation of diaminoethane and 2-hydroxy-1-naphthaldehyde was efficiently prepared via ultrasound irradiation and the template effect of VO(acac)2. The resulting product was characterized by elemental analysis, infrared, electronic absorption and molar conductance measurement. Single X-ray structure analysis showed that the complex is a monomeric five-coordinate with a distorted square pyramidal geometry. It crystallizes in monoclinic system having unit cell parameters a = 8.3960 (5) Å; b = 12.5533 (8) Å and c = 18.7804 (11) Å; α = γ = 90°; β = 104.843°(2), with P 21/c space group. Cyclic voltammetry of the complex, carried out on a glassy carbon (GC) electrode in DMF, showed reversible cyclic voltammograms response in the potential range 0.15-0.60 V involving a single electron redox wave VV/VIV, the diffusion coefficient is determinedusing GC rotating disk electrode. The Levich plot Ilim = f(ω1/2), was used to calculate the diffusion-convection controlled currents.
Portable Apparatus for Electrochemical Sensing of Ethylene
NASA Technical Reports Server (NTRS)
Manoukian, Mourad; Tempelman, Linda A.; Forchione, John; Krebs, W. Michael; Schmitt, Edwin W.
2007-01-01
A small, lightweight, portable apparatus based on an electrochemical sensing principle has been developed for monitoring low concentrations of ethylene in air. Ethylene has long been known to be produced by plants and to stimulate the growth and other aspects of the development of plants (including, notably, ripening of fruits and vegetables), even at concentrations as low as tens of parts per billion (ppb). The effects are magnified in plant-growth and -storage chambers wherein ethylene can accumulate. There is increasing recognition in agriculture and related industries that it is desirable to monitor and control ethylene concentrations in order to optimize the growth, storage, and ripening of plant products. Hence, there are numerous potential uses for the present apparatus in conjunction with equipment for controlling ethylene concentrations. The ethylene sensor is of a thick-film type with a design optimized for a low detection limit. The sensor includes a noble metal sensing electrode on a chip and a hydrated solid-electrolyte membrane that is held in contact with the chip. Also located on the sensor chip are a counter electrode and a reference electrode. The sensing electrode is held at a fixed potential versus the reference electrode. Detection takes place at active-triple-point areas where the sensing electrode, electrolyte, and sample gas meet. These areas are formed by cutting openings in the electrolyte membrane. The electrode current generated from electrochemical oxidation of ethylene at the active triple points is proportional to the concentration of ethylene. An additional film of the solid-electrolyte membrane material is deposited on the sensing electrode to increase the effective triple-point areas and thereby enhance the detection signal. The sensor chip is placed in a holder that is part of a polycarbonate housing. When fully assembled, the housing holds the solid-electrolyte membrane in contact with the chip (see figure). The housing includes a water reservoir for keeping the solid-electrolyte membrane hydrated. The housing also includes flow channels for circulating a sample stream of air over the chip: ethylene is brought to the sensing surface predominately by convection in this sample stream. The sample stream is generated by a built-in sampling pump. The forced circulation of sample air contributes to the attainment of a low detection limit.
Grgić, Helena; Gallant, Jackie; Poljak, Zvonimir
2017-01-01
Influenza A viruses (IAVs) are respiratory pathogens associated with an acute respiratory disease that occurs year-round in swine production. It is currently one of the most important pathogens in swine populations, with the potential to infect other host species including humans. Ongoing research indicates that the three major subtypes of IAV—H1N1, H1N2, and H3N2—continue to expand in their genetic and antigenic diversity. In this study, we conducted a comprehensive genomic analysis of 16 IAVs isolated from different clinical outbreaks in Alberta, Manitoba, Ontario, and Saskatchewan in 2014. We also examined the genetic basis for probable antigenic differences among sequenced viruses. On the basis of phylogenetic analysis, all 13 Canadian H3N2 viruses belonged to cluster IV, eight H3N2 viruses were part of the IV-C cluster, and one virus belonged to the IV-B and one to the IV-D cluster. Based on standards used in this study, three H3N2 viruses could not be clearly classified into any currently established group within cluster IV (A to F). Three H1N2 viruses were part of the H1α cluster. PMID:28335552
Preparation, Applications, and Digital Simulation of Carbon Interdigitated Array Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.
2014-12-16
Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltam-metry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10–5 molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts formore » both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science Office of Basic Energy Sciences.« less
Grid-Sphere Electrodes for Contact with Ionospheric Plasma
NASA Technical Reports Server (NTRS)
Stone, Nobie H.; Poe, Garrett D.
2010-01-01
Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.
Bitziou, Eleni; Joseph, Maxim B; Read, Tania L; Palmer, Nicola; Mollart, Tim; Newton, Mark E; Macpherson, Julie V
2014-11-04
A novel electrochemical approach to the direct detection of hydrogen sulfide (H2S), in aqueous solutions, covering a wide pH range (acid to alkali), is described. In brief, a dual band electrode device is employed, in a hydrodynamic flow cell, where the upstream electrode is used to controllably generate hydroxide ions (OH(-)), which flood the downstream detector electrode and provide the correct pH environment for complete conversion of H2S to the electrochemically detectable, sulfide (HS(-)) ion. All-diamond, coplanar conducting diamond band electrodes, insulated in diamond, were used due to their exceptional stability and robustness when applying extreme potentials, essential attributes for both local OH(-) generation via the reduction of water, and for in situ cleaning of the electrode, post oxidation of sulfide. Using a galvanostatic approach, it was demonstrated the pH locally could be modified by over five pH units, depending on the initial pH of the mobile phase and the applied current. Electrochemical detection limits of 13.6 ppb sulfide were achieved using flow injection amperometry. This approach which offers local control of the pH of the detector electrode in a solution, which is far from ideal for optimized detection of the analyte of interest, enhances the capabilities of online electrochemical detection systems.
45 CFR 305.61 - Penalty for failure to meet IV-D requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HEALTH AND HUMAN SERVICES PROGRAM PERFORMANCE MEASURES, STANDARDS, FINANCIAL INCENTIVES, AND PENALTIES § 305.61 Penalty for failure to meet IV-D requirements. (a) A State will be subject to a financial... order establishment and current collections performance measures as set forth in § 305.40 of this part...
20 CFR 410.702 - Definitions and terms.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., TITLE IV-BLACK LUNG BENEFITS (1969- ) Rules for the Review of Denied and Pending Claims Under the Black... shall apply with regard to review under this subpart G. (a) Denied claim defined. Denied claim means: (1) Any claim that was filed with the Social Security Administration under part B of title IV of the Act...
20 CFR 410.702 - Definitions and terms.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., TITLE IV-BLACK LUNG BENEFITS (1969- ) Rules for the Review of Denied and Pending Claims Under the Black... shall apply with regard to review under this subpart G. (a) Denied claim defined. Denied claim means: (1) Any claim that was filed with the Social Security Administration under part B of title IV of the Act...
The Planning of Change. Third Edition.
ERIC Educational Resources Information Center
Bennis, Warren G., Ed.; And Others
This collection of essays discusses some of the models employed in the analysis of change processes. Part I provides a history of strategies for social change. Part II explores the meaning and use of systems models used to diagnose change situations. Part III deals with the intervention modes, and Part IV explores the dilemmas confronted by agents…
Neurons of human nucleus accumbens.
Sazdanović, Maja; Sazdanović, Predrag; Zivanović-Macuzić, Ivana; Jakovljević, Vladimir; Jeremić, Dejan; Peljto, Amir; Tosevski, Jovo
2011-08-01
Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I--fusiform neurons; type II--fusiform neurons with lateral dendrite, arising from a part of the cell body; type III--pyramidal-like neuron; type IV--multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV--multipolar neurons. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV--multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.
Assessing the Impact of Drug Use on Hospital Costs
Stuart, Bruce C; Doshi, Jalpa A; Terza, Joseph V
2009-01-01
Objective To assess whether outpatient prescription drug utilization produces offsets in the cost of hospitalization for Medicare beneficiaries. Data Sources/Study Setting The study analyzed a sample (N=3,101) of community-dwelling fee-for-service U.S. Medicare beneficiaries drawn from the 1999 and 2000 Medicare Current Beneficiary Surveys. Study Design Using a two-part model specification, we regressed any hospital admission (part 1: probit) and hospital spending by those with one or more admissions (part 2: nonlinear least squares regression) on drug use in a standard model with strong covariate controls and a residual inclusion instrumental variable (IV) model using an exogenous measure of drug coverage as the instrument. Principal Findings The covariate control model predicted that each additional prescription drug used (mean=30) raised hospital spending by $16 (p<.001). The residual inclusion IV model prediction was that each additional prescription fill reduced hospital spending by $104 (p<.001). Conclusions The findings indicate that drug use is associated with cost offsets in hospitalization among Medicare beneficiaries, once omitted variable bias is corrected using an IV technique appropriate for nonlinear applications. PMID:18783453
Novel hydrogel-based preparation-free EEG electrode.
Alba, Nicolas Alexander; Sclabassi, Robert J; Sun, Mingui; Cui, Xinyan Tracy
2010-08-01
The largest obstacles to signal transduction for electroencephalography (EEG) recording are the hair and the epidermal stratum corneum of the skin. In typical clinical situations, hair is parted or removed, and the stratum corneum is either abraded or punctured using invasive penetration devices. These steps increase preparation time, discomfort, and the risk of infection. Cross-linked sodium polyacrylate gel swelled with electrolyte was explored as a possible skin contact element for a prototype preparation-free EEG electrode. As a superabsorbent hydrogel, polyacrylate can swell with electrolyte solution to a degree far beyond typical contemporary electrode materials, delivering a strong hydrating effect to the skin surface. This hydrating power allows the material to increase the effective skin contact surface area through wetting, and noninvasively decrease or bypass the highly resistive barrier of the stratum corneum, allowing for reduced impedance and improved electrode performance. For the purposes of the tests performed in this study, the polyacrylate was prepared both as a solid elastic gel and as a flowable paste designed to penetrate dense scalp hair. The gel can hold 99.2% DI water or 91% electrolyte solution, and the water content remains high after 29 h of air exposure. The electrical impedance of the gel electrode on unprepared human forearm is significantly lower than a number of commercial ECG and EEG electrodes. This low impedance was maintained for at least 8 h (the longest time period measured). When a paste form of the electrode was applied directly onto scalp hair, the impedance was found to be lower than that measured with commercially available EEG paste applied in the same manner. Time-frequency transformation analysis of frontal lobe EEG recordings indicated comparable frequency response between the polyacrylate-based electrode on unprepared skin and the commercial EEG electrode on abraded skin. Evoked potential recordings demonstrated signal-to-noise ratios of the experimental and commercial electrodes to be effectively equivalent. These results suggest that the polyacrylate-based electrode offers a powerful option for EEG recording without scalp preparation.
NASA Astrophysics Data System (ADS)
Faulkner, Ankita Shah
As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial electrodes. These parameters include surface morphology, electrode composition, electrode density, and operating temperature. Finally, the third aim is to investigate commercial viability of the electrode architecture. This will be accomplished by developing pouch cell prototypes using a high-rate and low cost scale-up process. Through this work, we aim to realize a commercially viable high-power electrode technology.
Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement
2011-01-19
or lithium iron phosphate ( LiFePO4 ), on a current collector of aluminum foil, (iii) a microporous separator between the electrodes, and (iv) a liquid...with four LiFePO4 lithium ion cells will likely result in a closely matched voltage. However, other types of lithium ion cells also consisting of...20.5 15- 24.6 17.5- 28.7 20- 32.8 22.5- 36.9 Voltage(V) ( LiFePO4 ) 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 n x 3.3 Voltage range (V
Voltage stress induced reversible diode behavior in pentacene thin films
NASA Astrophysics Data System (ADS)
Murdey, Richard; Sato, Naoki
2012-12-01
The current-voltage characteristics of a vacuum-deposited 100 nm pentacene thin film have been measured in situ under ultrahigh vacuum. Despite using bottom contact geometry with titanium for both electrodes, the I-V curves are asymmetric and the direction and degree of the diode-like behavior vary with sample and measurement history. After careful examination we have found that applying a high positive or negative bias voltage for about 24 h at elevated temperatures was sufficient to completely switch the diode forward direction. The switching action is fully reversible and the diode behavior, once switched, remains stable to repeated measurements at least over a period of several weeks.
Highly efficient spin polarizer based on individual heterometallic cubane single-molecule magnets
NASA Astrophysics Data System (ADS)
Dong, Damin
2015-09-01
The spin-polarized transport across a single-molecule magnet [Mn3Zn(hmp)3O(N3)3(C3H5O2)3].2CHCl3 has been investigated using a density functional theory combined with Keldysh non-equilibrium Green's function formalism. It is shown that this single-molecule magnet has perfect spin filter behaviour. By adsorbing Ni3 cluster onto non-magnetic Au electrode, a large magnetoresistance exceeding 172% is found displaying molecular spin valve feature. Due to the tunneling via discrete quantum-mechanical states, the I-V curve has a stepwise character and negative differential resistance behaviour.
Shepherd, R K; Clark, G M; Xu, S A; Pyman, B C
1995-03-01
The histopathologic consequence of removing and reimplanting intracochlear electrode arrays on residual auditory nerve fibers is an important issue when evaluating the safety of cochlear prostheses. The authors have examined this issue by implanting multichannel intracochlear electrodes in macaque monkeys. Macaques were selected because of the similarity of the surgical technique used to insert electrodes into the cochlea compared to that in humans, in particular the ability to insert the arrays into the upper basal turn. Five macaques were bilaterally implanted with the Melbourne/Cochlear banded electrode array. Following a minimum implant period of 5 months, the electrode array on one side of each animal was removed and another immediately implanted. The animals were sacrificed a minimum of 5 months following the reinsertion procedure, and the cochleas prepared for histopathologic analysis. Long-term implantation of the electrode resulted in a relatively mild tissue response within the cochlea. Results also showed that inner and outer hair cell survival, although significantly reduced adjacent to the array, was normal in 8 of the 10 cochleas apicalward. Moreover, the electrode reinsertion procedure did not appear to adversely affect this apical hair cell population. Significant new bone formation was frequently observed in both control and reimplanted cochleas close to the electrode fenestration site and was associated with trauma to the endosteum and/or the introduction of bone chips into the cochlea at the time of surgery. Electrode insertion trauma, involving the osseous spiral lamina or basilar membrane, was more commonly observed in reimplanted cochleas. This damage was usually restricted to the lower basal turn and resulted in a more extensive ganglion cell loss. Finally, in a number of cochleas part of the electrode array was located within the scala media or scala vestibuli. These electrodes did not appear to evoke a more extensive tissue response or result in more extensive neural degeneration compared with electrodes located within the scala tympani. In conclusion, the present study has shown that the reimplantation of a multichannel scala, tympani electrode array can be achieved with minimal damage to the majority of cochlear structures. Increased insertion trauma, resulting in new bone formation and spiral ganglion cell loss, can occur in the lower basal turn in cases where the electrode entry point is difficult to identify due to proliferation of granulation and fibrous tissue.
Efficiency of Nb-Doped ZnO Nanoparticles Electrode for Dye-Sensitized Solar Cells Application
NASA Astrophysics Data System (ADS)
Anuntahirunrat, Jirapat; Sung, Youl-Moon; Pooyodying, Pattarapon
2017-09-01
The technological of Dye-sensitized solar cells (DSSCs) had been improved for several years. Due to its simplicity and low cost materials with belonging to the part of thin films solar cells. DSSCs have numerous advantages and benefits among the other types of solar cells. Many of the DSSC devices had use organic chemical that produce by specific method to use as thin film electrodes. The organic chemical that widely use to establish thin film electrodes are Zinc Oxide (ZnO), Titanium Dioxide (TiO2) and many other chemical substances. Zinc oxide (ZnO) nanoparticles had been used in DSSCs applications as thin film electrodes. Nanoparticles are a part of nanomaterials that are defined as a single particles 1-100 nm in diameter. From a few year ZnO widely used in DSSC applications because of its optical, electrical and many others properties. In particular, the unique properties and utility of ZnO structure. However the efficiency of ZnO nanoparticles based solar cells can be improved by doped various foreign impurity to change the structures and properties. Niobium (Nb) had been use as a dopant of metal oxide thin films. Using specification method to doped the ZnO nanoparticles thin film can improved the efficiencies of DSSCs. The efficiencies of Nb-doped ZnO can be compared by doping 0 at wt% to 5 at wt% in ZnO nanoparticles thin films that prepared by the spin coating method. The thin film electrodes doped with 3 at wt% represent a maximum efficiencies with the lowest resistivity of 8.95×10-4 Ω·cm.
Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion.
Greene, Nathaniel T; Mattingly, Jameson K; Banakis Hartl, Renee M; Tollin, Daniel J; Cass, Stephen P
2016-12-01
Cochlear implant (CI) electrode insertion into the round window induces pressure transients in the cochlear fluid comparable to high-intensity sound transients. Many patients receiving a CI have some remaining functional hearing at low frequencies; thus, devices and surgical techniques have been developed to use this residual hearing. To maintain functional acoustic hearing, it is important to retain function of any hair cells and auditory nerve fibers innervating the basilar membrane; however, in a subset of patients, residual low-frequency hearing is lost after CI insertion. Here, we test the hypothesis that transient intracochlear pressure spikes are generated during CI electrode insertion, which could cause damage and compromise residual hearing. Human cadaveric temporal bones were prepared with an extended facial recess. Pressures in the scala vestibuli and tympani were measured with fiber-optic pressure sensors inserted into the cochlea near the oval and round windows, whereas CI electrodes (five styles from two manufacturers) were inserted into the cochlea via a round window approach. Pressures in the scala tympani tended to be larger in magnitude than pressures in the scala vestibuli, consistent with electrode insertion into the scala tympani. CI electrode insertion produced a range of pressure transients in the cochlea that could occur alone or as part of a train of spikes with equivalent peak sound pressure levels in excess of 170 dB sound pressure level. Instances of pressure transients varied with electrode styles. Results suggest electrode design, insertion mechanism, and surgical technique affect the magnitude and rate of intracochlear pressure transients during CI electrode insertion. Pressure transients showed intensities similar to those elicited by high-level sounds and thus could cause damage to the basilar membrane and/or hair cells.
Intracochlear pressure transients during cochlear implant electrode insertion
Greene, Nathaniel T.; Mattingly, Jameson K.; Banakis Hartl, Renee M.; Tollin, Daniel J.; Cass, Stephen P.
2016-01-01
Hypothesis Cochlear implant (CI) electrode insertion into the round window induces pressure transients in the cochlear fluid comparable to high intensity sound transients. Background Many patients receiving a CI have some remaining functional hearing at low frequencies, thus devices and surgical techniques have been developed to utilize this residual hearing. To maintain functional acoustic hearing, it is important to retain function of any hair cells and auditory nerve fibers innervating the basilar membrane; however, in a subset of patients, residual low frequency hearing is lost following CI insertion. Here, we test the hypothesis that transient intracochlear pressure spikes are generated during CI electrode insertion, which could cause damage and compromise residual hearing. Methods Human cadaveric temporal bones were prepared with an extended facial recess. Pressures in the scala vestibuli (PSV) and tympani (PST) were measured with fiber-optic pressure sensors inserted into the cochlea near the oval and round windows while CI electrodes (five styles from two manufacturers) were inserted into the cochlea via a round window approach. Results PST tended to be larger in magnitude than PSV, consistent with electrode insertion into the scala tympani. CI electrode insertion produced a range of pressure transients in the cochlea that could occur alone or as part of a train of spikes with equivalent peak sound pressure levels in excess of 170dB SPL. Instances of pressure transients varied with electrode styles. Conclusions Results suggest electrode design, insertion mechanism, and surgical technique affect the magnitude and rate of intracochlear pressure transients during CI electrode insertion. Pressure transients showed intensities similar to those elicited by high level sounds and thus could cause damage to the basilar membrane and/or hair cells. PMID:27753703
NASA Astrophysics Data System (ADS)
Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom
2016-06-01
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4 × 1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\
NASA Astrophysics Data System (ADS)
Doppler, M. C.; Fleig, J.; Bram, M.; Opitz, A. K.
2018-03-01
Nickel/yttria stabilized zirconia (YSZ) electrodes are affecting the overall performance of solid oxide fuel cells (SOFCs) in general and strongly contribute to the cell resistance in case of novel metal supported SOFCs in particular. The electrochemical fuel conversion mechanisms in these electrodes are, however, still only partly understood. In this study, micro-structured Ni thin film electrodes on YSZ with 15 different geometries are utilized to investigate reaction pathways for the hydrogen electro-oxidation at Ni/YSZ anodes. From electrodes with constant area but varying triple phase boundary (TPB) length a contribution to the electro-catalytic activity is found that does not depend on the TPB length. This additional activity could clearly be attributed to a yet unknown reaction pathway scaling with the electrode area. It is shown that this area related pathway has significantly different electrochemical behavior compared to the TPB pathway regarding its thermal activation, sulfur poisoning behavior, and H2/H2O partial pressure dependence. Moreover, possible reaction mechanisms of this reaction pathway are discussed, identifying either a pathway based on hydrogen diffusion through Ni with water release at the TPB or a path with oxygen diffusion through Ni to be a very likely explanation for the experimental results.
A Study of Mandarin Loanwords: Lexical Stratification, Adaptation and Factors
ERIC Educational Resources Information Center
Kim, Tae Eun
2012-01-01
This dissertation is about Chinese loanwords. It is mainly divided into two parts. Part I is a general discussion about loanwords in Chinese; Chapter I and II belong to the first part. Part II is a discussion about the analyses of Mandarin loanwords originating from English. Chapter III, IV, and V are all related to the second part. Chapter VI is…
Operating a redox flow battery with a negative electrolyte imbalance
Pham, Quoc; Chang, On; Durairaj, Sumitha
2015-03-31
Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.
Frost, William N; Wang, Jean; Brandon, Christopher J
2007-05-15
Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations.
NASA Technical Reports Server (NTRS)
1992-01-01
The Floatron water purifier combines two space technologies - ionization for water purification and solar electric power generation. The water purification process involves introducing ionized minerals that kill microorganisms like algae and bacteria. The 12 inch unit floats in a pool while its solar panel collects sunlight that is converted to electricity. The resulting current energizes a specially alloyed mineral electrode below the waterline, causing release of metallic ions into the water. The electrode is the only part that needs replacing, and water purified by the system falls within EPA drinking water standards.
Nano-interconnection for microelectronics and polymers with benzo-triazole
NASA Technical Reports Server (NTRS)
Park, Yeonjoon; Choi, Sang H.; Noh, Hyunpil; Kuk, Young
2006-01-01
Benzo-Triazole (BTA) is considered as an important bridging material that can connect an organic polymer to the metal electrode on silicon wafers as a part of the microelectronics fabrication technology. We report a detailed process of surface induced 3-D polymerization of BTA on the Cu electrode material which was measured with the Ultraviolet Photoemission Spectroscopy (UPS), X-ray Photoemission Spectroscopy (XPS), and Scanning Tunneling Microscope (STM). The electric utilization of shield and chain polymerization of BTA on Cu surface is contemplated in this study.
Self aligned hysteresis free carbon nanotube field-effect transistors
NASA Astrophysics Data System (ADS)
Shlafman, M.; Tabachnik, T.; Shtempluk, O.; Razin, A.; Kochetkov, V.; Yaish, Y. E.
2016-04-01
Hysteresis phenomenon in the transfer characteristics of carbon nanotube field effect transistor (CNT FET) is being considered as the main obstacle for successful realization of electronic devices based on CNTs. In this study, we prepare four kinds of CNTFETs and explore their hysteretic behavior. Two kinds of devices comprise on-surface CNTs (type I) and suspended CNTs (type II) with thin insulating layer underneath and a single global gate which modulates the CNT conductance. The third and fourth types (types III and IV) consist of suspended CNT over a metallic local gate underneath, where for type IV the local gate was patterned self aligned with the source and drain electrodes. The first two types of devices, i.e., type I and II, exhibit substantial hysteresis which increases with scanning range and sweeping time. Under high vacuum conditions and moderate electric fields ( |E |>4 ×106 V /cm ), the hysteresis for on-surface devices cannot be eliminated, as opposed to suspended devices. Interestingly, type IV devices exhibit no hysteresis at all at ambient conditions, and from the different roles which the global and local gates play for the four types of devices, we could learn about the hysteresis mechanism of this system. We believe that these self aligned hysteresis free FETs will enable the realization of different electronic devices and sensors based on CNTs.
45 CFR 301.0 - Scope and applicability of this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... This part deals with the administration of title IV-D of the Social Security Act by the Federal... under the approved plan; review and audit of State and local expenditures; and reconsideration of...
Chen, Yili; Fu, Jixiang; Chu, Dawei; Li, Rongmao; Xie, Yaoqin
2017-11-27
A retinal prosthesis is designed to help the blind to obtain some sight. It consists of an external part and an internal part. The external part is made up of a camera, an image processor and an RF transmitter. The internal part is made up of an RF receiver, implant chip and microelectrode. Currently, the number of microelectrodes is in the hundreds, and we do not know the mechanism for using an electrode to stimulate the optic nerve. A simple hypothesis is that the pixels in an image correspond to the electrode. The images captured by the camera should be processed by suitable strategies to correspond to stimulation from the electrode. Thus, it is a question of how to obtain the important information from the image captured in the picture. Here, we use the region of interest (ROI), a useful algorithm for extracting the ROI, to retain the important information, and to remove the redundant information. This paper explains the details of the principles and functions of the ROI. Because we are investigating a real-time system, we need a fast processing ROI as a useful algorithm to extract the ROI. Thus, we simplified the ROI algorithm and used it in an outside image-processing digital signal processing (DSP) system of the retinal prosthesis. The results show that our image-processing strategies are suitable for a real-time retinal prosthesis and can eliminate redundant information and provide useful information for expression in a low-size image.
ERIC Educational Resources Information Center
Elliott, William, III
2012-01-01
"Creating a Financial Stake in College" is a four-part series of reports that focuses on the relationship between children's savings and improving college success. This series examines: (1) why policymakers should care about savings, (2) the relationship between inequality and bank account ownership, (3) the connections between savings…
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...
14 CFR Appendix A to Part 43 - Major Alterations, Major Repairs, and Preventive Maintenance
Code of Federal Regulations, 2013 CFR
2013-01-01
... hub design. (iii) Changes in the governor or control design. (iv) Installation of a propeller governor.... (iv) Engine mounts. (v) Control system. (vi) Landing gear. (vii) Hull or floats. (viii) Elements of an... of gravity limits of the aircraft. (xii) Changes to the basic design of the fuel, oil, cooling...