Hamiltonian structure of multi-species fluid electrodynamics
Spencer, R.G.
1981-12-01
The phase space for multi-species fluid electrodynamics is the function space of fluid variables and Maxwell field variables. The Poisson bracket on phase functionals is constructed as a Lie algebra product following general methods of infinite dimensional symplectic geometry.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Using the results of Scudder et al. (1986) on the bow shock wave observed by ISEE satellites, a quantitative description is presented of the electrodynamics of ion and electron fluids, and phase-standing wave interaction which manifests itself as a supercritical MHD shock. The cross-shock electrical profile was determined in both the normal incidence frame and in the deHoffman-Teller frame by two different methods, and the results were compared with dc electric field measurements.
NASA Astrophysics Data System (ADS)
Lierke, E. G.; Holitzner, L.
2008-11-01
The feasibility of an acoustic-electrostatic hybrid levitator for small fluid and solid samples is evaluated. A proposed design and its theoretical assessment are based on the optional implementation of simple hardware components (ring electrodes) and standard laboratory equipment into typical commercial ultrasonic standing wave levitators. These levitators allow precise electrical charging of drops during syringe- or ink-jet-type deployment. The homogeneous electric 'Millikan field' between the grounded ultrasonic transducer and the electrically charged reflector provide an axial compensation of the sample weight in an indifferent equilibrium, which can be balanced by using commercial optical position sensors in combination with standard electronic PID position control. Radial electrostatic repulsion forces between the charged sample and concentric ring electrodes of the same polarity provide stable positioning at the centre of the levitator. The levitator can be used in a pure acoustic or electrostatic mode or in a hybrid combination of both subsystems. Analytical evaluations of the radial-axial force profiles are verified with detailed numerical finite element calculations under consideration of alternative boundary conditions. The simple hardware modification with implemented double-ring electrodes in ac/dc operation is also feasible for an electrodynamic/acoustic hybrid levitator.
NASA Astrophysics Data System (ADS)
Eringen, A. Cemal; Maugin, Gerard A.
A unified approach is presented to the nonlinear continuum theory of deformable and fluent media subject to electromagnetic and thermal loads. Basic laws are used to establish the macroscopic electromagnetic theory are treated from first principles and nonlinear constitutive equations for large fields are developed. Many solutions of linear and nonlinear problems in the field of rigid media, elastic dielectrics, piezoelecticity, magnetoelasticity, ferromagnets, and magnetohydrodynamics are discussed. Applications are extended to ferrofluids, electrodynamics, memory-dependent materials, nonlocal theories, and relativistic continua.
Eringen, A.C.; Maugin, G.A.
1990-01-01
A unified approach is presented to the nonlinear continuum theory of deformable and fluent media subject to electromagnetic and thermal loads. Basic laws are used to establish the macroscopic electromagnetic theory are treated from first principles and nonlinear constitutive equations for large fields are developed. Many solutions of linear and nonlinear problems in the field of rigid media, elastic dielectrics, piezoelectricity, magnetoelasticity, ferromagnets, and magnetohydrodynamics are discussed. Applications are extended to ferrofluids, electrodynamics, memory-dependent materials, nonlocal theories, and relativistic continua.
Cunningham, J; Gatenby, R
2014-06-01
Purpose: To develop a simulation to catalyze a reevaluation of common assumptions about 3 dimensional diffusive processes and help cell biologists gain a more nuanced, intuitive understanding of the true physical hurdles of protein signaling cascades. Furthermore, to discuss the possibility of intracellular electrodynamics as a critical, unrecognized component of cellular biology and protein dynamics that is necessary for optimal information flow from the cell membrane to the nucleus. Methods: The Unity 3D gaming physics engine was used to build an accurate virtual scale model of the cytoplasm within a few hundred nanometers of the nuclear membrane. A cloud of simulated pERK proteins is controlled by the physics simulation, where diffusion is based on experimentally measured values and the electrodynamics are based on theoretical nano-fluid dynamics. The trajectories of pERK within the cytoplasm and through the 1250 nuclear pores on the nuclear surface is recorded and analyzed. Results: The simulation quickly demonstrates that pERKs moving solely by diffusion will rarely locate and come within capture distance of a nuclear pore. The addition of intracellular electrodynamics between charges on the nuclear pore complexes and on pERKs increases the number of successful translocations by allowing the electro-physical attractive effects to draw in pERKs from the cytoplasm. The effects of changes in intracellular shielding ion concentrations allowed for estimation of the “capture radius” under varying conditions. Conclusion: The simulation allows a shift in perspective that is paramount in attempting to communicate the scale and dynamics of intracellular protein cascade mechanics. This work has allowed researchers to more fully understand the parameters involved in intracellular electrodynamics, such as shielding anion concentration and protein charge. As these effects are still far below the spatial resolution of currently available measurement technology this
Structure of Aristotelian electrodynamics
NASA Astrophysics Data System (ADS)
Jacobson, Ted
2015-07-01
Aristotelian electrodynamics (AE) describes the regime of a plasma with a very strong electric field that is not shorted out, with the charge current determined completely by pair production and the balance of the Lorentz 4-force against the curvature radiation reaction. Here it is shown how the principal null directions and associated eigenvalues of the field tensor govern AE, and how force-free electrodynamics arises smoothly from AE when the eigenvalues (and therefore the electric field in some frame) vanish. A criterion for validity of AE and force-free electrodynamics is proposed in terms of a pair of "field curvature scalars" formed from the first derivative of the principal null directions.
Galilean limit of electrodynamics.
NASA Astrophysics Data System (ADS)
Reula, O. A.; Hamity, V. H.; Frittelli, S.
The final interest of the authors' work is to study the Newtonian limit as an approximation to General Relativity. In this paper they show, using the Galilean limit of electrodynamics with external sources as a test model, some of the problems that they will be confronted with, and the techniques that are introduced to attack them. The crucial physical issue, to define an asymptotic expansion of a class of solutions, is the selection of initial data which results of imposing regularity conditions in the nonrelativistic limit. The authors' model is an example of a more general class of systems which includes, hopefully, the gravitational field plus matter.
Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field
ERIC Educational Resources Information Center
Kholmetskii, A. L.; Yarman, T.
2008-01-01
In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…
Two applications of axion electrodynamics
NASA Technical Reports Server (NTRS)
Wilczek, Frank
1987-01-01
The equations of axion electrodynamics are studied. Variations in the axion field can give rise to peculiar distributions of charge and current. These effects provide a simple understanding of the fractional electric charge on dyons and of some recently discovered oddities in the electrodynamics of antiphase boundaries in PbTe. Some speculations regarding the possible occurrence of related phenomena in other solids are presented.
Properties of noncommutative axionic electrodynamics
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Schmidt, Iván
2007-07-01
Using the gauge-invariant but path-dependent variables formalism, we compute the static quantum potential for noncommutative axionic electrodynamics, and find a radically different result than the corresponding commutative case. We explicitly show that the static potential profile is analogous to that encountered in both non-Abelian axionic electrodynamics and in Yang-Mills theory with spontaneous symmetry breaking of scale symmetry.
Summary Presentation of the Electrodynamics Interactions Panel
NASA Technical Reports Server (NTRS)
Stone, N. H.
1985-01-01
Technological and scientific uses of electrodynamic tethers in space are considered. Areas of concern for such applications of electrodynamic tethers are enumerated. Thrust and power generation using tethers are discussed.
Quantization of general linear electrodynamics
Rivera, Sergio; Schuller, Frederic P.
2011-03-15
General linear electrodynamics allow for an arbitrary linear constitutive relation between the field strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied, which render the theory predictive and physically interpretable. Taking into account the higher-order polynomial dispersion relation and associated causal structure of general linear electrodynamics, we carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear optical medium.
A model of nonlinear electrodynamics
Kruglov, S.I.
2015-02-15
A new model of nonlinear electrodynamics with two parameters is investigated. We also consider a model with one dimensional parameter. It was shown that the electric field of a point-like charge is not singular at the origin and there is the finiteness of the static electric energy of point-like charged particle. We obtain the canonical and symmetrical Belinfante energy–momentum tensors and dilatation currents. It is demonstrated that the dilatation symmetry and dual symmetry are broken in the models suggested. We have calculated the static electric energy of point-like particles.
The electrodynamics of sprites
NASA Astrophysics Data System (ADS)
Bering, E. A.; Benbrook, J. R.; Garrett, J. A.; Paredes, A. M.; Wescott, E. M.; Moudry, D. R.; Sentman, D. D.; Stenbaek-Nielsen, H. C.; Lyons, W. A.
2002-03-01
A balloon campaign was conducted in summer, 1999, to measure the stratospheric electromagnetic fields associated with sprites. The balloon payloads were instrumented with electric field detectors, magnetometers, an upward looking photometer, and other instruments. Ground observations for detection of sprites included low light level TV (LLTV) observations from three sites, Jelm Mt., Wyoming, Bear Mt., South Dakota, and Yucca Ridge, Colorado. Flight 3 of the campaign flew from Ottumwa, Iowa at 00:39:32 UTC to 11:12:00 UTC on 08/21/99. A sprite at 0955:36.980 UTC produced a vertical electric field perturbation of ~0.275 V/m that was similar in time profile to the light emission. There was also a positive azimuthal magnetic pulse of ~3 nT.
Electrodynamic studies of upper and lower atmospheric coupling
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Cornwall, J. M.; Edgar, B. C.; Schulz, M.; Sharp, L. R.
1981-01-01
Theoretical interprotations and data interpretations of electrodynamical studies in upper and lower atmosphere coupling are reported. The following topics are discussed: (1) magnetosphere/ionosphere/atmosphere coupling in auroral electrodynamics; (2) middle atmosphere electrodynamics; (3) thermosphere troposphere coupling; and (4) tropospheric electrodynamics. Understanding of the near Earth space environment shows the interrelationships between various components of the Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Shu, Jing; Liu, Zhong
2010-06-01
We propose a scheme to generate two-atom maximally entangled state in cavity quantum electrodynamics (QED). The scheme can be extended to generation of entangled multi-atom Dicke states if we control the interaction time of atoms with cavity modes. We use adiabatically state evolution under large atom-cavity detuning, so the scheme is insensitive to atomic spontaneous decay. The influence of cavity decay on fidelity and success probability is discussed.
Report of the Electrodynamic Interactions Panel
NASA Technical Reports Server (NTRS)
Stone, N. H.; Taylor, R. S.; Benford, S.; Binsack, J. H.; Dobrowolny, M.; Finnegan, P.; Grossi, M. D.; Hudson, M.; Intriligator, D.; Kaminskas, R.
1985-01-01
A wide range of opportunities is provided by the electrodynamic tether to more fully understand the generation of waves in plasmas, the behavior of field aligned currents, the behavior of large body-space plasma interactions, and for process simulation, using the electrodynamic tether to study processes and phenomena relevant to solar system and astrophysics plasma physics. The electrodynamic tether offers a means of study and experimentation in space which will provide a rich yield in new scientific results and will enhance the understanding of space plasma physics. It also has promising technological applications (e.g., the generation of electrical power and thrust) which may be highly significant to future space operations.
Fluctuational electrodynamics of hyperbolic metamaterials
Guo, Yu; Jacob, Zubin
2014-06-21
We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.
Systems analysis of electrodynamic tethers
Samantha, R.I.; Hastings, D.E.; Ahedo, E. )
1992-06-01
A dynamic simulation model is developed and employed in a new system study to investigate the performance of electrodynamic tethers, both as power generators and thrusters. The electron collection performance of a contactor and a bare wire tether, both separately and in combination, are compared and contrasted. The power and thrust generated by a bare wire tether is found to have a higher dependence on the geomagnetic and ionospheric fluctuations. However, depending on the performance of the contactor, the combination of a bare tether and contactor can substantially boost performance for power generation. As a pure thruster, the contactor tether is examined at constant current, voltage, thrust, and power. It is found that the best mode of operation is with constant power, with resulting power/thrust ratios better than those for ion or magnetoplasmadynamic engines. It is concluded that tethers offer greater potential than previously envisioned. 13 refs.
Subsystem approach to the electrodynamics in dielectric fluids
NASA Astrophysics Data System (ADS)
Kemp, Brandon A.
2012-10-01
A century has now passed since the origins of the Abraham-Minkowski controversy pertaining to the correct form of optical momentum in media. Since, the debate has come to reference the general debate over optical momentum, including a number of competing formulations. The pervasive modern view is that the Abraham momentum represents the optical momentum contained within the fields and the Minkowski momentum includes a material component which is coupled with the fields. A recently proposed resolution to the debate identified Abraham's kinetic momentum as responsible for the overall center-of-mass translations of a medium and Minkowski's canonical momentum as responsible for local translations of a medium within or with respect to another medium. Still, current literature reveals significant confusion as to how systems of light and matter should be modeled as to deduce the equations of motion when multiple material types are present. For example, the state-of-the-art model for optical dynamics of submerged particles assumes over damped systems such that the mass of the particles is ignored in the equations of motion. In this paper, we apply the subsystem approach to deduce the electrodynamics of such systems. We show that regardless of which electromagnetic momentum continuity law is applied, the equations of motion can be correctly deduced as long as the continuity law is consistent with Maxwells equations and the overall system is closed such that momentum is conserved. Because the closed system includes the material response, the model can be very complex. However, we demonstrate with simple, well-known examples.
Thermodynamics of anisotropic emergent universe in nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Sharif, M.; Sarwar, Ayesha
2016-07-01
In this paper, we study the emergent universe (EU) with interacting fluids in the background of Bianchi type I (BI) universe model. For this purpose, we consider polytropic equation of state (EoS) which constitutes three non-interacting fluids. In order to check the viability of the cosmological models, we take a two-fluid model interacting with dust fluid and a three-fluid model in which each fluid has nonlinear EoS interacting at t ≥ t0. It turns out that both models are realistic cosmological viable. We also check the validity of the generalized second law of thermodynamics (GSLT) for EU with interacting fluids. Finally, we study its validity in the framework of nonlinear electrodynamics (NLED) on apparent horizon.
Electrodynamics of superconducting pnictide superlattices
Perucchi, A.; Pietro, P. Di; Capitani, F.; Lupi, S.; Lee, S.; Kang, J. H.; Eom, C. B.; Jiang, J.; Weiss, J. D.; Hellstrom, E. E.; Dore, P.
2014-06-02
It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.
Electrodynamics of the Duskside Aurora
NASA Astrophysics Data System (ADS)
Shue, J.; Newell, P. T.; Liou, K.; Meng, C.; Germany, G. A.; Hairston, M. R.; Rich, F. J.
2002-12-01
Shue et al. [2002] reported that an auroral feature, which is called the two-cell aurora, was identified from Polar Ultraviolet Imager auroral images. The characteristics of the two-cell aurora are azimuthal elongation over extended local times with gaps at noon and midnight. Its electrodynamic association with the convection, particle precipitation, and field-aligned currents has not been fully understood. In conjunctions with DMSP F12 spacecraft on the duskside branch of the aurora, we are able to investigate the association of auroral emissions with convection reversals, upward field-aligned currents, and energy fluxes and average energy of particles. It is found that the location of the convection reversal is colocated with the upward field-aligned currents. The maximum auroral emissions occur at or poleward of the convection reversals. The energy flux and average energy derived from auroral images are consistent with observations from DMSP in a region mapped to the plasma sheet. However, inconsistency occurs in a region mapped to the plasma sheet boundary layer. Shue, J.-H., P. T. Newell, K. Liou, C.-I. Meng, Y. Kamide, and R. P. Lepping, Two-component auroras, Geophys. Res. Lett., 29(10), 10.1029/2002GL14657, 2002.
Orbital applications of electrodynamic propulsion
NASA Astrophysics Data System (ADS)
Irwin, Troy
1993-12-01
Electrodynamic propulsion (EDP) uses forces resulting from electric currents in conductors as a spacecraft travels through a magnetic field. A vehicle-independent expression for the specific power required for any maneuver is derived and used to assess EDP feasibility. Analytical expressions for the accelerations and combined current-conductor vector required to change the orbital plane or the argument of perigee are developed based on Lagrange's planetary equations. Solutions to the forced Clohessy-Wiltshire equations are developed to study iii-plane rendezvous. Results show EDP can change inclination or right ascension of the ascending mode at approximately 0.4 degrees/day with current spacecraft specific power technology. The effects of the Earth's oblateness on a 24 hour, 90 degree inclination Molniya orbit can be negated. Rendezvous is possible with EDP, and approaches along the target velocity vector with no attitude change are possible with current spacecraft specific power. Approaches involving altitude changes will be possible when modest spacecraft power improvements are made. EDP allows a soft dock - velocities and accelerations decay to zero as the chase vehicle the target - and there is no thruster plume to impart momentum or contaminate the target.
Emil Cohn's electrodynamics of moving bodies
NASA Astrophysics Data System (ADS)
Darrigol, Olivier
1995-10-01
A now forgotten figure, Emil Cohn was one of the leading experts in electrodynamics at the turn of the century. Unsatisfied with Lorentz's electron theory, he proposed an alternative electrodynamics of moving bodies based on a modification of Maxwell's macroscopic field equations that managed to account for all relevant electrodynamic and optical experiments, including that of Michelson and Morley. Some of his insights foreshadow aspects of Einstein's relativity theory, especially the elimination of the ether and the criticism of Lorentz's implicit distinction between true and measured coordinates of space and time. However, Cohn did not believe in the general validity of the relativity principle, and did not require a revision of the usual concepts of space and time.
Ampere-Neumann electrodynamics of metals
Graneau, P.
1985-01-01
Maxwell described Ampere's force law as the cardinal formula of electrodynamics. This law predicts longitudinal mechanical forces along current streamlines in metallic conductors. The Ampere forces set up tension in wires and busbars and compression in liquid metal. At normal current densities they are negligible but, increasing with the square of current, they become dominant in pulse power circuits. Ampere tension and compression have been revealed by exploding wire experiments, in liquid metal jets at solid - liquid interfaces, and with an electrodynamic pendulum. Ampere stresses are already playing an important role in the development of railguns, fuses, current limiters, opening switches, pulse magnets, and a host of other pulse-power devices. This book outlines the electrodynamic action-at-a-distance theory developed by Ampere, Neumann, Weber and, to some extent, by Maxwell. One chapter describes the 20th century extensions of the theory by Graneau and others.
Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II
DOE R&D Accomplishments Database
Salam, Abdus; Delbourgo, Robert
1964-01-01
The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).
Electrodynamic treatment of reversed-type emulsions
Skachkov, A.E.; Lavrov, I.S.; Timonov, S.M.
1985-11-01
The authors have produced an inhomogeneous electric field in processing reversed emulsions by using the oscillations of conducting spheres in an electric field; this is known as the electrical pendulum effect. The apparatus for the electrodynamic treatment of reversed-type emulsion is shown and the physical characteristics (density, kinematic viscosity, dielectric constant) are shown for the hydrocarbons used: hexane, octane, hexadecane and diesel fuel. It is shown that there is a minimum in the dependence of the residual water content after electrodynamic treatment on the external field strength; the minimum shifts to larger external field strength as the viscosity increases.
Strong field electrodynamics of a thin foil
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Bulanov, Stepan S.; Rykovanov, Sergey G.; Pegoraro, Francesco
2013-12-15
Exact solutions describing the nonlinear electrodynamics of a thin double layer foil are presented. These solutions correspond to a broad range of problems of interest for the interaction of high intensity laser pulses with overdense plasmas, such as frequency upshifting, high order harmonic generation, and high energy ion acceleration.
Alternative formulations of magnetospheric plasma electrodynamics
NASA Technical Reports Server (NTRS)
Cragin, B. L.; Heikkila, W. J.
1981-01-01
The fundamental equations of magnetospheric plasma electrodynamics are considered from a theoretical standpoint that stresses the basic equivalence of various seemingly different formal representations. The mathematical properties of vector fields are reviewed, and their implications in electrodynamics are studied. The irrotational and solenoidal parts of the electric field are associated with two physically distinct types of sources. Relativistic covariance and gauge invariance in electromagnetic theory are reviewed and discussed in the context of an approach in which the mathematical properties of vector fields are taken as primary concepts. Special attention is given to the use and interpretation of the Coulomb gauge potential functions. This choice of gauge is sometimes regarded with undue suspicion, possibly because of a certain paradox concerning causality. The paradox is discussed and resolved. Useful properties of the Coulomb gauge are identified. These need not be limited to the case of slow time variations and can extend beyond the limits of validity of ideal MHD theory.
Electrodynamics of planar Archimedean spiral resonator
NASA Astrophysics Data System (ADS)
Maleeva, N.; Averkin, A.; Abramov, N. N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Ustinov, A. V.
2015-07-01
We present a theoretical and experimental study of electrodynamics of a planar spiral superconducting resonator of a finite length. The resonator is made in the form of a monofilar Archimedean spiral. By making use of a general model of inhomogeneous alternating current flowing along the resonator and specific boundary conditions on the surface of the strip, we obtain analytically the frequencies fn of resonances which can be excited in such system. We also calculate corresponding inhomogeneous RF current distributions ψ n ( r ) , where r is the coordinate across a spiral. We show that the resonant frequencies and current distributions are well described by simple relationships f n = f 1 n and ψ n ( r ) ≃ sin [ π n ( r / R e ) 2 ] , where n = 1 , 2... and Re is the external radius of the spiral. Our analysis of electrodynamic properties of spiral resonators' is in good agreement with direct numerical simulations and measurements made using specifically designed magnetic probe and laser scanning microscope.
Modified Nonlinear Model of Arcsin-Electrodynamics
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2016-07-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.
Assimilative Mapping of Interhemispheric Polar Ionospheric Electrodynamics
NASA Astrophysics Data System (ADS)
Matsuo, T.; Richmond, A. D.; Knipp, D. J.; McGranaghan, R. M.
2015-12-01
The Earth's main magnetic field is asymmetric between hemispheres due to its non-dipolar component, leading to various hemispherical differences in the coupling among the solar wind, magnetosphere and ionosphere. Manifestation of the asymmetric coupling through different electrodynamic parameters reported in past studies is considerably diverse. To fill the gap in our current understanding, obtained so far by analyzing individual parameters separately and comparing statistical behaviors of the parameters, we quantify the degree of instantaneous inter-hemispheric imbalance of electromagnetic energy deposition (Poynting flux), field-aligned currents, and convection electric fields though global and self-consistent analysis of electrodynamic variables at both polar regions, by means of data assimilation. Inter-hemispheric assimilative maps of different high-latitude electrodynamical parameters are obtained from simultaneous analysis of multiple types of space-based and ground-based observations made available though the AMPERE, SuperDARN, SuperMAG and DMSP programs with rigorous consideration of the uncertainty associated with each observation.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This
Equations of motion for variational electrodynamics
NASA Astrophysics Data System (ADS)
De Luca, Jayme
2016-04-01
We extend the variational problem of Wheeler-Feynman electrodynamics by generalizing the electromagnetic functional to a local space of absolutely continuous trajectories possessing a derivative (velocities) of bounded variation. We show here that the Gateaux derivative of the generalized functional defines two partial Lagrangians for variations in our generalized local space, one for each particle. We prove that the critical-point conditions of the generalized variational problem are: (i) the Euler-Lagrange equations must hold Lebesgue-almost-everywhere and (ii) the momentum of each partial Lagrangian and the Legendre transform of each partial Lagrangian must be absolutely continuous functions, generalizing the Weierstrass-Erdmann conditions.
Path integral quantization of generalized quantum electrodynamics
Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.
2011-02-15
In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the Hamiltonian structure of the system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation of one-loop approximations of all Green's functions and a discussion about the obtained results are presented.
Electrodynamics of the high latitude middle atmosphere
NASA Technical Reports Server (NTRS)
Goldberg, R. A.
1987-01-01
Atmospheric electrodynamics is reviewed. The discovery of apparent large (V/m) electric fields within the mesosphere invites the possibility for this region to be electrically active. Observations of the V/m field were made at high latitudes even under active conditions, but always below heights where significant enhancements in electrical conductivity are found to occur. Two measurements at Andoya (Norway) show anticorrelation of horizontal field directions with wind directions, suggesting a mechanism which involves mechanical separation of charged aerosols. Reported evidence for such aerosols makes this concept more viable. Noctilucent clouds and mesospheric turbulence, and their influence on the local electrical environment are mentioned.
Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.
1982-01-01
Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.
Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere. Final Report
Chiu, Y.T.; Gorney, D.J.
1982-01-01
Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector, morning and dayside auroras, auroral plasma formation, electrodynamic coupling with the thermosphere, and auroral electron interaction with the atmosphere.
Electrodynamic theory of finite magnetostatic waveguides
NASA Astrophysics Data System (ADS)
Vasil'Ev, I. V.; Kovalev, S. I.
1994-07-01
In this paper the electrodynamic theory of arbitrary magnetostatic waveguide structure (WS) based on a sequence approach method is established. To calculate a wave number, a magnetic scalar potential distribution, an electric field and a power frequency dependence of arbitrary type WS's eigenmodes a new version of finite difference method based on integro-interpolated approach is developed. To show the availability of this technique four types of the MSW WS are studied: the first is a narrow waveguide being analyzed taking into account the two-dimensional inhomogeneity of its internal demagnetized field which follows from the rigorous solution of respective nonlinear boundary task to calculate the dc magnetic field distribution in the ferrite slab of finite sizes. The second and third WS are the two ferrite slabs of a finite width connected guides and the last is the finite width double-layer of different saturation magnetization nonreciprocal WS. The results of the computing method validity verification are discussed in the paper too. It concludes the developed method to be powerful and to be used to analyze electrodynamic properties of MSW WS's of different types.
Electrodynamic trapping and manipulation of particle clouds
NASA Astrophysics Data System (ADS)
Vehring, R.; Aardahl, C. L.; Davis, E. J.; Schweiger, G.; Covert, D. S.
1997-01-01
Apparatus and techniques were developed to electrodynamically trap and manipulate groups of microparticles. The equipment consists of a vibrating orifice aerosol generator, an inductive particle charger, a plenum chamber, and a double-ring electrodynamic balance. Salt particles (NaNO3) of controllable and measurable mass and charge were produced and introduced into the balance in nitrogen at flow rates up to 25 cm3/min. Ordered arrays of any number of particles up to 26 were assembled and manipulated. Methods for compressing the arrays are presented, and controlled ejection of single particles from a trapped array is demonstrated. Particles of opposite polarity were successfully levitated and kept apart, and aggregation of these particles was then induced by changing the electric field. Raman spectra were recorded for multiple salt particles, each having a diameter of 3.5 μm, by aligning them in a laser beam. The enhanced Raman signal is compared with that from a single particle isolated from the array. From the results, a detection limit of 0.4 pg per particle was estimated.
Electrodynamic properties of fractal clusters
NASA Astrophysics Data System (ADS)
Maksimenko, V. V.; Zagaynov, V. A.; Agranovski, I. E.
2014-07-01
An influence of interference on a character of light interaction both with individual fractal cluster (FC) consisting of nanoparticles and with agglomerates of such clusters is investigated. Using methods of the multiple scattering theory, effective dielectric permeability of a micron-size FC composed of non-absorbing nanoparticles is calculated. The cluster could be characterized by a set of effective dielectric permeabilities. Their number coincides with the number of particles, where space arrangement in the cluster is correlated. If the fractal dimension is less than some critical value and frequency corresponds to the frequency of the visible spectrum, then the absolute value of effective dielectric permeability becomes very large. This results in strong renormalization (decrease) of the incident radiation wavelength inside the cluster. The renormalized photons are cycled or trapped inside the system of multi-scaled cavities inside the cluster. A lifetime of a photon localized inside an agglomerate of FCs is a macroscopic value allowing to observe the stimulated emission of the localized light. The latter opens up a possibility for creation of lasers without inverse population of energy levels. Moreover, this allows to reconsider problems of optical cloaking of macroscopic objects. One more feature of fractal structures is a possibility of unimpeded propagation of light when any resistance associated with scattering disappears.
Electrodynamics of massless charged particles
Lechner, Kurt
2015-02-15
We derive the classical dynamics of massless charged particles in a rigorous way from first principles. Since due to ultraviolet divergences this dynamics does not follow from an action principle, we rely on (a) Maxwell’s equations, (b) Lorentz- and reparameterization-invariance, and (c) local conservation of energy and momentum. Despite the presence of pronounced singularities of the electromagnetic field along Dirac-like strings, we give a constructive proof of the existence of a unique distribution-valued energy-momentum tensor. Its conservation requires the particles to obey standard Lorentz equations and they experience, hence, no radiation reaction. Correspondingly, the dynamics of interacting classical massless charged particles can be consistently defined, although they do not emit bremsstrahlung end experience no self-interaction.
Unified theory of nonlinear electrodynamics and gravity
Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos
2011-01-15
We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but for any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.
Electrodynamics of convection in the inner magnetosphere
NASA Technical Reports Server (NTRS)
Spiro, R. W.; Wolf, R. A.
1984-01-01
During the past ten years, substantial progress has been made in the development of quantitative models of convection in the magnetosphere and of the electrodynamic processes that couple that magnetosphere and ionosphere. Using a computational scheme first proposed by Vasyliunas, the convection models under consideration separate the three-dimensional problem of convection in the inner magnetosphere/ionosphere into a pair of two-dimensional problems coupled by Birkeland currents flowing between the two regions. The logic, development, and major results of the inner magnetosphere convection model are reviewed with emphasis on ionospheric and magnetospheric currents. A major theoretical result of the models has been the clarification of the relationship between the region 1/region 2 picture of field-aligned currents and the older partial ring current/tail current interruption picture of substorm dynamics.
Electrodynamics of the Getaway Tether Experiment
NASA Technical Reports Server (NTRS)
Greene, Michael; Baginski, Michael; Wheelock, Douglas
1989-01-01
An electrodynamic circuit model of the interaction of a pair of small tethered satellites and the ionosphere is developed and analyzed. The system under study, the Getaway Tether Experiment (GATE), is composed of two small satellites and 1 km of insulated conducting tether. The nonlinear model has elements representing the emission, collection, and resistive flow of charge through an electrically conductive tether, plasma contactors, and the ionosphere. The circuit model is incorporated into a dynamic orbital simulation to predict mission performance. Simulation results show the feasibility to bilaterally transfer energy between stored electrical energy and orbital momentum. A transient model is also developed using the circuit model and a string of N lumped-parameter modules, each consisting of resistance, capacitance, and induced potential for the tether. Transients are shown via simulation to occur over millisecond intervals.
Electrodynamics of the high-latitude mesosphere
NASA Technical Reports Server (NTRS)
Goldberg, Richard A.
1989-01-01
The discovery of apparent large (V/m) electric fields within the mesosphere suggests that this region is more active electrically than originally suspected. High-latitude observations have been particularly productive in developing new concepts regarding mesospheric electrodynamics. Several high-latitude observations of large mesospheric fields have been made under both quiet and aurorally active conditions but always below heights where enhanced ionizing radiations could significantly penetrate. Two measurements from Andoya, Norway, have also produced an anticorrelation of horizontal electric field directions with neutral wind velocities, leading to the theoretical description of a newly defined mechanism for V/m electric field generation involving wind-induced separation of charged aerosols. Evidence for mesospheric aerosols and winds exists at all latitudes but is most evident at high latitudes during the appearance of noctilucent and/or polar mesospheric clouds.
A numerical simulation of auroral ionospheric electrodynamics
NASA Technical Reports Server (NTRS)
Mallinckrodt, A. J.
1985-01-01
A computer simulation of auroral ionospheric electrodynamics in the altitude range 80 to 250 km has been developed. The routine will either simulate typical electron precipitation profiles or accept observed data. Using a model background ionosphere, ion production rates are calculated from which equilibrium electron densities and the Hall and Pedersen conductivities may be determined. With the specification of suitable boundary conditions, the entire three-dimensional current system and electric field may be calculated within the simulation region. The results of the application of the routine to a typical inverted-V precipitation profile are demonstrated. The routine is used to explore the observed anticorrelation between electric field magnitude and peak energy in the precipitating electron spectrum of an auroral arc.
Viking investigations of auroral electrodynamical processes
Marklund, G. )
1993-02-01
Recent results from the Viking electric field experiment and their contribution to a better understanding of the aurora and of associated ionosphere-magnetosphere processes are briefly reviewed. The high-resolution electric field data have provided new and important results in a number of different areas, including auroral electrodynamics both on the arc scale size and on the global scale, the auroral acceleration process, the current-voltage relationship, substorms, and the dynamics of the polar cusp. After a short introduction presenting some of the characteristic features of the high-altitude electric field data the remainder of this paper focuses on the role of the electric field in auroral electrodynamics and in the auroral acceleration process. The relationships between the auroral emissions and the associated electric field, current, particle, and conductivity distributions are discussed for both small-scale and large-scale auroral distributions on the basis of results from Viking event studies and from numerical model studies. Particular attention is paid to ionospheric convection and field- aligned current signatures associated with northward interplanetary magnetic field (IMF) auroral distributions, such as the theta aurora or those characterized by extended auroral activity poleward of the classical auroral oval. The role of dc electric fields for the auroral acceleration process has been further investigated and clarified. Intense low-frequency electric field fluctuations (
Electrodynamics of ionospheric weather over low latitudes
NASA Astrophysics Data System (ADS)
Abdu, Mangalathayil Ali
2016-12-01
The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the
The Longitudinal Variation of Equatorial Electrodynamics Observations
NASA Astrophysics Data System (ADS)
Yizengaw, E.; Zesta, E.; Moldwin, M.; Valladares, C. E.; Damtie, B.; Mebrahtu, A.; Biouele, C. M.; Yumoto, K.; Pfaff, R. F.; Heelis, R. A.
2010-12-01
The uneven distribution of ground-based instruments due to the large ocean coverage in the equatorial regions hinders our ability to obtain a global understanding of the dynamics and structure of the equatorial ionosphere. In Africa, which has been mostly devoid of ground-based instruments, the ionospheric density structure has been traditionally estimated by model interpolation over vast geographic areas. Recent ground- and space-based observations have shown that geomagnetic storms can have dramatic longitudinal differences in equatorial ionospheric electrodynamics, such as enhanced generation of F-region plasma irregularities, and super fountain effect at low latitudes. For example, satellite observations have shown very unique equatorial ionospheric density structures in the African region. The African region is the longitude sector where the occurrence of large scale bubble activity (zonal width, depletion level, and spacing) peaks. No other region in the globe shows similar characteristics. One of the possible driving mechanisms that govern the equatorial electrodynamics is the vertical ExB drift, which strongly affects the structure and dynamics of the ionosphere in the low/mid-latitude region. According to the observations performed at different longitudes, using recently deployed limited ground-based instruments, the vertical ExB drift has significant longitudinal differences. This paper presents initial results of vertical ExB drifts observed at three different longitudes: East African, West African, and West American sectors. The drift is estimated using a pairs of ground-based magnetometers technique. In the African sector stations from the AMBER, INTERMAGNET, and MAGDAS, and in the American sector SAMBA and LISN magnetometer arrays have been used for this study. Finally, the comparison between the magnetometer estimated ExB drift and the vertical drift observations (VEFI and IVM) on board C/NOFS satellites have also been performed, showing promising
Analysis of an electrodynamic maglev system
Davey, K.
1999-09-01
Electrodynamic systems (EDS's) for maglev have an advantage over electromagnetic systems (EMS's) in that the stability is built into the system. EDS's induce the currents used for levitation and guidance, while EMS's impose those currents with controlled feedback. The movement of a magnet over properly designed EDS coils results in forces to keep the system fixed in the lowest energy or null flux spot. In the past such systems have been examined through two-dimensional boundary element techniques. An approximation to the full three-dimensional time harmonic problem is obtained through LaPlace transform theory after using boundary element methods to predict the mutual coupling of the magnets with the track coils. The analytic solution offers helpful design and operation guidelines.
Electrodynamics of long metallic tethers in the ionospheric plasma
NASA Technical Reports Server (NTRS)
Dobrowolny, M.
1978-01-01
A study is presented of the electrodynamic interactions of long metallic tethers (lengths up to 100 km) with the ionospheric plasma. The study, which is of interest in view of possible future experiments using long tethers in space, includes the derivation of current and potential distribution along the tether, taking also the effects of internal resistance into account. Electrostatic and electrodynamic drag forces are computed and compared with aerodynamic drag.
An Experiment on the Limits of Quantum Electro-dynamics
DOE R&D Accomplishments Database
Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K.; Gittelman, B.
1959-06-01
The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)
Resolution of a paradox in classical electrodynamics
Pinto, Fabrizio
2006-05-15
It is an early result of electrostatics in curved space that the gravitational mass of a charge distribution changes by an amount equal to U{sub es}/c{sup 2}, where U{sub es} is the internal electrostatic potential energy and c is the speed of light, if the system is supported at rest by external forces. This fact, independently rediscovered in recent years in the case of a simple dipole, confirms a very reasonable expectation grounded in the mass-energy equivalency equation. However, it is an unsolved paradox of classical electrodynamics that the renormalized mass of an accelerated dipole calculated from the self-forces due to the distortion of the Coulomb field differs in general from that expected from the energy correction, U{sub es}/c{sup 2}, unless the acceleration is transversal to the orientation of the dipole. Here we show that this apparent paradox disappears for any dipole orientation if the self-force is evaluated by means of Whittaker's exact solution for the field of the single charge in a homogeneous gravitational field described in the Rindler metric. The discussion is supported by computer algebra results, diagrams of the electric fields distorted by gravitation, and a brief analysis of the prospects for realistic experimentation. The gravitational correction to dipole-dipole interactions is also discussed.
Dark aspects of massive spinor electrodynamics
NASA Astrophysics Data System (ADS)
Kim, Edward J.; Kouwn, Seyen; Oh, Phillial; Park, Chan-Gyung
2014-07-01
We investigate the cosmology of massive spinor electrodynamics when torsion is non-vanishing. A non-minimal interaction is introduced between the torsion and the vector field and the coupling constant between them plays an important role in subsequential cosmology. It is shown that the mass of the vector field and torsion conspire to generate dark energy and pressureless dark matter, and for generic values of the coupling constant, the theory effectively provides an interacting model between them with an additional energy density of the form ~ 1/a6. The evolution equations mimic ΛCDM behavior up to 1/a3 term and the additional term represents a deviation from ΛCDM. We show that the deviation is compatible with the observational data, if it is very small. We find that the non-minimal interaction is responsible for generating an effective cosmological constant which is directly proportional to the mass squared of the vector field and the mass of the photon within its current observational limit could be the source of the dark energy.
Dark aspects of massive spinor electrodynamics
Kim, Edward J.; Kouwn, Seyen; Oh, Phillial; Park, Chan-Gyung E-mail: seyen@ewha.ac.kr E-mail: parkc@jbnu.ac.kr
2014-07-01
We investigate the cosmology of massive spinor electrodynamics when torsion is non-vanishing. A non-minimal interaction is introduced between the torsion and the vector field and the coupling constant between them plays an important role in subsequential cosmology. It is shown that the mass of the vector field and torsion conspire to generate dark energy and pressureless dark matter, and for generic values of the coupling constant, the theory effectively provides an interacting model between them with an additional energy density of the form ∼ 1/a{sup 6}. The evolution equations mimic ΛCDM behavior up to 1/a{sup 3} term and the additional term represents a deviation from ΛCDM. We show that the deviation is compatible with the observational data, if it is very small. We find that the non-minimal interaction is responsible for generating an effective cosmological constant which is directly proportional to the mass squared of the vector field and the mass of the photon within its current observational limit could be the source of the dark energy.
Covariant hyperbolization of force-free electrodynamics
NASA Astrophysics Data System (ADS)
Carrasco, F. L.; Reula, O. A.
2016-04-01
Force-free electrodynamics (FFE) is a nonlinear system of equations modeling the evolution of the electromagnetic field, in the presence of a magnetically dominated relativistic plasma. This configuration arises on several astrophysical scenarios which represent exciting laboratories to understand physics in extreme regimes. We show that this system, when restricted to the correct constraint submanifold, is symmetric hyperbolic. In numerical applications, it is not feasible to keep the system in that submanifold, and so it is necessary to analyze its structure first in the tangent space of that submanifold and then in a whole neighborhood of it. As has been shown [1], a direct (or naive) formulation of this system (in the whole tangent space) results in a weakly hyperbolic system of evolution equations for which well-posedness for the initial value formulation does not follow. Using the generalized symmetric hyperbolic formalism of Geroch [2], we introduce here a covariant hyperbolization for the FFE system. In fact, in analogy to the usual Maxwell case, a complete family of hyperbolizers is found, both for the restricted system on the constraint submanifold as well as for a suitably extended system defined in a whole neighborhood of it. A particular symmetrizer among the family is then used to write down the pertaining evolution equations, in a generic (3 +1 ) decomposition on a background spacetime. Interestingly, it turns out that for a particular choice of the lapse and shift functions of the foliation, our symmetrized system reduces to the one found in [1]. Finally, we analyze the characteristic structure of the resulting evolution system.
Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter
NASA Astrophysics Data System (ADS)
Bradai, Sonia; Naifar, Slim; Kanoun, Olfa
2015-12-01
In this paper we report on the design and optimization of a novel combined vibration energy harvester based on the use of electrodynamic and magnetoelectric (ME) principles to increase the energy outcome of an electrodynamic harvester without significantly increasing its size. Thereby the most important aspect is the dependence of magnetic flux variation on design parameters, as is it is the decisive effect for energy conversion. Magnetic circuit form and magnetization are optimized for maximizing energy outcome. We conclude that better magnetic flux variation is reached for a magnetic circuit formed with two magnets stacked one within the other using the same magnetization. Results illustrate that the use of combined converter enables to enhance the performance of simple electrodynamic or ME converter.
Characterization of a small moving-magnet electrodynamic linear motor
NASA Astrophysics Data System (ADS)
Liu, Jin; Garrett, Steven
2005-10-01
The mechanical and electrodynamic parameters of a small, potentially inexpensive, moving-magnet electrodynamic linear motor are determined experimentally. Employing the formalism introduced by Wakeland, these parameters are used to predict the electromechanical efficiency of the motor. The transduction coefficient, Bl, was observed to be a function of position. But as shown in the paper, the variation in Bl with position has a smaller effect on the driver's output power because Bl is largest around the equilibrium position, where the piston velocity is also largest. By mechanical colinear joining of the armatures of two such motors, an electrodynamic load (dynamometer) is created to measure the efficiency as a function of energy dissipated in the dynamometer. The measured efficiencies are shown to be in good agreement with the predictions if a position-averaged effective transduction coefficient is introduced. Based on these results, this linear motor is judged to be an attractive power source in small electrically driven thermoacoustic refrigerator applications.
Aspects of Magnetic Field Configurations in Planar Nonlinear Electrodynamics
NASA Astrophysics Data System (ADS)
de Assis, L. P. G.; Gaete, Patricio; Helaÿel-Neto, José A.; Vellozo, S. O.
2012-02-01
In the framework of three-dimensional Born-Infeld Electrodynamics, we pursue an investigation of the consequences of the space-time dimensionality on the existence of magnetostatic fields generated by electric charges at rest in an inertial frame, which are present in its four-dimensional version. Our analysis reveals interesting features of the model. In fact, a magnetostatic field associated with an electric charge at rest does not appear in this case. Interestingly, the addition of the topological term (Chern-Simons) to Born-Infeld Electrodynamics yields the appearance of the magnetostatic field. We also contemplate the fields associated to the would-be-magnetic monopole in three dimensions.
Engineering squeezed states of microwave radiation with circuit quantum electrodynamics
Li Pengbo; Li Fuli
2011-03-15
We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.
Application of Science Aesthetics in the Teaching of Electrodynamics
ERIC Educational Resources Information Center
Li, Haiyan
2010-01-01
As the important part of the theoretical physics, the electrodynamics is a theoretical basic course of the physics and relative subjects. To adapt the demands for cultivating the target of highly-quality talents in the 21st century, the aesthetic principle can be used in the teaching to stimulate students' learning desire and cultivate students'…
The electrodynamics of aerosols and bacteria in a microplasma
NASA Astrophysics Data System (ADS)
Maguire, P. D.; Mahony, C. M. O.; Diver, D.; Mariotti, D.; Bennet, E.; Potts, H.; McDowell, D. A.
2013-09-01
The physics of living organisms is considered a grand challenge of science. Plasma interactions with living organisms, particularly at atmospheric pressure, offer a unique opportunity to study the physical mechanisms and surface electrodynamics of individual microorganisms. The impact on the plasma of such macroscopic entities is itself important; the dynamics of non-spherical and non-rigid nano-/micro-scale structures have received little attention. Also the plasma interaction with water, from molecules to droplets, is becoming increasingly significant due to induced chemistries that differ considerably from conventional plasma chemistry. We investigate the bulk and surface physical properties of individual microorganisms, particularly bacteria, through electrical and visco-mechanical excitation. Individual organisms are transported by water droplets to an rf microplasma. Their impact on the plasma is determined by imaging, optical and electrical diagnostics. We report, using imaging, electrostatics and simulation, on (i) fluid stability under evaporative stress of charged microbe-carrying macroscopic droplets, (ii) impact of the plasma on the stochastic component of motion and (iii) the acquired charge distribution and transfer from liquid to lipid surface. Engineering and Physical Sciences Research Council EP/K006088, EP/K006142.
Electrodynamic Tether Propulsion System
NASA Technical Reports Server (NTRS)
2004-01-01
This picture is an artist's concept of an orbiting vehicle using the Electrodynamic Tethers Propulsion System. Relatively short electrodynamic tethers can use solar power to push against a planetary magnetic field to achieve propulsion without the expenditure of propellant.
Apparent Paradoxes in Classical Electrodynamics: Relativistic Transformation of Force
ERIC Educational Resources Information Center
Kholmetskii, A. L.; Yarman, T.
2007-01-01
In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time. (Contains 7 figures.)
Electrodynamics, Differential Forms and the Method of Images
ERIC Educational Resources Information Center
Low, Robert J.
2011-01-01
This paper gives a brief description of how Maxwell's equations are expressed in the language of differential forms and use this to provide an elegant demonstration of how the method of images (well known in electrostatics) also works for electrodynamics in the presence of an infinite plane conducting boundary. The paper should be accessible to an…
A Toy Model of Quantum Electrodynamics in (1 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2008-01-01
We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of…
Scaling limit of quantum electrodynamics with spatial cutoffs
Takaesu, Toshimitsu
2011-02-15
In this paper, the Hamiltonian of quantum electrodynamics with spatial cutoffs is investigated. A scaled total Hamiltonian is introduced and its asymptotic behavior is investigated. In the main theorem, it is shown that the scaled total Hamiltonian converges to a self-adjoint operator in the strong resolvent sense, and the effective potential of the Dirac field is derived.
On the electrodynamics of Minkowski at low velocities
NASA Astrophysics Data System (ADS)
Rousseaux, G.
2008-10-01
The Galilean constitutive equations for the electrodynamics of moving media are derived for the first time. They explain all the historic and modern experiments which were interpreted so far in a relativistic framework assuming the constant light celerity principle. Here, we show the latter to be sufficient but not necessary.
A Toy Model of Electrodynamics in (1 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2007-01-01
A model is presented that describes a scalar field interacting with a point particle in (1+1) dimensions. The model exhibits many of the same phenomena that appear in classical electrodynamics, such as radiation and radiation damping, yet has a much simpler mathematical structure. By studying these phenomena in a highly simplified model, the…
Determination and verification of the electrodynamic postulates
NASA Astrophysics Data System (ADS)
Mann, Philip Jay
1998-12-01
The foundation of this research is a set of fundamental postulates from which electromagnetic theories can be derived. This set includes postulates on the following: (i)Velocity of light in vacuum, (ii)Kinematics of source and/or receiver, (iii)Temporal/spacial differentiation. The objective is to demonstrate which particular postulates will be able to correctly formulate a generalized electrodynamic theory based on Galilean relativity, which is consistent with the concept of universal time. This is significant because classical electromagnetic theory, in its current formulation, is inadequate in many regards: (1)Classical electromagnetism does not permit the establishment of universal time. (2)Explanation of crucial experiments is not postulate unique. (3)Quantities in classical electromagnetic theory are not coordinate invariant. (4) Longitudinal forces in current-carrying wires have been observed. (5)Mathematical problems with taking derivatives of functions with multiple-nested dependency. (i)Velocity of light. In current electromagnetic theory it is tacitly assumed (although not always explicitly stated) that the speed of light is always constant in all co-ordinate systems regardless of the motion of the source or receiver. This particular postulate is known as the velocity invariance of light, and is the cornerstone of special relativity. There is very little directly known about the speed of light and the interpretation of indirect experimental data, which does exist, is ambiguous. Even the often cited landmark experiments, with meson decay and atomic clocks in motion, do not prove the constancy of the speed of light. Rather, they only demonstrate that if the speed of light is invariant, then the conclusion that time ``dilates'' and length ``contracts'' as a function of velocity, must necessarily follow. This is just a consequence of the postulate, and does not prove its validity. (ii)Kinematics of source and/or receiver kinematics. is the study of
Einstein's investigations of Galilean covariant electrodynamics prior to 1905
NASA Astrophysics Data System (ADS)
Norton, John D.
2004-11-01
Einstein learned from the magnet and conductor thought experiment how to use field transformation laws to extend the covariance of Maxwells electrodynamics. If he persisted in his use of this device, he would have found that the theory cleaves into two Galilean covariant parts, each with different field transformation laws. The tension between the two parts reflects a failure not mentioned by Einstein: that the relativity of motion manifested by observables in the magnet and conductor thought experiment does not extend to all observables in electrodynamics. An examination of Ritz's work shows that Einstein's early view could not have coincided with Ritz's on an emission theory of light, but only with that of a conveniently reconstructed Ritz. One Ritz-like emission theory, attributed by Pauli to Ritz, proves to be a natural extension of the Galilean covariant part of Maxwell's theory that happens also to accommodate the magnet and conductor thought experiment. Einstein's famous chasing a light beam thought experiment fails as an objection to an ether-based, electrodynamical theory of light. However it would allow Einstein to formulate his general objections to all emission theories of light in a very sharp form. Einstein found two well known experimental results of 18th and 19th century optics compelling (Fizeau's experiment, stellar aberration), while the accomplished Michelson-Morley experiment played no memorable role. I suggest they owe their importance to their providing a direct experimental grounding for Lorentz' local time, the precursor of Einstein's relativity of simultaneity, and doing it essentially independently of electrodynamical theory. I attribute Einstein's success to his determination to implement a principle of relativity in electrodynamics, but I urge that we not invest this stubbornness with any mystical prescience.
Electrodynamic pressure modulation of protein stability in cosolvents.
Damodaran, Srinivasan
2013-11-19
Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state. PMID:24156352
The electric field and global electrodynamics of the magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1979-01-01
The conception of the electrodynamics of the quiet-time magnetosphere obtained during the last four years of magnetospheric study is presented. Current understandings of the open magnetosphere, convective plasma flows in the plasma sheet, the shielding of the inner magnetosphere from the convective magnetospheric electric field, the space charge produced when injected electrons drift towards dawn and injected ions drift towards dusk, the disruption of the flow of the Birkeland current by plasma instabilities and the shielding of the convective electric field by the dayside magnetopause are discussed. Attention is also given to changes of magnetic field line topology magnetic storms and substorms. Unresolved questions and new tools which may play a role in the further understanding of magnetospheric electrodynamics and the role of the magnetospheric electric field are presented.
On the electrodynamics of Josephson effect in anisotropic superconductors
Mints, R.G.
1989-01-01
Specificities of Josephson effect electrodynamics in anisotropic superconductors are of considerable interest for the study of high temperature superconductors with strongly anisotropic layered structure. In this paper the authors give the calculation for the tunnel Josephson contact of an isolated vortex, the law of dispersion of its low-amplitude oscillations, the critical field H/sub cl/ for the penetration of magnetic flux, and the maximum current across a rectangular contact.
Structures of general relativity in dilaton-Maxwell electrodynamics
NASA Astrophysics Data System (ADS)
Kechkin, O. V.; Mosharev, P. A.
2016-08-01
It is shown that electro (magneto) static sector of Maxwell’s electrodynamics coupled to the dilaton field in a string theory form possesses the symmetry group of the stationary General Relativity in vacuum. Performing the Ernst formalism, we develope a technique for generation of exact solutions in this modified electrodynamics on the base of the normalized Ehlers symmetry transformation. In the electrostatic case, we construct and study a general class of spherically symmetric solutions that describes a pointlike source of the Coulomb type. It is demonstrated that this source is characterized by finite and singularity-free interaction at short distances. Also it is established that the total electrostatic energy of this source is finite and inversely proportional to the dilaton-Maxwell coupling constant.
Architecture dependence of photon antibunching in cavity quantum electrodynamics
NASA Astrophysics Data System (ADS)
Bradford, Matthew; Shen, Jung-Tsung
2015-08-01
We investigate numerically the architecture dependence of the characteristics of antibunched photons generated in cavity quantum electrodynamic systems. We show that the quality of antibunching [the smallness of the second-order intensity correlation function at zero time g(2 )(0 ) ] and the generation efficiency significantly depend on the configurations: the arrangements of single-mode optical cavities and waveguides. We found that for certain class of architecture, when the Jaynes-Cummings system (the atom-cavity system) couples to two terminated waveguides, there exists a fundamental tradeoff between high transmission and low g(2 )(0 ) , and is sensitive to dissipation. We further show that optimal antibunching can be achieved in two alternative cavity quantum electrodynamic configurations operating in the dissipatively weak coupling regime such that the two-photon transmission can be two orders of magnitude higher for the same g(2 )(0 ) .
Electrodynamic context of magnetopause dynamics observed by magnetospheric multiscale
NASA Astrophysics Data System (ADS)
Anderson, Brian J.; Russell, Christopher T.; Strangeway, Robert J.; Plaschke, Ferdinand; Magnes, Werner; Fischer, David; Korth, Haje; Merkin, Viacheslav G.; Barnes, Robin J.; Waters, Colin L.; Cohen, Ian J.; Westlake, Joseph H.; Mauk, Barry H.; Leinweber, Hannes K.; Gershman, Daniel J.; Giles, Barbara L.; Le, Guan; Torbert, Roy B.; Burch, James L.
2016-06-01
Magnetopause observations by Magnetospheric Multiscale (MMS) and Birkeland currents observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment are used to relate magnetopause encounters to ionospheric electrodynamics. MMS magnetopause crossings on 15 August and 19 September 2015 occurred earthward of expectations due to solar wind ram pressure alone and coincided with equatorward expansion of the Birkeland currents. Magnetopause erosion, consistent with expansion of the polar cap, contributed to the magnetopause crossings. The ionospheric projections of MMS during the events and at times of the magnetopause crossings indicate that MMS observations are related to the main path of flux transport in one case but not in a second. The analysis provides a way to routinely relate in situ observations to the context of in situ convection and flux transport.
The unconventional electrodynamics of high {Tc} and organic superconductors
Timusk, T.; Cao, N.; Basov, D.N.; Homes, C.C.
1996-12-31
The combination of lowered dimensionality and electron-electron correlations are responsible for the unusual temperature and frequency dependence of the electrical conductivity of the new superconductors. The authors first review the electrodynamics of two systems, U{sub 2}Ru{sub 2}Si{sub 2} and Sr{sub 2}RuO{sub 4} where conventional Fermi liquid ideas seem to work. Here transport is by free carriers with strongly renormalized masses. On the other hand the electrodynamics of the high {Tc} cuprates and the organic charge transfer salts is unconventional. The high {Tc}`s show a Drude peak with an anomalous temperature and frequency dependent scattering rate for the in-plane conductivity, while normal to the planes they are almost insulating. In the organics, the transport currents are carried by a narrow collective mode coupled to phonons. 44 refs., 7 figs.
Fixed point structure of quenched, planar quantum electrodynamics
Love, S.T.
1986-07-01
Gauge theories exhibiting a hierarchy of fermion mass scales may contain a pseudo-Nambu-Boldstone boson of spontaneously broken scale invariance. The relation between scale and chiral symmetry breaking is studied analytically in quenched, planar quantum electrodynamics in four dimensions. The model possesses a novel nonperturbative ultraviolet fixed point governing its strong coupling phase which requires the mixing of four fermion operators. 12 refs.
Emergent electrodynamics of skyrmions in a chiral magnet
NASA Astrophysics Data System (ADS)
Schulz, T.; Ritz, R.; Bauer, A.; Halder, M.; Wagner, M.; Franz, C.; Pfleiderer, C.; Everschor, K.; Garst, M.; Rosch, A.
2012-04-01
When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics. The topologically quantized winding number of so-called skyrmions--a type of magnetic whirl discovered recently in chiral magnets--has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday's law of induction, which inherits this topological quantization. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106Am-2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.
Electrodynamic Approach for Visualization of Sound Propagation in Solids
NASA Astrophysics Data System (ADS)
Völz, U.; Mrasek, H.; Matthies, K.; Wü; stenberg, H.; Kreutzbruck, M.
2009-03-01
The visualization of sound propagation in solids is vital for transducer adaptation and better understanding of complex test samples and their wave propagation modeling. In this work we present an electrodynamic technique detecting the grazing sound beam with a 10 mm-sized electrodynamic probe. The particle displacement along the sample's surface was then measured as a function of time and position. Adapting the electrodynamic probe and its coil alignment allows for measuring the displacement components in all three dimensions. Thus horizontal and vertical particle displacement with respect to the surface can be detected. A SNR of up to 40 dB could be achieved within ferromagnetic and high conductive chrome steel when using a shear wave generated by an angle beam probe. When dealing with nonconductive materials such as PMMA we obtained a reduced SNR of 12 dB. We report on measurements of the sound field in complex weld joints. One example shows a narrow gap weld joining a nickel alloy with a chrome steel. The weld of the 80 mm-thick test block shows a distinct anisotropic texture. The system enables us to visualize the wave propagation within the weld and indicates the reflection and scattering scenario and the energy losses due to both the anisotropic structure and material defects.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Mangeney, A.; Lacombe, C.; Harvey, C. C.; Wu, C. S.
1986-01-01
The analysis of the fluid continuum level within the shock layer observed on November 7, 1977 by the ISEE satellites (Scudder et al., 1986) is extended to examine, within the framework of Vlasov electrodynamics, direct observational evidence for 'collisionless' resistivity. The analysis is based on the measured wave turbulence and the deviation of the observed electron velocity distribution function from the form predicted using the reversible individual electron trajectories in the presence of dc forces.
Electrodynamic processes in the ring system of Saturn
NASA Technical Reports Server (NTRS)
Mendis, D. A.; Hill, J. R.; Ip, W.-H.; Goertz, C. K.; Gruen, E.
1984-01-01
A number of recently observed Saturn ring phenomena are discussed in terms of their electrodynamic implications. Voyager 1 and 2 observations of the rotating near-radial spokes in the B Ring, waves and braids of the F Ring, and discrete episodic bursts of broadband radio emission, claimed by some to originate in a ring, are addressed. Several other phenomena are considered, including the origin and evolution of the diffuse E Ring and G Ring (which appear to be composed of fine dust), as well as the existence of a number of sharp discontinuities in the main ring system, within the context of gravitoelectrodynamics of charged dust in the magnetosphere.
NASA Technical Reports Server (NTRS)
Maynard, N. C. (Editor)
1979-01-01
Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research.
8-Spinors and structure of solitons in generalized Mie electrodynamics
Rybakov, Yu. P.
2013-02-15
A generalization of Mie electrodynamics is considered. It includes a 8-spinor field and higher powers of the Mie invariant A{sub {mu}}A{sup {mu}}. Particular topological properties of 8-spinors are indicated and are associated with the existence of the remarkable Brioschi identity of eight squares, which permits deriving a natural 8-spinor unification of the Skyrme model of baryons and the Faddeev model of leptons, these particles being treated as topological solitons. Two types of soliton configurations admitted by the model are constructed. These are charged static and neutral lightlike (luxons) ones.
Electrodynamic boundary conditions for planar arrays of thin magnetic elements
Lisenkov, Ivan; Tyberkevych, Vasyl; Slavin, Andrei; Nikitov, Sergei
2015-08-24
Approximate electrodynamic boundary conditions are derived for an array of dipolarly coupled magnetic elements. It is assumed that the elements' thickness is small compared to the wavelength of an electromagnetic wave in a free space. The boundary conditions relate electric and magnetic fields existing at the top and bottom sides of the array through the averaged uniform dynamic magnetization of the array. This dynamic magnetization is determined by the collective dynamic eigen-excitations (spin wave modes) of the array and is found using the external magnetic susceptibility tensor. The problem of oblique scattering of a plane electromagnetic wave on the array is considered to illustrate the use of the derived boundary conditions.
Nonlinear behavior of electrodynamic loudspeaker suspension at low frequencies
NASA Astrophysics Data System (ADS)
Feng, ZiXin; Shen, Yong; Heng, Wei; Liu, YunFeng
2013-07-01
The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equation of motion which considers the nonlinearity of suspension at low frequencies numerically and measuring different kinds of surrounds and spiders, the nonlinear behavior of suspension is theoretically and experimentally studied. Since the nonlinear stiffness of spiders and surrounds can be measured and fitted respectively before assembled into loudspeakers, which spider works best with which surround is studied. The performance of loudspeakers such as harmonic distortion based on the nonlinear parameters can be predicted.
Evaluation of a six-DOF electrodynamic shaker system.
Gregory, Danny Lynn; Smallwood, David Ora
2009-03-01
The paper describes the preliminary evaluation of a 6 degree of freedom electrodynamic shaker system. The 8 by 8 inch (20.3 cm) table is driven by 12 electrodynamic shakers producing motion in all 6 rigid body modes. A small electrodynamic shaker system suitable for small component testing is described. The principal purpose of the system is to demonstrate the technology. The shaker is driven by 12 electrodynamic shakers each with a force capability of about 50 lbs (220 N). The system was developed through an informal cooperative agreement between Sandia National Laboratories, Team Corp. and Spectral Dynamics Corporation. Sandia provided the laboratory space and some development funds. Team provided the mechanical system, and Spectral Dynamics provided the control system. Spectral Dynamics was chosen to provide the control system partly because of their experience in MIMO control and partly because Sandia already had part of the system in house. The shaker system was conceived and manufactured by TEAM Corp. Figure 1 shows the overall system. The vibration table, electrodynamic shakers, hydraulic pumps, and amplifiers are all housed in a single cabinet. Figure 2 is a drawing showing how the electrodynamic shakers are coupled to the table. The shakers are coupled to the table through a hydraulic spherical pad bearing providing 5 degrees of freedom and one stiff degree of freedom. The pad bearing must be preloaded with a static force as they are unable to provide any tension forces. The horizontal bearings are preloaded with steel springs. The drawing shows a spring providing the vertical preload. This was changed in the final design. The vertical preload is provided by multiple strands of an O-ring material as shown in Figure 4. Four shakers provide excitation in each of the three orthogonal axes. The specifications of the shaker are outlined in Table 1. Four shakers provide inputs in each of the three orthogonal directions. By choosing the phase relationships
Plasma issues associated with the use of electrodynamic tethers
NASA Technical Reports Server (NTRS)
Hastings, D. E.
1986-01-01
The use of an electrodynamic tether to generate power or thrust on the space station raises important plasma issues associted with the current flow. In addition to the issue of current closure through the space station, high power tethers (equal to or greater than tens of kilowatts) require the use of plasma contactors to enhance the current flow. They will generate large amounts of electrostatic turbulence in the vicinity of the space station. This is because the contactors work best when a large amount of current driven turbulence is excited. Current work is reviewed and future directions suggested.
Generation of quantum electrodynamic cascades by colliding laser pulses
NASA Astrophysics Data System (ADS)
Gelfer, E. G.
2016-04-01
Quantum electrodynamic cascades in intense electromagnetic fields arise when the proper electron acceleration χ, expressed in Compton units, can attain values greater than or on the order of unity. For times t ll 1/ω, where ω is the carrier frequency of the field, we have derived a general formula for χ of an initially resting electron in an arbitrary electromagnetic field. Using this formula, we have found an optimal configuration of colliding laser pulses, which provides a significant reduction in the threshold intensity of occurrence of cascades up to a level of ~1023 W cm-2.
QED (quantum-electrodynamical) theory of excess spontaneous emission noise
Milonni, P.W.
1990-01-01
The results of a quantum-electrodynamical theory of excess spontaneous emission noise in lossy resonators will be presented. The Petermann K factor'' does not enter into the spontaneous emission rate of a single atom in the cavity. The QED theory allows different interpretations of the K factor, and we use this fact to justify semiclassical analyses and to provide in one example a simple derivation of K in terms of the amplification of the quantum vacuum field entering the resonator through its mirrors. 17 refs.
Applications of the Electrodynamic Tether to Interstellar Travel
NASA Technical Reports Server (NTRS)
Matloff, Gregory L.; Johnson, Les
2005-01-01
After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron-collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible.
Quantum electrodynamics vacuum polarization modification of photon acceleration in plasma
Bu Zhigang; Ji Peiyong
2010-07-15
The modification of photon frequency shifting based on taking into account the nonlinear quantum electrodynamics vacuum properties in plasma is studied. Motion equations of a laser field propagating in a plasma are derived from the Heisenberg-Euler Lagrangian density. It is found that besides the classical density perturbation of the plasma electrons, the energy density perturbation of the laser field will induce the frequency shifting via the ponderomotive force of the laser field on the vacuum. In addition it is shown that the electron density will be suppressed, which is attributed to a screening effect on the plasma electrons via the quantum vacuum polarization.
Capabilities of electrodynamic shakers when used for mechanical shock testing
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1973-01-01
The results of a research task to investigate the capabilities of electrodynamic vibrators (shakers) to perform mechanical shock tests are presented. The simulation method employed was that of developing a transient whose shock response spectrum matched the desired shock response spectrum. Areas investigated included the maximum amplitude capabilities of the shaker systems, the ability to control the shape of the resultant shock response spectrum, the response levels induced at frequencies outside the controlled bandwidth, and the nonlinearities in structural response induced by a change in test level.
Electrodynamics of the middle atmosphere: Superpressure balloon program
NASA Technical Reports Server (NTRS)
Holzworth, Robert H.
1987-01-01
In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.
Gravito-electrodynamics and the structure of planetary ring systems
NASA Technical Reports Server (NTRS)
Mendis, D. A.
1984-01-01
Recent spacecraft observations of the Saturnian and Jovian ring systems have highlighted a plethora of interesting new phenomena associated with those regions containing fine (micron and sub-micron sized) dust. Recognizing that these dust grains, by virtue of being immersed within the planetary magnetospheres, are electrostatically charged to the point that they experience comparable gravitational and electric forces, a new 'gravito-electrodynamic' theory has been developed to describe their dynamics. This theory has been successful in explaining all these phenomena in a systematic way. In this review, the basic model and its range of validity are outlined, and its application to the Saturnian and Jovian ring systems are discussed.
Gravito-electrodynamics and the structure of planetary ring systems
NASA Astrophysics Data System (ADS)
Mendis, D. A.
1984-08-01
Recent spacecraft observations of the Saturnian and Jovian ring systems have highlighted a plethora of interesting new phenomena associated with those regions containing fine (micron and sub-micron sized) dust. Recognizing that these dust grains, by virtue of being immersed within the planetary magnetospheres, are electrostatically charged to the point that they experience comparable gravitational and electric forces, a new 'gravito-electrodynamic' theory has been developed to describe their dynamics. This theory has been successful in explaining all these phenomena in a systematic way. In this review, the basic model and its range of validity are outlined, and its application to the Saturnian and Jovian ring systems are discussed.
A simple electrodynamic model of a dust devil
NASA Astrophysics Data System (ADS)
Farrell, William M.; Delory, Greg T.; Cummer, Steven A.; Marshall, John R.
2003-10-01
We present an electrodynamic model of a dust devil applying a similar methodology as performed previously for charging in terrestrial thunderstorms. While thunderstorm processes focus on inductive charging between large graupel and smaller ice and water droplets, we tailor the model to focus on the electric charge transfer between dust grains of different sizes and compositions. We specifically compare and contrast the triboelectric dust charging processes presented previously in Melnik and Parrot [1998] and Desch and Cuzzi [2000] in the development of macroscopic dust devil electric fields. We find that large vertical E-fields (~20 kV/m) can develop in the devil.
Aspects of finite electrodynamics in D = 3 dimensions
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Helayël-Neto, José; Spallucci, Euro
2012-06-01
We study the impact of a minimal length on physical observables for a three-dimensional axionic electrodynamics. Our calculation is done within the framework of the gauge-invariant, but path-dependent variable formalism which is an alternative to the Wilson loop approach. Our result shows that the interaction energy contains a regularized Bessel function and a linear confining potential. This calculation involves no θ expansion at all. Once again, the present analysis displays the key role played by the new quantum of length.
Space Environmental Testing of the Electrodynamic Dust Shield Technology
NASA Technical Reports Server (NTRS)
Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.
2013-01-01
NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.
Remarks on nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Helayël-Neto, José
2014-11-01
We consider both generalized Born-Infeld and exponential electrodynamics. The field energy of a point-like charge is finite only for Born-Infeld-like electrodynamics. However, both Born-Infeld-type and exponential electrodynamics display the vacuum birefringence phenomenon. Subsequently, we calculate the lowest-order modifications to the interaction energy for both classes of electrodynamics, within the framework of the gauge-invariant path-dependent variables formalism. These are shown to result in long-range (-type) corrections to the Coulomb potential. Once again, for their noncommutative versions, the interaction energy is ultraviolet finite.
Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers.
Eriksson, Tobias J R; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N; Dixon, Steve
2016-01-01
Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio ( SNR ) ≃ 15 dB in transmit-receive mode, with transmitter and receiver 40 cm apart. PMID:27571075
Electrodynamics of the Middle Atmosphere: Superpressure Balloon Program
NASA Technical Reports Server (NTRS)
Holzworth, Robert H.
1990-01-01
This project called Electrodynamics of the Middle Atmosphere (EMA): Superpressure Balloon Program was begun by the PI at the Aerospace Corporation in Los Angeles under joint NSF and NASA funding originally combined in one grant ATM80-17071 and has continued at the University of Washington under grants ATM8212283, ATM84-11326 and ATM86-15628 and NASA grants NAGW-724 and NAGS-635. In the EMA experiment a comprehensive set of electrical parameters was measured during eight long-duration balloon flights in the Southern Hemisphere stratosphere. These flights resulted in the largest vector electric field data set ever collected from the stratosphere which has been a treasure-trove of new phenomena. Since the stratosphere has never been electrodynamically sampled in this systematic manner before, it is perhaps not surprising that several new discoveries have been made and reported. Another way to measure the success of this first EMA project is to note that all together the total data rate was about 1 bit/sec/payload amounting to 12 MBytes (1/3 of 1 standard 1600 BPI magnetic tape) which nevertheless has resulted in 14 papers and 2 masters theses (so far! . Ten of these papers and one masters thesis specifically acknowledge the support by NASA grant NAGS-635 are discussed herein.
Nonlinear analysis of an electrodynamic broadband energy harvester
NASA Astrophysics Data System (ADS)
Bradai, S.; Naifar, S.; Viehweger, C.; Kanoun, O.; Litak, G.
2015-11-01
In order to maximize energy from ambient vibration sources, wide band harvesters working at a range of frequencies are important. This paper presents an electrodynamic energy harvester model working for a frequency band from 25 Hz to 45 Hz. The developed converter consists of a magnetic spring formed by one moving magnet placed between two fixed magnets. A ring magnet is placed around the moving magnet leading to additional nonlinear stiffness to increase the power output. A comparison to a basic configuration electrodynamic converter was carried out by finite element analysis to show that a significant increase in power output was realized. Simulation results have been confirmed by experimental investigations under harmonic excitations. Based on the experimental time series, we have examined the frequency spectrum and phase portraits to identify the dynamic response of the system. In conclusion, the generator is able to harvest 1.5 times more energy than the simple generator for the bandwidth of 20 Hz with the resonant frequency of 35 Hz and the excitation amplitude of 2 mm.
Hidden in Plain View: The Material Invariance of Maxwell-Hertz-Lorentz Electrodynamics
NASA Astrophysics Data System (ADS)
Christov, C. I.
2006-04-01
Maxwell accounted for the apparent elastic behavior of the electromagnetic field through augmenting Ampere's law by the so-called displacement current much in the same way that he treated the viscoelasticity of gases. Original Maxwell constitutive relations for both electrodynamics and fluid dynamics were not material invariant, while combin- ing Faraday's law and the Lorentz force makes the first of Maxwell's equation material invariant. Later on, Oldroyd showed how to make a viscoelastic constitutive law mate- rial invariant. The main assumption was that the proper description of a constitutive law must be material invariant. Assuming that the electromagnetic field is a material field, we show here that if the upper convected Oldroyd derivative (related to Lie derivative) is used, the displacement current becomes material invariant. The new formulation ensures that the equation for conser- vation of charge is also material invariant which vindicates the choice of Oldroyd derivative over the standard convec- tive derivative. A material invariant field model is by ne- cessity Galilean invariant. We call the material field (the manifestation of which are the equations of electrodynam- ics the metacontinuum), in order to distinguish it form the standard material continua.
On some applications of Galilean electrodynamics of moving bodies
NASA Astrophysics Data System (ADS)
de Montigny, M.; Rousseaux, G.
2007-11-01
We discuss the seminal article by Le Bellac and Lévy-Leblond in which they identified two Galilean limits (called "electric" and "magnetic" limits) of electromagnetism and their implications. Recent work has shed new light on the choice of gauge conditions in classical electromagnetism. We show that the recourse to potentials is compelling in order to demonstrate the existence of both (electric and magnetic) limits. We revisit some nonrelativistic systems and related experiments, in the light of these limits, in quantum mechanics, superconductivity, and the electrodynamics of continuous media. Much of the current technology where waves are not taken into account can be described in a coherent fashion by the two limits of Galilean electromagnetism instead of an inconsistent mixture of these limits.
Electrodynamic force of dielectric barrier discharge
Shang, J. S.; Roveda, F.; Huang, P. G.
2011-06-01
The periodic electrostatic force of dielectric barrier discharge (DBD) in nitrogen for flow control is investigated by a system of physics-based, two-dimensional model equations. The plasma generation process of DBD is mainly the avalanche growth of electrons through the secondary emission from cathode. Therefore, the charged particle motion of a succession of random micro discharges can be approximated by the drift-diffusion model. The force of DBD generated by charge separation and accumulation over the dielectrics is obtained by solving the model equations with the rigorous media interface boundary condition of Maxwell equations in the time domain. The discharge structure and force components by different electrical permittivity and amplitudes of externally applied electrical potential are delineated and quantified.
The anisotropic microwave electrodynamics of YBCO
NASA Astrophysics Data System (ADS)
Hosseini-Gheinani, Ahmad Reza
The anisotropic microwave surface impedance of the high temperature superconductor, YBa2Cu3O7-delta, has been investigated. Microwave spectroscopy using five microwave cavities has been used to show clearly the development of long lived quasiparticles (QP) in the ab-plane of YBa2Cu3O6.99. Two regimes of transport are found, one below 20 K where the quasiparticle (QP) dynamics is with residual impurities, and above 20 K where umklapp QP-QP interactions dictate the temperature dependence of the transport lifetimes. The C-axis microwave surface impedance of YBa2Cu 3O6.95 has been studied into the superconducting state. The long QP lifetimes found in the planes of this material are found to be absent in the conductivity observed along the c-axis, indicating that the confinement of carriers to the planes is an inherent feature of the cuprates. The highly underdoped superconducting state has also been investigated with microwave techniques. The temperature dependence of the c -axis superfluid stiffness is found to scale over a range of hole dopings, corresponding to Tc's in the range 9--19 K. We further find that the magnitude of the zero temperature c -axis superfluid stiffness grows rapidly with doping, initially as fast as T2c .
Theory of Light Scattering in Axion Electrodynamics
NASA Astrophysics Data System (ADS)
Ochiai, Tetsuyuki
2012-09-01
Taking account of the axion term in the Maxwell Lagrangian, we present a rigorous theory of light scattering in piecewise-constant axion fields. In particular, we focus on axionic substances with confined and/or curved geometries, and the scattering matrices of an axionic slab, cylinder, and sphere are derived analytically. The axion term generates a surface current with off-diagonal optical conductivity, giving rise to a new type of photospin--orbit interaction. As a result, various novel light-scattering phenomena can take place. We demonstrate enhanced Faraday rotation, parity-violating light scattering, and strong perturbation of dipole radiation.
Dynamic stability of electrodynamic maglev systems
Cai, Y.; Chen, S.S.; Mulcahy, T.M.; Rote, D.M.
1997-01-01
Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on mathematical models and experimental data. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis for motion-dependent magnetic-force-induced instability developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.
Influence of nonlinear electrodynamics on stability of thin-shell wormholes
NASA Astrophysics Data System (ADS)
Sharif, M.; Mumtaz, Saadia
2016-07-01
The aim of this paper is to discuss stability of regular thin-shell wormholes coupled with non-linear electrodynamics and cosmological constant. The surface stresses are formulated by using Lanczos equations. We examine attractive and repulsive behavior of these constructed wormholes corresponding to outward and inward-directed acceleration components, respectively. We also investigate stability conditions for the existence of traversable thin-shell wormholes with arbitrarily small amount of different fluids as exotic matter. We consider linear, logarithmic and Chaplygin gas models and find that a modified generalized Chaplygin gas model provides maximum viable regions for stability of the respective thin-shell wormholes. It is found that formation of stable regions for ABGB thin-shell wormholes highly depends on the physically acceptable range of charge and other parameters.
Electrodynamics of the westward traveling surge
NASA Technical Reports Server (NTRS)
Kan, J. R.; Kamide, Y.
1985-01-01
It is shown that the global convection pattern, the ionospheric current, and the field-aligned current associated with the westward traveling surge in the asymptotic state can be modeled quantitatively as consequences of a blockage of the Hall current from closure in the magnetosphere via field-aligned currents. The conductivity is allowed to increase self-consistently with increasing upward field-aligned current in the model. This inclusion of the self-consistent enhanced ionospheric conductivity due to discrete auroral precipitations is found to generate a localized intense westward electrojet on the poleward side of the Harang discontinuity. The westward electrojet is also found to rotate counterclockwise, merging into the eastward electrojet around the leading edge of the surge. Thus the major features of the westward traveling surge can be reproduced reasonably well in the model.
Anomalous electrodynamic explosions in liquids
Aspden, H.
1986-06-01
The recently reported Graneau experiments on electrodynamic explosions in liquids, which reveal anomalous longitudinal electrodynamic forces of the order of 10/sup 4/ times greater than expected, verify the need for a term in the law of electrodynamics that corresponds to the ion/electron mass ratio. This confirms an earlier theoretical interpretation of the anomalous cathode reaction forces found in the vacuum arc.
Electrodynamics of strongly correlated electron systems
NASA Astrophysics Data System (ADS)
Dordevic, Sasa V.
2002-09-01
In this thesis we study a variety of condensed matter systems with strongly correlated electrons, i.e. systems in which the electron-electron interactions cannot be ignored like in conventional metals, (gold, aluminum, copper, etc.). Infrared spectroscopy has proven to be a powerful tool for studying such systems. The latter experimental technique probes all excitations is solids that have a dipole moment associated with them, such as gap excitations, interband transitions, phonons, polarons, magnons etc. Strong electron correlations lead to a variety of interesting physical phenomena at low temperatures. In copper ox ides superconductivity sets in below an unprecedently high critical temperature, Tc. The mechanism of this unusual phenomenon is still unclear. In this thesis we discuss energy scales from which the superconducting condensate is collected and the response of cuprates to an external magnetic field applied parallel to the CuO2 planes. In so-called heavy fermion metals a coherent ground state develops at low temperatures where the electrons appear to have large effective mass, typically 50--1,000 free electron masses. We show that magnetic interactions play an important role for the mass renormalization in heavy fermion metals. In transition metal dichalcogenides reduced dimensionality of the electron gas leads to significant anisotropy of the electron-phonon interaction.
Studies of nonlinear electrodynamics of high-temperature superconductors
Lam, Quan-Chiu H.
1991-08-01
Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities' dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.
Studies of nonlinear electrodynamics of high-temperature superconductors
Lam, Quan-Chiu H.
1991-08-01
Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities` dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double_prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.
Nonlinear electrodynamics of vortex matter in hard superconductors (Review)
NASA Astrophysics Data System (ADS)
Voloshin, I. F.; Fisher, L. M.; Yampol'Skiĭ, V. A.
2010-01-01
Nontrivial electrodynamic properties of vortex matter, which are due to a specific nonlinearity of the material equations, in hard superconductors are discussed: collapse of the transport current and the static magnetization of superconductors by an external orthogonal ac magnetic field; appearance of jumps in the time dependence of the electric field at the boundary of a sample as a result of nonlinear interaction of waves having different frequencies; specific staged penetration of an electromagnetic field into anisotropic superconductors. Nonlocal effects resulting in a large modification of nonlinear phenomena are also examined. Special attention is given to a discussion of the unique phenomenon of macroturbulent instability, associated with the flow of Abrikosov vortices, in hard superconductors. Most results presented are based on original experimental and theoretical investigations performed with the participation of the present authors.
No Drama Quantum Electrodynamics?
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2015-03-01
Is it possible to offer a ``no drama'' quantum electrodynamics, as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics. 2. After introduction of a complex 4-potential (producing the same electromagnetic field (EMF) as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics. 3. The resulting theories describe independent evolution of EMF and can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem and the connection with Barut's self-field electrodynamics are discussed.
Nonlocal electrodynamics of Josephson vortices in superconducting circuits
NASA Astrophysics Data System (ADS)
Abdumalikov, A. A., Jr.; Alfimov, G. L.; Malishevskii, A. S.
2009-02-01
A review of the main analytical, numerical and experimental results of nonlocal Josephson electrodynamics in different types of junctions is presented. Several mechanisms of nonlocality are discussed. Linear electromagnetic waves and vortices (kinks) propagating along junctions are examined in detail. The main attention is paid to bulk junctions with internal nonlocality and to narrow junctions with geometrical nonlocality. Theoretical conceptions of Cherenkov excitation of plasma waves, discretization of kink velocities and forming of multikinks by binding of elementary vortices are considered. Experimental results for narrow junctions are surveyed. It is shown that the positions of Fiske steps and Cherenkov resonances at current-voltage characteristics which have been obtained in experiments can be properly explained by a nonlocal model that takes into account stray magnetic fields outside the junction.
Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Diaz-Alonso, J.; Rubiera-Garcia, D.
2013-10-01
We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal "renormalization group"-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics. Moreover the application of the scaling laws allows to find a universal finite relation between the thermodynamic variables
Optimization of electrodynamic acceleration regimes for cylindrical conductors
NASA Astrophysics Data System (ADS)
Kalikhman, S. A.
1985-11-01
At the present time electromagnetic accelerators which use the action of an impulsive electromagnetic field on a current-carrying conductor appear to be promising devices for the study of high-speed collisions. In the regime using separate sources for the accelerating magnetic field and the current in the conductor being accelerated it is possible to bring cylindrical conductors up to velocities exceeding 12 km/sec [1]. Acceleration regimes have been calculated previously [2] assuming independence of the current density in the conductor from the accelerating magnetic field. However, as analysis of transient electromagnetic processes occurring in the interaction of an impulsive electromagnetic field with a cylindrical conductor shows [3], the maximum current density, limited by heating conditions, depends significantly on the induction of the accelerating magnetic field. In the present study we will analyze regimes for electrodynamic acceleration of cylindrical conductors with consideration of diffusion of both the intrinsic and the external impulsive magnetic field within the conductor.
Electrodynamics of disk-accreting magnetic neutron stars
NASA Technical Reports Server (NTRS)
Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.
1994-01-01
We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.
Electrodynamics of the stratosphere using 5000 cu m superpressure balloons
NASA Technical Reports Server (NTRS)
Holzworth, R. H.
1983-01-01
The Electrodynamics of the Middle Atmosphere research project encompasses the design of a microprocessor-controlled payload and the launch of up to eight small superpressure balloons in the 1982-1984 period. The primary payload instrument will measure the vector electric field from dc to 10 kHz, and the payloads will include instruments measuring local ionization, electrical conductivity, magnetic field, and temperature and pressure fluctuations. In addition, optical lightning will be recorded. The simultaneous measurement of these stratospheric parameters by several balloons, for periods extending over several solar rotations, will allow the study of electrical coupling between atmosphere and magnetosphere, of global current systems, and of global response to solar flares and magnetospheric storms.
Ferroelectricity in molecular solids: a review of electrodynamic properties.
Tomić, S; Dressel, M
2015-09-01
In conventional ferroelectrics the polarization is induced either by the relative displacement of positive and negative ions due to a lattice distortion or by the collective alignment of permanent electric dipoles. Strongly correlated materials with the inversion-symmetry-broken ground states feature electronic ferroelectricity, a phenomenon which has recently caught the attention of condensed matter physicists due to its great fundamental and technological importance. The discovery of electronic ferroelectricity in one and two-dimensional molecular solids is an exciting development because they show a rich variety of nonlinear properties and complex electrodynamics, including nontrivial emergent excitations. We summarize key experimental results, sketch the current theoretical understanding and outline promising prospects of this phenomenon which have great potential for future electronic devices. PMID:26214019
Quantum electrodynamics and plasmonic resonance of metallic nanostructures
NASA Astrophysics Data System (ADS)
Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang
2016-04-01
Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 107 times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications.
Quantum electrodynamics and plasmonic resonance of metallic nanostructures.
Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang
2016-04-20
Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 10(7) times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications. PMID:26987436
Effective field theory of quantum gravity coupled to scalar electrodynamics
NASA Astrophysics Data System (ADS)
Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.
2016-05-01
In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.
Study of Japanese electrodynamic-suspension maglev systems
NASA Astrophysics Data System (ADS)
He, J. L.; Rote, D. M.; Coffey, H. T.
1994-04-01
This report presents the results of a study of the Japanese MLU magnetic levitation (maglev) system. The development of the MLU system is reviewed, and the dynamic circuit model then is introduced and applied to the figure-eight-shaped null-flux coil suspension system. Three different types of figure-eight-shaped null-flux suspension systems are discussed in detail: (1) the figure-eight-shaped null-flux coil suspension system without cross-connection; (2) the combined suspension and guidance system; and (3) the combined propulsion, levitation, and guidance system. The electrodynamic suspension maglev systems developed in Japan seem to be very promising and could result in a commercial application in the near future.
Nonperturbative renormalization of scalar quantum electrodynamics in d=3
Dimock, J.
2015-10-15
For scalar quantum electrodynamics on a three-dimensional toroidal lattice with a fine lattice spacing, we consider the renormalization problem of choosing counter terms depending on the lattice spacing, so that the theory stays finite as the spacing goes to zero. We employ a renormalization group method which analyzes the flow of the mass and the vacuum energy as a problem in discrete dynamical systems. The main result is that counter terms can be chosen so that at the end of the iteration these quantities take preassigned values. No use is made of perturbation theory. The renormalization group transformations are defined with bounded fields, an approximation which can be justified in Balaban’s approach to the renormalization group.
Study of Japanese electrodynamic-suspension maglev systems
He, J.L.; Rote, D.M.; Coffey, H.T.
1994-04-01
This report presents the results of a study of the Japanese MLU magnetic-levitation (maglev) system. The development of the MLU system is reviewed, and the dynamic circuit model then is introduced and applied to the figure-eight-shaped null-flux coil suspension system. Three different types of figure-eight-shaped null-flux suspension systems are discussed in detail: (1) the figure-eight-shaped null-flux coil suspension system without cross-connection; (2) the combined suspension and guidance system; and (3) the combined propulsion, levitation, and guidance system. The electrodynamic-suspension maglev systems developed in Japan seem to be very promising and could result in a commercial application in the near future.
Simulation of the hydrogen ground state in stochastic electrodynamics
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theo M.; Liska, Matthew T. P.
2015-10-01
Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.
NASA Astrophysics Data System (ADS)
Gulyaev, Yurii V.; Kravchenko, Viktor F.; Kuraev, Aleksandr A.
2004-06-01
Optimal control theory-based methods for improving the efficiency of Cherenkov microwave amplifiers with irregular electrodynamic structures are reviewed. The physics of optimal processes in amplifiers and oscillators with Cherenkov- and combined-type interactions is discussed.
NASA Technical Reports Server (NTRS)
1979-01-01
The middle atmosphere (MA), which is defined as the region bounded below by the tropopause near 10 km and above by the mesopause near 90 to 100 km, is regarded as a passive medium through which electric fields and currents are transmitted from sources above and below. A scientific background is given for: sources of MA electric fields; MA conductivity and currents; and MA plasma characteristics. Recommendations are given for research in MA electrodynamics in the following areas: (1) MA electrodynamical parameters; (2) models and supportive laboratory measurements; and (3) investigation of specific problems in the coupled systems.
Model of fractionalization of Faraday lines in compact electrodynamics
NASA Astrophysics Data System (ADS)
Geraedts, Scott D.; Motrunich, Olexei I.
2014-12-01
Motivated by ideas of fractionalization and intrinsic topological order in bosonic models with short-range interactions, we consider similar phenomena in formal lattice gauge theory models. Specifically, we show that a compact quantum electrodynamics (CQED) can have, besides the familiar Coulomb and confined phases, additional unusual confined phases where excitations are quantum lines carrying fractions of the elementary unit of electric field strength. We construct a model that has N -tupled monopole condensation and realizes 1 /N fractionalization of the quantum Faraday lines. This phase has another excitation which is a ZN quantum surface in spatial dimensions five and higher, but can be viewed as a quantum line or a quantum particle in four or three spatial dimensions, respectively. These excitations have statistical interactions with the fractionalized Faraday lines; for example, in three spatial dimensions, the particle excitation picks up a Berry phase of ei 2 π /N when going around the fractionalized Faraday line excitation. We demonstrate the existence of this phase by Monte Carlo simulations in (3+1) space-time dimensions.
Electrodynamics of Radiating Charges in a Gravitational Field
NASA Astrophysics Data System (ADS)
Grøn, Øyvind
The electrodynamics of a radiating charge and its electromagnetic field based upon the Lorentz-Abraham-Dirac (LAD) equation are discussed both with reference to an inertial reference frame and a uniformly accelerated reference frame. It is demonstrated that energy and momentum are conserved during runaway motion of a radiating charge and during free fall of a charge in a field of gravity. This does not mean that runaway motion is really happening. It may be an unphysical solution of the LAD equation of motion of a radiating charge due to the unrealistic point particle model of the charge upon which it is based. However it demonstrates the consistency of classical electrodynamics, including the LAD equation which is deduced from Maxwell's equations and the principle of energy-momentum conservation applied to a radiating charge and its electromagnetic field. The decisive role of the Schott energy in this connection is made clear and an answer is given to the question: What sort of energy is the Schott energy and where is it found? It is the part of the electromagnetic field energy which is proportional to (minus) the scalar product of the velocity and acceleration of a moving accelerated charged particle. In the case of the electromagnetic field of a point charge it is localized at the particle. This energy is negative if the acceleration is in the same direction as the velocity and positive if it is in the opposite direction. During runaway motion the Schott energy becomes more and more negative and in the case of a charged particle with finite extension, it is localized in a region with increasing extension surrounding the particle. The Schott energy provides the radiated energy of a freely falling charge. Also it is pointed out that a proton and a neutron fall with the same acceleration in a uniform gravitational field, although the proton radiates and the neutron does not. It is made clear that the question as to whether or not a charge radiates has a reference
Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics
NASA Astrophysics Data System (ADS)
Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valladares, C. E.; Pfaff, R. F.
2012-07-01
Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian ˜37°E and 290°E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation, such as
Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics
NASA Technical Reports Server (NTRS)
Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.
2012-01-01
Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation
NASA Technical Reports Server (NTRS)
Stern, David P.
1990-01-01
The present one-dimensional model analysis of substorm electrodynamics proceeds from the standard scenario in which the plasma sheet collapses into a neutral sheet, and magnetic merging occurs between the two tail lobes; plasma flows into the neutral sheet from the lobes and the sides, undergoing acceleration in the dawn-dusk direction. The process is modified by the tendency of the accelerated plasma to unbalance charge neutrality, leading to an exchange of electrons with the ionosphere in order to maintain neutrality. The cross-tail current is weakened by the diversion: this reduces the adjacent lobe-field intensity, but without notable effects apart from a slight expansion of the tail boundary.
Galilean Podolsky Electrodynamics
NASA Astrophysics Data System (ADS)
Pompeia, P. J.; de Montigny, M.; Khanna, F. C.
2009-09-01
We analyze non-relativistic limits of Podolsky generalized electrodynamics in the context of the 5-dimensional Galilean formalism. The 'electric' and 'magnetic' limits are studied in analogy with the work of Le Bellac and Levy-Leblond (1973).
Interacting Electrodynamics of Short Coherent Conductors in Quantum Circuits
NASA Astrophysics Data System (ADS)
Altimiras, C.; Portier, F.; Joyez, P.
2016-07-01
When combining lumped mesoscopic electronic components to form a circuit, quantum fluctuations of electrical quantities lead to a nonlinear electromagnetic interaction between the components, which is generally not understood. The Landauer-Büttiker formalism that is frequently used to describe noninteracting coherent mesoscopic components is not directly suited to describe such circuits since it assumes perfect voltage bias, i.e., the absence of fluctuations. Here, we show that for short coherent conductors of arbitrary transmission, the Landauer-Büttiker formalism can be extended to take into account quantum voltage fluctuations similarly to what is done for tunnel junctions. The electrodynamics of the whole circuit is then formally worked out disregarding the non-Gaussianity of fluctuations. This reveals how the aforementioned nonlinear interaction operates in short coherent conductors: Voltage fluctuations induce a reduction of conductance through the phenomenon of dynamical Coulomb blockade, but they also modify their internal density of states, leading to an additional electrostatic modification of the transmission. Using this approach, we can quantitatively account for conductance measurements performed on quantum point contacts in series with impedances of the order of RK=h /e2 . Our work should enable a better engineering of quantum circuits with targeted properties.
Situational knowledge in physics: The case of electrodynamics
NASA Astrophysics Data System (ADS)
Savelsbergh, Elwin R.; de Jong, Ton; Ferguson-Hessler, Monica G. M.
2002-12-01
Major difficulties for a novice physics problem solver are how to interpret new problems and how to combine information given in the problem with information already known. A domain expert, by contrast, has the knowledge to take full advantage of problem features at a glance. It takes a long period of practice to acquire such situational knowledge, and it would be desirable for this to be taught more effectively. As a first step, this requires information on how situational knowledge differs across individuals of different competence levels. Related research on mental models and problem representations does not give a direct view on the knowledge subjects have of situations before being confronted with the problem. To assess situational knowledge more directly, we asked participants to respond to physics formulas (from the field of electrodynamics) by describing relevant problem situations. We compared physics problem descriptions by experts (n = 6) and by proficient (n = 6) and less proficient (n = 6) novices. We analyzed the situations that were described at the levels of words, sentences, and complete descriptions. Results indicate that competence is related to the structure of problem situations rather than the use of particular concepts, and that the differences in the use of multiple representations are more prominent than differences in the use of one specific kind of representation. Results also indicate that the differences between experts and novices are along different dimensions than the differences between more and less proficient novices. Implications for teaching are discussed.
Nonlinear electrodynamics and thermodynamic geometry of rotating dilaton black branes
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.
2016-07-01
We construct a new class of rotating dilaton solutions in the presence of logarithmic nonlinear electrodynamics. These solutions represent black branes with flat horizon and contain k=[(n-1)/2] rotation parameters in n-dimensional spacetime where [ x] is the integer part of x. We study the causal structure of the spacetime and calculate thermodynamic and conserved quantities and show that these quantities satisfy the first law of thermodynamics on the black brane horizon, { dM}={ TdS}+{{{sum _{i=1}k}}}Ω id{J}i+{ Ud}{Q}. Then, we study geometrical approach towards thermodynamics by choosing an appropriate geometrical metric. We show that the singularity of the Ricci scalar coincides exactly with the phase transition points. We observe that our system encounters two types of phase transitions depending on the metric parameters. For the first one the heat capacity is zero and for the second one the heat capacity diverges. In the first kind of phase transition, the brane has a transition from an unstable non-physical to a stable physical state. In the second type of phase transition the brane moves from a stable to an unstable state. Finally, we comment on the dynamical stability of the obtained solutions under perturbations in four dimensions.
Quantum electrodynamics of resonance energy transfer in nanowire systems
NASA Astrophysics Data System (ADS)
Weeraddana, Dilusha; Premaratne, Malin; Andrews, David L.
2016-02-01
Nonradiative resonance energy transfer (RET) provides the ability to transfer excitation energy between contiguous nanowires (NWs) with high efficiency under certain conditions. Nevertheless, the well-established Förster formalism commonly used to represent RET was developed for energy transfer primarily between molecular blocks (i.e., from one molecule, or part of a molecule, to another). Although deviations from Förster theory for functional blocks such as NWs have been studied previously, the role of the relative distance, the orientation of transition dipole moment pairs, and the passively interacting matter on electronic energy transfer are to a large extent unknown. Thus, a comprehensive theory that models RET in NWs is required. In this context, analytical insights to give a deeper and more intuitive understanding of the distance and orientation dependence of RET in NWs is presented within the framework of quantum electrodynamics. Additionally, the influence of an included intermediary on the rate of excitation energy transfer is illustrated, embracing indirect energy transfer rate and quantum interference. The results deliver equations that afford new intuitions into the behavior of virtual photons. In particular, results indicate that RET efficiency in a NW system can be explicitly expedited or inhibited by a neighboring mediator, depending on the relative spacing and orientation of NWs.
Adaptive tuning of an electrodynamically driven thermoacoustic cooler.
Li, Yaoyu; Minner, Brian L; Chiu, George T C; Mongeau, Luc; Braun, James E
2002-03-01
The commercial development of thermoacoustic coolers has been hampered in part by their low efficiencies compared to vapor compression systems. A key component of electrodynamically driven coolers is the electromechanical transducer, or driver. The driver's electroacoustic transduction efficiency, defined as the ratio of the acoustic power delivered to the working gas by the moving piston and the electrical power supplied, must be maintained near its maximum value if a high overall system efficiency is to be achieved. Modeling and experiments have shown that the electroacoustic efficiency peaks sharply near the resonance frequency of the electro-mechano-acoustic system. The optimal operating frequency changes as the loading condition changes, and as the properties of the working gas vary. The driver efficiency may thus drop significantly during continuous operation at a fixed frequency. In this study, an on-line driver efficiency measurement scheme was implemented. It was found that the frequency for maximum electroacoustic efficiency does not precisely match any particular resonance frequency, and that the efficiency at resonance can be significantly lower than the highest achievable efficiency. Therefore, a direct efficiency measurement scheme was implemented and validated using a functional thermoacoustic cooler. An adaptive frequency-tuning scheme was then implemented. Experiments were performed to investigate the effectiveness of the control scheme to maintain the maximum achievable driver efficiency for varying operating conditions. PMID:11931301
On the finite-temperature quantum electrodynamics of gravitational acceleration
NASA Astrophysics Data System (ADS)
Barton, G.
1989-12-01
The temperature-dependent quantum-electrodynamic corrections to the Helmholtz free energy F of a particle at rest, and to its inertial mass minert, are the same: ΔF=Δminert=πe2(kT)2/3m. By contrast, the correction to the total energy U=F+TS is ΔU=-ΔF. Donoghue, Holstein, and Robinett have pointed out that if (as the equivalence principle appears to imply) weight is proportional to total energy, then the gravitational acceleration of a particle inside a blackbody cavity becomes g(m+ΔU)/(m+ΔF)~=g(1-2ΔF/m)
Electrodynamic structure of the morning high-latitude trough region
NASA Astrophysics Data System (ADS)
Vanhamäki, H.; Aikio, A.; Voiculescu, M.; Juusola, L.; Nygrén, T.; Kuula, R.
2016-03-01
We describe the electrodynamics of a postmidnight, high-latitude ionospheric trough, observed with the European Incoherent Scatter radar in northern Scandinavia on 24-25 June 2003 around 22:00-02:30 UT during quiet conditions. The UHF radar made meridian scans with a 30 min cadence resulting in nine cross sections of ionospheric parameters. The F region electric field was also determined with the tristatic system. Ionospheric equivalent currents, calculated from ground magnetometer data, mostly show an electrojet-like current that is reasonably uniform in the longitudinal direction. Combined analysis of the conductances and equivalent current with a local Kamide-Richmond-Matsushita (KRM) method yields the ionospheric electric field and field-aligned current (FAC) in a 2-D (latitude-longitude) area around the radar. We conclude that the most likely scenario is one where the trough is initially created poleward of the auroral oval by downward FAC that evacuates the F region, but as the trough moves to lower latitudes during the early morning hours, it becomes colocated with the westward electrojet. There the electron density further decreases due to increased recombination caused by enhanced ion temperature, which in turn is brought about by a larger convection speed. Later in the morning the convection speed decreases and the trough is filled by increasing photoionization.
Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE)
NASA Astrophysics Data System (ADS)
Crowley, G.
2015-12-01
The Scintillation Observations and Response of The Ionosphere to Electrodynamics, or SORTIE, mission is a 6U NASA Heliophysics CubeSat designed to study the ionosphere at altitudes below 400km. The SORTIE mission is being developed by a team including ASTRA (lead institution), AFRL, University of Texas at Dallas (UTD), COSMIAC (Satellite Integrator), and Boston College. SORTIE will address cutting-edge science in the area of ionospheric dynamics. The SORTIE mission will address the following science questions: Q1) Discover the sources of wave-like plasma perturbations in the F-region ionosphere. Q2) Determine the relative role of dynamo action and more direct mechanical forcing in the formation of wave-like plasma perturbations. To address these questions we plan to fly a CubeSat with novel sensors that measure key plasma parameters in a circular, low to middle inclination orbit near 350-400 km altitude. The sensors include an ion velocity meter (built by UTD) and a Planar Langmuir Probe (built by AFRL). The SORTIE mission plan is to describe the distribution of wave-like structures in the plasma density of the ionospheric F-region. In doing so, the SORTIE team will determine the possible role of these perturbations in aiding the growth of plasma instabilities. SORTIE will provide (1) the initial spectrum of wave perturbations which are the starting point for the RT calculation; (2) measured electric fields which determine the magnitude of the instability growth rate near the region where plasma bubbles are generated; (3) initial observations of irregularities in plasma density which result from RT growth. SORTIE results will be used as input to PBMOD, an assimilative first-principles physical model of the ionosphere, in order to predict evolution of EPBs. In this presentation, we will review the science objectives, provide an overview of the spacecraft and instrument design, and present a concept of operations plan.
Remote Sensing and Electrodynamic Model of Chicxulub Crater
NASA Astrophysics Data System (ADS)
Velasco, V.; Silva, M.; Salguero, E.; Fucugauchi, J.
2004-05-01
Advances on space observational systems have opened new exiting possibilities to investigate our planet in an unprecedented detail and in a global scale. Information retrieved from surveys of other solar system bodies like our moon, planets and satellites, from missions like Apollo, have documented the origin of planetary surfaces and the role of impacts as a major process. Voyagers 1 and 2 and Galileo have showed impact craterism is a process rather generalized in all bodies of the solar system. Thus establishing it as part of the major processes to be considered for the evolution of our planet, together with tectonics, mantle process, volcanism, weathering, etc. Investigations on impact craters from solar systems provide valuable information on different surfaces, crustal thickness, existence of crust layers, type of material under the most superficial layer, type of bolide which formed crater, impact angle, etc. The studies constitute an important tool to rebuild the planets' geological history and develop theories on their internal structure. The Chicxulub crater in the carbonate platform of the Yucatan peninsula is one of the largest multiring structures found on Earth. The crater is some 180-200 km in diameter, is well preserved and has been studied in the past few years (geophysical surveys and drilling programs). The crater is buried under a thick sequence of tertiary carbonate rocks, and on the surface there are relatively few indications of the crater (e.g., topographic depression, ring of cenotes). In this study, it is analyzed and presented an electrodynamic model for an impact crater and its electrophysical properties, these data are derived from Fisher inverse matrix elements. We also present a surface model for the buried Chicxulub crater derived from remote sensing data.
Cavity quantum electrodynamics of nanoscale two-level systems
NASA Astrophysics Data System (ADS)
Sarabi, Bahman
In this dissertation, I introduce a novel method for measuring individual nanoscale two-level systems (TLSs) in amorphous solids based on strong direct coupling between a TLS and a cavity. I describe power- and temperature-dependent analysis of individual TLSs using a theoretical model based on cavity quantum electrodynamics (CQED). This method allows for measuring individual TLSs in different insulators and over a wide range of film thicknesses. For a silicon nitride film at 25 mK and a lumped-element cavity resonance at 6.9 GHz, I find TLSs with coherence times on the order of microseconds which can potentially be used as coherent resources. Furthermore, I introduce a device which enables spectroscopy of TLSs in insulating films by DC-tuning the TLSs. I present measurement results on 60 TLSs accompanied by theoretical analysis and extraction of distribution statistics of the TLS parameters. I find evidence for at least two TLS dipole sizes. I also investigate the role of RF-induced DC bias voltage on the growth of titanium nitride films on silicon (100) substrates deposited by DC magnetron reactive sputtering. I present hybrid designs of TiN coplanar resonators which were fabricated with an aluminum transmission line to avoid impedance mismatches due to large kinetic inductance of TiN films. I observe remarkably large kinetic inductance at certain substrate DC bias voltages. Finally, I describe several trilayer resonators designed to measure TLS ensembles within atomic layer deposition (ALD) grown aluminum oxide. Each resonator is unique in trilayer capacitor perimeter and hence the alumina air-exposed cross section. I compare the measured loss tangents of the resonators and investigate the effect of the capacitor perimeter on TLS defect density at different temperatures.
Realization of Simple Quantum Algorithms with Circuit Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Dicarlo, Leonardo
2010-03-01
Superconducting circuits have made considerable progress in the requirements of quantum coherence, universal gate operations and qubit readout necessary to realize a quantum computer. However, simultaneously meeting these requirements makes the solid-state realization of few-qubit processors, as previously implemented in nuclear magnetic resonance, ion-trap and optical systems, an exciting challenge. We present the realization of a two-qubit superconducting processor based on circuit quantum electrodynamics (cQED), and report progress by the Yale cQED team towards a four-qubit upgrade. The architecture employs a microwave transmission-line cavity as a quantum bus coupling multiple transmon qubits. Unitary control is achieved by concatenation of high-fidelity single-qubit rotations induced via resonant microwave tones, and multi-qubit adiabatic phase gates realized by local flux control of qubit frequencies. Qubit readout uses the cavity as a quadratic detector, such that a single, calibrated measurement channel gives direct access to multi-qubit correlations. We present generation of Bell states; entanglement quantification by strong violation of Clauser-Horne-Shimony-Holt inequalities; and implementations of the Grover search and Deutsch-Jozsa algorithms. We report experimental progress in extending adiabatic phase gates and joint readout to four qubits, and improving qubit coherence on the road to realizing more complex quantum algorithms. Research done in collaboration with J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R. Johnson, D. I. Schuster, A. Nunnenkamp, J. Majer, A. Blais, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf.
NASA Astrophysics Data System (ADS)
Lorenzini, E. C.; Curreli, D.; Zanutto, D.
2010-01-01
Recent studies have demonstrated the benefits of using electrodynamic tethers (EDT) for the exploration of the inner region of the Jovian system. Intense planetary magnetic field and reasonable environmental plasma density make the electrodynamic interaction of the conductive tether with the plasmasphere strong. The interaction is responsible for a Lorentz force that can be conveniently used for propellantless maneuvers and extraction of electrical power for on board use. Jupiter and the four Galilean Moons represent an exceptional gravitational environment for the study of the orbital dynamics of an EDT. The dynamics of such a system was analyzed using a 3-body model, consisting of the planet plus one of its moons (Io in this work) and the EDT itself. New and interesting features appear, like for example the possibility to place the tether in equilibrium with respect to a frame co-rotating with the moon at points that do not coincide with the classical Lagrangian points for non-null electrodynamic forces.
Geometrothermodynamics of black holes in Lovelock gravity with a nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Naderi, R.
2015-01-01
The objective of the present paper is to analyze the phase transition of asymptotically anti-de Sitter (AdS) black-hole solutions in Lovelock gravity in the presence of nonlinear electrodynamics. First, we present the asymptotically AdS black-hole solutions for two classes of the Born-Infeld type of nonlinear electrodynamics coupled (separately) with Einstein, Gauss-Bonnet, and third-order Lovelock gravity. Then, in order to discuss the phase transition, we calculate both the heat capacity and the Ricci scalar of the thermodynamical line element. We present a comparison between the singular points of the Ricci scalar using the geometrothermodynamics method and the corresponding vanishing points of the heat capacity in the canonical ensemble. In addition, we discuss the effects of both Lovelock and nonlinear electrodynamics on the phase transition points.
NASA Astrophysics Data System (ADS)
Yizengaw, E.; Moldwin, M.; Zesta, E.
2015-12-01
The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the
Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice
NASA Astrophysics Data System (ADS)
Yang, Zi-He; Wang, Yan-Pu; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Gao, Jin-Hua; Wu, Ying
2016-06-01
The concept of flat band plays an important role in strongly correlated many-body physics. However, the demonstration of the flat band physics is highly nontrivial due to intrinsic limitations in conventional condensed-matter materials. Here we propose a circuit quantum electrodynamics simulator of the two-dimensional (2D) Lieb lattice exhibiting a flat middle band. By exploiting the parametric conversion method, we design a photonic Lieb lattice with in situ tunable hopping strengths in a 2D array of coupled superconducting transmissionline resonators. Moreover, the flexibility of our proposal enables the incorporation of both the artificial gauge field and the strong photon-photon interaction in a time- and site-resolved manner. To unambiguously demonstrate the synthesized flat band, we further investigate the observation of the flat band localization of microwave photons through the pumping and the steady-state measurements of only a few sites on the lattice. Requiring only current level of technique and being robust against imperfections in realistic circuits, our scheme can be readily tested in experiment and may pave a new way towards the realization of exotic photonic quantum Hall fluids including anomalous quantum Hall effect and bosonic fractional quantum Hall effect without magnetic field.
Complementarity of Galilean and Lorentz groups in the electrodynamics of inertially moving media
NASA Astrophysics Data System (ADS)
Barykin, V. N.
1989-09-01
A physical interpretation is given for the previously discovered ambiguity in the material equations of the electrodynamics of isotropic, inertially moving media. This ambiguity manifests itself in the complementarity of the equations which are invariant under the Galilean group, in some cases, and the Lorentz group, in other cases, as can be detected experimentally in the aberration phenomenon and the Doppler effect.
No Drama Quantum Electrodynamics?
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2014-03-01
Is it possible to offer a ``no drama'' quantum electrodynamics, as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics. 2. After introduction of a complex 4-potential (producing the same electromagnetic field (EMF) as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics. 3. The resulting theories describe independent evolution of EMF and can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem and the connection with Barut's self-field electrodynamics are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1111.4630 A. Akhmeteli, European Physical Journal C, Vol. 73, 2371 (2013) (open access)
Slowly rotating dilatonic black holes with exponential form of nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Sheykhi, A.; Sepehri Rad, M.; Matsuno, K.
2015-10-01
The generalization of the four-dimensional Kerr-Newman black holes to include the nonlinear electrodynamics has been one of the famous problems in black hole physics. In this paper, we address the effects of the small rotation parameter on the exact black hole solutions of Einstein-dilaton gravity coupled to the exponential nonlinear electrodynamics. We find a new stationary black hole solutions of this theory, in the limit of small angular momentum, and in the presence of Liouville-type potential for the dilaton field and an arbitrary value of the dilaton coupling constant. We compute the angular momentum and the gyromagnetic ratio of these rotating dilaton black holes. Interestingly enough, we find that the nonlinearity of the electrodynamics do not affect the angular momentum and the gyromagnetic ratio of the spacetime, while in contrast, the dilaton field can modify the angular momentum as well as the gyromagnetic ratio of the rotating black holes. We find the gyromagnetic ratio as , where is the coupling constant of the dilaton and the electrodynamic fields. For , we arrive at , which is the gyromagnetic ratio of the Kerr-Newman black holes in four dimensions.
First quantized electrodynamics
Bennett, A.F.
2014-06-15
The parametrized Dirac wave equation represents position and time as operators, and can be formulated for many particles. It thus provides, unlike field-theoretic Quantum Electrodynamics (QED), an elementary and unrestricted representation of electrons entangled in space or time. The parametrized formalism leads directly and without further conjecture to the Bethe–Salpeter equation for bound states. The formalism also yields the Uehling shift of the hydrogenic spectrum, the anomalous magnetic moment of the electron to leading order in the fine structure constant, the Lamb shift and the axial anomaly of QED. -- Highlights: •First-quantized electrodynamics of the parametrized Dirac equation is developed. •Unrestricted entanglement in time is made explicit. •Bethe and Salpeter’s equation for relativistic bound states is derived without further conjecture. •One-loop scattering corrections and the axial anomaly are derived using a partial summation. •Wide utility of semi-classical Quantum Electrodynamics is argued.
History and Flight Devleopment of the Electrodynamic Dust Shield
NASA Technical Reports Server (NTRS)
Johansen, Michael R.; Mackey, Paul J.; Hogue, Michael D.; Cox, Rachel E.; Phillips, James R., III; Calle, Carlos I.
2015-01-01
The surfaces of the moon, Mars, and that of some asteroids are covered with a layer of dust that may hinder robotic and human exploration missions. During the Apollo missions, for example, lunar dust caused a number of issues including vision obscuration, false instrument readings, contamination, and elevated temperatures. In fact, some equipment neared failure after only 75 hours on the lunar surface due to effects of lunar dust. NASA's Kennedy Space Center has developed an active technology to remove dust from surfaces during exploration missions. The Electrodynamic Dust Shield (EDS), which consists of a series of embedded electrodes in a high dielectric strength substrate, uses a low power, low frequency signal that produces an electric field wave that travels across the surface. This non-uniform electric field generates dielectrophoretic and electrostatic forces capable of moving dust out of these surfaces. Implementations of the EDS have been developed for solar radiators, optical systems, camera lenses, visors, windows, thermal radiators, and fabrics The EDS implementation for transparent applications (solar panels, optical systems, windows, etc.) uses transparent indium tin oxide electrodes on glass or transparent lm. Extensive testing was performed in a roughly simulated lunar environment (one-sixth gravity at 1 mPa atmospheric pressure) with lunar simulant dust. EDS panels over solar radiators showed dust removal that restored solar panel output reaching values very close to their initial output. EDS implementations for thermal radiator protection (metallic spacecraft surfaces with white thermal paint and reflective films) were also extensively tested at similar high vacuum conditions. Reflectance spectra for these types of implementations showed dust removal efficiencies in the 96% to 99% range. These tests indicate that the EDS technology is now at a Technology Readiness Level of 4 to 5. As part of EDS development, a flight version is being prepared for
Galilean conformal electrodynamics
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Basu, Rudranil; Mehra, Aditya
2014-11-01
Maxwell's Electrodynamics admits two distinct Galilean limits called the Electric and Magnetic limits. We show that the equations of motion in both these limits are invariant under the Galilean Conformal Algebra in D = 4, thereby exhibiting non-relativistic conformal symmetries. Remarkably, the symmetries are infinite dimensional and thus Galilean Electrodynamics give us the first example of an infinitely extended Galilean Conformal Field Theory in D > 2. We examine details of the theory by looking at purely non-relativistic conformal methods and also use input from the limit of the relativistic theory.
NASA Astrophysics Data System (ADS)
Matsuo, Tomoko; Knipp, Delores J.; Richmond, Arthur D.; Kilcommons, Liam; Anderson, Brian J.
2015-06-01
This paper presents an analysis of data from the magnetometers on board the Defense Meteorological Satellite Program (DMSP) F-15, F-16, F-17, and F-18 satellites and the Iridium satellite constellation, using an inverse procedure for high-latitude ionospheric electrodynamics, during the period of 29-30 May 2010. The Iridium magnetometer data are made available through the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) program. The method presented here is built upon the assimilative mapping of ionospheric electrodynamics procedure but with a more complete treatment of the prior model uncertainty to facilitate an optimal inference of complete polar maps of electrodynamic variables from irregularly distributed observational data. The procedure can provide an objective measure of uncertainty associated with the analysis. The cross-validation analysis, in which the DMSP data are used as independent validation data sets, suggests that the procedure yields the spatial prediction of DMSP perturbation magnetic fields from AMPERE data alone with a median discrepancy of 30-50 nT. Discrepancies larger than 100 nT are seen in about 20% of total samples, whose location and magnitude are generally consistent with the previously identified discrepancy between DMSP and AMPERE data sets. Resulting field-aligned current (FAC) patterns exhibit more distinct spatial patterns without spurious high-frequency oscillatory features in comparison to the FAC products provided by AMPERE. Maps of the toroidal magnetic potential and FAC estimated from both AMPERE and DMSP data under four distinctive interplanetary magnetic field (IMF) conditions during a magnetic cloud event demonstrate the IMF control of high-latitude electrodynamics and the opportunity for future scientific investigation.
Electrodynamics panel presentation
NASA Technical Reports Server (NTRS)
Mccoy, J.
1986-01-01
The Plasma Motor Generator (PMG) concept is explained in detail. The PMG tether systems being used to calculate the estimated performance data is described. The voltage drops and current contact geometries involved in the operation of an electrodynamic tether are displayed illustrating the comparative behavior of hollow cathodes, electron guns, and passive collectors for current coupling into the ionosphere. The basic PMG design involving the massive tether cable with little or no satellite mass at the far end(s) are also described. The Jupiter mission and its use of electrodynamic tethers are given. The need for demonstration experiments is stressed.
Electrodynamics, wind and temperature
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.
1988-01-01
This RTOP provides for correlative meteorological wind and temperature measurements with atmospheric electrodynamic measurements. Meteorological rocketsondes were launched as part of a number of electrodynamic investigations in Alaska, Norway, Peru, Sweden, and at the Wallops Flight Facility, Wallops Island, Virginia. Measurements obtained as part of the MAC/Epsilon campaign during October 1987 from Andoya, Norway, were in conjunction with electric field, ion mobility, conductivity, and energy deposition studies. The measurements obtained between 30 and 90 km are to evaluate and correlate changes in the atmospheric electrical structure caused by the neutral wind and temperature, or changes in the neutral atmosphere resulting from electrical anomalies.
Laboratory experiments on the electrodynamic behavior of tethers in space
NASA Technical Reports Server (NTRS)
Stenzel, Reiner L.; Urrutia, Manuel J.
1991-01-01
The transient current systems between tethered plasmas in a large magnetoplasma are investigated experimentally for extrapolation to electrodynamic tethers in space. The studies measure the perturbed magnetic fields and the current density associated with pulsed currents to electrodes in three-dimensional space and time. The electrodes excite electron whistlers because they produce fields that dominantly couple to electrons, allowing pulsed currents to propagate and disperse as whistler wave packets. The wave packets evolve into force-free, flux-ropelike field configurations, and a whistler 'wedge' is formed in the plasma due to 'eddy' currents caused by insulated tethers with dc currents. Substantial radiation into the whistler mode happens with moving VLF antennas as well as tethers, and the wave spread within the ray cone is the most significant characteristic event. The wave spread widens the current channel, incites current closure, and is also associated with a 'phantom loop' phenomenon.
Electrodynamics of circular dichroism and its application in the construction of a circular polaroid
NASA Astrophysics Data System (ADS)
Volobuev, A. N.
2016-03-01
Electrodynamic principles of circular dichroism are developed using a concept of conducting circular structures in matter. A simplified representation of material equations for an optically active medium is obtained in the absence of a transition to the complex domain. A dependence of the absorption coefficient of a circular polarization as a component of the linearly polarized radiation on material parameters is found. Such parameters are analyzed to reveal a possibility of construction of a circular polaroid.
Advanced electrodynamic mechanisms for the nanoscale control of light by light
NASA Astrophysics Data System (ADS)
Andrews, David L.; Leeder, Jamie M.; Bradshaw, David S.
2015-08-01
A wide range of mechanisms is available for achieving rapid optical responsivity in material components. Amongst them, some of the most promising for potential device applications are those associated with an ultrafast response and a short cycle time. These twin criteria for photoresponsive action substantially favor optical, over most other, forms of response such as those fundamentally associated with photothermal, photochemical or optomechanical processes. The engagement of nonlinear mechanisms to actively control the characteristics of optical materials is not new. Indeed, it has been known for over fifty years that polarization effects of this nature occur in the optical Kerr effect - although in fluid media the involvement of a molecular reorientation mechanism leads to a significant response time. It has more recently emerged that there are other, less familiar forms of optical nonlinearity that can provide a means for one beam of light to instantly influence another. In particular, major material properties such as absorptivity or emissivity can be subjected to instant and highly localized control by the transmission of light with an off-resonant wavelength. This presentation introduces and compares the key electrodynamic mechanisms, discussing the features that suggest the most attractive possibilities for exploitation. The most significant of such mechanistic features include the off-resonant activation of optical emission, the control of excited-state lifetimes, the access of dark states, the inhibition or re-direction of exciton migration, and a coupling of stimulated emission with coherent scattering. It is shown that these offer a variety of new possibilities for ultrafast optical switching and transistor action, ultimately providing all-optical control with nanoscale precision.
NASA Astrophysics Data System (ADS)
Bogolubov, Nikolai N.; Prykarpatsky, Anatoliy K.
2010-05-01
The Lagrangian and Hamiltonian properties of classical electrodynamics models and their associated Dirac quantizations are studied. Using the vacuum field theory approach developed in (Prykarpatsky et al. Theor. Math. Phys. 160(2): 1079-1095, 2009 and The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP) consistent canonical Hamiltonian reformulations of some alternative classical electrodynamics models are devised, and these formulations include the Lorentz condition in a natural way. The Dirac quantization procedure corresponding to the Hamiltonian formulations is developed. The crucial importance of the rest reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized. A concise expression for the Lorentz force is derived by suitably taking into account the duality of electromagnetic field and charged particle interactions. Finally, a physical explanation of the vacuum field medium and its relativistic properties fitting the mathematical framework developed is formulated and discussed.
Causality in Classical Electrodynamics
ERIC Educational Resources Information Center
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
Electrodynamics of a rotating body; Relativistic theory of circular and axial birefringence
Evans, M.W. . Dept. of Physics)
1992-09-20
In this paper, the theory of the electrodynamics of a rotating body is used to show that there exists: circular birefringence purely relativistic origin, composed of dispersive aether drag and residual, ensemble averaged, magnetization; non-relativistic circular birefringence due to the angular velocity of the body in the observer frame; non-relativistic axial birefringence in chiral media due to the angular velocity of the body; second order, relativistic equivalents.
Theory of plasma contactors for electrodynamic tethered satellite systems
NASA Technical Reports Server (NTRS)
Parks, D. E.; Katz, I.
1987-01-01
Recent data from ground and space experiments indicate that plasma releases from an object dramatically reduce the sheath impedance between the object and the ambient plasma surrounding it. Available data is in qualitative accord with the theory developed to quantify the flow of current in the sheath. Electron transport in the theory is based on a fluid model of a collisionless plasma with an effective collision frequency comparable to frequencies of plasma oscillations. The theory leads to low effective impedances varying inversely with the square root of the injected plasma density. To support such a low impedance mode of operation using an argon plasma source, for example, requires that only one argon ion be injected for each thirty electrons extracted from the ambient plasma. The required plasma flow rates are quite low; to extract one ampere of electron current requires a mass flow rate of about one gram of argon per day.
Some astrophysical effects of nonlinear vacuum electrodynamics in the magnetosphere of a pulsar
NASA Astrophysics Data System (ADS)
Abishev, Medeu; Aimuratov, Yerlan; Aldabergenov, Yermek; Beissen, Nurzada; Bakytzhan, Zhami; Takibayeva, Meruert
2016-01-01
In this study, we consider the propagation of hard electromagnetic emissions in the magnetosphere of a pulsar based on General Relativity and nonlinear vacuum electrodynamics. We show that the radiation will propagate at different velocities in the magnetosphere of a pulsar and form two normal modes, which are polarized in mutually orthogonal planes. We calculate the delay between the two orthogonal modes as they propagate from the pulsar to the detection device.
Electrodynamics of moving conductors in magnetic fields: off the beaten track with Paul Lorrain
NASA Astrophysics Data System (ADS)
Bringuier, E.
2012-01-01
The paper is about the appearance of space charge in an ohmic conductor moving in a magnetic field, as pointed out in this journal by Lorrain (1990 Eur. J. Phys. 11 94-8) and earlier by van Bladel (1973 Proc. IEEE 61 260-8). The phenomenon is reinvestigated here in the light of energy balance considerations, in the particular case of a cylinder rotating in a parallel uniform magnetic field. Part of the kinetic energy of the rotating body is lost in the Joule effect of the currents building up the space charge, but the greater part is converted to the electrostatic energy of the space-charge distribution. The findings of the paper are consistent with the usual account of the electrodynamics of moving media where the existence of space charge in good conductors is not recognized. The material of the paper can be taught at the end of second-year university lectures on electrodynamics.
NASA Astrophysics Data System (ADS)
Niknejadi, Pardis; Madey, John M. J.; Kowalczyk, Jeremy M. D.
2015-05-01
For the foreseeable future, the analysis and design of the complex systems needed to generate intense beams of radiation via the process of coherent emission into free-space will depend on the principles and methods of classical electrodynamics (CED). But the fields and forces predicted by the currently accepted CED theory are manifestly incompatible with Maxwell's equations' energy integral as applied to the process of coherent emission into free-space. It is the purpose of this paper to review the evidence for these limitations of conventional CED, to identify an alternative formulation of CED that does not suffer from these defects, and to describe how the predictions of this more physically realistic formulation of electrodynamics, including the role of the advanced interactions allowed by Maxwell's equations and thermodynamics, might be tested by experiment and applied to enhance the capabilities of devices and systems employing the mechanism of "radiation into free-space."
Resonant electrodynamic heating of stellar coronal loops - An LRC circuit analog
NASA Technical Reports Server (NTRS)
Ionson, J. A.
1982-01-01
The problem of electrodynamic coupling of stellar coronal loops where beta is less than 1 to underlying velocity fields where beta is greater than approximately 1 is treated. A rigorous analysis reveals that the physics can be represented by a simple yet equivalent LRC circuit analog. This derived analog suggests the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Even though the width of this spatial resonance, as well as the induced currents and coronal velocity field, within the resonance region explicitly depends on viscosity and resistivity, the resonant form of the generalized electrodynamic heating functions is virtually independent of irreversibilities. This is a classic feature of high-quality resonators that are driven externally by a broad-band source of spectral power.
Photon propagator in skewon electrodynamics
NASA Astrophysics Data System (ADS)
Itin, Yakov
2016-01-01
Electrodynamics with a local and linear constitutive law is used as a framework for models violating Lorentz covariance. The constitutive tensor of such a construction is irreducibly decomposed into three independent pieces. The principal part is the anisotropic generalization of the standard electrodynamics. The two other parts, axion and skewon, represent nonclassical modifications of electrodynamics. We derive the expression for the photon propagator in the Minkowski spacetime endowed with a skewon field. For a relatively small (antisymmetric) skewon field, a modified Coulomb law is exhibited.
Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue
NASA Technical Reports Server (NTRS)
Ionson, J. A.
1980-01-01
The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.
Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics
Chung, Keng-Yeow; Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven; Mueller, Holger
2009-07-01
We present atom-interferometer tests of the local Lorentz invariance of post-Newtonian gravity. An experiment probing for anomalous vertical gravity on Earth, which has already been performed, uses the highest-resolution atomic gravimeter so far. The influence of Lorentz violation in electrodynamics is also taken into account, resulting in combined bounds on Lorentz violation in gravity and electrodynamics. Expressed within the standard model extension or Nordtvedt's anisotropic universe model, we limit 12 linear combinations of seven coefficients for Lorentz violation at the part per billion level, from which we derive limits on six coefficients (and seven when taking into account additional data from lunar laser ranging). We also discuss the use of horizontal interferometers, including atom-chip or guided-atom devices, which potentially allow the use of longer coherence times in order to achieve higher sensitivity.
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Panahiyan, S.
2014-12-01
Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.
NASA Astrophysics Data System (ADS)
Stepanov, Sergey E.; Jukl, Marek; Mikeš, Josef
2014-03-01
Conformal Killing forms are a natural generalization of conformal Killing vector fields. These forms have applications in physics related to hidden symmetries, conserved quantities, symmetry operators, or separation of variables. In this paper, we prove two vanishing theorems of conformal Killing forms on a space-like totally umbilical submanifold of a Lorentzian manifold. Finally, we show an application of these results to electrodynamics in the General Relativity Theory.
Chen, Xing; Moore, Justin E; Zekarias, Meserret; Jensen, Lasse
2015-01-01
The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally intractable for fully quantum mechanical approaches. Here we introduce an atomistic electrodynamics model where the traditional description of nanoparticles in terms of a macroscopic homogenous dielectric constant is replaced by an atomic representation with dielectric properties that depend on the local chemical environment. This model provides a unified description of bare and ligand-coated nanoparticles, as well as strongly interacting nanoparticle dimer systems. The non-local screening owing to an inhomogeneous ligand layer is shown to drastically modify the near-field properties. This will be important to consider in optimization of plasmonic nanostructures for near-field spectroscopy and sensing applications. PMID:26555179
Numerical and Analytical Model of an Electrodynamic Dust Shield for Solar Panels on Mars
NASA Technical Reports Server (NTRS)
Calle, C. I.; Linell, B.; Chen, A.; Meyer, J.; Clements, S.; Mazumder, M. K.
2006-01-01
Masuda and collaborators at the University of Tokyo developed a method to confine and transport particles called the electric curtain in which a series of parallel electrodes connected to an AC source generates a traveling wave that acts as a contactless conveyor. The curtain electrodes can be excited by a single-phase or a multi-phase AC voltage. A multi-phase curtain produces a non-uniform traveling wave that provides controlled transport of those particles [1-6]. Multi-phase electric curtains from two to six phases have been developed and studied by several research groups [7-9]. We have developed an Electrodynamic Dust Shield prototype using threephase AC voltage electrodes to remove dust from surfaces. The purpose of the modeling work presented here is to research and to better understand the physics governing the electrodynamic shield, as well as to advance and to support the experimental dust shield research.
Principles and Problems of Data Assimilation for High-Latitude Ionospheric Electrodynamics
NASA Astrophysics Data System (ADS)
Richmond, A. D.; Matsuo, T.; Cousins, E. D. P.; Knipp, D. J.; Lu, G.; Marsal, S.
2014-12-01
Knowledge of the time-varying distributions of high-latitude ionospheric ionospheric electric fields and currents is needed for modeling the physics of the ionosphere and thermosphere. The patterns can also be used to investigate magnetospheric processes. The Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure was developed to estimate the distributions of electrodynamic parameters from combinations of observations of ionospheric drifts, ground- and satellite-based magnetic perturbations, and quantities related to ionospheric electrical conductivities, together with prior information about climatology and covariance of the parameters. AMIE uses optimal estimation theory to build on previous statistical studies and on an earlier mapping procedure that used only ground magnetometer data. Many of the improvements made to AMIE have been the addition of new data sets and procedures for semi-automatically processing the data. Theoretical developments have included improvements to the organization of the data in realistic magnetic coordinates, and dynamic estimation of the covariance matrices based on the data available at any given time. More recently, it has been shown that most of the large-scale variability can be represented with a relatively small number of empirical orthogonal basis functions derived from statistical analysis of large data sets. A key remaining limitation of AMIE-type estimations is the limited knowledge of auroral ionospheric conductivities, including limited understanding of nonlinear conductivities when electric fields are very strong. Neutral winds have heretofore been neglected, but they can sometimes have significant effects on the electrodynamics.
Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box
NASA Astrophysics Data System (ADS)
Dutra, Sergio M.
2004-12-01
What happens to light when it is trapped in a box? Cavity Quantum Electrodynamics addresses a fascinating question in physics: what happens to light, and in particular to its interaction with matter, when it is trapped inside a box? With the aid of a model-building approach, readers discover the answer to this question and come to appreciate its important applications in computing, cryptography, quantum teleportation, and opto-electronics. Instead of taking a traditional approach that requires readers to first master a series of seemingly unconnected mathematical techniques, this book engages the readers' interest and imagination by going straight to the point, introducing the mathematics along the way as needed. Appendices are provided for the additional mathematical theory. Researchers, scientists, and students of modern physics can refer to Cavity Quantum Electrodynamics and examine the field thoroughly. Several key topics covered that readers cannot find in any other quantum optics book include: * Introduction to the problem of the "vacuum catastrophe" and the cosmological constant * Detailed up-to-date account of cavity QED lasers and thresholdless lasing * Examination of cavities with movable walls * First-principles discussion about cavity QED in open cavities * Pedagogical account of microscopic quantization in dielectrics Complementing the coverage of the most advanced theory and techniques, the author provides context by discussing the historical evolution of the field and its discoveries. In that spirit, "recommended reading," provided in each chapter, leads readers to both contemporary literature as well as key historical papers. Despite being one of many specialties within physics, cavity quantum electrodynamics serves as a window to many of the fundamental issues of physics. Cavity Quantum Electrodynamics will serve as an excellent resource for advanced undergraduate quantum mechanics courses as well as for graduate students, researchers, and
Benefits and risks of using electrodynamic tethers to de-orbit spacecraft
NASA Astrophysics Data System (ADS)
Pardini, Carmen; Hanada, Toshiya; Krisko, Paula H.
2009-03-01
By using electrodynamic drag to greatly increase the orbital decay rate, an electrodynamic space tether can remove spent or dysfunctional spacecraft from low Earth orbit (LEO) rapidly and safely. Moreover, the low mass requirements of such tether devices make them highly advantageous compared to conventional rocket-based de-orbit systems. However, a tether system is much more vulnerable to space debris impacts than a typical spacecraft and its design must be proved to be safe up to a certain confidence level before being adopted for potential applications. To assess space debris related concerns, in March 2001 a new task (Action Item 19.1) on the "Potential Benefits and Risks of Using Electrodynamic Tethers for End-of-life De-orbit of LEO Spacecraft" was defined by the Inter-Agency Space Debris Coordination Committee (IADC). Two tests were proposed to compute the fatal impact rate of meteoroids and orbital debris on space tethers in circular orbits, at different altitudes and inclinations, as a function of the tether diameter to assess the survival probability of an electrodynamic tether system during typical de-orbiting missions. IADC members from three agencies, the Italian Space Agency (ASI), the Japan Aerospace Exploration Agency (JAXA) and the US National Aeronautics and Space Administration (NASA), participated in the study and different computational approaches were specifically developed within the framework of the IADC task. This paper summarizes the content of the IADC AI 19.1 Final Report. In particular, it introduces the potential benefits and risks of using tethers in space, it describes the assumptions made in the study plan, it compares and discusses the results obtained by ASI, JAXA and NASA for the two tests proposed. Some general conclusions and recommendations are finally extrapolated from this massive and intensive piece of research.
On the spectral analysis of quantum electrodynamics with spatial cutoffs. I
Takaesu, Toshimitsu
2009-06-15
In this paper, we consider the spectrum of a model in quantum electrodynamics with a spatial cutoff. It is proven that (1) the Hamiltonian is self-adjoint; (2) under the infrared regularity condition, the Hamiltonian has a unique ground state for sufficiently small values of coupling constants. The spectral scattering theory is studied as well and it is shown that asymptotic fields exist and the spectral gap is closed.
NASA Astrophysics Data System (ADS)
Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Dehghani, M. H.
2016-03-01
In this paper, we construct a new class of topological black hole Lifshitz solutions in the presence of nonlinear exponential electrodynamics for Einstein-dilaton gravity. We show that the reality of Lifshitz supporting Maxwell matter fields exclude the negative horizon curvature solutions except for the asymptotic AdS case. Calculating the conserved and thermodynamical quantities, we obtain a Smarr type formula for the mass and confirm that thermodynamics first law is satisfied on the black hole horizon. Afterward, we study the thermal stability of our solutions and figure out the effects of different parameters on the stability of solutions under thermal perturbations. Next, we apply the gauge/gravity duality in order to calculate the ratio of shear viscosity to entropy for a three-dimensional hydrodynamic system by using the pole method. Furthermore, we study the behavior of holographic conductivity for two-dimensional systems such as graphene. We consider linear Maxwell and nonlinear exponential electrodynamics separately and disclose the effect of nonlinearity on holographic conductivity. We indicate that holographic conductivity vanishes for z > 3 in the case of nonlinear electrodynamics while it does not in the linear Maxwell case. Finally, we solve perturbative additional field equations numerically and plot the behaviors of real and imaginary parts of conductivity for asymptotic AdS and Lifshitz cases. We present experimental results match with our numerical ones.
Feynman propagator for the nonbirefringent CPT-even electrodynamics of the standard model extension
Casana, Rodolfo; Ferreira, Manoel M. Jr.; Santos, Frederico E. P. dos; Gomes, Adalto R.
2010-12-15
The CPT-even gauge sector of the standard model extension is composed of 19 components comprised in the tensor (K{sub F}){sub {mu}{nu}{rho}{sigma}}, of which nine do not yield birefringence. In this work, we examine the Maxwell electrodynamics supplemented by these nine nonbirefringent CPT-even components in aspects related to the Feynman propagator and full consistency (stability, causality, unitarity). We adopt a prescription that parametrizes the nonbirefringent components in terms of a symmetric and traceless tensor, K{sub {mu}{nu}}, and second parametrization that writes K{sub {mu}{nu}} in terms of two arbitrary four-vectors, U{sub {mu}} and V{sub {nu}}. We then explicitly evaluate the gauge propagator of this electrodynamics in a tensor closed way. In the sequel, we show that this propagator and involved dispersion relations can be specialized for the parity-odd and parity-even sectors of the tensor (K{sub F}){sub {mu}{nu}{rho}{sigma}}. In this way, we reassess some results of the literature and derive some new outcomes showing that the parity-even anisotropic sector engenders a stable, noncausal and unitary electrodynamics.
Desert Research and Technology Studies Exposure of Lotus Coated Electrodynamic Shield Samples
NASA Technical Reports Server (NTRS)
Rodriquez, Marcello; Peters, Wanda C.; Straka, Sharon A.; Jones, Craig B.
2011-01-01
The Lotus dust mitigation coating and the electrodynamic shield (EDS) are two new technologies currently being developed by NASA as countermeasures for addressing dust accumulation for long-duration human space exploration. These combined technologies were chosen by the Habitation Demonstration Unit (HDU) program for desert dust exposure at the Desert Research and Technologies Studies (D-RaTS) test site in Arizona. Characterization of these samples was performed prior to, during and post D-RaTS exposure.
Thermophysical Properties of Fluids and Fluid Mixtures
Sengers, Jan V.; Anisimov, Mikhail A.
2004-05-03
The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.
Timelike Momenta In Quantum Electrodynamics
DOE R&D Accomplishments Database
Brodsky, S. J.; Ting, S. C. C.
1965-12-01
In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.
Electrodynamic Arrays Having Nanomaterial Electrodes
NASA Technical Reports Server (NTRS)
Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)
2013-01-01
An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
NASA Astrophysics Data System (ADS)
Gapochka, M. G.; Denisov, M. M.; Denisova, I. P.; Kalenova, N. V.; Korolev, A. F.
2015-11-01
The paper is devoted to mathematical modeling of the nonlinear vacuum electrodynamics effect: the action of the strong magnetic field of a pulsar on the propagation of electromagnetic waves. It is shown that, due to the birefringence of the vacuum, for one normal wave, it takes more time to travel from a pulsar to a detector installed on astrophysical satellites than for the other normal wave. The delay of the pulse carried by the second normal wave relative to pulse carried by the first normal wave from the common point of origin to the satellite is calculated.
On generalized logarithmic electrodynamics
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2015-02-01
The generalized logarithmic electrodynamics with two parameters and is considered. The indexes of refraction of light in the external magnetic field are calculated. In the case we come to results obtained by Gaete and Helayël-Neto (Eur Phys J C 74:2816, 2014). The bound on the values of , was obtained from the Biréfringence Magnétique du Vide (BMV) experiment. The symmetrical Belinfante energy-momentum tensor and dilatation current are found.
Reiss, H.R.
2012-01-01
A modification of electrodynamics is proposed, motivated by previously unremarked paradoxes that can occur in the standard formulation. It is shown by specific examples that gauge transformations exist that radically alter the nature of a problem, even while maintaining the values of many measurable quantities. In one example, a system with energy conservation is transformed to a system where energy is not conserved. The second example possesses a ponderomotive potential in one gauge, but this important measurable quantity does not appear in the gauge-transformed system. A resolution of the paradoxes comes from noting that the change in total action arising from the interaction term in the Lagrangian density cannot always be neglected, contrary to the usual assumption. The problem arises from the information lost by employing an adiabatic cutoff of the field. This is not necessary. Its replacement by a requirement that the total action should not change with a gauge transformation amounts to a supplementary condition for gauge invariance that can be employed to preserve the physical character of the problem. It is shown that the adiabatic cutoff procedure can also be eliminated in the construction of quantum transition amplitudes, thus retaining consistency between the way in which asymptotic conditions are applied in electrodynamics and in quantum mechanics. The ‘gauge-invariant electrodynamics’ of Schwinger is shown to depend on an ansatz equivalent to the condition found here for maintenance of the ponderomotive potential in a gauge transformation. Among the altered viewpoints required by the modified electrodynamics, in addition to the rejection of the adiabatic cutoff, is the recognition that the electric and magnetic fields do not completely determine a physical problem, and that the electromagnetic potentials supply additional information that is required for completeness of electrodynamics. PMID:23105173
Convergence of quantum electrodynamics in a curved modification of Minkowski space.
Segal, I E; Zhou, Z
1994-01-01
The interaction and total hamiltonians for quantum electrodynamics, in the interaction representation, are entirely regular self-adjoint operators in Hilbert space, in the universal covering manifold M of the conformal compactification of Minkowski space Mo. (M is conformally equivalent to the Einstein universe E, in which Mo may be canonically imbedded.) In a fixed Lorentz frame this may be expressed as convergence in a spherical space with suitable periodic boundary conditions in time. The traditional relativistic theory is the formal limit of the present variant as the space curvature vanishes. PMID:11607455
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theodorus M.; Liska, Matthew T. P.
2015-10-01
In a recent paper the authors studied numerically the hydrogen ground state in stochastic electrodynamics (SED) within the the non-relativistic approximation. In quantum theory the leading non-relativistic corrections to the ground state energy dominate the Lamb shift related to the photon cloud that should cause the quantum-like behaviour of SED. The present work takes these corrections into account in the numerical modelling. It is found that they have little effect; the self-ionisation that occurs without them remains present. It is speculated that the point-charge approximation for the electron is the cause of the failure.
Self-adjusting control system of the electrodynamic velocity transducer for Mössbauer spectrometer
NASA Astrophysics Data System (ADS)
Zekhtser, M. Yu.; Revyakin, A. S.; Sarychev, D. A.
2016-08-01
The novel control system has been developed on the basis of motion equation for the moving part of the electrodynamic velocity transducer of Mössbauer spectrometer. The motion equation coefficients are the parameters of its vibrating system. The square of cyclic eigenfrequency and damping factor are automatically determined by the control software for the spectrometer using the express analysis of free damped oscillations before any measurements are taken. The control system does not require manual adjustment of the spectrometer before the experiment. It exhibits accuracy of self-tuning and high degree of Doppler modulation stability in long-term experiments, providing high quality Mössbauer spectra.
Electrodynamic properties of lead Zirconate-Titanate thin films in the terahertz frequency range
NASA Astrophysics Data System (ADS)
Komandin, G. A.; Porodinkov, O. E.; Iskhakova, L. D.; Spektor, I. E.; Volkov, A. A.; Vorotilov, K. A.; Seregin, D. S.; Sigov, A. S.
2014-11-01
The transmission/reflection spectra of bilayer structures consisting of thin amorphous and polycrystalline Pb(Zr0.52Ti0.48)O3 ferroelectric films deposited on dielectric substrates of magnesium oxide MgO and sapphire α-Al2O3 were measured in the frequency range of 5-4000 cm-1. Based on these spectra and using the dispersion analysis method, the spectra of complex dielectric permittivity ɛ*(ν) and dynamic conductivity σ'(ν) of the films were simulated, the electrodynamic parameters of the films were determined, and the dielectric dispersion responsible for the formation of static permittivity was found.
NASA Technical Reports Server (NTRS)
Adams, Mitzi; HabashKrause, Linda
2012-01-01
Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown
NASA Astrophysics Data System (ADS)
Milan, S. E.; Coxon, J. C.; Clausen, L. B. N.; Korth, H.; Anderson, B. J.
2014-04-01
We present observations of the global terrestrial Birkeland field-aligned current (FAC) pattern observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during a sequence of substorms. The observations show that the region 1 and 2 current systems move to lower latitudes during the substorm growth phase and retreat to higher latitudes following substorm expansion phase onset. We interpret these observations within the framework of the expanding/contracting polar cap paradigm. This links expansion of the polar cap and equatorward motion of the auroras and FAC systems to the action of magnetopause reconnection increasing the open magnetic flux content of the magnetosphere.
NASA Astrophysics Data System (ADS)
Zou, S.
2010-12-01
Substorms are one of the fundamental elements of geomagnetic activity, which involve complex magnetosphere-ionosphere coupling processes. In this work, we aim to better understand the evolution of high latitude ionospheric convection and the relevant current systems associated with substorms, with emphasis on these features near the nightside Harang reversal region. Three different types of radars, including the Super Dual Auroral Radar Network (SuperDARN) coherent-scatter radars, the new advanced modular incoherent-scatter radar at Poker Flat (PFISR), and the Sondrestrom ISR, have been utilized. Observations from these radars, together with those from complementary instruments, including satellites and other ground-based instruments, have enabled fundamental new understanding of the ionospheric electrodynamic properties associated with substorms. In this presentation, I focus on electrodynamics near the nightside Harang reversal region. Observations from the SuperDARN and the PFISR radars revealed that auroral activity at substorm onset is located near the center of the Harang reversal, which represents a key feature of magnetospheric and ionospheric convection and is part of the Region 2 system. The observations also show nightside convection flows exhibit repeatable, distinct variations at different locations relative to the substorm-related auroral activity. Taking advantage of the simultaneous flow and ionization measurements from PFISR, a current closure relation has been found between the Region 2 and the substorm field-aligned current systems. By synthesizing these observations, a 2-D comprehensive view of the nightside ionospheric electrodynamical features, including electrical equipotentials, flows and FACs, and their evolution associated with substorms has been constructed, which has revealed a strong coupling between the substorm and the Region 2 current systems. This study sheds new light on substorm-related magnetosphere-ionosphere coupling and
Robust Disturbance-Force Compensator for Time Waveform Replication of an Electrodynamic Shaker
NASA Astrophysics Data System (ADS)
Uchiyama, Yasuhiro; Fujita, Masayuki
This paper presents a disturbance-force compensator for an electrodynamic shaker. The characteristics of a shaking system are considered to be nonlinear and variable because of the influence of the test piece. In order to compensate for this problem, the influence of the disturbance force needs to be suppressed. The controller is designed using μ-synthesis by considering the uncertainty of the shaker. In order to investigate the control performance in relation to the influence of friction and sloshing, time waveform replication testing is executed. Finally, because the compensator suppresses nonlinearity, a good performance can be realized, as confirmed by experiments conducted using actual equipment.
The Lagrangian formulation of strong-field quantum electrodynamics in a plasma
Raicher, Erez; Eliezer, Shalom; Zigler, Arie
2014-05-15
The Lagrangian formulation of the scalar and spinor quantum electrodynamics in the presence of strong laser fields in a plasma medium is considered. We include the plasma influence in the free Lagrangian analogously to the “Furry picture” and obtain coupled equations of motion for the plasma particles and for the laser propagation. We demonstrate that the strong-field wave (i.e., the laser) satisfies a massive dispersion relation and obtain self-consistently the effective mass of the laser photons. The Lagrangian formulation derived in this paper is the basis for the cross sections calculation of quantum processes taking place in the presence of a plasma.
NASA Astrophysics Data System (ADS)
Kuraev, A. A.; Kurkin, S. A.; Koronovskii, A. A.; Rak, A. O.; Sinitsyn, A. K.; Hramov, A. E.
2015-04-01
It is shown that the application of superconducting electrodynamic structures in microwave electronic devices not only improves their characteristics, but also creates premises for implementation of devices like the autophase traveling-wave tube (TWT) and peniotron operating in the millimeter range with their further advancement to the terahertz range, which is impossible for conventional electrodynamic structures with Ohmic losses. Superconducting corrugated waveguides make it possible to suspend limitations imposed on the output power of pulsed relativistic Cherenkov oscillators, which are associated with thermal degradation of the working surface of conventional waveguides with Ohmic losses.
Non-perturbative aspects of particle acceleration in non-linear electrodynamics
NASA Astrophysics Data System (ADS)
Burton, David A.; Flood, Stephen P.; Wen, Haibao
2015-04-01
We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can "surf" a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.
NASA Astrophysics Data System (ADS)
Kazinski, P. O.; Lyakhovich, S. L.; Sharapov, A. A.
2002-07-01
The effective equations of motion for a point charged particle taking into account the radiation reaction are considered in various space-time dimensions. The divergences stemming from the pointness of the particle are studied and an effective renormalization procedure is proposed encompassing uniformly the cases of all even dimensions. It is shown that in any dimension the classical electrodynamics is a renormalizable theory if not multiplicatively beyond d=4. For the cases of three and six dimensions the covariant analogues of the Lorentz-Dirac equation are explicitly derived.
Non-perturbative aspects of particle acceleration in non-linear electrodynamics
Burton, David A.; Flood, Stephen P.; Wen, Haibao
2015-04-15
We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.
An illustration of the light-front coupled-cluster method in quantum electrodynamics
Chabysheva, S. S.
2012-10-23
A field-theoretic formulation of the exponential-operator technique is applied to a nonperturbative Hamiltonian eigenvalue problem in electrodynamics, quantized in light-front coordinates. Specifically, we consider the dressed-electron state, without positron contributions but with an unlimited number of photons, and compute its anomalous magnetic moment. A simple perturbative solution immediately yields the Schwinger result of {alpha}/2{pi}. The nonperturbative solution, which requires numerical techniques, sums a subset of corrections to all orders in {alpha} and incorporates additional physics.
Electrodynamics of long conducting tethers in the near-earth environment. [in the ionosphere
NASA Technical Reports Server (NTRS)
Dobrowolny, M.; Colombo, G.; Grossi, M. D.
1976-01-01
An analytical approach was developed to evaluate the electrodynamic interactions affecting a thin, bare metallic wire moving in the ionosphere. The wire's diameter was smaller than the Debye length; therefore, the plasma sheath around the wire was taken into account in computing inducing drag force and torque. Computer programs were prepared for the numerical evaluation of mathematical functions that were required to compute the distribution of the potential along the wire and of the current in the wire. Numerical calculations based on this software are shown.
Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Slichter, D. H.; Müller, C.; Vijay, R.; Weber, S. J.; Blais, A.; Siddiqi, I.
2016-05-01
We observe the quantum Zeno effect—where the act of measurement slows the rate of quantum state transitions—in a superconducting qubit using linear circuit quantum electrodynamics readout and a near-quantum-limited following amplifier. Under simultaneous strong measurement and qubit drive, the qubit undergoes a series of quantum jumps between states. These jumps are visible in the experimental measurement record and are analyzed using maximum likelihood estimation to determine qubit transition rates. The observed rates agree with both analytical predictions and numerical simulations. The analysis methods are suitable for processing general noisy random telegraph signals.
Electrodynamic model of atmospheric and ionospheric processes on the eve of an earthquake
NASA Astrophysics Data System (ADS)
Sorokin, V. M.; Ruzhin, Yu. Ya.
2015-09-01
Electric field generation and its accompanying phenomena in the atmosphere-ionosphere system have been intensively studied in recent years. This paper considers the results of these studies, which have served as the physical basis for the model of lithosphere-ionosphere coupling. According to our model, the intensive processes in the lower atmosphere and lithosphere have an electrodynamic effect on the ionospheric plasma. The model was used to conduct theoretical studies of plasma and electromagnetic effects accompanying the generation of conduction current in the global circuit. It has been shown that the electrodynamic model of the influence of seismic and meteorological processes on cosmic plasma can serve as a physical basis for a satellite system to monitor earthquake precursors and the catastrophic phase of typhoon development. The model makes it possible to couple the satellite data of electromagnetic and plasma measurements with electrophysical and meteorological characteristics of the lower atmosphere at the stage of earthquake preparation and typhoon initiation. The model suggests that the numerous effects in the cosmic plasma have a single source: a change in the conduction current flowing in the atmosphere-ionosphere circuit.
NASA Astrophysics Data System (ADS)
Anderson, Brandon M.; Boyack, Rufus; Wu, Chien-Te; Levin, K.
2016-05-01
In this Rapid Communication we derive the full gauge-invariant electromagnetic response beyond the BCS level using the fermionic superfluid path integral. In the process we identify and redress a failure to satisfy the compressibility sum rule; this shortcoming is associated with the conventional path-integral formulation of BCS-level electrodynamics. The approach in this paper builds on an alternative saddle point scheme. At the mean field level, this leads to the well known gauge-invariant electrodynamics of BCS theory and to the satisfaction of the compressibility sum rule. Moreover, this scheme can be readily extended to address arbitrary higher order fluctuation theories (for example, at the Gaussian level.) At any level this approach will lead to a gauge invariant and compressibility sum rule consistent treatment of electrodynamics and thermodynamics.
Clemens, M.; Weiland, T.
1996-12-31
In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.
NASA Astrophysics Data System (ADS)
Mross, David F.; Alicea, Jason; Motrunich, Olexei I.
2016-07-01
We explicitly derive the duality between a free electronic Dirac cone and quantum electrodynamics in (2 +1 ) dimensions (QED3 ) with N =1 fermion flavors. The duality proceeds via an exact, nonlocal mapping from electrons to dual fermions with long-range interactions encoded by an emergent gauge field. This mapping allows us to construct parent Hamiltonians for exotic topological-insulator surface phases, derive the particle-hole-symmetric field theory of a half-filled Landau level, and nontrivially constrain QED3 scaling dimensions. We similarly establish duality between bosonic topological insulator surfaces and N =2 QED3 .
Spatiotemporally resolved electrodynamic properties of a Sun-aligned arc over Resolute Bay
NASA Astrophysics Data System (ADS)
Perry, G. W.; Dahlgren, H.; Nicolls, M. J.; Zettergren, M.; St.-Maurice, J.-P.; Semeter, J. L.; Sundberg, T.; Hosokawa, K.; Shiokawa, K.; Chen, S.
2015-11-01
Common volume measurements by the Resolute Bay Incoherent Scatter Radar-North (RISR-N) and Optical Mesosphere and Thermosphere Imagers (OMTI) have been used to clarify the electrodynamic structure of a Sun-aligned arc in the polar cap. The plasma parameters of the dusk-to-dawn drifting arc and surrounding ionosphere are extracted using the volumetric imaging capabilities of RISR-N. Multipoint line-of-sight RISR-N measurements of the plasma drift are inverted to construct a time sequence of the electric field and field-aligned current system of the arc. Evidence of dramatic electrodynamic and plasma structuring of the polar cap ionosphere due to the arc is described. One notable feature of the arc is a meridionally extended plasma density depletion on its leading edge, located partially within a downward field-aligned current region. The depletion is determined to be a by-product of enhanced chemical recombination operating on a time scale of 15 min. A similarly shaped electric field structure of over 100 mV/m and line-of-sight ion temperatures nearing 3000 K were collocated with the depletion.
On the electrodynamics of moving permanent dipoles in external electromagnetic fields
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2014-09-01
The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic field, force, energy and momentum, which are intimately tied together by Poynting's theorem and the Lorentz force law. Whereas Maxwell's macroscopic equations relate the electric and magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting's theorem governs the flow of electromagnetic energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. The close association of momentum with energy thus demands that the Poynting theorem and the Lorentz law remain consistent with each other, while, at the same time, ensuring compliance with the conservation laws of energy, linear momentum, and angular momentum. This paper shows how a consistent application of the aforementioned laws of electrodynamics to moving permanent dipoles (both electric and magnetic) brings into play the rest-mass of the dipoles. The rest mass must vary in response to external electromagnetic fields if the overall energy of the system is to be conserved. The physical basis for the inferred variations of the rest-mass appears to be an interference between the internal fields of the dipoles and the externally applied fields. We use two different formulations of the classical theory in which energy and momentum relate differently to the fields, yet we find identical behavior for the restmass in both formulations.
Multi-scale 3D simulation of lightning and thunderstorm electrodynamics
NASA Astrophysics Data System (ADS)
Kabirzadeh, R.; Lehtinen, N. G.; Liang, C.; Cohen, M.; Inan, U.
2014-12-01
Despite centuries studying thunderstorm electrodynamics, our understanding of these phenomena remains limited. The difficulty lies partly in the large number of processes and their mutual dependency and the wide range of temporal and the spatial scales involved. In this study we combine two numerical models to move toward a simulation that addresses these broad scales. First, we use a 3D numerical model to calculate the large scale quasi-electrostatic (QES) fields and charge distributions built up by updrafts in the thundercloud. This model self-consistently accounts for the conductivities, particle densities, large scale currents and charging mechanisms inside a thundercloud in the atmosphere. Second, we use a time-domain fractal lightning (TDFL) model developed that takes into account both the thermodynamics and electrodynamics of leader development and the return stroke on small time and spatial scales (Liang et al. 2014). The QES model simulates slow thunderstorm charging dynamics, and then passes the state to the TDFL model when a flash is ready to trigger. Using this combined simulation, we explain some recently observed patterns of lightning inside a thunderstorm and within a flash (e.g. Zoghzoghy et al. 2013, 2014). We attempt to constrain properties of the thundercloud like the size and shape of the charge pockets removed from the thundercloud, the flash rate and updraft currents, the relative occurrence rate of different types of lightning, and the cloud charge distribution structure effects on the lightning type.
Continuum electrodynamics of type-II superconductors in the mixed state: The dc and ac response
Placais, B.; Mathieu, P.; Simon, Y.; Sonin, E.B.; Traito, K.B.
1996-11-01
The dc and ac response of the ideal type-II superconductor in the mixed state is analyzed in the frame of a continuum electrodynamics, in which all fields are averaged on a scale exceeding the intervortex distance. The results of previous calculations are brought together and compared, while paying special attention to the role of the vortex line tension and the normal current. The electromagnetic response is studied in the whole range of magnetic fields and frequencies. The possible effect of the normal current on vortex motion is discussed. We argue in this respect that existing theories, where the Lorentz force involves the normal current, are not consistent with Onsager relations. Due to vortex line tension the external fields penetrate into a superconductor as a superposition of two modes with different complex wave numbers (the two-mode electrodynamics). Obtained expressions for the surface impedance should permit one to determine the parameters of the theory from the experiment and to discriminate different models of vortex motion. {copyright} {ital 1996 The American Physical Society.}
Electrodynamic Context of Magnetotail and Magnetopause Dynamics Observed by Magnetospheric Multiscal
NASA Astrophysics Data System (ADS)
Anderson, B. J.; Korth, H.; Waters, C. L.; Barnes, R. J.; Samara, M.; Russell, C. T.; Strangeway, R. J.; Plaschke, F.; Magnes, W.; Fischer, D.; Merkin, V. G.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Leinweber, H. K.; Le, G.; Bromund, K. R.; Chutter, M.; Slavin, J. A.; Kepko, L.; Le Contel, O.; Mauk, B.; Westlake, J. H.; Gjerloev, J. W.; Ruohoniemi, J. M.
2015-12-01
After successful launch and deployment on 14 March 2015, the four Magnetosphere Multiscale (MMS) spacecraft were commissioned during the first local time precession of the orbit line of apsides across the magnetotail from dawn to dusk. Prime science observations began in September 2015 when orbit apogee had moved to the dusk sector at magnetopause distances. Signatures of magnetotail dynamics were observed during payload and fleet commissioning. The electrodynamic context of the magnetotail events at MMS as well as observations at the dusk and afternoon magnetopause is assessed using correlative observations from low Earth orbit and ground-based instruments including the Active Magnetosphere and Polar Electrodynamics Response Experiment (AMPERE), SuperMAG, and SuperDARN. Substorm current onsets are prevalent in AMPERE data and are highly correlated with magnetotail injections and dipolarizations observed by MMS. To better constrain how the MMS magnetotail observations are related to global processes, we also examine the occurrence and prevalence of similar ionospheric onset signatures when MMS was at high altitudes in the magnetotail but observed no local signatures of injections or dipolarizations. For MMS magnetopause observations, we explore the relationship of magnetic reconnection signatures at MMS with the convection patterns derived from AMPERE and ionosphere observations to establish the relationship of the local MMS observations and global magnetospheric convective state.
On the possibility of an experiment on 'nonlocality' of electrodynamics
Khrapko, Radii I
2012-12-31
It has been known since the 19th century that a circularly polarised electromagnetic wave carries an angular momentum. A simple experiment (Righi, 1882) apparently indicates that the angular momentum is distributed over the entire cross section of the beam. According to some modern ideas, the angular momentum of the beam with the given polarisation is localised near the beam 'surface' and represents a spin of photons, while the energy in the beam is distributed throughout its cross section, which is inconsistent with the principle of locality. For the experimental determination of the localisation of the angular momentum, we propose a new scheme, in which we study the interference pattern of two coherent circularly polarised beams. Each beam first passes through a half-wave plate, one of the plates being divided into two coaxial parts. With (manual) rotation of one parts of the plate we change the frequency of the light passing through it: the plate absorbs the momentum and, therefore, work is done. This change in frequency should cause a movement of the interference fringes and show the distribution of the angular momentum over the beam cross section. (light polarisation)
Investigation of electrodynamic stabilization and control of long orbiting tethers
NASA Technical Reports Server (NTRS)
Colombo, G.; Arnold, D.
1984-01-01
The state-of-the-art in tether modelling among participants in the Tethered Satellite System (TSS) Program, the slack tether and its behavior, and certain advanced applications of the tether to problems in orbital mechanics are identified. The features and applications of the TSS software set are reviewed. Modelling the slack tether analytically with as many as 50 mass points and the application of this new model to a study of the behavior of a broken tether near the Shuttle are described. A reel control algorithm developed by SAO and examples of its use are described, including an example which also demonstrates the use of the tether in transferring a heavy payload from a low-orbiting Shuttle to a high circular orbit. Capture of a low-orbiting payload by a Space Station in high circular orbit is described. Energy transfer within a dumbbell-type spacecraft by cyclical reeling operations or gravitational effects on the natural elasticity of the connecting tether, it is shown, can circularize the orbit of the spacecraft.
Graphene electrodynamics in the presence of the extrinsic spin Hall effect
NASA Astrophysics Data System (ADS)
Huang, Chunli; Chong, Y. D.; Vignale, Giovanni; Cazalilla, Miguel A.
2016-04-01
We extend the electrodynamics of two-dimensional electron gases to account for the extrinsic spin Hall effect (SHE). The theory is applied to doped graphene decorated with a random distribution of absorbates that induce spin-orbit coupling (SOC) by proximity. The formalism extends previous semiclassical treatments of the SHE to the nonlocal dynamical regime. Within a particle-number conserving approximation, we compute the conductivity, dielectric function, and spin Hall angle in the small frequency and wave vector limit. The spin Hall angle is found to decrease with frequency and wave number, but it remains comparable to its zero-frequency value around the frequency corresponding to the Drude peak. The plasmon dispersion and linewidth are also obtained. The extrinsic SHE affects the plasmon dispersion in the long wavelength limit, but not at large values of the wave number. This result suggests an explanation for the rather similar plasmonic response measured in exfoliated graphene, which does not exhibit the SHE, and graphene grown by chemical vapor deposition, for which a large SHE has been recently reported. Our theory also lays the foundation for future experimental searches of SOC effects in the electrodynamic response of two-dimensional electron gases with SOC disorder.
Electrodynamic, thermal, and energetic character of intense sun-aligned arcs in the polar cap
Valladares, C.E.; Carlson, H.C.
1991-02-01
The electrodynamic, thermal and energetic character of stable Sun-aligned arcs in the polar cap can be meaningfully diagnosed by an incoherent scatter radar, provided a suitable observing scheme is selected. The authors report here such measurements of two intense Sun-aligned arcs. The two arcs were diagnosed on two different nights (February 26 and March 1, 1987) using the Sondre Stomfjord radar as a stand-alone diagnostic. Repeatable patterns are found in mesoscale area maps of altitude profiles for observed electron and ion gas number densities, temperatures, and line-of-sight velocities, and projected mesoscale area maps of derived electric fields, Pedersen and Hall conductivities, horizontal and field-aligned currents, Joule heating rate, and Poynting flux. They confirm, for the first time with continuous mesoscale area maps, that the arcs have the anticipated simple arc electrodynamics. That is, the visual and enhanced ionization signatures of the arc are produced by incoming energetic electrons carrying the outgoing current from the electric field convergence in the arc.
Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole
ERIC Educational Resources Information Center
Leung, P. T.
2008-01-01
The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…
Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride
NASA Astrophysics Data System (ADS)
Zhang, Nan; Yeckel, Andrew; Burger, Arnold; Cui, Yunlong; Lynn, Kelvin G.; Derby, Jeffrey J.
2011-06-01
A transient, coupled model has been developed to analyze the segregation of zinc in cadmium zinc telluride (CZT) grown in an electrodynamic gradient freeze (EDG) furnace. The coupled model consists of a local model that solves for time-dependent melt flow, heat transfer, melt-crystal interface position, and zinc distribution in both melt and solid phases and a quasi-steady-state global model that features realistic furnace heat transfer. After verification and validation tests, the model is applied to predict composition patterns in a large-scale CZT EDG growth system previously analyzed by Gasperino et al. [On crucible effects during the growth of cadmium zinc telluride in an electrodynamic gradient freeze furnace, J. Crys. Growth 311 (2009) 2327-2335]. Surprisingly, anomalous zinc segregation is predicted, featuring a non-monotonic axial concentration profile and several local minima and maxima across the boule. A mechanistic explanation is put forth based on the cumulative effect of changes in multi-cellular melt flow structures, a particularly susceptible occurrence for CZT systems. Additional effects of furnace translation rate and solid state diffusion are probed.
Preliminary investigation of the electrodynamics of a conducting tether
NASA Technical Reports Server (NTRS)
Thompson, W. B.
1985-01-01
An introductory study of the properties of an electrically conducting tether flown from the shuttle is presented. Only a single configuration is considered: a vertical conductor moving normally across the Earth's field, connecting the shuttle to a large conducting balloon that passively extracts electrons from the ionosphere. The distortions in the plasma at maximum current collection are described, as are the local and distant wakes. Numerical values are given.
2006 Status of the Momentum eXchange Electrodynamic Re-Boost (MXER) Tether Development
NASA Technical Reports Server (NTRS)
Bonometti, Joseph A.; Sorensen, Kirk F.; Dankanich, John W.; Frame, Kyle L.
2006-01-01
The MXER Tether technology development is a high-payoff/high-risk investment area within the NASA In-Space Propulsion Technology (ISPT) Program. The ISPT program is managed by the NASA Headquarters Science Mission Directorate and implemented by the Marshall Space Flight Center in Huntsville, Alabama. The MXER concept was identified and competitively ranked within NASA's comprehensive Integrated In-Space Transportation Plan (IISTP); an agency-wide technology assessment activity. The objective of the MXER tether project within ISPT is to advance the technological maturation level for the MXER system, and its subsystems, as well as other space and terrestrial tether applications. Recent hardware efforts have focused on the manufacturability of space-survivable high-strength tether material and coatings, high-current electrodynamic tether, lightweight catch mechanism, high-accuracy propagator/predictor code, and efficient electron collection/current generation. Significant technical progress has been achieved with modest ISPT funding to the extent that MXER has evolved to a well-characterized system with greater capability as the design has been matured. Synergistic efforts in high-current electrodynamic tethers and efficient electron collection/current generation have been made possible through SBIR and STTR support. The entire development endeavor was orchestrated as a collaborative team effort across multiple individual contracts and has established a solid technology resource base, which permits a wide variety of future space cable/tether applications to be realized.
NASA Astrophysics Data System (ADS)
Lobet, M.; d'Humières, E.; Grech, M.; Ruyer, C.; Davoine, X.; Gremillet, L.
2016-03-01
Next generation of ultra-intense laser facilities will lead to novel physical conditions ruled by collective and quantum electrodynamics effects, such as synchrotron-like emission of high-energy photons and e + e - pair generation. In view of the future experiments performed in this regime, the latter processes have been implemented into the particle-in-cell code CALDER.
Some Considerations about Podolsky-Axionic Electrodynamics
NASA Astrophysics Data System (ADS)
Gaete, Patricio
For a Podolsky-axionic electrodynamics, we compute the interaction potential within the structure of the gauge-invariant but path-dependent variables formalism. The result is equivalent to that of axionic electrodynamics from a new noncommutative approach, up to first-order in θ.
Relation of magnetism and electricity beyond Faraday-Maxwell electrodynamics
NASA Astrophysics Data System (ADS)
Kurkin, M. I.; Orlova, N. B.
2014-11-01
A comparison has been performed between the Landau-Dzyaloshinskii-Astrov magnetoelectric effects and the electromagnetic effects caused by the electromagnetic Faraday induction and Maxwell displacement currents. The requirement for the spontaneous violation of symmetry relative to space inversion and time reversion is formulated as the condition for the existence of magnetoelectric effects. An analysis is performed of some results obtained by E.A. Turov both personally and in association with colleagues, which made a significant contribution to the development of the science of magnetoelectricity. These results include the development of the scheme of a simplified symmetry analysis for describing collinear spin structures; the use of this scheme for the invariant expansion of thermodynamic potentials for the magnetic materials with different types of magnetic ordering; the formulation of the microscopic model of magnetoelectricity with the use of the relation between spins and electroactive optical phonons; the study of the phenomena of the enhancement of magnetoelectric effects upon the magnetic resonance; the analysis of the opportunities of electrodipole excitation and of the detection of different signals of magnetic resonance; and the study of the manifestations of magnetoelectric effects in magnetoacoustics and optics.
Disturbances of electrodynamic activity affect abortion in human
NASA Astrophysics Data System (ADS)
Jandová, A.; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, M.; Pokorný, J.
2011-12-01
Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.
Limits on nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Fouché, M.; Battesti, R.; Rizzo, C.
2016-05-01
In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test nonlinear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.
Electrodynamic force law controversy.
Graneau, P; Graneau, N
2001-05-01
Cavalleri et al. [Phys. Rev. E 52, 2505 (1998); Eur. J. Phys. 17, 205 (1996)] have attempted to resolve the electrodynamic force law controversy. This attempt to prove the validity of either the Ampère or Lorentz force law by theory and experiment has revealed only that the two are equivalent when predicting the force on part of a circuit due to the current in the complete circuit. However, in our analysis of internal stresses, only Ampère's force law agrees with experiment. PMID:11415053
Electrodynamic System of Earth in Moon and Solar Tides Investigation
NASA Astrophysics Data System (ADS)
Grunskaya, Lubov; Isakevich, Valiriy
Since 2000 there has been working the united system of monitoring of electrical and geomagnetic fields of ELF range of the atmosphere boundary surface layer at the spaced apart stations: Vladimir State physical experimental ground; the station of RAS Institute of Sun and Earth physics at Lake Baikal; the station in Paratunka (Kamchatka); the station in Obninsk. There has been developed a programme-analytical system (PAS) to investigate signal structures in spectral and time series, caused by geophysical and astrophysical processes based on the method of eigen vectors. There has been developed a programme and analytical system to investigate the signal structure in the spectral and time series caused by geophysical processes. There has been estimated the amplitude and investigated the properties of the Earth atmosphere boundary layer electrical field components localized spectrally at the frequencies of the moon and solar tides. There has been exposed a method of determination of relative and absolute amplitudes of the main components of the eigen series. There has been investigated coherence of the spectral components at the frequencies of solar and moon tides. The work is carried out with supporting of RFFI № 14-07-97510, State Task to Universities on 2014-2016.
The Fourth Law of Motion in Classical Mechanics and Electrodynamics
NASA Astrophysics Data System (ADS)
Pinheiro, Mario J.
2010-01-01
Newton's second law has limited scope of application when transient phenomena are at stake. We endeavor here to consider a modification of Newton's second law in order to take into account sudden change (surge) of angular momentum or linear momentum. It is shown that space react back according to a kind of induction law that is related to inertia, but also appears to give evidence of a "fluidic" nature of space itself. The back-reaction is quantified by the time rate of the angular momentum flux threading a surface, mass dependent, and bearing similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects, thus giving evidence of the property of vacuum polarization, a phenomena which is relative to local space. It is formulated a kind of (qualitative) Lenz law that gives an explanation to precession.
Disturbances of electrodynamic activity affect abortion in animals
NASA Astrophysics Data System (ADS)
Nedbalova, M.; Jandova, A.; Dohnalova, A.
2011-12-01
A specific kind of intracellular organelles, the mitochondria, is the place of metabolic energy production by oxidative mechanism. We used cell mediated immunity method for verification of the energy metabolism (ATP production). The antigen (immunological functional RNA) was obtained from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus (LDV) and prepared by the high pressure gel chromatography (HPGC). We have studied the immunological adaptability of LDH viral antigen in 62 pigs (12 parents and 50 piglings). Exitus of piglings was in case of positive imunological response on LDV. The statement results from a comparison of the relative frequency of an incidence of identical findings in male piglets and sows and from identical findings in female piglets and pigs. The efficient elaboration and utilization of energy in cell may be damaged by the changes of energy production systems and also by long-term parasitary depletion of ATP energy. Biological activity is based not only on biochemical but also on biophysical mechanisms. Biophysical processes are also involved in the transfer of information and its processing for making decisions and providing control, which are important parts of biological activity. These experimental results were used for the same study in human.
Electrodynamic response of the middle atmosphere to auroral pulsations
NASA Technical Reports Server (NTRS)
Goldberg, R. A.; Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Barcus, J. R.
1990-01-01
The MAC/EPSILON observational campaign encompassed the use of two Nike Orion rocket payloads which studied the effects of auroral energetics on the middle atmosphere. While one payload was launched during the recovery phase of a moderate magnetic substorm, during fairly stable auroral conditions, the other was launched during highly active postbreakup conditions during which Pc5 pulsations were in progress. The energetic radiation of the first event was composed almost entirely of relativistic electrons below 200 keV, while that of the second was dominated by much softer electrons whose high X-ray fluxes exceeded the cosmic ray background as an ionizing source down to below 30 km.
Electrodynamics of a ring-shaped spiral resonator
NASA Astrophysics Data System (ADS)
Maleeva, N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Averkin, A.; Jung, P.; Ustinov, A. V.
2014-02-01
We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f1:f2:f3:f4… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.
Lattice study of anisotropic quantum electrodynamics in three dimensions
NASA Astrophysics Data System (ADS)
Hands, Simon; Thomas, Iorwerth Owain
2005-08-01
We present results from a Monte Carlo simulation of noncompact lattice QED in three dimensions on a 163 lattice in which an explicit anisotropy between x and y hopping terms has been introduced into the action. This formulation is inspired by recent formulations of anisotropic QED3 as an effective theory of the non-superconducting portion of the cuprate phase diagram, with relativistic fermion degrees of freedom defined near the nodes of the gap function on the Fermi surface, the anisotropy encapsulating the different Fermi and Gap velocities at the node, and the massless photon degrees of freedom reproducing the dynamics of the phase disorder of the superconducting order parameter. Using a parameter set corresponding in the isotropic limit to broken chiral symmetry (in field theory language) or a spin density wave (in condensed matter physics language), our results show that the renormalized anisotropy, defined in terms of the ratio of correlation lengths of gauge invariant bound states in the x and y directions, exceeds the explicit anisotropy κ introduced in the lattice action, implying in contrast to recent analytic results that anisotropy is a relevant deformation of QED3 . There also appears to be a chiral symmetry restoring phase transition at κc≃4.5 , implying that the pseudogap phase persists down to T=0 in the cuprate phase diagram.
Electrodynamics of a ring-shaped spiral resonator
Maleeva, N.; Karpov, A.; Averkin, A.; Fistul, M. V.; Zhuravel, A. P.; Jung, P.; Ustinov, A. V.
2014-02-14
We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f{sub 1}:f{sub 2}:f{sub 3}:f{sub 4}… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.
Electrodynamics of moving media inducing positive and negative refraction
Grzegorczyk, Tomasz M.; Kong, Jin Au
2006-07-15
Negative refraction is a phenomenon that has been recently reported with left-handed media (either isotropic or not), photonic crystals, and rotated uniaxial media. In this Brief Report, we identify another origin of negative refraction, due to the motion of the transmitted medium parallel to the interface at which refraction occurs. Previous works in this domain have concentrated on media velocities that are above the Cerenkov limit, while we show here that negative refraction is in fact achievable at any velocities of the transmitted medium. A possible experimental implementation is proposed to verify this effect. Next, we consider an isotropic frequency-dispersive medium for which the index of refraction can take negative values, and we study the wave refraction phenomenon as a function of frequency and medium velocity. It is found that the motion of the medium induces a rotation of refraction, which can either enhance or attenuate the natural negative refraction of the medium.
Gravito-electrodynamics of charged dust in planetary magnetospheres
Mendis, D.A.; Houpis, H.L.F.; Hill, J.R.
1982-05-01
The dynamics of small electrically charged dust grains within the rigidly corotating regions of planetary magnetospheres such as those of Jupiter and Saturn is considered. Depending on whether one is inside or outside the synchronous orbit, it is possible to have different populations of both positively and negatively charged particles moving in equilibrium circular orbits either in the prograd or retrograd sense. Not all these are stable, however, to small perturbations, such as would be produced by the gravitational tug of a neighboring satellite. The stable perturbed grains will perform a motion that can be described as an elliptical gyration about a guiding center which is in uniform circular motion. For different values of the specific charge, the ratio of the semiaxes of this ''epicyclic'' ellipse lies between 1/2 and 1, while the gyration frequency ..omega.. of the grain about the guiding center lies between the Kepler frequency ..cap omega../sub K/ and ..omega../sub 0/ In the environments of Jupiter and Saturn, where the grains are expected to be negatively charged both in the sunlit side and in the shadow and which move in the prograde sense, their guiding centers must have speeds intermediate to the Kepler speed and the corotation speed. Such particles with a unique specific charge could have a 1:1 magneto-gravitational resonance with a neighboring satellite. A dispersion relation between ..omega.. and the wavelength lambda of the perturbed orbits in the frame of the perturbed satellite has been derived. This result has been used to discuss the appearance and disappearance of the waves in the F ring of Saturn elsewhere. We merely point out here that, while the existence of a single well-defined wavelength implies a dust size distribution sharply peaked at a diameter of about 1 ..mu.., the present theory also anticipates this situation.
Nonperturbative quantization of the electroweak model's electrodynamic sector
NASA Astrophysics Data System (ADS)
Fry, M. P.
2015-04-01
Consider the Euclidean functional integral representation of any physical process in the electroweak model. Integrating out the fermion degrees of freedom introduces 24 fermion determinants. These multiply the Gaussian functional measures of the Maxwell, Z , W , and Higgs fields to give an effective functional measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude variation of this measure is insensitive to the presence of the Z , W , and H fields; they are assumed to be a subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the separate terms can be nonperturbatively estimated for a measurable class of large amplitude random fields in four dimensions. It is found that the QED fermion determinant grows faster than exp [c e2∫d4x Fμν 2] , c >0 , in the absence of zero mode supporting random background potentials. This raises doubt on whether the QED fermion determinant is integrable with any Gaussian measure whose support does not include zero mode supporting potentials. Including zero mode supporting background potentials can result in a decaying exponential growth of the fermion determinant. This is prima facie evidence that Maxwellian zero modes are necessary for the nonperturbative quantization of QED and, by implication, for the nonperturbative quantization of the electroweak model.
Galilean symmetry of Maxwell's equations in classical electrodynamics
NASA Astrophysics Data System (ADS)
Kotel'Nikov, G. A.
1985-08-01
It is shown that the Galilean group, like the Lorentz group, is a group of exact symmetry of Maxwell's equation. The Galilean group differs in that, while the field transformations are linear and global in the relativistic case, they are nonlinear in the Galilean and, generally speaking, depend on the coordinates of the event through some weight functions.
Situational Knowledge in Physics: The Case of Electrodynamics.
ERIC Educational Resources Information Center
Savelsbergh, Elwin R.; de Jong, Ton; Ferguson-Hessler, Monica G. M.
2002-01-01
Investigates how situational knowledge differs across individuals of different competence levels. Analyzes participants' descriptions of physics problem situations. Discusses the relationship between competence and the structure of problem situations, differences between experts and novices, and implications for teaching. (Author/KHR)
Finiteness of the vacuum energy density in quantum electrodynamics
NASA Astrophysics Data System (ADS)
Manoukian, Edward B.
1983-03-01
Recent interest in the finiteness problem of the vacuum energy density (VED) in finite QED has motivated us to reexamine this problem in the light of an analysis we have carried out earlier. By a loopwise summation procedure, supplemented by a renormalization-group analysis, we study the finiteness of the VED with α, the renormalized fine-structure constant, fixed in the process as the (infinite order) zero of the eigenvalue condition F[1](x)|x=α=0∞, and with the electron mass totally dynamical of origin. We propose a possible finite solution for the VED in QED which may require only one additional eigenvalue condition for α.
Nonlinear electrodynamics at Cinvestav
NASA Astrophysics Data System (ADS)
Bretón, Nora
2012-02-01
After a brief introduction to the original aims of Nonlinear electrodynamics (NLED), a review on NLED research that has been developed in the Physics Department at Cinvestav-IPN is addressed: from the seminal work by Jerzy Plebañski, which was followed by S. Hacyan and S. Alarcón, afterwards by A. García and H. Salazar; and more recently by E. Ayón-Beato and N. Bretón. We conclude by pointing to the current streams of research.
The gravito-electrodynamics of charged dust in planetary magnetospheres
NASA Technical Reports Server (NTRS)
Mendis, D. A.; Houpis, H. L. F.; Hill, J. R.
1982-01-01
The orbital dynamics of small electrically charged dust grains within the corotating regions of planetary magnetospheres is considered. Equations are derived for the elliptical epicyclic motion of positively and negatively charged particles about the guiding center in an equilibrium circular orbit under the influence of small perturbations. Those orbits that are stable to the perturbations are found to have a ratio of the semiaxes of the epicycle between 1/2 and 1, depending on the specific charge, and a gyration frequency about the guiding center between the Kepler frequency and the grain gyrofrequency in a nonrotating frame. In the magnetospheres of Jupiter and Saturn, where the grains are expected to be negatively charged and move in a prograde sense, the guiding centers are predicted to have speeds intermediate to the Kepler speed and the corotation speed and thus may undergo a 1:1 magneto-gravitational resonance with a neighboring satellite. Results may be used in the interpretation of the waves in the F ring of Saturn in terms of the dust size distribution.
On the electrodynamical properties of nuclear matter in bulk
Rotondo, Michael; Xue Shesheng; Ruffini, Remo
2008-01-03
We analyze the properties of solutions of the relativistic Thomas-Fermi equation for globally neutral cores with radius of the order of R{approx_equal}10 Km, at constant densities around the nuclear density. By using numerical tecniques as well as well tested analytic procedures developed in the study of heavy ions, we confirm the existence of an electric field close to the critical value E{sub c} = m{sub e}{sup 2}c{sup 3}/e({Dirac_h}/2{pi}) in a shell {delta}R{approx_equal}l0{sup 4}({Dirac_h}/2{pi})/m{sub {pi}}c near the core surface. For a core of {approx_equal}10 Km the difference in binding energy reaches 10{sup 49} ergs. These results can be of interest for the understanding of very heavy nuclei as well as physics of neutron stars, their formation processes and further gravitational collapse to a black hole.
The gravito-electrodynamics of charged dust in planetary magnetospheres
NASA Astrophysics Data System (ADS)
Mendis, D. A.; Houpis, H. L. F.; Hill, J. R.
1982-05-01
The orbital dynamics of small electrically charged dust grains within the corotating regions of planetary magnetospheres is considered. Equations are derived for the elliptical epicyclic motion of positively and negatively charged particles about the guiding center in an equilibrium circular orbit under the influence of small perturbations. Those orbits that are stable to the perturbations are found to have a ratio of the semiaxes of the epicycle between 1/2 and 1, depending on the specific charge, and a gyration frequency about the guiding center between the Kepler frequency and the grain gyrofrequency in a nonrotating frame. In the magnetospheres of Jupiter and Saturn, where the grains are expected to be negatively charged and move in a prograde sense, the guiding centers are predicted to have speeds intermediate to the Kepler speed and the corotation speed and thus may undergo a 1:1 magneto-gravitational resonance with a neighboring satellite. Results may be used in the interpretation of the waves in the F ring of Saturn in terms of the dust size distribution.
UV Imaging of Europa & Ganymede: Unveiling Satellite Aurora & Electrodynamical Interactions
NASA Astrophysics Data System (ADS)
McGrath, Melissa
1999-07-01
We propose to obtain dispersed ultraviolet images of Europa and Ganymede using STIS to isolate atomic oxygen {1304 and 1356 Angstrom} and hydrogen {Lyman-Alpha} emissions, to study the interaction of the Jovian magnetosphere with the tenuous oxygen atmospheres of these icy satellites. Previous spectroscopic observations, from both HST {with GHRS} and Galileo, suggest the presence of polar aurorae on Ganymede whose geometry would be clearly delineated in these images. Europa is expected to show an oxygen emission morphology similar to that recently discovered on Io.
Study of the microwave electrodynamic response of MgB 2 thin films
NASA Astrophysics Data System (ADS)
Andreone, A.; Cassinese, A.; Cantoni, C.; Di Gennaro, E.; Lamura, G.; Maglione, M. G.; Paranthaman, M.; Salluzzo, M.; Vaglio, R.
2002-08-01
We present a study on the power dependence of the microwave surface impedance in thin films of the novel superconductor MgB 2. 500 nm thick samples exhibiting critical temperatures ranging between 26 and 38 K are synthesized by an ex situ post-anneal of e-beam evaporated boron in the presence of an Mg vapor at 900 °C. Preliminary results on films grown in situ by a high rate magnetron sputtering technique from stoichiometric MgB 2 and Mg targets are also reported. Microwave measurements have been carried out employing a dielectrically loaded niobium superconducting cavity operating at 19.8 GHz and 4 K. The study shows that the electrodynamic response of MgB 2 films is presently dominated by extrinsic sources of dissipation, appearing already at low microwave power, likely to be ascribed to the presence of grain boundaries and normal inclusions in the samples.
Consistent quantization of massive chiral electrodynamics in four dimensions
Andrianov, A. ); Bassetto, A.; Soldati, R.
1989-10-09
We discuss the quantization of a four-dimensional model in which a massive Abelian vector field interacts with chiral massless fermions. We show that, by introducing extra scalar fields, a renormalizable unitary {ital S} matrix can be obtained in a suitably defined Hilbert space of physical states.
Electrodynamics of the antiferromagnetic phase in URu2Si2
NASA Astrophysics Data System (ADS)
Hall, Jesse S.; Movassagh, M. Rahimi; Wilson, M. N.; Luke, G. M.; Kanchanavatee, N.; Huang, K.; Janoschek, M.; Maple, M. B.; Timusk, T.
2015-11-01
We present data on the optical conductivity of URu2 -x(Fe,Os ) xSi2 . While the parent material URu2Si2 enters the enigmatic hidden order (HO) phase below 17.5 K, an antiferromagnetic (AFM) phase is induced by the substitution of Fe or Os onto the Ru sites. We find that both the HO and the AFM phases exhibit an identical gap structure that is characterized by a loss of conductivity below the gap energy with spectral weight transferred to a narrow frequency region just above the gap, the typical optical signature of a density wave. The AFM phase is marked by strong increases in both transition temperature and the energy of the gap associated with the transition. In the normal phase just above the transition the optical scattering rate varies as ω2. We find that in both the HO and the AFM phases, our data are consistent with elastic resonant scattering of a Fermi liquid. This indicates that the appearance of a coherent state is a necessary condition for either ordered phase to emerge. Our measurements favor models in which the HO and the AFM phases are driven by the common physics of a nesting-induced density wave gap.
Electrodynamics of type-II superconductor with periodic pinning array
NASA Astrophysics Data System (ADS)
Hung, R. F.; Berco, D.; Shapiro, I. Ya.; Shapiro, B.; Rosenstein, B.
2011-01-01
Static and dynamic distribution of the superconducting condensate order parameters and current density is studied by numerical simulation of the 2D time-dependent Ginzburg-Landau equations. The vortex flux lattice in layered type-II superconductors under magnetic field above the lower critical field is described by the order parameters. Moreover, the pinning effect has been considered in this work. The Abrikosov lattice which is hexagonal in the static case is deformed due to the size of pinning centers. The dynamical order parameters distribution shows that the vortex transport (flux flow) is conducted via diffusive motion of the so-called interstitial vortices. The trajectories for interstitial vortices with different sizes of pinning centers are shown.
Electrodynamics payloads for small rockets
NASA Technical Reports Server (NTRS)
Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Mccarthy, S. P.; Goodnow, K. J.; Li, C.; Goldberg, R. A.
1992-01-01
Totally integrated design facilitates electrical cleanliness and light weight, which are necessary in subsonic parachute-borne payloads for electrodynamics investigations. 'Blunt' probes measure ion conductivity, as do Gerdien condensers. Recent finite-element computer analyses combining flow and electrodynamics have resolved problems in determining ion densities and mobilities from Gerdien data. Three-axis electric fields are measured with deployable boom-mounted electrodes from dc through VLF. Splitting the cylindrical payload with an insulator and measuring the current between halves has provided a vertical Maxwell current detector mechanically rigid enough to measure, at ELF, energy related to coupling. A nose tip 'Smith' probe turbulence measurement is usually performed on ascent. Other instrumentation, such as photo-ionization sources and X-ray detectors, can also be included. These electrodynamic measurement payloads are about one meter in length and have a mass of about 9 kg. They can be launched with an Orion-class or smaller vehicle.
On the electrodynamics of moving bodies at low velocities
NASA Astrophysics Data System (ADS)
de Montigny, M.; Rousseaux, G.
2006-07-01
We discuss an article by Le Bellac and Lévy-Leblond in which they have identified two Galilean limits of electromagnetism (1973 Nuovo Cimento B 14 217-33). We use their results to point out some confusion in the literature, and in the teaching of special relativity and electromagnetism. For instance, it is not widely recognized that there exist two well-defined non-relativistic limits, so that researchers and teachers are likely to utilize an incoherent mixture of both. Recent works have shed new light on the choice of gauge conditions in classical electromagnetism. We retrieve the results of Le Bellac and Lévy-Leblond first by examining orders of magnitudes and then with a Lorentz-like manifestly covariant approach to Galilean covariance based on a five-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach based on the vector and scalar potentials as opposed to the Heaviside-Hertz formulation in terms of electromagnetic fields.
Electrodynamics of solar wind-magnetosphere-ionosphere interactions
NASA Technical Reports Server (NTRS)
Kan, Joseph R.; Akasofu, Syun-Ichi
1989-01-01
The paper presents a coherent picture of fundamental physical processes in three basic elements of the solar-wind/magnetosphere/ionosphere coupling system: (1) the field-aligned potential structure which leads to the formation of auroral arcs, (2) the magnetosphere-ionosphere coupling which leads to the onset of magnetospheric substorms, and (3) the solar-wind/magnetosphere dynamo which supplies the power driving various magnetospheric processes. Process (1) is forced into existence by the loss-cone constriction effect when the upward field-aligned current density exceeds the loss-cone thermal flux limit. Substorm onset occurs when the ionosphere responds fully to the enhanced magnetospheric convection driven by the solar wind. Energy is transferred from the solar wind to the magnetosphere by a dynamo process, primarily on open field lines.
Thermodynamics and electrodynamics of unusual narrow-gap semiconductors
Migliori, A.; Darling, T.W.; Trugman, S.A.; Freibert, F.; Moshopoulou, E.; Sarrao, J.L.
1998-12-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) that has led to a fully funded DOE program to continue this work. The project was directed toward exploring the Ettingshausen effect, which is the direct extension of the familiar Peltier-effect refrigerator (the process used in popular coolers that run off automotive electrical power) in which a magnetic field is used to enhance refrigeration effects at temperatures well below room temperature. Such refrigeration processes are all-solid-state and are of potentially great commercial importance, but essentially no work has been done since the early 1970s. Using modern experimental and theoretical techniques, the authors have advanced the state-of-the-art significantly, laying the groundwork for commercial cryogenic solid-state refrigeration.
Change in the coil distribution of electrodynamic suspension system
NASA Technical Reports Server (NTRS)
Tanaka, Hisashi
1992-01-01
At the Miyazaki Maglev Test Center, the initial test runs were completed using a system design that required the superconducting coils to be parallel with the ground levitation coils. Recently, the coil distribution was changed to a system such that the two types of coils were perpendicular to each other. Further system changes will lead to the construction of a side wall levitation system. It is hoped that the development will culminate in a system whereby a superconducting coil will maintain all the functions: levitation, propulsion, and guidance.
Electrodynamics of submicron dust in the cometary coma
NASA Astrophysics Data System (ADS)
Wallis, M. K.; Hassan, M. H. A.
1983-05-01
Electromagnetic forces derived from the solar wind fields act strongly on submicron dust grains in the cometary coma. The grain charge and thus the forces are sensitive to composition and cometary plasma conditions, as well as to grain size. For dielectric grains of 0.1 μm and conducting grains of 0.3 μm or less, the electromagnetic forces dominate over radiation pressure. The stronger accelerations may produce fan-like structures as sometimes observed. They would also cause grains to circumvent the shields designed to protect the Giotto and Vega spacecrafts speeding through comet Halley's dust coma.
Semi-classical Electrodynamics
NASA Astrophysics Data System (ADS)
Lestone, John
2016-03-01
Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.
The electrodynamics of charged dust in the cometary environment
NASA Technical Reports Server (NTRS)
Horanyi, M.; Mendis, D. A.
1991-01-01
Dust in the plasma and radiative environment of a comet is necessarily electrically charged. This charging has both physical and dynamical effects on the dust, being particularly important on the smallest particles observed in the dust size spectrum. In this paper, these dynamical effects are reviewed and the pertinent observations are discussed.
Roles of Different Forms of Scale Factor in Non-linear Electrodynamics for Accelerating Universe
NASA Astrophysics Data System (ADS)
Maity, Sayani; Debnath, Ujjal
2013-07-01
In this work, we have assumed the modified Lagrangian of non-linear electrodynamics for accelerated universe. The energy density and pressure for non-linear electromagnetic theory have been considered in terms of both electric and magnetic fields. The Einstein's filed equations have been considered in FRW universe for Hořava-Lifshitz gravity. Since we are considering the non-linear form of Lagrangian for accelerating universe, so four forms of scale factors like logamediate, intermediate, emergent and power law forms are chosen in our investigation. For every expansion, the natures of electric field and magnetic field have been shown through graphical representation. The electric and magnetic fields increase for logamediate, intermediate and emergent expansion and decrease in power law expansion.
An electrodynamic model of the solar wind interaction with the ionospheres of Mars and Venus
NASA Technical Reports Server (NTRS)
Cloutier, P. A.; Daniell, R. E., Jr.
1979-01-01
The electrodynamic model for the solar wind interaction with nonmagnetic planets modified to include the effects of nonohmic currents in the upper ionosphere is examined. The model is used to calculate convection patterns induced by the solar wind in the ionospheres of Mars and Venus, with the observations of the neutral mass spectrometer of Vikings 1 and 2 providing the neutral atmosphere for Mars. Model calculations reproduced the retarding potential analyzer data and indicate that the ionosphere above 200 km is probably controlled by convection rather than chemistry or diffusion. The resulting model calculations were compared to radio occultation data from Mariners 5 and 10 and Venera 9 which represent extremes in the variability of the upper Cytherean ionosphere, and the calculations fell within this variation.
Electrodynamic convection in silicon floating zones
NASA Astrophysics Data System (ADS)
Mühlbauer, A.; Erdmann, W.; Keller, W.
1983-12-01
Using a simplified Navier-Stokes equation it has been possible to compute the electrodynamic convection generated by a radio frequency coil field for the modern needle-eye float-zone growth of silicon. The calculated electrodynamic force in such a zone shows maximum values up to 11.7 N/cm 3 and generates flow velocities between 25 and 100 cm/s. As only superficial convection can be brought about by electrodynamic forces, the axial and radial dopant incorporation will not be influenced strongly. A comparison of electrodynamic forces with the other forces possibly causing flow in silicon floating zones shows that the electrodynamic forces exceed all other forces by several orders of magnitude.
Manifestation of axion electrodynamics through magnetic ordering on edges of a topological insulator
Lee, Yea-Lee; Park, Hee Chul; Ihm, Jisoon; Son, Young-Woo
2015-01-01
Because topological surface states of a single-crystal topological insulator can exist on all surfaces with different crystal orientations enclosing the crystal, mutual interactions among those states contiguous to each other through edges can lead to unique phenomena inconceivable in normal insulators. Here we show, based on a first-principles approach, that the difference in the work function between adjacent surfaces with different crystal-face orientations generates a built-in electric field around facet edges of a prototypical topological insulator such as Bi2Se3. Owing to the topological magnetoelectric coupling for a given broken time-reversal symmetry in the crystal, the electric field, in turn, forces effective magnetic dipoles to accumulate along the edges, realizing the facet-edge magnetic ordering. We demonstrate that the predicted magnetic ordering is in fact a manifestation of the axion electrodynamics in real solids. PMID:26324891
Lee, Yea-Lee; Park, Hee Chul; Ihm, Jisoon; Son, Young-Woo
2015-09-15
Because topological surface states of a single-crystal topological insulator can exist on all surfaces with different crystal orientations enclosing the crystal, mutual interactions among those states contiguous to each other through edges can lead to unique phenomena inconceivable in normal insulators. Here we show, based on a first-principles approach, that the difference in the work function between adjacent surfaces with different crystal-face orientations generates a built-in electric field around facet edges of a prototypical topological insulator such as Bi2Se3. Owing to the topological magnetoelectric coupling for a given broken time-reversal symmetry in the crystal, the electric field, in turn, forces effective magnetic dipoles to accumulate along the edges, realizing the facet-edge magnetic ordering. We demonstrate that the predicted magnetic ordering is in fact a manifestation of the axion electrodynamics in real solids. PMID:26324891
NASA Technical Reports Server (NTRS)
Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos
2009-01-01
The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.
Gravitational Field of a Charged Particle with a Field Mass in Three-Dimensional Electrodynamics
NASA Astrophysics Data System (ADS)
Pevzner, M. Sh.
2015-08-01
In three-dimensional electrodynamics in the Newtonian approximation the gravitational field of a charged particle with a field mass of classical origin has been investigated; the potential and the intensity of the gravitational field have been calculated, both taking the contribution of polarization of the fermion vacuum to the classical potential of the electric field into account and without taking it into account. It has been shown that taking the polarization of the vacuum into account, both with massive fermions in the vacuum loops and with massless fermions in the vacuum loops, does not alter the asymptotic behavior or the intensity of the gravitational field at large distances, which is evidence of the presence of gravitational confinement. The influence of the simplifications made here on the final results is discussed, as are also prospects for their improvement.
Perfect photon absorption in the nonlinear regime of cavity quantum electrodynamics
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Di, Ke; Wang, Liyong; Zhu, Yifu
2016-06-01
It has been shown that perfect photon absorption can occur in the linear excitation regime of cavity quantum electrodynamics (CQED), in which photons from two identical light fields coupled into two ends of the cavity are completely absorbed and result in excitation of the polariton state of the CQED system. The output light from the cavity is totally suppressed by destructive interference and the polariton state can only decay incoherently back to the ground state. Here we analyze perfect photon absorption and the onset of optical bistability in the nonlinear regime of the CQED and show that perfect photon absorption persists in the nonlinear regime of the CQED below the threshold of optical bistability. Therefore perfect photon absorption is a phenomenon that can be observed in both linear and nonlinear regimes of CQED. Furthermore, our study reveals that optical bistability is influenced by input-light interference and can be manipulated by varying the relative phase of the two input fields.
The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics
NASA Astrophysics Data System (ADS)
Sok, Jérémy
2016-02-01
The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence of the para-positronium, the bound state of an electron and a positron with antiparallel spins, in the BDF model represented by a critical point of the energy functional in the absence of an external field. We also prove the existence of the dipositronium, a molecule made of two electrons and two positrons that also appears as a critical point. More generally, for any half integer j ∈ 1/2 + Z + , we prove the existence of a critical point of the energy functional made of 2j + 1 electrons and 2j + 1 positrons.
Correlation of Dirac potentials and atomic inversion in cavity quantum electrodynamics
Trisetyarso, Agung
2010-07-15
Controlling the time evolution of the population of two states in cavity quantum electrodynamics is necessary by tuning the modified Rabi frequency in which the extra classical effect of electromagnetic field is taken into account. The theoretical explanation underlying the perturbation of potential on spatial regime of bloch sphere is by the use of Bagrov-Baldiotti-Gitman-Shamshutdinova-Darboux transformations [Bagrov et al., 'Darboux transformation for two-level system', Ann. Phys. 14, 390 (2005)] on the electromagnetic field potential in one-dimensional stationary Dirac model in which the Pauli matrices are the central parameters for controlling the collapse and revival of the Rabi oscillations. It is shown that by choosing sigma{sub 1} in the transformation generates the parabolic potential causing the total collapse of oscillations, while (sigma{sub 2},sigma{sub 3}) yield the harmonic oscillator potentials ensuring the coherence of qubits.
Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity
Shabad, Anatoly E.; Usov, Vladimir V.
2011-05-15
In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed the speed of light in the vacuum c=1, and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we establish the positive convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants that are derivatives of the effective Lagrangian with respect to the field invariants. Violation of the general principles by the one-loop approximation in QED at exponentially large magnetic field is analyzed, resulting in complex energy ghosts that signal the instability of the magnetized vacuum. Superluminal excitations (tachyons) appear, too, but for the magnetic field exceeding its instability threshold. Also other popular Lagrangians are tested to establish that the ones leading to spontaneous vacuum magnetization possess wrong convexity.
Modeling of induced currents from electrodynamic tethers in a laboratory plasma
NASA Technical Reports Server (NTRS)
Urrutia, J. M.; Stenzel, R. L.
1990-01-01
The presently accepted picture of the current path for electrodynamic tethers envisions a quasi-dc current flow in a 'phantom loop' consisting of the tether, two field-aligned current channels into the ionosphere and a cross-field closing current in the E-layer. Predictions are made on the establishment and maintenance of a current loop in space based on observations of time-dependent currents between tethered electrodes in a large laboratory magnetoplasma. In addition to radiation from the contactors ('whistler wings'), the insulated tether is observed to emit waves (a 'whistler wedge'). The 'wedge' provides closure during loop formation by carrying cross-field polarization currents. Whistler spread within the ray cone leads to overlapping of the current wings not far from the tether hence minimizing the role of the ionospheric closure. Maintenance of the loop requires the continuous emission of whistler waves by the entire tether thereby providing severe radiation losses.
Deterministic amplification of Schrödinger cat states in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Joo, Jaewoo; Elliott, Matthew; Oi, Daniel K. L.; Ginossar, Eran; Spiller, Timothy P.
2016-02-01
Perfect deterministic amplification of arbitrary quantum states is prohibited by quantum mechanics, but determinism can be achieved by compromising between fidelity and amplification power. We propose a dynamical scheme for deterministically amplifying photonic Schrödinger cat states, which show great promise as a tool for quantum information processing. Our protocol is designed for strongly coupled circuit quantum electrodynamics and utilizes artificial atomic states and external microwave controls to engineer a set of optimal state transfers and achieve high fidelity amplification. We compare analytical results with full simulations of the open, driven Jaynes-Cummings model, using realistic device parameters for state of the art superconducting circuits. Amplification with a fidelity of 0.9 can be achieved for sizable cat states in the presence of cavity and atomic-level decoherence. This tool could be applied to practical continuous-variable information processing for the purification and stabilization of cat states in the presence of photon losses.
NASA Astrophysics Data System (ADS)
Milan, S. E.; Carter, J. A.; Korth, H.; Anderson, B. J.
2015-12-01
Principal component analysis is performed on Birkeland or field-aligned current (FAC) measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. Principal component analysis (PCA) identifies the patterns in the FACs that respond coherently to different aspects of geomagnetic activity. The regions 1 and 2 current system is shown to be the most reproducible feature of the currents, followed by cusp currents associated with magnetic tension forces on newly reconnected field lines. The cusp currents are strongly modulated by season, indicating that their strength is regulated by the ionospheric conductance at the foot of the field lines. PCA does not identify a pattern that is clearly characteristic of a substorm current wedge. Rather, a superposed epoch analysis of the currents associated with substorms demonstrates that there is not a single mode of response, but a complicated and subtle mixture of different patterns.
NASA Technical Reports Server (NTRS)
Richmond, A. D.; Kamide, Y.
1988-01-01
This paper describes a novel procedure for mapping high-latitude electric fields and currents and their associated magnetic variations, using sets of localized observational data derived from different types of measurements. The technique provides a formalism for incorporating simultaneously such different classes of data as electric fields from radars and satellites, electric currents from radars, and magnetic perturbations at the ground and at satellite heights; the technique also uses available statistical information on the averages and variances of electrodynamic fields. The technique provides a more rigorous way of quantitatively estimating high-latitude electric field and current patterns than other methods and has a capability to quantify the errors in the mapped fields, based on the distribution of available data, their errors, and the statistical variances of the fields. The technique is illustrated by an application to a substorm which was analyzed by Kamide et al. (1982) by an earlier technique.
Dynamics of an Electrodynamic Tether System in a Varying Space-Plasma Environment
NASA Astrophysics Data System (ADS)
Janeski, John A.
Electrodynamic tethers have a wide range of proposed applications in the fields of satellite propulsion and space plasma research. The fundamental purpose of this dissertation is to improve the understanding of the behavior of an electrodynamic tether (EDT) system in Earth's ionosphere. An electrodynamic tether system consists of two satellites connected by a long tether that generates current to produce either power or thrust via the system's electromagnetic interaction with the space environment. Previous electrodynamic tether investigations decouple the interaction between the tether and the constantly changing plasma environment. The limiting factor inhibiting the development of a full system model that has an accurate characterization of the tether/plasma interaction is that the understanding of that interaction is not well developed over a wide range of system parameters. The EDT system model developed in this study uses a high fidelity dynamics model that includes a tether current described by an analytical current collection model whose plasma parameters are determine by the International Reference Ionosphere. It is first shown that new instabilities are induced in the system dynamics under a basic analytical current model versus a constant current model. A 2-D3v Particle-in-Cell (PIC) code has been developed to study the plasma dynamics near a positively charged EDT system end-body and their impact on the current collected. Simulations are run over a range of system parameters that occur throughout a LEO orbit. The azimuthal current structures observed during the TSS-1R mission are found to enhance the current collected by the satellite when the magnetic field is slightly off of perpendicular to the orbital velocity. When the in-plane component of the magnetic field becomes large, the electrons are not able to easily cross the field lines causing plasma lobes form above and below the satellite. The lobes limit the current arriving to the satellite and also
NASA Astrophysics Data System (ADS)
Ha, Dong-Gwang; Park, Jung; Jun, So-Yeon; Song, Woon; Chong, Yonuk
2013-03-01
We present our design, fabrication and characterization of superconducting transmon qubits and resonators for circuit quantum electrodynamics (QED). We have made coplanar waveguide resonators and rectangular waveguide resonators. The characteristics of the resonators are well controlled by the design parameters, with the fundamental frequencies in the range of 1 to 8 GHz and the quality factors in the range of 102 to 106, respectively. We measured the resonator characteristics as a function of temperature. The excitation power dependence of the resonator characteristics was also investigated. For transmon qubits, we fabricated 100 nm-scale Al/Al2Ox/Al tunnel junctions with e-beam lithography and double angle evaporation. The junctions were characterized at low temperature down to 10 mK. Furthermore, quantum state measurement and manipulation in circuit QED structure will be discussed.
Electrodynamics and quantum capacity: The case of Bi2Se3 topological insulator
NASA Astrophysics Data System (ADS)
Craco, L.
2015-11-01
Layered Bi-chalcogenide topological insulators are among the most available energy conversion (thermoelectric) and storage (battery) materials. Motivated by this applied aspect of fundamental importance and the good agreement between theory and key experiments probing spectroscopy and dc transport, we undertake a detailed study of electrodynamic responses of bulk Bi2Se3 topological insulator. In particular, we confirm that the interplay between spin-orbit and electron correlations underpins its bulk metallicity. We show the implications of our proposal for the multi-channel nature of galvanostatic, voltage-capacity profiles intrinsic to LixBi2Se3 battery material. Supported by a microscopic description of quantum capacity, we predict that layered Bi-based topological insulators are promising candidates for future high-voltage solid-state batteries.
Alfaro, Jorge; Urrutia, Luis F.
2010-01-15
We introduce a new version of nonlinear electrodynamics which is produced by a spontaneous symmetry breaking of Lorentz invariance induced by the nonzero vacuum expectation value of the gauge invariant electromagnetic field strength. The symmetry breaking potential is argued to effectively arise from the integration of massive gauge bosons and fermions in an underlying fundamental theory. All possible choices of the vacuum lead only to the remaining invariant subgroups T(2) and HOM(2). We explore in detail the plane wave solutions of the linearized sector of the model for an arbitrary vacuum. They present two types of dispersion relations. One corresponds to the case of the usual Maxwell electrodynamics with the standard polarization properties of the fields. The other dispersion relation involves anisotropies determined by the structure of the vacuum. The corresponding fields reflect these anisotropies. The model is stable in the small Lorentz invariance violation (LIV) approximation. We have also embedded our model in the photon sector of the standard model extension, in order to translate the many bounds obtained in the latter into corresponding limits for our parameters. The one-way anisotropic speed of light is calculated for a general vacuum, and its isotropic component is strongly bounded by {delta}-tildec/c<2x10{sup -32}. The anisotropic violation contribution is estimated by introducing an alternative definition for the difference of the two-way speed of light in perpendicular directions, {Delta}c, that is relevant to Michelson-Morley type of experiments and which turns out to be also strongly bounded by {Delta}c/c<10{sup -32}. Finally, we speculate on the relation of the vacuum energy of the model with the cosmological constant and propose a connection between the vacuum fields and the intergalactic magnetic fields.
Testing quantum electrodynamics in the lowest singlet state of neutral beryllium-9
NASA Astrophysics Data System (ADS)
Williams, Will; Cao, Melody; Kaplan, Emily
2016-05-01
We present high precision spectroscopic results on the 2s2p J = 1 singlet state in neutral beryllium-9. Combined with theoretical predictions this measurement serves as a test of quantum electrodynamics and various theoretical methods for predicting the energy of this state. Our experimental setup consists of an oven at 1200C that produces a beam of beryllium atoms. The singlet state is probed transverse to the atomic beam with 235nm light from a frequency quadrupled titanium sapphire laser, where the frequency doubled light at 470nm is stabilized to an ultra low expansion cavity. We also present our progress on spectroscopy on the lowest triplet states and the ionization threshold.
Instantaneous pictures of the high-latitude electrodynamics using Viking and DMSP/F7 observations
Marklund, G.T.; Blomberg, L.G.; Hardy, D.A.; Rich, F.J.
1987-08-01
Simultaneous observations by the Viking and the DMSP/F7 satellites were applied to a new technique to obtain realistic pictures of the auroral electrodynamics. In particular, an instantaneous global equipotential pattern is calculated using field-aligned current and conductivity distributions that are qualitatively consistent with the Viking auroral imager data and quantitatively consistent with magnetic-field and particle data from the two satellites. This convection pattern agrees with the E x B-drift vectors estimated from Viking electric-field data. Discrepancies consistent with upward parallel electric fields occur in regions of upward currents. The pattern is of the normal two-cell type, with a small dusk cell and a large, elongated crescent-shaped dawn cell. The excellent agreement between the satellite and model data demonstrates the reliability of the results.
Miller, D.; Milton, K.A.; Siegemund-Broka, S. )
1992-07-15
This is the first in a series of papers dealing with four-dimensional quantum electrodynamics on a finite-element lattice. We begin by studying the canonical structure of the theory without interactions. This tells us how to construct momentum expansions for the field operators. Next we examine the interaction term in the Dirac equation. We construct the transfer matrix explicitly in the temporal gauge, and show that it is unitary. Therefore, fermion canonical anticommutation relations hold at each lattice site. Finally, we expand the interaction term to second order in the temporal-lattice spacing and deduce the magnetic moment of the electron in a background field, consistent with the continuum value of {ital g}=2.
Auroral vector electric field and particle comparisons. II - Electrodynamics of an arc
NASA Technical Reports Server (NTRS)
Evans, D. S.; Maynard, N. C.; Troim, J.; Jacobsen, T.; Egeland, A.
1977-01-01
The paper reports the results of energetic auroral electron and vector electric field measurements taken near and above a discrete auroral form and discusses their electrodynamic implications. Height-integrated Hall and Pedersen conductivities are computed in a quantitative fashion along the rocket payload trajectory. These conductivities, together with the electric fields, are used to describe the local auroral electrojet current system and to demonstrate an inverse relationship between the local electric field intensity and the height-integrated Pedersen conductivity. An analysis is presented of the divergence of both the electric field and the horizontal current as an effort to infer space charge densities and magnetic-field-aligned electrical currents near an auroral arc.
Parity-odd and CPT-even electrodynamics of the standard model extension at finite temperature
Casana, Rodolfo; Ferreira, Manoel M. Jr.; Silva, Madson R. O.
2010-05-15
This work examines the finite temperature properties of the CPT-even and parity-odd electrodynamics of the standard model extension. The starting point is the partition function computed for an arbitrary and sufficiently small tensor (k{sub F}){sub {alpha}{nu}{rho}{phi}} [see R. Casana, M. M. Ferreira, Jr., J. S. Rodrigues, and M. R. O. Silva, Phys. Rev. D 80, 085026 (2009).]. After specializing the Lorentz-violating tensor (k{sub F}){sub {alpha}{nu}{rho}{phi}}for the leading-order-nonbirefringent and parity-odd coefficients, the partition function is explicitly carried out, showing that it is a power of the Maxwell partition function. Also, it is observed that the Lorentz invariance violation coefficients induce an anisotropy in the black-body angular energy density distribution. Planck's radiation law retains its usual frequency dependence and the Stefan-Boltzmann law keeps the same form, except for a global proportionality constant.
Integration of the Electrodynamic Dust Shield on a Lunar Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Calle, C. I.; Immer, C. D.; Ferreira, J.; Hogue, M. D.; Chen, A.; Csonka, M. W.; VanSuetendael, N.; Snyder, S. J.
2010-01-01
NASA is developing a Habitat Demonstration Unit (HDU) to investigate the feasibility of lunar surface technologies and lunar ground operations. The HDU will define and validate lunar scenario architecture through field analog testing. It will contain a four-port vertical habitat module with docking demonstration capabilities. The Electrodynamic Oust Shield (EDS) is being incorporated into the HDU to demonstrate dust removal from a viewport and from a door prior to docking procedures. In this paper, we will describe our efforts to scale up the EDS to protect a viewport 20 cm in diameter. We will also describe the development of several 20 cm x 25 cm EDS patches to demonstrate dust removal from one of the HDU doors.
A unified theory of electrodynamic coupling in coronal magnetic loops - The coronal heating problem
NASA Technical Reports Server (NTRS)
Ionson, J. A.
1984-01-01
The coronal heating problem is studied, and it is demonstrated that Ionson's (1982) LRC approach results in a unified theory of coronal heating which unveils a variety of new heating mechanisms and which links together previously proposed mechanisms. Ionson's LRC equation is rederived, focusing on various aspects that were not clarified in the original article and incorporating new processes that were neglected. A parameterized heating rate is obtained. It is shown that Alfvenic surface wave heating, stochastic magnetic pumping, resonant electrodynamic heating, and dynamical dissipation emerge as special cases of a much more general formalism. This generalized theory is applied to solar coronal loops and it is found that active region and large scale loops are underdamped systems. Young active region loops and (possibly) bright points are found to be overdamped systems.
Single-shot optical readout of a quantum bit using cavity quantum electrodynamics
NASA Astrophysics Data System (ADS)
Sun, Shuo; Waks, Edo
2016-07-01
We propose a method to perform single-shot optical readout of a quantum bit (qubit) using cavity quantum electrodynamics. We selectively couple the optical transitions associated with different qubit basis states to the cavity and utilize the change in cavity transmissivity to generate a qubit readout signal composed of many photons. We show that this approach enables single-shot optical readout even when the qubit does not have a good cycling transition, which is required for standard resonance fluorescence measurements. We calculate the probability that the measurement detects the correct qubit state using the example of a quantum-dot spin under various experimental conditions and demonstrate that it can exceed 0.99.
Electrodynamics and energy characteristics of aurora at high resolution by optical methods
NASA Astrophysics Data System (ADS)
Dahlgren, H.; Lanchester, B. S.; Ivchenko, N.; Whiter, D. K.
2016-06-01
Technological advances leading to improved sensitivity of optical detectors have revealed that aurora contains a richness of dynamic and thin filamentary structures, but the source of the structured emissions is not fully understood. In addition, high-resolution radar data have indicated that thin auroral arcs can be correlated with highly varying and large electric fields, but the detailed picture of the electrodynamics of auroral filaments is yet incomplete. The Auroral Structure and Kinetics (ASK) instrument is a state-of-the-art ground-based instrument designed to investigate these smallest auroral features at very high spatial and temporal resolution, by using three electron multiplying CCDs in parallel for three different narrow spectral regions. ASK is specifically designed to utilize a new optical technique to determine the ionospheric electric fields. By imaging the long-lived O+ line at 732 nm, the plasma flow in the region can be traced, and since the plasma motion is controlled by the electric field, the field strength and direction can be estimated at unprecedented resolution. The method is a powerful tool to investigate the detailed electrodynamics and current systems around the thin auroral filaments. The two other ASK cameras provide information on the precipitation by imaging prompt emissions, and the emission brightness ratio of the two emissions, together with ion chemistry modeling, is used to give information on the energy and energy flux of the precipitating electrons. In this paper, we discuss these measuring techniques and give a few examples of how they are used to reveal the nature and source of fine-scale structuring in the aurora.
Electrodynamics of the equatorial F-region ionosphere during pre-sunrise period
NASA Astrophysics Data System (ADS)
Prabhakaran Nayar, S. R.; Mathew, T. J.; Sreehari, C. V.; Sumod, S. G.; Devasia, C. V.; Ravindran, S.; Sreeja, V.; Pant, T. Kumar; Sridharan, R.
2009-01-01
The electrodynamics of the pre-sunrise equatorial F-region is investigated using HF Doppler radar and digital ionosonde. The observations are limited to those days for which the radar probing frequency is below the foF2 value. The ionosphere observation using HF Doppler radar exhibit interesting features during pre-sunrise period similar to the post sunset pre-reversal enhancement. The most striking feature observed during pre-sunrise period is the sudden downward excursion in the vertical drift around local sunrise followed by an upward turning. Pre-sunrise observations of vertical plasma drift and the sunrise downward excursion followed by an upward turning after the ground sunrise related to the zonal electric field at the equatorial F-region are the most significant results not reported earlier.
Command Generation and Control of Momentum Exchange Electrodynamic Reboost Tethered Satellite
NASA Technical Reports Server (NTRS)
Robertson, Michael J.
2005-01-01
The research completed for this NASA Graduate Student Research Program Fellowship sought to enhance the current state-of-the-art dynamic models and control laws for Momentum Exchange Electrodynamic Reboost satellite systems by utilizing command generation, specifically Input Shaping. The precise control of tethered spacecraft with flexible appendages is extremely difficult. The complexity is magnified many times when the satellite must interact with other satellites as in a momentum exchange via a tether. The Momentum Exchange Electronic Reboost Tether (MXER) concept encapsulates all of these challenging tasks [l]. Input Shaping is a command generation technique that allows flexible spacecraft to move without inducing residual vibration [2], limit transient deflection [3] and utilize fuel-efficient actuation [4]. Input shaping is implemented by convolving a sequence of impulses, known as the input shaper, with a desired system command to produce a shaped input that is then used to drive the system. This process is demonstrated in Figure 1. The shaped command is then use to drive the system without residual vibration while meeting many other performance specifications. The completed work developed tether control algorithms for retrieval. A simple model of the tether response has been developed and command shaping was implemented to minimize unwanted dynamics. A model of a flexible electrodynamic tether has been developed to investigate the tether s response during reboost. Command shaping techniques have been developed to eliminate the tether oscillations and reduce the tether s deflection to pre-specified levels during reboost. Additionally, a model for the spin-up of a tethered system was developed. This model was used in determining the parameters for optimization the resulting angular velocity.
Applications of supercritical fluids.
Brunner, Gerd
2010-01-01
This review discusses supercritical fluids in industrial and near-to-industry applications. Supercritical fluids are flexible tools for processing materials. Supercritical fluids have been applied to mass-transfer processes, phase-transition processes, reactive systems, materials-related processes, and nanostructured materials. Some applications are already at industrial capacity, whereas others remain under development. In addition to extraction, application areas include impregnation and cleaning, multistage countercurrent separation, particle formation, coating, and reactive systems such as hydrogenation, biomass gasification, and supercritical water oxidation. Polymers are modified with supercritical fluids, and colloids and emulsions as well as nanostructured materials exhibit interesting phenomena when in contact with supercritical fluids that can be industrially exploited. For these applications to succeed, the properties of supercritical fluids in combination with the materials processed must be clearly determined and fundamental knowledge of the complex behavior must be made readily available. PMID:22432584
NASA Astrophysics Data System (ADS)
Mironov, A. A.; Fedotov, A. M.; Narozhnyi, N. B.
2016-04-01
Quantum-electrodynamic cascade generation is numerically simulated for the case of the oblique collision of a beam of ultrarelativistic electrons with the field of two counterpropagating, focused, circularly polarised laser pulses. It is shown that although the 'collapse and revival' effect is observed at any value of the collision angle, the multiplicity of the cascade essentially depends on this angle and is maximal in the configuration, when the electron beam hits the focus perpendicularly to the optical axis of the laser pulses.
Primordial magnetic fields and nonlinear electrodynamics
Kunze, Kerstin E.
2008-01-15
The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.
Kamenev, Yu E; Masalov, S A; Filimonova, A A
2005-04-30
A method is proposed and a device is described for determining the electrodynamic parameters of one-dimensional wire gratings in the submillimetre range. The grating under study was used as the output mirror of the laser. The transmission coefficient and the phase shift are determined experimentally for several gratings with different parameters at a wavelength of 337 {mu}m. (laser applications and other topics in quantum electronics)
NASA Technical Reports Server (NTRS)
Johnson, Charles L. (Inventor); Ballance, Judy L. (Inventor); Welzyn, Kenneth J. (Inventor); Vaughn, Jason A. (Inventor); Lorenzini, Enrico (Inventor); Schuler, Peter S. (Inventor)
2006-01-01
A tether system for providing thrust to or power subsystems of an artificial satellite in a low earth orbit. The tether has three main sections, an insulated section connected to the satellite, a conducting section connected to the insulating section for drawing in and releasing electrons from the space plasma and a non-conducting section for providing a tension to the other sections of the tether. An oxygen resistant coating is applied to the bare wire of the conducting section as well as the insulated wires of the insulated section that prevents breakdown during tether operations in the space plasma. The insulated and bare wire sections also surround a high tensile flexible polymer core to prevent any debris from breaking the tether during use.
Middle atmospheric electrodynamics
NASA Technical Reports Server (NTRS)
Kelley, M. C.
1983-01-01
A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.
Electrodynamic tether system study
NASA Technical Reports Server (NTRS)
1987-01-01
The purpose of this program is to define an Electrodynamic Tether System (ETS) that could be erected from the space station and/or platforms to function as an energy storage device. A schematic representation of the ETS concept mounted on the space station is presented. In addition to the hardware design and configuration efforts, studies are also documented involving simulations of the Earth's magnetic fields and the effects this has on overall system efficiency calculations. Also discussed are some preliminary computer simulations of orbit perturbations caused by the cyclic/night operations of the ETS. System cost estimates, an outline for future development testing for the ETS system, and conclusions and recommendations are also provided.
Singleton, John; Fasel, Joseph H; Schmidt, Andrea C; Ardavan, Houshang; Ardavan, Arzhang
2009-01-01
Neither Eq. (6.52) of Jackson [Classical Electrodynamics, 3rd ed. (Wiley, 1999)], or Hannay's derivation of that dquation in the preceding Comment [J. Opt. Soc. Am. A, ... (2009)], are applicable to a source whose distribution pattern moves faster than light in vacuo with nonzero acceleration. It is assumed in Hannay's derivation that the retarded distribution of the density of any moving source would be smooth and differentiable if its rest-frame distribution is. By working out an explicit example of a rotating superluminal source with a bounded and smooth density profile, we show that this assumption is erroneous. The retarded distribution of a rotating source with a moderate superluminal speed is, in general, spread over three disjoint volumes (differing in shape from each other and from the volume occupied by the source in its rest frame) whose boundaries depend on the spacetime position of the observer. Hannay overlooks the fact that the limits of integration in his expression for the retarded potential (which delineate the boundaries of the retarded distribution of the source) are not differentiable functions of the coordinates of the observer at those points on the source boundary that approach the observer, along the radiation direction, with the speed of light at the retarded time. In the superluminal regime, derivatives of the integral representing the retarded potential are well defined only as generalized functions.
Examination of Prompt Effects of Solar X-ray Flares on Ionospheric Electrodynamics
NASA Astrophysics Data System (ADS)
Eccles, J. V.
2007-12-01
Photons from solar X-ray flares arrive at the Earth only eight minutes after emission. The short wavelength region of the solar spectrum is effective in modifying the ionization of the dayside upper atmosphere. For periods like the 2003 Halloween Solar events, the solar flares enhanced the E and D regions significantly over the quiet time background ionosphere. The effects of these enhancements on HF and VLF signal propagation and absorption are well understood and widely known. We present studies of the space weather impacts of sustained, elevated solar x-ray and EUV levels of the background spectrum during solar active times related to the changes in the dayside conductivities. We show that not only the dayside conductivities sustain at an order of magnitude higher values than background levels, but the Pedersen-to-Hall conductivity ratio increases by a factor of 2 to 3 during high solar X-ray periods when compared to quiet periods. The effects of prompt changes of the dayside conductivities associated with a solar flare event on the dynamo electric fields and ionospheric currents are then systematically examined by using a model of the low-latitude ionospheric electrodynamics.
Fundamentals of fluid lubrication
NASA Technical Reports Server (NTRS)
Hamrock, Bernard J.
1991-01-01
The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.
NASA Astrophysics Data System (ADS)
McGranaghan, Ryan; Knipp, Delores J.; Matsuo, Tomoko; Cousins, Ellen
2016-05-01
We have developed a new optimal interpolation (OI) technique to estimate complete high-latitude ionospheric conductance distributions from Defense Meteorological Satellite Program particle data. The technique combines particle precipitation-based calculations of ionospheric conductances and their errors with a background model and its error covariance (modeled with empirical orthogonal functions) to infer complete distributions of the high-latitude ionospheric conductances. We demonstrate this technique for the 26 November through 2 December 2011 period and analyze a moderate geomagnetic storm event on 30 November 2011. Quantitatively and qualitatively, this new technique provides better ionospheric conductance specification than past statistical models, especially during heightened geomagnetic activity. We provide initial evidence that auroral images from the Defense Meteorological Satellite Program Special Sensor Ultraviolet Spectrographic Imager instrument can be used to further improve the OI conductance maps. Our OI conductance patterns allow assimilative mapping of ionospheric electrodynamics reconstructions driven separately by radar and satellite magnetometer observations to be in closer agreement than when other, commonly used, conductance models are applied. This work (1) supports better use of the diverse observations available for high-latitude ionospheric electrodynamics specification and (2) supports the Cousins et al. (2015b) assertion that more accurate models of the ionospheric conductance are needed to robustly assimilate ground- and space-based observations of ionospheric electrodynamics. We find that the OI conductance distributions better capture the dynamics and locations of discrete electron precipitation that modulate the coupling of the magnetosphere-ionosphere-thermosphere system.
NASA Technical Reports Server (NTRS)
Zuk, J.
1976-01-01
The fundamentals of fluid sealing, including seal operating regimes, are discussed and the general fluid-flow equations for fluid sealing are developed. Seal performance parameters such as leakage and power loss are presented. Included in the discussion are the effects of geometry, surface deformations, rotation, and both laminar and turbulent flows. The concept of pressure balancing is presented, as are differences between liquid and gas sealing. Mechanisms of seal surface separation, fundamental friction and wear concepts applicable to seals, seal materials, and pressure-velocity (PV) criteria are discussed.
Numerical Tests of the Quasilinear Approximation of Mean-field Electrodynamics
NASA Astrophysics Data System (ADS)
Zsargo, J.; Petrovay, K.
1995-05-01
It is widely known that a sufficient condition for the applicability of quasilinear-type approximations (e.g. the second-order correlation approximation or SOCA) in mean-field electrodynamics is that Utau << min {l, H} where l, H, U and tau are characteristic horizontal and vertical scale lengths, velocity, and time, respectively. A necessary condition for their validity is however not known. In order to check the validity of the quasilinear results in cases where the above condition is not satisfied, as well as to study qualitative and quantitative differences between the quasilinear results and the actual solutions, we numerically solve the MHD induction equation for the kinematical case in a series of simplified "toy" model flows and then compare the results with the corresponding quasilinear solutions. Our model flows are two-dimensional two-component flows with simple (exponential or linear) stratifications. For conceptual clarity, in each model only one independent physical quantity (initial magnetic field, density, or velocity amplitude, respectively) has an inhomogeneous distribution. Solutions are computed for several widely differing values of the l/H horizontal/vertical scale length ratio. In all cases we find that the computed turbulent electromotive force does not differ from the quasilinear value by more than an order-of-unity factor, as long as Utau does not greatly exceed min {l, H}.
The PROPEL Electrodynamic Tether Demonstration Mission
NASA Technical Reports Server (NTRS)
Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael
2012-01-01
The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.
NASA Astrophysics Data System (ADS)
Bhushan, K. G.; Rao, K. C.; Sule, U.; Reddy, P.; Rodrigues, S. M.; Gaikwad, D. T.; Mukundhan, R.; Gupta, S. K.
2016-04-01
An electrodynamic ion funnel has been developed for improving the sensitivity of electrospray ionization sources widely used in the mass spectrometric study of proteins and other biological macromolecules. The ion funnel consists of 52 electrodes and works under the combined influence of RF and DC voltages in the pressure range of 0.1 to 5 mbar. A novel feature of this ion funnel is the specific shape of the exit electrode that improves transmission of lower mass ions by reducing the depth of effective trapping potentials. In this paper, we report on the optimization of the ion funnel design using ion trajectory simulation software SIMION 8.0 especially in the mass range 500–5000 amu, followed by experimental observations of the ion transmission from the electrospray interface. It is seen that the electrospray-ion funnel combination greatly enhances the transmission when compared with an electrospray-skimmer interface. Ion currents > 1 nA could be obtained at the exit of the ion funnel for dilute Streptomycin Sulphate (~ 1500 amu) solution with the ion funnel operating in the 500–900 kHz frequency range, amplitude of 70 Vp‑p, under a DC gradient of about 20 Volts/cm at a background pressure of 0.3 mbar. Details of the construction of the ion funnel along with the experimental results are presented.
Grid Sphere Electrodes used for Current Collection at the Positive Pole of Electrodynamic Tethers
NASA Technical Reports Server (NTRS)
Stone, N. H.; Moore, J. D.
2004-01-01
The generation of either electrical power or propulsive thrust with an electrodynamic tether system necessarily depends on driving a return current through the system's ambient space plasma environment. An electrical connection is, therefore, required between the plasma and each end of the tether. The voltage required to drive current through the system is derived either from the orbital motion of the conducting tether through the magnetic field of the Earth, or from a high-voltage power supply that taps into an external energy source (e.g., the sun). In either case, one end of the tether will receive a positive bias. This positive bias, between the tether and the ambient plasma, allows electrons to be collected effectively with a simple, passive electrode. Passive electrode contactors offer several important advantages, including simplification of the upper end-body design and operations, minimization of system mass, and an increase of system reliability and robustness. A preliminary analysis of an inflatable Grid-Sphere end-body concept is presented that is interesting because of the potential for collecting arbitrarily large currents independent of tether length, while the device has the physical characteristics of a high area-to-mass ratio, a low drag coefficient, and simplicity. In particular, we will discuss the physics of current collection by a biased Grid-Sphere and the present state-of-the-art of materials, attainable area-to-mass ratios, and deployment techniques.
NASA Astrophysics Data System (ADS)
Steimer, S. S.; Krieger, U. K.; Te, Y.-F.; Lienhard, D. M.; Huisman, A. J.; Luo, B. P.; Ammann, M.; Peter, T.
2015-06-01
Measurements of a single, levitated particle in an electrodynamic balance are an established tool for deriving thermodynamic and material data such as density, refractive index and activities of components of an aqueous solution under supersaturated conditions, where bulk measurements are not possible. The retrieval relies on combining mass-to-charge data and size data from light scattering. Here, we use a combination of low- and high-resolution Mie resonance spectroscopy to obtain radius data, enabling an accurate size determination not only when the particle is in equilibrium, but also when it is out of equilibrium due to kinetic limitation of mass transport. With the data measured under non-equilibrium conditions, it is possible to retrieve the water diffusivity. A challenge is that the radius retrieval by comparing measured light scattering with Mie theory requires the knowledge of refractive index as a function of concentration. Here, we show an iterative retrieval of refractive index and size for compounds for which data cannot be obtained in the bulk either due to lack of sufficient amounts of sample or limited solubility. We demonstrate the measurement strategy and the retrieval of water activity, density, refractive index and water diffusivity for aqueous shikimic acid. Water diffusivity in concentrated shikimic acid decreases by 6 orders of magnitude at 250 K compared to that at room temperature.
NASA Astrophysics Data System (ADS)
Steimer, S. S.; Krieger, U. K.; Te, Y.-F.; Lienhard, D. M.; Huisman, A. J.; Ammann, M.; Peter, T.
2015-01-01
Measurements of a single, levitated particle in an electrodynamic balance are an established tool for deriving thermodynamic and material data such as density, refractive index and activities of components of an aqueous solution under supersaturated conditions, where bulk measurements are not possible. The retrieval relies on combining mass-to-charge data and size data from light scattering. Here, we use a combination of low- and high-resolution Mie resonance spectroscopy to obtain radius data, enabling an accurate size determination not only when the particle is in equilibrium, but also when it is out of equilibrium due to kinetic limitation of mass transport. With the data measured under non-equilibrium conditions, it is possible to retrieve the water diffusivity. A challenge is that the radius retrieval by comparing measured light scattering with Mie theory requires the knowledge of refractive index as a function of concentration. Here, we show an iterative retrieval of refractive index and size for compounds for which data cannot be obtained in the bulk either due to lack of sufficient amounts of sample or limited solubility. We demonstrate the measurement strategy and the retrieval of water activity, density, refractive index and water diffusivity for aqueous shikimic acid. Water diffusivity in concentrated shikimic acid decreases by 6 orders of magnitude at 250 K compared to that at room temperature.
Merlin, Jenny; Duval, Jérôme F L
2014-08-01
We report a theory for the evaluation of the electrodynamics of dispersions of spherical soft multilayered (bio)particles, with microorganisms and polyelectrolyte multilayers-coated particles as illustrative paradigms. These particles generally consist of a hard (ion- and water-impermeable) core component supporting a succession of step-function or diffuse-like concentric soft (permeable) polymeric layers defined by distinct electrostatic, hydrodynamic and structural properties. The formalism is based on a rigorous numerical resolution of the coupled Navier-Stokes-Brinkman equation, continuity equations for the flow and for the ionic species present in solution, and the non-linear Poisson equation corrected for the multilayered nature of the soft interphase. The frequency-dependent dynamic mobility and dielectric permittivity of such soft particles suspensions are discussed as a function of the key electrohydrodynamic features of the constituting particulate peripheral layers and solution salinity. It is shown that the frequency dependent permittivity is mostly affected by the total charge carried by the overall soft interphase. In contrast, the dynamic mobility is mainly determined by the charge and friction characteristics of the layers located within an electrokinetically-active outer particle region whose extension is defined by the electric double layer thickness and the Brinkman length. Results highlight that under particular electrolyte concentration and layer-to-layer thickness ratio conditions, the dynamic mobility may reflect the physico-chemical and structural properties of the only innermost layers of the soft particle coating. PMID:24935405
NASA Technical Reports Server (NTRS)
Heelis, R. A.
1998-01-01
Sporadic layers, which appear in the region from 100 km to 120 km are thought to be formed by convergent Pedersen drifts induced by altitude gradients in the zonal neutral wind. In this altitude region NO+ and 02+ are the major ions produced by photoionization and charge exchange of atmospheric and ionospheric species. The relative composition of atmospheric ions and meteoric ions in sporadic layers is important in determining their persistence, the time scales for formation, and the electrical conductivity of the layers. This rocket investigation will include a diagnosis of the neutral wind field and the electric field distribution. Coupled with ion composition measurements we will be able to expose the relevant formation mechanisms and the electrodynamic consequences of their existence. A rocket trajectory has been chosen to provide substantial horizontal sampling of the layer properties and knowledge of the horizontal gradients in composition and density are essential to determine the polarization electric fields that may be associated with ionospheric layers. The University of Texas at Dallas (UTD) is responsible for designing, building, and operating the ion mass spectrometers included on these rockets. The following provides a summary of the UTD accomplishments in the second year of the project as well as a description of the plans for the third year's activities. The UTD mass spectrometer acronym has been coined as PRIMS for Puerto Rico Ion Mass Spectrometer.
Gasperino, David; Bliss, Mary; Jones, Kelly A.; Lynn, Kelvin G.; Derby, Jeffrey
2009-01-04
The CrysMAS code of the Crystal Growth Laboratory, Fraunhofer IISB, is applied to reveal conditions occurring in electrodynamic gradient freeze furnaces during the growth of cadmium zinc telluride crystals. Of particular interest are heat transfer and growth conditions associated with crucibles of different design, one constructed of graphite and the other of pyrolytic boron nitride (PBN). Under identical furnace set-point schedules, the PBN system exhibits very different heat transfer through the cone region of the crucible, resulting in steeper axial thermal profiles and convex solid-interface shapes (rather than the concave shapes computed for the graphite crucible). Both systems exhibit a concave interface during growth through the cylindrical part of the crucible; however, the axial thermal profile through the contents of the graphite crucible is considerably more offset from the set-point profile of the furnace due to the large axial flows of heat through the crucible walls. These conditions argue for advantage to the PBN system; however, comparatively larger radial gradients in the PBN system could lead to higher dislocation levels.
NASA Astrophysics Data System (ADS)
Gasperino, David; Bliss, Mary; Jones, Kelly; Lynn, Kelvin; Derby, Jeffrey J.
2009-04-01
The CrysMAS code of the Crystal Growth Laboratory, Fraunhofer IISB, is applied to reveal conditions occurring in electrodynamic gradient freeze furnaces during the growth of cadmium zinc telluride crystals. Of particular interest are heat transfer and growth conditions associated with crucibles of different design, one constructed of graphite and the other of pyrolytic boron nitride (PBN). Under identical furnace set-point schedules, the two systems exhibit very different behaviors. Specifically, the temperature field through the cone region of the PBN crucible displays much steeper axial thermal profiles and promotes convex solid-liquid interface shapes (rather than the concave shapes computed for the graphite crucible). Both systems exhibit a concave interface during growth through the cylindrical part of the crucible. However, the axial thermal profile through the graphite-crucible charge is considerably more offset from the set-point profile of the furnace due to significant axial heat flows through the crucible walls. These factors argue in favor of the PBN crucible; however, comparatively larger radial gradients in the PBN system could lead to higher dislocation levels.
Understanding the Magnetosphere: The Counter-intuitive Simplicity of Cosmic Electrodynamics
NASA Astrophysics Data System (ADS)
Vasyliūnas, V. M.
2008-12-01
Planetary magnetospheres exhibit an amazing variety of phenomena, unlimited in complexity if followed into endlessly fine detail. The challenge of theory is to understand this variety and complexity, ultimately by seeing how the observed effects follow from the basic equations of physics (a point emphasized by Eugene Parker). The basic equations themselves are remarkably simple, only their consequences being exceedingly complex (a point emphasized by Fred Hoyle). In this lecture I trace the development of electrodynamics as an essential ingredient of magnetospheric physics, through the three stages it has undergone to date. Stage I is the initial application of MHD concepts and constraints (sometimes phrased in equivalent single-particle terms). Stage II is the classical formulation of self-consistent coupling between magnetosphere and ionosphere. Stage III is the more recent recognition that properly elucidating time sequence and cause-effect relations requires Maxwell's equations combined with the unique constraints of large-scale plasma. Problems and controversies underlie the transition from each stage to the following. For each stage, there are specific observed aspects of the magnetosphere that can be understood at its level; also, each stage implies a specific way to formulate unresolved questions (particularly important in this age of extensive multi-point observations and ever-more-detailed numerical simulations).
Possible role of electrodynamic interactions in long-distance biomolecular recognition.
Preto, Jordane; Pettini, Marco; Tuszynski, Jack A
2015-05-01
The issue of retarded long-range resonant interactions between two molecules with oscillating dipole moments is revisited within the framework of classical electrodynamics. By taking advantage of a theorem in complex analysis, we present a simple method to calculate the frequencies of the normal modes, which are then used to estimate the interaction potential. The possibility that such interactions play a non-negligible role in ensuring the effective functioning of the biomolecular functions is investigated. On the basis of experimental results reported in the literature and simple numerical estimates, it is found that long-range interactions involving electromagnetic fields of frequencies 0.1-1THz could be temporarily activated despite radiation losses and solvent dissipation. Moreover, the theoretical background used to derive the mentioned interactions sheds light on Fröhlich's theory of selective long-range forces between biomolecules. At variance with a long-standing belief, we show that sizable resonant long-range interactions may exist only if the interacting system is out of thermal equilibrium. PMID:26066202
NASA Astrophysics Data System (ADS)
Mekhov, Igor B.; Maschler, Christoph; Ritsch, Helmut
2007-05-01
Studies of ultracold gases in optical lattices provide a means for testing fundamental and application-oriented quantum many-body concepts of condensed-matter physics in well controllable atomic systems; examples include strongly correlated phases and quantum-information processing. Standard methods to observe quantum properties of Bose-Einstein condensates are based on matter-wave interference between atoms released from traps, a method that ultimately destroys the system. Here, we propose a new approach on the basis of optical measurements that conserves the number of atoms. We prove that atomic quantum statistics can be mapped on transmission spectra of high-Q cavities, where atoms create a quantum refractive index. This can be useful for studying phase transitions-for example, between Mott insulator and superfluid states-as various phases show qualitatively distinct light scattering. Joining the paradigms of cavity quantum electrodynamics and ultracold gases could enable conceptually new investigations of both light and matter at ultimate quantum levels. We predict effects accessible in experiments that recently became possible.
NASA Technical Reports Server (NTRS)
Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Doug; Jones, Sarah; Anderson, Brian Jay; Heinselman, Craig J.; Gjerloev, Jesper W.; Dudok de Wit, Thierry
2011-01-01
In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.
Lin, En-Chiang; Fang, Jun; Park, Se-Chul; Johnson, Forrest W.; Jacobs, Heiko O.
2013-01-01
Various nanostructured sensor designs currently aim to achieve or claim single molecular detection by a reduction of the active sensor size. However, a reduction of the sensor size has the negative effect of reducing the capture probability considering the diffusion-based analyte transport commonly used. Here we introduce and apply a localized programmable electrodynamic precipitation concept as an alternative to diffusion. The process provides higher collection rates of airborne species and detection at lower concentration. As an example, we compare an identical nanostructured surfaced-enhanced Raman spectroscopy sensor with and without localized delivery and find that the sensitivity and detection time is improved by at least two orders of magnitudes. Localized collection in an active-matrix array-like fashion is also tested, yielding hybrid molecular arrays on a single chip over a broad range of molecular weights, including small benzenethiol (110.18 Da) and 4-fluorobenzenethiol (128.17 Da), or large macromolecules such as anti-mouse IgG (~150 kDa). PMID:23535657
NASA Astrophysics Data System (ADS)
Francesconi, A.; Giacomuzzo, C.; Lorenzini, E. C.
2013-08-01
This paper reports the results of 16 hypervelocity impact experiments on a composite flat electrodynamic tether for LEO spacecraft end-of-life deorbiting. The system is being developed within the EU FP7 BETs program. Impact tests were carried out at CISAS impact facility, with the aim of deriving failure equations that include the impact angle dependence up to grazing incidence. Experiments were realised with 1.5 and 2.3 mm aluminium spheres, at velocities between 3 and 5 km/s and impact angle from 0° to 90° from the tape normal. After a preliminary post-impact inspection of the target, the damage extension on the tape was evaluated using an automatic image processing technique. Ballistic limit equations were developed in the experimental range using a procedure that allows to estimate the uncertainty in the failure predictions starting from the measurement of the damage area. Experiments showed that the impact damage is very close to the projectile size in case of normal impact, while it increases significantly at highly oblique impact angles.
NASA Astrophysics Data System (ADS)
Xu, Cenke; You, Yi-Zhuang
2015-12-01
Inspired by recent developments in constructing novel Dirac liquid boundary states of a three-dimensional (3D) topological insulator, we propose one possible two-dimensional boundary state of a 3D bosonic symmetry protected topological state with U (1) e⋊Z2T×U (1) s symmetry. This boundary theory is described by a (2 +1 ) -dimensional quantum electrodynamics (QED3) with two flavors of Dirac fermions (Nf=2 ) coupled with a noncompact U(1) gauge field, L =∑j=12ψ¯jγμ(∂μ-i aμ) ψj-i Aμsψi¯γμτij zψj+i/2 π ɛμ ν ρaμ∂νAρe , where aμ is the internal noncompact U(1) gauge field, and Aμs and Aμe are two external gauge fields that couple to U (1) s and U (1) e global symmetries, respectively. We demonstrate that this theory has a "self-dual" structure, which is a fermionic analog of the self-duality of the noncompact CP1 theory with easy plane anisotropy. Under the self-duality, the boundary action takes exactly the same form except for an exchange between Aμs and Aμe. The self-duality may still hold after we break one of the U(1) symmetries (which makes the system a bosonic topological insulator), with some subtleties that will be discussed.
Snapshots of high-latitude electrodynamics using Viking and DMSP F7 observations
Marklund, G.T.; Blomberg, L.G.; Stasiewicz, K.; Murphree, J.S.; Pottelette, R.; Zanetti, L.J.; Potemra, T.A.; Hardy, D.A.; Rich, F.J.
1988-12-01
Simultandeous observations by the Viking an the DMSP F7 satellites have been used as input to a new method to obtain snapshot pictures of the auroral electrodynamics. In particular, an ''instantaneous'' global equipotential (or convection) pattern is calculated from distributions of field-aligned current and conductivity which are qualitatively consistent with the Viking auroral imager data and quantitatively consistent with magnetic field and particle data from the two satellites. This convection pattern, which is of the normal two-cell type, with a weak dusk cell and a strong, elongated crescent-shape dawn cell (consistent with positive interplanetary magnetic field B/sub y/), agrees well with the Viking electric field data. The model and the observed potential profiles agree nicely along the entire Viking orbit except for two intervals above acceleration regions where deviations are to be expected (due to parallel electric fields). These regions are characterized by U-shaped potential minima, upward field-aligned currents, upgoing ion beams, and relatively intense auroral kilometric radiation. Thus, the model results are consistent with the Viking observations not only on a global scale but also on the scale of the auroral acceleration regions. The corresponding convection in the magnetosphere is obtained from a simple projection to the equatorial plane of the deduced two-cell convection pattern. From this location of the plasmapause is inferred. copyright American Geophysical Union 1988
Snapshots of high-latitude electrodynamics using Viking and DMSP f7 observations
Marklund, G.T.; Blomberg, L.G.; Stasiewicz, K.; Murphree, J.S.; Pottelette, R.
1988-12-01
Simultaneous observations by the Viking and the DMSP F7 satellites were used as input to a new method to obtain snapshot pictures of the auroral electrodynamics. In particular, an instantaneous global equipotential (or convection) pattern is calculated from distributions of field-aligned current and conductivity which are qualitatively consistent with the Viking auroral imager data and quantitatively consistent with magnetic field and particle data from the two satellites. This convection pattern, which is of the normal two-cell type, with a weak dusk cell and a strong, elongated crescent-shaped dawn cell (consistent with positive interplanetary magnetic field By), agrees well with the Viking electric-field data. The model and the observed potential profiles agree nicely along the entire Viking orbit except for two intervals above acceleration regions where deviations are to be expected (due to parallel electric fields). These regions are characterized by U-shaped potential minima, upward field-aligned currents, upgoing ion beams, and relatively intense auroral kilometric radiation. Thus, the model results are consistent with the Viking observations not only on a global scale but also on the scale of the auroral acceleration regions. The corresponding convection in the magnetosphere is obtained from a simple projection to the equatorial plane of the deduced two-cell convection pattern. From this the location of the plasmapause is inferred.
NASA Technical Reports Server (NTRS)
Goldberg, R. A.
1989-01-01
On the nights of October 21 and 28, 1987 (UT), two Nike Orion payloads (NASA 31.066 and 31.067) were launched from Andoya, Norway, as part of the MAC/Epsilon campaign, to study auroral energetics and their effect on the middle atmosphere. Each payload carried instrumentation to measure relativistic electrons from 0.1 to 1.0 MeV in 12 differential channels, and Bremsstrahlung X-rays from greater than 5 to greater than 80 KeV in 5 integral channels. In addition, instrumentation to measure ion densities and electric fields were also included on these and, in the case of 31.066, on other near simultaneous payloads. The first flight, 31.066, was launched under pre-magnetic midnight conditions during relatively stable auroral conditions. Flight 31.067 was launched during post-breakup conditions at which time pulsations of approx. 100 seconds duration were evident. The measured radiations including their spectral characteristics are compared for these two events, to appraise their effect on the electrodynamic properties of the middle atmosphere as determined by other rocket-borne measurements.
Two-electrode gas switch with electrodynamical acceleration of a discharge channel
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Tsoy, N. V.
2015-12-01
High-energy switches and trigger generators are required for MJ-level capacitor banks. We have developed a compact gas switch and a matched series injection trigger generator. A series inductance is required for isolation of the trigger pulse from the surrounded circuit. A saturable inductor is employed here because low inductance is needed after the switch breakdown. The switch is of coaxial two-electrode design with electrodynamic acceleration of a spark channel. The switch operates at atmospheric pressure. The spark gap can be triggered reliably down to zero voltage (at 50 kV self-breakdown voltage) with less than 35 ns timing jitter. Energy losses in this spark gap have been accurately investigated. The main results are as follows: energy losses in the switch do not exceed 4% at voltages higher than 15 kV, i.e., when operation voltage exceeds ˜36% of the self-breakdown voltage. The spark gap is designed for 24 kV charging voltage, at a current up to 250 kA, and ˜70 C charge transfer. In this paper, we present a design for the spark gap, inductor and trigger generator. Test bed schematics and results of the tests are also described.
NASA Astrophysics Data System (ADS)
Sarabi, B.; Ramanayaka, A. N.; Burin, A. L.; Wellstood, F. C.; Osborn, K. D.
2016-04-01
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual pz , dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 pz . We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p =p1=2.8 ±0.2 D and p =p2=8.3 ±0.4 D . For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with pz and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.
Stability of exact force-free electrodynamic solutions and scattering from spacetime curvature
NASA Astrophysics Data System (ADS)
Zhang, Fan; McWilliams, Sean T.; Pfeiffer, Harald P.
2015-07-01
Recently, a family of exact force-free electrodynamic (FFE) solutions was given by Brennan, Gralla and Jacobson, which generalizes earlier solutions by Michel, Menon and Dermer, and other authors. These solutions have been proposed as useful models for describing the outer magnetosphere of conducting stars. As with any exact analytical solution that aspires to describe actual physical systems, it is vitally important that the solution possess the necessary stability. In this paper, we show via fully nonlinear numerical simulations that the aforementioned FFE solutions, despite being highly special in their properties, are nonetheless stable under small perturbations. Through this study, we also introduce a three-dimensional pseudospectral relativistic FFE code that achieves exponential convergence for smooth test cases, as well as two additional well-posed FFE evolution systems in the appendix that have desirable mathematical properties. Furthermore, we provide an explicit analysis that demonstrates how propagation along degenerate principal null directions of the spacetime curvature tensor simplifies scattering, thereby providing an intuitive understanding of why these exact solutions are tractable, i.e. why they are not backscattered by spacetime curvature.
Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D
2016-04-22
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2 D and p=p_{2}=8.3±0.4 D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume. PMID:27152820
Three-dimensional currents of electrodynamic tethers obtained from laboratory models
Urrutia, J.M.; Stenzel, R.L.; Rousculp, C.L.
1994-03-01
Magnetic probe measurements in three dimensions (greater than 15,000 positions) and time in a large laboratory plasma (n(sub e) greater than or equal to 10(exp 11)/cc, kTe greater than or equal to 1eV, B(sub 0) = 20 G, 1 m diam. x 2.5 m length) reveal the plasma currents J = del(vector differential operator) x B/mu(sub 0) excited by a pulsed (delta-t = 100 ns), stationary, tethered pair of electrodes (approximately equals 1 cm diam., 20 cm spacing perpendicular to B(sub 0)). The plasma currents for a moving, dc-current carrying electrodynamic tether are obtained by a superposition of delayed pulses emitted at successively displaced tether positions. The transient plasma currents are carried by low-frequency whistlers instead of Alfven waves and form a 3D wing structure but no long phantom loop due to cross-field Hall current shunting.
Three-dimensional currents of electrodynamic tethers obtained from laboratory models
NASA Technical Reports Server (NTRS)
Urrutia, J. M.; Stenzel, R. L.; Rousculp, C. L.
1994-01-01
Magnetic probe measurements in three dimensions (greater than 15,000 positions) and time in a large laboratory plasma (n(sub e) greater than or equal to 10(exp 11)/cc, kTe greater than or equal to 1eV, B(sub 0) = 20 G, 1 m diam. x 2.5 m length) reveal the plasma currents J = del(vector differential operator) x B/mu(sub 0) excited by a pulsed (delta-t = 100 ns), stationary, tethered pair of electrodes (approximately equals 1 cm diam., 20 cm spacing perpendicular to B(sub 0)). The plasma currents for a moving, dc-current carrying electrodynamic tether are obtained by a superposition of delayed pulses emitted at successively displaced tether positions. The transient plasma currents are carried by low-frequency whistlers instead of Alfven waves and form a 3D wing structure but no long phantom loop due to cross-field Hall current shunting.
Carl Neumann's Contributions to Electrodynamics
NASA Astrophysics Data System (ADS)
Schlote, Karl-Heinz
2004-09-01
I examine the publications of Carl Neumann (1832 1925) on electrodynamics, which constitute a major part of his work and which illuminate his approach to mathematical physics. I show how Neumann contributed to physics at an important stage in its development and how his work led to a polemic with Hermann Helmholtz (1821 1894). Neumann advanced and extended the ideas of the Königsberg school of mathematical physics. His investigations were aimed at founding a mathematically exact physical theory of electrodynamics, following the approach of Carl G.J. Jacobi (1804 1851) on the foundation of a physical theory as outlined in Jacobi’s lectures on analytical mechanics. Neumann’s work also shows how he clung to principles that impeded him in appreciating and developing new ideas such as those on field theory that were proposed by Michael Faraday (1791 1867) and James Clerk Maxwell (1831 1879).
Pyroshock testing-electrodynamic shakers
NASA Astrophysics Data System (ADS)
Smallwood, David O.
2002-05-01
Far field pyroshock (accelerations less than a few hundred grams, and bandwidths less than a few kHz) can be simulated on electrodynamic shakers. Typically, the specification is in terms of the shock response spectrum (SRS). Wave forms are synthesized which will match the required SRS. The process is not unique, as many wave forms can have essentially the same SRS. Sometimes additional restrictions are placed on the synthesized wave form. Most common are restrictions on the duration of the wave form. The process of synthesizing wave forms, which will match an SRS and conform to the limitations of electrodynamic shakers, will be described. The methods used to reproduce these wave forms on the shaker will then be discussed.
Electrodynamics on extrasolar giant planets
Koskinen, T. T.; Yelle, R. V.; Lavvas, P.; Cho, J. Y-K.
2014-11-20
Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be
Lazur, V. Yu.; Myhalyna, S. I.; Reity, O. K.
2010-06-15
The problem of interaction of two quasimolecular electrons located at an arbitrary distance from each other and near different atoms (nuclei) is solved. The interaction is considered as a second-order effect of quantum electrodynamics in the coordinate representation. It is shown that consistent account of the natural condition of the interaction symmetry with respect to both electrons leads to the additional contribution to the relativistic interaction of the two quasimolecular electrons compared with both the standard Breit operator and the generalized Breit operator obtained previously [O. N. Gadomskii, Usp. Fiz. Nauk 170, 1145 (2000) [Phys. Usp. 43, 1071 (2000)
Instantaneous fields in classical electrodynamics
NASA Astrophysics Data System (ADS)
Heras, J. A.
2005-01-01
In this paper we express the retarded fields of Maxwell's theory in terms of the instantaneous fields of a Galilei-invariant electromagnetic and we find the vector function χL whose spatial and temporal derivatives transform the Euclidean fields into the retarded ones. We conclude that the instantaneous fields can formally be introduced as unphysical objects into classical electrodynamics which can be used to find the physical retarded fields.
Accelerator and electrodynamics capability review
Jones, Kevin W
2010-01-01
Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.
The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere
NASA Astrophysics Data System (ADS)
Eccles, J. Vincent
2004-05-01
The source of the plasma drift structure in the low-latitude ionosphere during magnetically quiet times is generally understood. Nearly all the quiet time electric field structure has been attributed to divergences in the neutral wind current dynamo. However, there are other current drivers active in the low latitude ionosphere: a gravity-driven current (g × B drift of O+) and a gradient-pressure current (∇P × B drift of e and O+). The gravity-driven current is important in the development of the Rayleigh-Taylor instability and equatorial spread F (ESF) but is ignored in global dynamo electric field models. The gradient pressure and gravity terms in the ionosphere momentum equation normally oppose each other. This paper examines the magnitude of the large-scale electric fields generated by divergences in these lesser currents in a coupled ionosphere-electrodynamics model. The low-latitude electric fields generated by the neutral wind dynamo are altered only slightly by these additional terms. The resulting vertical electric fields (zonal plasma drifts) do not change significantly but the vertical plasma drifts are affected by ˜10 to 15 m/s in the hours before sunrise and after sunset. These low-latitude plasma drift differences are due entirely to the inclusion of the gravity-driven current. The gravity current term produces a downward drift after sunset, which reduces the evening prereversal enhancement. Additionally, the positive vertical drift before sunrise is sometimes large enough to cause a predawn vertical enhancement. The gradient pressure terms can be ignored for large and medium scale ionosphere features.
Coulomb's Law Modification in Nonlinear and in Noncommutative Electrodynamics
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Schmidt, Iván
We study the lowest-order modifications of the static potential for Born-Infeld electrodynamics and for the θ-expanded version of the noncommutative U(1) gauge theory, within the framework of the gauge-invariant but path-dependent variables formalism. The calculation shows a long-range correction (1/r5-type) to the Coulomb potential in Born-Infeld electrodynamics. However, the Coulomb nature of the potential (to order e2) is preserved in noncommutative electrodynamics.
Conjunctions and Collision Avoidance with Electrodynamic Tethers
NASA Astrophysics Data System (ADS)
Levin, E.
2013-09-01
Electrodynamic propulsion technology is currently in development by NASA, ESA, and JAXA for the purpose of affordable removal of large debris objects from LEO. At the same time, the Naval Research Laboratory is preparing a 3U CubeSat with a 1-km electrodynamic tether for a flight demonstration of electrodynamic propulsion. This type of propulsion does not require fuel. The electrodynamic thrust is the Lorentz force acting on the electric current in a long conductor (tether) in the geomagnetic field. Electrons are collected from the ambient plasma on one end and emitted back into the plasma from the other end. The electric current loop is closed through the ionosphere, as demonstrated in two previous flights. The vehicle is solar powered. To support safe navigation of electrodynamic tethers, proper conjunction analysis and collision avoidance strategies are needed. The typical lengths of electrodynamic tethers for near-term applications are measured in kilometers, and the conjunction geometry is very different from the geometry of conjunctions between compact objects. It is commonly thought that the collision cross-section in a conjunction between a tether and a compact object is represented by the product of the tether length and the size of the object. However, rigorous analysis shows that this is not the case, and that the above assumption leads to grossly overestimated collision probabilities. The paper will present the results of a detailed mathematical analysis of the conjunction geometry and collision probabilities in close approaches between electrodynamic tethers and compact objects, such as satellites, rocket bodies, and debris fragments. Electrodynamic spacecraft will not require fuel, and therefore, can thrust constantly. Their orbit transfers can take many days, but can result in major orbit changes, including large rotations of the orbital plane, both in the inclination and the node. During these orbit transfers, the electrodynamic spacecraft will
NASA Astrophysics Data System (ADS)
Gatsonis, Nikolaos Achilleas
A study is presented of the electrodynamic interactions within the plasma environment induced around spacecraft in Low Earth Orbit. A fully three-dimensional theory and a computational model is developed for an artificial plasma cloud created by spacecraft with the potential of releasing neutrals and/or plasma into the ambient ionosphere. A fluid model for the plasma transport is derived. The forces included in the momentum balance are due to electric fields, pressure, gravity, drag due to collisions and perturbative inertia terms. The Flux Corrected Transport (FCT) scheme is used for the numerical solution of the hyperbolic continuity equations. This approach limits the artificial dissipation or dispersion arising in the numerical solution. The 3D -FCT algorithm, and the stability characteristics of the high and low order schemes used in the FCT are discussed. The equation for the electrostatic potential is a three-dimensional nonself-adjoint elliptic equation with highly dissimilar coefficients. The numerical solution of the resulting large, sparse, asymmetric system of equations is discussed. Initial time numerical simulations are performed. A water-bag plasma cloud model is used to demonstrate the current coupling process. For neutral densities higher than the ambient the plasma cloud develops a transverse drift of the order of the orbital velocity. Simulations of typical spacecraft operations are performed and the created water plasma cloud is studied. It is shown that the flow of neutrals is in the free molecular regime. The effects of altitude of the release, orientation of the thrust vector with regard to the magnetic field, and latitude are considered. It is shown that a large water ion cloud is formed with densities of the order of the ambient oxygen ions. The ultraviolet radiation emission is shown to modify the signature of the spacecraft. The model predicts qualitatively most of the observations. Quantitatively predictions are within the measured
Stochastic interpenetration of fluids
Steinkamp, M.J.; Clark, T.T.; Harlow, F.H.
1995-11-01
We describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.
NASA Astrophysics Data System (ADS)
Lu, G.; Emery, B. A.; Rodger, A. S.; Lester, M.; Taylor, J. R.; Evans, D. S.; Ruohoniemi, J. M.; Denig, W. F.; de la Beaujardière, O.; Frahm, R. A.; Winningham, J. D.; Chenette, D. L.
1996-12-01
During the conjunctive SUNDIAL/ATLAS 1/GEM campaign period of March 28-29, 1992, a set of comprehensive data has been collected both from space and from ground. The assimilative mapping of ionospheric electrodynamics (AMIE) procedure is used to derive the large-scale high-latitude ionospheric conductivity, convection, and other related quantities, by combining the various data sets. The period was characterized by several moderate substorm activities. Variations of different ionospheric electrodynamic fields are examined for one substorm interval. The cross-polar-cap potential drop, Joule heating, and field-aligned current are all enhanced during the expansion phase of substorms. The most dramatic changes of these fields are found to be associated with the development of the substorm electrojet in the post midnight region. Variations of global electrodynamic quantities for this 2-day period have revealed a good correlation with the auroral electrojet (AE) index. In this study we have calculated the AE index from ground magnetic perturbations observed by 63 stations located between 55° and 76° magnetic latitudes north and south, which is larger than the standard AE index by about 28% on the average over these 2 days. Different energy dissipation channels have also been estimated. On the average over the 2 days, the total globally integrated Joule heating rate is about 102 GW and the total globally integrated auroral energy precipitation rate is about 52 GW. Using an empirical formula, the ring current energy injection rate is estimated to be 125 GW for a decay time of 3.5 hours, and 85 GW for a decay time of 20 hours. We also find an energy-coupling efficiency of 3% between the solar wind and the magnetosphere for a southward interplanetary magnetic field (IMF) condition.
NASA Astrophysics Data System (ADS)
Schlegel, Kristian; Roettger, Juergen
1987-08-01
With the help of incoherent scatter (EISCAT) data the thermodynamics and electrodynamics of the auroral E-region northeast of Andoya Rocket Range has been investigated between 1740 UT and 2040 UT on January 31, 1984. This time period covers the D salvo of MAP/WINE, and the EISCAT incoherent scatter data comprise a useful supplement to interpret the rocket data. Good agreement has been found between the EISCAT temperatures and those derived from mass spectrometer data. Neutral wind velocity estimates from EISCAT and from a falling sphere rocket experiment are in satisfactory agreement for the zonal wind component, but disagree for the meridional component.
A Rocket-Base Study of Auroral Electrodynamics Within the Current Closure Ionosphere
NASA Technical Reports Server (NTRS)
Kaeppler, Stephen R.; Kletzing, Craig; Bounds, Scott R.; Sigsbee, Kristine M.; Gjerloev, Jesper W.; Anderson, Brian Jay; Korth, Haje; Lessard, Marc; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Douglas E.; Jones, Sarah; Heinselman, Craig J.; DudokdeWit, Thierry
2011-01-01
The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission, in conjunction with the PFISR Radar, was designed to observe the three-dimensional current system of a stable auroral arc system. ACES utilized two well instrumented payloads flown along very similar magnetic field footprints, at various altitudes with small temporal separation between both payloads. ACES High, the higher altitude payload (apogee 360 km), took in-situ measurements of the plasma parameters above the current closure region to provide the input signature into the lower ionosphere. ACES Low, the low-altitude payload (apogee 130 km), took similar observations within the current closure region, where cross-field currents can flow. We present results comparing observations of the electric fields, magnetic fields, electron flux, and the electron temperature at similar magnetic footpoints between both payloads. We further present data from all-sky imagers and PFISR detailing the evolution of the auroral event as the payloads traversed regions connected by similar magnetic footpoints. Current measurements derived from the magnetometers on both payloads are further compared. We examine data from both PFISR and observations on the high-altitude payload which we interpreted as a signature of electron acceleration by means of Alfv n waves. We further examine all measurements to understand ionospheric conductivity and how energy is being deposited into the ionosphere through Joule heating. Data from ACES is compared against models of Joule heating to make inferences regarding the effect of collisions at various altitudes.
Electrodynamic response in the electronic nematic phase of BaFe2As2
NASA Astrophysics Data System (ADS)
Mirri, C.; Dusza, A.; Bastelberger, S.; Chinotti, M.; Chu, J.-H.; Kuo, H.-H.; Fisher, I. R.; Degiorgi, L.
2016-02-01
We perform, as a function of uniaxial stress, a temperature-dependent optical-reflectivity investigation of the parent Fe-arsenide compound BaFe2As2 over a broad spectral range, from the far infrared up to the ultraviolet, across the coincident structural tetragonal-to-orthorhombic and spin-density-wave (SDW) phase transitions at Ts ,N=135 K. Our results provide knowledge to the complete electrodynamic response of the title compound over a wide energy range as a function of both tunable variables. For temperatures below Ts ,N, varying the uniaxial stress in situ affects the twin domain population and yields hysteretic behavior of the optical properties as the stress is first increased and then decreased, whereas for temperatures above Ts ,N the stress-induced optical anisotropy is reversible, as anticipated. In particular, by analyzing the low-frequency infrared response, we obtain detailed insight to the effects determining the intrinsic anisotropy of the (metallic) charge dynamics in the orthorhombic state, and similarly the induced one due to applied uniaxial stress at higher temperatures in the tetragonal phase. The low-frequency optical conductivity thus allows establishing a link to the d c transport properties and reveals that they are determined almost exclusively by changes in the Drude weight, therefore by the anisotropy in the Fermi surface parameters. Finally, we show that the spectral weight distribution in the SDW state occurs for energies below approximately 1 eV, and therefore points towards a correlation mechanism due to Hund's coupling rather than on-site Coulomb interactions.
Self-consistent electrodynamics of large-area high-frequency capacitive plasma discharge
Chen Zhigang; Rauf, Shahid; Collins, Ken
2010-10-15
Capacitively coupled plasmas (CCPs) generated using high frequency (3-30 MHz) and very high frequency (30-300 MHz) radio-frequency (rf) sources are used for many plasma processing applications including thin film etching and deposition. When chamber dimensions become commensurate with the effective rf wavelength in the plasma, electromagnetic wave effects impose a significant influence on plasma behavior. Because the effective rf wavelength in plasma depends upon both rf and plasma process conditions (e.g., rf power and gas pressure), a self-consistent model including both the rf power delivery system and the plasma discharge is highly desirable to capture a more complete physical picture of the plasma behavior. A three-dimensional model for self-consistently studying both electrodynamic and plasma dynamic behavior of large-area (Gen 10, >8 m{sup 2}) CCP is described in this paper. This model includes Maxwell's equations and transport equations for charged and neutral species, which are coupled and solved in the time domain. The complete rf plasma discharge chamber including the rf power delivery subsystem, rf feed, electrodes, and the plasma domain is modeled as an integrated system. Based on this full-wave solution model, important limitations for processing uniformity imposed by electromagnetic wave propagation effects in a large-area CCP (3.05x2.85 m{sup 2} electrode size) are studied. The behavior of H{sub 2} plasmas in such a reactor is examined from 13.56 to 200 MHz. It is shown that various rectangular harmonics of electromagnetic fields can be excited in a large-area rectangular reactor as the rf or power is increased. The rectangular harmonics can create not only center-high plasma distribution but also high plasma density at the corners and along the edges of the reactor.
Experiments with Electrodynamic Wheels
NASA Astrophysics Data System (ADS)
Gaul, Nathan; Corey, Daniel; Cordrey, Vincent; Majewski, Walerian
2015-04-01
Our experiments were involving inductive magnetic levitation. A Halbach array is a system in which a series of magnets is arranged in a manner such that the magnetic field is cancelled on one side of the array while strengthening the field on the other. We constructed two circular Halbach wheels, making the strong magnetic field on the outer rim of the ring. Such system is usually dubbed as an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We demonstrated that these interactions produce both drag and lift forces on the EDW which can theoretically be used for lift and propulsion of the EDW. The focus of our experiments is determining how to maximize the lift-to-drag ratio by the proper choice of the induction element. We will also describe our experiments with a rotating circular Halbach array having the strong magnetic field of about 1 T on the flat side of the ring, and acting as a hovercraft.
NASA Technical Reports Server (NTRS)
Estes, Robert D.
1998-01-01
Our TSS-1/R investigation, which we shall refer to as EMET in this report, was an integral part of the effort by the TSS-1/R Investigators' Working Group (IWG) to come to an understanding of the complex interaction between the tethered satellite system and the ionosphere. All of the space-borne experiments were designed to collect data relevant to the local interaction. Only the ground- based experiments, EMET and its Italian counterpart Observations on the Earth's Surface of Electromagnetic Emissions (OESEE), held out any hope of characterizing the long range effects of the interaction. This was to be done by detecting electromagnetic waves generated by the system in the ionosphere, assuming the signal reached the Earth's surface with sufficient amplitude. As the type of plasma waves excited to carry charge away from the charge-exchange regions of the system at each end of the tether is one of the theoretical points about which there is greatest disagreement, a definitive identification of tether-generated waves could mark significant progress in the so-called current closure problem of electrodynamic tethers. Dr. Mario Grossi of the Smithsonian Astrophysical Observatory (SAO) initiated the investigation, and his experience in the field of ULF-ELF waves and their detection was invaluable throughout its course. Rice University had the responsibility of setting up the EMET ULF-VLF ground stations under a subcontract from SAO. Principal Investigator (PI) for the Rice effort was Prof. William E. Gordon, who was primary observer at the Arecibo Observatory during TSS-LR. Dr. Steve Noble handled major day-to-day operations, training, and planning for the ground-based measurements. Dr. James McCoy of NASA JSC, a member of the Mona/Arecibo team, was pilot for the numerous flights ferrying personnel and equipment between Puerto Rico and Mona Island. Final responsibility for the measurements rested with SAO, and the activities of field personnel and SAO investigators were
Bashinov, A. V.; Kim, A. V.; University of Nizhny Novgorod, 603950 Nizhny Novgorod
2013-11-15
A simple electrodynamic model is developed to define plasma-field structures in self-consistent ultra-relativistic laser-plasma interactions when the radiation reaction effects come into play. An exact analysis of a circularly polarized laser interacting with plasmas is presented. We define fundamental notions, such as nonlinear dielectric permittivity, ponderomotive and dissipative forces acting in a plasma. Plasma-field structures arising during the ultra-relativisitc interactions are also calculated. Based on these solutions, we show that about 50% of laser energy can be converted into gamma-rays in the optimal conditions of laser-foil interaction.
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.
2015-12-01
In this paper, we construct a new class of black hole solutions which is coupled to the logarithmic nonlinear electrodynamics in the context of dilaton gravity. We consider an n -dimensional action in which gravity is coupled to the logarithmic nonlinear electrodynamics field and a scalar dilaton field to obtain the equations of motion of the gravitational, dilaton and electromagnetic fields. This leads to finding a new class of n -dimensional static and spherically symmetric black hole solutions in the presence of two Liouville-type dilaton potentials. The asymptotic behavior of these solutions is neither flat nor (anti-)de Sitter [(A)dS], and in the limiting case where the nonlinear parameter β goes to infinity, our solutions reduce to the black holes of Einstein-Maxwell-dilaton gravity in higher dimensions. Thermodynamic quantities such as mass, temperature, electric potential and entropy are also computed, and it is shown that they agree with the first law of thermodynamics. Furthermore, we find that for small values of the electric charge parameter q , and the dilaton coupling constant α , as well as small dimension n , the solutions are thermally stable. By increasing n , the region of stability stands for smaller values of α independent of q . Finally, we use the method of thermodynamical geometry and find the phase transition points by calculating the Ricci scalar of a thermodynamic metric.
NASA Astrophysics Data System (ADS)
Accioly, Antonio; Gaete, Patricio; Helaÿel-Neto, José A.
We calculate the lowest-order corrections to the static potential for both the generalized Born-Infeld electrodynamics and an Euler-Heisenberg-like model, in the presence of a constant external magnetic field. Our analysis is carried out within the framework of the gauge-invariant but path-dependent variables formalism. The calculation reveals a long-range correction ((1)/(r5)-type) to the Coulomb potential for the generalized Born-Infeld electrodynamics. Interestingly enough, in the Euler-Heisenberg-like model, the static potential remains Coulombian. Therefore, contrary to popular belief, the quantized truncated action and the truncated quantized action do not commute at all.
NASA Astrophysics Data System (ADS)
Guo, Xiong-Ying; Zhang, Li-Chun; Zhao, Ren
2014-06-01
We employ the simple analytic method and the variational method of the Strum-Liouville (S-L) eigenvalue problem to analytically study the holographic superconductor phase transition in Gauss-Bonnet gravity with Born-Infeld (BI) electrodynamics in the probe limit, respectively. We find that the scalar hair formation at low temperatures is indeed affected by the Gauss-Bonnet as well as the BI coupling parameters, but also by the scalar field mass and the spacetime dimensional. Our analytic result has been found in agreement with the numerical results.
Mross, David F; Alicea, Jason; Motrunich, Olexei I
2016-07-01
We explicitly derive the duality between a free electronic Dirac cone and quantum electrodynamics in (2+1) dimensions (QED_{3}) with N=1 fermion flavors. The duality proceeds via an exact, nonlocal mapping from electrons to dual fermions with long-range interactions encoded by an emergent gauge field. This mapping allows us to construct parent Hamiltonians for exotic topological-insulator surface phases, derive the particle-hole-symmetric field theory of a half-filled Landau level, and nontrivially constrain QED_{3} scaling dimensions. We similarly establish duality between bosonic topological insulator surfaces and N=2 QED_{3}. PMID:27419581
Practicality of using a Tether for electrodynamic reboost of the International Space Station
NASA Astrophysics Data System (ADS)
Blumer, John H.; Donahue, Benjamin B.; Bangham, Michal E.
2001-02-01
ElectroDynamic (ED) Tethers can generate continuous low thrust in a low Earth orbit. An induced current running through the length of the tether reacts with the geomagnetic field to produce thrust. The amount of thrust scales with tether length and current. The International Space Station (ISS) requires periodic reboost to maintain an approximately circular orbit above the Earth. The baseline reboost method is a traditional bi-propellant rocket thruster and tankage system which must to be refueled via Soyuz/Progress or other launch vehicle. The estimated propellant costs associated with keeping ISS in the designated orbit over a 10-year life have been extremely high. The ED Tether would draw energy from the renewable ISS Solar Array electrical power system. Propulsion requirements for ISS vary depending on solar wind and other conditions. It is projected that a ED Tether could provide the majority of the required reboost thrust for ISS for a nominal solar year. For above nominal solar wind years the ISS would have to use the rocket reboost system, but at a greatly reduced level. Thus resulting in substantial cost savings, via the reduction in the number of Earth-to-orbit launch vehicle flights to the ISS that must bring reboost propellant. However, the purposes of this paper is to further previous research on an ISS ED Tether and examine the operational and technical issues working against using a ED Tether on ISS. Issues such as Shuttle rendezvous and flight path concerns raise serious safety concerns and restrictions on tether use. Tether issues such as tether librations and off angle thrust raise concerns about impacts to microgravity payloads and the long-term effect on ISS orbital path and inclination. Operational issues such as peak power available to an ED Tether and allowable duty cycle may impose severe restrictions on tether design and ultimately limit the practicality of an ED Tether on ISS. Thus while at first glance the cost numbers appear to be
Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel
1976-08-24
A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.
Metallization of fluid hydrogen
Nellis, W.J.; Louis, A.A.; Ashcroft, N.W.
1997-05-14
The electrical activity of liquid hydrogen has been measured at the high dynamic pressures, and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 CPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) process in which structural changes are paramount.
Observations on the Freezing of Supercooled Pollen Washing Water by a New Electrodynamic Balance
NASA Astrophysics Data System (ADS)
Tong, Haijie; Pope, Francis D.; Kalberer, Markus
2014-05-01
Primary biological particles can act as efficient ice nuclei (IN) by initiating freezing events at temperatures warmer than the homogenous freezing temperature [1, 2]. For example, pollen grain particles can trigger freezing events at temperatures as warm as -5 °C in the contact freezing mode [3]. More recently pollen residues, which are released by washing pollen grains in water, were also observed to act as efficient IN in the immersion mode [4, 5]. In this study we developed a new cold electrodynamic balance (CEDB) system and investigated the freezing properties of single particles of supercooled pollen washing water (SPWW). The EDB technique allows for a contact free measurement of freezing events. The phase of the particle (liquid or frozen solid) can be distinguished via measuring the Mie scattering signal from the particle. Furthermore the size of liquid (spherical) particles can be determined. The freezing events are characterized through the loss of the regular Mie scattering signal from the levitated droplet as it changes state from liquid to a frozen solid. The statistical freezing probabilities of SPWW were obtained in the temperature range: -15 to -40 °C. Each temperature measurement point consists of the analysis of 30-100 droplets. Preliminary conclusions are that SPWW is IN active in the immersion mode. Further discussion will focus on the temperature range of the IN activity, the important variables (other than temperature) for IN activity, other likely modes of IN activity, and the implications of these results in terms of the atmospheric relevance of SPWW. This study was supported by the NERC. We acknowledge Professor Jonathan Reid and James Davis from the University of Bristol for providing information of the design of the warm EDB system. References: [1] Möhler, O., et al. (2007) Biogeosciences, 4, 1059-1071. [2] Prenni, A. J., et al. (2009) Nat. Geosci., 2, 401-404. [3] Diehl, K., et al. (2002) Atmos. Res., 61, 125-133. [4] Pummer, B. G
NASA Astrophysics Data System (ADS)
Zou, Shasha; Moldwin, Mark B.; Nicolls, Michael J.; Ridley, Aaron J.; Coster, Anthea J.; Yizengaw, Endawoke; Lyons, Larry R.; Donovan, Eric F.
2013-05-01
We present a detailed case study of the electrodynamics of a high-latitude trough observed at ~ 12 UT (~1 MLT) on 8 March 2008 using multiple instruments, including incoherent scattering radar (ISR), GPS total electron content (TEC), magnetometers, and auroral imager. The electron density within the trough dropped as much as 80% within 6 minutes. This trough was collocated with a counterclockwise convection flow vortex, indicating divergent horizontal electric fields and currents. Together with a collocated dark area shown in auroral images, the observations provide strong evidence for an existence of downward field-aligned currents (FACs) collocated with the high-latitude trough. This is further supported by assimilative mapping of ionospheric electrodynamics results. In addition, the downward FACs formed at about the same time as a substorm onset and east of the Harang reversal, suggesting it is part of the substorm current wedge. It has long been a puzzle why this type of high-latitude trough predominantly occurs just east of the Harang reversal in the postmidnight sector. We suggest that the high-latitude trough is associated with the formation of downward FACs of the substorm current system, which usually occur just east of the Harang reversal. In addition, we find that the ionospheric electron temperature within the high latitude trough decreases in the F region while increasing in the E region. We discuss possible mechanisms responsible for the complex change in electron temperature, such as ion composition change and/or presence of downward FACs.
NASA Technical Reports Server (NTRS)
Hastings, D. E.; Gatsonis, N. A.; Rivas, D. A.
1988-01-01
Plasma contactors have been proposed as a means of making good electrical contact between biased surfaces such as found at the ends of an electrodynamic tether and the space environment. A plasma contactor is a plasma source which emits a plasma cloud which facilitates the electrical connection. The physics of this plasma cloud is investigated for contactors used as electron collectors and it is shown that contactor clouds in space will consist of a spherical core possibly containing a shock wave. Outside of the core the cloud will expand anisotropically across the magnetic field leading to a turbulent cigar shape structure along the field. This outer region is itself divided into two regions by the ion response to the electric field. A two-dimensional theory of the motion of the cloud across the magnetic field is developed. The current voltage characteristic of an Argon plasma contactor cloud is estimated for several ion currents in the range of 1-100 Amperes. It is shown that small ion current contactors are more efficient than large ion current contactors. This suggests that if a plasma contactor is used on an electrodynamic tether then a miltiple tether array will be more efficient than a single tether.
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2015-01-01
The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant
Covariant Electrodynamics in Vacuum
NASA Astrophysics Data System (ADS)
Wilhelm, H. E.
1990-05-01
The generalized Galilei covariant Maxwell equations and their EM field transformations are applied to the vacuum electrodynamics of a charged particle moving with an arbitrary velocity v in an inertial frame with EM carrier (ether) of velocity w. In accordance with the Galilean relativity principle, all velocities have absolute meaning (relative to the ether frame with isotropic light propagation), and the relative velocity of two bodies is defined by the linear relation uG = v1 - v2. It is shown that the electric equipotential surfaces of a charged particle are compressed in the direction parallel to its relative velocity v - w (mechanism for physical length contraction of bodies). The magnetic field H(r, t) excited in the ether by a charge e moving uniformly with velocity v is related to its electric field E(r, t) by the equation H=ɛ0(v - w)xE/[ 1 +w • (t>- w)/c20], which shows that (i) a magnetic field is excited only if the charge moves relative to the ether, and (ii) the magnetic field is weak if v - w is not comparable to the velocity of light c0 . It is remarkable that a charged particle can excite EM shock waves in the ether if |i> - w > c0. This condition is realizable for anti-parallel charge and ether velocities if |v-w| > c0- | w|, i.e., even if |v| is subluminal. The possibility of this Cerenkov effect in the ether is discussed for terrestrial and galactic situations
NASA Astrophysics Data System (ADS)
Lazur, V. Yu.; Pavlyk, O. F.; Reity, A. K.
2010-10-01
We solve the problem of interaction two quasimolecular electrons located at an arbitrary separation near different atoms (nuclei). We consider third-order effects in quantum electrodynamics, which include the virtual photon exchange between electrons with emission (absorption) of a real photon. We obtain the general expression for matrix elements of the operator of the effective interaction energy of two quasimolecular electrons with the external radiation field, which allows calculating probabilities of inelastic processes with rearrangement at slow collisions of multicharge ions with relativistic atoms. We demonstrate that consistently taking the natural condition of the interaction symmetry with respect to the two electrons into account results in the appearance of additional terms in the operators of spin-orbit, spin-spin, and retarded interactions compared with the previously obtained expressions for these operators. We construct the operator of the dipole-dipole interaction of two neutral atoms located at an arbitrary separation.
Preto, Jordane; Floriani, Elena; Nardecchia, Ilaria; Ferrier, Pierre; Pettini, Marco
2012-04-01
Highly specific spatiotemporal interactions between cognate molecular partners essentially sustain all biochemical transactions in living matter. That such an exquisite level of accuracy may result from encountering forces solely driven by thermal diffusive processes is unlikely. Here we propose a yet unexplored strategy to experimentally tackle the long-standing question of a possibly active recruitment at a distance of cognate partners of biomolecular reactions via the action of resonant electrodynamic interactions. We considered two simplified models for a preliminary feasibility investigation of the devised methodology. By taking advantage of advanced experimental techniques nowadays available, we propose to measure the characteristic encounter time scales of dually interacting biopartners and to compare them with theoretical predictions worked out in both the presence and absence of putative long-range electromagnetic forces. PMID:22680495
NASA Astrophysics Data System (ADS)
Romero, Juan M.; Santiago, José A.; González-Gaxiola, O.; Zamora, Adolfo
We study an electrodynamics consistent with anisotropic transformations of spacetime with an arbitrary dynamic exponent z. The equations of motion and conserved quantities are explicitly obtained. We show that the propagator of this theory can be regarded as a quantum correction to the usual propagator. Moreover, we obtain that both the momentum and angular momentum are not modified, but their conservation laws do change. We also show that in this theory the speed of light and the electric charge are modified with z. The magnetic monopole in this electrodynamics and its duality transformations are also investigated. For that we found that there exists a dual electrodynamics, with higher derivatives in the electric field, invariant under the same anisotropic transformations.
Quantum Electrodynamics for Vector Mesons
Djukanovic, Dalibor; Schindler, Matthias R.; Scherer, Stefan; Gegelia, Jambul
2005-07-01
Quantum electrodynamics for {rho} mesons is considered. It is shown that, at the tree level, the value of the gyromagnetic ratio of the {rho}{sup +} is fixed to 2 in a self-consistent effective quantum field theory. Further, the mixing parameter of the photon and the neutral vector meson is equal to the ratio of electromagnetic and strong couplings, leading to the mass difference M{sub {rho}}{sub {sup 0}}-M{sub {rho}}{sub {sup {+-}}}{approx}1 MeV at tree order.
The Viscosity of Polymeric Fluids.
ERIC Educational Resources Information Center
Perrin, J. E.; Martin, G. C.
1983-01-01
To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…
Finite field-energy and interparticle potential in logarithmic electrodynamics
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Helayël-Neto, José
2014-03-01
We pursue an investigation of logarithmic electrodynamics, for which the field energy of a point-like charge is finite, as happens in the case of the usual Born-Infeld electrodynamics. We also show that, contrary to the latter, logarithmic electrodynamics exhibits the feature of birefringence. Next, we analyze the lowest-order modifications for both logarithmic electrodynamics and for its non-commutative version, within the framework of the gauge-invariant path-dependent variables formalism. The calculation shows a long-range correction (-type) to the Coulomb potential for logarithmic electrodynamics. Interestingly enough, for its non-commutative version, the interaction energy is ultraviolet finite. We highlight the role played by the new quantum of length in our analysis.
NASA Astrophysics Data System (ADS)
Kopáček, Jaroslav; Fojtášek, Kamil; Dvořák, Lukáš
2016-03-01
This paper focuses on the importance of detection reliability, especially in complex fluid systems for demanding production technology. The initial criterion for assessing the reliability is the failure of object (element), which is seen as a random variable and their data (values) can be processed using by the mathematical methods of theory probability and statistics. They are defined the basic indicators of reliability and their applications in calculations of serial, parallel and backed-up systems. For illustration, there are calculation examples of indicators of reliability for various elements of the system and for the selected pneumatic circuit.
Accretion disk electrodynamics
NASA Technical Reports Server (NTRS)
Coroniti, F. V.
1985-01-01
Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.
Fluid Mechanics of Papermaking
NASA Astrophysics Data System (ADS)
Lundell, Fredrik; Söderberg, L. Daniel; Alfredsson, P. Henrik
2011-01-01
Papermaking is to a large extent a multiphase flow process in which the structure of the material and many of the relevant properties of the final product are determined by the interaction between water and the wood fibers. The dominant feature of a suspension composed of wood fibers and water is its inherent propensity to form bundles of mechanically entangled fibers, known as fiber flocs. However, the phenomena apparent throughout the papermaking process are not unique but in fact have a generic fluid dynamical nature.
Electrodynamics at the highest energies
Klein, Spencer R.
2002-06-17
At very high energies, the bremsstrahlung and pair production cross sections exhibit complex behavior due to the material in which the interactions occur. The cross sections in dense media can be dramatically different than for isolated atoms. This writeup discusses these in-medium effects, emphasizing how the cross section has different energy and target density dependencies in different regimes. Data from SLAC experiment E-146 will be presented to confirm the energy and density scaling. Finally, QCD analogs of the electrodynamics effects will be discussed.
The tethered satellite electrodynamics experiment project
NASA Technical Reports Server (NTRS)
Price, John M.
1988-01-01
NASA and Italy's PSN have undertaken the Tethered Satellite Electrodynamics Experiment, in which two tethered bodies will be equipped with data-collecting scientific instruments, as the first stage of the development of the Tethered Satellite System that can be deployed by the Space Shuttle. The experiment will give attention to the electromagnetic interaction between the satellite/tether/orbiter system and the ambient space plasma, and should demonstrate the operation of both satellite- and Shuttle-borne electrodynamic instruments with a conductive tether.
Fluid dynamics of heart development.
Santhanakrishnan, Arvind; Miller, Laura A
2011-09-01
The morphology, muscle mechanics, fluid dynamics, conduction properties, and molecular biology of the developing embryonic heart have received much attention in recent years due to the importance of both fluid and elastic forces in shaping the heart as well as the striking relationship between the heart's evolution and development. Although few studies have directly addressed the connection between fluid dynamics and heart development, a number of studies suggest that fluids may play a key role in morphogenic signaling. For example, fluid shear stress may trigger biochemical cascades within the endothelial cells of the developing heart that regulate chamber and valve morphogenesis. Myocardial activity generates forces on the intracardiac blood, creating pressure gradients across the cardiac wall. These pressures may also serve as epigenetic signals. In this article, the fluid dynamics of the early stages of heart development is reviewed. The relevant work in cardiac morphology, muscle mechanics, regulatory networks, and electrophysiology is also reviewed in the context of intracardial fluid dynamics. PMID:21327946
NASA Astrophysics Data System (ADS)
Soonsin, V.; Krieger, U. K.; Peter, T.
2010-12-01
Organic compounds are a major fraction of tropospheric aerosol. The organic fraction is usually internally mixed with inorganic salts. Surface-active organic matter or surfactants, enriched in the oceanic surface layer and transferred to the atmosphere by bubble-bursting processes, are the most likely candidates to contribute the observed organic fraction in sea salt aerosol [1, 2]. If the organic substance is a surfactant, it will lower the surface tension. In addition aggregates of the organic monomers, called micelles, will form if the concentration of the organic exceeds a certain limit (critical micelle concentration). These aggregates do have different morphology (spheres or globular or rod like micelles, or spherical bilayer vesicles etc.) and size, depending on the nature of the organic molecule, its concentration and the concentration of inorganic salts [3]. These aggregate may promote solubilisation of organic compounds in aqueous atmospheric aerosol. We performed measurements of ternary aqueous solution particles consisting of tetraethylene glycol monooctyl ether (C8E4) as organic surfactant and sodium chloride (NaCl) as inorganic salt and water (H2O) using single levitated aerosol particles in an electrodynamic balance. The particles can be stored contact-free in a temperature and humidity controlled chamber and optical resonance spectroscopy is used to monitor radius change [4]. Mie resonance spectra of ternary droplets show discontinuous growth with increasing relative humidity (RH) and also discontinuous shrinkage with decreasing relative humidity. We observe this behavior at temperatures and RHs at which the salt is completely deliquesced and the concentration of the organic surfactant is larger than the critical micelle concentration. Independent measurements of particle mass show also discontinuous water uptake. We speculate that this discontinuous, step-like, growth is caused by disaggregation of a micelle needed to conserve the monolayer of
Fluid damping and fluid stiffness of tube arrays in crossflow
Chen, S.S.; Zhu, S.; Jendrzejczyk, J.A.
1994-06-01
Motion-dependent fluid forces acting on a tube array were measured as a function of excitation frequency, excitation amplitude, and flow velocity. Fluid-damping and fluid-stiffness coefficients were obtained from measured motion-dependent fluid forces as a function of reduced flow velocity and excitation amplitude. The water channel and test setup provide a sound facility for obtaining key coefficients for fluidelastic instability of tube arrays in crossflow. Once the motion-dependent fluid-force coefficients have been measured, a reliable design guideline, based on the unsteady flow theory, can be developed for fluidelastic instability of tube arrays in crossflow.
Electrodynamic radioactivity detector for microparticles
NASA Astrophysics Data System (ADS)
Ward, T. L.; Davis, E. J.; Jenkins, R. W., Jr.; McRae, D. D.
1989-03-01
A new technique for the measurement of the radioactive decay of single microparticles has been demonstrated. Although the experiments were made with droplets of order 20 μm in diameter, microparticles in the range 0.1-100 μm can be accommodated. An electrodynamic balance and combination light-scattering photometer were used to measure the charge-loss rate and size of a charged microsphere suspended in a laser beam by superposed ac and dc electrical fields. The charged particle undergoes charge loss in the partially ionized gas atmosphere which results from radioactive decay of 14C-tagged compounds, and the rate of charge loss is proportional to the rate of decay here. The charge on a particle was determined by measuring the dc voltage necessary to stably suspend the particle against gravity while simultaneously determining the droplet size by light-scattering techniques. The parameters which affect the operation of the electrodynamic balance as a radioactivity detector are examined, and the limits of its sensitivity are explored. Radioactivity levels as low as 120 pCi have been measured, and it appears that by reducing the background contamination inside our balance activity levels on the order of 10 pCi can be detected. This new technique has application in the measurement of activity levels and source discrimination of natural and man-made aerosols and smokes and is also useful for studies involving specifically labeled radio-chemical probes.
Dobrovolsky, V.
2014-10-21
Developed in this work is an electrodynamic model of field effect transistor (FET) application for THz/subTHz radiation detection. It is based on solution of the Maxwell equations in the gate dielectric, expression for current in the channel, which takes into account both the drift and diffusion current components, and the equation of current continuity. For the regimes under and above threshold at the strong inversion the response voltage, responsivity, wave impedance, power of ohmic loss in the gate and channel have been found, and the electrical noise equivalent power (ENEP) has been estimated. The responsivity is orders of magnitude higher and ENEP under threshold is orders of magnitude less than these values above threshold. Under the threshold, the electromagnetic field in the gate oxide is identical to field of the plane waves in free-space. At the same time, for strong inversion the charging of the gate capacitance through the resistance of channel determines the electric field in oxide.
Electrodynamic Dust Shield Demonstrator
NASA Technical Reports Server (NTRS)
Stankie, Charles G.
2013-01-01
The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid
Electrodynamics and quantum capacity: The case of Bi{sub 2}Se{sub 3} topological insulator
Craco, L.
2015-11-14
Layered Bi-chalcogenide topological insulators are among the most available energy conversion (thermoelectric) and storage (battery) materials. Motivated by this applied aspect of fundamental importance and the good agreement between theory and key experiments probing spectroscopy and dc transport, we undertake a detailed study of electrodynamic responses of bulk Bi{sub 2}Se{sub 3} topological insulator. In particular, we confirm that the interplay between spin-orbit and electron correlations underpins its bulk metallicity. We show the implications of our proposal for the multi-channel nature of galvanostatic, voltage-capacity profiles intrinsic to Li{sub x}Bi{sub 2}Se{sub 3} battery material. Supported by a microscopic description of quantum capacity, we predict that layered Bi-based topological insulators are promising candidates for future high-voltage solid-state batteries.
NASA Technical Reports Server (NTRS)
Estes, Robert D.
1988-01-01
The goal is to extend the previous analysis of electromagnetic wave generation by an electrodynamic tethered satellite system to a more realistic model that includes the effects on wave propagation and reflection to the boundaries between ionosphere, atmosphere, and earth. One of the major activities was searching the scientific literature for publications that might be relevant to the problem. The software developed as SAO to follow the path of waves along field lines through the ionosphere to the atmosphere starting from an arbitary position in the atmosphere is described. Some preliminary results are presented from applying the code to the location of wave reception hot spots on the earth's surface for satellites operating at 300 and 600 km altitudes. A generalization of the Alfven wing analysis is presented to allow for arbitrary angles between the velocity vector, geomagnetic field, and the veritcal. This will be utilized in the modeling of the problem with boundaries included.
NASA Astrophysics Data System (ADS)
Noel, Alexis; Bhatia, Nitesh; Carter, Taren; Hu, David
2015-11-01
Saliva plays a key role in digestion, speech and tactile sensation. Lack of saliva, also known as dry mouth syndrome, increases risk of tooth decay and alters sense of taste; nearly 10% of the general population suffer from this syndrome. In this experimental study, we investigate the spreading of water drops on wet and dry tongues of pigs and cows. We find that drops spread faster on a wet tongue than a dry tongue. We rationalize the spreading rate by consideration of the tongue microstructure, such as as papillae, in promoting wicking. By investigating how tongue microstructure affects spreading of fluids, we may begin to how understand taste receptors are activated by eating and drinking.
NASA Astrophysics Data System (ADS)
Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.
2012-12-01
The ionospheric troughs are regions of remarkable electron density depression at subauroral and auroral latitudes, and significant electron density gradients exist at their boundaries. The high-latitude trough is defined as the low-density region present within the auroral oval or the polar cap. We present a detailed case study of the electrodynamics of a high-latitude trough observed at ~ 12 UT (~1 MLT) on March 8, 2008 using multiple instruments, including incoherent scattering radar (ISR), GPS total electron content (TEC), magnetometers and auroral imager. The electron density within the trough dropped as much as 80% within 6 minutes. This trough was collocated with a counter-clockwise convection flow vortex, indicating divergent horizontal electric fields and currents. Together with a collocated dark area shown in auroral images, the observations provide strong evidence for an existence of downward field-aligned currents (FACs) collocated with the high-latitude trough. This is further supported by Assimilative Mapping of Ionospheric Electrodynamics (AMIE) results. In addition, the downward FACs formed at about the same time as a substorm onset and east of the Harang reversal, suggesting it is part of the substorm current wedge. It has long been a puzzle why this type of high-latitude trough predominantly occurs just east of the Harang reversal in the post-midnight sector. We suggest that the high-latitude trough is associated with the formation of downward FACs of the substorm current system, which usually occur just east of the Harang reversal. In addition, we find that the ionospheric electron temperature within the high latitude trough decreases in the F region while increasing in the E region. We discuss possible processes responsible for the complex change in electron temperature, such as ion composition change and/or presence of downward FACs.
NASA Astrophysics Data System (ADS)
Xie, Kan; Martinez, Rafael A.; Williams, John D.
2014-04-01
This paper focuses on the net electron-emission current as a function of bias voltage of a plasma source that is being used as the cathodic element in a bare electrodynamic tether system. An analysis is made that enables an understanding of the basic issues determining the current-voltage (C-V) behaviour. This is important for the efficiency of the electrodynamic tether and for low impedance performance without relying on the properties of space plasma for varying orbital altitudes, inclinations, day-night cycles or the position of the plasma contactor relative to the wake of the spacecraft. The cathodic plasma contactor considered has a cylindrical discharge chamber (10 cm in diameter and ˜11 cm in length) and is driven by a hollow cathode. Experiments and a 1D spherical model are both used to study the contactor's C-V curves. The experiments demonstrate how the cathodic contactor would emit electrons into space for anode voltages in the range of 25-40 V, discharge currents in the range of 1-2.5 A, and low xenon gas flows of 2-4 sccm. Plasma properties are measured and compared with (3 A) and without net electron emission. A study of the dependence of relevant parameters found that the C-V behaviour strongly depends on electron temperature, initial ion energy and ion emission current at the contactor exit. However, it depended only weakly on ambient plasma density. The error in the developed model compared with the experimental C-V curves is within 5% at low electron-emission currents (0-2 A). The external ionization processes and high ion production rate caused by the discharge chamber, which dominate the C-V behaviour at electron-emission currents over 2 A, are further highlighted and discussed.
Can the master time asymmetry in nature be electrodynamic in origin?
NASA Technical Reports Server (NTRS)
Leiter, D.
1985-01-01
If the electrodynamic measurement process is operationally described by imposing measurement color onto classical electrodynamics, self-energy infinities are eliminated and a retarded electrodynamic time arrow emerges dynamically from internal dynamic-stability conditions. This occurs because the new formalism contains nonlocal radiation fields which carry a negative parity under mathematical time reversal. This result is shown to be compatible with an extended form of T and CPT symmetry which preserves the dynamically chosen retarded electrodynamic arrow of time in the measurement color electrodynamic formalism.
Gibbons, M.R.
1995-06-01
This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell`s equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents.
Marklund, G.T.; Blomberg, L.G. ); Murphree, J.S.; Elphinstone, R.D. ); Zanetti, L.J.; Erlandson, R.E. ); Sandahl, I. ); de la Beaujardiere, O. ); Opgenoorth, H. ); Rich, F.J. )
1991-06-01
The ionospheric electrodynamical state has been reconstructed for a transpolar arc event during northward interplanetary magnetic field conditions. An extensive set of observations by Viking and other satellites and by ground-based radars has been used to provide realistic model input data or to verify the modeling results. The resulting convection pattern is found to be consistent with the Viking electric field and intimately linked to the prevalent auroral distribution. It is characterized by a large evening cell, well extended across noon and split up by two separated potential minima, and a minor crescent-shaped morning cell. The convection signatures are found to vary a lot along the transpolar arc depending on the relative role of the arc-associated convection and the ambient convection. The transpolar arc is generally embedded in antisunward convective flow except near the connection points with the auroral oval, where sunward flow exists in localized regions.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Electrodynamic Tethers for Novel LEO Missions
NASA Technical Reports Server (NTRS)
Kantner, Michael; Hoyt, Robert; Scardera, Michael; Johnson, Charles
2011-01-01
The exponential increase of launch system size - and cost - with deltaV makes missions requiring large total impulse cost prohibitive. Northrop Grumman and partners have matured a fundamentally different method for generating propulsion using electrodynamic tethers (EDTs) that escapes the limitations of the rocket equation. With essentially unlimited delta V, we can perform new classes of missions that are currently unaffordable or unfeasible.
Linear Response Laws and Causality in Electrodynamics
ERIC Educational Resources Information Center
Yuffa, Alex J.; Scales, John A.
2012-01-01
Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…
FLUID- THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1994-01-01
The accurate computation of the thermodynamic and transport properties of fluids is a necessity for many engineering calculations. The FLUID program was developed to calculate the thermodynamic and transport properties of pure fluids in both the liquid and gas phases. Fluid properties are calculated using a simple gas model, empirical corrections, and an efficient numerical interpolation scheme. FLUID produces results that are in very good agreement with measured values, while being much faster than older more complex programs developed for the same purpose. A Van der Waals equation of state model is used to obtain approximate state values. These values are corrected for real-gas effects by model correction factors obtained from tables based on experimental data. These tables also accurately compensate for the special circumstances which arise whenever phase conditions occur. Viscosity and thermal conductivity values are computed directly from tables. Interpolation within tables is based on Lagrange's three point formula. A set of tables must be generated for each fluid implemented. FLUID currently contains tables for nine fluids including dry air and steam. The user can add tables for any fluid for which adequate thermal property data is available. The FLUID routine is structured so that it may easily be incorporated into engineering programs. The IBM 360 version of FLUID was developed in 1977. It is written in FORTRAN IV and has been implemented on an IBM 360 with a central memory requirement of approximately 222K of 8 bit bytes. The IBM PC version of FLUID is written in Microsoft FORTRAN 77 and has been implemented on an IBM PC with a memory requirement of 128K of 8 bit bytes. The IBM PC version of FLUID was developed in 1986.
FLUID- THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS (IBM VERSION)
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1994-01-01
The accurate computation of the thermodynamic and transport properties of fluids is a necessity for many engineering calculations. The FLUID program was developed to calculate the thermodynamic and transport properties of pure fluids in both the liquid and gas phases. Fluid properties are calculated using a simple gas model, empirical corrections, and an efficient numerical interpolation scheme. FLUID produces results that are in very good agreement with measured values, while being much faster than older more complex programs developed for the same purpose. A Van der Waals equation of state model is used to obtain approximate state values. These values are corrected for real-gas effects by model correction factors obtained from tables based on experimental data. These tables also accurately compensate for the special circumstances which arise whenever phase conditions occur. Viscosity and thermal conductivity values are computed directly from tables. Interpolation within tables is based on Lagrange's three point formula. A set of tables must be generated for each fluid implemented. FLUID currently contains tables for nine fluids including dry air and steam. The user can add tables for any fluid for which adequate thermal property data is available. The FLUID routine is structured so that it may easily be incorporated into engineering programs. The IBM 360 version of FLUID was developed in 1977. It is written in FORTRAN IV and has been implemented on an IBM 360 with a central memory requirement of approximately 222K of 8 bit bytes. The IBM PC version of FLUID is written in Microsoft FORTRAN 77 and has been implemented on an IBM PC with a memory requirement of 128K of 8 bit bytes. The IBM PC version of FLUID was developed in 1986.
Students' Difficulties with Vector Calculus in Electrodynamics
ERIC Educational Resources Information Center
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-01-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…
Quantum Hall effect in quantum electrodynamics
Penin, Alexander A.
2009-03-15
We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.
Lamb Shift in Nonrelativistic Quantum Electrodynamics.
ERIC Educational Resources Information Center
Grotch, Howard
1981-01-01
The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)
Nonlinear quantum electrodynamics in vacuum and plasmas
Brodin, Gert; Lundin, Joakim; Marklund, Mattias
2010-12-14
We consider high field physics due to quantum electrodynamics, in particular those that can be studied in the next generation of laser facilities. Effective field theories based on the Euler-Heisenberg Lagrangian are briefly reviewed, and examples involving plasma- and vacuum physics are given.
Electrodynamics in One Dimension: Radiation and Reflection
ERIC Educational Resources Information Center
Asti, G.; Coisson, R.
2011-01-01
Problems involving polarized plane waves and currents on sheets perpendicular to the wavevector involve only one component of the fields, so it is possible to discuss electrodynamics in one dimension. Taking for simplicity linearly polarized sinusoidal waves, we can derive the field emitted by currents (analogous to dipole radiation in three…
Null fluids: A new viewpoint of Galilean fluids
NASA Astrophysics Data System (ADS)
Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash
2016-05-01
In this article, we study a Galilean fluid with a conserved U (1 ) current up to anomalies. We construct a relativistic system, which we call a null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincaré symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in the derivative expansion. We also devise a mechanism to introduce U (1 ) anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean fluid.
Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission
NASA Technical Reports Server (NTRS)
Bilen, Sven G.; Johnson, Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael P.; Stone, Nobie H.
2014-01-01
The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion
Fluid dynamics and vibration of tube banks in fluid flow
Zukauskas, A.; Ulinskas, R.; Katinas, V.
1988-01-01
This work presents results derived in fluid dynamics, hydraulic drag and flow-induced vibrations within transverse and yawed tube banks. The studies encompass banks of smooth, rough and finned tubes at Reynolds numbers from 1 to 2x10/sup 6/. Highlighted in the text are fluid dynamic parameters of tube banks measured at inter-tube spaces and tube surfaces.
Planar Multilayer Circuit Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Minev, Z. K.; Serniak, K.; Pop, I. M.; Leghtas, Z.; Sliwa, K.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.
2016-04-01
Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar microfabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard microfabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two-cavity-mode, one-transmon-qubit system.
Zayats, Alexei E.
2014-03-15
In this paper we obtain the expression for the self-force in the model with the Lagrangian containing additional terms, quadratic in Maxwell tensor derivatives (so-called Bopp–Podolsky electrodynamics). Features of this force are analyzed for various limiting cases. When a charged particle moves along straight line with a uniform acceleration, an explicit formula is found. In the framework of the considered model, an observable renormalized particle mass is shown to depend on its acceleration. This dependence allows, in principle, to extract experimentally a value of the particle bare mass. -- Highlights: •An expression for the self-force in the Bopp–Podolsky electrodynamics is given. •For a uniformly accelerated charged particle an explicit formula for the self-force is obtained. •Dependence between the observable mass of a charged particle and its acceleration is found.
NASA Technical Reports Server (NTRS)
Estes, Robert D.; Grossi, Mario D.
1989-01-01
The problem of electromagnetic wave generation by an electrodynamic tethered satellite system is important both for the ordinary operation of such systems and for their possible application as orbiting transmitters. The tether's ionospheric circuit closure problem is closely linked with the propagation of charge-carrying electromagnetic wave packets away from the tethered system. Work is reported which represents a step towards a solution to the problem that takes into account the effects of boundaries and of vertical variations in plasma density, collision frequencies, and ion species. The theory of Alfen wave packet generation by an electrodynamic tethered system in an infinite plasma medium is reviewed, and brief summary of previous work on the problem is given. The consequences of the presence of the boundaries and the vertical nonuniformity are then examined. One of the most significant new features to emerge when ion-neutral collisions are taken into account is the coupling of the Alfven waves to the fast magnetosonic wave. This latter wave is important, as it may be confined by vertical variations in the Alfven speed to a sort of leaky ionospheric wave guide, the resonances of which could be of great importance to the signal received on the Earth's surface. The infinite medium solution for this case where the (uniform) geomagnetic field makes an arbitrary angle with the vertical is taken as the incident wave-packet. Even without a full solution, a number of conclusions can be drawn, the most important of which may be that the electromagnetic field associated with the operation of a steady-current tethered system will probably be too weak to detect on the Earth's surface, even for large tethered currents. This is due to the total reflection of the incident wave at the atmospheric boundary and the inability of a steady-current tethered system to excite the ionospheric wave-guide. An outline of the approach to the numerical problem is given. The use of
NASA Astrophysics Data System (ADS)
Hysell, D. L.; Larsen, M. F.; Swenson, C. M.; Barjatya, A.; Wheeler, T. F.; Bullett, T. W.; Sarango, M. F.; Woodman, R. F.; Chau, J. L.; Sponseller, D.
2006-07-01
Sounding rocket experiments were conducted during the NASA EQUIS II campaign on Kwajalein Atoll designed to elucidate the electrodynamics and layer structure of the postsunset equatorial F region ionosphere prior to the onset of equatorial spread F (ESF). Experiments took place on 7 and 15 August 2004, each comprised of the launch of an instrumented and two chemical release sounding rockets. The instrumented rockets measured plasma number density, vector electric fields, and other parameters to an apogee of about 450 km. The chemical release rockets deployed trails of trimethyl aluminum (TMA) which yielded wind profile measurements. The Altair radar was used to monitor coherent and incoherent scatter in UHF and VHF bands. Electron density profiles were also measured with rocket beacons and an ionosonde. Strong plasma shear flow was evident in both experiments. Bottom-type scattering layers were observed mainly in the valley region, below the shear nodes, in westward-drifting plasma strata. The layers were likely produced by wind-driven interchange instabilities as proposed by Kudeki and Bhattacharyya (1999). In both experiments, the layers were patchy and distributed periodically in space. Their horizontal structure was similar to that of the large-scale plasma depletions that formed later at higher altitude during ESF conditions. We argue that the bottom-type layers were modulated by the same large-scale waves that seeded the ESF. A scenario where the large-scale waves were themselves produced by collisional shear instabilities is described.
Quantum Electrodynamics Effects in Heavy Ions and Atoms
Shabaev, V. M.; Andreev, O. V.; Bondarev, A. I.; Glazov, D. A.; Kozhedub, Y. S.; Maiorova, A. V.; Tupitsyn, I. I.; Plunien, G.; Volotka, A. V.
2011-05-11
Quantum electrodynamics theory of heavy ions and atoms is considered. The current status of calculations of the binding energies, the hyperfine splitting and g factor values in heavy few-electron ions is reviewed. The theoretical predictions are compared with available experimental data. A special attention is focused on tests of quantum electrodynamics in strong electromagnetic fields and on determination of the fundamental constants. Recent progress in calculations of the parity nonconservation effects with heavy atoms and ions is also reported.
Casana, Rodolfo; Ferreira, Manoel M. Jr; Rodrigues, Josberg S.; Silva, Madson R. O.
2009-10-15
In this work, we examine the finite temperature properties of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}F{sup {alpha}}{sup {nu}}F{sup {rho}}{sup {phi}}. We begin analyzing the Hamiltonian structure following the Dirac's procedure for constrained systems and construct a well-defined and gauge invariant partition function in the functional integral formalism. Next, we specialize for the nonbirefringent coefficients of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. In the sequel, the partition function is explicitly carried out for the parity-even sector of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. The modified partition function is a power of the Maxwell's partition function. It is observed that the LIV coefficients induce an anisotropy in the black body angular energy density distribution. The Planck's radiation law, however, retains its frequency dependence and the Stefan-Boltzmann law keeps the usual form, except for a change in the Stefan-Boltzmann constant by a factor containing the LIV contributions.
Exact asymptotic form for the {beta} function in quantum electrodynamics
Suslov, I. M.
2009-06-15
It is shown that the asymptotic form of the Gell-Mann-Low function in quantum electrodynamics can be determined exactly: {beta}(g) = g for g {sup {yields}} {infinity}, where g = e{sup 2} is the running fine-structure constant. This solves the problem of electrodynamics at small distances L (for which dependence g {infinity} L{sup -2} holds) and completely eliminates the problem of 'zero charge.'.
Retrograde fluids in granulites: Stable isotope evidence of fluid migration
Morrison, J. ); Valley, J.W. )
1991-07-01
Widespread retrograde alteration assemblages document the migration of mixed H{sub 2}O-CO{sub 2} fluids into granulite facies rocks in the Adirondack Mountains. Fluid migration is manifest by (1) veins and patchy intergrowths of chlorite {plus minus} sericite {plus minus} calcite, (2) small veins of calcite, many only identifiable by cathodoluminescence, and (3) high-density, CO{sub 2}-rich or mixed H{sub 2}O-CO{sub 2} fluid inclusions. The distinct and varied textural occurrences of the alteration minerals indicate that fluid-rock ratios were low and variable on a local scale. Stable isotope ratios of C, O, and S have been determined in retrograde minerals from samples of the Marcy anorthosite massif and adjacent granitic gneisses (charnockites). Retrograde calcite in the anorthosite has a relatively small range in both {delta}{sup 18}O{sub SMOW} and {delta}{sup 13}C{sub PDB} (8.6 to 14.9% and {minus}4.1 to 0.4%, respectively), probably indicating that the hydrothermal fluids that precipitated the calcite had exchanged with a variety of crustal lithologies including marbles and orthogneisses, and that calcite was precipitated over a relatively narrow temperature interval. Values of {delta}{sup 34}S{sub CDT} that range from 2.8 to 8.3% within the anorthosite can also be interpreted to reflect exchange between orthogneisses and metasediments. The recognition of retrograde fluid migration is particularly significant in granulite facies terranes because the controversy surrounding the origin of granulites arises in part from differing interpretations of fluid inclusion data, specifically, the timing of entrapment of high-density, CO{sub 2}-rich inclusions. Results indicate that retrograde fluid migration, which in some samples may leave only cryptic petrographic evidence, is a process capable of producing high-density, CO{sub 2}-rich fluid inclusions.
Heikkilä, Oskari Oksanen, Jani; Tulkki, Jukka
2013-12-14
The rapid development of thin film light-emitting diodes (LEDs) has enabled the enhancement of the light extraction beyond geometrical limits but more quantitative understanding of the underlying optical processes is required to fully optimize the extraction. We present first-principle calculations of the light extraction efficiency and optical energy flow in thin-film LEDs. The presented model generalizes the methods of fluctuational electrodynamics to excited semiconductors and simultaneously accounts for wave optical effects, e.g., interference and near-field coupling as well as the internal absorption of the light-emitting material in determining the rate of light emission and internal dissipation in the optical cavity formed by a planar LED. The calculations show that in structures with a metallic mirror, the emissivity of the active region can approach unity at selected wavelengths, even when the nominal emissivity of the active region is only moderate. However, the results also show that near-field coupling of emission from the active region to the mirror can provide a substantial non-radiative loss channel reducing the maximum light extraction efficiency to 0.67 in our example setup. These losses can be partly compensated by the efficient photon recycling enabled by thick active regions that quench emission to confined modes and thereby reduce parasitic absorption.
Sarabi, B.; Ramanayaka, A. N.; Burin, A. L.; Wellstood, F. C.; Osborn, K. D.
2015-04-27
Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.
NASA Astrophysics Data System (ADS)
Sarabi, B.; Ramanayaka, A. N.; Burin, A. L.; Wellstood, F. C.; Osborn, K. D.
2015-04-01
Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm3), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.
Gauge principle for flows of an ideal fluid
NASA Astrophysics Data System (ADS)
Kambe, Tsutomu
2003-05-01
A gauge principle is applied to flows of a compressible ideal fluid. First, a free-field Lagrangian is defined with a constraint condition of continuity equation. The Lagrangian is invariant with respect to global SO(3) gauge transformations as well as Galilei transformation. From the variational principle, we obtain the equation of motion for a potential flow. Next, in order to satisfy local SO(3) gauge invariance, we define a gauge field and a gauge-covariant derivative. Requiring the covariant derivative to be Galilei-invariant, it is found that the gauge field coincides with the vorticity and the covariant derivative is the material derivative for the velocity. Based on the gauge principle and the gauge-covariant derivative, the Euler's equation of motion is derived for a homentropic rotational flow. Noether's law associated with global SO(3) gauge invariance leads to the conservation of total angular momentum. This provides a gauge-theoretical ground for analogy between acoustic-wave and vortex interaction in fluid dynamics and the electron-wave and magnetic-field interaction in quantum electrodynamics.
NASA Astrophysics Data System (ADS)
Bocker, R. P.
1993-10-01
A new approach for solving electromagnetic wave propagation problems is currently being developed at the Naval Command, Control and Ocean Surveillance Center (NCCOSC), RDT and E Division (NRaD). This new approach is based upon an eight by eight matrix representation of the Maxwell field equations. In addition, a computer software package based on this matrix representation of electromagnetic theory is also being written and tested at NRaD to handle a variety of scenarios involving electromagnetic wave propagation through matter. This software package is referred to as the MATURE Program. MATURE is the acronym for matrix approach to understanding relativistic electrodynamics. The MATURE program is written in MATLAB code for use on a Sun 4 SPARCstation 2 workstation. Under Independent Research (IR) FY 92 funding, this matrix approach was successfully employed in solving problems dealing with electromagnetic wave propagation through dielectric, crystalline, linear electro-optic, and magneto-optic materials of infinite extent. Under the Office of Naval Research (ONR) FY 93 funding, this matrix formulation was extended to handle problems involving wave propagation through multilayer dielectric media with planar boundaries. Presented in this technical document is the underlying theory of this matrix approach. Several numerical examples, based on the use of the MATURE program, are also included to illustrate the use of the matrix approach in solving electromagnetic wave propagation problems.
Helices of fractionalized Maxwell fluid
NASA Astrophysics Data System (ADS)
Jamil, Muhammad; Abro, Kashif Ali; Khan, Najeeb Alam
2015-12-01
In this paper the helical flows of fractionalized Maxwell fluid model, through a circular cylinder, is studied. The motion is produced by the cylinder that at the initial moment begins to rotate around its axis with an angular velocity Omegatp, and to slide along the same axis with linear velocity Utp. The solutions that have been obtained using Laplace and finite Hankel transforms and presented in series form in terms of the newly defined special function M(z), satisfy all imposed initial and boundary conditions. Moreover, the corresponding solutions for ordinary Maxwell and Newtonian fluid obtained as special cases of the present general solution. Finally, the influence of various pertinent parameters on fluid motion as well as the comparison among different fluids models is analyzed by graphical illustrations.
The Variety of Fluid Dynamics.
ERIC Educational Resources Information Center
Barnes, Francis; And Others
1980-01-01
Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)
Electrodynamic field equations for composite superconducting structures in the mixed state
Coffey, M.W.
1997-08-01
Governing vector partial differential equations for the linear electrodynamic response of an isotropic type-II superconductor in the mixed state are derived. A continuum theory of vortex motion is used, and two-fluid effects are also accounted for. The governing equation is sufficiently general to reduce to either normal metal or dielectric material results in special limits. The complex-valued conductivity tensor of the mixed state is made explicit, and is also discussed for an anisotropic superconductor. The theory is illustrated with a planar superconducting waveguide problem, wherein the complex propagation constant, phase velocity, and surface impedance are obtained.
NASA Astrophysics Data System (ADS)
Sreeja, V.; Balan, N.; Ravindran, Sudha; Pant, Tarun Kumar; Sridharan, R.; Bailey, G. J.
2009-08-01
The role of electrodynamics in producing additional stratifications in the equatorial F region (F 3 layer) at dawn and dusk during geomagnetic storms is discussed. Two cases of F 3 layer at dawn (0600-0730 LT on 5 October 2000 and 8 December 2000) and one case of F 3 layer at dusk (1600-1730 LT on 5 October 2000) are observed, for the first time, by the digital ionosonde at the equatorial station Trivandrum (8.5°N 77°E dip ˜ 0.5°N) in India. The unusual F 3 layers occurred during the geomagnetic storms and are associated with southward turning of interplanetary magnetic field B z , suggesting that eastward prompt penetration electric field could be the main cause of the F 3 layers. The dawn F 3 layer on 5 October is modeled using the Sheffield University Plasmasphere-Ionosphere Model by using the E × B drift estimated from the real height variation of the ionospheric peak during the morning period. The model qualitatively reproduces the dawn F 3 layer. While the existing F 2 layer rapidly drifts upward and forms the F 3 layer and topside ledge, a new layer forming at lower heights develops into the normal F 2 layer.
Middle Atmosphere Electrodynamics During a Thunderstorm
NASA Technical Reports Server (NTRS)
Croskey, Charles L.
1996-01-01
Rocket-based instrumentation investigations of middle atmospheric electrodynamics during thunderstorms were conducted in coordination with balloon-measurements at Wallops Island, Virginia. Middle atmosphere electrodynamics and energy coupling are of particular importance to associated electrical processes at lower and higher altitudes. Objectives of this research effort included: (1) investigation of thunderstorm effects on middle atmosphere electrical structure, including spatial and temporal dependence; (2) characterization of electric field transients and the associated energy deposited at various altitudes; (3) evaluation of the vertical Maxwell current density over a thunderstorm to study the coupling of energy to higher altitudes; and (4) investigation of the coupling of energy to the ionosphere and the current supplied to the 'global circuit.'
Continuum mechanics, stresses, currents and electrodynamics.
Segev, Reuven
2016-04-28
The Eulerian approach to continuum mechanics does not make use of a body manifold. Rather, all fields considered are defined on the space, or the space-time, manifolds. Sections of some vector bundle represent generalized velocities which need not be associated with the motion of material points. Using the theories of de Rham currents and generalized sections of vector bundles, we formulate a weak theory of forces and stresses represented by vector-valued currents. Considering generalized velocities represented by differential forms and interpreting such a form as a generalized potential field, we present a weak formulation of pre-metric, p-form electrodynamics as a natural example of the foregoing theory. Finally, it is shown that the assumptions leading to p-form electrodynamics may be replaced by the condition that the force functional is continuous with respect to the flat topology of forms. PMID:27002071
Hamiltonian analysis of interacting fluids
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Ghosh, Subir; Mitra, Arpan Krishna
2015-05-01
Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary roles of the canonical (Noether) stress tensor and the symmetric one obtained by metric variation are discussed.
Magnetic Levitation Experiments with the Electrodynamic Wheel
NASA Astrophysics Data System (ADS)
Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian
Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.
Kinetic-energy-momentum tensor in electrodynamics
NASA Astrophysics Data System (ADS)
Sheppard, Cheyenne J.; Kemp, Brandon A.
2016-01-01
We show that the Einstein-Laub formulation of electrodynamics is invalid since it yields a stress-energy-momentum (SEM) tensor that is not frame invariant. Two leading hypotheses for the kinetic formulation of electrodynamics (Chu and Einstein-Laub) are studied by use of the relativistic principle of virtual power, mathematical modeling, Lagrangian methods, and SEM transformations. The relativistic principle of virtual power is used to demonstrate the field dynamics associated with energy relations within a relativistic framework. Lorentz transformations of the respective SEM tensors demonstrate the relativistic frameworks for each studied formulation. Mathematical modeling of stationary and moving media is used to illustrate the differences and discrepancies of specific proposed kinetic formulations, where energy relations and conservation theorems are employed. Lagrangian methods are utilized to derive the field kinetic Maxwell's equations, which are studied with respect to SEM tensor transforms. Within each analysis, the Einstein-Laub formulation violates special relativity, which invalidates the Einstein-Laub SEM tensor.
Middle atmospheric electrodynamics - Status and future
NASA Technical Reports Server (NTRS)
Goldberg, R. A.
1984-01-01
Recent theoretical and observational studies of middle atmosphere electrodynamics are reviewed. Attention is given to observations of large electric fields in the mesosphere and stratosphere which suggest magnitudes of about one volt per sq m. Recommendations are offered with respect to areas of future study, with emphasis on studies of the morphology of large electric fields, and their relationship with external influences such as magnetospheric electric fields and tropospheric thunderstorms.
Homogeneous quantum electrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
Homogeneous quantum electrodynamic turbulence
Shebalin, J.V.
1992-10-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
Students' difficulties with vector calculus in electrodynamics
NASA Astrophysics Data System (ADS)
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-12-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.
Quantum Electrodynamics in the POINCARÉ Gauge
NASA Astrophysics Data System (ADS)
Galvão, Carlos A. P.; Gaete, Patricio; Pimentel, B. M.
We consider the description of quantum electrodynamics in the Poincaré gauge. Dirac brackets and the U matrix are constructed. The U matrix has the same formal structure as that found in the Coulomb gauge. We consider a modified version of the Poincaré gauge conditions which restrict only the nonphysical components of the gauge potential. We show that the resulting description of QED turns out to be analogous to the Coulomb gauge.
Extension of Generalized Fluid System Simulation Program's Fluid Property Database
NASA Technical Reports Server (NTRS)
Patel, Kishan
2011-01-01
This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.
EMC Test Report Electrodynamic Dust Shield
NASA Technical Reports Server (NTRS)
Carmody, Lynne M.; Boyette, Carl B.
2014-01-01
This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.
Topological solitons in 8-spinor mie electrodynamics
Rybakov, Yu. P.
2013-10-15
We investigate the effective 8-spinor field model suggested earlier as the generalization of nonlinear Mie electrodynamics. We first study in pure spinorial model the existence of topological solitons endowed with the nontrivial Hopf invariant Q{sub H}, which can be interpreted as the lepton number. Electromagnetic field being included as the perturbation, we estimate the energy and the spin of the localized charged configuration.
Magnetic susceptibility of petroleum fluids
NASA Astrophysics Data System (ADS)
Ivakhnenko, O. P.; Potter, D. K.
2003-04-01
Technological progress in petroleum exploration, production and processing requires a profound knowledge of the magnetic properties of the petroleum fluids. However, as far as we know there are not widely available constants of magnetic susceptibility for the majority of petroleum fluids. We have therefore measured the mass magnetic susceptibility (χ_m) of several petroleum fluids (such as crude oils, refined oil fractions, and formation waters) from local and worldwide sites. The magnetic features of natural reservoir petroleum fluids, together with fluids connected with the petroleum industry (such as drilling fluids etc.), fall into the following categories: diamagnetic solutions, paramagnetic suspensions and ferromagnetic "ferrofluid" suspensions. In the current investigations we have concentrated on the natural reservoir fluids, which are generally diamagnetic. There were distinct differences between the χ_m of the crude oils and the formation waters, with the oils having generally a more negative value of χ_m. The magnetic susceptibility of the oils appears to be related to their main physical and chemical properties, such as density, composition of group hydrocarbons, sulphur content and concentration of organometallic compounds. Low acidity and low sulphur oils have more negative values of χ_m. Light fractions of crude oil consisting mainly of paraffinic and naphtenic hydrocarbons are the most diamagnetic. The content of the less diamagnetic aromatics increases in the kerosene and gas oil fractions, and results in an increase in the magnetic susceptibility. Also, the magnetic susceptibility of the heavy oil fraction has a significantly higher χ_m than the light fractions, which appears to be connected with a higher concentration of paramagnetic components in the heavy fraction. The χ_m of the oil from various oil provinces were compared and found to be different. It seems that values of χ_m reflect specific features of the geological conditions for
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...
Cooper, M.L.; Clauer, C.R.; Emery, B.A.
1995-10-01
Global parameters are obtained for the November 8-9, 1991, severe geomagnetic storm with the application of a slightly modified version of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) data inversion model. Inputs to the model include ground magnetometer data, satellite electron precipitation data, satellite ion drift data, and ion drift velocities obtained from radar measurements. The authors compare two of the AMIE computed parameters, the total Joule heating and the polar cap potential, to both the AE (12) index and the AE{sub AMIE} index, an AMIE modeled AE index created specifically for severe storm times. The equation obtained from a linear fit to the total Joule heating versus the AE{sub AMIE} index, closely resembles other equations found during much less disturbed times using the AE(12) index. These results using the AE(12) index appear to saturate at a level around 1300 nT. However, this saturation is associated with the calculation of the AE(12) index and not a physical result. An apparent saturation can also be seen in the comparison of the polar cap potential with the AE(12) index, but this is not the case when using the AE{sub AMIE} index. The comparison between the polar cap potential and the AE{sub AMIE} index yields an approximate linear relationship with a correlation coefficient of 0.80. From these results, the authors find that the magnitude of the auroral electrojets and the polar cap potential drop do not show signs of saturation at the activity levels that were present during the November 8-9, 1991 severe storm. 37 refs., 9 figs., 3 tabs.
The ElectroDynamic Delivery Experiment (EDDE)
NASA Astrophysics Data System (ADS)
Pearson, Jerome; Levin, Eugene; Oldson, John; Carroll, Joseph
2001-02-01
The ElectroDynamic Delivery Experiment (EDDE) is proposed for a space demonstration. EDDE consists of an autonomous space vehicle powered by lightweight solar arrays, a bi-directional electrodynamic tether, and batteries for power leveling. The EDDE vehicle can modify its orbit repeatedly without rocket fuel, and can change all six orbital parameters by modulating and reversing the current flow in the conducting tether. The base spacecraft is connected to the service module by a 6-km-long electrodynamic tether, and is designed for 2 kW of power and a total mass of 180 kg. Tether lifetime of several years is achieved with a two-strand caduceus, with the strands connected every few meters. Tether libration is minimized by mass distribution and by active current control. The vehicle and tether system concepts are developed, the operational envelopes are examined, and potential applications are evaluated. The EDDE vehicle is about twice as fast as ion rockets for high-inclination orbital plane changes, and has much higher maximum delta-V capability. A proof-of-concept experiment is proposed for a low-cost space demonstration. This on-orbit experiment could include additional secondary payloads; for example, EDDE could place low-ΔV, free-flying inspectors into arbitrary orbits from which they could approach selected objects without concern for tether dynamics or interference. .
NASA Astrophysics Data System (ADS)
Blash, Derek M.
The region known as Low-Earth Orbit (LEO) has become populated with artificial satellites and space debris since humanities initial venture into the region. This has turned LEO into a hazardous region. Since LEO is very valuable to many different countries, there has been a push to prevent further buildup and talk of even deorbiting spent satellites and debris already in LEO. One of the more attractive concepts available for deorbiting debris and spent satellites is a Bare Electrodynamic Tether (BET). A BET is a propellantless propulsion technique in which two objects are joined together by a thin conducting material. When these tethered objects are placed in LEO, the tether sweeps across the magnetic field lines of the Earth and induces an electromotive force (emf) along the tether. Current from the space plasma is collected on the bare tether under the action of the induced emf, and this current interacts with the Earth's magnetic field to create a drag force that can be used to deorbit spent satellites and space debris. A Plasma Contactor (PC) is used to close the electrical circuit between the BET and the ionospheric plasma. The PC requires a voltage and, depending on the device, a gas flow to emit electrons through a plasma bridge to the ionospheric plasma. The PC also can require a plasma discharge electrode and a heater to condition the PC for operation. These parameters as well as the PC performance are required to build an accurate simulation of a PC and, therefore, a BET deorbiting system. This thesis focuses on the development, validation, and implementation of a simulation tool to model the effects of a realistic hollow cathode PC system model on a BET deorbit system.
DEVELOPMENT OF NEW DRILLING FLUIDS
David B. Burnett
2003-08-01
The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.
Middle Atmosphere Electrodynamics (MAE). Middle atmospheric electrodynamics during MAP
NASA Technical Reports Server (NTRS)
Goldberg, R. A.
1989-01-01
The recent revival and strong motivation for research in middle atmospheric electrodynamics can be attributed, in large part, to the discovery of large (V/m) electric fields within the lower mesosphere during the decade prior to MAP. Subsequent rocket soundings appeared to verify the preliminary findings. During the MAP era, more sophisticated techniques have been employed to obtain measurements which respond positively to criticisms of earlier results, and which provide more insight regarding the character of the fields. The occurrence of mesospheric V/m electric fields now seems to require the presence of aerosols, of local winds and related dynamics, and of an atmospheric electrical conductivity less than 10(-10)S/m. Furthermore, new theoretical ideas describing the origin of the V/m fields are consistent with the measurements. The current status of results regarding V/m fields in the middle atmosphere is reviewed in light of the more widely accepted electric field structure for this region from rocket, balloon and modeling results.
Visualization of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.
NASA Astrophysics Data System (ADS)
Basov, Dmitrii N.
2002-12-01
An astonishing feature of underdoped high-Tc superconductors is that the energy scale associated with the formation of superconducting condensate dramatically exceeds the energy gap and appears to be of the interband caliber. This effect can be interpreted in terms of lowering of the electronic kinetic energy at T < Tc and thus points to a mechanism of superconductivity radically departing from the Bardeen — Cooper — Schrieffer (BCS) theory. This nontrivial superconducting state electrodynamics appears to be directly connected to anomalies of cuprates observed in the normal state, including the pseudogap, and to the lack of well-defined quasiparticles.
Contextual analysis of fluid intelligence
Salthouse, Timothy A.; Pink, Jeffrey E.; Tucker-Drob, Elliot M.
2008-01-01
The nature of fluid intelligence was investigated by identifying variables that were, and were not, significantly related to this construct. Relevant information was obtained from three sources: re-analyses of data from previous studies, a study in which 791 adults performed storage-plus-processing working memory tasks, and a study in which 236 adults performed a variety of working memory, updating, and cognitive control tasks. The results suggest that fluid intelligence represents a broad individual difference dimension contributing to diverse types of controlled or effortful processing. The analyses also revealed that very few of the age-related effects on the target variables were statistically independent of effects on established cognitive abilities, which suggests most of the age-related influences on a wide variety of cognitive control variables overlap with age-related influences on cognitive abilities such as fluid intelligence, episodic memory, and perceptual speed. PMID:19137074
Contextual analysis of fluid intelligence.
Salthouse, Timothy A; Pink, Jeffrey E; Tucker-Drob, Elliot M
2008-01-01
The nature of fluid intelligence was investigated by identifying variables that were, and were not, significantly related to this construct. Relevant information was obtained from three sources: re-analyses of data from previous studies, a study in which 791 adults performed storage-plus-processing working memory tasks, and a study in which 236 adults performed a variety of working memory, updating, and cognitive control tasks. The results suggest that fluid intelligence represents a broad individual difference dimension contributing to diverse types of controlled or effortful processing. The analyses also revealed that very few of the age-related effects on the target variables were statistically independent of effects on established cognitive abilities, which suggests most of the age-related influences on a wide variety of cognitive control variables overlap with age-related influences on cognitive abilities such as fluid intelligence, episodic memory, and perceptual speed. PMID:19137074
Chen, Hanning; McMahon, J. M.; Ratner, Mark A.; Schatz, George C.
2010-09-02
A new multiscale computational methodology was developed to effectively incorporate the scattered electric field of a plasmonic nanoparticle into a quantum mechanical (QM) optical property calculation for a nearby dye molecule. For a given location of the dye molecule with respect to the nanoparticle, a frequency-dependent scattering response function was first determined by the classical electrodynamics (ED) finite-difference time-domain (FDTD) approach. Subsequently, the time-dependent scattered electric field at the dye molecule was calculated using the FDTD scattering response function through a multidimensional Fourier transform to reflect the effect of polarization of the nanoparticle on the local field at the molecule. Finally, a real-time time-dependent density function theory (RT-TDDFT) approach was employed to obtain a desired optical property (such as absorption cross section) of the dye molecule in the presence of the nanoparticle’s scattered electric field. Our hybrid QM/ED methodology was demonstrated by investigating the absorption spectrum of the N3 dye molecule and the Raman spectrum of pyridine, both of which were shown to be significantly enhanced by a 20 nm diameter silver sphere. In contrast to traditional quantum mechanical optical calculations in which the field at the molecule is entirely determined by intensity and polarization direction of the incident light, in this work we show that the light propagation direction as well as polarization and intensity are important to nanoparticle-bound dye molecule response. At no additional computation cost compared to conventional ED and QM calculations, this method provides a reliable way to couple the response of the dye molecule’s individual electrons to the collective dielectric response of the nanoparticle.
NASA Astrophysics Data System (ADS)
Reiff, P. H.; Sazykin, S. Y.; Bala, R.; Coffey, V. N.; Chandler, M. O.; Minow, J. I.; Anderson, B. J.; Wolf, R.; Huba, J.; Baker, D. N.; Mauk, B.; Russell, C. T.
2015-12-01
The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle. Availability of in situ observations from Magnetospheric Multiscale (MMS), the Van Allen Probes (VAP), and THEMIS in the magnetosphere, field-aligned currents from AMPERE, as well as the ionospheric data from the Floating Potential Measurement Unit (FPMU) instrument suite on board the International Space Station (ISS) represents an exciting opportunity to analyze storm-related dynamics. Our real-time space weather alert system sent out a "red alert" warning users of the event 2 hours in advance, correctly predicting Kp indices greater than 8. During this event, the MMS observatories were taking measurements in the magnetotail, VAP were in the inner magnetosphere, THEMIS was on the dayside, and the ISS was orbiting at 400 km every 90 minutes. Among the initial findings are the crossing of the dayside magnetopause into the region earthward of 8 RE, strong dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS FPI instrument suite. At ionospheric altitudes, the FMPU measurements of the ion densities show dramatic post-sunset depletions at equatorial latitudes that are correlated with the particle flux dropouts measured by the MMS FPI. AMPERE data show highly variable currents varying from intervals of intense high latitude currents to currents at maximum polar cap expansion to 50 deg MLAT and exceeding 20 MA. In this paper, we use numerical simulations with global magnetohydrodynamic (MHD) models and the Rice Convection Model (RCM) of the inner magnetosphere in an attempt to place the observations in the context of storm-time global electrodynamics and cross-check the simulation global Birkeland currents with AMPERE distributions. Specifically, we will look at model-predicted effects of dipolarizations and the global convection on the inner magnetosphere via data-model comparison.
NASA Astrophysics Data System (ADS)
Chang, C. S.; Fluhler, H. U.
1991-12-01
Using the Weisskopf-Wigner technique, a self consistent quantum electrodynamic (SCQED) theory of spontaneous emission of radiation and single photon small signal gain is developed for high voltage free electron lasers (FEL). Excellent agreement is obtained simultaneously to our knowledge for the first time between the predictions and the experimental observations for lineshift, linewidth and gain. The SCQED theory predicts lineshift and broadening due to quantum mechanical effects for linear, helical and tapered undulator FELs which are not predicted by the classical/conventional FEL theories, but which have been observed 4,5,18,22,23,45,46. Excellent agreement is obtained between the SCQED theory predicted spontaneous emission spectra and the 1980?81 ACO FEL4,18, ACO Optical Klystron FEL45,46, Stanford 10.6 ?m FEL22 and Stanford 3.4 ?m FEL23 experimental spectra. This agreement is much better than the prediction from the classical/conventional FEL theory which gives errors of many tens of percent. We show that the spontaneous emission spectrum obtained from classical/conventional FEL theories is valid only in the limit of a short undulator containing a small number of periods. The small signal gain derived from the SCQED theory is shown to reduce to Colson's gain formula12,34 in the classical limit. However, the SCQED theory predicts significant reductions in the small signal gain which agree well with the ACO gain data5, and are not predicted well by Colson's formula. Due to the non-neglible finite electron state lifetime, it is discovered that a fundamental physical gain limit exists which is universal to all types of FELs within the limits of the single photon transition scheme considered (i.e. if multiphoton effects are ignored). Finally, the implications of the theoretically obtained results are discussed for practical conditions of experimental interest. It is shown that under practical experimental conditions quantum effects can be quite important in the
Nonlinear electrodynamics and CMB polarization
Cuesta, Herman J. Mosquera; Lambiase, G. E-mail: lambiase@sa.infn.it
2011-03-01
Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.
Impedance Spectroscopy of Magnetic Fluids
NASA Astrophysics Data System (ADS)
Zubko, V. I.; Zubko, D. V.; Sitsko, G. N.
2014-01-01
We have investigated the laws governing the change in the electrophysical properties of decane-, turbine oil-, and kerosene-based magnetic fluids with the electric field frequency, dispersed phase concentration, and temperature. We have determined the optimal electric field frequencies, dispersed phase concentrations, and temperatures within the limits of which the electrophysical characteristics such as the relative permittivity, specific electric resistance, and the loss tangent of a dielectric appear to be the most informative to estimate the structure, composition, and properties of magnetic fluids.
Constitutive upscaling of MR fluids
NASA Astrophysics Data System (ADS)
Nika, Grigor; Vernescu, Bogdan
2015-11-01
We consider a suspension of solid magnetizable particles in a viscous fluid with an applied external magnetic field. We assume the fluid to be electrically non-conducting. Thus, we use the quasi-static Maxwell equations coupled with the Stokes equations to capture the magnetorheological effect. We upscale using two scale asymptotic expansions to obtain the effective equations consisting of a coupled nonlinear system in a connected phase domain as well as the new constitutive laws. Qualitative properties of the solution of this nonlinear system are studied.
Nanofriction in Cavity Quantum Electrodynamics.
Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna
2015-12-01
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. PMID:26684118
Nanofriction in Cavity Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Fogarty, T.; Cormick, C.; Landa, H.; Stojanović, Vladimir M.; Demler, E.; Morigi, Giovanna
2015-12-01
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
May, Jody C.; McLean, John A.
2013-01-01
The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Global electrodynamics from superpressure balloons
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; Hu, H.
1995-01-01
Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.
Optimal Electrodynamic Tether Phasing Maneuvers
NASA Technical Reports Server (NTRS)
Bitzer, Matthew S.; Hall, Christopher D.
2007-01-01
We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.
NASA Technical Reports Server (NTRS)
Hastings, D. E.; Gioulekas, A.
1987-01-01
Electrodynamic tethers have been proposed as a means of generating power in low earth orbit. One of the limitations on the power generated is the relatively low electron current that can be collected. It is proposed that the electron current can be significantly enhanced by means of current induced plasma turbulence in a plasma cloud around the collecting anode. This is examined for the specific case of lower hybrid turbulence. An important conclusion is that the use of plasma clouds in the ionosphere will entail a high impedance (no instability) and a low impedance (lower hybrid instability) mode of operation depending on the current density.
Fundamentals of Geophysical Fluid Dynamics
NASA Astrophysics Data System (ADS)
McWilliams, James C.
2006-07-01
Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org
NASA Astrophysics Data System (ADS)
Sayyah, Arash
Particulate contamination of the optical surfaces of solar collectors, often called "soiling", can have a significant deteriorating impact on energy yield due to the absorption and scattering of incident light. Soiling has more destructive effect on concentrated solar systems than on flat-plate photovoltaic panels, as the former are incapable of converting scattered sunlight. The first part of this thesis deals with the soiling losses of flat-plate photovoltaic (PV), concentrated solar power (CSP), and concentrated photovoltaic (CPV) systems in operation in several regions of the world. Influential parameters in dust accumulation losses, as well as different cleaning mechanisms in pursuit of restoring the efficiency of soiled systems, have been thoroughly investigated. In lieu of the most commonly-practiced manual cleaning method of using high-pressure water jets, the concept of automatic dust removal using the electrostatic forces of electrodynamic screen (EDS) technology is in a developmental stage and on its way toward commercialization. This thesis provides comprehensive analytical solutions for the electric potential and electric field distribution in EDS devices having different configurations. Numerical simulations developed using finite element analysis (FEA) software have corroborated the analytical solutions which can easily be embedded into software programs for particle trajectory simulations while also providing flexibility and generality in the study on the effect of different parameters of the EDS on the electric field and ensuing dust-removal performance. Evaluation and comparison of different repelling and attracting forces exerted on dust particles is of utmost importance to a detailed analysis of EDS performance in dust removal. Hence, the balance of electrostatic and adhesion forces, including van der Waals and capillary forces, have received significant attention in this dissertation. Furthermore, different numerical analyses have been
Contextual Analysis of Fluid Intelligence
ERIC Educational Resources Information Center
Salthouse, Timothy A.; Pink, Jeffrey E.; Tucker-Drob, Elliot M.
2008-01-01
The nature of fluid intelligence was investigated by identifying variables that were, and were not, significantly related to this construct. Relevant information was obtained from three sources: re-analyses of data from previous studies, a study in which 791 adults performed storage-plus-processing working memory tasks, and a study in which 236…
Cytology exam of pleural fluid
... of skin on your back is cleaned. Numbing medicine (local anesthetic) is injected in this area. The doctor inserts a needle through the skin and muscles of the chest wall into the pleural space. Fluid is collected. The needle is removed. A ...
Cytology exam of pleural fluid
... the lungs. This area is called the pleural space. Cytology means the study of cells. ... A sample of fluid from the pleural space is needed. The sample is taken using a procedure called thoracentesis . The procedure is done in the following way: You sit on a ...
NASA Technical Reports Server (NTRS)
Estes, Robert D.
1987-01-01
An electrodynamic tether deployed from a satellite in low-Earth orbit can perform, if properly instrumented, as a partially self-powered generator of electromagnetic waves in the ULF/ELF band, potentially at power levels high enough to be of practical use. Two basic problems are examined. The first is that of the level of wave power that the system can be expected to generate in the ULF/ELF radiation band. The second major question is whether an electrodynamic tethered satellite system for transmitting waves can be made partially self-powering so that power requirements for drag compensation can be met within economical constraints of mass, cost, and complexity. The theoretical developments and the system applications study are presented. The basic design criteria, the drag-compensation method, the effects on the propagation paths from orbit to Earth surface of high-altitude nuclear debris patches, and the estimate of masses and sizes are covered. An outline of recommended analytical work, to be performed as a follow-on to the present study, is contained.
Propulsion and Levitation with a Large Electrodynamic Wheel
NASA Astrophysics Data System (ADS)
Gaul, Nathan; Lane, Hannah
We constructed an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube magnets attached to the rim of the wheel. The radial magnetic field on the outside of the wheel was maximized by arranging the magnets into a series of Halbach arrays which amplify the field on one side of the array and reduce it on the other side. Rotating the wheel produces a rapidly oscillating magnetic field. When a conductive metal ``track'' is placed in this area of strong magnetic flux, eddy currents are produced in the track. These eddy currents create magnetic fields that interact with the magnetic fields from the electrodynamic wheel. The interaction of the magnetic fields produces lift and drag forces on the track which were measured with force gauges. Measurements were taken at a variety of wheel speeds, and the results were compared to the theoretical prediction that there should be a linear relationship between the lift and drag forces with increasing wheel speed. Partial levitation was achieved with the current electrodynamic wheel. In the future, the wheel will be upgraded to include 72 magnets rather than 36 magnets. This will double the frequency at which the magnetic field oscillates, increasing the magnetic flux. Electrodynamic wheels have applications to the transportation industry, since multiple electrodynamic wheels could be used on a vehicle to produce a lift and propulsion force over a conductive track.
Scaling temperature dependent rheology of magnetorheological fluids
NASA Astrophysics Data System (ADS)
Sherman, Stephen G.; Powell, Louise A.; Becnel, Andrew C.; Wereley, Norman M.
2015-05-01
Magnetorheological (MR) fluids are suspensions of micron-scale magnetizable particles suspended in a carrier fluid. When field is applied, MR fluids develop a field controllable yield stress and a field independent post-yield viscosity. However, this viscosity has substantial temperature dependence, varying by up to an order of magnitude over the operating temperature range of MR fluid devices. We apply non-Brownian suspension theory to explain this result and find that the majority of this effect should be caused by the temperature dependent behavior of the carrier fluid. Thus, if two fluids share the same carrier fluid, then their fluid properties should scale in temperature similarly. This result is first validated by measuring viscosity across temperature for custom model fluids designed to conform to theory, showing temperature scaling within 5% for both the MR fluids and their carrier fluid. Then, on a series of related commercially available fluids with unknown additive content, we show that the MR fluids exhibit common scaling to within 4%. We also investigate the effects of magnetic hysteresis and find that it induces a negligible increase in yield stress and no measurable change in viscosity. We conclude that our non-dimensional analysis enables the temperature dependence of novel MR fluids to be characterized with fewer experiments.
Beyond the Fluid Approximation: Improved Modeling of the Intracluster Plasma
NASA Astrophysics Data System (ADS)
O'Shea, Brian
Cosmological simulations of galaxy clusters typically treat the intracluster medium as a simple magnetized fluid - an approximation that is now understood to be simplistic at best due to the physical characteristics of this hot, diffuse, and weakly magnetized plasma. The properties of the intracluster medium at or near the resolution limits of cosmological simulations - including its viscosity, conductivity, and turbulent dissipation of energy - rely strongly on the properties of the plasma at smaller scales. In addition, observations of the intracluster medium display features relating to bubbles from active galactic nuclei, as well as shocks and cold fronts relating to cluster mergers, that are not typically reproduced in cosmological simulations. It is clear that a closer examination of our treatment of diffuse, ionized intergalactic plasmas in cosmological simulations is required in order to be able to meaningfully interpret current and future observations of galaxy clusters. We propose to advance our understanding of the plasma physical processes that are relevant in the intracluster medium using a combination of cosmological magnetohydrodynamical (MHD) simulations and targeted, parametrized simulations using non-ideal MHD, hybrid gyrokinetic + MHD, and particle-in-cell electrodynamics calculations. This proposal aims to create a unified, multiscale model of the intracluster medium, tying together plasma microinstabilities at the parsec and sub-parsec scale to the behavior and observable properties of galaxy clusters at the multi-kiloparsec and megaparsec scales. Using this coupling, we will be able to constrain our theoretical models using X-ray, Sunyaev-Zel'dovich, and radio observations of the intracluster medium. More broadly, this project addresses the clear need to closely examine our treatment of diffuse, ionized plasmas in cosmological simulations, in order to be able to meaningfully make predictions for, and interpret data from, large astronomical
Relaminarization of fluid flows
NASA Technical Reports Server (NTRS)
Narasimha, R.; Sreenivasan, K. R.
1979-01-01
The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.
Statistical Mechanics of Inhomogeneous Fluids
NASA Astrophysics Data System (ADS)
Schofield, P.; Henderson, J. R.
1982-01-01
The nature of the microscopic stress tensor in an inhomogenous fluid is discussed, with emphasis on the statistical mechanics of drops. Changes in free energy for isothermal deformations of a fluid are expressible as volume integrals of the stress tensor 'times' a strain terror. A particular radial distortion of a drop leads to statistical mechanical expressions for the pressure difference across the surface of the drop. We find that the stress tensor is not uniquely defined by the microscopic laws embodying conservation of momentum and angular momentum and that the ambiguity remains in the ensemble average, or pressure tensor, in regions of inhomomogeneity. This leads to difficulties in defining statistical mechanical expressions for the surface tension of a drop.
Lipscomb, R.; Craig, A.; Labrow, S.; Dunn, J.F.
1958-10-28
An apparatus is presented for separating gaseous mixtures by selectively freezing a constituent of the mixture and subsequently separating the frozen gas. The gas mixture is passed through a cylinder fltted with a cooling jacket, causing one gas to freeze on the walls of the cylinder. A set of scraper blades are provided in the interior of the cyllnder, and as the blades oscillate, the frozen gas is scraped to the bottom of the cylinder. Means are provided for the frozen material to pass into a heating chamber where it is vaporized and the product gas collected.
Reentrant Wetting of Network Fluids
NASA Astrophysics Data System (ADS)
Bernardino, N. R.; Telo da Gama, M. M.
2012-09-01
We use a simple mesoscopic Landau-Safran theory of network fluids to show that a reentrant phase diagram, in the “empty liquid” regime, leads to nonmonotonic surface tension and reentrant wetting, as previously reported for binary mixtures. One of the wetting transitions is of the usual kind, but the low temperature transition may allow the display of the full range of fluctuation regimes predicted by renormalization group theory.
Fluid-fluid levels in giant cell tumors of bone: report of two cases.
Kaplan, P A; Murphey, M; Greenway, G; Resnick, D; Sartoris, D J; Harms, S
1987-04-01
Fluid-fluid levels have been described in association with aneurysmal bone cysts, telangiectatic osteosarcoma, and a chondroblastoma. We report two cases of giant cell tumors of bone with fluid-fluid levels identified by computed tomography and, in one case, by magnetic resonance imaging. This finding has not previously been associated with giant cell tumors. The radiographic features of the fluid-fluid levels cannot be distinguished from those reported in other osseous neoplasms. PMID:3581850
Thermodynamics of geothermal fluids
Rogers, P.S.Z.
1981-03-01
A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.
NASA Astrophysics Data System (ADS)
Drew, D. A.; Brent, R.; Melly, S.; Schroeder, W.; Wells, S.
1985-02-01
An array of heated rods is lowered vertically in a cold water bath at a constant speed V in order to quench them to obtain desired mechanical properties. Relative to the rods, the water flows in a subchannel, is heated, and boils, while cooling the rods. A model is proposed and studied which considers a one dimensional flow in a subchannel. It is argued that the heat release occurs in a thin region, where water is heated to boiling conditions and boils completely to steam. Above this boiling layer, steam flows rapidly against the friction of the rod bundle. Below the boiling layer, the water flow is approximately hydrostatic. This results in the boiling layer moving at a constant speed proportional to V. The effect of cross flow (leaking into or out of the channel) is also investigated, and the results discussed.
Supercritical fluid regeneration of adsorbents
NASA Astrophysics Data System (ADS)
Defilippi, R. P.; Robey, R. J.
1983-05-01
The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.
NASA Astrophysics Data System (ADS)
Vidyaev, D.; Lutsenko, Yu; Boretsky, E.
2016-06-01
The paper shows the results of measurements of wave number of electromagnetic wave, which supports burning of high-frequency torch discharge in the mixture of air with water vapor and carbon dioxide. The nonmonotonic dependence of attenuation factor of electromagnetic waves is set on a concentration of water vapor. It is shown that the attenuation degree of electromagnetic field in the plasma with water vapor significantly exceeds the attenuation degree of electromagnetic field in the plasma with carbon dioxide.
NASA Astrophysics Data System (ADS)
Cao, Dayong
The spacetime coordinates do not measure the spacetime. It measures a structure of the object. The structure is massenergy center and spacetime around. It is build up by massenergy and spacetime together. The density of massenergy of solid is bigger than the one of the fluid or gas; contrariwise, the density of spacetime of the fluid or gas is bigger than the one of the solid. Because the density of spacetime is inversely proportional to the density of massenergy. The Einstein's equation has the other formula for the structure of the center of spacetime. The spacetime is wave, and the spacetime effect of the fluid and gas are about buoyancy, pressure, resistance, and temperature will be taken into Einstein's equation. It should explain of the low density asteroid-1950 DA and a rock hull of 67P/Churyumov-Gerasimenko. http://meetings.aps.org/link/BAPS.2015.APR.T1.24 http://meetings.aps.org/link/BAPS.2015.APR.H14.8
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
NASA Astrophysics Data System (ADS)
Casana, R.; Hora, E. da; Rubiera-Garcia, D.; Santos, C. dos
2015-08-01
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely, , , and . A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampère law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory.
The Law of Biot-Savart: The Beginnings of Electrodynamics, Additional Notes. Experiment No. 18.
ERIC Educational Resources Information Center
Devons, Samuel
This paper describes the events following the news of Oersted's discovery of the effects of a current of electricity on a magnetic needle. It focuses on Biot and Savart's law which expresses the force between a current element and a "molecule of magnetism" that can be deduced from Ampere's law of interaction between two current elements.…
Electrodynamics and plasma processes in the ionosphere
NASA Technical Reports Server (NTRS)
Heelis, R. A.
1987-01-01
The paper examines the advances achieved between 1983 and 1986 on understanding ionospheric electrodynamics and associated plasma processes, including an assessment of the roles of the E- and F-region neutral winds in providing the large-scale electric field in the ionosphere, as well as of the influence of electric fields of magnetospheric origin on the motion and distribution of plasma. Studies of the factors affecting the creation and evolution of plasma structure with many different scale sizes are discussed. Consideration is also given to the ground-based and in situ techniques used in these studies.
Subclassical fields and polarization in electrodynamics
Planat, Mathieu; Polonyi, Janos
2010-08-15
Expectation values of the electromagnetic field and the electric current are introduced at space-time resolution which belongs to the quantum domain. These allow us to approach some key features of classical electrodynamics from the underlying QED. One is the emergence of the radiation field in the retarded solution of the Maxwell equation, derived from an action principle. Another question discussed is the systematic derivation of the polarizability of a charge system. Furthermore, the decoherence and the consistency of the photon field are established by a perturbative calculation of the reduced density matrix for the electromagnetic field within the closed time path formalism.
Hawkins, C.A.
1989-02-01
Tests of Quantum Electrodynamics to order /alpha//sup 4/ in e/sup +/e/sup /minus// collisions using the ASP detector at PEP (/radical/s = 29 GeV) are presented. Measurements are made of e/sup +/e/sup /minus// /yields/ /gamma//gamma//gamma//gamma/, e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus///gamma//gamma/ and e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus//e/sup +/e/sup /minus// where all four final state particles are separated from the beam line and each other. These are the most precise and highest statistics measurements yet reported for these processes. The ratios of measured to predicted cross sections are /gamma//gamma//gamma//gamma/: 0.97 /plus minus/ 0.04 /plus minus/ 0.14 e/sup /+/e/sup /minus///gamma/gamma/: 0.94 /plus minus/ 0.03 /plus minus/ 0.03 e/sup +/e/sup /minus//e/sup +/e/sup /minus//: 1.01 /plus minus/ 0.02 /plus minus/ 0.04 where the first uncertainty is the systematic uncertainty, and the second is the statistical uncertainty. All measurements show good agreement with theoretical predictions. A Monte Carlo method for simulating multi-pole processes is also presented, along with applications to the e/sup +/e/sup /minus// /yields/ e/sup +/e/sup /minus///gamma//gamma/ and e/sup +/e/sup /minus// /yields/ /gamma//gamma//gamma//gamma/ processes. The first measurements of five-body /alpha//sup 5/ events (/sup 5//gamma/, e/sup +/e/sup /minus///gamma//gamma//gamma/ and e/sup +/e/sup /minus//e/sup +/ e/sup /minus///gamma/) and one candidate six-body /alpha//sup 6/event (e/sup +/e/sup /minus//4/gamma/) are reported. Both the /alpha//sup 5/ and /alpha//sup 6/ measurements agree with estimates of their cross sections. 20 refs., 34 figs., 14 tabs.
Analysis of regularizing properties of nonlinear electrodynamics in the Einstein-Born-Infeld theory
Denisov, V. I. Sokolov, V. A.
2011-12-15
New regularizing manifestations of the Einstein-Born-Infeld theory for a massive charged force center in the space-time are considered. The properties of isotropic geodesics in this space are analyzed. It is shown that the charge may exceed the maximum possible charge in the Reissner-Nordstroem solution; the possibility of eliminating one of the metric horizons is also noted.
Study of the Electrodynamic Response of MgB2 Sintered Pellets and Thin Films
NASA Astrophysics Data System (ADS)
Andreone, A.; di Gennaro, E.; Lamura, G.; Salluzzo, M.; Le Cochec, J.; Gauzzi, A.; Cantoni, C.; Paranthaman, M.; Ceresara, S.; Giunchi, G.
We present a number of experimental results on the temperature dependence of the magnetic penetration depth λ and on the temperature and field dependence of the microwave surface impedance Zs=Rs+iXs in both pellets and thin films of MgB2, exhibiting critical temperatures ranging between 26 and 38 K. Accurate measurements of Zs(H,T) were performed by means of a sapphire dielectrically loaded cavity operating in the microwave region (20 GHz). The study of λ(T) was carried out employing a single coil mutual inductance technique in the MHz region. An anisotropic s-wave BCS model can account for the temperature dependence experimentally observed in the penetration depth data of the best films, confirming previous reports on the conventional nature of superconductivity in diborides. On the contrary, films having a reduced value of the critical temperature and pellets show no evidence of saturation, and the experimental results strictly follow a quadratic dependence down to the lowest temperatures. We explain this behavior with the presence of metallic Mg inclusions that may locally depress the gap. The study of the surface impedance versus temperature and field shows also that the source of microwave loss can be markedly different, depending on the structural and transport properties of the samples.
On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures
Ostrovsky, A.O.
1993-09-01
This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density-modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.
Selected topics of fluid mechanics
Kindsvater, Carl E.
1958-01-01
The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as
Finite element simulation of thunderstorm electrodynamics in the proximity of the storm
NASA Technical Reports Server (NTRS)
Baginski, Michael Edward
1988-01-01
Observations of electric fields, Maxwell current density, and air conductivity over thunderstorms were presented. The measurements were obtained using electric field mils and conductivity probes installed on a U2 aircraft as the aircraft passed approximately directly over an active thunderstorm at an altitude of 18 to 20 km. Accurate electrical observations of this type are rare and provide important information to those involved in numerically modeling a thunderstorm. A preliminary set of computer simulations based on this data were conducted and are described. The simulations show good agreement with measurements and are used to infer the thundercloud's charging current and amount of charge exchanged per flash.
NASA Technical Reports Server (NTRS)
Nacozy, P. E.
1984-01-01
The equations of motion are developed for a perfectly flexible, inelastic tether with a satellite at its extremity. The tether is attached to a space vehicle in orbit. The tether is allowed to possess electrical conductivity. A numerical solution algorithm to provide the motion of the tether and satellite system is presented. The resulting differential equations can be solved by various existing standard numerical integration computer programs. The resulting differential equations allow the introduction of approximations that can lead to analytical, approximate general solutions. The differential equations allow more dynamical insight of the motion.
Stress Relaxation of Magnetorheological Fluids
NASA Astrophysics Data System (ADS)
Li, W. H.; Chen, G.; Yeo, S. H.; Du, H.
In this paper, the experimental and modeling study and analysis of the stress relaxation characteristics of magnetorheological (MR) fluids under step shear are presented. The experiments are carried out using a rheometer with parallel-plate geometry. The applied strain varies from 0.01% to 100%, covering both the pre-yield and post-yield regimes. The effects of step strain, field strength, and temperature on the stress modulus are addressed. For small step strain ranges, the stress relaxation modulus G(t,γ) is independent of step strain, where MR fluids behave as linear viscoelastic solids. For large step strain ranges, the stress relaxation modulus decreases gradually with increasing step strain. Morever, the stress relaxation modulus G(t,γ) was found to obey time-strain factorability. That is, G(t,γ) can be represented as the product of a linear stress relaxation G(t) and a strain-dependent damping function h(γ). The linear stress relaxation modulus is represented as a three-parameter solid viscoelastic model, and the damping function h(γ) has a sigmoidal form with two parameters. The comparison between the experimental results and the model-predicted values indicates that this model can accurately describe the relaxation behavior of MR fluids under step strains.
Soliton configurations in generalized Mie electrodynamics
Rybakov, Yu. P.
2011-07-15
The generalization of the Mie electrodynamics within the scope of the effective 8-spinor field model is suggested, with the Lagrangian including Higgs-like potential and higher degrees of the invariant A{sub Micro-Sign }A{sup Micro-Sign }. Using special Brioschi 8-spinor identity, we show that the model includes the Skyrme and the Faddeev models as particular cases. We investigate the large-distance asymptotic of static solutions and estimate the electromagnetic contribution to the energy of the localized charged configuration.
NASA Technical Reports Server (NTRS)
Arnold, D. A.; Dobrowolny, M.
1981-01-01
An algorithm for using electric currents to control pendular oscillations induced by various perturbing forces on the Skyhook wire is considered. Transverse and vertical forces on the tether; tether instability modes and causes during retrieval by space shuttle; simple and spherical pendulum motion and vector damping; and current generation and control are discussed. A computer program for numerical integration of the in-plane and out-of-plane displacements of the tether vs time was developed for heuristic study. Some techniques for controlling instabilities during payload retrieval and methods for employing the tether for launching satellites from the space shuttle are considered. Derivations and analyses of a general nature used in all of the areas studied are included.
An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.
1981-01-01
The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.
An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus
NASA Astrophysics Data System (ADS)
Cloutier, P. A.; Tascione, T. F.; Daniell, R. E.
1981-06-01
The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.
Importance of mechanical testing of hydraulic fluids
Reichel, J.
1997-12-31
Anti-wear properties of hydraulic fluids are important because hydraulic pump and motor wear is costly. Hydraulic fluid performance specifications represent minimum requirements. International hydraulic fluid performance standards are being developed by ISO/TC28/SC4 committee as draft (ISO DIS 11158 ``Specifications for Mineral Oil Hydraulic Fluids``). Performance specifications for non-mineral oil hydraulic fluids are also being developed. Typically, both the user and fluid manufacturer have insufficient information relating to the anti-wear properties of a new fluid to be used in hydraulic equipment, such as axial piston pumps, vane pumps or radial piston motors. Therefore, pump lubrication and operation requirements, preferably pre-existing in pump manufacturer`s specifications, must be determined. The required fluid lubrication properties may be determined by either laboratory pump tests or by a field trial, often at the expense of the customer. More preferably, the lubrication properties of the hydraulic fluid should be determined under mechanical conditions equivalent to field practice. In this paper, the use of both the vane pump test and the FZG Gear Test to predetermine the recommended hydraulic fluid lubrication performance will be discussed. In this way, fluid performance may be determined at significantly lower cost than more expensive large scale hydraulic pump and motor tests which are slower and more energy consuming.
Method of recovering oil-based fluid
Brinkley, H.E.
1993-07-13
A method is described of recovering oil-based fluid, said method comprising the steps of: applying an oil-based fluid absorbent cloth of man-made fiber to an oil-based fluid, the cloth having at least a portion thereof that is napped so as to raise ends and loops of the man-made fibers and define voids; and absorbing the oil-based fluid into the napped portion of the cloth.
Fundamental Processes of Atomization in Fluid-Fluid Flows
NASA Technical Reports Server (NTRS)
McCready, M. J.; Chang, H.-C.; Leighton, D. T.
2001-01-01
This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.
Electrodynamics of the Nighttime Equatorial Ionosphere: the Effects of Winds and Waves
NASA Astrophysics Data System (ADS)
Gelinas, L. J.; Kelley, M. C.; Clemmons, J.; Larsen, M.; Makela, J.
2004-12-01
In this paper we present initial results from two sounding rockets designed to study the coupling bewteen neutral winds and electric fields in the equatorial ionosphere. The combined instrumented and chemical release payloads were launched from Kwajalein in September 2004. The rockets carried instruments measuring electric fields, plasma densities, neutral densities, and was accompanied by a TMA release to profile neutral winds. Ground based airglow imagers and were used to determine mesospheric conditions; specifically, the presence of gravity waves. The goal of the experiment was to investigate correlations between the gravity wave wind structure and local electric fields. This coupling is expected to be appreciable at the equator, where the magnetic field is nearly horizontal. Here we present initial results and discuss plans for data analysis.
NASA Technical Reports Server (NTRS)
Rueda, A.
1985-01-01
That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.
Calculating Thermophysical Properties Of 12 Fluids
NASA Technical Reports Server (NTRS)
Cleghorn, T. F.; Mccarty, R. D.
1991-01-01
MIPROPS is set of computer programs giving thermophysical and transport properties of selected fluids. Calculates properties of fluids in both liquid and vapor states over wide range of temperatures and pressures. Fluids included: helium, hydrogen, nitrogen, oxygen, argon, nitrogen trifluoride, methane, ethylene, ethane, propane, isobutane, and normal butane. All programs except helium program incorporate same equation of state. Written in FORTRAN 77.