Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel
NASA Astrophysics Data System (ADS)
Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian
Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.
Change in the coil distribution of electrodynamic suspension system
NASA Technical Reports Server (NTRS)
Tanaka, Hisashi
1992-01-01
At the Miyazaki Maglev Test Center, the initial test runs were completed using a system design that required the superconducting coils to be parallel with the ground levitation coils. Recently, the coil distribution was changed to a system such that the two types of coils were perpendicular to each other. Further system changes will lead to the construction of a side wall levitation system. It is hoped that the development will culminate in a system whereby a superconducting coil will maintain all the functions: levitation, propulsion, and guidance.
ERIC Educational Resources Information Center
Iniguez, J.; Raposo, V.
2009-01-01
In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribani, P.L.; Urbano, N.
2000-01-01
Two figure-eight-shaped coils for electrodynamic suspension (EDS) magnetic levitation (MAGLEV) systems without cross-connection are proposed and analyzed. The guideway coils are positioned under the MAGLEV vehicle; they are parallel to the horizontal plane. The interaction of a magnetic module on the vehicle, composed of three or four superconducting (SC) coils, with a guideway module, comprised of two figure-eight coils, is studied by means of the dynamic circuit theory. The currents in the SC coils are supposed to be constant in time while they move as a rigid body, with a constant velocity. Some results are presented and compared with thosemore » for a standard side-wall cross-connected system.« less
Characteristics on electodynamic suspension simulator with HTS levitation magnet
NASA Astrophysics Data System (ADS)
Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.
2009-10-01
High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.
Towards measuring quantum electrodynamic torque with a levitated nanorod
NASA Astrophysics Data System (ADS)
Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang
2017-04-01
According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.
Flux-canceling electrodynamic maglev suspension. Part 1: Test fixture design and modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M.T.; Thornton, R.D.; Kondoleon, A.
1999-05-01
The design and analysis of a scale-model suspension test facility for magnetic levitation (maglev) is discussed. The authors describe techniques for the design, construction, and testing of a prototype electrodynamic suspension (EDS) levitation system. The viability of future high-temperature superconducting magnet designs for maglev has been investigated with regard to their application to active secondary suspensions. In order to test the viability of a new flux-canceling EDS suspension, a 1/5-scale suspension magnet and guideway was constructed. The suspension was tested by using a high-speed rotating test wheel facility with linear peripheral speed of up to 84 m/s (300 km/h). Amore » set of approximate design tools and scaling laws has been developed in order to evaluate forces and critical velocities in the suspension.« less
NASA Astrophysics Data System (ADS)
Birdsall, A.; Krieger, U. K.; Keutsch, F. N.
2017-12-01
Dynamic changes to atmospheric aerosol particle composition (e.g., originating from evaporation/condensation, oxidative aging, or aqueous-phase chemical reactions) impact particle properties with importance for understanding particle effects on climate and human health. These changes can take place over the entire lifetime of an atmospheric particle, which can extend over multiple days. Previous laboratory studies of such processes have included analyzing single particles suspended in a levitation device, such as an electrodynamic balance (EDB), an optical levitator, or an acoustic trap, using optical detection techniques. However, studying chemically complex systems can require an analytical method, such as mass spectrometry, that provides more molecular specificity. Existing work coupling particle levitation with mass spectrometry is more limited and largely has consisted of acoustic levitation of millimeter-sized droplets.In this work an EDB has been coupled with a custom-built ionization source and commercial time-of-flight mass spectrometer (MS) as a platform for laboratory atmospheric chemistry research. Single charged particles (radius 10 μm) have been injected into an EDB, levitated for an arbitrarily long period of time, and then transferred to a vaporization-corona discharge ionization region for MS analysis. By analyzing a series of particles of identical composition, residing in the controlled environment of the EDB for varying times, we can trace the chemical evolution of a particle over hours or days, appropriate timescales for understanding transformations of atmospheric particles.To prove the concept of our EDB-MS system, we have studied the evaporation of particles consisting of polyethylene glycol (PEG) molecules of mixed chain lengths, used as a benchmark system. Our system can quantify the composition of single particles (see Figure for sample spectrum of a single PEG-200 particle: PEG parent ions labeled with m/z, known PEG fragment ions labeled with *). Furthermore, our measured evaporation rates are consistent with a kinetic model. We will discuss future types of experiments enabled by EDB-MS, by allowing detailed chemical changes of a particle in a controlled laboratory environment to be monitored on timescales mimicking those of particles in the atmosphere.
Lee, Alex K Y; Ling, T Y; Chan, Chak K
2008-01-01
Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.
Propulsion and Levitation with a Large Electrodynamic Wheel
NASA Astrophysics Data System (ADS)
Gaul, Nathan; Lane, Hannah
We constructed an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube magnets attached to the rim of the wheel. The radial magnetic field on the outside of the wheel was maximized by arranging the magnets into a series of Halbach arrays which amplify the field on one side of the array and reduce it on the other side. Rotating the wheel produces a rapidly oscillating magnetic field. When a conductive metal ``track'' is placed in this area of strong magnetic flux, eddy currents are produced in the track. These eddy currents create magnetic fields that interact with the magnetic fields from the electrodynamic wheel. The interaction of the magnetic fields produces lift and drag forces on the track which were measured with force gauges. Measurements were taken at a variety of wheel speeds, and the results were compared to the theoretical prediction that there should be a linear relationship between the lift and drag forces with increasing wheel speed. Partial levitation was achieved with the current electrodynamic wheel. In the future, the wheel will be upgraded to include 72 magnets rather than 36 magnets. This will double the frequency at which the magnetic field oscillates, increasing the magnetic flux. Electrodynamic wheels have applications to the transportation industry, since multiple electrodynamic wheels could be used on a vehicle to produce a lift and propulsion force over a conductive track.
Kohno, Jun-Ya; Higashiura, Tetsu; Eguchi, Takaaki; Miura, Shumpei; Ogawa, Masato
2016-08-11
Materials work in multicomponent forms. A wide range of compositions must be tested to obtain the optimum composition for a specific application. We propose optimization using a series of small levitated single particles. We describe a tandem-trap apparatus for merging liquid droplets and analyzing the merged droplets and/or dried particles that are produced from the merged droplets under levitation conditions. Droplet merging was confirmed by Raman spectroscopic studies of the levitated particles. The tandem-trap apparatus enables the synthesis of a particle and spectroscopic investigation of its properties. This provides a basis for future investigation of the properties of levitated single particles.
He, Jianliang; Rote, Donald M.
1996-01-01
A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the super conducting magnets on the vehicle.
He, J.; Rote, D.M.
1996-05-21
A stabilization and propulsion system are disclosed comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the superconducting magnets on the vehicle. 12 figs.
A new electrodynamic balance design for low temperature studies
NASA Astrophysics Data System (ADS)
Tong, H.-J.; Ouyang, B.; Pope, F. D.; Kalberer, M.
2014-07-01
In this paper we describe a newly designed cold electrodynamic balance (CEDB) system, which was built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range: -40 to +40 °C, which is achieved using a combination of liquid nitrogen cooling and heating by positive temperature coefficient heaters. The measurement of liquid droplet radius is obtained by analyzing the Mie elastic light scattering from a 532 nm laser. The Mie scattering signal was also used to characterize and distinguish droplet freezing events; liquid droplets produce a regular fringe pattern whilst the pattern from frozen particles is irregular. The evaporation rate of singly levitated water droplets was calculated from time resolved measurements of the radii of evaporating droplets and a clear trend of the evaporation rate on temperature was measured. The statistical freezing probabilities of aqueous pollen extracts (pollen washing water) are obtained in the temperature range: -4.5 to -40 °C. It was found that that pollen washing water from water birch (Betula fontinalis occidentalis) pollen can act as ice nuclei in the immersion freezing mode at temperatures as warm as -22.45 (±0.65) °C.
Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica
2007-01-01
It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.
Dual-keel electrodynamic maglev system
He, Jianliang; Wang, Zian; Rote, Donald M.; Coffey, Howard T.; Hull, John R.; Mulcahy, Thomas M.; Cal, Yigang
1996-01-01
A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.
NASA Astrophysics Data System (ADS)
Tong, H.-J.; Ouyang, B.; Nikolovski, N.; Lienhard, D. M.; Pope, F. D.; Kalberer, M.
2015-03-01
In this paper we describe a newly designed cold electrodynamic balance(CEDB) system, built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range -40 to +40 °C, which is achieved using a combination of liquid nitrogen cooling and heating by positive temperature coefficient heaters. The measurement of liquid droplet radius is obtained by analysing the Mie elastic light scattering from a 532 nm laser. The Mie scattering signal was also used to characterise and distinguish droplet freezing events; liquid droplets produce a regular fringe pattern, whilst the pattern from frozen particles is irregular. The evaporation rate of singly levitated water droplets was calculated from time-resolved measurements of the radii of evaporating droplets and a clear trend of the evaporation rate on temperature was measured. The statistical freezing probabilities of aqueous pollen extracts (pollen washing water) are obtained in the temperature range -4.5 to -40 °C. It was found that that pollen washing water from water birch (Betula fontinalis occidentalis) pollen can act as ice nuclei in the immersion freezing mode at temperatures as warm as -22.45 (±0.65) °C. Furthermore it was found that the protein-rich component of the washing water was significantly more ice-active than the non-proteinaceous component.
Charge Effects on the Efflorescence in Single Levitated Droplets.
Hermann, Gunter; Zhang, Yan; Wassermann, Bernhard; Fischer, Henry; Quennet, Marcel; Rühl, Eckart
2017-09-14
The influence of electrical excess charges on the crystallization from supersaturated aqueous sodium chloride solutions is reported. This is accomplished by efflorescence studies on single levitated microdroplets using optical and electrodynamic levitation. Specifically, a strong increase in efflorescence humidity is observed as a function of the droplet's negative excess charge, ranging up to -2.1 pC, with a distinct threshold behavior, increasing the relative efflorescence humidity, at which spontaneous nucleation occurs, from 44% for the neutral microparticle to 60%. These findings are interpreted by using molecular dynamics simulations for determining plausible structural patterns located near the particle surface that could serve as suitable precursors for the formation of critical clusters overcoming the nucleation barrier. These results, facilitating heterogeneous nucleation in the case of negatively charged microparticles, are compared to recent work on charge-induced nucleation of neat supercooled water, where a distinctly different nucleation behavior as a function of droplet charge has been observed.
Thermodynamic Studies of Levitated Microdroplets of Highly Supersaturated Electrolyte Solutions
NASA Technical Reports Server (NTRS)
Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo
1996-01-01
Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin) and its calculation for various electrolyte solutions at 298 K.
Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.
Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R
2007-09-19
We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.
Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
2005-09-20
the 1960s, transportation industry planners have sought an energy-efficient design for a train that can glide through air at speeds up to 500 kilometers per hour. This type of train, called a magnetically levitated (maglev) train, is thought to be a viable solution to meet the nation's growing need for intercity and urban transportation networks. However, despite some promising developments, unresolved concerns with the operation and safety of maglev trains has prevented the transition from demonstration model to commercial development. Inductrack, a maglev system originally conceived by Livermore physicist Richard Post, is designed to address these issues. Post's work onmore » Inductrack began with funding from Livermore's Laboratory Directed Research and Development Program, and in 2003, the technology was licensed to General Atomics (GA) in San Diego for train and transit system applications. This year, members of the Livermore-GA team received an R&D 100 Award for Inductrack's development. Inductrack uses permanent magnets to produce the magnetic fields that levitate the train and provides economic and operational advantages over other maglev systems. It can be adapted to both high-speed and urban-speed environments. In the event of a power failure, the train slows gradually until it comes to rest on its auxiliary wheels. The maintenance requirements for Inductrack are also lower than they are for other systems, plus it has a short turning radius and is designed for quiet operation. Previous designs for maglev systems did not offer the energy efficiency or safety protections that are in the Inductrack design. Electromagnetic systems (EMS) use powered electromagnets to levitate the train. However, these systems are based on magnetic attraction rather than repulsion and thus are inherently unstable. In EMS trains, the levitation gap--the separation between the magnet pole faces and the iron rail--is only about 10 millimeters and, during operation, must be maintained to within {+-}1 millimeter. Position sensors and electronic feedback systems are required to control the magnetic current and to compensate for the inherent instability. This requirement, plus the onboard source of emergency power required to ensure operational safety during a sudden power loss, increases the complexity of EMS trains. In contrast, in electrodynamic systems (EDS), large superconducting magnet coils mounted on the sides of the train generate high-intensity magnetic field poles. Interaction of the current between the coils and the track levitates the train. At operating speeds (above a liftoff speed of about 100 kilometers per hour), the magnetic levitation force balances the weight of the car at a stable position. EDS trains do not require the feedback control systems that EMS trains use to stabilize levitation. However, the superconducting magnetic coils must be kept at temperatures of only 5 kelvins, so costly electrically powered cryogenic equipment is required. Also, passengers, especially those with pacemakers, must be shielded from the high magnetic fields generated by the superconductors.« less
Dual-keel electrodynamic maglev system
He, J.L.; Wang, Z.; Rote, D.M.; Coffey, H.T.; Hull, J.R.; Mulcahy, T.M.; Cal, Y.
1996-12-24
A propulsion and stabilization system is disclosed with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle. 6 figs.
Gas-particle partitioning of alcohol vapors on organic aerosols.
Chan, Lap P; Lee, Alex K Y; Chan, Chak K
2010-01-01
Single particle levitation using an electrodynamic balance (EDB) has been found to give accurate and direct hygroscopic measurements (gas-particle partitioning of water) for a number of inorganic and organic aerosol systems. In this paper, we extend the use of an EDB to examine the gas-particle partitioning of volatile to semivolatile alcohols, including methanol, n-butanol, n-octanol, and n-decanol, on levitated oleic acid particles. The measured K(p) agreed with Pankow's absorptive partitioning model. At high n-butanol vapor concentrations (10(3) ppm), the uptake of n-butanol reduced the average molecular-weight of the oleic acid particle appreciably and hence increased the K(p) according to Pankow's equation. Moreover, the hygroscopicity of mixed oleic acid/n-butanol particles was higher than the predictions given by the UNIFAC model (molecular group contribution method) and the ZSR equation (additive rule), presumably due to molecular interactions between the chemical species in the mixed particles. Despite the high vapor concentrations used, these findings warrant further research on the partitioning of atmospheric organic vapors (K(p)) near sources and how collectively they affect the hygroscopic properties of organic aerosols.
Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions
NASA Technical Reports Server (NTRS)
Davis, E. James
1996-01-01
Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.
NASA Technical Reports Server (NTRS)
Proise, M.
1994-01-01
Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.
Radiation Pressure Measurements on Micron Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.
2003-01-01
Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.
Radiation Pressure Measurements on Micron-Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.
2003-01-01
Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.
Mass transfer from an oscillating microsphere.
Zhu, Jiahua; Zheng, Feng; Laucks, Mary L; Davis, E James
2002-05-15
The enhancement of mass transfer from single oscillating aerocolloidal droplets having initial diameters approximately 40 microm has been measured using electrodynamic levitation to trap and oscillate a droplet evaporating in nitrogen gas. The frequency and amplitude of the oscillation were controlled by means of ac and dc fields applied to the ring electrodes of the electrodynamic balance (EDB). Elastic light scattering was used to size the droplet. It is shown that the mass transfer process for a colloidal or aerocolloidal particle oscillating in the Stokes flow regime is governed by a Peclet number for oscillation and a dimensionless oscillation parameter that represents the ratio of the diffusion time scale to the oscillation time scale. Evaporation rates are reported for stably oscillating droplets that are as much as five times the rate for evaporation in a stagnant gas. The enhancement is substantially larger than that predicted by quasi-steady-flow mass transfer.
Five degrees of freedom linear state-space representation of electrodynamic thrust bearings
NASA Astrophysics Data System (ADS)
Van Verdeghem, J.; Kluyskens, V.; Dehez, B.
2017-09-01
Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.
Development of a Large Scale, High Speed Wheel Test Facility
NASA Technical Reports Server (NTRS)
Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc
1996-01-01
Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.
NASA Technical Reports Server (NTRS)
Zong, Jin-Ho; Li, Benqiang; Szekely, Julian
1992-01-01
A mathematical formulation is given and computed results are presented describing the behavior of electromagnetically-levitated metal droplets under the conditions of microgravity. In the formulation the electromagnetic force field is calculated using a modification of the volume integral method and these results are then combined with the FIDAP code to calculate the steady state melt velocities. The specific computational results are presented for the conditions corresponding to the planned IML-2 Space Shuttle experiment, using the TEMPUS device, which has separate 'heating' and 'positioning' coils. While the computed results are necessarily specific to the input conditions, some general conclusions may be drawn from this work. These include the fact that for the planned TEMPUS experiments to positioning coils will produce only a weak melt circulation, while the heating coils are like to produce a mildly turbulent recirculating flow pattern within the samples. The computed results also allow us to assess the effect of sample size, material properties and the applied current on these phenomena.
Application of dynamic light scattering for studying the evolution of micro- and nano-droplets
NASA Astrophysics Data System (ADS)
Derkachov, G.; Jakubczyk, D.; Kolwas, K.; Shopa, Y.; Woźniak, M.; Wojciechowski, T.
2018-01-01
The dynamic light scattering (DLS) technique was used for studying the processes of aggregation of spherical SiO2 particles in various diethylene glycol (DEG) suspensions. The suspensions were studied in a cuvette, in a millimeter-sized droplet and in a micrometer-sized droplet. For the first time DLS signals for droplets of picolitre volume, levitated in an electrodynamic quadrupole trap, were obtained. It is shown that the correlation analysis of light scattered from a micro-droplet allows monitoring the changes of its internal structure, as well as its motions: trap-constricted Brownian motions and random rotations.
Microparticle accelerator of unique design. [for micrometeoroid impact and cratering simulation
NASA Technical Reports Server (NTRS)
Vedder, J. F.
1978-01-01
A microparticle accelerator has been devised for micrometeoroid impact and cratering simulation; the device produces high-velocity (0.5-15 km/sec), micrometer-sized projectiles of any cohesive material. In the source, an electrodynamic levitator, single particles are charged by ion bombardment in high vacuum. The vertical accelerator has four drift tubes, each initially at a high negative voltage. After injection of the projectile, each tube is grounded in turn at a time determined by the voltage and charge/mass ratio to give four acceleration stages with a total voltage equivalent to about 1.7 MV.
Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.
2008-01-01
It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.
The Effect of Organic Compounds on the Hygroscopic Properties of Inorganic Aerosol
NASA Astrophysics Data System (ADS)
Krieger, U. K.; Zardini, A. A.; Marcolli, C.
2006-12-01
The hygroscopicity of the aerosols plays a major role for the direct and indirect effect on the climate. It is known that aerosols are often a mixture of inorganic and organic matter. A significant fraction of the organic matter is water soluble (WSOC) and affects light scattering, water uptake and phase transitions of multicomponent aerosols. Additionally, organic matter can act as a surfactant around an inorganic particle, affecting the evaporation-condensation time scale. This research project benefits from the combined measurements performed by two different instrumentations: the electrodynamic trap at IACETH, Zürich, Switzerland, and a Tandem Differential Mobility Analizer (TDMA) at the Paul Scherrer Institute, Switzerland. The Electrodynamic Trap consists of a chamber in which a levitated particle can experience all the atmospherically relevant conditions of temperature, pressure, and humidity. All these parameters can be continuously varied so that the hygroscopic curve of the aerosol particle can be measured. Additional tools help to better characterize the aerosol particle: 90 degrees angular scattering of lasers (for radius measurements) and intensity fluctuation of the scattered light with time (for phase changes detection). In this poster the results obtained through the electrodynamic balance technique will be shown and compared with the TDMA. In particular, bicomponent ammonium sulphate with adipic acid bicomponent particles are studied, with different mixing ratios. Particular emphasis is put on assessing the water uptake and the phase changes of the particles.
Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.
2005-01-01
Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.
Peng, C; Chow, A H; Chan, C K
2000-09-01
To use a single particle levitation technique to investigate the equilibrium water sorption characteristics in both the evaporation and growth of four respiratory drugs at 37 degrees C: atropine sulfate (AS), isoproterenol hydrochloride (IPHC) and isoproterenol hemisulfate (IPHS) and disodium cromoglycate (DSCG). The equilibrium water content was measured as a function of relative humidity (RH) by a single particle levitation technique using an electrodynamic balance (EDB). The change of water content was determined by the voltage required to balance the weight of the levitated particle electrostatically. The water activities of bulk samples were also measured. Growth ratios were determined and compared with values in the literature. Crystallization or deliquescence was not observed for AS, IPHC and IPHS. The hysteresis in the water cycle was not observed for any of the drugs. At RH approximately 0%, AS particles still contain about 5% water but IPHC and IPHS particles do not contain any residual water. The aerodynamic growth ratio from RH 0% to 99.5% is 2.60, 2.86, 2.42 and 1.26 for AS, IPHC, IPHS and DSCG, respectively. Supersaturated droplets of IPHC and IPHS are expected to exist in the ambient conditions. DSCG is in a solid state in the RH range of 10-90%. It is expected that some aerosolized drugs of low solubility may experience supersaturation before they enter the human body and this could exert a significant influence both on particle loss before inhalation and on the deposition of the drugs in the lungs. The EDB is a convenient and reliable tool for studying the hygroscopic properties of pharmaceutical aerosols, especially for supersaturated solutions.
Large gap magnetic suspension system
NASA Technical Reports Server (NTRS)
Abdelsalam, Moustafa K.; Eyssa, Y. M.
1991-01-01
The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.
Photoemission Experiments for Charge Characteristics of Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)
2001-01-01
Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.
Controlled sample orientation and rotation in an acoustic levitator
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Gaspar, Mark S. (Inventor); Trinh, Eugene H. (Inventor)
1988-01-01
A system is described for use with acoustic levitators, which can prevent rotation of a levitated object or control its orientation and/or rotation. The acoustic field is made nonsymmetrical about the axis of the levitator, to produce an orienting torque that resists sample rotation. In one system, a perturbating reflector is located on one side of the axis of the levitator, at a location near the levitated object. In another system, the main reflector surface towards which incoming acoustic waves are directed is nonsymmetrically curved about the axis of the levitator. The levitated object can be reoriented or rotated in a controlled manner by repositioning the reflector producing the nonsymmetry.
Levitation With a Single Acoustic Driver
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Gaspar, M. S.; Allen, J. L.
1986-01-01
Pair of reports describes acoustic-levitation systems in which only one acoustic resonance mode excited, and only one driver needed. Systems employ levitation chambers of rectangular and cylindrical geometries. Reports first describe single mode concept and indicate which modes used to levitate sample without rotation. Reports then describe systems in which controlled rotation of sample introduced.
Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.
2006-01-01
The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.
Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.;
2005-01-01
The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.
Photoemission Experiments for Charge Characteristics of Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Spann, James F., Jr.; Craven, Paul D.; West, E.; Pratico, Jared; Scheianu, D.; Tankosic, D.; Venturini, C. C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 1 - 100 micrometer diameter are levitated in a vacuum chamber at pressures approx. 10(exp -5) torr and exposed to a collimated beam of UV radiation in the 120-300 nanometers spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV radiation wavelength with a spectral resolution of 8 nanometers. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on Al2O3 and silicate particles, and in particular on JSC-1 Mars regolith simulants, to determine the photoelectron yields and surface equilibrium potentials of dust particles when exposed to UV radiation in the 120-250 micrometers spectral range. A brief discussion of the experimental procedure, the results of photoemission experiments, and comparisons with theoretical models will be presented.
NASA Astrophysics Data System (ADS)
Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun
2016-12-01
The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems.
Repulsive force support system feasibility study
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1987-01-01
A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings.
ERIC Educational Resources Information Center
Rossing, Thomas D.; Hull, John R.
1991-01-01
Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…
Airborne chemistry: acoustic levitation in chemical analysis.
Santesson, Sabina; Nilsson, Staffan
2004-04-01
This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.
A novel HTS magnetic levitation dining table
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Huang, Huiying
2018-05-01
High temperature superconducting (HTS) bulk can levitate above or suspend below a permanent magnet stably. Many magnificent potential applications of HTS bulk are proposed by researchers. Until now, few reports have been found for real applications of HTS bulk. A complete set of small-scale HTS magnetic levitation table is proposed in the paper. The HTS magnetic levitation table includes an annular HTS magnetic levitation system which is composed of an annular HTS bulk array and an annular permanent magnet guideway (PMG). The annular PMG and the annular cryogenics vessel which used to maintain low temperature environment of the HTS bulk array are designed. 62 YBCO bulks are used to locate at the bottom of the annular vessel. A 3D-model finite element numerical method is used to design the HTS bulk magnetic levitation system. Equivalent magnetic levitation and guidance forces calculation rules are proposed aimed at the annular HTS magnetic levitation system stability. Based on the proposed method, levitation and guidance forces curves of the one YBCO bulk magnetic above PMG could be obtained. This method also can use to assist PMG design to check whether the designed PMG could reach the basic demand of the HTS magnetic levitation table.
Eddy damping effect of additional conductors in superconducting levitation systems
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Fei; Gou, Xiao-Fan
2015-12-01
Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.
Campaign for Levitation in LDX
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Kesner, J.; Michael, P. C.; Zhukovsky, A.
2006-10-01
In the past year, preparations have been made for the first flight of the Levitated Dipole Experiment (LDX). LDX, which consists of a 560 kg superconducting coil floating within a 5 m diameter vacuum chamber, is designed to study fusion relevant plasmas confined in a dipole magnetic field. During the spring, a high temperature superconducting levitation coil was integrated into the LDX facility. Testing was undertaken to verify the thermal performance of the coil under expected levitation conditions. In addition, a real-time operating system digital control system was developed that will be used for the levitation control. In July, plasma experiments were conducted with all superconducting magnets in operation. While still supported, roughly 75% of the weight of the floating coil was magnetically lifted by the levitation coil above. A series of plasma experiments were conducted with the same magnetic geometry as will be the case during levitation. During August, the second generation launcher system will be installed. The launcher, which retracts beyond the plasma's last closed field lines during operation, is designed to safely catch the floating coil following an unexpected loss of control. After this installation, levitation experiments will commence.
Nonlinear vibration of a coupled high- Tc superconducting levitation system
NASA Astrophysics Data System (ADS)
Sugiura, T.; Inoue, T.; Ura, H.
2004-10-01
High- Tc superconducting levitation can be applied to electro-mechanical systems, such as flywheel energy storage and linear-drive transportation. Such a system can be modeled as a magnetically coupled system of many permanent magnets and high- Tc superconducting bulks. It is a multi-degree-of-freedom dynamical system coupled by nonlinear interaction between levitated magnets and superconducting bulks. This nonlinearly coupled system, with small damping due to no contact support, can easily show complicated phenomena of nonlinear dynamics. In mechanical design, it is important to evaluate this nonlinear dynamics, though it has not been well studied so far. This research deals with forced vibration of a coupled superconducting levitation system. As a simple modeling of a coupled system, a permanent magnet levitated above a superconducting bulk is placed between two fixed permanent magnets without contact. Frequency response of the levitated magnet under excitation of one of the fixed magnets was examined theoretically. The results show typical nonlinear vibration, such as jump, hysteresis, and parametric resonance, which were confirmed in our numerical analyses and experiments.
Post, Richard F.
2001-01-01
An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.
Development of the sonic pump levitator
NASA Technical Reports Server (NTRS)
Dunn, S. A.
1985-01-01
The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft.
A Review of Dynamic Characteristics of Magnetically Levitated Vehicle Systems.
1995-11-01
The dynamic response of magnetically levitated ( maglev ) ground transportation systems has important consequences for safety and ride quality...smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the...other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which
NASA Astrophysics Data System (ADS)
Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur
Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).
Acoustic Levitation With One Driver
NASA Technical Reports Server (NTRS)
Wang, T. G.; Rudnick, I.; Elleman, D. D.; Stoneburner, J. D.
1985-01-01
Report discusses acoustic levitation in rectangular chamber using one driver mounted at corner. Placement of driver at corner enables it to couple effectively to acoustic modes along all three axes. Use of single driver reduces cost, complexity and weight of levitation system below those of three driver system.
Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds
NASA Astrophysics Data System (ADS)
Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.
Design, implementation and control of a magnetic levitation device
NASA Astrophysics Data System (ADS)
Shameli, Ehsan
Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic levitation system, the feedback linearization controller has the shortest settling time and is capable of reducing the positioning error to RMS value of 11.56mum. The force model was also utilized in the design of a model reference adaptive feedback linearization (MRAFL) controller for the z direction. For this case, the levitated object is a small microrobot equipped with a remote controlled gripper weighting approximately 28(gr). Experimental results showed that the MRAFL controller enables the micro-robot to pick up and transport a payload as heavy as 30% of its own weight without a considerable effect on its positioning accuracy. In the presence of the payload, the MRAFL controller resulted in a RMS positioning error of 8microm compared with 27.9mum of the regular feedback linearization controller. For the horizontal position control of the system, a mathematical formula for distributing the electric currents to the multiple electromagnets of the system was proposed and a PID control approach was implemented to control the position of the levitated object in the xy-plane. The control system was experimentally tested in tracking circular and spiral trajectories with overall positioning accuracy of 60mum. Also, a new mathematical approach is presented for the prediction of magnetic field distribution in the horizontal direction. The proposed approach is named the pivot point method and is capable of predicting the two dimensional position of the levitated object in a given vertical plane for an arbitrary current distribution in the electromagnets of the levitation system. Experimental results showed that the proposed method is capable of predicting the location of the levitated object with less than 10% error.
NASA Astrophysics Data System (ADS)
Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia
2015-11-01
The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).
Propulsion and stabilization system for magnetically levitated vehicles
Coffey, Howard T.
1993-06-29
A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.
Acoustic Translation of an Acoustically Levitated Sample
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Allen, J. L.
1986-01-01
Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.
Levitation properties of maglev systems using soft ferromagnets
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Zhou, You-He
2015-03-01
Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.
Vibrating-chamber levitation systems
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Granett, D.; Lee, M. C. (Inventor)
1985-01-01
Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.
Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide
NASA Astrophysics Data System (ADS)
Okano, M.; Iwamoto, T.; Furuse, M.; Fuchino, S.; Ishii, I.
2006-06-01
A pinning-type superconducting magnetic levitation guide with bulk high-Tc superconductors was studied for use as a goods transportation system, an energy storage system, etc. A superconducting magnetic levitation running test apparatus with a circular track of ca. 38 m length, 12 m diameter, which comprises the magnetic rail constituted by Nd-B-Fe rare-earth permanent magnets and steel plates, was manufactured to examine loss and high-speed performance of the magnetic levitation guide. Running tests were conducted in air. These tests clarify that a vehicle supported by a superconducting magnetic levitation guide runs stably at speeds greater than 42 km/h above the circular track.
Dimensionless Analysis and Mathematical Modeling of Electromagnetic Levitation (EML) of Metals
NASA Astrophysics Data System (ADS)
Gao, Lei; Shi, Zhe; Li, Donghui; Yang, Yindong; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor
2016-02-01
Electromagnetic levitation (EML), a contactless metal melting method, can be used to produce ultra-pure metals and alloys. In the EML process, the levitation force exerted on the droplet is of paramount importance and is affected by many parameters. In this paper, the relationship between levitation force and parameters affecting the levitation process were investigated by dimensionless analysis. The general formula developed by dimensionless analysis was tested and evaluated by numerical modeling. This technique can be employed to design levitation systems for a variety of materials.
2008-12-01
1 DEVELOPMENT OF ULTRASONICALLY LEVITATED DROPS AS MICROREAC- TORS FOR STUDY OF ENZYME KINETICS AND POTENTIAL AS A UNIVERSAL PORTABLE ANALYSIS...microfluidic systems are incompatible with the chemistry one wishes to study. We have devel- oped an alternative approach. We use ultrasonically levitated ...since at least the 1940’s, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fab- ricated the
Internal resonance of an elastic body levitated above high-Tc superconducting bulks
NASA Astrophysics Data System (ADS)
Kokuzawa, T.; Toshihiko, S.; Yoshizawa, M.
2010-06-01
In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.
The PROPEL Electrodynamic Tether Demonstration Mission
NASA Technical Reports Server (NTRS)
Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael
2012-01-01
The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.
System and Method for Obtaining Simultaneous Levitation and Rotation of a Ferromagnetic Object
NASA Astrophysics Data System (ADS)
Banerjee, Subrata; Sarkar, Mrinal Kanti; Ghosh, Arnab
2017-02-01
In this work a practical demonstration for simultaneous levitation and rotation for a ferromagnetic cylindrical object is presented. A hollow steel cylinder has been arranged to remain suspended stably under I-core electromagnet utilizing dc attraction type levitation principle and then arranged to rotate the levitated object around 1000 rpm speed based on eddy current based energy meter principle. Since the object is to be rotating during levitated condition the device will be frictionless, energy-efficient and robust. This technology may be applied to frictionless energy meter, wind turbine, machine tool applications, precision instruments and many other devices where easy energy-efficient stable rotation will be required. The cascade lead compensation control scheme has been applied for stabilization of unstable levitation system. The proposed device is successfully tested in the laboratory and experimental results have been produced.
Translation of an Object Using Phase-Controlled Sound Sources in Acoustic Levitation
NASA Astrophysics Data System (ADS)
Matsui, Takayasu; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi; Ide, Masao
1995-05-01
Acoustic levitation is used for positioning materials in the development of new materials in space where there is no gravity. This technique is applicable to materials for which electromagnetic force cannot be used. If the levitation point of the materials can be controlled freely in this application, possibilities of new applications will be extended. In this paper we report on an experimental study on controlling the levitation point of the object in an acoustic levitation system. The system fabricated and tested in this study has two sound sources with vibrating plates facing each other. Translation of the object can be achieved by controlling the phase of the energizing electrical signal for one of the sound sources. It was found that the levitation point can be moved smoothly in proportion to the phase difference between the vibrating plates.
Detection and quantification of subtle changes in red blood cell density using a cell phone.
Felton, Edward J; Velasquez, Anthony; Lu, Shulin; Murphy, Ryann O; ElKhal, Abdala; Mazor, Ofer; Gorelik, Pavel; Sharda, Anish; Ghiran, Ionita C
2016-08-16
Magnetic levitation has emerged as a technique that offers the ability to differentiate between cells with different densities. We have developed a magnetic levitation system for this purpose that distinguishes not only different cell types but also density differences in cells of the same type. This small-scale system suspends cells in a paramagnetic medium in a capillary placed between two rare earth magnets, and cells levitate to an equilibrium position determined solely by their density. Uniform reference beads of known density are used in conjunction with the cells as a means to quantify their levitation positions. In one implementation images of the levitating cells are acquired with a microscope, but here we also introduce a cell phone-based device that integrates the magnets, capillary, and a lens into a compact and portable unit that acquires images with the phone's camera. To demonstrate the effectiveness of magnetic levitation in cell density analysis we carried out levitation experiments using red blood cells with artificially altered densities, and also levitated those from donors. We observed that we can distinguish red blood cells of an anemic donor from those that are healthy. Since a plethora of disease states are characterized by changes in cell density magnetic cell levitation promises to be an effective tool in identifying and analyzing pathologic states. Furthermore, the low cost, portability, and ease of use of the cell phone-based system may potentially lead to its deployment in low-resource environments.
Containerless glass fiber processing
NASA Technical Reports Server (NTRS)
Ethridge, E. C.; Naumann, R. J.
1986-01-01
An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.
NASA Technical Reports Server (NTRS)
Oran, W. A.; Berge, L. H.; Parker, H. W.
1980-01-01
The performance of an acoustic levitation system designed for the containerless processing of materials and consisting of a St. Clair generator and a reflector arranged in a six-axis configuration, is examined in order to define critical parameters of high-temperature systems and limitations of earth-based devices. The fields and forces along the axis of the system are measured and the forces are plotted versus body volume. It is found that for a range of shapes and sizes the levitation force is roughly proportional to body volume until the characteristic 'diameter' reaches a value of about lambda/2. A significant (i.e., factor of four) enhancement in the levitation force is obtained by curving the faces of the driver and reflector. In addition, the behavior of liquid materials in the acoustic fields is studied, and the radius at which the deformation of a levitated drop occurs is calculated.
Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation
NASA Technical Reports Server (NTRS)
Robert E. Apfel; Zheng, Yibing
2000-01-01
An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.
NASA Astrophysics Data System (ADS)
Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.
2011-11-01
A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).
Matching Impedances and Modes in Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, M. B.
1985-01-01
Temperature differences accommodated with tunable coupler. Report discusses schemes for coupling sound efficiently from cool outside atmosphere into hot acoustic-levitation chamber. Theoretical studies have practical implications for material-processing systems that employ acoustic levitation.
2004-04-15
This is an artist's concept of an orbiting space vehicle in the Jovian system using an electrodynamic tether propellantless propulsion system. Electrodynamic tethers offer the potential to greatly extend and enhance future scientific missions to Jupiter and the Jovian system. Like Earth, Jupiter posses a strong magnetic field and a significant magnetosphere. This may make it feasible to operate electrodynamic tethers for propulsion and power generation.
Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
Coffey, H.T.
1993-10-19
A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.
Electron spin control of optically levitated nanodiamonds in vacuum
NASA Astrophysics Data System (ADS)
Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-05-01
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect.
Charging of Single Micron Sized Dust Grains by Secondary Electron Emission: A Laboratory Study
NASA Technical Reports Server (NTRS)
Spann, James F., Jr.; Venturini, Catherine C.; Comfort, R. H.
1998-01-01
We present the details of a new laboratory study whose objective is to experimentally study the interaction of micron sized particles with plasmas and electromagnetic radiation. Specifically, to investigate under what conditions and to what extent do particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and ultraviolet radiation environment The emphasis is the study of the two charging mechanisms, secondary emission of electrons and photoelectric effect. The experiment uses a technique known as electrodynamic suspension of particles. With this technique, a single charged particle is electrodynamically levitated and then exposed to a controlled environment. Its charge to mass ratio is directly measured. Viscous drag measurements and the light scattering measurements characterize its size and optical characteristics. The environment to which the particle is expose may consist of room temperature and pressure or a rarefied atmosphere where only one major gaseous constituent is present, or, as in this case, a vacuum environment under electron bombardment or UV radiation . In addition, the environment can be cycled as part of the experiment. Therefore, using this technique, a single particle can be repeatedly exposed to a controlled environment and its response measured, or a single particle can be exposed to similar environments with minor differences and its response measured as a function of only the changed environmental conditions.
Dimensionless Analysis and Numerical Modeling of Rebalancing Phenomena During Levitation
NASA Astrophysics Data System (ADS)
Gao, Lei; Shi, Zhe; Li, Donghui; McLean, Alexander; Chattopadhyay, Kinnor
2016-06-01
Electromagnetic levitation (EML) has proved to be a powerful tool for research activities in areas pertaining to materials physics and engineering. The customized EML setups in various fields, ranging from solidification to nanomaterial manufacturing, require the designing of stable levitation systems. Since the elevated droplet is opaque, the most effective way to research on EML is mathematical modeling. In the present study, a 3D model was built to investigate the rebalancing phenomenon causing instabilities during droplet melting. A mathematical model modified based on Hooke's law (spring) was proposed to describe the levitation system. This was combined with dimensionless analysis to investigate the generation of levitation forces as it will significantly affect the behavior of the spring model.
Velocity damper for electromagnetically levitated materials
Fox, Richard J.
1994-01-01
A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.
Electron spin control of optically levitated nanodiamonds in vacuum.
Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-19
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
Electron spin control of optically levitated nanodiamonds in vacuum
Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-01-01
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin–optomechanical system for studying macroscopic quantum mechanics. PMID:27432560
Electron spin control of optically levitated nanodiamonds in vacuum
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-01
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
Improved Position Sensor for Feedback Control of Levitation
NASA Technical Reports Server (NTRS)
Hyers, Robert; Savage, Larry; Rogers, Jan
2004-01-01
An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.
Oscillation damping means for magnetically levitated systems
Post, Richard F [Walnut Creek, CA
2009-01-20
The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.
NASA Astrophysics Data System (ADS)
Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.
2018-07-01
We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.
A hybrid electromagnetic-acoustic levitator for the containerless processing of undercooled melts
NASA Technical Reports Server (NTRS)
Hmelo, Anthony B.; Banerjee, Sharbari; Wang, Taylor G.
1992-01-01
The hybrid, acoustic-EM levitator discussed provides a small lifting force independently of its EM component by exciting an acoustic resonance that serves as a pressure node at the position of the EM-levitated specimen. The system also stabilizes and damps chaotic oscillations during specimen positioning, and can excite forced oscillations of levitated molten metals for drop-physics and thermophysical property measurements. Attention is given to the character and function of the atmosphere in the levitator. Noncontact temperature measurement is via single-color optical pyrometer.
Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System
NASA Astrophysics Data System (ADS)
Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong
2013-06-01
The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.
2006-01-01
The concept of electrodynamic tether propulsion has a number of attractive features and has been widely discussed for different applications. Different system designs have been proposed and compared during the last 10 years. In spite of this, the choice of proper design for any particular mission is a unique problem. Such characteristics of tether performance as system acceleration, efficiency, etc., should be calculated and compared on the basis of the known capability of a tether to collect electrical current. We discuss the choice of parameters for circular and tape tethers with regard to the Momentum-Exchange/Electrodynamic Reboost (MXER) tether project.
Velocity damper for electromagnetically levitated materials
Fox, R.J.
1994-06-07
A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.
Method and apparatus for shaping and enhancing acoustical levitation forces
NASA Technical Reports Server (NTRS)
Oran, W. A.; Berge, L. H.; Reiss, D. A.; Johnson, J. L. (Inventor)
1980-01-01
A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described.
Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.
Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli
2017-05-01
A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.
NASA Technical Reports Server (NTRS)
1998-01-01
Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.
Hybrid Electrostatic/Acoustic Levitator
NASA Technical Reports Server (NTRS)
Rhim, Won K.; Trinh, Eugene H.; Chung, Sang K.; Elleman, Daniel D.
1987-01-01
Because electrostatic and acoustic forces independent of each other, hybrid levitator especially suitable for studies of drop dynamics. Like all-acoustic or all-electrostatic systems, also used in studies of containerless material processing. Vertical levitating force applied to sample by upper and lower electrodes. Torques or vibrational forces in horizontal plane applied by acoustic transducers. Electrically charged water drop about 4 mm in diameter levitated electrostatically and rotated acoustically until it assumed dumbell shape and broke apart.
NASA Technical Reports Server (NTRS)
Hahs, C. A.
1990-01-01
The Wake Shield Facility (WSF) can provide an ideal vacuum environment for the purification of high temperature metals in space. The Modular Electromagnetic Levitator (MEL), will provide the opportunity to study undercooling of metals in space and allow to determine material properties in space. The battery powered rf levitation and heating system developed for the MEL demonstrated efficiency of 36 percent. This system is being considered to purify metals at temperatures below 3000 C.
Levitation and lateral forces between a point magnetic dipole and a superconducting sphere
NASA Astrophysics Data System (ADS)
H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub
2016-05-01
The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.
Improved acoustic levitation apparatus
NASA Technical Reports Server (NTRS)
Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.
1980-01-01
Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.
NASA Astrophysics Data System (ADS)
Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha
2016-09-01
The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.
NASA Astrophysics Data System (ADS)
Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah
2014-05-01
Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary organic aerosol particles, Nature 467, 824-827. [2] B. Zobrist et al. (2011): Ultra-slow water diffusion in aqueous sucrose glasses, Phys. Chem. Chem. Phys. 13, 3514-3526. [3] D. L. Bones, J. P. Reid, D. M. Lienhard, and U. K. Krieger (2012): Comparing the mechanism of water condensation and evaporation in glassy aerosol, PNAS 109, 11613-11618. [4] O. Peña and U. Pal (2009): Scattering of electromagnetic radiation by a multilayered sphere, Comput. Phys. Commun. 180, 2348-2354.
Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.
2003-01-01
A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.
NASA Astrophysics Data System (ADS)
Liu, Lu; Wang, Jiasu
2014-05-01
A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.
A containerless levitation setup for liquid processing in a superconducting magnet.
Lu, Hui-Meng; Yin, Da-Chuan; Li, Hai-Sheng; Geng, Li-Qiang; Zhang, Chen-Yan; Lu, Qin-Qin; Guo, Yun-Zhu; Guo, Wei-Hong; Shang, Peng; Wakayama, Nobuko I
2008-09-01
Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded.
Gravity enhanced acoustic levitation method and apparatus
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Allen, J. L.; Granett, D. (Inventor)
1985-01-01
An acoustic levitation system is provided for acoustically levitating an object by applying a single frequency from a transducer into a resonant chamber surrounding the object. The chamber includes a stabilizer location along its height, where the side walls of the chamber are angled so they converge in an upward direction. When an acoustic standing wave pattern is applied between the top and bottom of the chamber, a levitation surface within the stabilizer does not lie on a horizontal plane, but instead is curved with a lowermost portion near the vertical axis of the chamber. As a result, an acoustically levitated object is urged by gravity towards the lowermost location on the levitation surface, so the object is kept away from the side walls of the chamber.
DOT National Transportation Integrated Search
1994-06-01
Advanced high speed fixed guideway transportation systems such as magnetic levitation systems have speed, acceleration, : and banking capabilities which present new guideway design issues. This increased performance results in new concerns : for pass...
Optimization of a superconducting linear levitation system using a soft ferromagnet
NASA Astrophysics Data System (ADS)
Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro
2013-04-01
The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.
NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Craven, Paul D.
2014-01-01
Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.
System for controlled acoustic rotation of objects
NASA Technical Reports Server (NTRS)
Barmatz, M. B. (Inventor)
1983-01-01
A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.
NASA Technical Reports Server (NTRS)
Gammell, P. M.; Wang, T. G.; Croonquist, A.; Lee, M. C.
1985-01-01
Dense materials, such as steel balls, continuously levitated with energy provided by efficient high-powered siren in combination with shaped reflector. Reflector system, consisting of curved top reflector and flat lower reflector, eliminates instability in spatial positioning of sample.
Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples
NASA Technical Reports Server (NTRS)
Lee, M. C.
1981-01-01
An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.
Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission
NASA Technical Reports Server (NTRS)
Bilen, Sven G.; Johnson, Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael P.; Stone, Nobie H.
2014-01-01
The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion
NASA Astrophysics Data System (ADS)
Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su
2017-01-01
The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.
NASA Astrophysics Data System (ADS)
Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong
2018-04-01
Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.
An analytical model for the detection of levitated nanoparticles in optomechanics
NASA Astrophysics Data System (ADS)
Rahman, A. T. M. Anishur; Frangeskou, A. C.; Barker, P. F.; Morley, G. W.
2018-02-01
Interferometric position detection of levitated particles is crucial for the centre-of-mass (CM) motion cooling and manipulation of levitated particles. In combination with balanced detection and feedback cooling, this system has provided picometer scale position sensitivity, zeptonewton force detection, and sub-millikelvin CM temperatures. In this article, we develop an analytical model of this detection system and compare its performance with experimental results allowing us to explain the presence of spurious frequencies in the spectra.
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Experimental technique for studying high-temperature phases in reactive molten metal based systems
NASA Astrophysics Data System (ADS)
Ermoline, A.; Schoenitz, M.; Hoffmann, V. K.; Dreizin, E. L.
2004-12-01
Containerless, microgravity experiments for studying equilibria in molten metal-gas systems have been designed and conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. An experimental apparatus enabling one to acoustically levitate, laser heat, and splat quench 1-3 mm metal and ceramic samples has been developed and equipped with computer-based controller and optical diagnostics. Normal-gravity testing determined the levitator operation parameters providing stable and adjustable sample positioning. A methodology for optimizing the levitator performance using direct observation of levitated samples was developed and found to be more useful than traditional pressure mapping of the acoustic field. In microgravity experiments, spherical specimens prepared of pressed, premixed powders of ZrO2, ZrN, and Zr, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser up to 2800 K. Using a uniaxial acoustic levitator in microgravity, the location of the laser-heated samples could be maintained for about 1 s, so that local sample melting was achieved. Oscillations of the levitating samples in horizontal direction became pronounced in microgravity. These oscillations increased during the sample heating and eventually resulted in moving the sample out of the stable position and away from the laser beam.
Vibration measurements and analyses for a magnet superconductor levitated system
NASA Astrophysics Data System (ADS)
Wen, Zheng; Liu, Yu; Yang, Wenjiang; Qiu, Ming
2007-12-01
Magnetic levitation technology, having the characteristics of low cost and high quality, has been considered a preferable option for the next generation of launcher systems. A world-wide research design on the conceptual level has been carried out on the highly reusable space transportation systems by applying magnetic levitation to the launch assistance. Recently, a research plan has been implemented in our laboratory by constructing a scale-model suspension system with high temperature superconductor (HTS henceforth) bulks over a 7 m Nd-Fe-B permanent-magnet (PM henceforth) track for the launch assistance. An experimental platform was built to investigate the dynamic responses of the PM-HTS interaction at different field-cooled positions. The critical frequencies and amplitudes which lead to the instability of levitation drift were investigated. The stiffness and the vibration damping were also discussed at the zero-field-cooled position.
Contreras, Victor; Valencia, Ricardo; Peralta, Jairo; Sobral, H; Meneses-Nava, M A; Martinez, Horacio
2018-05-15
Laser-induced breakdown spectroscopy is presented for trace element detection of liquid samples by analyzing a single droplet levitated by ultrasonic waves. A single liquid droplet is placed in the node of a standing acoustic wave produced by a uniaxial levitator for further chemical analysis. The acoustic levitator consists of a commercial Langevin-type transducer, attached to a concave mechanical amplifier, and a concave reflector. A micro-syringe was used to manually place individual liquid droplet samples in the acoustic levitation system. For chemical analysis, a laser-induced plasma is produced by focusing a single laser pulse on the levitated water droplet after it partially dries. The performance of the acoustic levitator on micron-sized droplets is discussed, and the detection of Ba, Cd, Hg, and Pb at parts per million (milligrams/liter) and sub-parts per million levels is reported. The process, starting from placing the sample in the acoustic levitator and ending on the chemical identification of the traces, takes a few minutes. The approach is particularly interesting in applications demanding limited volumes of liquid samples and relative simple and inexpensive techniques.
Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K
NASA Astrophysics Data System (ADS)
Celik, Sukru; Guner, S. Baris; Coskun, Elvan
2015-03-01
Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.
Modeling and experimental study on near-field acoustic levitation by flexural mode.
Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu
2009-12-01
Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.
13th International Conference on Magnetically Levitated Systems and Linear Drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.
Controlling the net charge on a nanoparticle optically levitated in vacuum
NASA Astrophysics Data System (ADS)
Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas
2017-06-01
Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.
NASA Astrophysics Data System (ADS)
Kajastie, H.; Riski, K.; Satrapinski, A.
2009-06-01
The method for realization of the kilogram using 'superconducting magnetic levitation' was re-evaluated at MIKES. The realization of the kilogram based on the traditional levitation method is limited by the imperfections of the superconducting materials and the indefinable dependence between supplied electrical energy and the gravitational potential energy of the superconducting mass. This indefiniteness is proportional to the applied magnetic field and is caused by increasing losses and trapped magnetic fluxes. A new design of an electromechanical system for the levitation method is proposed. In the proposed system the required magnetic field and the corresponding force are reduced, as the mass of the body (hanging from a mass comparator) is compensated by the reference weight on the mass comparator. The direction of the magnetic force can be upward (levitation force, when the body is over the coil) or downward (repulsive force, when the body is under the coil). The initial force to move the body from the coil is not needed and magnetic field sensitivity is increased, providing linearization of displacement versus applied current. This new construction allows a lower magnetic induction, reduces energy losses compared with previous designs of electromechanical system and reduces the corresponding systematic error.
Differential force balances during levitation
NASA Astrophysics Data System (ADS)
Todd, Paul
The simplest arithmetic of inertial, buoyant, magnetic and electrokinetic levitation is explored in the context of a model living system with “acceleration-sensitive structures” in which motion, if allowed, produces a biological effect. The simple model is a finite-sized object enclosed within another finite-sized object suspended in an outer fluid (liquid or vapor) medium. The inner object has density and electrical and magnetic properties quantitatively different from those of the outer object and the medium. In inertial levitation (“weightlessness”) inertial accelerations are balanced, and the forces due to them are canceled in accordance with Newton’s third law. In the presence of inertial acceleration (gravity, centrifugal) motionlessness depends on a balance between the levitating force and the inertial force. If the inner and outer objects differ in density one or the other will be subjected to an unbalanced force when one object is levitated by any other force (buoyant, magnetic, electrokinetic). The requirements for motionlessness of the internal object in the presence of a levitating force are equality of density in the case of buoyant levitation, equality of magnetic susceptibility in the case of magnetic levitation, and equality of zeta potential and dielectric constant in the case of electrokinetic levitation. Examples of internal “acceleration-sensitive structures” are cellular organelles and the organs of advanced plants and animals. For these structures fundamental physical data are important in the interpretation of the effects of forces used for levitation.
Design and fabrication of a hybrid maglev model employing PML and SML
NASA Astrophysics Data System (ADS)
Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.
2017-10-01
A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.
Plasma heating for containerless and microgravity materials processing
NASA Technical Reports Server (NTRS)
Leung, Emily W. (Inventor); Man, Kin F. (Inventor)
1994-01-01
A method for plasma heating of levitated samples to be used in containerless microgravity processing is disclosed. A sample is levitated by electrostatic, electromagnetic, aerodynamic, or acoustic systems, as is appropriate for the physical properties of the particular sample. The sample is heated by a plasma torch at atmospheric pressure. A ground plate is provided to help direct the plasma towards the sample. In addition, Helmholtz coils are provided to produce a magnetic field that can be used to spiral the plasma around the sample. The plasma heating system is oriented such that it does not interfere with the levitation system.
NASA Technical Reports Server (NTRS)
Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki
1994-01-01
This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.
Electron spin control and torsional optomechanics of an optically levitated nanodiamond in vacuum
NASA Astrophysics Data System (ADS)
Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centers, indicating potential applications of NV centers in oxygen gas sensing. For spin-optomechanics, it is important to control the orientation of the nanodiamond and NV centers in a magnetic field. Recently, we have observed the angular trapping and torsional vibration of a levitated nanodiamond, which paves the way towards levitated torsional optomechanics in the quantum regime. NSF 1555035-PHY.
Droplet transport system and methods
NASA Technical Reports Server (NTRS)
Neitzel, G. Paul (Inventor)
2010-01-01
Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Design framework of a teleoperating system for a magnetically levitated robot with force feedback
NASA Astrophysics Data System (ADS)
Tsuda, Naoaki; Kato, Norihiko; Nomura, Yoshihiko; Matsui, Hirokazu
2002-02-01
Precise works and manipulating micro objects are tough jobs for operators both mentally and physically. To execute these jobs smoothly without feeling wrongness, use of master-slave system is preferable because position and force are able to be scaled up and down as well under the system. In this study we develop a master-slave system where the size of a slave robot is very small and the slave robot is levitated by magnetic forces. In distinction from ordinary master- slave systems, the levitated robot does not get any other contact forces from outside. Thus we introduce a method using an impedance model for constructing the master-slave system. We confirmed the effectiveness of the positioning control algorithm through experiments.
Observations on the Freezing of Supercooled Pollen Washing Water by a New Electrodynamic Balance
NASA Astrophysics Data System (ADS)
Tong, Haijie; Pope, Francis D.; Kalberer, Markus
2014-05-01
Primary biological particles can act as efficient ice nuclei (IN) by initiating freezing events at temperatures warmer than the homogenous freezing temperature [1, 2]. For example, pollen grain particles can trigger freezing events at temperatures as warm as -5 °C in the contact freezing mode [3]. More recently pollen residues, which are released by washing pollen grains in water, were also observed to act as efficient IN in the immersion mode [4, 5]. In this study we developed a new cold electrodynamic balance (CEDB) system and investigated the freezing properties of single particles of supercooled pollen washing water (SPWW). The EDB technique allows for a contact free measurement of freezing events. The phase of the particle (liquid or frozen solid) can be distinguished via measuring the Mie scattering signal from the particle. Furthermore the size of liquid (spherical) particles can be determined. The freezing events are characterized through the loss of the regular Mie scattering signal from the levitated droplet as it changes state from liquid to a frozen solid. The statistical freezing probabilities of SPWW were obtained in the temperature range: -15 to -40 °C. Each temperature measurement point consists of the analysis of 30-100 droplets. Preliminary conclusions are that SPWW is IN active in the immersion mode. Further discussion will focus on the temperature range of the IN activity, the important variables (other than temperature) for IN activity, other likely modes of IN activity, and the implications of these results in terms of the atmospheric relevance of SPWW. This study was supported by the NERC. We acknowledge Professor Jonathan Reid and James Davis from the University of Bristol for providing information of the design of the warm EDB system. References: [1] Möhler, O., et al. (2007) Biogeosciences, 4, 1059-1071. [2] Prenni, A. J., et al. (2009) Nat. Geosci., 2, 401-404. [3] Diehl, K., et al. (2002) Atmos. Res., 61, 125-133. [4] Pummer, B. G., et al. (2012) Atmos. Chem. Phys., 12, 2541-2550. [5] Augustin, S., et al. (2013) Atmos. Chem. Phys., 13, 10989-11003.
Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
Coffey, Howard T.
1993-01-01
A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.
DOT National Transportation Integrated Search
1990-11-01
The safety of various magnetically levitated trains under development for possible : implementation in the United States is of direct concern to the Federal Railroad : Administration. This report, one in a series of planned reports on maglev safety, ...
MSFC Electrostatic Levitator (ESL) Rapid Quench System
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.
2014-01-01
The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.
Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor
2009-01-01
Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container’s surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor. PMID:19769373
NASA Astrophysics Data System (ADS)
Yoshida, Takashi
Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.
Optical levitation of a mirror for reaching the standard quantum limit.
Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki
2017-06-12
We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-Pérot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.
Optical levitation of a mirror for reaching the standard quantum limit
NASA Astrophysics Data System (ADS)
Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki
2017-06-01
We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.
Electrostatic Levitation Technique for Investigations of Physical Properties of Liquid States
NASA Astrophysics Data System (ADS)
Okada, Junpei; Ishikawa, Takehiko; Paradis, Paul-Francois; Yoda, Shinichi
Electrostatic levitator (ESL) levitates a charged sample in a high vacuum using computer con-trolled electrostatic fields [1]. It can levitate materials such as metals, semiconductors, and some insulators. Sample temperature can be varied over a wide range, and samples can be deeply undercooled. We have been engaged in the research and development of the electro-static levitation technique with the aim of performing levitation dissolution experiments in the International Space Station (ISS). Our device for the electrostatic levitation dissolution test has been developed for experiments on the ISS. To this end, the system is designed to be compact and portable so that it can be launched by rocket and used for experiments in the limited space on the ISS. Accordingly, the device can be installed not just on the ISS or our research laboratory, but also in various external sites. We devised a plan to install the electrostatic levitation system in a site other than the ISS to study atomic structure and electron structure of ultra-high-temperature liquids. We mounted our system on third generation synchrotron radiation facility "SPring-8" in Japan, to investigate the atomic and electron structures of high-temperature liquids. The SPring-8 is an experimental facility that allows use of the most powerful X-rays in the world. We conducted a variety of experiments on ultra-high-temperature liquids using SPring-8. The X-ray is ideal for exploring atomic structure and electron structure. Since the X-ray is an electromagnetic wave, it interacts with electrons. In addition, most electrons gather around the atomic nucleus. By close analysis of the scattered x-rays, we can determine its atomic structure and electron structure in detail. In this talk, we introduce an x-ray Compton scattering and x-ray Raman scattering measurements on liquid aluminum and silicon. [1] W. -K. Rhim, et al, Rev. Sci. Instrum. (1985) 56 307.
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Tuo, X. G.; Li, L. L.; Ye, C. Q.; Liao, X. L.; Wang, S. Y.
2012-03-01
Compared with the permanent magnet, the magnetized bulk high-Tc superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-Tc superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.
Design of a Low-Cost Air Levitation System for Teaching Control Engineering.
Chacon, Jesus; Saenz, Jacobo; Torre, Luis de la; Diaz, Jose Manuel; Esquembre, Francisco
2017-10-12
Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system's nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab.
Experimental study of streaming flows associated with ultrasonic levitators
NASA Astrophysics Data System (ADS)
Trinh, E. H.; Robey, J. L.
1994-11-01
Steady-state acoustic streaming flow patterns have been observed during the operation of a variety of resonant single-axis ultrasonic levitators in a gaseous environment and in the 20-37 kHz frequency range. Light sheet illumination and scattering from smoke particles have revealed primary streaming flows which display different characteristics at low and high sound pressure levels. Secondary macroscopic streaming cells around levitated samples are superimposed on the primary streaming flow pattern generated by the standing wave. These recorded flows are quite reproducible, and are qualitatively the same for a variety of levitator physical geometries. An onset of flow instability can also be recorded in nonisothermal systems, such as levitated spot-heated samples when the resonance conditions are not exactly satisfied. A preliminary qualitative interpretation of these experimental results is presented in terms of the superposition of three discrete sets of circulation cells operating on different spatial scales. These relevant length scales are the acoustic wavelength, the levitated sample size, and finally the acoustic boundary layer thickness. This approach fails, however, to explain the streaming flow-field morphology around liquid drops levitated on Earth. Observation of the interaction between the flows cells and the levitated samples also suggests the existence of a steady-state torque induced by the streaming flows.
Containerless protein crystal growth method
NASA Technical Reports Server (NTRS)
Rhim, Won-Kyu; Chung, Sang K.
1991-01-01
A method of growing protein crystals from levitated drops is introduced and unique features of containerless approach in 1-g and micro-G laboratories are discussed. Electrostatic multidrop levitation system which is capable of simultaneous four drop levitation is described. A method of controlling protein saturation level in a programmed way is introduced and discussed. Finally, some of the unique features of containerless approach of protein crystal growth in space are discussed and summarized.
DOT National Transportation Integrated Search
1992-04-01
The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). This report catalogs and documents detailed magnet...
Haddrell, Allen E; Davies, James F; Yabushita, Akihiro; Reid, Jonathan P
2012-10-11
The most used instrument in single particle hygroscopic analysis over the past thirty years has been the electrodynamic balance (EDB). Two general assumptions are made in hygroscopic studies involving the EDB. First, it is assumed that the net charge on the droplet is invariant over the time scale required to record a hygroscopic growth cycle. Second, it is assumed that the composition of the droplet is constant (aside from the addition and removal of water). In this study, we demonstrate that these assumptions cannot always be made and may indeed prove incorrect. The presence of net charge in the humidified vapor phase reduces the total net charge retained by the droplet over prolonged levitation periods. The gradual reduction in charge limits the reproducibility of hygroscopicity measurements made on repeated RH cycles with a single particle, or prolonged experiments in which the particle is held at a high relative humidity. Further, two contrasting examples of the influence of changes in chemical composition changes are reported. In the first, simple acid-base chemistry in the droplet leads to the irreversible removal of gaseous ammonia from a droplet containing an ammonium salt on a time scale that is shorter than the hygroscopicity measurement. In the second example, the net charge on the droplet (<100 fC) is high enough to drive redox chemistry within the droplet. This is demonstrated by the reduction of iodic acid in a droplet made solely of iodic acid and water to form iodine and an iodate salt.
NASA Astrophysics Data System (ADS)
Sugiura, T.; Ogawa, S.; Ura, H.
2005-10-01
Characteristics of high- Tc superconducting levitation systems are no contact support and stable levitation without control. They can be applied to supporting mechanisms in machines, such as linear-drives and magnetically levitated trains. But small damping due to noncontact support and nonlinearity in the magnetic force can easily cause complicated phenomena of nonlinear dynamics. This research deals with nonlinear oscillation of a rigid bar supported at its both ends by electro-magnetic forces between superconductors and permanent magnets as a simple modeling of the above application. Deriving the equation of motion, we discussed an effect of nonlinearity in the magnetic force on dynamics of the levitated body: occurrence of combination resonance in the asymmetrical system. Numerical analyses and experiments were also carried out, and their results confirmed the above theoretical prediction.
NASA Astrophysics Data System (ADS)
Gao, Lei; Shi, Zhe; Li, Donghui; Zhang, Guifang; Yang, Yindong; McLean, Alexander; Chattopadhyay, Kinnor
2016-02-01
Electromagnetic levitation (EML) is a contact-less, high-temperature technique which has had extensive application with respect to the investigation of both thermophysical and thermochemical properties of liquid alloy systems. The varying magnetic field generates an induced current inside the metal droplet, and interactions are created which produce both the Lorentz force that provides support against gravity and the Joule heating effect that melts the levitated specimen. Since metal droplets are opaque, transport phenomena inside the droplet cannot be visualized. To address this aspect, several numerical modeling techniques have been developed. The present work reviews the applications of EML techniques as well as the contributions that have been made by the use of mathematical modeling to improve understanding of the inherent processes which are characteristic features of the levitation system.
Durmus, Naside Gozde; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan
2016-01-01
There is an emerging need for portable, robust, inexpensive and easy-to-use disease diagnosis and prognosis monitoring platforms to share health information at the point-of-living, including clinical and home settings. Recent advances in digital health technologies have improved early diagnosis, drug treatment, and personalized medicine. Smartphones with high-resolution cameras and high data processing power enable intriguing biomedical applications when integrated with diagnostic devices. Further, these devices have immense potential to contribute to public health in resource-limited settings where there is a particular need for portable, rapid, label-free, easy-to-use and affordable biomedical devices to diagnose and continuously monitor patients for precision medicine, especially those suffering from rare diseases, such as sickle cell anemia, thalassemia and chronic fatigue syndrome. Here, we present a magnetic levitation-based diagnosis system in which different cell types (i.e., white and red blood cells) are levitated in a magnetic gradient and separated due to their unique densities. Moreover, we introduce an easy-to-use, smartphone incorporated levitation system for cell analysis. Using our portable imaging magnetic levitation (i-LEV) system, we show that white and red blood cells can be identified and cell numbers can be quantified without using any labels. In addition, cells levitated in i-LEV can be distinguished at single cell resolution, potentially enabling diagnosis and monitoring, as well as clinical and research applications. PMID:26523938
Baday, Murat; Calamak, Semih; Durmus, Naside Gozde; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan
2016-03-02
There is an emerging need for portable, robust, inexpensive, and easy-to-use disease diagnosis and prognosis monitoring platforms to share health information at the point-of-living, including clinical and home settings. Recent advances in digital health technologies have improved early diagnosis, drug treatment, and personalized medicine. Smartphones with high-resolution cameras and high data processing power enable intriguing biomedical applications when integrated with diagnostic devices. Further, these devices have immense potential to contribute to public health in resource-limited settings where there is a particular need for portable, rapid, label-free, easy-to-use, and affordable biomedical devices to diagnose and continuously monitor patients for precision medicine, especially those suffering from rare diseases, such as sickle cell anemia, thalassemia, and chronic fatigue syndrome. Here, a magnetic levitation-based diagnosis system is presented in which different cell types (i.e., white and red blood cells) are levitated in a magnetic gradient and separated due to their unique densities. Moreover, an easy-to-use, smartphone incorporated levitation system for cell analysis is introduced. Using our portable imaging magnetic levitation (i-LEV) system, it is shown that white and red blood cells can be identified and cell numbers can be quantified without using any labels. In addition, cells levitated in i-LEV can be distinguished at single-cell resolution, potentially enabling diagnosis and monitoring, as well as clinical and research applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Scheeline, A.; Pierre, Z.; Field, C. R.; Ginsberg, M. D.
2009-05-01
Development of microfluidics has focused on carrying out chemical synthesis and analysis in ever-smaller volumes of solution. In most cases, flow systems are made of either quartz, glass, or an easily moldable polymer such as polydimethylsiloxane (Whitesides 2006). As the system shrinks, the ratio of surface area to volume increases. For studies of either free radical chemistry or protein chemistry, this is undesirable. Proteins stick to surfaces, biofilms grow on surfaces, and radicals annihilate on walls (Lewis et al. 2006). Thus, under those circumstances where small amounts of reactants must be employed, typical microfluidic systems are incompatible with the chemistry one wishes to study. We have developed an alternative approach. We use ultrasonically levitated microliter drops as well mixed microreactors. Depending on whether capillaries (to form the drop) and electrochemical sensors are in contact with the drop or whether there are no contacting solids, the ratio of solid surface area to volume is low or zero. The only interface seen by reactants is a liquid/air interface (or, more generally, liquid/gas, as any gas may be used to support the drop). While drop levitation has been reported since at least the 1940's, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fabricated the lowest power levitator in the literature (Field; Scheeline 2007). The low consumption aspects of ordinary microfluidics combine with a contact-free determination cell (the levitated drop) that ensures against cross-contamination, minimizes the likelihood of biofilm formation, and is robust to changes in temperature and humidity (Lide 1992). We report kinetics measurements in levitated drops and explain how outgrowths of these accomplishments will lead to portable chemistry/biology laboratories well suited to detection of a wide range of chemical and biological agents in the asymmetric battlefield environment.
On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies
NASA Astrophysics Data System (ADS)
Ilssar, Dotan; Bucher, Izhak
2015-10-01
This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
2016-07-15
An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...
2016-07-01
We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less
Levitated Duct Fan (LDF) Aircraft Auxiliary Generator
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.
2011-01-01
This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.
NASA Astrophysics Data System (ADS)
Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken
2010-11-01
We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.
NASA Astrophysics Data System (ADS)
Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.
2013-12-01
Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for gas to particle partitioning and heterogeneous chemistry are discussed. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary organic aerosol particles, Nature 467, 824-827. [2] B. Zobrist et al. (2011): Ultra-slow water diffusion in aqueous sucrose glasses, Phys. Chem. Chem. Phys. 13, 3514-3526. [3] D. L. Bones, J. P. Reid, D. M. Lienhard, and U. K. Krieger (2012): Comparing the mechanism of water condensation and evaporation in glassy aerosol, PNAS 109, 11613-11618. [4] O. Peña and U. Pal (2009): Scattering of electromagnetic radiation by a multilayered sphere, Comput. Phys. Commun. 180, 2348-2354.
Bekenstein inequalities and nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Peñafiel, M. L.; Falciano, F. T.
2017-12-01
Bekenstein and Mayo proposed a generalized bound for the entropy, which implies some inequalities between the charge, energy, angular momentum, and size of the macroscopic system. Dain has shown that Maxwell's electrodynamics satisfies all three inequalities. We investigate the validity of these relations in the context of nonlinear electrodynamics and show that Born-Infeld electrodynamics satisfies all of them. However, contrary to the linear theory, there is no rigidity statement in Born-Infeld. We study the physical meaning and the relationship between these inequalities, and in particular, we analyze the connection between the energy-angular momentum inequality and causality.
NASA Technical Reports Server (NTRS)
Oran, W. A.; Reiss, D. A.; Berge, L. H.; Parker, H. W.
1979-01-01
The acoustic fields and levitation forces produced along the axis of a single-axis resonance system were measured. The system consisted of a St. Clair generator and a planar reflector. The levitation force was measured for bodies of various sizes and geometries (i.e., spheres, cylinders, and discs). The force was found to be roughly proportional to the volume of the body until the characteristic body radius reaches approximately 2/k (k = wave number). The acoustic pressures along the axis were modeled using Huygens principle and a method of imaging to approximate multiple reflections. The modeled pressures were found to be in reasonable agreement with those measured with a calibrated microphone.
NASA Astrophysics Data System (ADS)
Wu, J. F.; Li, Y.
2014-10-01
High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.
Large charged drop levitation against gravity
NASA Technical Reports Server (NTRS)
Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.
1987-01-01
A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.
Lunar dust charging by photoelectric emissions
NASA Astrophysics Data System (ADS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-05-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.
2006-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of radii sub-micron size to several micron radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
NASA Astrophysics Data System (ADS)
Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.
2014-10-01
A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He
2017-11-01
During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A - V formulation of magnetoquasistatic Maxwell's equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.
2004-04-15
This picture is an artist's concept of an orbiting vehicle using the Electrodynamic Tethers Propulsion System. Relatively short electrodynamic tethers can use solar power to push against a planetary magnetic field to achieve propulsion without the expenditure of propellant.
Damping in high-temperature superconducting levitation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The dampingmore » of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.« less
Levitation force of small clearance superconductor-magnet system under non-coaxial condition
NASA Astrophysics Data System (ADS)
Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng
2017-03-01
A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.
Damping in high-temperature superconducting levitation systems
Hull, John R [Sammamish, WA
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
A levitation instrument for containerless study of molten materials.
Nordine, Paul C; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert
2012-12-01
A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al(2)O(3) at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y(3)Al(5)O(12) far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al(2)O(3) as a function of temperature. Levitation of dense liquid HfO(2) at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.
A levitation instrument for containerless study of molten materials
NASA Astrophysics Data System (ADS)
Nordine, Paul C.; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert
2012-12-01
A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al2O3 at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y3Al5O12 far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al2O3 as a function of temperature. Levitation of dense liquid HfO2 at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.
Flowfield characteristics of an aerodynamic acoustic levitator
NASA Astrophysics Data System (ADS)
Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.
1997-11-01
A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.
Efficiency determination of an electrostatic lunar dust collector by discrete element method
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta
2012-07-01
Lunar grains become charged by the sun's radiation in the tenuous atmosphere of the moon. This leads to lunar dust levitation and particle deposition which often create serious problems in the costly system deployed in lunar exploration. In this study, an electrostatic lunar dust collector (ELDC) is proposed to address the issue and the discrete element method (DEM) is used to investigate the effects of electrical particle-particle interactions, non-uniformity of the electrostatic field, and characteristics of the ELDC. The simulations on 20-μm-sized lunar particles reveal the electrical particle-particle interactions of the dust particles within the ELDC plates require 29% higher electrostatic field strength than that without the interactions for 100% collection efficiency. For the given ELDC geometry, consideration of non-uniformity of the electrostatic field along with electrical interactions between particles on the same ELDC geometry leads to a higher requirement of ˜3.5 kV/m to ensure 100% particle collection. Notably, such an electrostatic field is about 103 times less than required for electrodynamic self-cleaning methods. Finally, it is shown for a "half-size" system that the DEM model predicts greater collection efficiency than the Eulerian-based model at all voltages less than required for 100% efficiency. Halving the ELDC dimensions boosts the particle concentration inside the ELDC, as well as the resulting field strength for a given voltage. Though a lunar photovoltaic system was the subject, the results of this study are useful for evaluation of any system for collecting charged particles in other high vacuum environment using an electrostatic field.
NASA Astrophysics Data System (ADS)
Soonsin, V.; Krieger, U. K.; Peter, T.
2010-12-01
Organic compounds are a major fraction of tropospheric aerosol. The organic fraction is usually internally mixed with inorganic salts. Surface-active organic matter or surfactants, enriched in the oceanic surface layer and transferred to the atmosphere by bubble-bursting processes, are the most likely candidates to contribute the observed organic fraction in sea salt aerosol [1, 2]. If the organic substance is a surfactant, it will lower the surface tension. In addition aggregates of the organic monomers, called micelles, will form if the concentration of the organic exceeds a certain limit (critical micelle concentration). These aggregates do have different morphology (spheres or globular or rod like micelles, or spherical bilayer vesicles etc.) and size, depending on the nature of the organic molecule, its concentration and the concentration of inorganic salts [3]. These aggregate may promote solubilisation of organic compounds in aqueous atmospheric aerosol. We performed measurements of ternary aqueous solution particles consisting of tetraethylene glycol monooctyl ether (C8E4) as organic surfactant and sodium chloride (NaCl) as inorganic salt and water (H2O) using single levitated aerosol particles in an electrodynamic balance. The particles can be stored contact-free in a temperature and humidity controlled chamber and optical resonance spectroscopy is used to monitor radius change [4]. Mie resonance spectra of ternary droplets show discontinuous growth with increasing relative humidity (RH) and also discontinuous shrinkage with decreasing relative humidity. We observe this behavior at temperatures and RHs at which the salt is completely deliquesced and the concentration of the organic surfactant is larger than the critical micelle concentration. Independent measurements of particle mass show also discontinuous water uptake. We speculate that this discontinuous, step-like, growth is caused by disaggregation of a micelle needed to conserve the monolayer of surfactant molecules on the aqueous aerosol particle surface upon growing. The number of molecules of the disaggregating micelle can be deduced from the known polar surface area of the C8E4 molecule and the surface area increase of the aerosol particle calculated from the step increase in radius. Our measurements yield a broad distribution of aggregation numbers with a peak aggregation number of 105 molecules. This number agrees reasonably well with aggregate sizes directly observed with Cryo-TEM in a related system [5]. References: [1] Oppo, C., Bellandi, S., Degli Innocenti, N., Stortini, A.M., Loglio, G., Schiavuta, E., & Cini, R., Marine Chemistry, 63, 235-253, 1999. [2] O'Dowd, C.D., Facchini, M.C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon, Y.J., & Putaud, J.P., Nature, 431, 676-680, 2004. [3] Israelachvili, J.N., Intermolecular and surface forces, Academic press London, 1991. [4] Zardini, A.A., Krieger, U.K., & Marcolli, C., Optics Express, 14, 6951-6962, 2006. [5] Bernheim-Groswasser, A., Wachtel E., & Talmon, Y., Langmuir, 16, 4131-4140, 2000.
Development of a sorption rate technique for single zeolite crystals using an electrodynamic balance
NASA Astrophysics Data System (ADS)
Welegala, Mark Joseph
Conventional means for evaluating intracrystalline diffusion in zeolites are complicated by extracrystalline mass transport resistances, crystallite size distribution, sorption heat effects, and finite instrument response times. A potentially direct means of overcoming these problems is to study sorption uptake on a single crystal suspended within a flowing gas stream in an electrodynamic balance (EDB). The objectives of this research were to design, build and investigate the viability of using such a device for obtaining diffusion coefficients from simple sorbate/zeolite systems, by computing the sorption uptake curve from the levitation voltage as a function of time. The initial electronic cell design was strongly influenced by flow mixing considerations. Accordingly, the conventional bihyperboloid electrode configuration was discarded in favor of novel four-ring (4R), and later two-ring/two-screen (2R/2S) designs with cylindrical interior geometries. A detailed numerical model based on the Method of Discrete Charges (MDC) was developed and used to aid in the design and operational understanding of these cells. Several 2R/2S designs were built and tested, including teflon/mica composite and ceramic cells capable of withstanding up to 750oF, for in situ activation of the zeolites. The diffusion of carbon dioxide in zeolite A was selected for testing due to the large differential weight change (10-20%) which occurs at ambient conditions and the availability of reliable experimental diffusion results (Yucel and Ruthven, 1980a). In addition to the carbon dioxide sorbate, water on zeolite 4A and a system relatively immune to atmospheric contamination, CO2 on activated carbon were also studied. Laboratory 4A crystals of up to 45 μm were grown using Charnell's method. These large solid particles were captured using a dry charging technique, and held during elevated temperature dehydration. Preliminary experimentation introduced externally dried crystals to the cell chamber in 0.5-3 minutes. Only minimal desorption results with carbon dioxide and later, adsorption for water vapor, were obtained. Further experiments revealed that crystal contamination from laboratory air can be considerable in less than one minute, thereby preadsorbing airborne water vapor. The experimental methodology was changed to include in situ heating. Subsequent attempts to circumvent laser heating of the particle had limited success. Particle loss, (due to excessive charge loss) and cell material degradation limited the process to null point temperatures of approximately 260oC, which is insufficient for complete zeolite dehydration. Early, it was demonstrated that gas compositions could be switched while flowing without losing the particle. However, the resulting concentration transient imposes an ultimate limitation on the technique for application to rapidly diffusing systems. Also, the fact that the technique is gravimetric requires that the diffusing species must be appreciably adsorbed at ambient conditions. Thus the single crystal sorption apparatus based on the electrodynamic containment device would appear to have use primarily for strongly adsorbed and slowly diffusing species. (Abstract shortened by UMI.)
Optical sample-position sensing for electrostatic levitation
NASA Technical Reports Server (NTRS)
Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.
1989-01-01
A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.
A magnetic levitation rotating plate model based on high-Tc superconducting technology
NASA Astrophysics Data System (ADS)
Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang
2017-09-01
With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.
Magnetic levitation systems for future aeronautics and space research and missions
NASA Technical Reports Server (NTRS)
Blankson, Isaiah M.; Mankins, John C.
1996-01-01
The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.
Code of Federal Regulations, 2011 CFR
2011-10-01
... TRANSPORTATION MAGNETIC LEVITATION TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.1 Definitions. As..., including land, piers, guideways, propulsion equipment and other components attached to guideways, power... described in § 268.3. Maglev means transportation systems employing magnetic levitation that would be...
Levitation force of melt-textured YBCO superconductors under non-quasi-static situation
NASA Astrophysics Data System (ADS)
Zhao, Z. M.; Xu, J. M.; Yuan, X. Y.; Zhang, C. P.
2018-06-01
The superconducting levitation force of a simple superconductor-magnet system under non-quasi-static situation is investigated experimentally. Two yttrium barium copper oxide (YBCO) samples with different performances are chosen from two small batches of samples prepared by the top-seeded melt-textured growth process. The residual carbon content of the precursor powders of the two batches is different due to different heat treatment processes. During the experimental process for measuring the levitation force, the value of the relative speed between the YBCO sample and the permanent magnet is higher than that in conventional studies. The variation characteristics of the superconducting levitation force are analyzed and a crossing phenomenon in the force-displacement hysteresis curves is observed. The results indicate that the superconducting levitation force is different due to the different residual carbon contents. As residual carbon contents reduce, the crossing phenomenon is more obvious accordingly.
Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng
2011-01-01
A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662
Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics
NASA Astrophysics Data System (ADS)
Fabbri, Luca; da Rocha, Roldão
2018-05-01
We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.
Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.
2016-01-01
The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.
Non-contact temperature measurement requirements
NASA Technical Reports Server (NTRS)
Higgins, D. B.; Witherow, W. K.
1989-01-01
The Marshall Space Flight Center is involved with levitation experiments for Spacelab, Space Station, and drop tube/tower operations. These experiments have temperature measurement requirements, that of course must be non-contact in nature. The experiment modules involved are the Acoustic Levitator Furnace (ALF), and the Modular Electromagnetic Levitator (MEL). User requirements of the ALF and drop tube are presented. The center also has temperature measurement needs that are not microgravity experiment oriented, but rather are related to the propulsion system for the STS. This requirement will also be discussed.
Kremer, J; Kilzer, A; Petermann, M
2018-01-01
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.
NASA Astrophysics Data System (ADS)
Kremer, J.; Kilzer, A.; Petermann, M.
2018-01-01
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.
An Overview of Electrodynamic Tether Performance in the Jovian System
NASA Technical Reports Server (NTRS)
Gallagher, Dennis; Johnson, Les; Bagenal, Fran; Moore, James
1998-01-01
The Jovian magnetosphere with its strong magnetic field and rapid planetary rotation present new opportunities and challenges for the use of electrodynamic tethers. An overview of the basic plasma physics properties of an electrodynamic tether moving through the Jovian magnetosphere is examined. Tether use for both propulsion and power generation are considered. Close to the planet, tether propulsive forces are found to be as high as 50 Newtons and power levels as high as 1 million Watts.
Magnetic levitation of single cells
Durmus, Naside Gozde; Tekin, H. Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan
2015-01-01
Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10−4 g⋅mL−1. We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131
NASA Astrophysics Data System (ADS)
Ermoline, Alexandre
The general objective of this work is to develop an experimental technique for studying the high-temperature phase compositions and phase equilibria in molten metal-based binary and ternary systems, such as Zr-O-N, B-N-O, Al-O, and others. A specific material system of Zr-O-N was selected for studying and testing this technique. The information about the high-temperature phase equilibria in reactive metal-based systems is scarce and their studying is difficult because of chemical reactions occurring between samples and essentially any container materials, and causing contamination of the system. Containerless microgravity experiments for studying equilibria in molten metal-gas systems were designed to be conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. A uniaxial apparatus suitable for acoustic levitation, laser heating, and splat quenching of small samples was developed and equipped with computer-based controller and optical diagnostics. Normal-gravity tests were conducted to determine the most suitable operating parameters of the levitator by direct observations of the levitated samples, as opposed to more traditional pressure mapping of the acoustic field. The size range of samples that could be reliably heated and quenched in this setup was determined to be on the order of 1--3 mm. In microgravity experiments, small spherical specimens (1--2 mm diameter), prepared as pressed, premixed solid components, ZrO2, ZrN, and Zr powders, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser. The levitating samples could be continuously laser heated for about 1 sec, resulting in local sample melting. The sample stability in the vertical direction was undisturbed by simultaneous laser heating. Oscillations of the levitating sample in the horizontal direction increased while it was heated, which eventually resulted in the movement of the sample away from its stable levitation position and the laser beam. The follow-up on-ground experiments were conducted to study phase relations in the Zr-O-N system at high-temperatures. Samples with specific compositions were laser-heated above the melt formation and naturally cooled. Recovered samples were characterized using electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Results of these analyses combined with the interpretations of the binary Zr-O and Zr-N phase diagrams enabled us to outline the liquidus and the subsolidus equilibria for the ternary Zr-ZrO2-ZrN phase diagrams. Further research is suggested to develop the microgravity techniques for detailed characterization of high-temperature relations in the reactive, metal based systems.
Acoustic Levitator Maintains Resonance
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Gaspar, M. S.
1986-01-01
Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.
Dynamics and interactions of particles in a thermophoretic trap
NASA Astrophysics Data System (ADS)
Foster, Benjamin; Fung, Frankie; Fieweger, Connor; Usatyuk, Mykhaylo; Gaj, Anita; DeSalvo, B. J.; Chin, Cheng
2017-08-01
We investigate dynamics and interactions of particles levitated and trapped by the thermophoretic force in a vacuum cell. Our analysis is based on footage taken by orthogonal cameras that are able to capture the three dimensional trajectories of the particles. In contrast to spherical particles, which remain stationary at the center of the cell, here we report new qualitative features of the motion of particles with non-spherical geometry. Singly levitated particles exhibit steady spinning around their body axis and rotation around the symmetry axis of the cell. When two levitated particles approach each other, repulsive or attractive interactions between the particles are observed. Our levitation system offers a wonderful platform to study interaction between particles in a microgravity environment.
Cavity opto-mechanics using an optically levitated nanosphere
Chang, D. E.; Regal, C. A.; Papp, S. B.; Wilson, D. J.; Ye, J.; Painter, O.; Kimble, H. J.; Zoller, P.
2010-01-01
Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach to this problem, in which optically levitating a nano-mechanical system can greatly reduce its thermal contact, while simultaneously eliminating dissipation arising from clamping. Through the long coherence times allowed, this approach potentially opens the door to ground-state cooling and coherent manipulation of a single mesoscopic mechanical system or entanglement generation between spatially separate systems, even in room-temperature environments. As an example, we show that these goals should be achievable when the mechanical mode consists of the center-of-mass motion of a levitated nanosphere. PMID:20080573
Design of a Low-Cost Air Levitation System for Teaching Control Engineering
Chacon, Jesus; Saenz, Jacobo; de la Torre, Luis; Diaz, Jose Manuel; Esquembre, Francisco
2017-01-01
Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system’s nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab. PMID:29023381
Optimization of levitation and guidance forces in a superconducting Maglev system
NASA Astrophysics Data System (ADS)
Yildizer, Irfan; Cansiz, Ahmet; Ozturk, Kemal
2016-09-01
Optimization of the levitation for superconducting Maglev systems requires effective use of vertical and guidance forces during the operation. In this respect the levitation and guidance forces in terms of various permanent magnet array configurations are analyzed. The arrangements of permanent magnet arrays interacting with the superconductor are configured for the purpose of increasing the magnetic flux density. According to configurations, modeling the interaction forces between the permanent magnet and the superconductor are established in terms of the frozen image model. The model is complemented with the analytical calculations and provides a reasonable agreement with the experiments. The agreement of the analytical calculation associated with the frozen image model indicates a strong case to establish an optimization, in which provides preliminary analysis before constructing more complex Maglev system.
NASA Astrophysics Data System (ADS)
Johnson, L. R.; Giese, R. F.
1988-04-01
The potential for magnetically levitated (MAGLEV) vehicles is discussed as a means of both inter-city travel and a technology option to relieve the growing problem of air traffic congestion. A brief summary is presented of the two primary MAGLEV concepts: (1) the attractive-force, electromagnetic system (EMS) and (2) the repulsive-force, electrodynamic system (EDS), and continues with a discussion of the advantages, potential for reduced costs and higher reliability, that the newly-discovered, high-temperature superconductors offer for EDS MAGLEV vehicles. A summary of the current status of worldwide MAGLEV research is presented, followed by a discussion of the resurgence of US interest in MAGLEV. An analysis of air-traffic congestion suggests that MAGLEV can substitute for short-to-medium distance air travel. By promoting MAGLEV as an airline technology, airlines can retain their familiar hub-and-spoke systems with MAGLEVs an integral part of the spoke portion. A preliminary analysis suggests that MAGLEV capital costs are likely to be comparable to those of interstate highways, and use of MAGLEVs can delay the need for new airport construction. For each short-to-medium flight diverted to MAGLEV, an airline can substitute a longer flight. The short-haul flights use an inordinate amount of fuel, which is a major component of airline operating costs. MAGLEV energy consumption would be significantly less and would not have the emissions associated with petroleum fuel. Finally, passengers should benefit from MAGLEV technology: travel options will be extended, delays will be reduced, and costs for inter-city travel will be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, L.R.; Giese, R.F.
1988-01-01
The potential for magnetically levitated (MAGLEV) vehicles is discussed as a means of both inter-city travel and a technology option to relieve the growing problem of air traffic congestion. A brief summary is presented of the two primary maglev concepts: (1) the attractive-force, electromagnetic system (EMS) and (2) the repulsive-force, electrodynamic system (EDS), and continues with a discussion of the advantages, potential for reduced costs and higher reliability, that the newly-discovered, high-temperature superconductors offer for EDS maglev vehicles. A summary of the current status of worldwide maglev research is presented, followed by a discussion of the resurgence of US interestmore » in maglev. An analysis of air-traffic congestion suggests that maglev can substitute for short-to-medium distance air travel. By promoting maglev as an airline technology, airlines can retain their familiar hub-and-spoke systems with maglevs an integral part of the spoke portion. A preliminary analysis suggests that maglev capital costs are likely to be comparable to those of interstate highways, and use of maglevs can declay the need for new airport and construction. For each short-to-medium flight diverted to maglev, an airline can substitute a longer flight. The short-haul flights use an inordinate amount of fuel, which is a major component of airline operating costs. Maglev energy consumption would be significantly less and would not have the emissions associated with petroleum fuel. Finally, passengers should benefit from maglev technology: travel options will be extended, delays will be reduced, and costs for inter-city travel will be reduced.« less
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; SanSoucie, Michael P.
2017-08-01
Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.
Optical levitation particle delivery system for a dual beam fiber optic trap.
Gauthier, R C; Frangioudakis, A
2000-01-01
We combine a radiation-pressure-based levitation system with a dual fiber, laser trapping system to demonstrate the potential of delivering single particles into the fiber trap. The forces versus position and the trajectory of the particle subjected to the laser beams are examined with an enhanced ray optics model. A sequence of video images taken from the experimental apparatus demonstrates the principle of particle delivery, trapping, and further manipulation.
Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers
Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat
2014-01-01
Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973
The effect of acoustically levitated objects on the dynamics of ultrasonic actuators
NASA Astrophysics Data System (ADS)
Ilssar, D.; Bucher, I.
2017-03-01
This paper presents a comprehensive model, coupling a piezoelectric actuator operating at ultrasonic frequencies to a near-field acoustically levitated object through a compressible thin layer of gas such that the combined dynamic response of the system can be predicted. The latter is derived by introducing a simplified model of the nonlinear squeezed layer of gas and a variational model of the solid structure and the piezoelectric elements. Since the harmonic forces applied by the entrapped fluid depend on the levitated object's height and vertical motion, the latter affects the impedance of the driving surface, affecting the natural frequencies, damping ratios, and amplification of the actuator. Thus, the developed model is helpful when devising a resonance tracking algorithm aimed to excite a near-field acoustic levitation based apparatus optimally. Validation of the suggested model was carried out using a focused experimental setup geared to eliminate the effects that were already verified in the past. In agreement with the model, the experimental results showed that the natural frequency and damping ratio of a designated mode decrease monotonically with the levitated object's average height, whereas the amplification of the mode increases with the levitation height.
A Simple, Inexpensive Acoustic Levitation Apparatus
NASA Astrophysics Data System (ADS)
Schappe, R. Scott; Barbosa, Cinthya
2017-01-01
Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite costly; we wanted to develop a simple, inexpensive system to demonstrate this visually striking example of standing waves. A search of the literature produced only one article relevant to creating such an apparatus, but the authors' approach uses a test tube, which limits the access to the standing wave. Our apparatus, shown in Fig. 1, can levitate multiple small (1-2 mm) pieces of expanded polystyrene (Styrofoam) using components readily available to most instructors of introductory physics. Acoustic levitation occurs in small, stable equilibrium locations where the weight of the object is balanced by the acoustic radiation force created by an ultrasonic standing wave; these locations are slightly below the pressure nodes. The levitation process also creates a horizontal restoring force. Since the pressure nodes are also velocity antinodes, this transverse stability may be analogous to the effect of an upward air stream supporting a ball.
Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology
NASA Astrophysics Data System (ADS)
Cui, Feng; Chen, Wenyuan; Su, Yufeng; Zhang, Weiping; Zhao, Xiaolin
2004-12-01
The prevailing micromachined vibratory gyroscope typically has a proof mass connected to the substrate by a mechanical suspension system, which makes it face a tough challenge to achieve tactical or inertial grade performance levels. With a levitated rotor as the proof mass, a micromachined rotational gyroscope will potentially have higher performance than vibratory gyroscope. Besides working as a moment rebalance dual-axis gyroscope, the micromachined rotational gyroscope based on a levitated rotor can simultaneously work as a force balance tri-axis accelerometer. Micromachined rotational gyroscope based on an electrostatically levitated silicon micromachined rotor has been notably developed. In this paper, factors in designing a rotational gyro/accelerometer based on an electrostatically levitated disc-like rotor, including gyroscopic action of micro rotor, methods of stable levitation, micro displacement detection and control, rotation drive and speed control, vacuum packaging and microfabrication, are comprehensively considered. Hence a design of rotational gyro/accelerometer with an electroforming nickel rotor employing low cost UV-LIGA technology is presented. In this design, a wheel-like flat rotor is proposed and its basic dimensions, diameter and thickness, are estimated according to the required loading capability. Finally, its micromachining methods based on UV-LIGA technology and assembly technology are discussed.
Electrostatically Levitated Ring-Shaped Rotational-Gyro/Accelerometer
NASA Astrophysics Data System (ADS)
Murakoshi, Takao; Endo, Yasuo; Fukatsu, Keisuke; Nakamura, Sigeru; Esashi, Masayoshi
2003-04-01
This paper reports an electrostatically levitated inertia measurement system which is based on the principle of a rotational gyro. The device has several advantages: the levitation of the rotor in a vacuum eliminates mechanical friction resulting in high sensitivity; the position control for the levitation allows accelerations to be sensed in the tri-axis; and the fabrication of the device by a micromachining technique has the cost advantages afforded by miniaturization. Latest measurements yield a noise floor of the gyro and that of the accelerometer as low as 0.15 deg/h1/2 and 30 μG/Hz1/2, respectively. This performance is achieved by a new sensor design. To further improve of the previous device, a ring-shaped structure is designed and fabricated by deep reactive ion etching using inductively coupled plasma. The rotor levitation is performed with capacitive detection and electrostatic actuation. Multiaxis closed-loop control is realized by differential capacitance sensing and frequency multiplying. The rotation of the micro gyro is based on the principle of a planar variable capacitance motor.
BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory
NASA Astrophysics Data System (ADS)
Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid
It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.
Modeling and control for a magnetic levitation system based on SIMLAB platform in real time
NASA Astrophysics Data System (ADS)
Yaseen, Mundher H. A.; Abd, Haider J.
2018-03-01
Magnetic Levitation system becomes a hot topic of study due to the minimum friction and low energy consumption which regards as very important issues. This paper proposed a new magnetic levitation system using real-time control simulink feature of (SIMLAB) microcontroller. The control system of the maglev transportation system is verified by simulations with experimental results, and its superiority is indicated in comparison with previous literature and conventional control strategies. In addition, the proposed system was implemented under effect of three controller types which are Linear-quadratic regulator (LQR), proportional-integral-derivative controller (PID) and Lead compensation. As well, the controller system performance was compared in term of three parameters Peak overshoot, Settling time and Rise time. The findings prove the agreement of simulation with experimental results obtained. Moreover, the LQR controller produced a great stability and homogeneous response than other controllers used. For experimental results, the LQR brought a 14.6%, 0.199 and 0.064 for peak overshoot, Setting time and Rise time respectively.
Parametrically excited motion of a levitated rigid bar over high- Tc superconducting bulks
NASA Astrophysics Data System (ADS)
Shimizu, T.; Sugiura, T.; Ogawa, S.
2006-10-01
High-Tc superconducting levitation systems achieve, under no contact support, stable levitation without control. This feature can be applied to flywheels, magnetically levitated trains, and so on. But no contact support has small damping. So these mechanisms can show complicated phenomena of dynamics due to nonlinearity in their magnetic force. For application to large-scale machines, we need to analyze dynamics of a large levitated body supported at multiple points. This research deals with nonlinearly coupled oscillation of a homogeneous and symmetric rigid bar supported at its both ends by equal electromagnetic forces between superconductors and permanent magnets. In our past study, using a rigid bar, we found combination resonance. Combination resonance happens owing to the asymmetry of the system. But, even if support forces are symmetric, parametric resonance can happen. With a simple symmetric model, this research focuses on especially the parametric resonance, and evaluates nonlinear effect of the symmetric support forces by experiment and numerical analysis. Obtained results show that two modes, caused by coupling of horizontal translation and roll motion, can be excited nonlinearly when the superconductor is excited vertically in the neighborhood of twice the natural frequencies of those modes. We confirmed these resonances have nonlinear characteristics of soft-spring, hysteresis and so on.
A Lab Based Method for Exoplanet Cloud and Aerosol Characterization
NASA Astrophysics Data System (ADS)
Johnson, A. V.; Schneiderman, T. M.; Bauer, A. J. R.; Cziczo, D. J.
2017-12-01
The atmospheres of some smaller, cooler exoplanets, like GJ 1214b, lack strong spectral features. This may suggest the presence of a high, optically thick cloud layer and poses great challenges for atmospheric characterization, but there is hope. The study of extraterrestrial atmospheres with terrestrial based techniques has proven useful for understanding the cloud-laden atmospheres of our solar system. Here we build on this by leveraging laboratory-based, terrestrial cloud particle instrumentation to better understand the microphysical and radiative properties of proposed exoplanet cloud and aerosol particles. The work to be presented focuses on the scattering properties of single particles, that may be representative of those suspended in exoplanet atmospheres, levitated in an Electrodynamic Balance (EDB). I will discuss how we leverage terrestrial based cloud microphysics for exoplanet applications, the instruments for single and ensemble particle studies used in this work, our investigation of ammonium nitrate (NH4NO3) scattering across temperature dependent crystalline phase changes, and the steps we are taking toward the collection of scattering phase functions and polarization of scattered light for exoplanet cloud analogs. Through this and future studies we hope to better understand how upper level cloud and/or aerosol particles in exoplanet atmospheres interact with incoming radiation from their host stars and what atmospheric information may still be obtainable through remote observations when no spectral features are observed.
Electrodynamic Tether Propulsion and Power Generation at Jupiter
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Johnson, L.; Moore, J.; Bagenal, F.
1998-01-01
The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, Donald M.; He, Jianliang; Johnson, Larry R.
1994-01-01
A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, D.M.; He, J.; Johnson, L.R.
1994-01-04
A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.
Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
Rote, D.M.; He, Jianliang; Johnson, L.R.
1992-01-01
This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, C. J., E-mail: c.price10@imperial.ac.uk; Giltrap, S.; Stuart, N. H.
2015-03-15
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets inmore » vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10{sup 17} W cm{sup −2}) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.« less
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang
2017-05-01
In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.
NASA Astrophysics Data System (ADS)
Price, C. J.; Donnelly, T. D.; Giltrap, S.; Stuart, N. H.; Parker, S.; Patankar, S.; Lowe, H. F.; Drew, D.; Gumbrell, E. T.; Smith, R. A.
2015-03-01
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ˜40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ˜7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (1017 W cm-2) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.
DOT National Transportation Integrated Search
1992-04-01
The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). This report catalogs and documents detailed magnet...
DOT National Transportation Integrated Search
1992-02-01
The safety of various magnetically levitated (maglev) trains underdevelopment for possible : implementation in the United States is ofdirect concern to the Federal Railroad Administration (FRA). : This report is the second in a series of reports addr...
Design and implementation of a magnetically suspended microrobotic pick-and-place system
NASA Astrophysics Data System (ADS)
Shameli, Ehsan; Craig, David G.; Khamesee, Mir Behrad
2006-04-01
Micromanipulation is an emerging technology in such diverse areas as precision engineering, microfabrication, and microsurgery. Each of these areas impose certain technological constraints and requirements in fabrication, actuation, and control. This paper performs a review on the latest technologies of microrobotic actuation techniques and suggests a suitable technique for the actuation of a magnetically levitated microrobot. The microrobot, suspended in an externally produced magnetic field, consists of a gripper attached to a series of permanent magnets and is capable of simple pick and place tasks. A number of electromagnets produce the external magnetic field and three laser sensors feedback the position of the levitated microrobot. Through finite element analysis, performance of the levitation system was investigated, and simulations and experiments were carried out to demonstrate the practical capabilities of the proposed system.
Stable thermophoretic trapping of generic particles at low pressures
NASA Astrophysics Data System (ADS)
Fung, Long Fung Frankie
2017-04-01
We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in medium vacuum through thermophoresis. Typical sizes of the trapped particles are between 10 μm and 1 mm; air pressure is between 1 and 10 Torr. We describe the experimental setup used to produce the temperature gradient, as well as our procedure for introducing particles into the experimental setup. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment. NSF MRSEC Grant No. DMR-1420709.
Optical motion control of maglev graphite.
Kobayashi, Masayuki; Abe, Jiro
2012-12-26
Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.
Meissner-levitated micro-systems
NASA Astrophysics Data System (ADS)
Coombs, T. A.; Samad, I.; Hong, Z.; Eves, D.; Rastogi, A.
2006-06-01
Advanced silicon processing techniques developed for the Very Large Scale Integration (VLSI) industry have been exploited in recent years to enable the production of micro-fabricated moving mechanical systems known as Micro Electro Mechanical Systems (MEMS). These devices offer advantages in terms of cost, scalability and robustness over their preceding equivalents. Cambridge University have worked for many years on the investigation of high temperature superconductors (HTS) in flywheel energy storage applications. This experience is now being used to research into superconducting Micro-Bearings for MEMS, whereby circular permanent magnet arrays are levitated and spun above a superconductor to produce bearings suitable for motors and other micron scale devices. The novelty in the device lies in the fact that the rotor is levitated into position by Meissner flux exclusion, whilst stability is provided by flux pinned within the body of the superconductor. This work includes: the investigation of the properties of various magnetic materials, their fabrication processes and their suitability for MEMS; finite element analysis to analyse the interaction between the magnetic materials and YBCO to determine the stiffness and height of levitation. Finally a micro-motor with the above principles is currently being fabricated within the group.
Magnetic levitation assisted aircraft take-off and landing (feasibility study - GABRIEL concept)
NASA Astrophysics Data System (ADS)
Rohacs, Daniel; Rohacs, Jozsef
2016-08-01
The Technology Roadmap 2013 developed by the International Air Transport Association envisions the option of flying without an undercarriage to be in operation by 2032. Preliminary investigations clearly indicate that magnetic levitation technology (MagLev) might be an appealing solution to assist the aircraft take-off and landing. The EU supported research project, abbreviated as GABRIEL, was dealing with (i) the concept development, (ii) the identification, evaluation and selection of the deployable magnetic levitation technology, (iii) the definition of the core system elements (including the required aircraft modifications, the ground-based system and airport elements, and the rendezvous control system), (iv) the analysis of the safety and security aspects, (v) the concept validation and (vi) the estimation of the proposed concept impact in terms of aircraft weight, noise, emission, cost-benefit). All results introduced here are compared to a medium size hypothetic passenger aircraft (identical with an Airbus A320). This paper gives a systematic overview of (i) the applied methods, (ii) the investigation of the possible use of magnetic levitation technology to assist the commercial aircraft take-off and landing processes and (iii) the demonstrations, validations showing the feasibility of the radically new concept. All major results are outlined.
Cavity optomechanics in a levitated helium drop
NASA Astrophysics Data System (ADS)
Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.
2017-12-01
We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.
Design and Development of an Acoustic Levitation System for Use in CVD Growth of Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Qasem, Amal ali
The most widely used methods for growth of carbon nanotubes (CNTs) arc discharge, laser ablation, and chemical vapor deposition (CVD). Some of these methods have difficulties, such as controlling the quality and straightness of the nanotube in the synthesis of CNTs from substrates. Also, the enhanced plasma chemical vapor deposition method with the catalyst on a substrate produces straighter, larger diameter nanotubes by the tip growth method, but they are short. The difficulty in the floating catalyst method is that the nanotubes stay in the growth furnace for short times limiting growth to about one mm length; this method also leaves many catalyst impurities. One factor that limits CNT growth in these methods is the difficulty of getting enough carbon atoms to the growth catalyst to grow long nanotubes. The motivation of this work is that longer, higher quality nanotubes could be grown by increasing growth time and by increasing carbon atom movement to catalyst. The goal of this project is to use acoustic levitation to assist chemical vapor deposition growth by trapping and vibrating the growing CNTs for better properties. Our levitation system consists of a piezoelectric transducer attached to an aluminum horn and quartz rod extending into the growth furnace. The most important elements of our methods to achieve the acoustic levitation are as follows. 1. Using COMSOL Multi-physic Simulation software to determine the length of quartz rod needed to excite standing waves for levitation in the tube furnace. 2. Determining the resonance frequency of different transducers and horns. 3. Using ultrasound measurement to determine the time of flight, velocity of sound and sound wavelength of different horns. 4. Making Aluminum horns with the appropriate lengths. 5. Using ultrasound measurement to determine the changing of quartz rod velocity of sound and length in the furnace. 6. Mounting the transducer to booster horn and aluminum cylindrical horn above a reflector to produce the standing waves. The levitation of small Styrofoam balls was successful by using this system and verified wavelengths of standing wave and position of levitation. We could not levitate powders, most likely due to electrostatic charging, air currents, but most importantly insufficient power to drive transducer. In addition, we built a CVD growth furnace with ultrasound transducer- horn- quartz rod and reflector. The reflector support also included a sense piezoelectric element for determining standing wave strength. This reflector support was mounted on a linear translation stage to control the quartz rod-reflector separation to produce standing waves. To remove the contaminated unwanted CNTs, we built a separate tube furnace tube filled with a molecular sieve to burn the CNT's in air. Finally, we made catalyst-coated, ceramic microparticles for levitation and used these to verify CNT growth. Future efforts research would be to levitate these micro particles at room temperature then in the high temperature furnace for growth of carbon nanotubes.
Electrodynamics panel presentation
NASA Technical Reports Server (NTRS)
Mccoy, J.
1986-01-01
The Plasma Motor Generator (PMG) concept is explained in detail. The PMG tether systems being used to calculate the estimated performance data is described. The voltage drops and current contact geometries involved in the operation of an electrodynamic tether are displayed illustrating the comparative behavior of hollow cathodes, electron guns, and passive collectors for current coupling into the ionosphere. The basic PMG design involving the massive tether cable with little or no satellite mass at the far end(s) are also described. The Jupiter mission and its use of electrodynamic tethers are given. The need for demonstration experiments is stressed.
Experiments on Dust Grain Charging
NASA Technical Reports Server (NTRS)
Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.
2004-01-01
Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.
Hybrid test on building structures using electrodynamic fatigue test machine
NASA Astrophysics Data System (ADS)
Xu, Zhao-Dong; Wang, Kai-Yang; Guo, Ying-Qing; Wu, Min-Dong; Xu, Meng
2017-01-01
Hybrid simulation is an advanced structural dynamic experimental method that combines experimental physical models with analytical numerical models. It has increasingly been recognised as a powerful methodology to evaluate structural nonlinear components and systems under realistic operating conditions. One of the barriers for this advanced testing is the lack of flexible software for hybrid simulation using heterogeneous experimental equipment. In this study, an electrodynamic fatigue test machine is made and a MATLAB program is developed for hybrid simulation. Compared with the servo-hydraulic system, electrodynamic fatigue test machine has the advantages of small volume, easy operation and fast response. A hybrid simulation is conducted to verify the flexibility and capability of the whole system whose experimental substructure is one spring brace and numerical substructure is a two-storey steel frame structure. Experimental and numerical results show the feasibility and applicability of the whole system.
Electrodynamic tether system study: Extended study
NASA Technical Reports Server (NTRS)
1988-01-01
This document is the final report of a study performed by Ball Space Systems Division (BSSD) for the NASA Johnson Space Center under an extension to contract NAS9-17666. The tasks for the extended study were as follows: (1) Define an interface between the Electrodynamic Tether System (ETS) and the Space Station (SS); (2) Identify growth paths for the 100 kW ETS defined in the original study to a 200 kW level of performance; (3) Quantify orbit perturbations caused by cyclic day/night operations of a Plasma Motor/Generator (PMG) on the SS and explore methods of minimizing these effects; (4) Define the analyses, precursor technology, ground tests, and precursor demonstrations leading up to a demonstration mission for an electrodynamic tether system that would be capable of producing maneuvering thrust levels of 25 newtons; and (5) Propose a development schedule for the demonstration mission and preliminary cost estimates.
Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films
NASA Technical Reports Server (NTRS)
Schoenhuber, P.; Moon, F. C.
1995-01-01
Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation forces, e.g. microgravity - magnetic damping devices.
Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.
Puskar, Ljiljana; Tuckermann, Rudolf; Frosch, Torsten; Popp, Jürgen; Ly, Vanalysa; McNaughton, Don; Wood, Bayden R
2007-09-01
Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells. The spectra obtained have an excellent signal-to-noise ratio and demonstrate for the first time the utility of the technique as a diagnostic and monitoring tool for minute sample volumes of living animal cells.
Experimental determination of the dynamics of an acoustically levitated sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, Nicolás, E-mail: nico@fisica.edu.uy; Andrade, Marco A. B.; Canetti, Rafael
2014-11-14
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents amore » damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.« less
Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos
2012-02-01
The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland
2016-10-01
Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.
Experimental determination of the dynamics of an acoustically levitated sphere
NASA Astrophysics Data System (ADS)
Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.
2014-11-01
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Vermilion, David J.; Rogers, Jan R.
2015-01-01
The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. A summary of the labs capabilities, recent upgrades, and ongoing and future work will be provided. The laboratory has recently added two new capabilities to its main levitation chamber: a rapid quench system and an oxygen control system. The rapid quench system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. The oxygen control system consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity between two gas compartments separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The ESL laboratory also has an emissometer, called the High-Temperature Emissivity Measurement System (HiTEMS). This system measures the spectral emissivity of materials from 600degC to 3,000degC. The system consists of a vacuum chamber, a black body source, and a Fourier Transform Infrared Spectrometer (FTIR). The system utilizes optics to swap the signal between the sample and the black body. The system was originally designed to measure the hemispherical spectral emissivity of levitated samples, which are typically 2.5mm spheres. Levitation allows emissivity measurements of molten samples, but more work is required to develop this capability. The system is currently setup measure the near-normal spectral emissivity of stationary samples, which has been used to take measurements of ablative materials, rocket nozzle coating materials, and materials for spacecraft instruments.
Large-scale HTS bulks for magnetic application
NASA Astrophysics Data System (ADS)
Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter
2013-01-01
ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.
Levitation Technology in International Space Station Research
NASA Technical Reports Server (NTRS)
Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.
2016-01-01
The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies for biomedical applications. Levitation is also used as a modeled microgravity ground analog in the NASA OsteoOmics ISS investigation, which tests whether magnetic levitation accurately simulates microgravity conditions by studying gravitational regulation of osteoblast and osteoclast genomics and metabolism. Elucidating the cellular mechanisms of bone loss in microgravity contributes to the understanding of bone loss in medical disorders on Earth, which may lead to development of preventive or therapeutic countermeasures. Thus, the ISS state-of-the-art laboratory offers various levitation capability platforms with applications for innovative research in Materials and Life Sciences disciplines, with benefits for humanity.
Review of Progress in Acoustic Levitation
NASA Astrophysics Data System (ADS)
Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.
2018-04-01
Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.
NASA Technical Reports Server (NTRS)
Rey, Charles A.
1991-01-01
The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.
Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond
NASA Astrophysics Data System (ADS)
Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.
2015-10-01
Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.
NASA Astrophysics Data System (ADS)
Rey, Charles A.
1991-03-01
The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.
Acoustic levitator for structure measurements on low temperature liquid droplets.
Weber, J K R; Rey, C A; Neuefeind, J; Benmore, C J
2009-08-01
A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 degrees C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of approximately 22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.
Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don
2005-08-01
We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments.
Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D
2016-08-21
We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.
Acoustic levitator for structure measurements on low temperature liquid droplets
NASA Astrophysics Data System (ADS)
Weber, J. K. R.; Rey, C. A.; Neuefeind, J.; Benmore, C. J.
2009-08-01
A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 °C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ˜22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.
NASA Astrophysics Data System (ADS)
Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.
2018-07-01
The paper deals with a dynamically symmetric satellite in a circular near-Earth orbit. The satellite is equipped with an electrodynamic attitude control system based on Lorentz and magnetic torque properties. The programmed satellite attitude motion is such that the satellite slowly rotates around the axis of its dynamical symmetry. Unlike previous publications, we consider more complex and practically more important case where the axis is fixed in the orbital frame in an inclined position with respect to the local vertical axis. The satellite stabilization in the programmed attitude motion is studied. The gravitational disturbing torque acting on the satellite attitude dynamics is taken into account since it is the largest disturbing torque. The novelty of the proposed approach is based on the usage of electrodynamic attitude control system. With the aid of original construction of a Lyapunov function, new conditions under which electrodynamic control solves the problem are obtained. Sufficient conditions for asymptotic stability of the programmed motion are found in terms of inequalities for the values of control parameters. The results of a numerical simulation are presented to demonstrate the effectiveness of the proposed approach.
Feasibility of Air Levitated Surface Stage for Lithography Tool
NASA Astrophysics Data System (ADS)
Tanaka, Keiichi
The application of light-weight drive technology into the lithography stage has been the current state of art because of minimization of power loss. The purpose of this article is to point out the so-called, "surface stage" which is composed of Lorentz forced 3 DOF (Degree Of Freedom) planar motor (x, y and theta z), air levitation (bearing) system and motor cooling system, is the most balanced concept for the next generation lithography through the verification of each component by manufacturing simple parts and test stand. This paper presents the design method and procedure, and experimental results of the air levitated surface stage which was conducted several years ago, however the author is convinced that the results are enough to adapt various developments of precision machining tool.
Stable thermophoretic trapping of generic particles at low pressures
NASA Astrophysics Data System (ADS)
Fung, Frankie; Usatyuk, Mykhaylo; DeSalvo, B. J.; Chin, Cheng
2017-01-01
We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in a vacuum through thermophoretic force in the presence of a strong temperature gradient. Typical sizes of the trapped particles are between 10 μm and 1 mm at a pressure between 1 and 10 Torr. The trapping stability is provided radially by the increasing temperature field and vertically by the transition from the free molecule to hydrodynamic behavior of thermophoresis as the particles ascend. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment.
NASA Astrophysics Data System (ADS)
Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang
2017-10-01
The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.
Contact freezing induced by biological (Snomax) and mineral dust (K-feldspar) particles
NASA Astrophysics Data System (ADS)
Hoffmann, N.; Schäfer, M.; Duft, D.; Kiselev, A. A.; Leisner, T.
2013-12-01
The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. In our experiment we study single water droplets freely levitated in an Electrodynamic Balance [2]. We have shown previously that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei [2, 3]. Recently, we have extended our experiments to feldspar, being the most abundant component of the atmospheric mineral dust particles, and Snomax, as a proxy for atmospheric biological Ice Nuclei (IN). In this contribution we show that both IN exhibits the same temperature, size and material dependency observed previously in immersion mode [4, 5]. Based on these results, we limit the number of mechanisms that could be responsible for the enhancement of contact nucleation of ice in supercooled water. [1] - Ladino, L. A., Stetzer, O., and Lohmann, U.: Contact freezing: a review, Atmos. Chem. Phys. Discuss., 13, 7811-7869, doi:10.5194/acpd-13-7811-2013, 2013. [2] - Hoffmann, N., Kiselev, A., Rzesanke, D., Duft, D., and Leisner, T.: Experimental quantification of contact freezing in an electrodynamic balance, Atmos. Meas. Tech. Discuss., 6, 3407-3437, doi:10.5194/amtd-6-3407-2013, 2013. [3] - Hoffmann, N., Duft, D., Kiselev, A., and Leisner, T.: Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: quantitative size and temperature dependence for illite particles, Faraday Discuss., doi: 10.1039/C3FD00033H, 2013. [4] - Atkinson, James D., Murray, Benjamin J., Woodhouse, Matthew T., Whale, Thomas F., Baustian, Kelly J., Carslaw, Kenneth S., Dobbie, Steven, O'Sullivan, Daniel, and Malkin, Tamsin L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355-358, doi:10.1038/nature12278, Science, 2013. [5] - Hartmann, S., Augustin, S., Clauss, T., Wex, H., Šantl-Temkiv, T., Voigtländer, J., Niedermeier, D., and Stratmann, F.: Immersion freezing of ice nucleation active protein complexes, Atmos. Chem. Phys., 13, 5751-5766, doi:10.5194/acp-13-5751-2013, 2013.
Time-delay control of a magnetic levitated linear positioning system
NASA Technical Reports Server (NTRS)
Tarn, J. H.; Juang, K. Y.; Lin, C. E.
1994-01-01
In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.
A superconducting levitation vehicle prototype
NASA Astrophysics Data System (ADS)
Stephan, R. M.; Nicolsky, R.; Neves, M. A.; Ferreira, A. C.; de Andrade, R.; Cruz Moreira, M. A.; Rosário, M. A.; Machado, O. J.
2004-08-01
This paper presents a small scale MAGLEV vehicle prototype which is under development at UFRJ. The levitation is done by Y-Ba-Cu-O superconducting blocks refrigerated by liquid nitrogen in the presence of Nd-Fe-B magnets. A long primary linear synchronous motor gives the traction. Design considerations and experimental results show the characteristics and performance of this system.
NASA Technical Reports Server (NTRS)
Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth
2013-01-01
In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.
Development of the sonic pump levitation
NASA Technical Reports Server (NTRS)
Dunn, S. A.
1984-01-01
A prototype levitating/positioning device termed the Sonic Pump Levitator was designed, built and successfully tested in full gravity and in the reduced gravity of the parabolic flight regime of the KC-135. Positioning is achieved by timely and appropriate application of gas momentum from one or more of six sonic pumps. The sonic pumps, which are arranged orthogonally in opposed pairs about the levitation region, are activated by an electro-optical, computer controlled, feedback system. The sonic pump is a transducer which is capable of converting sound energy into a directed flow of gas. It consists of a loudspeaker whose face is sealed by a closure perforated by one or more orifices. The diaphragm of the loudspeaker is the only moving part of the sonic pump, no valves being needed. This very low inertia electromechanical device was developed to provide the short response time necessary to keep pace with the demands of computerized position keeping.
Apparent Paradoxes in Classical Electrodynamics: Relativistic Transformation of Force
ERIC Educational Resources Information Center
Kholmetskii, A. L.; Yarman, T.
2007-01-01
In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time. (Contains 7 figures.)
A double-superconducting axial bearing system for an energy storage flywheel model
NASA Astrophysics Data System (ADS)
Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.
2008-02-01
The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.
Herranz, Raul; Larkin, Oliver J; Dijkstra, Camelia E; Hill, Richard J A; Anthony, Paul; Davey, Michael R; Eaves, Laurence; van Loon, Jack J W A; Medina, F Javier; Marco, Roberto
2012-02-01
Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM). We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.
2012-01-01
Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM). We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression. PMID:22296880
Analysis of the particle stability in a new designed ultrasonic levitation device.
Baer, Sebastian; Andrade, Marco A B; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas
2011-10-01
The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object.
On the horizontal wobbling of an object levitated by near-field acoustic levitation.
Kim, Cheol-Ho; Ih, Jeong-Guon
2007-11-01
A circular planar object can be levitated with several hundreds of microns by ultrasonic near-field acoustic levitation (NFAL). However, when both the sound source and the levitated object are circularly shaped and the center of the levitated object does not coincide with the source center, instability problem often occurs. When this happens, it becomes difficult to pick up or transport the object for the next process. In this study, when the center of the levitated object was offset from the source center, the moving direction of the levitated object was predicted by using the time averaged potential around the levitated object. The wobbling frequency of the levitated object was calculated by analyzing the nonlinear wobbling motion of the object. It was shown that the predicted wobbling frequencies agreed with measured ones well. Finally, a safe zone was suggested to avoid the unstable movement of an object.
In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83 B17 During Solidification
NASA Astrophysics Data System (ADS)
Quirinale, D. G.; Messina, D.; Rustan, G. E.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.
2017-11-01
In situ measurements of structure, density, and magnetization on samples of Fe83 B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23 B6 /fcc Fe coherently grown structures and primitive tetragonal Fe3 B metastable phase in addition to characterizing the equilibrium Fe2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.
NASA Technical Reports Server (NTRS)
Lyell, Margaret J.
1992-01-01
The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.
Wigner Function Reconstruction in Levitated Optomechanics
NASA Astrophysics Data System (ADS)
Rashid, Muddassar; Toroš, Marko; Ulbricht, Hendrik
2017-10-01
We demonstrate the reconstruction of theWigner function from marginal distributions of the motion of a single trapped particle using homodyne detection. We show that it is possible to generate quantum states of levitated optomechanical systems even under the efect of continuous measurement by the trapping laser light. We describe the opto-mechanical coupling for the case of the particle trapped by a free-space focused laser beam, explicitly for the case without an optical cavity. We use the scheme to reconstruct the Wigner function of experimental data in perfect agreement with the expected Gaussian distribution of a thermal state of motion. This opens a route for quantum state preparation in levitated optomechanics.
Start-up and control method and apparatus for resonant free piston Stirling engine
Walsh, Michael M.
1984-01-01
A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.
Optical position measurement for a Large Gap Magnetic Suspension System
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Shelton, Kevin J.; Clemmons, James I.
1991-01-01
This paper describes the design of an optical position measurement system which is being built as part of the NASA Langley Large Gap Magnetic Suspension System (LGMSS). The LGMSS is a five degree-of-freedom, large-gap magnetic suspension system which is being built for Langley Research Center as part of the Advanced Controls Test Facility (ACTF). The LGMSS consists of a planar array of electromagnets which levitate and position a cylindrically shaped model containing a permanent magnet core. The optical position measurement system provides information on the location and orientation of the model to the LGMSS control system to stabilize levitation of the model.
Positioning performance of a maglev fine positioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronosky, J.B.; Smith, T.G.; Jordan, J.D.
1996-12-01
A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) research tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development experience. System enhancements, implemented on a second generation design for an ARPA National Center for Advanced Information Component Manufacturing (NCAICM) project, introduced active structural control for the levitated structure of the system. Magnetic levitation (maglev) is emerging as an important technology for wafer positioning systems in advanced lithography applications. The advantages ofmore » maglev stem from the absence of physical contact. The resulting lack of friction enables accurate, fast positioning. Maglev systems are mechanically simple, accomplishing full six degree-of-freedom suspension and control with a minimum of moving parts. Power-efficient designs, which reduce the possibility of thermal distortion of the platen, are achievable. Manufacturing throughput will be improved in future systems with the addition of active structural control of the positioning stages. This paper describes the design, implementation, and functional capability of the maglev fine positioning system. Specifics regarding performance design goals and test results are presented.« less
Levitation of iridium and liquid mercury by ultrasound.
Xie, W J; Cao, C D; Lü, Y J; Wei, B
2002-09-02
Single-axis acoustic levitation of the heaviest solid (iridium, rho=22.6 g cm(-3)) and liquid (mercury, rho=13.6 g cm(-3) on the Earth is achieved by greatly enhancing both the levitation force and stability through optimizing the geometric parameters of the levitator. The acoustically levitated Pb-Sn eutectic alloy melt (rho=8.5 g cm(-3)) is highly undercooled by up to 38 K, which results in a microstructural transition of "lamellae-broken lamellae-dendrites." The drastic enhancement of levitation capability indicates a broader application range of single-axis acoustic levitation.
Levitation of Iridium and Liquid Mercury by Ultrasound
NASA Astrophysics Data System (ADS)
Xie, W. J.; Cao, C. D.; Lü, Y. J.; Wei, B.
2002-08-01
Single-axis acoustic levitation of the heaviest solid (iridium, ρ=22.6 g cm-3) and liquid (mercury, ρ=13.6 g cm-3 on the Earth is achieved by greatly enhancing both the levitation force and stability through optimizing the geometric parameters of the levitator. The acoustically levitated Pb-Sn eutectic alloy melt (ρ=8.5 g cm-3) is highly undercooled by up to 38K, which results in a microstructural transition of ``lamellae-broken lamellae-dendrites.'' The drastic enhancement of levitation capability indicates a broader application range of single-axis acoustic levitation.
ERIC Educational Resources Information Center
Jernigan, S. R.; Fahmy, Y.; Buckner, G. D.
2009-01-01
This paper details a successful and inexpensive implementation of a remote laboratory into a distance control systems course using readily available hardware and software. The physical experiment consists of a beach ball and a dc blower; the control objective is to make the height of the aerodynamically levitated beach ball track a reference…
Fukuta, Motoyuki; Mizutani, Noboru; Waseda, Katsuhisa
2005-01-01
This study was designed to determine the susceptibility of implanted cardiac arrhythmia devices to electromagnetic interference in and around a magnetically levitated linear motor car [High-Speed Surface Transport (HSST)]. During the study, cardiac devices were connected to a phantom model that had similar characteristics to the human body. Three pacemakers from three manufacturers and one implantable cardioverter-defibrillator (ICD) were evaluated in and around the magnetically levitated vehicle. The system is based on a normal conductive system levitated by the attractive force of magnets and propelled by a linear induction motor without wheels. The magnetic field strength at 40 cm from the vehicle in the nonlevitating state was 0.12 mT and that during levitation was 0.20 mT. The magnetic and electric field strengths on a seat close to the variable voltage/variable frequency inverter while the vehicle was moving and at rest were 0.13 mT, 2.95 V/m and 0.04 mT, 0.36 V/m, respectively. Data recorded on a seat close to the reactor while the vehicle was moving and at rest were 0.09 mT, 2.45 V/m and 0.05 mT, 1.46 V/m, respectively. Measured magnetic and electric field strengths both inside and outside the linear motor car were too low to result in device inactivation. No sensing, pacing, or arrhythmic interactions were noted with any pacemaker or ICD programmed in either bipolar and unipolar configurations. In conclusion, our data suggest that a permanent programming change or a device failure is unlikely to occur and that the linear motor car system is probably safe for patients with one of the four implanted cardiac arrhythmia devices used in this study under the conditions tested.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2004-05-01
In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.
TESSX: A Mission for Space Exploration with Tethers
NASA Technical Reports Server (NTRS)
Cosmo, Mario L.; Lorenzini, Enrico C.; Gramer, Daniel J.; Hoffman, John H.; Mazzoleni, Andre P.
2005-01-01
Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis.
Space station operations enhancement using tethers
NASA Astrophysics Data System (ADS)
Bekey, I.
1984-10-01
Space tethers represent a tool of unusual versatility for applications to operations involving space stations. The present investigation is concerned with a number of applications which exploit the dynamic, static, and electrodynamic properties of tethers. One of the simplest applications of a tethered system on the Space Station might be that of a remote docking port, allowing the Shuttle to dock with no contamination or disturbance effects. Attention is also given to tethered platforms, a tethered microgravity facility, a tethered space station propellant facility, electrodynamic tether principles, a tether power generator, a tether thrust generator (motor), and an electrodynamic tether for drag makeup and energy storage.
Development of magnetic bearing system for a new third-generation blood pump.
Lee, Jung Joo; Ahn, Chi Bum; Choi, Jaesoon; Park, Jun Woo; Song, Seung-Joon; Sun, Kyung
2011-11-01
A magnetic bearing system is a crucial component in a third-generation blood pump, particularly when we consider aspects such as system durability and blood compatibility. Many factors such as efficiency, occupying volume, hemodynamic stability in the flow path, mechanical stability, and stiffness need to be considered for the use of a magnetic bearing system in a third-generation blood pump, and a number of studies have been conducted to develop novel magnetic bearing design for better handling of these factors. In this study, we developed and evaluated a new magnetic bearing system having a motor for a new third-generation blood pump. This magnetic bearing system consists of a magnetic levitation compartment and a brushless direct current (BLDC) motor compartment. The active-control degree of freedom is one; this control is used for controlling the levitation in the axial direction. The levitation in the radial direction has a passive magnetic levitation structure. In order to improve the system efficiency, we separated the magnetic circuit for axial levitation by using a magnetic circuit for motor drive. Each magnetic circuit in the bearing system was designed to have a minimum gap by placing mechanical parts, such as the impeller blades, outside the circuit. A custom-designed noncontact gap sensor was used for minimizing the system volume. We fabricated an experimental prototype of the proposed magnetic bearing system and evaluated its performance by a control system using the Matlab xPC Target system. The noncontact gap sensor was an eddy current gap sensor with an outer diameter of 2.38 mm, thickness of 0.88 mm, and resolution of 5 µm. The BLDC motor compartment was designed to have an outer diameter of 20 mm, length of 28.75 mm, and power of 4.5 W. It exhibited a torque of 8.6 mNm at 5000 rpm. The entire bearing system, including the motor and the sensor, had an outer diameter of 22 mm and a length of 97 mm. The prototype exhibited sufficient levitation performance in the stop state and the rotation state with a gap of 0.2 mm between the rotor and the stator. The system had a steady position error of 0.01 µm in the stop state and a position error of 0.02 µm at a rotational speed of 5000 rpm; the current consumption rates were 0.15 A and 0.17 A in the stop state and the rotation state, respectively. In summary, we developed and evaluated a unique magnetic bearing system with an integrated motor. We believe that our design will be an important basis for the further development of the design of an entire third-generation blood pump system. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Acoustic positioning for space processing experiments
NASA Technical Reports Server (NTRS)
Whymark, R. R.
1974-01-01
An acoustic positioning system is described that is adaptable to a range of processing chambers and furnace systems. Operation at temperatures exceeding 1000 C is demonstrated in experiments involving the levitation of liquid and solid glass materials up to several ounces in weight. The system consists of a single source of sound that is beamed at a reflecting surface placed a distance away. Stable levitation is achieved at a succession of discrete energy minima contained throughout the volume between the reflector and the sound source. Several specimens can be handled at one time. Metal discs up to 3 inches in diameter can be levitated, solid spheres of dense material up to 0.75 inches diameter, and liquids can be freely suspended in l-g in the form of near-spherical droplets up to 0.25 inch diameter, or flattened liquid discs up to 0.6 inches diameter. Larger specimens may be handled by increasing the size of the sound source or by reducing the sound frequency.
NASA Astrophysics Data System (ADS)
Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao
2018-05-01
Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.
Optomechanics in a Levitated Droplet of Superfluid Helium
NASA Astrophysics Data System (ADS)
Brown, Charles; Harris, Glen; Harris, Jack
2017-04-01
A critical issue common to all optomechanical systems is dissipative coupling to the environment, which limits the system's quantum coherence. Superfluid helium's extremely low optical and mechanical dissipation, as well as its high thermal conductivity and its ability cool itself via evaporation, makes the mostly uncharted territory of superfluid optomechanics an exciting avenue for exploring quantum effects in macroscopic objects. I will describe ongoing work that aims to exploit the unique properties of superfluid helium by constructing an optomechanical system consisting of a magnetically levitated droplet of superfluid helium., The optical whispering gallery modes (WGMs) of the droplet, as well as the mechanical oscillations of its surface, should offer exceptionally low dissipation, and should couple to each other via the usual optomechanical interactions. I will present recent progress towards this goal, and also discuss the background for this work, which includes prior demonstrations of magnetic levitation of superfluid helium, high finesse WGMs in liquid drops, and the self-cooling of helium drops in vacuum.
Electrodynamic Tethers and E-Sails as Active Experiment Testbeds and Technologies in Space
NASA Astrophysics Data System (ADS)
Gilchrist, B. E.; Wiegmann, B.; Johnson, L.; Bilen, S. G.; Habash Krause, L.; Miars, G.; Leon, O.
2017-12-01
The use of small-to-large flexible structures in space such as tethers continues to be studied for scientific and technology applications. Here we will consider tether electrodynamic and electrostatic interactions with magneto-plasmas in ionospheres, magnetospheres, and interplanetary space. These systems are enabling fundamental studies of basic plasma physics phenomena, allowing direct studies of the space environment, and generating technological applications beneficial for science missions. Electrodynamic tethers can drive current through the tether based on the Lorenz force adding or extracting energy from its orbit allowing for the study of charged bodies or plasma plumes moving through meso-sonic magnetoplasmas [1]. Technologically, this also generates propulsive forces requiring no propellant and little or no consumables in any planetary system with a magnetic field and ionosphere, e.g., Jupiter [2]. Further, so called electric sails (E-sails) are being studied to provide thrust through momentum exchange with the hypersonic solar wind. The E-sail uses multiple, very long (10s of km) charged, mostly bare rotating conducting tethers to deflect solar wind protons. It is estimated that a spacecraft could achieve a velocity over 100 km/s with time [3,4]. 1. Banks, P.M., "Review of electrodynamic tethers for space plasma science," J. Spacecraft and Rockets, vol. 26, no. 4, pp. 234-239, 1989. 2. Talley, C., J. Moore, D. Gallagher, and L. Johnson, "Propulsion and power from a rotating electrodynamic tether at Jupiter," 38th AIAA Aerospace Sciences Meeting and Exhibit, January 2000. 3. Janhunen, P., "The electric sail—A new propulsion method which may enable fast missions to the outer solar system," J. British Interpl. Soc., vol. 61, no. 8, pp. 322-325, 2008. 4. Wiegman, B., T. Scheider, A. Heaton, J. Vaughn, N. Stone, and K. Wright, "The Heliopause Electrostatic Rapid Transit System (HERTS)—Design, trades, and analyses performed in a two-year NASA investigation of electric sail propulsion systems," 53rd AIAA/SAE/ASEE Joint Propulsion Conf., 10-12 July 2017, Atlanta, GA.
Fiber glass pulling. [in space
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1987-01-01
Experiments were conducted to determine the viability of performing containerless glass fiber pulling in space. The optical transmission properties and glass-forming capabilities of the heavy metal fluorides are reviewed and the acoustic characteristics required for a molten glass levitation system are examined. The design limitations of, and necessary modifications to the acoustic levitation furnace used in the experiments are discussed in detail. Acoustic levitator force measurements were performed and a thermal map of the furnace was generated from thermocouple data. It was determined that the thermal capability of the furnace was inadequate to melt a glass sample in the center. The substitution of a 10 KW carbon monoxide laser for the original furnace heating elements resulted in improved melt heating.
Analysis of SPAR 8 single-axis levitation experiment
NASA Technical Reports Server (NTRS)
Rush, J. E.; Schafer, C. F.; Holland, R. L.
1981-01-01
The melting and resolidification of SPAR 8 payload melting and resolidification of a glass specimen from the in a containerless condition and the retrieval and examination of the specimen from the. The absence of container contact was assured by use of a single-axis acoustic levitation system. However, the sample contacted a wire cage after being held without container contact by the acoustic field for only approximately 87 seconds. At this time, the sample was still molten and, therefore, flowed aroung the wire and continued to adhere to it. An analysis of why the sample did not remain levitated free of container contact is presented. The experiment is described, and experimental observations are discussed and analyzed.
Magnetic levitation system for moving objects
Post, R.F.
1998-03-03
Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.
Magnetic levitation system for moving objects
Post, Richard F.
1998-01-01
Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, D. G.; Messina, D.; Rustan, G. E.
In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperaturemore » metastable structures.« less
Angular trapping of anisometric nano-objects in a fluid.
Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi
2012-11-14
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.
Modeling dynamic behavior of superconducting maglev systems under external disturbances
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He
2017-08-01
For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.
Acoustic Levitation With One Transducer
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.
1987-01-01
Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.
High voltage characteristics of the electrodynamic tether and the generation of power and propulsion
NASA Technical Reports Server (NTRS)
Williamson, P. R.
1986-01-01
The Tethered Satellite System (TSS) will deploy and retrieve a satellite from the Space Shuttle orbiter with a tether of up to 100 km in length attached between the satellite and the orbiter. The characteristics of the TSS which are related to high voltages, electrical currents, energy storage, power, and the generation of plasma waves are described. A number of specific features of the tether system of importance in assessing the operational characteristics of the electrodynamic TSS are identified.
International Space Station Electrodynamic Tether Reboost Study
NASA Technical Reports Server (NTRS)
Johnson, L.; Herrmann, M.
1998-01-01
The International Space Station (ISS) will require periodic reboost due to atmospheric aerodynamic drag. This is nominally achieved through the use of thruster firings by the attached Progress M spacecraft. Many Progress flights to the ISS are required annually. Electrodynamic tethers provide an attractive alternative in that they can provide periodic reboost or continuous drag cancellation using no consumables, propellant, nor conventional propulsion elements. The system could also serve as an emergency backup reboost system used only in the event resupply and reboost are delayed for some reason.
Versatile resonance-tracking circuit for acoustic levitation experiments.
Baxter, K; Apfel, R E; Marston, P L
1978-02-01
Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems.
Requirements and Information Metadata System
2007-03-01
the Sept. 11, 2001, attacks; (2) poor management decisions early in the project; (3) inadequate project oversight, and (4) a lack of sound IT...they are natural.”19 Other analysts argue that intelligence failures are not so inevitable and not always successful. For example, Ariel Levite ...Inevitable,” 31, World Politics (1978): 61-80. 20 Ariel Levite , Intelligence and Strategic Surprises (New York: Columbia University Press, 1987
Spin-Up Instability of a Levitated Molten Drop in MHD-Flow Transition to Turbulence
NASA Technical Reports Server (NTRS)
Abedian, B.; Hyers, R. W.; Curreri, Peter A. (Technical Monitor)
2002-01-01
When an alternating magnetic field interacts with induced eddy currents in a conducting body, there will be a repulsive force between the body and the driving coil system generating the field. This repulsive force is the basis of electromagnetic levitation, which allows containerless processing of different materials. The eddy currents in the conducting body also generate Joule heating. Axial rotation of electromagnetically levitated objects is a common observation in levitation systems and often an undesirable side effect of such experiments on 1-g and -g. There have been recent efforts to use magnetic damping and suppress this tendency of body rotation. The first report of rotation in EML drops was attributed to a slight asymmetry of the shape and location of the levitation coils could change the axis and speed of rotation. Other theories of sample rotation include a frequency difference in the traveling electromagnetic waves and a phase difference in two different applied fields of the same frequency. All of these different mechanisms share the following characteristics: the torque is small, constant for constant field strength, and very weakly dependent on the sample's temperature and phase (solid or liquid). During experiments on the MSL-1 (First Microgravity Science Laboratory) mission of the Space Shuttle (STS-83 and STS-94, April and July 1997), a droplet of palladium-silicon alloy was electromagnetically levitated for viscosity measurements. For the non-deforming droplet, the resultant MHD flow inside the drop is inferred from motion of impurities on the surface. These observations indicate formation of a pair of co-rotating toroidal flow structures inside the spheroidal levitated drop that undergo secondary flow instabilities. As rise in the fluid temperature rises, the viscosity falls and the internal flow accelerates and becomes oscillatory; and beyond a point in the experiments, the surface impurities exhibit non-coherent chaotic motion signifying emergence of turbulence inside the drop. In this work, a background of these set of observations will be given followed by a presentation of our results on the digital particle tracking analysis that has been performed on a number of available videos. The analysis indicates that the levitated drop attains a constant rotational speed during the melting phase and formation of the co-rotating axi-symmetric laminar toroidal structures. However, the rate of axial rotation increases dramatically during the deformation of the toroidal structures anti their breakup into chaotic entities. This new data suggests an interaction between the flow inside the levitated molten drop and the driving coils in the experiments. Possible mechanisms for this interaction will be reviewed. The data will also be used to make an assessment of existing theories on droplet rotation.
NASA Astrophysics Data System (ADS)
Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.
2013-10-01
Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.
Torsional Optomechanics of a Levitated Nonspherical Nanoparticle
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, F.; Yin, Zhang-Qi; Li, Tongcang
2016-09-01
An optically levitated nanoparticle in vacuum is a paradigm optomechanical system for sensing and studying macroscopic quantum mechanics. While its center-of-mass motion has been investigated intensively, its torsional vibration has only been studied theoretically in limited cases. Here we report the first experimental observation of the torsional vibration of an optically levitated nonspherical nanoparticle in vacuum. We achieve this by utilizing the coupling between the spin angular momentum of photons and the torsional vibration of a nonspherical nanoparticle whose polarizability is a tensor. The torsional vibration frequency can be 1 order of magnitude higher than its center-of-mass motion frequency, which is promising for ground state cooling. We propose a simple yet novel scheme to achieve ground state cooling of its torsional vibration with a linearly polarized Gaussian cavity mode. A levitated nonspherical nanoparticle in vacuum will also be an ultrasensitive nanoscale torsion balance with a torque detection sensitivity on the order of 10-29 N m /√{Hz } under realistic conditions.
Electrodynamic tether system study
NASA Technical Reports Server (NTRS)
1987-01-01
The purpose of this program is to define an Electrodynamic Tether System (ETS) that could be erected from the space station and/or platforms to function as an energy storage device. A schematic representation of the ETS concept mounted on the space station is presented. In addition to the hardware design and configuration efforts, studies are also documented involving simulations of the Earth's magnetic fields and the effects this has on overall system efficiency calculations. Also discussed are some preliminary computer simulations of orbit perturbations caused by the cyclic/night operations of the ETS. System cost estimates, an outline for future development testing for the ETS system, and conclusions and recommendations are also provided.
NASA Astrophysics Data System (ADS)
Zheng, Jun; Zheng, Botian; He, Dabo; Sun, Ruixue; Deng, Zigang; Xu, Xun; Dou, Shixue
2016-09-01
Due to the large levitation force or the large guidance force of bulk high-temperature superconducting magnets (BHTSMs) above a permanent magnet guideway (PMG), it is reasonable to employ pre-magnetized BHTSMs to replace applied-magnetic-field-cooled superconductors in a maglev system. There are two combination modes between the BHTSM and the PMG, distinguished by the different directions of the magnetization. One is the S-S pole mode, and the other is the S-N pole mode combined with a unimodal PMG segment. A multi-point magnetic field measurement platform was employed to acquire the magnetic field signals of the BHTSM surface in real time during the pre-magnetization process and the re-magnetization process. Subsequently, three experimental aspects of levitation, including the vertical movement due to the levitation force, the lateral movement due to the guidance force, and the force relaxation with time, were explored above the PMG segment. Moreover, finite element modeling by COMSOL Multiphysics has been performed to simulate the different induced currents and the potentially different temperature rises with different modes inside the BHTSM. It was found that the S-S pole mode produced higher induced current density and a higher temperature rise inside the BHTSM, which might escalate its lateral instability above the PMG. The S-N pole mode exhibits the opposite characteristics. In general, this work is instructive for understanding and connecting the magnetic flux, the inner current density, the levitation behavior, and the temperature rise of BHTSMs employed in a maglev system.
Evaluation of a six-DOF electrodynamic shaker system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Danny Lynn; Smallwood, David Ora
2009-03-01
The paper describes the preliminary evaluation of a 6 degree of freedom electrodynamic shaker system. The 8 by 8 inch (20.3 cm) table is driven by 12 electrodynamic shakers producing motion in all 6 rigid body modes. A small electrodynamic shaker system suitable for small component testing is described. The principal purpose of the system is to demonstrate the technology. The shaker is driven by 12 electrodynamic shakers each with a force capability of about 50 lbs (220 N). The system was developed through an informal cooperative agreement between Sandia National Laboratories, Team Corp. and Spectral Dynamics Corporation. Sandia providedmore » the laboratory space and some development funds. Team provided the mechanical system, and Spectral Dynamics provided the control system. Spectral Dynamics was chosen to provide the control system partly because of their experience in MIMO control and partly because Sandia already had part of the system in house. The shaker system was conceived and manufactured by TEAM Corp. Figure 1 shows the overall system. The vibration table, electrodynamic shakers, hydraulic pumps, and amplifiers are all housed in a single cabinet. Figure 2 is a drawing showing how the electrodynamic shakers are coupled to the table. The shakers are coupled to the table through a hydraulic spherical pad bearing providing 5 degrees of freedom and one stiff degree of freedom. The pad bearing must be preloaded with a static force as they are unable to provide any tension forces. The horizontal bearings are preloaded with steel springs. The drawing shows a spring providing the vertical preload. This was changed in the final design. The vertical preload is provided by multiple strands of an O-ring material as shown in Figure 4. Four shakers provide excitation in each of the three orthogonal axes. The specifications of the shaker are outlined in Table 1. Four shakers provide inputs in each of the three orthogonal directions. By choosing the phase relationships between the shakers all six rigid body modes (three translation, and three rotations) can be excited. The system is over determined. There are more shakers than degrees of freedom. This provided an interesting control problem. The problem was approached using the input-output transformation matrices provided in the Spectral control system. Twelve accelerometers were selected for the control accelerometers (a tri-axial accelerometer at each corner of the table (see Figure 5). Figure 6 shows the nomenclature used to identify the shakers and control accelerometers. A fifth tri-axial accelerometer was placed at the center of the table, but it was not used for control. Thus we had 12 control accelerometers and 12 shakers to control a 6-dof shaker. The 12 control channels were reduced to a 6-dof control using a simple input transformation matrix. The control was defined by a 6x6 spectral density matrix. The six outputs in the control variable coordinates were transformed to twelve physical drive signals using another simple output transformation matrix. It was assumed that the accelerometers and shakers were well matched such that the transformation matrices were independent of frequency and could be deduced from rigid body considerations. The input/output transformations are shown in Equations 1 and 2.« less
NASA Technical Reports Server (NTRS)
Hahs, C. A.
1990-01-01
The potential use of a compact, battery-operated rf levitator and heating system to purify high-temperature melting materials in space is described. The wake shield now being fabricated for the Space Vacuum Epitaxy Center will provide an Ultra-high vacuum (10(exp -14) Torr hydrogen, 10(exp -14) Torr helium, 10(exp -30) Torr oxygen). The use of the wake shield to purify Nb, Ti, W, Ir, and other metals to a purity level not achievable on earth is described.
Damping and support in high-temperature superconducting levitation systems
Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA
2009-12-15
Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.
Maglev system concept using 20-K high-temperature superconductors and hyperconductors
NASA Astrophysics Data System (ADS)
Hull, J. R.; He, Jianliang
A magnetically levitated high-speed ground transportation concept is proposed that uses high-temperature superconductors or hyperconductors, cooled by liquid hydrogen at 20 K, to provide levitation. An on-board hydrogen-powered turbine/generator provides electricity for propulsion by linear induction motors. The liquid hydrogen is used to cool the superconductors and the windings of the generator and motors before combusting in the turbine. The principal advantage of this system is the potential to greatly reduce the cost of the guideway, which is completely passive.
Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.
2002-01-01
A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on measurements of photoelectric emission and radiation pressure on single isolated 0.2 to 6.6 micron size silica particles exposed to UV radiation at 120-200 nm and green laser light at 532 nm are presented.
The NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory
NASA Technical Reports Server (NTRS)
Tung, L. S.; Post, R. F.; Cook, E.; Martinez-Frias, J.
2000-01-01
The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, is being studied for its possible use for launching rockets. Under NASA sponsorship, a small model system is being constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating carrier, moving above a "track" consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the carrier cart by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. In its completed form the model system that is under construction will have a track approximately 100 meters in length along which the carrier cart will be propelled up to peak speeds of Mach 0.4 to 0.5 before being decelerated. Preliminary studies of the parameters of a full-scale system have also been made. These studies address the problems of scale-up, including means to simplify the track construction and to reduce the cost of the pulsed-power systems needed for propulsion.
Gas levitator having fixed levitation node for containerless processing
NASA Technical Reports Server (NTRS)
Berge, L. H.; Oran, W. A.; Theiss, M. (Inventor)
1981-01-01
A method and apparatus is disclosed for levitating a specimen of material in a containerless environment at a stable nodal position independent of gravity. An elongated levitation tube has a contoured interior in the form of convergent section, constriction, and a divergent section in which the levitation node is created. A gas flow control means prevents separation of flow from the interior walls in the region of a specimen. The apparatus provides for levitating and heating the specimen simultaneously by combustion of a suitable gas mixture combined with an inert gas.
Advanced Active-Magnetic-Bearing Thrust-Measurement System
NASA Technical Reports Server (NTRS)
Imlach, Joseph; Kasarda, Mary; Blumber, Eric
2008-01-01
An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active-magnetic-bearing force-measurement systems is to calculate levitation forces on the basis of simple proportionalities between changes in those forces and changes in feedback-controlled currents applied to levitating electromagnetic coils. In the prior systems, the effects of gap lengths on fringing magnetic fields and the concomitant effects on magnetic forces were neglected. In the present system, the control subsystems of the active magnetic bearings are coupled with a computer-based automatic calibration system running special-purpose software wherein gap-length-dependent fringing factors are applied to current and magnetic-flux-based force equations and combined with a multipoint calibration method to obtain greater accuracy.
The Future: Challenges and Opportunities for Air War College.
1990-04-01
for commuters and other travel.(155:l; 2:--; 42:748; 125:--; 47:31) Magnetically levitating ( maglev ) trains were developed 20 years ago, and reach...These trains began operation in Japan and France in the 1970s. Page 132 Florida is considering using a maglev system for train connections among Miami...Ballistic Missile Maglev : Magnetic Levitation MPC/DPMYI: Air Force Military Personnel Center, Directorate of Plans. Programs and Analysis, Computer Support
Sound Waves Levitate Substrates
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
NASA Astrophysics Data System (ADS)
Palagummi, S.; Yuan, F. G.
2016-04-01
This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.
Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers
NASA Technical Reports Server (NTRS)
Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory
2013-01-01
Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.
Levitation of YBa2Cu3O(7-x) superconductor in a variable magnetic field
NASA Technical Reports Server (NTRS)
Terentiev, Alexander N.; Kuznetsov, Anatoliy A.
1992-01-01
The influence of both a linear alternating and rotational magnetic field component on the levitation behavior of a YBa2Cu3O(7-x) superconductor was examined. The transition from a plastic regime of levitation to an elastic one, induced by an alternating field component, was observed. An elastic regime in contrast to a plastic one is characterized by the unique position of stable levitation and field frequency dependence of relaxation time to this position. It was concluded that the vibrations of a magnet levitated above the superconductor can induce a transition from a plastic regime of levitation to an elastic one. It was found that a rotational magnetic field component induced rotations of a levitated superconductor. Rotational frictional motion of flux lines is likely to be an origin of torque developed. A prototype of a motor based on a levitated superconductor rotor is proposed.
NASA Technical Reports Server (NTRS)
Estes, Robert D.
1987-01-01
An electrodynamic tether deployed from a satellite in low-Earth orbit can perform, if properly instrumented, as a partially self-powered generator of electromagnetic waves in the ULF/ELF band, potentially at power levels high enough to be of practical use. Two basic problems are examined. The first is that of the level of wave power that the system can be expected to generate in the ULF/ELF radiation band. The second major question is whether an electrodynamic tethered satellite system for transmitting waves can be made partially self-powering so that power requirements for drag compensation can be met within economical constraints of mass, cost, and complexity. The theoretical developments and the system applications study are presented. The basic design criteria, the drag-compensation method, the effects on the propagation paths from orbit to Earth surface of high-altitude nuclear debris patches, and the estimate of masses and sizes are covered. An outline of recommended analytical work, to be performed as a follow-on to the present study, is contained.
Stable And Oscillating Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.; Garrett, Steven L.
1988-01-01
Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.
Space Station Reboost with Electrodynamic Tethers
NASA Technical Reports Server (NTRS)
Vas, Irwin E.; Kelly, Thomas J.; Scarl, Ethan A.
1999-01-01
This paper presents the results of a study of an electrodynamic tether system to reboost the International Space Station (ISS). One recommendation is to use a partially bare tether for electron collection. Locations are suggested as to where the tether system is to be attached at the space station. The effects of the tether system on the microgravity environment may actually be beneficial, because the system can neutralize aerodrag during quiescent periods and, if deployed from a movable boom, can permit optimization of laboratory positioning with respect to acceleration contours. Alternative approaches to tether deployment and retrieval are discussed. It is shown that a relatively short tether system, 7 km long, operating at a power level of 5 kW could provide cumulative savings or over a billion dollars during a 10-year period ending in 2012. This savings is the direct result of a reduction in the number or nights that would otherwise be required to deliver propellant for reboost, with larger cost savings for higher tether usage. In addition to economic considerations, an electrodynamic tether promises a practical backup system that could ensure ISS survival in the event of an (otherwise) catastrophic delay in propellant delivery.
ERIC Educational Resources Information Center
French, M. M. J.
2010-01-01
I discuss some interesting classroom demonstrations of diamagnetism and how this effect can produce levitation. The possibilities for hands-on demonstrations of diamagnetic and superconducting levitation are discussed. To conclude I discuss some practical uses for levitation in daily life. (Contains 6 figures.)
Holding characteristics of planar objects suspended by near-field acoustic levitation
Matsuo; Koike; Nakamura; Ueha; Hashimoto
2000-03-01
The authors have found the acoustic levitation phenomenon where planar objects of 10 kg weight can be levitated near a vibration surface. This phenomenon has been studied for non-contact transportation. A circular planar object can be suspended without contacting a circular vibration plate. We have studied the holding force which acts horizontally on the levitated objects. The horizontal position of the object is stabilized by this force. In this paper, we discuss the effect of the radius of a levitated object, levitation distance, displacement amplitude of the vibration plate and the vibration mode on the suspending force.
Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation
NASA Astrophysics Data System (ADS)
Basaran, Sinan; Sivrioglu, Selim
2017-03-01
The goal of this research study is the maximization of the levitation force in a flywheel system by the use of more than one permanent magnet with a single ring-shaped HTS material. An analytical model for the radial stiffness of the ring HTS-PM is derived using the frozen image approach. The experimental works are carried out for different polarizations of the permanent magnets, and radial stiffness values are obtained from the radial force measurements. The rotational test of the flywheel system is also realized for different cases. Finally, natural frequencies of the flywheel superconducting magnetic bearing system are experimentally obtained for different combinations of the permanent magnets using a frequency analyzer.
Robust levitation control for maglev systems with guaranteed bounded airgap.
Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong
2015-11-01
The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Shot-noise dominant regime of a nanoparticle in a laser beam
NASA Astrophysics Data System (ADS)
Zhong, Changchun; Robicheaux, Francis
2017-04-01
The technique of laser levitation of nanoparticles has become increasingly promising in the study of cooling and controlling mesoscopic quantum systems. Unlike a mechanical system, the levitated nanoparticle is less exposed to thermalization and decoherence due to the absence of direct contact with a thermal environment. In ultrahigh vacuum, the dominant source of decoherence comes from the unavoidable photon recoil from the optical trap which sets an ultimate bound for the control of levitated systems. In this paper, we study the shot noise heating and the parametric feedback cooling of an optically trapped anisotropic nanoparticle in the laser shot noise dominant regime. The rotational trapping frequency and shot noise heating rate have a dependence on the shape of the trapped particle. For an ellipsoidal particle, the ratio of the axis lengths and the overall size controls the shot noise heating rate relative to the rotational frequency. For a near spherical nanoparticle, the effective heating rate for the rotational degrees of freedom is smaller than that for translation suggesting that the librational ground state may be easier to achieve than the vibrational ground state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, S.; Shimizu, T.; Thomas, H. M.
2011-11-15
We demonstrate the levitation of diamond fine particles in a H{sub 2} rf plasma chamber equipped with a hot filament and heated electrodes. The levitation conditions should be carefully chosen to compensate the strong thermophoretic forces caused by the filament and the electrodes. This levitation technique with the existence of a hot filament can be applied, e.g., for the efficient growth of diamond layers on seed particles injected and levitated in an rf plasma with reactive gases, e.g., CH{sub 4}/H{sub 2}. Additionally, the method for direct capture of levitated particles on a planar substrate was established, which is useful ifmore » it is necessary to analyze the particles after the levitation.« less
Theoretical and experimental examination of near-field acoustic levitation.
Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa
2002-04-01
A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.
Analysis of a Non-resonant Ultrasonic Levitation Device
NASA Astrophysics Data System (ADS)
Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.
In this study, a non-resonant configuration of ultrasonic levitation device is presented, which is formed by a small diameter ultrasonic transducer and a concave reflector. The influence of different levitator parameters on the levitation performance is investigated by using a numerical model that combines the Gor'kov theory with a matrix method based on the Rayleigh integral. In contrast with traditional acoustic levitators, the non-resonant ultrasonic levitation device allows the separation distance between the transducer and the reflector to be adjusted continually, without requiring the separation distance to be set to a multiple of half-wavelength. It is also demonstrated, both numerically and experimentally, that the levitating particle can be manipulated by maintaining the transducer in a fixed position in space and moving the reflector in respect to the transducer.
Theoretical and experimental examination of near-field acoustic levitation
NASA Astrophysics Data System (ADS)
Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa
2002-04-01
A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.
Study on interfacial stability and internal flow of a droplet levitated by ultrasonic wave.
Abe, Yutaka; Yamamoto, Yuji; Hyuga, Daisuke; Awazu, Shigeru; Aoki, Kazuyoshi
2009-04-01
For a microgravity environment, new and high-quality material is expected to be manufactured. However, the effect of surface instability and the internal flow become significant when the droplet becomes large. Elucidation of internal flow and surface instability on a levitated droplet is required for the quality improvement of new material manufacturing in a microgravity environment. The objectives of this study are to clarify the interfacial stability and internal flow of a levitated droplet. Surface instability and internal flow are investigated with a large droplet levitated by the ultrasonic acoustic standing wave. The experiment with a large droplet is conducted both under normal gravity and microgravity environments. In the experiment, at first, the characteristics of the levitated droplet are investigated; that is, the relationships among the levitated droplet diameter, the droplet aspect ratio, the displacement of the antinode of the standing wave, and the sound pressure are experimentally measured. As a result, it is clarified that the levitated droplet tends to be located at an optimal position with an optimal shape and diameter. Second, the border condition between the stable and the unstable levitation of the droplet is evaluated by using the existing stability theory. The experimental results qualitatively agree with the theory. It is suggested that the stability of the droplet can be evaluated with the stability theory. Finally, multidimensional visual measurement is conducted to investigate the internal flow structure in a levitated droplet. It is suggested that complex flow with the vortex is generated in the levitated droplet. Moreover, the effect of physical properties of the test fluid on the internal flow structure of the levitated droplet is investigated. As a result, the internal flow structure of the levitated droplet is affected by the surface tension and viscosity.
The near-field acoustic levitation of high-mass rotors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Z. Y.; Lü, P.; Geng, D. L.
2014-10-15
Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.
The near-field acoustic levitation of high-mass rotors.
Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B
2014-10-01
Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.
Cavity cooling of an optically levitated submicron particle
Kiesel, Nikolai; Blaser, Florian; Delić, Uroš; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus
2013-01-01
The coupling of a levitated submicron particle and an optical cavity field promises access to a unique parameter regime both for macroscopic quantum experiments and for high-precision force sensing. We report a demonstration of such controlled interactions by cavity cooling the center-of-mass motion of an optically trapped submicron particle. This paves the way for a light–matter interface that can enable room-temperature quantum experiments with mesoscopic mechanical systems. PMID:23940352
Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.
Abe, Yutaka; Hyuga, Daisuke; Yamada, Shogo; Aoki, Kazuyoshi
2006-09-01
It is expected that new materials will be manufactured with containerless processing under the microgravity environment in space. Under the microgravity environment, handling technology of molten metal is important for such processes. There are a lot of previous studies about droplet levitation technologies, including the use of acoustic waves, as the holding technology. However, experimental and analytical information about the relationship between surface deformation and internal flow of a large levitated droplet is still unknown. The purpose of this study is to experimentally investigate the large droplet behavior levitated by the acoustic wave field and its internal flow. To achieve this, first, numerical simulation is conducted to clarify the characteristics of acoustic wave field. Second, the levitation characteristic and the internal flow of the levitated droplet are investigated by the ultrasonic standing wave under normal gravity environment. Finally, the levitation characteristic and internal flow of levitated droplet are observed under microgravity in an aircraft to compare results with the experiment performed under the normal gravity environment.
Particle manipulation by a non-resonant acoustic levitator
NASA Astrophysics Data System (ADS)
Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.
2015-01-01
We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.
Development of a single-axis ultrasonic levitator and the study of the radial particle oscillations
NASA Astrophysics Data System (ADS)
Baer, Sebastian; Andrade, Marco A. B.; Esen, Cemal; Adamowski, Julio Cezar; Ostendorf, Andreas
2012-05-01
This work describes the development and analysis of a new single-axis acoustic levitator, which consists of a 38 kHz Langevin-type piezoelectric transducer with a concave radiating surface and a concave reflector. The new levitator design allows to significantly reducing the electric power necessary to levitate particles and to stabilize the levitated sample in both radial and axial directions. In this investigation the lateral oscillations of a levitated particle were measured with a single point Laser Doppler Vibrometer (LDV) and an image evaluation technique. The lateral oscillations were measured for different values of particle diameter, particle density and applied electrical power.
A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.
Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa
2009-04-01
Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.
Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum.
Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W; D'Urso, Brian
2016-07-22
Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.
Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum
Hsu, Jen -Feng; Ji, Peng; Lewandowski, Charles W.; ...
2016-07-22
Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamondmore » nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. Furthermore, we demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.« less
Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum
Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W.; D’Urso, Brian
2016-01-01
Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K. PMID:27444654
NASA Astrophysics Data System (ADS)
Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi
2017-08-01
Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.
NASA Technical Reports Server (NTRS)
Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.
1996-01-01
A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.
NASA Astrophysics Data System (ADS)
Soares Dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.
2016-01-01
Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.
Novel maglev pump with a combined magnetic bearing.
Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru
2005-01-01
The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.
Soares dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.
2016-01-01
Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters. PMID:26725842
Moore, Jeremy; Martin, Leopoldo L.; Maayani, Shai; ...
2016-02-03
We experimentally reporton optical binding of many glass particles in air that levitate in a single optical beam. A diversity of particle sizes and shapes interact at long range in a single Gaussian beam. Our system dynamics span from oscillatory to random and dimensionality ranges from 1 to 3D. In conclusion, the low loss for the center of mass motion of the beads could allow this system to serve as a standard many body testbed, similar to what is done today with atoms, but at the mesoscopic scale.
Inductrack III configuration--a maglev system for high loads
Post, Richard F
2015-03-24
Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.
Inductrack III configuration--a maglev system for high loads
Post, Richard F
2013-11-12
Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.
NASA Astrophysics Data System (ADS)
Yang, Yong
2008-12-01
In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.
Measurement and calculation of levitation forces between magnets and granular superconductors
NASA Technical Reports Server (NTRS)
Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.
1995-01-01
Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.
Cavity cooling a single charged levitated nanosphere.
Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F
2015-03-27
Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.
Cavity Cooling a Single Charged Levitated Nanosphere
NASA Astrophysics Data System (ADS)
Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.
2015-03-01
Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.
NASA Astrophysics Data System (ADS)
Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie
2017-11-01
The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.
Electromagnetically induced transparency in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Ku, Hsiang-Sheng; Long, Junling; Wu, Xian; Lake, Russell; Gu, Xiu; Liu, Yu-Xi; Pappas, David
Electromagnetically induced transparency (EIT) is a phenomenon caused by quantum interference between distinct transition paths in a three-level system. In general, it is difficult to realize EIT in a system of three-level superconducting quantum circuit, because the decay rates and the Rabi frequency of the driving field do not normally satisfy the conditions for EIT. However, we propose to achieve EIT within a driven circuit quantum electrodynamics (cQED) system by creating polariton states and engineering the decay rates of their levels with the driving field. In this talk we present spectroscopic measurements of the polariton states that will enable demonstration of EIT within cQED.
Acoustic Levitator With Furnace And Laser Heating
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.; Stoneburner, James D.
1991-01-01
Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.
Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors
NASA Astrophysics Data System (ADS)
Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.
2018-01-01
The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.
Dielectrophoretic levitation of droplets and bubbles
NASA Technical Reports Server (NTRS)
Jones, T. B.
1982-01-01
Uncharged droplets and bubbles can be levitated dielectrophoretically in liquids using strong, nonuniform electric fields. The general equations of motion for a droplet or bubble in an axisymmetric, divergence-free electrostatic field allow determination of the conditions necessary and sufficient for stable levitation. The design of dielectrophoretic (DEP) levitation electrode structures is simplified by a Taylor-series expansion of cusped axisymmetric electrostatic fields. Extensive experimental measurements on bubbles in insulating liquids verify the simple dielectrophoretic model. Other have extended dielectrophoretic levitation to very small particles in aqueous media. Applications of DEP levitation to the study of gas bubbles, liquid droplets, and solid particles are discussed. Some of these applications are of special interest in the reduced gravitational field of a spacecraft.
Containerless Processing Studies in the MSFC Electrostatic Levitator
NASA Technical Reports Server (NTRS)
Rogers, J. R.; SanSoucie, M. P.
2012-01-01
Levitation or containerless processing represents an important tool in materials research. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. Levitation techniques include: acoustic, aero-acoustic, electromagnetic, and electrostatic. In microgravity, levitation can be achieved with greatly reduced positioning forces. Microgravity also reduces the effects of buoyancy and sedimentation in melts. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The MSL-EML will be accommodated in the European Columbus Facility on the International Space Station (ISS). The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. The capabilities of the facility and recent results will be discussed.
Third-generation blood pumps with mechanical noncontact magnetic bearings.
Hoshi, Hideo; Shinshi, Tadahiko; Takatani, Setsuo
2006-05-01
This article reviews third-generation blood pumps, focusing on the magnetic-levitation (maglev) system. The maglev system can be categorized into three types: (i) external motor-driven system, (ii) direct-drive motor-driven system, and (iii) self-bearing or bearingless motor system. In the external motor-driven system, Terumo (Ann Arbor, MI, U.S.A.) DuraHeart is an example where the impeller is levitated in the axial or z-direction. The disadvantage of this system is the mechanical wear in the mechanical bearings of the external motor. In the second system, the impeller is made into the rotor of the motor, and the magnetic flux, through the external stator, rotates the impeller, while the impeller levitation is maintained through another electromagnetic system. The Berlin Heart (Berlin, Germany) INCOR is the best example of this principle where one-axis control combination with hydrodynamic force achieves high performance. In the third system, the stator core is shared by the levitation and drive coil to make it as if the bearing does not exist. Levitronix CentriMag (Zürich, Switzerland), which appeared recently, employs this concept to achieve stable and safe operation of the extracorporeal system that can last for a duration of 14 days. Experimental systems including HeartMate III (Thoratec, Woburn, MA, U.S.A.), HeartQuest (WorldHeart, Ottawa, ON, Canada), MagneVAD (Gold Medical Technologies, Valhalla, NY, U.S.A.), MiTiHeart (MiTi Heart, Albany, NY, U.S.A.), Ibaraki University's Heart (Hitachi, Japan) and Tokyo Medical and Dental University/Tokyo Institute of Technology's disposable and implantable maglev blood pumps are also reviewed. In reference to second-generation blood pumps, such as the Jarvik 2000 (Jarvik Heart, New York, NY, U.S.A.), which is showing remarkable achievement, a question is raised whether a complicated system such as the maglev system is really needed. We should pay careful attention to future clinical outcomes of the ongoing clinical trials of the second-generation devices before making any further remarks. What is best for patients is the best for everyone. We should not waste any efforts unless they are actually needed to improve the quality of life of heart-failure patients.
Dynamics of levitated objects in acoustic vortex fields.
Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W
2017-08-02
Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.
NASA Astrophysics Data System (ADS)
Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.
2013-04-01
In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-09-12
Scientists at Argonne National Laboratory have discovered a way to use sound waves to levitate individual droplets of solutions containing different pharmaceuticals. While the connection between levitation and drug development may not be immediately apparent, a special relationship emerges at the molecular level. Read more: http://www.anl.gov/articles/no-magic-show-real-world-levitation-inspire-better-pharmaceuticals
Variable-Position Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.
1983-01-01
Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.
Acoustic Measurement Of Periodic Motion Of Levitated Object
NASA Technical Reports Server (NTRS)
Watkins, John L.; Barmatz, Martin B.
1992-01-01
Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.
High-Throughput Density Measurement Using Magnetic Levitation.
Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M
2018-06-20
This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.
Measurement and Control of Oxygen Partial Pressure in an Electrostatic Levitator
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.
2014-01-01
Recently the NASA Marshall Space Flight Center electrostatic levitation (ESL) laboratory has been upgraded to include an oxygen control system. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, at elevated temperatures, theoretically in the range from 10(exp -36) to 10(exp 0) bar. The role of active surface agents in liquid metals is fairly well known; however, published surface tension data typically has large scatter, which has been hypothesized to be caused by the presence of oxygen. The surface tension of metals is affected by even a small amount of adsorption of oxygen. It has even been shown that oxygen partial pressures may need to be as low as 10(exp -24) bar to avoid oxidation. While electrostatic levitation is done under high vacuum, oxide films or dissolved oxygen may have significant effects on materials properties, such as surface tension and viscosity. Therefore, the ability to measure and control the oxygen partial pressure within the chamber is highly desirable. The oxygen control system installed at MSFC contains a potentiometric sensor, which measures the oxygen partial pressure, and an oxygen ion pump. In the pump, a pulse-width modulated electric current is applied to yttrium-stabilized zirconia, resulting in oxygen transfer into or out of the system. Also part of the system is a control unit, which consists of temperature controllers for the sensor and pump, PID-based current loop for the ion pump, and a control algorithm. This system can be used to study the effects of oxygen on the thermophysical properties of metals, ceramics, glasses, and alloys. It can also be used to provide more accurate measurements by processing the samples at very low oxygen partial pressures. The oxygen control system will be explained in more detail and an overview of its use and limitations in an electrostatic levitator will be described. Some preliminary measurements have been made, and the results to date will be provided.
Levitation or suspension: Which one is better for the heavy-load HTS maglev transportation
NASA Astrophysics Data System (ADS)
Liu, Wei; Kang, Dong; Yang, X. F.; Wang, Fei; Peng, G. H.; Zheng, Jun; Ma, G. T.; Wang, J. S.
2015-09-01
Because of the limitation of permanent magnet (PM), the efficient of bulk high-Tc superconductor (HTSC) in a high-Tc superconducting (HTS) maglev system is not very high. It is better to magnetize the bulk HTSC with a high trapped field to increase the force density. The different application type of magnetized bulk HTSC in a maglev system, namely, levitation or suspension type, will bring quite different operation performance. This paper discusses the influence of application type on operation performance of magnetized bulk HTSC by experiments and simulations. From the discussion, it can be found which application type is better for the heavy-load HTS maglev system.
Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.
Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant
2014-07-01
This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Dependence of acoustic levitation capabilities on geometric parameters.
Xie, W J; Wei, B
2002-08-01
A two-cylinder model incorporating boundary element method simulations is developed, which builds up the relationship between the levitation capabilities and the geometric parameters of a single-axis acoustic levitator with reference to wavelength. This model proves to be successful in predicting resonant modes of the acoustic field and explaining axial symmetry deviation of the levitated samples near the reflector and emitter. Concave reflecting surfaces of a spherical cap, a paraboloid, and a hyperboloid of revolution are investigated systematically with regard to the dependence of the levitation force on the section radius R(b) and curvature radius R (or depth D) of the reflector. It is found that the levitation force can be remarkably enhanced by choosing an optimum value of R or D, and the possible degree of this enhancement for spherically curved reflectors is the largest. The degree of levitation force enhancement by this means can also be facilitated by enlarging R(b) and employing a lower resonant mode. The deviation of the sample near the reflector is found likely to occur in case of smaller R(b), larger D, and a higher resonant mode. The calculated dependence of levitation force on R, R(b), and the resonant mode is also verified by experiment and finally demonstrated to be in good agreement with experimental results, in which considerably a strong levitation force is achieved to levitate an iridium sphere which has the largest density of 22.6 g/cm(3).
Diffusivity Measurements of Volatile Organics in Levitated Viscous Aerosol Particles
NASA Astrophysics Data System (ADS)
Bastelberger, Sandra; Krieger, Ulrich; Luo, Beiping; Peter, Thomas
2017-04-01
Field measurements indicating that atmospheric secondary aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low water diffusivities in glassy aerosols, focusing on kinetic limitations to hygroscopic growth and the plasticizing effect of water. Less is known about diffusion limitations of organic molecules and oxidants in viscous matrices and how these might affect atmospheric chemistry and gas-particle phase partitioning of complex mixtures with constituents of different volatility. Often viscosity data has been used to infer diffusivity via the Stokes- Einstein relationship even though strong deviations from this relationship have been observed for matrices of high viscosity. In this study, we provide a quantitative estimate for the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and a small quantity of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature conditions, thereby varying the viscosity of the sucrose matrix. The evaporative loss of tetraethylene glycol as determined by Mie resonance spectroscopy is used in conjunction with a diffusion model to retrieve translational diffusion coefficients of tetraethylene glycol. The evaporation of PEG-4 shows a pronounced RH and temperature dependence and is severely depressed for RH 30% corresponding to diffusivities < 10-14 cm2/s at temperatures as high as 15 °C, implying that atmospheric volatile organic compounds (VOC) can be subject to severe diffusion limitations in glassy SOA. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship.
Raman Spectroscopy and Microphysics of Single PSC Precursor Particles Suspended in a Quadrupole Trap
NASA Astrophysics Data System (ADS)
Sonnenfroh, D. M.; Hunter, A. J.; Rawlins, W. T.
2001-12-01
Polar stratospheric clouds (PSCs) consist primarily of solid nitric acid trihydrate (NAT) particles, which are thought to nucleate via HNO3 uptake on background sulfuric acid particles at temperatures below 195 K. The mechanism for this process is uncertain, and depends on whether the sulfuric acid particles are solid or liquid at these temperatures. Previous results from laboratory and field measurements are mixed; our previous single-particle laboratory experiments showed that binary H2SO4/H2O particles at stratospheric compositions are essentially metastable in the liquid phase when cooled to PSC temperatures. Currently, we are investigating the detailed microphysics of binary (H2SO4/H2O) and ternary (HNO3/H2SO4/H2O) single particles suspended in an electrodynamic levitator, using optical elastic scattering and Raman spectroscopy to observe changes in phase and composition. Single-particle Raman spectra for supercooled binary particles exhibit spectral distributions which alter markedly with decreasing temperature down to 190 K. The variations signify increasing dissociation of HSO4(-) to SO4(-2) with decreasing temperature, consistent with measurements for bulk solutions. Upon gradual warming of supercooled liquid binary particles, some of them freeze briefly in a narrow "window" of the phase diagram, near 210 K and 60 weight per cent H2SO4. We will discuss the Raman spectroscopy and microphysical behavior of the liquid and frozen particles for both the binary and ternary systems. This research was supported by the NASA Atmospheric Effects of Aviation Program.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.
NASA Astrophysics Data System (ADS)
Rizzo, R.
2017-01-01
In this paper an innovative multi-gap magnetorheological clutch is described. It is inspired by a device previously developed by the author’s research group and contains a novel solution based on electrodynamic effects, capable to considerably improve the transmissible torque during the engagement phase. Since this (transient) phase is characterized by a non-zero angular speed between the two clutch shafts, the rotation of a permanent magnets system, used to excite the fluid, induces eddy currents on some conductive material strategically positioned in the device. As a consequence, an electromagnetic torque is produced which is added to the torque transmitted by the magnetorheological fluid only. Once the clutch is completely engaged and the relative speed between the two shafts is zero, the electrodynamic effects vanish and the device operates like a conventional magnetorheological clutch. The system is investigated and designed by means a 3D FEM model and the performance of the device is experimentally validated on a prototype.
Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.
Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M
2015-06-05
We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.
Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.
Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao
2015-02-01
This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.
Laser Induced Rotation of a Levitated Sample in Vacuum
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Paradis, P. F.
1999-01-01
A method of systematically controlling the rotational state of a sample levitated in a high vacuum using the photon pressure is described. A zirconium sphere was levitated in the high-temperature electrostatic levitator and it was rotated by irradiating it with a narrow beam of a high power laser on a spot off the center of mass.
Acoustic levitation for high temperature containerless processing in space
NASA Technical Reports Server (NTRS)
Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.
1990-01-01
New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.
Fabrication of Large Domain YBa2Cu3O(x) for Magnetic Suspension Applications
NASA Technical Reports Server (NTRS)
Sengupta, S.; Corpus, J.; Gaines, J. R., Jr.; Todt, V. R.; Zhang, X.; Miller, D. J.
1996-01-01
Large domain YBa2Cu3O(x) levitators have been fabricated using a seeded melt processing technique. Depending upon the seed, either a single or five domained sample can be obtained. The grain boundaries separating each domains in the five domain levitator are found to be 90 degrees. Similar levitation forces can be observed for single and five domained samples. After thermal cycling, however, a small decrease in the levitation force of the five domain levitator was observed as a function of thermal cycles while nearly no change in force was observed in the single domain levitator. Finally, it is shown that both, single and five domain YBCO, behave similarly as a function of sample thickness.
Description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1991-01-01
A description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment is presented. The LGMSS provides five degrees of freedom control of a cylindrical suspended element which is levitated above a floor-mounted array of air core electromagnets. The uncontrolled degree of freedom is rotation about the long axis of the cylinder (roll). Levitation and control forces are produced on a permanent magnet core which is embedded in the cylinder. The cylinder also contains light emitting diodes (LEDs), assorted electrons, and a power supply. The LEDs provide active targets for an optical position measurement system which is being developed in-house at the Langley Research Center. The optical position measurement system will provide six degrees of freedom position information for the LGMSS control system.
Measurements of the Growth of Air Bubbles by Rectified Diffusion
1977-08-01
diffusion was obtained by acoustically levitating the air bubbles near the antinode of an acoustic stationary wave. This techniqueI12,3,17,18 has become...observing the bubi;le’s growth rate as a function of time and acoustic pressure amplitude. A bubble was levitated in the system and observed through the...at 21.6 kHz. Values of the threshold acoustic pressure ampli"uitwere obtained as a function of bubble radius and liquid surface tensionr and show
Elastic properties of a magnetic fluid with an air cavity retained by levitation forces
NASA Astrophysics Data System (ADS)
Polunin, V. M.; Boev, M. L.; Tan, Myo Min; Karpova, G. V.; Roslyakova, L. I.
2013-01-01
The paper describes the process of an air cavity rising in a magnetic fluid filling a tube with a bottom, transport, and retention of the cavity by magnetic levitation forces. The elastic and dissipative properties of a vibratory system with an inertial element that is a column of a magnetic fluid over an air cavity are considered. The possibility of using a transported air cavity as a movable reflector for a sound wave is evaluated.
Optical rotation of levitated spheres in high vacuum
NASA Astrophysics Data System (ADS)
Monteiro, Fernando; Ghosh, Sumita; van Assendelft, Elizabeth C.; Moore, David C.
2018-05-01
A circularly polarized laser beam is used to levitate and control the rotation of microspheres in high vacuum. At low pressure, rotation frequencies as high as 6 MHz are observed for birefringent vaterite spheres, limited by centrifugal stresses. Due to the extremely low damping in high vacuum, the controlled optical rotation of amorphous SiO2 spheres is also observed at rates above several MHz. At 10-7 mbar, a damping time of 6 ×104 s is measured for a 10 -μ m -diam SiO2 sphere. No additional damping mechanisms are observed above gas damping, indicating that even longer damping times may be possible with operation at lower pressure. The controlled optical rotation of microspheres at MHz frequencies with low damping, including for materials that are not intrinsically birefringent, provides a tool for performing precision measurements using optically levitated systems.
Electron spin control and spin-libration coupling of a levitated nanodiamond
NASA Astrophysics Data System (ADS)
Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang
2017-04-01
Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.
Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II
DOE R&D Accomplishments Database
Salam, Abdus; Delbourgo, Robert
1964-01-01
The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).
Development of a 32 Inch Diameter Levitated Ducted Fan Conceptual Design
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher a.; Solano, Paul A.; Thompson, William K.; Vrnak, Daniel R.
2006-01-01
The NASA John H. Glenn Research Center has developed a revolutionary 32 in. diameter Levitated Ducted Fan (LDF) conceptual design. The objective of this work is to develop a viable non-contact propulsion system utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels, and mitigate many of the concerns and limitations encountered in conventional aircraft propulsors. The physical layout consists of a ducted fan drum rotor with blades attached at the outer diameter and supported by a stress tuner ring at the inner diameter. The rotor is contained within a stator. This concept exploits the unique physical dimensions and large available surface area to optimize a custom, integrated, electromagnetic system that provides both the levitation and propulsion functions. The rotor is driven by modulated electromagnetic fields between the rotor and the stator. When set in motion, the time varying magnetic fields interact with passive coils in the stator assembly to produce repulsive forces between the stator and the rotor providing magnetic suspension. LDF can provide significant improvements in aviation efficiency, reliability, and safety, and has potential application in ultra-efficient motors, computers, and space power systems.
Coulomb Crystallization of Charged Microspheres Levitated in a Gas Discharge Plasma
NASA Technical Reports Server (NTRS)
Goree, John
1998-01-01
The technical topic of the project was the experimental observation of Coulomb crystallization of charged microspheres levitated in a gas discharge plasma. This suspension, sometimes termed a dusty plasma, is closely analogous to a colloidal suspension, except that it has a much faster time response, is more optically thin, and has no buoyancy forces to suspend the particles. The particles are levitated by electric fields. Through their collective Coulomb repulsions, the particles arrange themselves in a lattice with a crystalline symmetry, which undergoes an order-disorder phase transition analogous to melting when the effective temperature of the system is increased. Due to gravitational sedimentation, the particles form a thin layer in the laboratory, so that the experimental system is nearly 2D, whereas in future microgravity experiments they are expected to fill a larger volume and behave like a 3D solid or liquid. The particles are imaged using a video camera by illuminating them with a sheet of laser light. Because the suspension is optically thin, this imaging method will work as well in a 3D microgravity experiment as it does in a 2D laboratory system.
Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos
Sundvik, Maria; Nieminen, Heikki J.; Salmi, Ari; Panula, Pertti; Hæggström, Edward
2015-01-01
Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2–14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364
Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos.
Sundvik, Maria; Nieminen, Heikki J; Salmi, Ari; Panula, Pertti; Hæggström, Edward
2015-09-04
Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development.
Acoustic levitation of an object larger than the acoustic wavelength.
Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C
2017-06-01
Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.
Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students
NASA Astrophysics Data System (ADS)
Osorio, M. R.; Lahera, D. E.; Suderow, H.
2012-09-01
We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 l liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics.
Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation
NASA Astrophysics Data System (ADS)
Zhu, Tao; Cazzolato, Benjamin; Robertson, William S. P.; Zander, Anthony
2015-12-01
In laboratories and high-tech manufacturing applications, passive vibration isolators are often used to isolate vibration sensitive equipment from ground-borne vibrations. However, in traditional passive isolation devices, where the payload weight is supported by elastic structures with finite stiffness, a design trade-off between the load capacity and the vibration isolation performance is unavoidable. Low stiffness springs are often required to achieve vibration isolation, whilst high stiffness is desired for supporting payload weight. In this paper, a novel design of a six degree of freedom (six-dof) vibration isolator is presented, as well as the control algorithms necessary for stabilising the passively unstable maglev system. The system applies magnetic levitation as the payload support mechanism, which realises inherent quasi-zero stiffness levitation in the vertical direction, and zero stiffness in the other five dofs. While providing near zero stiffness in multiple dofs, the design is also able to generate static magnetic forces to support the payload weight. This negates the trade-off between load capacity and vibration isolation that often exists in traditional isolator designs. The paper firstly presents the novel design concept of the isolator and associated theories, followed by the mechanical and control system designs. Experimental results are then presented to demonstrate the vibration isolation performance of the proposed system in all six directions.
Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.
2016-07-01
The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.
Laser Techniques on Acoustically Levitated Droplets
NASA Astrophysics Data System (ADS)
Cannuli, Antonio; Caccamo, Maria Teresa; Castorina, Giuseppe; Colombo, Franco; Magazù, Salvatore
2018-01-01
This work reports the results of an experimental study where laser techniques are applied to acoustically levitated droplets of trehalose aqueous solutions in order to perform spectroscopic analyses as a function of concentration and to test the theoretical diameter law. The study of such systems is important in order to better understand the behaviour of trehalose-synthesizing extremophiles that live in extreme environments. In particular, it will be shown how acoustic levitation, combined with optical spectroscopic instruments allows to explore a wide concentration range and to test the validity of the diameter law as a function of levitation lag time, i.e. the D2 vs t law. On this purpose a direct diameter monitoring by a video camera and a laser pointer was first performed; then the diameter was also evaluated by an indirect measure through an OH/CH band area ratio analysis of collected Raman and Infrared spectra. It clearly emerges that D2 vs t follows a linear trend for about 20 minutes, reaching then a plateau at longer time. This result shows how trehalose is able to avoid total water evaporation, this property being essential for the surviving of organisms under extreme environmental conditions.
Performance of the Conduction-Cooled LDX Levitation Coil
NASA Astrophysics Data System (ADS)
Michael, P. C.; Schultz, J. H.; Smith, B. A.; Titus, P. H.; Radovinsky, A.; Zhukovsky, A.; Hwang, K. P.; Naumovich, G. J.; Camille, R. J.
2004-06-01
The Levitated Dipole Experiment (LDX) was developed to study plasma confinement in a dipole magnetic field. Plasma is confined in the magnetic field of a 680-kg Nb3Sn Floating Coil (F-coil) that is electromagnetically supported at the center of a 5-m diameter by 3-m tall vacuum chamber. The Levitation Coil (L-coil) is a 2800-turn, double pancake winding that supports the weight of the F-coil and controls its vertical position within the vacuum chamber. The use of high-temperature superconductor (HTS) Bi-2223 for the L-coil minimizes the electrical and cooling power needed for levitation. The L-coil winding pack and support plate are suspended within the L-coil cryostat and cooled by conduction to a single-stage cryocooler rated for 25-W heat load at approximately 20 K. The coil current leads consist of conduction-cooled copper running from room temperature to 80 K and a pair of commercially-available, 150-A HTS leads. An automatically filled liquid-nitrogen reservoir provides cooling for the coil's radiation shield and for the leads' 80-K heat stations. This paper discusses the L-coil system design and its observed cryogenic performance.
Single-Axis Acoustic Levitator With Rotation Control
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Olli, E. E.
1987-01-01
Rotation-control equipment simplified. Acoustic levitator with rotation control handles liquid and solid specimens as dense as steel in both low gravity and normal Earth gravity. Levitator is single-axis type.
Simplified Rotation In Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.
1989-01-01
New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.
Experimental study of the oscillation of spheres in an acoustic levitator.
Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C
2014-10-01
The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.
NASA Astrophysics Data System (ADS)
Yaseen, Mundher H. A.
Magnetic levitation is a technique to suspend an object without any mechanical support. The main objective of this study is to demonstrate stabilized closed loop control of 1-DOF Maglev experimentally using real-time control simulink feature of (SIMLAB) microcontroller. Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers are employed to examine the stability performance of the Maglev control system under effect of unbalanced change of load and wave signal on Maglev plane. The effect of unbalanced change of applied load on single point, line and plane are presented. Furthermore, in order to study the effect of sudden change in input signal, the input of wave signal has been applied on all points of the prototype maglev plate simultaneously. The results of pulse width modulation (PWM) reveal that the control system using LQR controller provides faster response to adjust the levitated plane comparing to PID controller. Moreover, the air gap distance that controlled using PID controller is rather stable with little oscillation. Meanwhile, LQR controller provided more stability and homogeneous response.
Uraoka, Masaru; Maegawa, Keisuke; Ishizaka, Shoji
2017-12-05
A laser trapping technique is a powerful means to investigate the physical and chemical properties of single aerosol particles in a noncontact manner. However, optical trapping of strongly light-absorbing particles such as black carbon or soot is quite difficult because the repulsive force caused by heat is orders of magnitude larger than the attractive force of radiation pressure. In this study, a laser trapping and Raman microspectroscopy system using an annular laser beam was constructed to achieve noncontact levitation of single light-absorbing particles in air. Single acetylene carbon black or candle soot particles were arbitrarily selected with a glass capillary connected to a three-axis oil hydraulic micromanipulator and introduced into a minute space surrounded by a repulsive force at the focal point of an objective lens. Using the developed system, we achieved optical levitation of micrometer-sized carbonaceous particles and observation of their Raman spectra in air. Furthermore, we demonstrated in situ observations of changes in the morphology and chemical composition of optically trapped carbonaceous particles in air, which were induced by heterogeneous oxidation reactions with ozone and hydroxyl radicals.
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G. (Inventor)
1983-01-01
An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.
EMC Test Report Electrodynamic Dust Shield
NASA Technical Reports Server (NTRS)
Carmody, Lynne M.; Boyette, Carl B.
2014-01-01
This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.
Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator
NASA Astrophysics Data System (ADS)
Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.
2016-12-01
Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.
1998-09-30
Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.
Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound
NASA Astrophysics Data System (ADS)
Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo
2017-03-01
We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.
Acoustic levitation methods for density measurements
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Hsu, C. J.
1986-01-01
The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.
Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy
NASA Astrophysics Data System (ADS)
Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.
2017-11-01
We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.
NASA Astrophysics Data System (ADS)
Krieger, Ulrich; Marcolli, Claudia; Siegrist, Franziska
2015-04-01
The production of secondary organic aerosol (SOA) by gas-to-particle partitioning is generally represented by an equilibrium partitioning model. A key physical parameter which governs gas-particle partitioning is the pure component vapor pressure, which is difficult to measure for low- and semivolatile compounds. For typical atmospheric compounds like e.g. citric acid or tartaric acid, vapor pressures have been reported in the literature which differ by up to six orders of magnitude [Huisman et al., 2013]. Here, we report vapor pressures of a homologous series of polyethylene glycols (triethylene glycol to octaethylene glycol) determined by measuring the evaporation rate of single, levitated aerosol particles in an electrodynamic balance. We propose to use those as a reference data set for validating different vapor pressure measurement techniques. With each addition of a (O-CH2-CH2)-group the vapor pressure is lowered by about one order of magnitude which makes it easy to detect the lower limit of vapor pressures accessible with a particular technique down to a pressure of 10-8 Pa at room temperature. Reference: Huisman, A. J., Krieger, U. K., Zuend, A., Marcolli, C., and Peter, T., Atmos. Chem. Phys., 13, 6647-6662, 2013.
Workshop on technology issues of superconducting Maglev transportation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegrzyn, J.E.; Shaw, D.T.
1991-09-27
There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and tomore » identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.« less
NASA Technical Reports Server (NTRS)
2001-01-01
The Geospace Electrodynamic Connections (GEC) mission is a multispacecraft Solar-Terrestrial Probe that has been specifically designed to advance the level of physical insight of our understanding of the coupling among the ionosphere, thermosphere, and magnetosphere. GEC is NASA's fifth Solar-Terrestrial Probe. Through multipoint measurements in the Earth's ionosphere-thermosphere (I-T) system, GEC will (i) discover the spatial and temporal scales on which magnetospheric energy input into the I-T region occurs, (ii) determine the spatial and temporal scales for the response of the I-T system to this input of energy, and (iii) quantify the altitude dependence of the response.
Electrodynamics of the middle atmosphere: Superpressure balloon program
NASA Technical Reports Server (NTRS)
Holzworth, Robert H.
1987-01-01
In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.
NASA Technical Reports Server (NTRS)
1996-01-01
On this first day of the STS-75 mission, the flight crew, Cmdr. Andrew Allen, Pilot Scott Horowitz, Payload Cmdr. Franklin Chang-Diaz, Payload Specialist Umberto Guidoni (Italy), and Mission Specialists Jeffrey Hoffman, Maurizio Cheli (ESA) and Claude Nicollier (ESA), were shown performing pre-launch and launching activities. This international space mission's primary objective is the deployment of the Tethered Satellite System Reflight (TSS-1R) to a 12 mile length from the shuttle, a variety of experiments, and the satellite retrieval. These experiments include: Research on Orbital Plasma Electrodynamics (ROPE); TSS Deployer Core Equipment and Satellite Core Equipment (DCORE/SCORE); Research on Electrodynamic Tether Effects (RETE); Magnetic Field Experiments for TSS Missions (TEMAG); Shuttle Electrodynamic Tether Systems (SETS); Shuttle Potential and Return Electron Experiment (SPREE); Tether Optical Phenomena Experiment (TOP); and Observations at the Earth's Surface of Electromagnetic Emissions by TSS (OESSE). The mission's secondary objectives were those experiments found in the United States Microgravity Payload-3 (USMP-3), which include: Advanced Automated Directional Solidification Furnace (AADSF); Material pour l'Etude des Phenomenes Interessant la Solidification sur Terre et en Orbite (MEPHISTO); Space Acceleration Measurement System (SAMS); Orbital Acceleration Research Experiment (OARE); Critical Fluid Scattering Experiment (ZENO); and Isothermal Dendritic Growth Experiment (IDGE).
Preliminary design for a maglev development facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, H.T.; He, J.L.; Chang, S.L.
1992-04-01
A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less
Controlling Sample Rotation in Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Stoneburner, J. D.
1985-01-01
Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.
Non-contact transportation using near-field acoustic levitation
Ueha; Hashimoto; Koike
2000-03-01
Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described.
1987-09-15
optical levitation of bubbles; D. Acoustical and optical diffraction catastrophes (theory and optical simulation of transverse cusps, experiments with...35 C. Optical Levitation of Bubbles in Water by the Radiation Pressure of a Laser Beam: An Acoustically Quiet Levitator ...radiation pressure of a laser beam: an acoustically quiet levitator ," J. Acoust . Soc. Am. (submitted July 1987). C. Books (and sections thereof) Published
Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator
NASA Astrophysics Data System (ADS)
Onodera, Kenta; Nakamura, Airi; Hakamada, Shinya; Watanabe, Masahito; Kargl, Florian
Molten slag and welding flux are important materials for steel processing. Due to lack of durable refractory materials, there is limited publication data on the thermophysical properties of these slags. Therefore, in this study, we measured density and viscosity of CaO-Al2O3-SiO2 slag and welding flux using Aerodynamic Levitation (ADL) with CO2-laser heating in which can be achieve containerless and non-contacting conditions for measurements. For density measurements, in order to obtain correct shape of the droplet we used high-speed camera with the extended He-Ne laser to project the shadow image without the influence of the selfluminescence at the high temperature. For viscosity measurement, we also have a unique vibration method; it caused oscillation in a sample by letting gas for levitation vibrate by an acoustic speaker. Using these techniques, we succeeded to measure systematically density and viscosity of molten oxides system.
High temperature superconductors for magnetic suspension applications
NASA Technical Reports Server (NTRS)
Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.
1994-01-01
High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.
A novel ultrasonic clutch using near-field acoustic levitation.
Chang, Kuo-Tsi
2004-10-01
This paper investigates design, fabrication and drive of an ultrasonic clutch with two transducers. For the two transducers, one serving as a driving element of the clutch is connected to a driving shaft via a coupling, and the other serving as a slave element of the clutch is connected to a slave shaft via another coupling. The principle of ultrasonic levitation is first expressed. Then, a series-resonant inverter is used to generate AC voltages at input terminals of each transducer, and a speed measuring system with optic sensors is used to find the relationship between rotational speed of the slave shaft and applied voltage of each transducer. Moreover, contact surfaces of the two transducers are coupled by the frictional force when both the two transducers are not energized, and separated using the ultrasonic levitation when at least one of the two transducers is energized at high voltages at resonance.
Acoustic Levitation Containerless Processing
NASA Technical Reports Server (NTRS)
Whymark, R. R.; Rey, C. A.
1985-01-01
This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.
Brandt, E H
1989-01-20
Several physical effects allow free floatation of solid and even liquid matter. Materials may be levitated by a jet of gas, by intense sound waves, or by beams of laser light. In addition, conductors levitate in strong radio-frequency fields, charged particles in alternating electric fields, and magnets above superconductors or vice versa. Although levitation by means of ferromagnets is unstable, supper-conductors may be suspended both above and below a magnet as a result of flux pinning. Levitation is used for containerless processing and investigation of materials, for frictionless bearings and high-speed ground transportation, for spectroscopy of single atoms and microparticles, and for demonstrating superconductivity in the new oxide superconductors.
Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions
NASA Astrophysics Data System (ADS)
Yau, J. D.
2010-05-01
This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.
How to Simply Demonstrate Diamagnetic Levitation with Pencil Lead
ERIC Educational Resources Information Center
Koudelkova, Vera
2016-01-01
A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.
Electrochemistry in an acoustically levitated drop.
Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander
2013-02-19
Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%.
The TSS-1R Electrodynamic Tether Experiment: Scientific and Technological Results
NASA Technical Reports Server (NTRS)
Stone, Nobie H.; Raitt, John
1998-01-01
The bi-national, US-Italian, Tethered Satellite System (TSS) program was designed to provide a unique opportunity to explore certain space plasma- electrodynamic processes and the orbital mechanics of a gravity-gradient stabilized system of two satellites linked by a long conducting tether. The second flight, TSS-LR, was launched February 22, 1996 on STS-75 and satellite deployment began at MET 3/00:27. A unique data set was obtained over the next five hours, as the tether was deployed to a length of 19695 meters, which has allowed significant science to be accomplished. This presentation will focus on electrodynamic processes generated by the tether--in particular, the collection of electrical current from the ionospheric plasma. Of particular significance is an apparent transition of the physics of current collection when the potential of the collecting body becomes greater than the ram energy of the ionospheric atomic oxygen ions. Previous theoretical models of current collection were electrostatic--assuming that the orbital motion of the system, which is highly subsonic with respect to electron thermal motion, was un- important. This may still be acceptable for the case of relatively slow-moving sounding rockets. However, the TSS-LR results show that motion relative to the plasma must be accounted for in orbiting systems.
Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)
NASA Astrophysics Data System (ADS)
Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.
2013-12-01
Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.
Radiation and matter: Electrodynamics postulates and Lorenz gauge
NASA Astrophysics Data System (ADS)
Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.
2016-11-01
In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.
Optical levitation of a microdroplet containing a single quantum dot.
Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki
2015-03-15
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.
A high-powered siren for stable acoustic levitation of dense materials in the earth's gravity
NASA Technical Reports Server (NTRS)
Gammel, Paul M.; Croonquist, Arvid P.; Wang, Taylor G.
1988-01-01
Levitation of large dense samples (e.g., 1-cm diameter steel balls) has been performed in a 1-g environment. A siren was used to study the effects of reflector geometry and variable-frequency operation in order to attain stable acoustic positioning. The harmonic content and spatial distribution of the acoustic field have been investigated. The best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper reflector while operating at a frequency slightly below resonance.
1994-06-23
4728 Levitation, Propulsion, and Power and Control Magnetics Optimal Design of the Electromagnetic Levitation with Permanent and Electro Magnets-Y-K...Germany M. Richter and H. Eschrig MGP Research Group "Electron Systems," Technical University Dresden, D-01062 Dresden, Germany Magnetic and specific... designed to achieve the desired 6M. G. Abele, Tenth International Workshop on Rare-Earth Magnets and field configuration. The ability to control the
Anti-levitation in integer quantum Hall systems
NASA Astrophysics Data System (ADS)
Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.
2014-01-01
The evolution of extended states of two-dimensional electron gas with white-noise randomness and field is numerically investigated by using the Anderson model on square lattices. Focusing on the lowest Landau band we establish an anti-levitation scenario of the extended states: As either the disorder strength W increases or the magnetic field strength B decreases, the energies of the extended states move below the Landau energies pertaining to a clean system. Moreover, for strong enough disorder, there is a disorder-dependent critical magnetic field Bc(W) below which there are no extended states at all. A general phase diagram in the W-1/B plane is suggested with a line separating domains of localized and delocalized states.
Levitated optomechanics with a fiber Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Pontin, A.; Mourounas, L. S.; Geraci, A. A.; Barker, P. F.
2018-02-01
In recent years, quantum phenomena have been experimentally demonstrated on variety of optomechanical systems ranging from micro-oscillators to photonic crystals. Since single photon couplings are quite small, most experimental approaches rely on the realization of high finesse Fabry-Perot cavities in order to enhance the effective coupling. Here we show that by exploiting a, long path, low finesse fiber Fabry-Perot interferometer ground state cooling can be achieved. We model a 100 m long cavity with a finesse of 10 and analyze the impact of additional noise sources arising from the fiber. As a mechanical oscillator we consider a levitated microdisk but the same approach could be applied to other optomechanical systems.
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
1999-01-01
This Quick Time movie is of NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS). ProSEDS will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The tether would be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether connected with a 6.2-mile (10 kilometer) long nonconducting tether. The ProSEDS experiment is managed by the Space Transportation Directorate at the Marshall Space Flight Center.
Microrobot with passive diamagnetic levitation for microparticle manipulations
NASA Astrophysics Data System (ADS)
Feng, Lin; Zhang, Shengyuan; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito
2017-12-01
In this paper, an innovative microrobot with passive diamagnetic levitation is presented. Based on theoretical analysis, finite element method simulation, and experiments, the shape of pyrolytic graphite is redesigned, which improves the stability of passive diamagnetic levitation significantly. Therefore, passive diamagnetic levitation is able to be applied for 3-D control of the microrobot. Compared with the traditional microrobots driven by permanent magnets in a microfluidic chip, the microrobot made of pyrolytic graphite and driven by magnetic force has two advantages, no friction and 3-D control, which is able to expand the scope of the microrobot applications. Finally, the microrobot with passive diamagnetic levitation was demonstrated by being encapsulated in a microfluidic chip for microparticle manipulations.
Acoustic levitation: recent developments and emerging opportunities in biomaterials research.
Weber, Richard J K; Benmore, Chris J; Tumber, Sonia K; Tailor, Amit N; Rey, Charles A; Taylor, Lynne S; Byrn, Stephen R
2012-04-01
Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.
Single mode levitation and translation
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)
1988-01-01
A single frequency resonance mode is applied by a transducer to acoustically levitate an object within a chamber. This process allows smooth movement of the object and suppression of unwanted levitation modes that would urge the object to a different levitation position. A plunger forms one end of the chamber, and the frequency changes as the plunger moves. Acoustic energy is applied to opposite sides of the chamber, with the acoustic energy on opposite sides being substantially 180 degrees out of phase.
Influence of Waiting Time on the Levitation Force Between a Permanent Magnet and a Superconductor
NASA Astrophysics Data System (ADS)
Zhang, Xing-Yi; Zhou, You-He; Zhou, Jun
This paper describes the experimental results of the levitation force of single-grained YBaCuO bulk superconductors preparing by the top-seeded melt-growth method with different waiting time tw below an NdFeB permanent magnet. It was found that waiting time has large effects on the zero-field-cooled (ZFC) and field-cooled (FC) levitation force, and the levitation force shows aging characteristics at the liquid nitrogen temperature.
Smart-Phone Based Magnetic Levitation for Measuring Densities
Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur
2015-01-01
Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform. PMID:26308615
Smart-Phone Based Magnetic Levitation for Measuring Densities.
Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur; Ghiran, Ionita Calin; Tasoglu, Savas
2015-01-01
Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform.
NASA Technical Reports Server (NTRS)
Maynard, N. C. (Editor)
1979-01-01
Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research.
NASA Astrophysics Data System (ADS)
Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu
2013-02-01
We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.
Rapid Quench in an Electrostatic Levitator
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.
2016-01-01
The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.
Rapid Quench in an Electrostatic Levitator
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Matson, Michael M.
2016-01-01
The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory’s main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, iron-chromium-nickel, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. The system is described and some initial results are presented.
Optical Levitation of Micro-Scale Particles in Air
NASA Technical Reports Server (NTRS)
Wrbanek, Susan Y.; Weiland, Kenneth E.
2004-01-01
Success has been achieved using a radiation pressure gradient to levitate microscale particles in air for as long as four hours. This work is performed as a precursor to the development of a vacuum based optical tweezers interrogation tool for nanotechnology research. It was decided to first proceed with solving the problem of achieving optical levitation of a micro-scale particle in air before trying the same in a vacuum environment. This successful optical levitation in air confirms the work of Ashkin and Dziedzic. Levitation of 10 and 13.8 microns diameter polystyrene spheres was achieved, as well as the levitation of 10 and 100 microns diameter glass spheres. Particles were raised and lowered. A modicum of success was achieved translating particles horizontally. Trapping of multiple particles in one laser beam has been photographed. Also, it has been observed that particles, that may be conglomerates or irregular in shape, can also be trapped by a focused laser beam. Levitated glass beads were photographed using laser light scattered from the beads. The fact that there is evidence of optical traps in air containing irregular and conglomerate particles provides hope that future tool particles need not be perfect spheres.
TinyLev: A multi-emitter single-axis acoustic levitator
NASA Astrophysics Data System (ADS)
Marzo, Asier; Barnes, Adrian; Drinkwater, Bruce W.
2017-08-01
Acoustic levitation has the potential to enable novel studies due to its ability to hold a wide variety of substances against gravity under container-less conditions. It has found application in spectroscopy, chemistry, and the study of organisms in microgravity. Current levitators are constructed using Langevin horns that need to be manufactured to high tolerance with carefully matched resonant frequencies. This resonance condition is hard to maintain as their temperature changes due to transduction heating. In addition, Langevin horns are required to operate at high voltages (>100 V) which may cause problems in challenging experimental environments. Here, we design, build, and evaluate a single-axis levitator based on multiple, low-voltage (ca. 20 V), well-matched, and commercially available ultrasonic transducers. The levitator operates at 40 kHz in air and can trap objects above 2.2 g/cm3 density and 4 mm in diameter whilst consuming 10 W of input power. Levitation of water, fused-silica spheres, small insects, and electronic components is demonstrated. The device is constructed from low-cost off-the-shelf components and is easily assembled using 3D printed sections. Complete instructions and a part list are provided on how to assemble the levitator.
TinyLev: A multi-emitter single-axis acoustic levitator.
Marzo, Asier; Barnes, Adrian; Drinkwater, Bruce W
2017-08-01
Acoustic levitation has the potential to enable novel studies due to its ability to hold a wide variety of substances against gravity under container-less conditions. It has found application in spectroscopy, chemistry, and the study of organisms in microgravity. Current levitators are constructed using Langevin horns that need to be manufactured to high tolerance with carefully matched resonant frequencies. This resonance condition is hard to maintain as their temperature changes due to transduction heating. In addition, Langevin horns are required to operate at high voltages (>100 V) which may cause problems in challenging experimental environments. Here, we design, build, and evaluate a single-axis levitator based on multiple, low-voltage (ca. 20 V), well-matched, and commercially available ultrasonic transducers. The levitator operates at 40 kHz in air and can trap objects above 2.2 g/cm 3 density and 4 mm in diameter whilst consuming 10 W of input power. Levitation of water, fused-silica spheres, small insects, and electronic components is demonstrated. The device is constructed from low-cost off-the-shelf components and is easily assembled using 3D printed sections. Complete instructions and a part list are provided on how to assemble the levitator.
Dijkstra, Camelia E.; Larkin, Oliver J.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence; Rees, Catherine E. D.; Hill, Richard J. A.
2011-01-01
Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843
Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A
2011-03-06
Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.
Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga
2018-01-01
In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.
NASA Astrophysics Data System (ADS)
Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus
2015-08-01
Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.
Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.
The Japanese containerless experiments
NASA Technical Reports Server (NTRS)
Azuma, Hisao
1990-01-01
There are three sets of Japanese containerless experiments. The first is Drop dynamics research. It consists of acoustic levitation and large amplitude drop oscillation. The second is Optical materials processing in an acoustic levitation furnace. And the third is Electrostatic levitator development by two different Japanese companies.
Numerical analyses of trapped field magnet and stable levitation region of HTSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchimoto, M.; Kojima, T.; Waki, H.
Stable levitation with a permanent magnet and a bulk high {Tc} superconductor (HTSC) is examined numerically by using the critical state model and the frozen field model. Differences between a permanent magnet and a trapped field magnet are first discussed from property of levitation force. Stable levitation region of the HTSC on a ring magnet and on a solenoid coil are calculated with the numerical methods. Obtained results are discussed from difference of the magnetic field configuration.
A simulation of streaming flows associated with acoustic levitators
NASA Astrophysics Data System (ADS)
Rednikov, A.; Riley, N.
2002-04-01
Steady-state acoustic streaming flow patterns have been observed by Trinh and Robey [Phys. Fluids 6, 3567 (1994)], during the operation of a variety of single axis ultrasonic levitators in a gaseous environment. Microstreaming around levitated samples is superimposed on the streaming flow which is observed in the levitator even in the absence of any particle therein. In this paper, by physical arguments, numerical and analytical simulations we provide entirely satisfactory interpretations of the observed flow patterns in both isothermal and nonisothermal situations.
Capabilities of electrodynamic shakers when used for mechanical shock testing
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1973-01-01
The results of a research task to investigate the capabilities of electrodynamic vibrators (shakers) to perform mechanical shock tests are presented. The simulation method employed was that of developing a transient whose shock response spectrum matched the desired shock response spectrum. Areas investigated included the maximum amplitude capabilities of the shaker systems, the ability to control the shape of the resultant shock response spectrum, the response levels induced at frequencies outside the controlled bandwidth, and the nonlinearities in structural response induced by a change in test level.
Chemical Remote Sensing ’Proof of Concept’,
1981-03-31
A122 579 CHEMICAL REMOTE SENSING ;PROOF OF CONCEPT’(U) UTAH 1/I \\ STATE UNIV LOGAN ELECTRO-DYNAMICS LAB BARTSCHI ET AL. 31 MAR 81 SCIENTIFC-8...STANDARDS -I963-A AFGL-TR-81-021 2 CHEMICAL REMOTE SENSING "Proof of Concept" B.Y. Bartschi F. P. DelGreco M. Ahmadjian Electro-Dynamics Laboratories...Applications of remote sensing 2 2.2 Program Development 4 -O 3.1 Optical Layout 6 3.2 Block Diagram of Sensor System 7 3.3 Sensor Facility 10 3.4
Koyama, Daisuke; Ide, Takeshi; Friend, James R; Nakamura, Kentaro; Ueha, Sadayuki
2007-03-01
This paper presents a noncontact sliding table design and measurements of its performance via ultrasonic levitation. A slider placed atop two vibrating guide rails is levitated by an acoustic radiation force emitted from the rails. A flexural traveling wave propagating along the guide rails allows noncontact transportation of the slider. Permitting a transport mechanism that reduces abrasion and dust generation with an inexpensive and simple structure. The profile of the sliding table was designed using the finite-element analysis (FEA) for high levitation and transportation efficiency. The prototype sliding table was made of alumina ceramic (Al2O3) to increase machining accuracy and rigidity using a structure composed of a pair of guide rails with a triangular cross section and piezoelectric transducers. Two types of transducers were used: bolt-clamped Langevin transducers and bimorph transducers. A 40-mm long slider was designed to fit atop the two rail guides. Flexural standing waves and torsional standing waves were observed along the guide rails at resonance, and the levitation of the slider was obtained using the flexural mode even while the levitation distance was less than 10 microm. The levitation distance of the slider was measured while increasing the slider's weight. The levitation pressure, rigidity, and vertical displacement amplitude of the levitating slider thus were measured to be 6.7 kN/m2, 3.0 kN/microm/m2, and less than 1 microm, respectively. Noncontact transport of the slider was achieved using phased drive of the two transducers at either end of the vibrating guide rail. By controlling the phase difference, the slider transportation direction could be switched, and a maximum thrust of 13 mN was obtained.
Calibration and energy measurement of optically levitated nanoparticle sensors
NASA Astrophysics Data System (ADS)
Hebestreit, Erik; Frimmer, Martin; Reimann, René; Dellago, Christoph; Ricci, Francesco; Novotny, Lukas
2018-03-01
Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating the measured signal to an absolute displacement of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential, as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass temperature of an optically levitated particle in thermal equilibrium from its motion and discuss the optimal measurement time required to determine the said temperature.
Non-contact measurement of diamagnetic susceptibility change by a magnetic levitation technique
NASA Astrophysics Data System (ADS)
Takahashi, K.; Mogi, I.; Awaji, S.; Watanabe, K.
2011-03-01
A new method for measuring the temperature dependence of the diamagnetic susceptibility is described. It is based on the Faraday method and employs a magnetic levitation technique. The susceptibility of a magnetically levitating diamagnetic sample is determined from the product of the magnetic flux density and the field gradient at the levitating position observed using a micro CCD camera. The susceptibility of a sample during containerless melting and solidification can be measured to a precision of better than ±0.05%. The temperature dependence of the susceptibility of paraffin wax was measured by the magnetic levitation technique with an accuracy of ±0.25%. This method enables sensitive and contactless measurements of the diamagnetic susceptibility across the melting point with in situ observations.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; LeClair, A.
2014-01-01
Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.
Diffusivity measurements of volatile organics in levitated viscous aerosol particles
NASA Astrophysics Data System (ADS)
Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas
2017-07-01
Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).
Rotation Control In A Cylindrical Acoustic Levitator
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Allen, J. L.
1988-01-01
Second driver introduces net circulation around levitated sample. Two transducers produce two sets of equal counterrotating acoustic fields. By appropriate adjustment of amplitudes and phases in two transducers, total acoustic field made to consist of two unequal counterrotating fields, producing net torque on levitated sample.
Resonance Shift of Single-Axis Acoustic Levitation
NASA Astrophysics Data System (ADS)
Xie, Wen-Jun; Wei, Bing-Bo
2007-01-01
The resonance shift due to the presence and movement of a rigid spherical sample in a single-axis acoustic levitator is studied with the boundary element method on the basis of a two-cylinder model of the levitator. The introduction of a sample into the sound pressure nodes, where it is usually levitated, reduces the resonant interval Hn (n is the mode number) between the reflector and emitter. The larger the sample radius, the greater the resonance shift. When the sample moves along the symmetric axis, the resonance interval Hn varies in an approximately periodical manner, which reaches the minima near the pressure nodes and the maxima near the pressure antinodes. This suggests a resonance interval oscillation around its minimum if the stably levitated sample is slightly perturbed. The dependence of the resonance shift on the sample radius R and position h for the single-axis acoustic levitator is compared with Leung's theory for a closed rectangular chamber, which shows a good agreement.
Self-arraying of charged levitating droplets.
Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent
2011-06-01
Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation.
Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications
Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang
2010-01-01
This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572
Applications of Tethers in Space, Volume 2
NASA Technical Reports Server (NTRS)
Cron, A. C. (Compiler)
1985-01-01
Topics discussed include tethered satellites, tether deployment, satellite systems, science applications, electrodynamic interactions, transportation applications, artificial gravity, constellations, and technology and testing.
Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.
Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y
2006-01-01
It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
Progress in tethered satellite system dynamics research is reported. A retrieval rate control law with no angular feedback to investigate the system's dynamic response was studied. The initial conditions for the computer code which simulates the satellite's rotational dynamics were extended to a generic orbit. The model of the satellite thrusters was modified to simulate a pulsed thrust, by making the SKYHOOK integrator suitable for dealing with delta functions without loosing computational efficiency. Tether breaks were simulated with the high resolution computer code SLACK3. Shuttle's maneuvers were tested. The electric potential around a severed conductive tether with insulator, in the case of a tether breakage at 20 km from the Shuttle, was computed. The electrodynamic hazards due to the breakage of the TSS electrodynamic tether in a plasma are evaluated.
Field-aligned currents in the undisturbed polar ionosphere
NASA Astrophysics Data System (ADS)
Kroehl, H. W.
1989-09-01
Field-aligned currents, FAC's, which couple ionospheric currents at high latitudes with magnetospheric currents have become an essential cornerstone to our understanding of plasma dynamics in the polar region and in the earth's magnetosphere. Initial investigators of polar electrodynamics including the aurora were unable to distinguish between the ground magnetic signatures of a purely two-dimensional current and those from a three-dimensional current system, ergo many scientists ignored the possible existence of these vertical currents. However, data from magnetometers and electrostatic analyzers flown on low-altitude, polar-orbiting satellites proved beyond any reasonable doubt that field-aligned currents existed, and that different ionospheric regions were coupled to different magnetospheric regions which were dominated by different electrodynamic processes, e.g., magnetospheric convection electric fields, magnetospheric substorms and parallel electric fields. Therefore, to define the “undisturbed” polar ionosphere and its structure and dynamics, one needs to consider these electrodynamic processes, to select times for analysis when they are not strongly active and to remember that the polar ionosphere may be disturbed when the equatorial, mid-latitude and sub-auroral ionospheres are not. In this paper we will define the principle high-latitude current systems, describe the effects of FAC's associated with these systems, review techniques which would minimize these effects and present our description of the “undisturbed” polar ionosphere.
Off-Resonance Acoustic Levitation Without Rotation
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Allen, J. L.
1984-01-01
Orthogonal acoustic-levitation modes excited at slightly different frequencies to control rotation. Rotation of object in square cross-section acoustic-levitation chamber stopped by detuning two orthogonal (x and y) excitation drivers in plane of square cross section. Detuning done using fundamental degenerate modes or odd harmonic modes.
Spin-stabilized magnetic levitation without vertical axis of rotation
Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM
2009-06-09
The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.
Rote, Donald M.; He, Jianliang; Coffey, Howard
1993-01-01
A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.
Rote, D.M.; Jianliang He; Coffey, H.
1993-10-19
A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields. 4 figures.
Improved high speed maglev design
Rote, D.M.; He, Jianliang; Coffey, H.T.
1992-01-01
This report discusses a propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the be vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.
McCormack, Patrick; Han, Fei; Yan, Zijie
2018-02-01
Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.
Tuned mass damping system for a pendulum in gravity and microgravity fields
NASA Astrophysics Data System (ADS)
Atour, Farah
2016-07-01
An electrodynamic tether is a simple idea, but one with an amazing number of uses. Electrodynamic tether is a long conductor wire that is attached to the satellite, which can act as a generator or motor, from its motion through the earth's magnetic field. And it has the potential to make space travel significantly cheaper. The lack of electrodynamic tether's widespread in common applications can be attributed to the variable Lorentz forces occuring on the tethers, which will cause them to oscillate and may go out of control, de-orbit the satellite and fall to Earth. A tuned mass damper system, for short refered as tilger, is suggested as damper of oscillations of tethers. A system composed of a tuned mass damper and a simple pendulum simulating the tether was therefore constructed. 350 sets of experimental trials were done on the system, while it was installed inside a drop tower capsule resting on the ground, in order to pick four optimum setup experiments that will undergo a series of microgravity experiments at the Bremen Drop Tower in Bremen, Germany. The GJU Bachelor Research students found that the oscillations of the simple pendulum will not be affected by the tilger during the free fall experiment, except if a feedback mechanism is installed between the simple pendulum and the tilger. In this case, the tilger will dampen the simple pendulum oscillations during free fall.
Tethered Satellite System (TSS) core equipment
NASA Technical Reports Server (NTRS)
Bonifazi, C.
1986-01-01
To date, three Tethered Satellite System (TSS) missions of the Italian provided scientific satellite orbiting in the ionosphere connected to U.S. Space Shuttle is foreseen. The first mission will use an electrically conductive tether of 20 km deployed upward from the orbiter flying at 300 km altitude. This mission will allow investigation of the TSS electrodynamic interaction with the ionosphere due to the high voltage induced across the two terminators of the system during its motion throughout the geomagnetic field. The second mission will use a dielectric tether of 100 km deployed downward from the Orbiter flying at 230 km altitude. Tethered-vehicle access to altitude as low as 120 to 150 km from the Orbiter would permit direct long term observation of phenomena in the lower thermosphere and determination of other dynamical physical processes. The third mission would use the same configuration of the first electrodynamic mission with the complete Core Equipment. Study of power generation by tethered systems would be possible by operating the Core Equipment in the inverted current mode. This mode of operation would allow ion current collection upon the TSS satellite by controlling its potential with respect to the ambient ionospheric plasma. The main requirements of the Core Equipment configuration to date foreseen for the first TSS electrodynamic mission is described. Besides the Core Equipment purposes, its hardware and operational sub-modes of operation are described.
Quantum Spin Stabilized Magnetic Levitation
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Kustura, K.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.
Quantum Spin Stabilized Magnetic Levitation.
Rusconi, C C; Pöchhacker, V; Kustura, K; Cirac, J I; Romero-Isart, O
2017-10-20
We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.
Basic coaxial mass driver reference design. [electromagnetic lunar launch
NASA Technical Reports Server (NTRS)
Kolm, H. H.
1977-01-01
The reference design for a basic coaxial mass driver is developed to illustrate the principles and optimization procedures on the basis of numerical integration by programmable pocket calculators. The four inch caliber system uses a single-coil bucket and a single-phase propulsion track with discrete coils, separately energized by capacitors. An actual driver would use multiple-coil buckets and an oscillatory multi-phase drive system. Even the basic, table-top demonstration system should in principle be able to achieve accelerations in the 1,000 m/sq sec range. Current densities of the order of 25 ka/sq cm, continuously achievable only in superconductors, are carried by an ordinary aluminum bucket coil for a short period in order to demonstrate the calculated acceleration. Ultimately the system can be lengthened and provided with a magnetically levitated, superconducting bucket to study levitation dynamics under quasi-steady-state conditions, and to approach lunar escape velocity in an evacuated tube.
2001-07-01
This photograph shows two Marshall Space Flight Center (MSFC) engineers, Mark Vaccaro (left) and Ken Welzyn, testing electrodynamic tethers in the MSFC Tether Winding and Spark Testing Facility. For 4 years, MSFC and industry partners have been developing the Propulsive Small Expendable Deployer System experiment, called ProSEDS. ProSEDS will test electrodynamic tether propulsion technology. Electrodynamic tethers are long, thin wires that collect electrical current when passing through a magnetic field. The tether works as a thruster as a magnetic field exerts a force on a current-carrying wire. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long non-conducting tether. This photograph shows Less Johnson, a scientist at MSFC, inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.
Electromagnetic Levitation of a Disc
ERIC Educational Resources Information Center
Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.
2012-01-01
This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…
A Simple, Inexpensive Acoustic Levitation Apparatus
ERIC Educational Resources Information Center
Schappe, R. Scott; Barbosa, Cinthya
2017-01-01
Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite…
Apparatus and method for magnetically unloading a rotor bearing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Seth Robert
An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.
Chemical analysis of acoustically levitated drops by Raman spectroscopy.
Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don
2009-07-01
An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.
Parametric resonance in acoustically levitated water drops
NASA Astrophysics Data System (ADS)
Shen, C. L.; Xie, W. J.; Wei, B.
2010-05-01
Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.
Acoustic Levitator Power Device: Study of Ethylene-Glycol Water Mixtures
NASA Astrophysics Data System (ADS)
Caccamo, M. T.; Cannuli, A.; Calabrò, E.; Magazù, S.
2017-05-01
Acoustic levitator power device is formed by two vertically and opposed high output acoustic transducers working at 22 kHz frequency and produces sound pressure levels of 160 dB. The acoustic waves are monitored from an oscilloscope using a signal amplifier. The ability to perform contactless measurements, avoidance of undesired contamination from the container, are some of advantages of this apparatus. Acoustic levitation can be also used for sample preparation of high concentrated mixtures starting from solutions. In the present paper, an acoustic levitator power device is employed to collect data on levitated water mixtures of Ethylene Glycol (EG) which are then analysed by Infra-Red spectroscopy. The study allows to follow the drying process versus time and to obtain a gel-like compound characterized by an extended chemical crosslinking.
Interaction of acoustic levitation field with liquid reflecting surface
NASA Astrophysics Data System (ADS)
Hong, Z. Y.; Xie, W. J.; Wei, B.
2010-01-01
Single-axis acoustic levitation of substances, such as foam, water, polymer, and aluminum, is achieved by employing various liquids as the sound reflectors. The interaction of acoustic levitation field with liquid reflecting surface is investigated theoretically by considering the deformation of the liquid surface under acoustic radiation pressure. Numerical calculations indicate that the deformation degree of the reflecting surface shows a direct proportion to the acoustic radiation power. Appropriate deformation is beneficial whereas excessive deformation is unfavorable to enhance the levitation capability. Typically, the levitation capability with water reflector is smaller than that with the concave rigid reflector but slightly larger than that with the planar rigid reflector at low emitter vibration intensity. Liquid reflectors with larger surface tension and higher density behave more closely to the planar rigid reflector.
Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A
2016-09-06
Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.
Electrostatic Levitation for Studies of Additive Manufactured Materials
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri
2014-01-01
The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL in supporting the development and modeling of the selective laser melting process for metals, and provide an overview of the results to date.
Manzano, Ana Isabel; Larkin, Oliver J; Dijkstra, Camelia E; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Hill, Richard J A; Herranz, Raul; Medina, F Javier
2013-09-05
Cell growth and cell proliferation are intimately linked in the presence of Earth's gravity, but are decoupled under the microgravity conditions present in orbiting spacecraft. New technologies to simulate microgravity conditions for long-duration experiments, with stable environmental conditions, in Earth-based laboratories are required to further our understanding of the effect of extraterrestrial conditions on the growth, development and health of living matter. We studied the response of transgenic seedlings of Arabidopsis thaliana, containing either the CycB1-GUS proliferation marker or the DR5-GUS auxin-mediated growth marker, to diamagnetic levitation in the bore of a superconducting solenoid magnet. As a control, a second set of seedlings were exposed to a strong magnetic field, but not to levitation forces. A third set was exposed to a strong field and simulated hypergravity (2 g). Cell proliferation and cell growth cytological parameters were measured for each set of seedlings. Nucleolin immunodetection was used as a marker of cell growth. Collectively, the data indicate that these two fundamental cellular processes are decoupled in root meristems, as in microgravity: cell proliferation was enhanced whereas cell growth markers were depleted. These results also demonstrated delocalisation of auxin signalling in the root tip despite the fact that levitation of the seedling as a whole does not prevent the sedimentation of statoliths in the root cells. In our model system, we found that diamagnetic levitation led to changes that are very similar to those caused by real- [e.g. on board the International Space Station (ISS)] or mechanically-simulated microgravity [e.g. using a Random Positioning Machine (RPM)]. These changes decoupled meristematic cell proliferation from ribosome biogenesis, and altered auxin polar transport.
2013-01-01
Background Cell growth and cell proliferation are intimately linked in the presence of Earth’s gravity, but are decoupled under the microgravity conditions present in orbiting spacecraft. New technologies to simulate microgravity conditions for long-duration experiments, with stable environmental conditions, in Earth-based laboratories are required to further our understanding of the effect of extraterrestrial conditions on the growth, development and health of living matter. Results We studied the response of transgenic seedlings of Arabidopsis thaliana, containing either the CycB1-GUS proliferation marker or the DR5-GUS auxin-mediated growth marker, to diamagnetic levitation in the bore of a superconducting solenoid magnet. As a control, a second set of seedlings were exposed to a strong magnetic field, but not to levitation forces. A third set was exposed to a strong field and simulated hypergravity (2 g). Cell proliferation and cell growth cytological parameters were measured for each set of seedlings. Nucleolin immunodetection was used as a marker of cell growth. Collectively, the data indicate that these two fundamental cellular processes are decoupled in root meristems, as in microgravity: cell proliferation was enhanced whereas cell growth markers were depleted. These results also demonstrated delocalisation of auxin signalling in the root tip despite the fact that levitation of the seedling as a whole does not prevent the sedimentation of statoliths in the root cells. Conclusions In our model system, we found that diamagnetic levitation led to changes that are very similar to those caused by real- [e.g. on board the International Space Station (ISS)] or mechanically-simulated microgravity [e.g. using a Random Positioning Machine (RPM)]. These changes decoupled meristematic cell proliferation from ribosome biogenesis, and altered auxin polar transport. PMID:24006876
Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing
NASA Astrophysics Data System (ADS)
Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.
2015-07-01
The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.
Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity
Kidder, Louis S.; Williams, Philip C.; Xu, Wayne Wenzhong
2009-01-01
Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306
Notes on Born-Infeld-type electrodynamics
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2017-11-01
We propose a new model of nonlinear electrodynamics (NLED) with three parameters. Born-Infeld (BI) electrodynamics and exponential electrodynamics are particular cases of this model. The phenomenon of vacuum birefringence in the external magnetic field is studied. We show that there is no singularity of the electric field at the origin of point-like charged particles. The corrections to Coulomb’s law at r →∞ are obtained. We calculate the total electrostatic energy of charges, for different parameters of the model, which is finite.
Remarks on Heisenberg-Euler-type electrodynamics
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2017-05-01
We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.
Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Rather, John
2010-01-01
Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology. Passenger spacecraft enter the atmosphere at 70,000 feet, where deceleration is acceptable. A levitated evacuated launch tube is used, with the levitation force generated by magnetic interaction between superconducting cables on the levitated launch tube and superconducting cables on the ground beneath. The Gen-2 system could launch 100's of thousands of passengers per year, and operate by 2030 AD. Maglev launch will enable large human scale exploration of space, thousands of gigawatts of space solar power satellites for beamed power to Earth, a robust defense against asteroids and comets, and many other applications not possible now.
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Curtis, Leslie; Johnson, Les; Brown, Norman S. (Technical Monitor)
2002-01-01
The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta 11 Expendable Launch Vehicle second stage. ProSEDS, which is planned on an Air Force GPS Satellite replacement mission in June 2002, will use the flight proven Small Expendable Deployer System (SEDS) to deploy a tether (5 km bare wire plus 10 km non-conducting Dyneema) from a Delta 11 second stage to achieve approx. 0.4N drag thrust. ProSEDS will utilize the tether-generated current to provide limited spacecraft power. The ProSEDS instrumentation includes Langmuir probes and Differential Ion Flux Probes, which will determine the characteristics of the ambient ionospheric plasma. Two Global Positioning System (GPS) receivers will be used (one on the Delta and one on the endmass) to help determine tether dynamics and to limit transmitter operations to occasions when the spacecraft is over selected ground stations. The flight experiment is a precursor to the more ambitious electrodynamic tether upper stage demonstration mission, which will be capable of orbit raising, lowering and inclination changes-all using electrodynamic thrust. An immediate application of ProSEDS technology is for the removal of spent satellites for orbital debris mitigation. In addition to the use of this technology to provide orbit transfer and debris mitigation it may also be an attractive option for future missions to Jupiter and any other planetary body with a magnetosphere.
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Ballance, Judy; Johnson, Les; Rogacki, John R. (Technical Monitor)
2000-01-01
The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta II Expendable Launch Vehicle (ELV) second stage. ProSEDS, which is planned to fly in 2001, will use the flight proven Small Expendable Deployer System (SEDS) to deploy a tether (5km bare wire plus 10 km spectra or dyneema) from a Delta II second stage to achieve approximately 0.4N drag thrust. ProSEDS will utilize the tether-generated current to provide limited spacecraft power. The ProSEDs instrumentation includes a Langmuir probe and Differential Ion Flux Probe, which will determine the characteristics of the ambient ionospheric plasma. Two Global Positioning System (GPS) receivers will be used (one on the Delta and one on the endmass) to help determine tether dynamics and to limit transmitter operations to occasions when the spacecraft is over selected ground stations, The flight experiment is a precursor to the more ambitious electrodynamic tether upper stage demonstration mission, which will be capable of orbit raising, lowering and inclination changes-all using electrodynamic thrust. An immediate application of ProSEDS technology is for the deorbit of spent satellites for orbital debris mitigation. In addition to the use of this technology to provide orbit transfer and debris mitigation it may also be an attractive option for future missions to Jupiter and any other planetary body with a magnetosphere.
The Levitation Characteristics of MGB2 Plates on Tracks of Permanent Magnets
NASA Astrophysics Data System (ADS)
Perini, E.; Bassani, E.; Giunchi, G.
2010-04-01
The bulk MgB2 can be manufactured in large plates by an innovative process: the reactive liquid Mg infiltration (Mg-RLI). According to this process it is possible to produce, even at lab scale, plates of 10÷20 cm in lateral dimensions. The superconducting material resulting is very dense and, even if it is in polycrystalline form, it levitates with respect to Permanent Magnets (PM), like the textured YBCO samples, up to 35 K. In order to control the levitation forces and stiffnesses of an MgB2 plate (10×10×1 cm3) moving with respect to a track of PM's (NdFeB bars arranged in 4 lines according to an Halbach disposition and separated by Iron flux concentrators), we have used an instrumented Cryogenic Levitation Apparatus (CLA). We have studied different kind of movements of the PM's track with respect to the MgB2 plate. First, we consider the vertical movement, assumed z direction, which describes the properly levitation characteristics. Secondly, we consider two kinds of lateral movements of the track, assumed x direction, with the long size of the magnets either perpendicular or parallel to the movement direction. The resulting configurations simulate the main movements that a superconducting levitating vehicle will do in a real track, either of axial or of guidance type. The levitation axial forces, measured in Field Cooling or Zero Field Cooling conditions, indicate that at the distance between superconducting plate and PM's of 4 mm it is possible to have an overall levitating pressure of 7 N/cm2.
Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin
2011-01-01
Background Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. Methodology/Principal Findings S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. Conclusion/Significance We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:22039402
Final Report: Levitated Dipole Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamicsmore » and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross-field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.« less
Brush Testing for the TLRV Power Collection System
DOT National Transportation Integrated Search
1975-04-01
This report describes work which as been completed to demonstrate the use of laboratory tests in simulationg and measuring brush wear for application in the power collection system of the U.S. Department of Transportation's tracked levitated research...
DOT National Transportation Integrated Search
1993-08-01
To assess the state of knowledge about anticipated electric and magnetic field (EMF) exposures from electrical transportation systems, including electrically powered rail and magnetically levitated (maglev), research concerning biological effects of ...