Auroral electrojets and evening sector electron dropouts at synchronous orbit
NASA Technical Reports Server (NTRS)
Erickson, K. N.; Winckler, J. R.
1973-01-01
Evidence is presented in support of the concept that, during magnetospheric substorms, ionospheric auroral electrojet currents are directly coupled to the proton partial ring current in the outer magnetosphere. It has been found that for sufficiently isolated substorms the timing of the start of the electron dropout and of its maximum depression is in good agreement with the start and maximum of electrojet activity as indicated by the auroral electrojet index. This correlation suggests a direct coupling between the electrojet currents and the proton partial ring current.
Ionospheric very low frequency transmitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Spencer P.
2015-02-15
The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HFmore » heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach generates VLF radiations over a larger frequency band than by the modulated electrojet.« less
Convective amplification of Type 1 irregularities in the equatorial electrojet
NASA Technical Reports Server (NTRS)
Lee, K.; Kennel, C. F.
1972-01-01
Wave propagation and refraction of Type 1 irregularities in the equatorial electrojet were investigated. Quantitative calculation of wave refraction in a model electrojet showed that the direction of wave refraction must change sign at one altitude. Waves propagating with the electrons rotate their wave vectors upwards in the upper electrojet and downwards in the lower electrojet during the day, and vice versa at night. Furthermore, the altitude region of largest linear growth rate is also the one with the weakest refraction rate. Consequently, computations of the ray-path integrated wave growth shows that this region would dominate the backscatter spectrum from the electrojet if linear theory were valid, and it is further noted that the maximum amplitude wave should have phase velocities exceeding the ion acoustic speed. It was concluded that propagation alone, without inclusion of nonlinear effects, cannot explain backscatter observations of a constant Doppler frequency shift given by the ion acoustic speed.
The Equatorial Electrojet as seen from Satellites.
NASA Astrophysics Data System (ADS)
McCreadie, H.
2002-05-01
The equatorial electrojet is a thin electric current in the ionosphere over the dip equator around 100 to 115 km altitude normally flowing in an eastward direction. It has a distinct magnetic signature that can be clearly identified in most passes in the scalar and vector magnetic field measurements from magnetometers on board satellites. Two things will be presented; the effect filtering has on the morphology of the electrojet signature and a detailed study of longitudinal variation of the amplitude of the electrojet.
On the day-to-day variation of the equatorial electrojet during quiet periods
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Richmond, A. D.; Maute, A.; Liu, H.-L.; Pedatella, N.; Sassi, F.
2014-08-01
It has been known for a long time that the equatorial electrojet varies from day to day even when solar and geomagnetic activities are very low. The quiet time day-to-day variation is considered to be due to irregular variability of the neutral wind, but little is known about how variable winds drive the electrojet variability. We employ a numerical model introduced by Liu et al. (2013), which takes into account weather changes in the lower atmosphere and thus can reproduce ionospheric variability due to forcing from below. The simulation is run for May and June 2009. Constant solar and magnetospheric energy inputs are used so that day-to-day changes will arise only from lower atmospheric forcing. The simulated electrojet current shows day-to-day variability of ±25%, which produces day-to-day variations in ground level geomagnetic perturbations near the magnetic equator. The current system associated with the day-to-day variation of the equatorial electrojet is traced based on a covariance analysis. The current pattern reveals return flow at both sides of the electrojet, in agreement with those inferred from ground-based magnetometer data in previous studies. The day-to-day variation in the electrojet current is compared with those in the neutral wind at various altitudes, latitudes, and longitudes. It is found that the electrojet variability is dominated by the zonal wind at 100-120 km altitudes near the magnetic equator. These results suggest that the response of the zonal polarization electric field to variable zonal winds is the main source of the day-to-day variation of the equatorial electrojet during quiet periods.
Equatorial electrojet and its response to external electromagnetic effects
NASA Astrophysics Data System (ADS)
Bespalov, P. A.; Savina, O. N.
2012-09-01
In the quiet low-latitude Earth's ionosphere, a sufficiently developed current system that is responsible for the Sq magnetic-field variations is formed in quiet Sun days under the action of tidal streams. The density of the corresponding currents is maximum in the midday hours at the equatorial latitudes, where the so-called equatorial electrojet is formed. In this work, we discuss the nature of the equatorial electrojet. This paper studies the value of its response to external effects. First of all, it is concerned with estimating the possibility of using the equatorial electrojet for generating low-frequency electromagnetic signals during periodic heating of the ionosphere by the heating-facility radiation. The equatorial electrojet can also produce electrodynamic response to the natural atmospheric processes, e.g., an acoustic-gravity wave.
The convection electrojet and the substorm electrojet
NASA Astrophysics Data System (ADS)
Kamide, Y.; Nakamura, R.
1996-06-01
Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the electric field-dominant'' and conductivity-dominant'' auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions. Acknowledgements. This study is supported in part by the Ministry of Education, Science, Sports, and Culture in Japan, under a Grant-in-Aid for Scientific Research (Category B). Topical Editor D. Alcaydé thanks M. Lockwood and N. J. Fox for their help in evaluating this paper.--> Correspondence to: Y. Kamide-->
NASA Technical Reports Server (NTRS)
Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.
2017-01-01
Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.
Comparative In Situ Measurements of Plasma Instabilities in the Equatorial and Auroral Electrojets
NASA Technical Reports Server (NTRS)
Pfaff, Robert F.
2008-01-01
This presentation provides a comparison of in situ measurements of plasma instabilities gathered by rocket-borne probes in the equatorial and auroral electrojets. Specifically, using detailed measurements of the DC electric fields, current density, and plasma number density within the unstable daytime equatorial electrojet from Brazil (Guara Campaign) and in the auroral electrojet from Sweden (ERRIS Campaign), we present comparative observations and general conclusions regarding the observed physical properties of Farley-Buneman two-stream waves and large scale, gradient drift waves. The two stream observations reveal coherent-like waves propagating near the E x B direction but at reduced speeds (nearer to the presumed acoustic velocity) with wavelengths of approximately 5-10m in both the equatorial and auroral electrojet, as measured using the spaced-receiver technique. The auroral electrojet data generally shows extensions to shorter wavelengths, in concert with the fact that these waves are driven harder. With respect to gradient-drift driven waves, observations of this instability are much more pronounced in the equatorial electrojet, given the more favorable geometry for growth provided by the vertical gradient and horizontal magnetic field lines. We present new analysis of Guara rocket observations of electric field and plasma density data that reveal considerable structuring in the middle and lower portion of the electrojet (90-105 km) where the ambient plasma density gradient is unstable. Although the electric field amplitudes are largest (approximately 10-15 mV/m) in the zonal direction, considerable structure (approximately 5-10 mV/m) is also observed in the vertical electric field component as well, implying that the dominant large scale waves involve significant vertical interaction and coupling within the narrow altitude range where they are observed. Furthermore, a detailed examination of the phase of the waveforms show that on some, but not all occasions, locally enhanced eastward fields are associated with locally enhanced upwards (polarization) electric fields. The measurements are discussed in terms of theories involving the non-linear evolution and structuring of plasma waves.
The QBO modulation of the occurrence of the Counter Electrojet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei-Ren Chen; Yi Luo; Jun Ma
1995-10-15
The authors report long term studies of the geomagnetic field made in India, looking at variations in the horizontal component of the field. In particular they look at the counter electrojet (CEJ), which is an observed reversal in the equatorial electrojet inferred from its impact on the geomagnetic field. They use their long time series datasets to correlate the CEJ with solar cycle variations and with the quasi-biennial oscillation.
2001-03-15
order to characterize the auroral electrojet and the ambient and modified D-region directly above and near the HAARP (High Frequency Active Auroral...near the HAARP facility and along the west coast of Alaska. In addition in order to characterize the auroral electrojet on a continental scale and to...United States and Canada. Data from the complete array of D-region diagnostic systems was acquired during a number of Fall and Spring HAARP campaigns
NASA Technical Reports Server (NTRS)
Lee, K.; Kennel, C. F.
1972-01-01
A simple analysis is presented which indicates that Type 1 irregularities which have a slight component of propagation along the magnetic field may be more unstable than those which propagate across the field. It was found that significant irregularity amplitudes may occur at the northern or southern extremities of the equatorial electrojet from those modes with large north-south group velocity, and they could significantly change our understanding of nonlinear solutions of the electrojet instability.
NASA Astrophysics Data System (ADS)
Solovyev, Stepan; Boroev, Roman; Moiseyev, Alexey; Du, Aimin; Yumoto, Kiyohumi
According to the global ground geomagnetic observations in the six meridian chains and analysis of satellite measurements the auroral elektrojet features at various conditions in the solar wind (SW) and the IMF: during a sharp rise of dynamic pressure up to 15-60 nPa and variations in the intensity and sign of the IMF Bz-component to -40 --50 nT. The data obtained during super strong magnetic storms of October 29-30, 2003, November 20-21, 2003, November 07-08, 2004 and November 09-10, 2004 (Dst = -300 --400 nT) are analysed. The following scientific results are obtained: • It is shown that a sharp increase of the SW dynamic pressure (Pd) and the excitation of a sudden impulse (SC) during IMF Bz negative (Bz<0) leads to a simultaneous (with accuracy 1-3 min) increase of DP2 current system and the intensity of the western elec-trojet (Jw) in a broad sector of longitudes and expansion of Jw to the pole up to the polar cap latitudes with the velocity of VN = 1-3 km/s. • It is found that during the sharp rise of Pd up to 60 nPa for IMF Bz positive (Bz>0) 35 nT is the amplification of eastward magnetopause currents and DP2 current system are observed. Strengthening and dynamics of the westward electrojet is not observed. • We find that during periods of intensity growth of negative values of IMF Bz to -50 nT within a few hours there is a shift of the centers of auroral electrojet to the equator up to latitudes about 10-20 degrees along the meridian with a speed of 1-4 km/s with a simultaneous amplifications of Jw repeated in 1-2 hours with a duration of 1-2 hours at latitudes from low to auroral latitudes and with a possible extension to electrojets up to the polar cap latitudes and the abrupt extension of the subsequent Jw electrojets localization region by azimuth. • It is shown that after the electrojet displacement to the equator during southward direc-tion of IMF Bz and enhancement of the SW electric field the IMF Bz turning to the north accompanied by the poleward expansion of Jw electrojet at a speed of 1 km/s in a wide range of longitudes is observed. • It is found that the electrojet expansion to the pole during superstorms often occurs up to the polar cap latitudes due to the extension of the precipitating particles and increased ionospheric conductivity region from the low and auroral latitudes, but not due to the movement of localized westward electrojet along the meridian, as is the case in the substorm. The report discusses the possible causes of the dynamics of auroral electrojets under different geophysical conditions. This work was supported by the Presidium of the Russian Academy of Sciences (program 16, part 3), by the RFBR grant No.09-05-98546 and also supported by the SB RAS project No.69.
Investigating the auroral electrojets using Swarm
NASA Astrophysics Data System (ADS)
Smith, Ashley; Macmillan, Susan; Beggan, Ciaran; Whaler, Kathy
2016-04-01
The auroral electrojets are large horizontal currents that flow within the ionosphere in ovals around the polar regions. They are an important aspect of space weather and their position and intensity vary with solar wind conditions and geomagnetic activity. The electrojet positions are also governed by the Earth's main magnetic field. During more active periods, the auroral electrojets typically move equatorward and become more intense. This causes a range of effects on Earth and in space, including geomagnetically induced currents in power transmission networks, disturbance to radio communications and increased drag on satellites due to expansion of the atmosphere. They are also indicative of where the aurora are visible. Monitoring of the auroral electrojets in the pre-satellite era was limited to the network of ground-based magnetic observatories, from which the traditional AE activity indices are produced. These suffer in particular from the stations' poor distribution in position and so this motivates the use of satellite-based measurements. With polar low-Earth orbit satellites carrying magnetometers, all latitudes can be sampled with excellent resolution. This poster presents an investigation using Swarm's magnetometer data to detect the electrojets as the spacecraft move above them. We compare and contrast two approaches, one which uses vector data and the other which uses scalar data (Hamilton and Macmillan 2013, Vennerstrom and Moretto, 2013). Using ideas from both approaches we determine the oval positions and intensities from Swarm and earlier satellites. The variation in latitude and intensity with solar wind conditions, geomagnetic activity and secular variation of the main field is investigated. We aim to elucidate the relative importance of these factors. Hamilton, B. and Macmillan, S., 2013. Investigation of decadal scale changes in the auroral oval positions using Magsat and CHAMP data. Poster at IAGA 12th Scientific Assembly, 2013. http://nora.nerc.ac.uk/503037/ Vennerstrom, S. and Moretto, T., 2013. Monitoring auroral electrojets with satellite data. Space Weather, VOL. 11, 509-519, doi:10.1002/swe.20090
NASA Technical Reports Server (NTRS)
Iijima, T.; Kim, J. S.; Sugiura, M.
1984-01-01
The development of the polar cap current and the relationship of that development to the evolution of auroral electrojets during individual polar geomagnetic disturbances is studied using 1 min average data from US-Canada IMS network stations and standard magnetograms from sites on the polar cap and in the auroral zone. It is found that even when the auroral electrojet activity is weak, polar cap currents producing fields of magnitude approximately 100-200 nT almost always exist. A normal convection current system exists quasi-persistently in the polar cap during extended quiet or weakly disturbed periods of auroral electrojet activity. After one such period, some drastic changes occur in the polar cap currents, which are followed by phases of growth, expansion, and recovery. Polar cap currents cannot all be completely ascribed to a single source mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dronov, A.V.; Tsirs, V.E.
1988-11-01
We have investigated the relation between the precipitation of energetic electrons and protons (>30 keV), field aligned currents, and the position of the westward electrojet during the active phase of substorms. Our work is based on measurements by Kosmos-426 in November 11-12 and 22-25, 1971, and by Kosmos-900 and Interkosmos-17 in December 1-2, 1977. Maximum fluxes of precipitating energetic electrons arrive in the region of outflowing current. Maximum fluxes of protons are precipitated preferentially in regions of inflowing current. During the active phase of substorms, the maximum fluxes of energetic electrons are recorded at the leading edge of the westwardmore » electrojet.« less
Coordinated satellite and incoherent scatter observations. [of the ionosphere
NASA Technical Reports Server (NTRS)
Calderon, C. H. J.
1975-01-01
Measurements taken at the Jicamarca Radar Observatory at Lima, Peru during the Cooperative Sounding Rocket Program are reported. The following types of data were acquired: (1) electron density and temperature, (2) vertical plasma drift, (3) electrojet relative echo power density, (4) electrojet Doppler shift and condition, and (5) 150 km echoing region.
Field-aligned currents and the auroral electrojet
NASA Technical Reports Server (NTRS)
Cahill, L. J.; Potter, W. E.; Kintner, P. M.; Arnoldy, R. L.; Choy, L. W.
1974-01-01
A Nike Tomahawk with fields and particles payload was launched on Nov. 18, 1970, over a strong westward electrojet current and auroral forms moving rapidly to the east. Electron fluxes moving up and down the magnetic field lines were measured. Upward-moving electrons below 1-keV energy were dominant and were equivalent to a net downward electric current that fluctuated between .2 and .6 microamp/sq m during the flight above 130 km. As the rocket traversed this broad region of downward electric current over and to the north of the auroral forms, the horizontal electric field slowly rotated from east to west. The magnetic measurements indicate that the westward electrojet was a horizontal sheet of current several hundred kilometers in north-south extent.
Rocket investigations of the auroral electrojet
NASA Technical Reports Server (NTRS)
Davis, T. N.
1973-01-01
Five Nike-Tomahawk rockets were flown to measure perturbations in the magnitude of the geomagnetic field due to auroral electrojets. The dates and locations of the rocket launches are given along with a brief explanation of payloads and instrumentation. Papers published as a result of the project are listed. An abstract is included which outlines the scientific results from one of the flights.
NASA Technical Reports Server (NTRS)
Rastogi, R. G.
1974-01-01
The phenomenon of the depression of the geomagnetic horizontal field during the daytime hours of magnetically quiet days at equatorial stations is described. These events are generally seen around 0700 and 1600 LT, being more frequent during the evening than the morning hours. The evening events are more frequent during periods of low solar activity and in the longitude region of weak equatorial electrojet currents. The latitudinal extent of the phenomenon is limited to the normal equatorial electrojet region, and on some occasions the phenomenon is not seen at both stations, separated by only a few hours in longitude. During such an event, the latitudinal profile of the geomagnetic vertical field across the equator is reversed, the ionospheric drift near the equator is reversed toward the east, the q type of sporadic E layer is completely absent, and the height of the peak ionization in the F2 region is decreased. It is suggested that these effects are caused by a narrow band of current flowing westward in the E region of the ionosphere and within the latitude region of the normal equatorial electrojet, due to the reversal of the east-west electrostatic field at low latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, E.; Mercandalli, B.; Houngninou, E.
The authors describe results from a vertically oriented HF radar operated in the Ivory Coast, which studied irregularities in the E and F regions of the equatorial ionosphere. The authors report on irregularity observations at heights consistent with the equatorial electrojet, and at heights above the electrojet, and into the F1 layer. They observe irregularities into the F region in this work. The radar operated in the frequency range from 1 to 8 MHz.
NASA Astrophysics Data System (ADS)
Huang, Tao; Lühr, Hermann; Wang, Hui
2017-11-01
On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but it shows only little response to season and IMF By polarity. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
Field-aligned current and auroral Hall current characteristics derived from the Swarm constellation
NASA Astrophysics Data System (ADS)
Huang, Tao; Wang, Hui; Hermann, Luehr
2017-04-01
On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types simultaneously and for both hemispheres. The FAC distribution, derived from the Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their direction depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The most prominent auroral electrojets are found to be closely controlled by the solar wind input. But there is no dependence on the IMF By orientation. The eastward electrojet is about twice as strong in summer as in winter. Conversely, the westward electrojet shows less dependence on season. Part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. There is a clear channeling of return currents over the polar cap. Depending on IMF By orientation most of the current is flowing either on the dawn or dusk side. The direction of Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. But largest differences between summer and winter seasons are found for northward IMF Bz. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but shows only little response to the IMF By polarity.
Custom auroral electrojet indices calculated by using MANGO value-added services
NASA Astrophysics Data System (ADS)
Bargatze, L. F.; Moore, W. B.; King, T. A.
2009-12-01
A set of computational routines called MANGO, Magnetogram Analysis for the Network of Geophysical Observatories, is utilized to calculate customized versions of the auroral electrojet indices, AE, AL, and AU. MANGO is part of an effort to enhance data services available to users of the Heliophysics VxOs, specifically for the Virtual Magnetospheric Observatory (VMO). The MANGO value-added service package is composed of a set of IDL routines that decompose ground magnetic field observations to isolate secular, diurnal, and disturbance variations of magnetic field disturbance, station-by-station. Each MANGO subroutine has been written in modular fashion to allow "plug and play"-style flexibility and each has been designed to account for failure modes and noisy data so that the programs will run to completion producing as much derived data as possible. The capabilities of the MANGO service package will be demonstrated through their application to the study of auroral electrojet current flow during magnetic substorms. Traditionally, the AE indices are calculated by using data from about twelve ground stations located at northern auroral zone latitudes spread longitudinally around the world. Magnetogram data are corrected for secular variation prior to calculating the standard version of the indices but the data are not corrected for diurnal variations. A custom version of the AE indices will be created by using the MANGO routines including a step to subtract diurnal curves from the magnetic field data at each station. The custom AE indices provide more accurate measures of auroral electrojet activity due to isolation of the sunstorm electrojet magnetic field signiture. The improvements in the accuracy of the custom AE indices over the tradition indices are largest during the northern hemisphere summer when the range of diurnal variation reaches its maximum.
Detection of the 'continuous' H3(+) electrojet in the Jovian Aurora
NASA Astrophysics Data System (ADS)
Stallard, T. S.; Miller, S.; Achilleos, N.; Rego, D.; Prange, R.; Dougherty, M.; Joseph, R. D.
1999-09-01
Recently we have published the first detection of an auroral electrojet - a fast ion wind circulating around the auroral oval - on Jupiter (Rego et al., Nature, 399, 121-123). The detection was made during an unusual "auroral event", but raised the possibility that such electrojets might be detectable under "normal" auroral conditions. This work, currently in progress, is directed towards that aim. To accomplish this, high resolution infrared spectra and images of the Jovian aurora were taken on the nights of September 7-11(th) 1998, observing the nu_ {2} Q(1,0(-) ) line of H(+}_{3) at 3.953 mu m. The slit was aligned across the planet, perpendicular to the rotational axis, and the spectra were taken at 1 arcsec steps across the planet through the region of aurora. Each spectrum has been fitted row by row with a gaussian using height, width, background and central position as free parameters. This results in a measurement of how the relative central position varies across each spectra. Having processed the data, removing any systematic array effects, rotation, and instrumentally based spatial effects, we intend to show a measurable electrojet from the dopler shift it causes. This will be in the form of LOS maps of the auroral region at different CML taken over the 5 night observation period.
Generation of Currents in Weakly Ionized Plasmas through a Collisional Dynamo
NASA Astrophysics Data System (ADS)
Dimant, Yakov; Oppenheim, Meers; Fletcher, Alex
2016-10-01
Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. We argue that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for the current formation, ∇ × (U-> × B->) ≠ ∂ B-> / ∂ t , where U-> is the neutral flow velocity, B-> is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ̂ . For many systems, the displacement current, ∂ B-> / ∂ t , is negligible, making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates electrojets plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law. Work supported by NSF/DOE Grant PHY-1500439.
NASA Astrophysics Data System (ADS)
Bolaji, Olawale; Owolabi, Oluwafisayo; Falayi, Elijah; Jimoh, Emmanuel; Kotoye, Afolabi; Odeyemi, Olumide; Rabiu, Babatunde; Doherty, Patricia; Yizengaw, Endawoke; Yamazaki, Yosuke; Adeniyi, Jacob; Kaka, Rafiat; Onanuga, Kehinde
2017-01-01
In this work, we investigated the veracity of an ion continuity equation in controlling equatorial ionization anomaly (EIA) morphology using total electron content (TEC) of 22 GPS receivers and three ground-based magnetometers (Magnetic Data Acquisition System, MAGDAS) over Africa and the Middle East (Africa-Middle East) during the quietest periods. Apart from further confirmation of the roles of equatorial electrojet (EEJ) and integrated equatorial electrojet (IEEJ) in determining hemispheric extent of EIA crest over higher latitudes, we found some additional roles played by thermospheric meridional neutral wind. Interestingly, the simultaneous observations of EIA crests in both hemispheres of Africa-Middle East showed different morphology compared to that reported over Asia. We also observed interesting latitudinal twin EIA crests domiciled at the low latitudes of the Northern Hemisphere. Our results further showed that weak EEJ strength associated with counter electrojet (CEJ) during sunrise hours could also trigger twin EIA crests over higher latitudes.
NASA Astrophysics Data System (ADS)
Chakrabarty, D.; Bagiya, Mala S.; Thampi, Smitha V.; Pathan, B. M.; Sekar, R.
2013-12-01
The present investigation brings out, in contrast to the earlier works, the changes in the equatorial electrojet (EEJ) current in response to a few moderate (M-class) and low (C and B class) intensity solar flares during 2005-2010. Special care is taken to pick these flare events in the absence of prompt electric field perturbations associated with geomagnetic storms and substorms that also affect the electrojet current. Interestingly, only the normalized (with respect to the pre-flare level) deviations of daytime EEJ (and not the deviations alone) change linearly with the increases in the EUV and X-ray fluxes. These linear relationships break down during local morning hours when the E-region electric field approaches zero before reversal of polarity. This elicits that the response of EEJ strength corresponding to less-intense flares can be appropriately gauged only when the local time variation of the quiet time E-region zonal electric field is taken into account. The flare events enhanced the EEJ strength irrespective of normal or counter electrojet (CEJ) conditions that shows that solar flares change the E-region ionization density and not the electric field. In addition, the enhancements in the X-ray and EUV fluxes, for these flares occurring during this solar minimum period, are found to be significantly correlated as opposed to the solar maximum period, indicating the differences in the solar processes in different solar epochs.
Response of the auroral electrojet indices to abrupt southward IMF turnings
NASA Astrophysics Data System (ADS)
Gjerloev, J. W.; Hoffman, R. A.; Ohtani, S.; Weygand, J.; Barnes, R.
2010-05-01
We present results from a study of the behavior of the auroral electrojet indices following abrupt southward turnings of the IMF Bz. The auroral electrojet indices are calculated from observations made by more than 100 ground based stations provided by the SuperMAG collaborators. Based on three simple criteria we selected 73 events. In each event the interval of analysis started at the time of the IMF Bz southward turning and ended 45 minutes later or at the onset of any abrupt energy unloading event in the magnetosphere, regardless of size. We refer to this period as the "pre-unloading phase". To isolate the dependence of the auroral electrojets on the solar induced ionospheric conductivity during this phase we separated the standard AU/AL indices into two new sets of indices defined by the upper and lower envelope of the north-south component for all sunlit stations (AUs/ALs) and for all stations in darkness (AUd/ALd). Based on events and statistical analyses we can conclude that following a southward turning of the IMF Bz the AUd/ALd indices show no measurable response while the AUs/ALs indices clearly intensify. The intensifications of AUs/ALs are dependent on the intensity of the solar wind driver (as measured by IMF Bz or the Akasofu ɛ parameter). The lack of AUd/ALd response does not depend on the intensity of any subsequent substorm. We find that during these isolated events the ionospheric current system is primarily confined to the sunlit ionosphere. This truncated version of the classical global DP-2 current system suggests that auroral electrojet continuity is not maintained across the terminator. Because of its conductivity dependence on the solar zenith angle, this truncated global current pattern is expected to be highly dependent on UT and season and thus can be asymmetric between hemispheres. Thus we argue that the global two-cell DP-2 current system is not a consequence only of a southward turning of the IMF but requires also the reduction of the conductivity gradient at the terminator.
NASA Astrophysics Data System (ADS)
Pandey, Kuldeep; Sekar, R.; Anandarao, B. G.; Gupta, S. P.; Chakrabarty, D.
2018-03-01
Studies made earlier using ground-based observations of geomagnetic field over the Indian longitudes revealed that the occurrence of equatorial counter electrojet (CEJ) events in afternoon hours is more frequent during June solstice (May-June-July-August) in solar minimum than in other periods. In general, the June solstice solar minimum CEJ events occur between 1500 local time (LT) and 1800 LT with peak strength of about -10 nT at around 1600 LT. In order to understand the frequent occurrence of these CEJ events, an investigation is carried out using an equatorial electrojet model (Anandarao, 1976, https://doi.org/10.1029/GL003i009p00545) and the empirical vertical drift model by Fejer et al. (2008, https://doi.org/10.1029/2007JA012801). The strength, duration, peak value, and the occurrence time of CEJ obtained using electrojet model match remarkably well with the corresponding observation of average geomagnetic field variations. The occurrence of CEJ is found to be due to solar quiet (Sq) electric field in the westward direction which is manifested as downward drift in Fejer et al. (2008, https://doi.org/10.1029/2007JA012801) model output during 1500-1800 LT. Further, the occurrence of afternoon reversal of Sq electric field in this season is shown to be consistent with earlier studies from Indian sector. Therefore, this investigation provides explicit evidence for the role of westward Sq electric field on the generation of afternoon CEJ during June solstice in solar minimum periods over the Indian sector indicating the global nature of these CEJ events.
NASA Astrophysics Data System (ADS)
Sripathi, S.; Banola, S.; Emperumal, K.; Suneel Kumar, B.; Radicella, Sandro M.
2018-03-01
We investigate the role of storm time electrodynamics in suppressing the equatorial plasma bubble (EPB) development using multi-instruments over India during a moderate geomagnetic storm that occurred on 2 October 2013 where Dst minimum reached -80 nT. This storm produced unique signatures in the equatorial ionosphere such that equatorial electrojet strength showed signatures of an abrupt increase of its strength to 150 nT and occurrence of episodes of counter electrojet events. During the main phase of the storm, the interplanetary magnetic field Bz is well correlated with the variations in the equatorial electrojet/counter electrojet suggesting the role of undershielding/overshielding electric fields of magnetospheric origin. Further, observations showed the presence of strong F3 layers at multiple times at multiple stations due to undershielding electric field. Interestingly, we observed simultaneous presence of F3 layers and suppression of EPBs in the dusk sector during the recovery phase. While strong EPBs were observed before and after the day of the geomagnetic storm, suppression of the EPBs on the storm day during "spread F season" is intriguing. Our further analysis using low-latitude station, Hyderabad, during the time of prereversal enhancement suggests that intense Esb layers were observed on the storm day but were absent/weak on quiet days. Based on these results, we suggest that the altitude/latitude variation of disturbance dynamo electric fields/disturbance winds may be responsible for simultaneous detection of F3 layers, occurrence of low-latitude Es layers, and suppression of EPBs during the storm day along the sunset terminator.
NASA Technical Reports Server (NTRS)
Kern, J. W.
1961-01-01
This paper describes a mechanism for charge separation in the geomagnetically trapped radiation which may account for some observed phenomena associated with the polar aurora and the electrojet current systems. The following development is proposed: given that there exist eastward or westward longitudinal gradients in the geomagnetic field resulting from distortion of the geomagnetic field by solar streams, if the trapped radiation is adiabatic in character, radial drift separation of positive and negative charged particles must occur. It follows that, for bounded or irregular distributions of plasma number density in such an adiabatic - drift region, electric fields will arise. The origin of such electric fields will not arrest the drift separation of the charged particles, but will contribute to exponential growth of irregularities in the trapped plasma density. An adiabatic acceleration mechanism is described, which is based on incorporating the electrostatic energy of the particle in the energy function for the particle. Direct consequences of polarization of the geomagnetically trapped radiation will be the polar electrojet current systems and the polar aurora.
The equatorial electrojet satellite and surface comparison
NASA Technical Reports Server (NTRS)
Cain, J. C. (Editor); Sweeney, R. E. (Editor)
1972-01-01
The OGO 4 and 6 (POGO) magnetic field results for the equatorial electrojet indicate that while the present models are approximately correct, the possibility of a westward component must be incorporated. The scatter diagrams of POGO amplitudes and surface data show a correlation. The ratios between the amplitudes estimated from surface data and those at 400 km altitude are as follows: India 5 to 8, East Africa (Addis Ababa) 4, Central Africa 3, West Africa (Nigeria) 3, South America (Huancayo) 5, and Philippines 5. The variation in the ratio is due to the conductivity structure of the earth in various zones.
NASA Technical Reports Server (NTRS)
Webster, W., Jr.; Frawley, J. J.; Stefanik, M.
1984-01-01
Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.
ELF/VLF Wave Generation via HF Modulation of the Equatorial Electrojet at Arecibo Observatory
NASA Astrophysics Data System (ADS)
Flint, Q. A.; Moore, R. C.; Burch, H.; Erdman, A.; Wilkes, R.
2017-12-01
In this work we generate ELF/VLF waves by modulating the conductivity of the lower ionosphere using the HF heater at Arecibo. For many years, researchers have generated ELF/VLF waves using the powerful HF transmitters at HAARP, but few have attempted to do the same in the mid- to low- latitude region. While HAARP users have benefitted from the auroral electrojet, we attempt to exploit the equatorial electrojet to generate radio waves. On 31 July 2017, we transmitted at an HF frequency of 5.1 MHz (X-Mode) applying sinusoidal amplitude modulation in a step-like fashion from 0-5 kHz in 200 Hz steps over 10 seconds at 100% peak power to approximate a linear frequency ramp. We also transmitted 10-second-long fixed frequency tones spaced from 1 to 5 kHz. The frequency sweep is a helpful visual tool to identify generated waves, but is also used to determine optimal modulation frequencies for future campaigns. The tones allow us to perform higher SNR analysis. Ground-based B-field VLF receivers recorded the amplitude and phase of the generated radio waves. We employ time-of-arrival techniques to determine the altitude of the ELF/VLF signal source. In this paper, we present the initial analysis of these experimental results.
F2 layer characteristics and electrojet strength over an equatorial station
NASA Astrophysics Data System (ADS)
Adebesin, B. O.; Adeniyi, J. O.; Adimula, I. A.; Reinisch, B. W.; Yumoto, K.
2013-09-01
The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27-35 nT (at 1400 LT) , 30-40 nT (at 1200 LT) and 35-45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.
Monitoring Auroral Electrojet from Polar Cap Stations
NASA Astrophysics Data System (ADS)
Tan, A.; Lyatsky, W.; Lyatskaya, S.
2004-12-01
The auroral electrojet AL and AE geomagnetic activity indices are important for monitoring geomagnetic substorms. In the northern hemisphere these indices are derived from measurements at a set of geomagnetic observatories located in the auroral zone. In the southern hemisphere the major portion of the auroral zone is located on the ocean; this does not allow us to derive the auroral electrojet indices in the same way. We showed that monitoring the auroral electrojet is possible from magnetic field measurements at polar cap stations. For this purpose we used hourly values of geomagnetic field variations at four polar cap stations, distributed along polar cap boundary and occupying a longitudinal sector of about 14 hours, and calculated mean values of the total magnetic field disturbance T = (X2 + Y2 + Z2)1/2 where X, Y, and Z are geomagnetic field components measured at these polar cap stations. The set of the obtained values were called the T index. This index has a clear physical mining: it is the summary of geomagnetic disturbance in all three components averaged over the polar cap boundary. We found that correlation coefficients for the dependence of the T index on both AL and AE indices are as high as ~0.9 and higher. The high correlation of the T index with the AL and AE indices takes place for any UT hour when the stations were located at the night side. The T index further shows good correlation with solar wind parameters: the correlation coefficient for the dependence of the T index on the solar wind-geomagnetic activity coupling function is ~0.8 and higher, which is close to the correlation coefficient for AL index. The T index may be especially important in the cases when ground-based measurements in the auroral zone are impossible as in the southern hemisphere.
Ionospheric and Birkeland current distributions inferred from the MAGSAT magnetometer data
NASA Technical Reports Server (NTRS)
Zanetti, L. J.; Potemra, T. A.; Baumjohann, W.
1983-01-01
Ionospheric and field-aligned sheet current density distributions are presently inferred by means of MAGSAT vector magnetometer data, together with an accurate magnetic field model. By comparing Hall current densities inferred from the MAGSAT data and those inferred from simultaneously recorded ground based data acquired by the Scandinavian magnetometer array, it is determined that the former have previously been underestimated due to high damping of magnetic variations with high spatial wave numbers between the ionosphere and the MAGSAT orbit. Among important results of this study is noted the fact that the Birkeland and electrojet current systems are colocated. The analyses have shown a tendency for triangular rather than constant electrojet current distributions as a function of latitude, consistent with the statistical, uniform regions 1 and 2 Birkeland current patterns.
Infrasonic waves generated by supersonic auroral arcs
NASA Astrophysics Data System (ADS)
Pasko, Victor P.
2012-10-01
A finite-difference time-domain (FDTD) model of infrasound propagation in a realistic atmosphere is used to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. The Lorentz force and Joule heating are discussed in the existing literature as primary sources producing infrasound waves in the frequency range 0.1-0.01 Hz associated with the auroral electrojet. The results are consistent with original ideas of Swift (1973) and demonstrate that the synchronization of the speed of auroral arc and phase speed of the acoustic wave in the electrojet volume is an important condition for generation of magnitudes and frequency contents of infrasonic waves observable on the ground. The reported modeling also allows accurate quantitative reproduction of previously observed complex infrasonic waveforms including direct shock and reflected shockwaves, which are refracted back to the earth by the thermosphere.
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goertz, C. K.; Harrold, B. G.; Goldstein, M. L.; Lepping, R. P.; Fitch, C. A.; Sands, M. R.
1990-01-01
Time-series observations of the magnetotail-lobe magnetic field have been Fourier analyzed to compute the frequency-weighted energy density Pfz in the range 1-30 mHz. Pfz is generally observed in the range 0.0001-0.01 gamma-squared Hz with a mean value of 0.0012 during substorm growth phases and 0.001 in the comparison intervals. No strong correlation of Pfz is found with the auroral electrojet index in either set of intervals, but during substorm growth phases Pfz may vary by an order of magnitude over time scales of 30 min, with a tendency for higher power levels to occur later in the growth phase. Increases in Pfz precede by about 10 min localized expansive phase activity observed in individual magnetograms.
First demonstration of HF-driven ionospheric currents
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.
2011-10-01
The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.
Solar Cycle Effects on Equatorial Electrojet Strength and Low Latitude Ionospheric Variability (P10)
NASA Astrophysics Data System (ADS)
Veenadhari, B.; Alex, S.
2006-11-01
veena_iig@yahoo.co.in The most obvious indicators of the activity of a solar cycle are sunspots, flares, plages, and soon. These are intimately linked to the solar magnetic fields, heliospheric processes which exhibit complex but systematic variations. The changes in geomagnetic activity, as observed in the ground magnetic records follow systematic correspondence with the solar activity conditions. Thus the transient variations in the magnetic field get modified by differing solar conditions. Also the solar cycle influences the Earth causing changes in geomagnetic activity, the magnetosphere and the ionosphere. Daily variations in the ground magnetic field are produced by different current systems in the earth’s space environment flowing in the ionosphere and magnetosphere which has a strong dependence on latitude and longitude of the location. The north-south (Horizontal) configuration of the earth’s magnetic field over the equator is responsible for the narrow band of current system over the equatorial latitudes and is called the Equatorial electrojet (EEJ) and is a primary driver for Equatorial Ionization anomaly (EIA). Equatorial electric fields and plasma drifts play the fundamental roles on the morphology of the low latitude ionosphere and strongly vary during geomagnetically quiet and disturbed periods. Quantitative study is done to illustrate the development process of EEJ and its influence on ionospheric parameters. An attempt is also made to examine and discuss the response of the equatorial electrojet parameters to the fast varying conditions of solar wind and interplanetary parameters.
Variability of equatorial counter electrojet signatures in the Indian region
NASA Astrophysics Data System (ADS)
Chandrasekhar, N. Phani; Archana, R. K.; Nagarajan, Nandini; Arora, Kusumita
2017-02-01
The limited longitudinal extent of equatorial counter electrojet (CEJ) has been inferred by several workers based on the analysis of ground data. However, the scale length of CEJ characteristics at 2 h or less has not been estimated so far. The present study seeks to characterize the longitudinal variability of CEJ phenomena at a longitudinal separation of 15° by using hourly averaged variations at two equatorial electrojet (EEJ) pairs of stations: Hyderabad and Vencode at 77°E and Port Blair and Campbell Bay at 93°E. The nature of CEJ events is classified by time of occurrence and studied by using 12 months of concurrent data at the two longitudes. From examination of 323 CEJ events at VEN (Vencode) and 239 at CBY (Campbell Bay) over a period of 346 days, the observations are as follows: (i) the occurrence of CEJ is not simultaneous at VEN and CBY for about 40% of events; (ii) the amplitude and occurrence frequency of CEJ events is greater at VEN than at CBY during both Kp < 2 and Kp ≥ 2; and (iii) the influence of westward currents on the EEJ peak was evidenced by early or late peak occurrences comprising about 175 days at VEN and 89 days at CBY. It is established here that considerable variability of CEJ signatures is observed between the two longitudes at 15° separation, revealing the impact of local electrodynamics. These local processes therefore significantly influence the characteristics of EEJ.
NASA Astrophysics Data System (ADS)
Vineeth, C.; Mridula, N.; Muralikrishna, P.; Kumar, K. K.; Pant, T. K.
2016-09-01
This paper presents the first direct observational evidence for the possible role of meteoric activity in the generation of the equatorial Counter Electrojets (CEJ), an enigmatic daytime electrodynamical process over the geomagnetic equatorial upper atmosphere. The investigation carried out using the data from Proton Precession Magnetometer and Meteor Wind Radar over a geomagnetic dip equatorial station, Trivandrum (8.5°N, 77°E, 0.5°N dip lat.) in India, revealed that the occurrence of the afternoon CEJ events during a month is directly proportional to the average monthly meteor counts over this location. The observation is found to be very consistent during the considered period of study, i.e the years 2006 and 2007. The study vindicates that the meteor showers play a major role in setting up the background condition conducive for the generation of CEJ by reducing the strength of the upward polarization field.
Radiation shielding estimates for manned Mars space flight.
Dudkin, V E; Kovalev, E E; Kolomensky, A V; Sakovich, V A; Semenov, V F; Demin, V P; Benton, E V
1992-01-01
In the analysis of the required radiation shielding protection of spacecraft during a Mars flight, specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low- and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons.
Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet
NASA Technical Reports Server (NTRS)
Cole, Keith D.
1993-01-01
The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.
NASA Technical Reports Server (NTRS)
Lopez, R. E.; Koskinen, H. E. J.; Pulkkinen, T. I.; Bosinger, T.; Mcentire, R. W.; Potemra, T. A.
1993-01-01
A substorm that occurred on 7 June 1985 at 2209 UT for which simultaneous measurements from ground stations and CCE are available is considered. The event occurred during a close conjunction between CCE, the EISCAT magnetometer cross, and the STARE radar, allowing a detailed comparison of satellite and ground-based data. Two discrete activations took place during the first few minutes of this substorm: the expansion phase onset at 2209 UT and an intensification at 2212 UT, corresponding to a poleward expansion of activity. The energetic particle data indicate that the active region of the magnetotail during the 2212 UT intensification was located tailward of the active region at 2209 UT. This is direct evidence for a correspondence between tailward expansion of localized activity in the near-earth magnetotail (current disruption and particle energization) and poleward expansion of activity (electrojet formation) in the ionosphere.
Electrical changes of the polar ionosphere during magnetospheric substorms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, B.H.; Kamide, Y.; Akasofu, S.H.
1986-05-01
Changes of the distribution of the potential, electric fields, ionospheric currents, field-aligned currents, the Joule heat production rate, the particle energy injection rate and the total energy dissipation rate are examined in detail by comparing them at a presubstorm epoch and the maximum epoch for several substorms on March 17, 18, and 19, 1978. The data sets are obtained on the basis of the magnetic records from the six International Magnetospheric Study meridian chains of observatories by using the computer code developed by Kamide e-italict-italic a-italicl-italic. (1981) and the conductivity model developed by Ahn et al. (1983b). A number ofmore » global features that are found to be common to most of the substorms examined in this study include the following: (1) The positive potential cell in the morning sector extends into the evening sector during substorms. (2) When it is intensified, the westward electrojet on the nightside tends to flow equatorward of the positive potential ridge. (3) The so-called ''Harang discontinuity'' may be identified as the ridge of the negative potential cell. (4) The distribution of field- aligned currents determined by our method is more complicated than the statistical pattern obtained by polar orbiting satellites. (5) The basic ionospheric current pattern is fundamentally the same during a fairly quiet period, a slightly disturbed period and a substorm period. (6) The highest Joule heat production occurs along the westward extension of the westward electrojet, while the particle energy injection rate is high along the westward electrojet in the morning sector.« less
NASA Astrophysics Data System (ADS)
Abdu, M. A.; Nogueira, P. A. B.; Souza, J. R.; Batista, I. S.; Dutra, S. L. G.; Sobral, J. H. A.
2017-03-01
Large enhancement in the equatorial electrojet (EEJ) current can occur due to sudden increase in the E layer density arising from solar flare associated ionizing radiations, as also from background electric fields modified by magnetospheric disturbances when present before or during a solar flare. We investigate the EEJ responses at widely separated longitudes during two X-class flares that occurred at different activity phases surrounding the magnetic super storm sequences of 28-29 October 2003. During the 28 October flare we observed intense reverse electrojet under strong westward electric field in the sunrise sector over Jicamarca. Sources of westward disturbance electric fields driving large EEJ current are identified for the first time. Model calculations on the E layer density, with and without flare, and comparison of the results between Jicamarca and Sao Luis suggested enhanced westward electric field due to the flare occurring close to sunrise (over Jicamarca). During the flare on 29 October, which occurred during a rapid AE recovery, a strong overshielding electric field of westward polarity over Jicamarca delayed an expected EEJ eastward growth due to flare-induced ionization enhancement in the afternoon. This EEJ response yielded a measure of the overshielding decay time determined by the storm time Region 2 field-aligned current. This paper will present a detailed analysis of the EEJ responses during the two flares, including a quantitative evaluation of the flare-induced electron density enhancements and identification of electric field sources that played dominant roles in the large westward EEJ at the sunrise sector over Jicamarca.
Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet
NASA Astrophysics Data System (ADS)
Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick
2017-12-01
The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.
Global ionospheric current distributions during substorms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, B.; Kamide, Y.; Akasofu, S.
1984-03-01
The growth and decay of global ionospheric currents during magnetospheric substorms on March 17, 18, and 19, 1978 are examined on the basis of magnetic records from the six IMS meridian chains of observatories and others (the total number being 71). The computer code developed by Kamide et al. (1981) and the conductivity model developed by Ahn et al. (1983) are used. Several substorms centered around 1000-1200 UT are chosen in this presentation, since the simultaneous all-sky and riometer records are essential in timing the substorm epochs. Several global feautes that are common to most substorms during the three-day intervalmore » include the following: (1) During a quiet period, currents are often present in the cusp and/or polar cap regions. The cusp current consists of a pair of east-west currents and the polar cap current consists of several vortices. (2) When the interplanetary magnetic field (IMF) B/sub z/ component is positive, but decreases in magnitude, a well-defined westward electrojet develops in the midnight sector. However, this development is not evident in the AE index. (3) A gradual, but distinct growth (often followed by a rapid and large increase) in the AE index is indentified as the intensification of a weaksubstorm current system, which was mentioned in (2), accompanied by typical auroral substorm features, including riometer absorption. (4) The subsequent sharp increase of the AE index arises primarily from a deep intrusion of the westward electrojet into the pre-midnight sector and its equatorward shift. (5) The overall increase of the global current can be significantly differnt fromm what a sharp increase of the AE index indicates. (6) During the recovery phase, the intruded westward electrojet recedes towards the dawn sector.« less
NASA Astrophysics Data System (ADS)
Shand, B. A.; Lester, M.; Yeoman, T. K.
1996-08-01
A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s-1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s-1 and 700 m s-1. At velocities greater than 700 m s-1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.
Ground and Satellite Observations of ULF Waves Artificially Produced by HAARP
NASA Astrophysics Data System (ADS)
Chang, C.; Labenski, J.; Shroff, H.; Doxas, I.; Papadopoulos, D.; Milikh, G.; Parrot, M.
2008-12-01
Modulated ionospheric heating at ULF frequencies using the HAARP heater was performed from April 28 to May 3, 2008 (http://www.haarp.alaska.edu). Simultaneous ground-based ULF measurements were made locally at Gakona, AK and at Lake Ozette, WA that is 2000 km away. The ground-based results showed that ULF amplitudes measured at Gakona are mostly proportional to the electrojet strength above HAARP, indicating electrojet modulation to be the source of the local ULF waves. However, the timing of ULF events recorded at Lake Ozette did not correlated with the electrojet strength at Gakona, indicating that modulation of F region pressure is the more likely source for distant ULF waves. These observations are consistent with the theoretical understanding that ULF waves generated by current modulation are shear Alfven waves propagating along the magnetic field line, thus at high latitude their observations are limited to the vicinity of the heated spot. On the other hand, propagation of ULF waves at significant lateral distances requires generation of magnetosonic waves since they are the only mode that propagates isotropically and can thus couple efficiently in the Alfvenic duct. In addition to ground-based observations, the DEMETER satellite also provided space measurements of the heating effects during its passes over HAARP. The DEMETER results showed direct detection of HAARP ULF waves at 0.1 Hz. Moreover, density dips were observed every time HAARP was operated at CW mode, which provides clear evidence of duct formation by direct HF heating at F peak. Details of these results will be presented at the meeting. We would like to acknowledge the support provided by the HAARP facility during our ULF experiments.
NASA Technical Reports Server (NTRS)
Sharp, R. D.
1975-01-01
Satellite observations of auroral electrojets, electron fluxes, and magnetic storm activity are presented and discussed. Plasma-particle interactions are examined for the earth's magnetosphere, and data (i.e., magnetograms) of the satellite observations are analyzed.
Investigation of ELF/VLF waves created by a "beat-wave" HF ionospheric heating at high latitudes
NASA Astrophysics Data System (ADS)
Shumilov, Oleg; Tereshchenko, Evgeniy; Kasatkina, Elena; Gomonov, Alexandr
2015-04-01
The generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) electromagnetic waves by modulated ionospheric high frequency (HF, 2-30 MHz) heating is one of the main directions of ionospheric modification experiments. In this work, we present observations of ELF waves generated during a "beat-wave" heating experiments at the EISCAT heating facility. ELF waves were registered with the ELF receiver located at Lovozero (68 N, 35 E), 660 km east from the EISCAT Tromso heating facility (69.6 N, 19.2 E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.
Simulation of the westward traveling surge and Pi 2 pulsations during substorms
NASA Technical Reports Server (NTRS)
Kan, J. R.; Sun, W.
1985-01-01
The westward traveling surge and the Pi2 pulsations are simulated as a consequence of an enhanced magnetospheric convection in a model of magnetosphere coupling. The coupling is characterized by the bouncing of Alfven waves launched by the enhanced convection. The reflection of Alfven waves from the ionosphere is treated in which the height-integrated conductivity is allowed to be highly nonuniform and fully anisotropic. The reflection of Alfven waves from the magnetosphere is characterized by the coefficient Rm, depending on whether the field lines are open or closed. The conductivity in the model is self-consistently enhanced with increasing upward field-aligned current density. The results of the simulation, including the convection pattern, the electrojets, the field-aligned current, the conductivity enhancement, the oscillation of the westward electrojet, and the average speed of the westward surge are in reasonable agreement with the features of the westward traveling surge and the Pi 2 pulsations observed during substorms.
The near-Earth magnetic field at 1980 determined from MAGSAT data
NASA Technical Reports Server (NTRS)
Langel, R. A.; Estes, R. H.
1984-01-01
Data from the MAGSAT spacecraft for November 1979 through April 1980 and from 91 magnetic observatories for 1978 through 1982 are used to derive a spherical harmonic model of the Earth's main magnetic field and its secular variation. Constant coefficients are determined through degree and order 13 and secular variation coefficients through degree and order 10. The first degree external terms and corresponding induced internal terms are given as a function of Dst. Preliminary modeling using separate data sets at dawn and dusk local time showed that the dusk data contains a substantial field contribution from the equatorial electrojet current. The final data set is selected first from dawn data and then augmented by dusk data to achieve a good geographic data distribution for each of three time periods: (1) November/December, 1979; (2) January/February; 1980; (3) March/April, 1980. A correction for the effects of the equatorial electrojet is applied to the dusk data utilized. The solution included calculation of fixed biases, or anomalies, for the observation data.
The near-earth magnetic field at 1980 determined from Magsat data
NASA Technical Reports Server (NTRS)
Langel, R. A.; Estes, R. H.
1985-01-01
Data from the Magsat spacecraft for November 1979 through April 1980 and from 91 magnetic observatories for 1978 through 1982 are used to derive a spherical harmonic model of the earth's main magnetic field and its secular variation. Constant coefficients are determined through degree and order 13 and secular variation coefficients through degree and order 10. The first degree external terms and corresponding induced internal terms are given as a function of Dst. Preliminary modeling using separate data sets at dawn and dusk local time showed that the dusk data contains a substantial field contribution from the equatorial electrojet current. The final data set is selected first from dawn data and then augmented by dusk data to achieve a good geographic data distribution for each of three time periods: (1) November/December, 1979; (2) January/February, 1980; (3) March/April, 1980. A correction for the effects of the equatorial electrojet is applied to the dusk data utilized. The solution included calculation of fixed biases, or anomalies, for the observation data.
NASA Technical Reports Server (NTRS)
Langel, R. A.
1974-01-01
A complete survey of the near-earth magnetic field magnitude was carried out by the Polar Orbiting Geophysical Observatories (Ogo 2, 4, and 6). The average properties of variations in total magnetic field strength at invariant latitudes greater than 55 deg are given. Data from all degrees of magnetic disturbance are included, the emphasis being on periods when Kp = 2- to 3+. Although individual satellite passes at low altitudes confirm the existence of electrojet currents, neither individual satellite passes nor contours of average delta B are consistent with latitudinally narrow electrojet currents as the principal source of delta B at the satellite. The total field variations at the satellite form a region of positive delta B between about 2200 and 1000 MLT and a region of negative delta B between about 1000 and 2200 MLT. The ratio of delta B magnitudes in these positive and negative regions is variable.
Rocket observations at the northern edge of the eastward electrojet
NASA Technical Reports Server (NTRS)
Cahill, L. J., Jr.; Arnoldy, R. L.; Taylor, W. W. L.
1980-01-01
The paper discusses a Nike-Tomahawk rocket launched north over quiet, late evening auroral arcs in March 1975. A northward magnetic disturbance was observed on the ground under the rocket trajectory; south of the arcs the northward electric field was 60 mV/m, indicating strong westward plasma flow. An eastward electrojet current layer was penetrated in the upward flight, and precipitating electrons were observed over each arc. Using the observed electron flux and a model of the ionosphere, the Hall and Pedersen conductivities were calculated which were used to compute the eastward and northward components of the horizontal ionospheric currents. The joule power decreased abruptly in the auroral arcs, as the precipitating electron power increased; the total dissipated power was the same inside the arcs, between them and southward. North of the aurora the electric field and dissipated power remained low; field-aligned currents carried by the observed electrons were about a factor of 3 lower than those inferred from the magnetic field measurements.
Atmospheric Pressure and Velocity Fluctuations Near the Auroral Electrojet.
1982-01-15
various aspects of the atmosphere’s dynamical response to auroral activity have been carried out by Blumen and Hendl (1969), Testud (1970), Francis...Geophys. Res. 80, 2839, 1975. Testud , 3., Gravity waves generated during magnetic substorms, 3. Atmos. Terr. Phys. 32, 1793, 1970. Waco, D. E., A
(abstract) Dynamics of Meteor Trails Deposited in the Equatorial Electrojet
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Kudeki, Erhan
1996-01-01
Previously we reported that the meteor echoes detected at the Jicamarca Radio Observatory exhibit some unusual properties. In summary, the echo durations are very long ..., radio wave scattering is non-specular ..., and the doppler spectra of the scattered signals contain components that are red-shifted ... immediately after the onset of the echoes.
EEJ and EIA variations during modeling substorms with different onset moments
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Klimenko, M. V.
2015-11-01
This paper presents the simulations of four modeling substorms with different moment of substorm onset at 00:00 UT, 06:00 UT, 12:00 UT, and 18:00 UT for spring equinoctial conditions in solar activity minimum. Such investigation provides opportunity to examine the longitudinal dependence of ionospheric response to geomagnetic substorms. Model runs were performed using modified Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP). We analyzed GSM TIP simulated global distributions of foF2, low latitude electric field and ionospheric currents at geomagnetic equator and their disturbances at different UT moments substorms. We considered in more detail the variations in equatorial ionization anomaly, equatorial electrojet and counter equatorial electrojet during substorms. It is shown that: (1) the effects in EIA, EEJ and CEJ strongly depend on the substorm onset moment; (2) disturbances in equatorial zonal current density during substorm has significant longitudinal dependence; (3) the observed controversy on the equatorial ionospheric electric field signature of substorms can depend on the substorm onset moments, i.e., on the longitudinal variability in parameters of the thermosphere-ionosphere system.
NASA Astrophysics Data System (ADS)
Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.; Maute, A.; Pedatella, N.
2018-05-01
The lower atmospheric forcing effects on the ionosphere are particularly evident during extreme meteorological events known as sudden stratospheric warmings (SSWs). During SSWs, the polar stratosphere and ionosphere, two distant atmospheric regions, are coupled through the SSW-induced modulation of atmospheric migrating and nonmigrating tides. The changes in the migrating semidiurnal solar and lunar tides are the major source of ionospheric variabilities during SSWs. In this study, we use 55 years of ground-magnetometer observations to investigate the composite characteristics of the lunar tide of the equatorial electrojet (EEJ) during SSWs. These long-term observations allow us to capture the EEJ lunar tidal response to the SSWs in a statistical sense. Further, we examine the influence of solar flux conditions and the phases of quasi-biennial oscillation (QBO) on the lunar tide and find that the QBO phases and solar flux conditions modulate the EEJ lunar tidal response during SSWs in a similar way as they modulate the wintertime Arctic polar vortex. This work provides first evidence of modulation of the EEJ lunar tide due to QBO.
Active experiments in the ionosphere and variations of geophysical and meteorological parameters
NASA Astrophysics Data System (ADS)
Sivokon, Vladimir; Cherneva, Nina; Shevtsov, Boris
Energy distribution in ionospheric-magnetospheric relations, as one of the possible external climatological factors, may be traced on the basis of the analysis of natural geophysical phenomena such as ionosphere artificial radio radiation and magnetic storms. Development of magnetic disturbances is, to some extent, associated with current variations in electrojet. In its turn, some technologies are known which may affect electrojet and its characteristics. The method, developed by the authors, is based on a complex comparison of different geophysical fields and allows us to determine the degree of active experiment effect on energy change in ionospheric-magnetospheric relations and to evaluate on this basis the degree of active experiment effect on climate in the ionosphere. Within the framework of RAS Presidium Program Project “Determination of climate-forming characteristic changes on the basis of monitoring of geophysical field variations”, investigations have been carried out, which showed the possibility of ionosphere modification effect on the energy of magnetospheric-ionospheric relations. Evaluation of possible climate changes considering ionospheric-magnetospheric relations has not been previously discussed.
Longitudinal variability of complexities associated with equatorial electrojet
NASA Astrophysics Data System (ADS)
Rabiu, A. B.; Ogunjo, S. T.; Fuwape, I. A.
2017-12-01
Equatorial electrojet indices obtained from ground based magnetometers at 6 representative stations across the magnetic equatorial belt for the year 2009 (mean annual sunspot number Rz = 3.1) were treated to nonlinear time series analysis technique to ascertain the longitudinal dependence of the chaos/complexities associated with the phenomena. The selected stations were along the magnetic equator in the South American (Huancayo, dip latitude -1.80°), African (Ilorin, dip latitude -1.82°; Addis Ababa, dip latitude - 0.18°), and Philippine (Langkawi, dip latitude -2.32°; Davao, dip latitude -1.02°; Yap, dip latitude -1.49°) sectors. The non-linear quantifiers engaged in this work include: Recurrence rate, determinism, diagonal line length, entropy, laminarity, Tsallis entropy, Lyapunov exponent and correlation dimension. Ordinarily the EEJ was found to undergo variability from one longitudinal representative station to another, with the strongest EEJ of about 192.5 nT at the South American axis at Huancayo. The degree of complexity in the EEJ was found to vary qualitatively from one sector to another. Probable physical mechanisms responsible for longitudinal variability of EEJ strength and its complexities were highlighted.
Optimal aperture synthesis radar imaging
NASA Astrophysics Data System (ADS)
Hysell, D. L.; Chau, J. L.
2006-03-01
Aperture synthesis radar imaging has been used to investigate coherent backscatter from ionospheric plasma irregularities at Jicamarca and elsewhere for several years. Phenomena of interest include equatorial spread F, 150-km echoes, the equatorial electrojet, range-spread meteor trails, and mesospheric echoes. The sought-after images are related to spaced-receiver data mathematically through an integral transform, but direct inversion is generally impractical or suboptimal. We instead turn to statistical inverse theory, endeavoring to utilize fully all available information in the data inversion. The imaging algorithm used at Jicamarca is based on an implementation of the MaxEnt method developed for radio astronomy. Its strategy is to limit the space of candidate images to those that are positive definite, consistent with data to the degree required by experimental confidence limits; smooth (in some sense); and most representative of the class of possible solutions. The algorithm was improved recently by (1) incorporating the antenna radiation pattern in the prior probability and (2) estimating and including the full error covariance matrix in the constraints. The revised algorithm is evaluated using new 28-baseline electrojet data from Jicamarca.
Spectral characteristics of geomagnetic field variations at low and equatorial latitudes
Campbell, W.H.
1977-01-01
Geomagnetic field spectra from eight standard observations at geomagnetic latitudes below 30?? were studied to determine the field characteristics unique to the equatorial region. Emphasis was placed upon those variations having periods between 5 min and 4 hr for a selection of magnetically quiet, average, and active days in 1965. The power spectral density at the equator was about ten times that the near 30?? latitude. The initial manifestation of the equatorial electrojet as evidenced by the east-west alignment of the horizontal field or the change in vertical amplitudes occurred below about 20?? latitude. Induced current effects upon the vertical component from which the Earth conductivity might be inferred could best be obtained at times and latitudes unaffected by the electrojet current. Values of about 1.6 ?? 103 mhos/m for an effective skin depth of 500-600 km were determined. The spectral amplitudes increased linearly with geomagnetic activity index, Ap. The spectral slope had a similar behavior at all latitudes. The slope changed systematically with Ap-index and showed a diurnal variation, centered on local noon, that changed form with geomagnetic activity.
Characterization and diagnostic methods for geomagnetic auroral infrasound waves
NASA Astrophysics Data System (ADS)
Oldham, Justin J.
Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with modulation of the electrojets due to energetic particle precipitation, dispersion due to coupling with gravity waves, and reflection and refraction effects in the intervening atmosphere all potential factors in the shaping of the waveforms observed.
Investigating the auroral electrojets with low altitude polar orbiting satellites
NASA Astrophysics Data System (ADS)
Moretto, T.; Olsen, N.; Ritter, P.; Lu, G.
2002-07-01
Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly in the auroral electrojets. First, we examine the results during a recent geomagnetic storm. The currents derived from two satellites at different altitudes are in very good agreement, which verifies good stability of the method. Further, a very high degree of correlation (correlation coefficients of 0.8 0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electrojet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring. A specific advantage of the satellite observations over the ground-based magnetic measurements is their coverage of the Southern Hemisphere, as well as the Northern. We utilize this in an investigation of the ionospheric currents observed in both polar regions during a period of unusually steady interplanetary magnetic field with a large negative Y-component. A pronounced asymmetry is found between the currents in the two hemispheres, which indicates real inter-hemispheric differences beyond the mirror-asymmetry between hemispheres that earlier studies have revealed. The method is also applied to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning of the magnetosphere (history of the interplanetary magnetic field) is seen to play an important role, and in the winther hemisphere, it seems to be harder to drive currents on the nightside than on the dayside.
Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?
Wing, Simon; Rider, Lisa G.; Johnson, Jay R.; ...
2015-05-15
Our objective was to examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlationmore » of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.« less
Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?
Wing, Simon; Rider, Lisa G; Johnson, Jay R; Miller, Federick W; Matteson, Eric L; Gabriel, Sherine E
2015-01-01
Objective To examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods We used data from patients with GCA (1950–2004) and RA (1955–2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results The correlation of GCA incidence with AL is highly significant: GCA incidence peaks 0–1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5–7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4–5 years. However, the RA incidence power spectrum main peak is broader (8–11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4–5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. The link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases. PMID:25979866
Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wing, Simon; Rider, Lisa G.; Johnson, Jay R.
Our objective was to examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlationmore » of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.« less
A correlative comparison of the ring current and auroral electrojects usig geomagnetic indices
NASA Technical Reports Server (NTRS)
Cade, W. B., III; Sojka, J. J.; Zhu, L.
1995-01-01
From a study of the 21 largest geomagnetic storms during solar cycle 21, a strong correlation is established between the ring current index Dst and the time-weighted accumulation of the 1-hour auroral electrojets indices, AE and AL. The time-weighted accumulation corresponds to convolution of the auroral electrojet indices with an exponential weighting function with an e-folding time of 9.4 hours. The weighted indices AE(sub w) and AL(sub w) have correltation coefficients against Dst ranging between 0.8 and 0.95 for 20 of the 21 storms. Correlation over the entire solar cycle 21 database is also strong but not as strong as for an individual storm. A set of simple Dst prediction functions provide a first approximation of the inferred dependence, but the specific functional relationship of Dst (AL(sub w)) or Dst (AL(sub w)) varies from one storm to the next in a systematic way. This variation reveals a missing parametric dependence in the transfer function. However, our results indicate that auroral electroject indices are potentially useful for predicting storm time enhancements of ring current intensity with a few hours lead time.
NASA Astrophysics Data System (ADS)
Okeke, F. N.; Okoro, E. C.; Isikwue, B. C.; Hanson, E.
2012-12-01
This study investigates the possible occurrence of counter equatorial electrojet (CEJ) and a quicker method for identification of CEJ. Data from a chain of magnetic observatories of World Data Center for Geomagnetism in Tokyo, Japan, was employed. It is strikingly interesting to observe that most CEJ occurred from morning through nighttime, with almost the same pattern of dHin depression. In Ascension Island [ASC], Huancayo [HUA] and Pondicherry [PND], most changes in horizontal component were found to be less than zero, which reveals an indication of full CEJ. Partial CEJ occurrences were observed during some hours at these stations where changes in horizontal component were found to be greater than zero. It is suggested that IMF turning north indicates CEJ, hence storm effects could also be attributed to CEJ existence. Some of our new findings are at variance with results of some previous workers; hence further work is suggested for further clarification. A quick method of easy identification of CEJ is suggested.
Generation of intensity covariations of the oxygen green and red lines in the nightglow
NASA Astrophysics Data System (ADS)
Misawa, K.; Takeuchi, I.; Kato, Y.; Aoyama, I.
1984-02-01
The cause of intensity covariations of the oxygen green and red lines is studied. Intensity covariations are compared with the auroral-electrojet-activity index AE, the substorm Pi2, and the magnetogram. It is suggested that intensity covariations or double-intensity maxima of the red line occur in association with intense auroral substorms, and that they are the direct experimental evidences of Testud's theory (1973).
Electric Utility Industry Experience with Geomagnetic Disturbances
1991-09-01
the auroral electrojets or currents that result from solar-emitted particles during geomagnetic storms is provided by the aurora borealis , often called...on wire-based communication systems. As early as 1860 it was noted that during intense periods of the aurora borealis , telegraphic systems were... San Diego , CA 92186-5154. 221. Jaycor, M. Schultz, Jr., 1608 Spring Hill Road, Vienna, VA 22182-2270. 222. Joint Strategic Target Planning Staff, The
NASA Technical Reports Server (NTRS)
Langel, R. A.
1973-01-01
Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.
NASA Astrophysics Data System (ADS)
Moore, R. C.; Inan, U. S.; Bell, T. F.
2004-12-01
Naturally-forming, global-scale currents, such as the polar electrojet current and the mid-latitude dynamo, have been used as current sources to generate electromagnetic waves in the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands since the 1970's. While many short-duration experiments have been performed, no continuous multi-week campaign data sets have been published providing reliable statistics for ELF/VLF wave generation. In this paper, we summarize the experimental data resulting from multiple ELF/VLF wave generation campaigns conducted at the High-frequency Active Auroral Research Project (HAARP) HF transmitter in Gakona, Alaska. For one 14-day period in March, 2002, and one 24-day period in November, 2002, the HAARP HF transmitter broadcast ELF/VLF wave generation sequences for 10 hours per day, between 0400 and 1400 UT. Five different modulation frequencies broadcast separately using two HF carrier frequencies are examined at receivers located 36, 44, 147, and 155 km from the HAARP facility. Additionally, a continuous 24-hour transmission period is analyzed to compare day-time wave generation to night-time wave generation. Lastly, a power-ramping scheme was employed to investigate possible thresholding effects at the wave-generating altitude. Wave generation statistics are presented along with source-region property calculations performed using a simple model.
NASA Astrophysics Data System (ADS)
Nogueira, Paulo A. B.; Abdu, Mangalathayil A.; Souza, Jonas R.; Denardini, Clezio M.; Barbosa Neto, Paulo F.; Serra de Souza da Costa, João P.; Silva, Ana P. M.
2018-01-01
We have analyzed low-latitude ionospheric current responses to two intense (X-class) solar flares that occurred on 13 May 2013 and 11 March 2015. Sudden intensifications, in response to solar flare radiation impulses, in the Sq and equatorial electrojet (EEJ) currents, as detected by magnetometers over equatorial and low-latitude sites in South America, are studied. In particular we show for the first time that a 5 to 8 min time delay is present in the peak effect in the EEJ, with respect that of Sq current outside the magnetic equator, in response to the flare radiation enhancement. The Sq current intensification peaks close to the flare X-ray peak, while the EEJ peak occurs 5 to 8 min later. We have used the Sheffield University Plasmasphere-Ionosphere Model at National Institute for Space Research (SUPIM-INPE) to simulate the E-region conductivity enhancement as caused by the flare enhanced solar extreme ultraviolet (EUV) and soft X-rays flux. We propose that the flare-induced enhancement in neutral wind occurring with a time delay (with respect to the flare radiation) could be responsible for a delayed zonal electric field disturbance driving the EEJ, in which the Cowling conductivity offers enhanced sensitivity to the driving zonal electric field.
Seasonal Variation of High-latitude Geomagnetic Activity Revisited
NASA Astrophysics Data System (ADS)
Tanskanen, E.; Hynönen, R.; Mursula, K.
2017-12-01
The coupling of the solar wind and auroral region has been examined by using westward electrojet indices since 1966 - 2014. We have studied the seasonal variation of high-latitude geomagnetic activity in individual years for solar cycles 20 - 24. The classical two-equinox activity pattern in geomagnetic activity was seen in multi-year averages but it was found in less than one third of the years examined. We found that the seasonal variation of high-latitude geomagnetic activity closely follows the solar wind speed. While the mechanisms leading to the two-equinox maxima pattern are in operation, the long-term change of solar wind speed tends to mask the effect of these mechanisms for individual years. We identified the most active and the second most active season based on westward electrojet indices AL (1966 - 2014) and IL (1995 - 2014). The annual maximum is found at either equinox in 2/3 and at either solstice in 1/3 of the years examined. Large cycle-to-cycle variation is found in the seasonal pattern: equinox maxima are more common during cycles 21 and 22 than in cycles 23 or 24. An exceptionally long winter dominance in high-latitude activity and solar wind speed is seen in the declining phase of cycle 23, after the appearance of the long-lasting low-latitude coronal hole.
The storm-time equatorial electrojet
NASA Technical Reports Server (NTRS)
Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.
1977-01-01
A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed, and the large field depression at the flight time must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.
The storm-time equatorial electrojet
NASA Technical Reports Server (NTRS)
Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.
1976-01-01
A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed and the large field depression, at the flight time, must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.
1980-01-25
plasmaspheric electric fields during magnetically disturbed periods are based on incoherent scatter radar results fromn St. Santin [ Testud et al., 1975...Millstone Hill radar results showing westward F-region ion drifts of almost 200 m/sec in the afternoon sector on 14 May, 1969. Testud et al. [1975...electrojet (AE) index. Testud et al. [1975] and Blanc et al. £1977] have both presented St. Santin backscatter measurements that show westward and
Achievements of ATS-6 beacon experiment over Indian sub-continent
NASA Technical Reports Server (NTRS)
Deshpande, M. R.; Rastogi, R. G.; Vats, H. O.; Sethia, G.; Chandra, H.; Davies, K.; Grubb, R. N.; Jones, J. E.
1978-01-01
The repositioning of the ATS-6 satellite at 34 deg E enabled the scientific community of India to use the satellite's radio beacon for ionospheric studies. Two scientific projects were undertaken. The objective of the first project was to map ionospheric electron content, range rate errors, traveling ionospheric phenomena, solar flare effect, and magnetic phenomena. The second project was aimed at studying geophysical phenomena associated with the equatorial electrojet. The principal results of these studies are described.
2007-05-22
HAARP ) HF transmitter in Gakona, Alaska, and detected after propagating more than 4400 km in the Earth-ionosphere waveguide to Midway Atoll. The...conductivity variation (created by modulated HF heating) and radiating 4–32 W. The HF-ELF conversion efficiency at HAARP is thus estimated to be...Program ( HAARP ) research station in Gakona, Alaska. The HAARP HF transmitter (or heater), which JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, A05309, doi
Equatorial ionospheric currents derived from MAGSAT data
NASA Technical Reports Server (NTRS)
Roy, M. (Principal Investigator)
1983-01-01
The MAGSAT data on the three component's of the geomagnetic field are subjected to ring current correction and crustal anomaly elimination near the dip equator. The evidence of a strong west east electrojet current below the satellite height (approximately 350 km) is confirmed. Strong evidence of east-west component of the field suggests the existence of a vertical current originating at the jet level and extending upwards. A model calculation shows that such a current system can explain the satellite data as well as the ground data.
A study on ionospheric scintillation near the EIA crest in relation to equatorial electrodynamics
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Chakraborty, S. K.; Veenadhari, B.; Banola, S.
2014-02-01
Equatorial electrojet (EEJ) data, which are considered as a proxy index of equatorial electric field, are analyzed in conjunction with equatorial ionosonde, total electron content (TEC) and scintillation data near the equatorial ionization anomaly (EIA) crest for the equinoctial months of high solar activity years (2011-2012) to identify any precursor index of postsunset evolution of equatorial electron density irregularities and subsequent occurrence of scintillation near the northern EIA crest. Only geomagnetically quiet and normal electrojet days are considered. The diurnal profiles of EEJ on the scintillation days exhibit a secondary enhancement in the afternoon to presunset hours following diurnal peaks. A series of electrodynamical processes conducive for generation of irregularities emerge following secondary enhancement of EEJ. Latitudinal profile of TEC exhibits resurgence in EIA structure around the postsunset period. Diurnal TEC profile near the EIA crest resembles postsunset secondary enhancement on the days with afternoon enhancement in EEJ. Occurrence of equatorial spread F and postsunset scintillation near the EIA crest seems to follow the secondary enhancement events in EEJ. Both the magnitude and duration of enhanced EEJ are found to be important for postsunset intensification of EIA structure and subsequent occurrence of equatorial irregularities. A critical value combining the two may be considered an important precursor for postsunset occurrence of scintillation near the EIA crest. The results are validated using archived data for the years 1989-1990 and explained in terms of modulation effects of enhanced equatorial fountain.
Quiet Time Depression of the Equatorial Electrojet and Dynamics of the F-layer Ionosphere
NASA Astrophysics Data System (ADS)
Khadka, S.; Valladares, C. E.; Doherty, P.
2017-12-01
The depression of the equatorial electrojet (EEJ) is marked by a westward current due to streaming movement of laterally limited (±3°) charged particles in the ionospheric E region during the day along the magnetic equator. It is a complex low-latitude phenomenon and driven by various sources of electric fields associated with global neutral wind, solar tidal force, Interplanetary magnetic Field (IMF), etc. This unique physical property of the equatorial ionosphere holds a great promise for sorting out the governing mechanism of the dayside ionospheric electrodynamics and the onset of the enigmatic plasma structures in the ionospheric layers. Present study provides an overview of the special sequence of the longitudinal, seasonal, and occurrence rate variability of the depression of the EEJ, including its temporal variation, using data from an excellent chain of magnetic and ionospheric observatories along the low-latitude regions. A case and statistical study of the geomagnetically quiet time depression of EEJ strengths is presented using a pair of magnetometers, one located at the dip equator and another off the dip equator (±6° to ±9° away) in the American low-latitude regions. The significance of the variability of the depression of the EEJ current observed in the scenario of vertical drifts, sporadic E-layer, the equatorial F region plasma fountain, and height of the peak ionization in the F-layer, as well as GPS-TEC distributions, will be investigated.
On The Ion Drift Contribution To The Phase Velocity of Electrojet Irregularities
NASA Astrophysics Data System (ADS)
Uspensky, M.; Koustov, A.; Janhunen, P.; Pellinen, R.; Danskin, D.; Nozawa, S.
The ion drift effect is often ignored in the interpretation of VHF Doppler measure- ments. For example, in the STARE experiment it is assumed that the line-of-sight velocity measured at large flow angles is simply a cosine component of the true elec- tron drift. Previous studies seem to support this assumption, though only to a certain degree. In this study we consider a 3.5-hour morning event of joint STARE-EISCAT observa- tions for which the STARE-Finland radar velocity was mainly larger than the EISCAT convection component. A moderate 5-20 deg offset between the EISCAT convection azimuth and its STARE estimate was also observed. We show that both the STARE- Finland radar velocity "over-speed" and the azimuthal offset between the EISCAT and STARE convection vectors can be explained by fluid plasma theory arguments if the ion drift contribution to the irregularity phase velocity under the condition of moder- ate backscatter off-orthogonality is taken into account. The ion effects were enhanced because of a lifting up of the entire E-region seen by the EISCAT. It perhaps resulted in an increase of the STARE echo heights and aspect angles. The latter are of the order of 1 deg at the top of the electrojet layer. We also compare STARE convection magni- tudes and true velocities measured by the EISCAT to study the potential impact of the ion motions on the STARE velocity estimates.
NASA Astrophysics Data System (ADS)
Gianibelli, J. C.; Quaglino, N. M.
2007-05-01
The South Atlantic Magnetic Anomaly (SAMA) Region presents evolutive characteristics very important as were observed by a variety of satelital sensors. Important Magnetic Observatories with digital record monitor the effects of the Sun-Earth interaction, such as San Juan de Puerto Rico (SJG), Kourou (KOU), Vassouras (VSS), Las Acacias (LAS), Trelew (TRW), Vernadsky (AIA), Hermanus (HER) and Huancayo (HUA). In the present work we present the features registered during the geomagnetic storm in January 21, 2005, produced by a geoeffective Coronal Mass Ejection (CME) whose Interplanetary Coronal Mass Ejection (ICME) was detected by the instrumental onboard the Advanced Composition Explorer (ACE) Sonde. We analize how the Magnetic Total Intensity records at VSS, TRW and LAS Observatories shows the effect of the entering particles to ionospherical dephts producing a field enhancement following the first Interplanetary Shock (IP) arrival of the ICME. This process manifest in the digital record as an increment over the magnetospheric Ring Current field effect and superinpossed effects over the Antarctic Auroral Electrojet. The analysis and comparison of the records demonstrate that the Ring Current effects are important in SJG and KOU but not in VSS, LAS and TRW observatories, concluding that SAMA region shows a enhancement of the ionospherical currents oposed to those generated at magnetospheric heighs. Moreover in TRW, 5 hours after the ICME shock arrival, shows the effect of the Antarctic Auroral Electrojet counteracting to fields generated by the Ring Current.
NASA Astrophysics Data System (ADS)
Marques de Souza, Adriane; Echer, Ezequiel; José Alves Bolzan, Mauricio; Hajra, Rajkumar
2018-02-01
Solar-wind-geomagnetic activity coupling during high-intensity long-duration continuous AE (auroral electrojet) activities (HILDCAAs) is investigated in this work. The 1 min AE index and the interplanetary magnetic field (IMF) Bz component in the geocentric solar magnetospheric (GSM) coordinate system were used in this study. We have considered HILDCAA events occurring between 1995 and 2011. Cross-wavelet and cross-correlation analyses results show that the coupling between the solar wind and the magnetosphere during HILDCAAs occurs mainly in the period ≤ 8 h. These periods are similar to the periods observed in the interplanetary Alfvén waves embedded in the high-speed solar wind streams (HSSs). This result is consistent with the fact that most of the HILDCAA events under present study are related to HSSs. Furthermore, the classical correlation analysis indicates that the correlation between IMF Bz and AE may be classified as moderate (0.4-0.7) and that more than 80 % of the HILDCAAs exhibit a lag of 20-30 min between IMF Bz and AE. This result corroborates with Tsurutani et al. (1990) where the lag was found to be close to 20-25 min. These results enable us to conclude that the main mechanism for solar-wind-magnetosphere coupling during HILDCAAs is the magnetic reconnection between the fluctuating, negative component of IMF Bz and Earth's magnetopause fields at periods lower than 8 h and with a lag of about 20-30 min.
GAIA modeling of electrodynamics in the lower ionosphere during a severe solar flare event
NASA Astrophysics Data System (ADS)
Matsumura, M.; Shiokawa, K.; Shinagawa, H.; Jin, H.; Fujiwara, H.; Miyoshi, Y.; Otsuka, Y.
2016-12-01
Recent studies indicated that the ionospheric F-region disturbances due to solar flare irradiance are controlled not only by photoionization but also by electrodynamical changes of the ionosphere [Liu et al., 2007; Qian et al., 2012]. The electric field changes during solar flare events occur mainly in the E-region due to the X-ray flux enhancement, and in the equatorial counter electrojet regions the eastward electric field turns into westward below 107-km altitude [Manju and Viswanathan, 2005]. The TIME-GCM model has been used to investigate the flare-related electrodynamics of the ionosphere [Qian et al., 2012]. However, the model did not consider the flare effects at altitudes below 97 km due to the ionospheric lower boundary of the model. On the other hand, the GAIA model [Jin et al., 2011] can simulate electron density variations and electrodynamics around and below 100 km because the model does not have the limitation of the lower boundary. We have improved the GAIA model to incorporate the Flare Irradiance Spectral Model (FISM) [Chamberlin et al., 2007; 2008] to understand the global response of the whole ionosphere including E and D regions to the solar flares. We have performed a simulation for the X17 flare event of October 28, 2003, and have showed that soft X-ray considerably enhances conductivity even at an altitude of 80 km. We will report its effect on the ionospheric electric field and the equatorial electrojet currents.
A Proxy Method for Estimation of EE-index using MAGDAS/CPMN Data
NASA Astrophysics Data System (ADS)
Ueno, T.; Yumoto, K.; Uozumi, T.; Numata, Y.; Group, M.
2008-12-01
EE-index (EDst, EU, and EL) is a new index proposed by Space Environment Research Center, Kyushu University (see Uozumi et al., 2008) to monitor temporal and long-term variations of the equatorial electrojet (EEJ). EU and EL mainly represent the range of EEJ and CEJ (equatorial counter electrojet) components, respectively. The baseline levels of EU and EL are obtained by averaging the H-component magnetic variations observed at the nightside (LT = 18-06) MAGDAS/CPMN stations along the magnetic equator. EDst, defined by Uozumi et al. (2008) fluctuates depending on the number of stations in the nightside sector (LT = 18-06). If the number is few, EDst may include some local fluctuations: the partial ring current component, substorm component and so on. Such local components cause some error in estimating the baseline level of EU or EL. Therefore, we need to use as many stations' data as possible in order to derive EU and EL properly. Pacific region is one of the most difficult areas to measure the magnetic field near the dip equator, because there are few islands. In the present paper, we developed a new method to use the data obtained from Ewa Beach (EWA; G. Lat. = 21.32N, G. Long. = 158.0W, Dip Lat. = 38.03), Hawaii, USA for estimation of EDst. EWA is not the equatorial station, but its nighttime H-component magnetic variations are found to be similar to those of Christmas Island (CXI; G. Lat. = 2.05N, G. Long. = 157.5W, Dip Lat. = 5.24), Kiribati. Data from EWA can be used as a proxy of that from CXI for monitoring temporal and long-term variations of the equatorial electrojet (EEJ) in real time. Acknowledgements: Authors appreciate Prof. Hisashi Utada of Earthquake Research Institute, University of Tokyo for supplying the magnetometer data from Christmas Island, Kiribati. Our deepest gratitude goes to all the members of the MAGDAS/CPMN project for their ceaseless support. Especially, we wish to thank the staffs of the observation stations: Dr. Baylie Damtie (Bahir Dar University, Ethiopia; AAB), Dr. Ronald Woodman Pollitt and Dr. Jose Ishitsuka (Instituto Geofisico del Peru; ANC), Fr. Daniel McNamara (Manila Observatory, Philippines; DAV), Ms. Lynn Kaisan (NOAA Pacific Tsunami Warning Center, HI, USA; EWA), Dr. Mazlan Othman and Dr. Mohd Fairos (National Space Agency, Ministry of Science, Technology and Innovation, Malaysia; LKW) and Prof. Archana Bhattacharya (Indian Institute of Geomagnetism, India; TIR) for their kind cooperation.
NASA Technical Reports Server (NTRS)
Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.
1997-01-01
In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3 deg S) and magnetic (approx. 0.5 deg S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.
NASA Astrophysics Data System (ADS)
Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.
1997-11-01
In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alca‸ntara rocket site in northeastern Brazil as part of the International Guará Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (~0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.
NASA Astrophysics Data System (ADS)
Eneev, T. M.; Akhmetshin, R. Z.; Efimov, G. B.
2012-04-01
The concept of "space patrol" is considered, aimed at discovering and cataloging the majority of celestial bodies that constitute a menace for the Earth [1, 2]. The scheme of "optical barrier" formed by telescopes of the space patrol is analyzed, requirements to the observation system are formulated, and some schemes of sighting the optical barrier region are suggested (for reliable detection of the celestial bodies approaching the Earth and for determination of their orbits). A comparison is made of capabilities of electro-jet engines and traditional chemical engines for arrangement of patrol spacecraft constellation in the Earth's orbit.
NASA Astrophysics Data System (ADS)
Zhou, Yun-Liang; Lühr, Hermann; Alken, Patrick
2018-02-01
Based on 5 years (2001-2005) of magnetic field measurements made by the CHAMP satellite, latitudinal profiles of the equatorial electrojet (EEJ) have been derived. This study provides a comprehensive characterization of the reverse current EEJ sidebands. These westward currents peak at ±5° quasi-dipole latitude with typical amplitudes of 35% of the main EEJ. The diurnal amplitude variation is quite comparable with that of the EEJ. Similarly to the EEJ, the intensity is increasing with solar EUV flux, but with a steeper slope, indicating that not only the conductivity plays a role. For the longitude distribution we find, in general, larger amplitudes in the Western than in the Eastern Hemisphere. It is presently a common understanding that the reverse current EEJ sidebands are generated by eastward zonal winds at altitudes above about 120 km. In particular, a positive vertical gradient of wind speed generates westward currents at magnetic latitudes outside of 2° dip latitude. Interesting information about these features can be deduced from the sidebands' tidal characteristics. The longitudinal variation of the amplitude is dominated by a wave-1 pattern, which can primarily be attributed to the tidal components SPW1 and SW3. In case of the hemispheric amplitude differences these same two wave-1 components dominate. The ratio between sideband amplitude and main EEJ is largely controlled by the tidal features of the EEJ. The longitudinal patterns of the latitude, where the sidebands peak, resemble to some extent those of the amplitude. Current densities become larger when the peaks move closer to the magnetic equator.
Simulations of neutral wind shear effect on the equatorial ionosphere irregularities
NASA Astrophysics Data System (ADS)
Kim, J.; Chagelishvili, G.; Horton, W.
2005-12-01
We present numerical calculations of the large-scale electron density driven by the gradient drift instability in the daytime equatorial electrojet. Under two-fluid theory the linear analysis for kilometer scale waves lead to the result that all the perturbations are transformed to small scales through linear convection by shear and then damped by diffusion. The inclusion of the nonlinearity enables inverse energy cascade to provide energy to long scale. The feedback between velocity shear and nonlinearity keeps waves growing and leads to the turbulence. In strongly turbulent regime, the nonlinear states are saturated [1]. Since the convective nonlinearities are isotropic while the interactions of velocity shear with waves are anisotropic, the feedback do not necessarily enable waves to grow. The growth of waves are highly variable on k-space configuration [2]. Our simulations show that the directional relationship between vorticity of irregularities and shear are one of key factors. Thus during the transient period, the irregularities show the anisotropy of the vorticity power spectrum. We report the evolution of the power spectrum of the vorticity and density of irregularties and its anistropic nature as observed. The work was supported in part by the Department of NSF Grant ATM-0229863 and ISTC Grant G-553. C. Ronchi, R.N. Sudan, and D.T. Farley. Numerical simulations of large-scale plasma turbulece in teh day time equatorial electrojet. J. Geophys. Res., 96:21263--21279, 1991. G.D. Chagelishvili, R.G. Chanishvili, T.S. Hristov, and J.G. Lominadze. A turbulence model in unbounded smooth shear flows : The weak turbulence approach. JETP, 94(2):434--445, 2002.
Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; ...
2016-05-26
Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm 3 to 22/cm 3 during 0440–0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Some conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation ofmore » the amplitude of the ΔX during 0440–0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (h mF 2) over the Indian dip equatorial sector. Furthermore, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In the absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.« less
NASA Astrophysics Data System (ADS)
Smith, A. R. A.; Beggan, C. D.; Macmillan, S.; Whaler, K. A.
2017-10-01
The auroral electrojets (AEJs) are complex and dynamic horizontal ionospheric electric currents which form ovals around Earth's poles, being controlled by the morphology of the main magnetic field and the energy input from the solar wind interaction with the magnetosphere. The strength and location of the AEJ varies with solar wind conditions and the solar cycle but should also be controlled on decadal timescales by main field secular variation. To determine the AEJ climatology, we use data from four polar Low Earth Orbit magnetic satellite missions: POGO, Magsat, CHAMP, and Swarm. A simple estimation of the AEJ strength and latitude is made from each pass of the satellites, from peaks in the along-track gradient of the magnetic field intensity after subtracting a core and crustal magnetic field model. This measure of the AEJ activity is used to study the response in different sectors of magnetic local time (MLT) during different seasons and directions of the interplanetary magnetic field (IMF). We find a season-dependent hemispherical asymmetry in the AEJ response to IMF By, with a tendency toward stronger (weaker) AEJ currents in the north than the south during By>0 (By<0) around local winter. This effect disappears during local summer when we find a tendency toward stronger currents in the south than the north. The solar cycle modulation of the AEJ and the long-term shifting of its position and strength due to the core field variation are presented as challenges to internal field modeling.
Effects of electrojet turbulence on a magnetosphere-ionosphere simulation of a geomagnetic storm
NASA Astrophysics Data System (ADS)
Wiltberger, M.; Merkin, V.; Zhang, B.; Toffoletto, F.; Oppenheim, M.; Wang, W.; Lyon, J. G.; Liu, J.; Dimant, Y.; Sitnov, M. I.; Stephens, G. K.
2017-05-01
Ionospheric conductance plays an important role in regulating the response of the magnetosphere-ionosphere system to solar wind driving. Typically, models of magnetosphere-ionosphere coupling include changes to ionospheric conductance driven by extreme ultraviolet ionization and electron precipitation. This paper shows that effects driven by the Farley-Buneman instability can also create significant enhancements in the ionospheric conductance, with substantial impacts on geospace. We have implemented a method of including electrojet turbulence (ET) effects into the ionospheric conductance model utilized within geospace simulations. Our particular implementation is tested with simulations of the Lyon-Fedder-Mobarry global magnetosphere model coupled with the Rice Convection Model of the inner magnetosphere. We examine the impact of including ET-modified conductances in a case study of the geomagnetic storm of 17 March 2013. Simulations with ET show a 13% reduction in the cross polar cap potential at the beginning of the storm and up to 20% increases in the Pedersen and Hall conductance. These simulation results show better agreement with Defense Meteorological Satellite Program observations, including capturing features of subauroral polarization streams. The field-aligned current (FAC) patterns show little differences during the peak of storm and agree well with Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) reconstructions. Typically, the simulated FAC densities are stronger and at slightly higher latitudes than shown by AMPERE. The inner magnetospheric pressures derived from Tsyganenko-Sitnov empirical magnetic field model show that the inclusion of the ET effects increases the peak pressure and brings the results into better agreement with the empirical model.
NASA Astrophysics Data System (ADS)
Siddiqui, Tarique A.; Stolle, Claudia; Lühr, Hermann
2017-03-01
The effects of coupling between different layers of the atmosphere during Stratospheric Sudden Warming (SSW) events have been studied quite extensively in the past few years, and in this context large lunitidal enhancements in the equatorial ionosphere have also been widely discussed. In this study we report about the longitudinal variabilities in lunitidal enhancement in the equatorial electrojet (EEJ) during SSWs through ground and space observations in the Peruvian and Indian sectors. We observe that the amplification of lunitidal oscillations in EEJ is significantly larger over the Peruvian sector in comparison to the Indian sector. We further compare the lunitidal oscillations in both the sectors during the 2005-2006 and 2008-2009 major SSW events and during a non-SSW winter of 2006-2007. It is found that the lunitidal amplitude in EEJ over the Peruvian sector showed similar enhancements during both the major SSWs, but the enhancements were notably different in the Indian sector. Independent from SSW events, we have also performed a climatological analysis of the lunar modulation of the EEJ during December solstice over both the sectors by using 10 years of CHAMP magnetic measurements and found larger lunitidal amplitudes over the Peruvian sector confirming the results from ground magnetometer observations. We have also analyzed the semidiurnal lunar tidal amplitude in neutral temperature measurements from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) at 110 km and found lesser longitudinal variability than the lunitidal amplitude in EEJ. Our results suggest that the longitudinal variabilities in lunitidal modulation of the EEJ during SSWs could be related to electrodynamics in the E region dynamo.
NASA Astrophysics Data System (ADS)
Sivokon', V. P.; Bogdanov, V. V.; Druzhin, G. I.; Cherneva, N. V.; Kubyshkin, A. V.; Sannikov, D. V.; Agranat, I. V.
2014-11-01
Analysis of the experimental data obtained at Paratunka observatory (53.02° N, 158.65° E; L = 2.3) has revealed a nonstandard form of whistlers involving spectral lines that are symmetric with respect to the whistler. We have shown that this form is most likely due to the amplitude modulation of whistlers by electromagnetic pulses with a length of around 1 s and carrier frequency of around 1.1 kHz. We have suggested that these pulses could be emitted by the auroral electrojet modified by heating radiation from the HAARP facility (62.30° N, 145.30° W; L > 4.2).
Low-dimensional chaos in magnetospheric activity from AE time series
NASA Technical Reports Server (NTRS)
Vassiliadis, D. V.; Sharma, A. S.; Eastman, T. E.; Papadopoulos, K.
1990-01-01
The magnetospheric response to the solar-wind input, as represented by the time-series measurements of the auroral electrojet (AE) index, has been examined using phase-space reconstruction techniques. The system was found to behave as a low-dimensional chaotic system with a fractal dimension of 3.6 and has Kolmogorov entropy less than 0.2/min. These indicate that the dynamics of the system can be adequately described by four independent variables, and that the corresponding intrinsic time scale is of the order of 5 min. The relevance of the results to magnetospheric modeling is discussed.
Microwave emission and scattering from Earth surface and atmosphere
NASA Technical Reports Server (NTRS)
Kong, J. A.; Lee, M. C.
1986-01-01
Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.
Solar quiet day ionospheric source current in the West African region.
Obiekezie, Theresa N; Okeke, Francisca N
2013-05-01
The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January-December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method. The range of the source current was calculated and this enabled the viewing of a full year's change in the source current system of Sq.
NASA Astrophysics Data System (ADS)
Thomas, Neethal; Vichare, Geeta; Sinha, A. K.
2018-02-01
The authors regret that a typographical error in Abstract and Section 5 should be corrected. Figure 7b of Thomas et al. [2017] presents the variation of total westward return current (y-axis) with total eastward forward current (x-axis). The slopes vary between 1 and 0.1. This indicates that ratio of total westward return currents to total eastward forward current vary between 0.1 to 1. However in Abstract and Section 5, the authors have erroneously written the ratio as between "total eastward forward current to total westward return current".
Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery
Pothier, N M; Weimer, D R; Moore, W B
2015-01-01
We have produced the first series of spherical harmonic, numerical maps of the time-dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998–2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet. Key Points Show quantitative maps of ground geomagnetic perturbations due to substorms Three vector components mapped as function of time during onset and recovery Compare/contrast results for different tilt angle and sign of IMF Y-component PMID:26167445
NASA Astrophysics Data System (ADS)
Mungufeni, Patrick; Bosco Habarulema, John; Migoya-Orué, Yenca; Jurua, Edward
2018-06-01
This study presents statistical quantification of the correlation between the equatorial electrojet (EEJ) and the occurrence of the equatorial ionisation anomaly (EIA) over the East African sector. The data used were for quiet geomagnetic conditions (Kp ≤ 3) during the period 2011-2013. The horizontal components, H, of geomagnetic fields measured by magnetometers located at Addis Ababa, Ethiopia (dip lat. ˜ 1° N), and Adigrat, Ethiopia (dip lat. ˜ 6° N), were used to determine the EEJ using differential techniques. The total electron content (TEC) derived from Global Navigation Satellite System (GNSS) signals using 19 receivers located along the 30-40° longitude sector was used to determine the EIA strengths over the region. This was done by determining the ratio of TEC over the crest to that over the trough, denoted as the CT : TEC ratio. This technique necessitated characterisation of the morphology of the EIA over the region. We found that the trough lies slightly south of the magnetic equator (0-4° S). This slight southward shift of the EIA trough might be due to the fact that over the East African region, the general centre of the EEJ is also shifted slightly south of the magnetic equator. For the first time over the East African sector, we determined a threshold daytime EEJ strength of ˜ 40 nT that is mostly associated with prominent EIA occurrence during a high solar activity period. The study also revealed that there is a positive correlation between daytime EEJ and EIA strengths, with a strong positive correlation occurring during the period 13:00-15:00 LT.
NASA Astrophysics Data System (ADS)
Hashimoto, K. K.; Kikuchi, T.; Nagatsuma, T.; Tomizawa, I.
2016-12-01
During the stormtime Pc5 magnetic pulsations on 31 October 2003, we detected large amplitude oscillations in the ionospheric electric field with the HF Doppler sounders at midlatitude for 10 hours from 11 to 21 LT. Similar oscillations were recorded on the magnetometer data at high-to-equatorial latitudes with significant amplitude enhancement at the dayside equator. We deduced the equatorial electrojet (EEJ) by subtracting the low latitude Pc5 from the equatorial Pc5 and found that the midlatitude electric field (EF) is well correlated with the EEJ with correlation coefficients (0.80-0.95) and that the EEJ to EF ratio reached maximum at 11 LT and dramatically decreased until 18 LT in a function of cos0.6(solar zenith angle). With these observations, we suggest that the midlatitude electric field (EF) is associated with the DP2 type ionospheric currents transmitted from high latitude to the equator. It is to be noted that the EF is well correlated with the EEJ during the night after 18 LT, indicating that the Pc5 electric field is so strong as to drive equatorial electrojet in the nighttime ionosphere. Using the electric field measured by ROCSAT-1/IPEI, we confirmed that the Pc5 electric field in the mid- and low-latitude ionosphere is comparable to or even stronger than those observed by the HF Doppler sounders. High correlations between the ground- and satellite-based observations over 15 minutes indicate that the Pc5 electric field distribute uniform over 6500 km along the ROCSAT orbit which is consistent with the large-scale DP2 electric field.
Annual and semiannual variations of the geomagnetic field at equatorial locations
Campbell, W.H.
1981-01-01
For a year of quiet solar-activity level, geomagnetic records from American hemisphere observatories located between about 0?? and 30?? north geomagnetic latitude were used to compare the annual and semiannual variations of the geomagnetic field associated with three separate contributions: (a) the quiet-day midnight level, MDT; (b) the solar-quiet daily variation, Sq; (c) the quiet-time lunar semidiurnal tidal variation, L(12). Four Fourier spectral constituents (24, 12, 8, 6 h periods) of Sq were individually treated. All three orthogonal elements (H, D and Z) were included in the study. The MDT changes show a dominant semiannual variation having a range of about 7 gammas in H and a dominant annual variation in Z having a range of over 8 gammas. These changes seem to be a seasonal response to the nightside distortions by magnetospheric currents. There is a slow decrease in MDT amplitudes with increasing latitude. The Sq changes follow the patterns expected from an equatorial ionospheric dynamo electrojet current system. The dominant seasonal variations occur in H having a range of over 21 gammas for the 24 h period and over 12 gammas for the 12 h period spectral components. The higher-order components are relatively smaller in size. The Sq(H) amplitudes decrease rapidly with increasing latitude. Magnetospheric contributions to the equatorial Sq must be less than a few per cent of the observed magnitude. The L(12) variation shows the ionospheric electrojet features by the dominance of H and the rapid decrease in amplitude with latitude away from the equator. However, the seasonal variation range of over 7 gammas has a maximum in early February and minimum in late June that is not presently explainable by the known ionospheric conductivity and tidal behavior. ?? 1981.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
Pulsed Artificial Electrojet Generation
NASA Astrophysics Data System (ADS)
Papadopoulos, K.
2008-12-01
Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roussel-Dupre, R.; Fitzgerald, T.J.; Symbalisty, E.
In this paper the authors report on recent radar measurements taken during the month of October 1994 with the LDG HF radar in the Ivory Coast, Africa as part of the International Equatorial Electrojet Year. The purpose of this experimental effort in part was to study the effects of thunderstorms on the ionosphere. At the same time, the authors decided to carry out a set of experiments of an exploratory nature to look for echoes that could potentially arise from ionization produced in the mesosphere. The two leading candidates for producing transient ionization in the mesosphere are meteors and high-altitudemore » discharges. Each is discussed in the context of these measurements.« less
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1979-01-01
Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.
Solar quiet day ionospheric source current in the West African region
Obiekezie, Theresa N.; Okeke, Francisca N.
2012-01-01
The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January–December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method. The range of the source current was calculated and this enabled the viewing of a full year’s change in the source current system of Sq. PMID:25685434
SPACE GEOMAGNETISM, RADIATION BELTS, AND AURORAL ZONES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vestine, E.H.
1962-07-01
The nature of the geomagnetic field and a few variations from ground level out to about 10 earth radii is discussed. Regions of trapped radiation are noted. The unshielded dosages during a great solar event on a few days per decade exceed limits of human safety. Modest shielding of somewhat less than 1 gm/sq cm will not remove the hazards. The chance is probably only one in several thousand that this will not suffice to preserve life on any given day. Transient accelerations of trapped particles result in atmospheric effects such as the aurora, and the polar electrojets, but themore » cause of these accelerative actions is quite obscure. (auth)« less
Solar wind and magnetosphere interactions
NASA Technical Reports Server (NTRS)
Russell, C. T.; Allen, J. H.; Cauffman, D. P.; Feynman, J.; Greenstadt, E. W.; Holzer, R. E.; Kaye, S. M.; Slavin, J. A.; Manka, R. H.; Rostoker, G.
1979-01-01
The relationship between the magnetosphere and the solar wind is addressed. It is noted that this interface determines how much of the solar plasma and field energy is transferred to the Earth's environment, and that this coupling not only varies in time, responding to major solar disturbances, but also to small changes in solar wind conditions and interplanetary field directions. It is recommended that the conditions of the solar wind and interplanetary medium be continuously monitored, as well as the state of the magnetosphere. Other recommendations include further study of the geomagnetic tail, tests of Pc 3,4 magnetic pulsations as diagnostics of the solar wind, and tests of kilometric radiation as a remote monitor of the auroral electrojet.
Electric currents in E-like planetary ionospheres
NASA Technical Reports Server (NTRS)
Cole, K. D.
1990-01-01
In this paper an MHD approach is used to consider the conduction of electric current in a lightly ionized gas, taking into account the gradients of pressure in the ion and electron gases, in addition to the electric field. The coefficients of electrical conductivity are found for each driver of current. New expressions for the components of heat dissipation associated with each driver of current are developed, which are fully consistent with kinetic theory. The relationship of the results to those obtained by kinetic theory is discussed. New components of currents associated with planetary equatorial electrojets are found. A new diffusion equation for magnetic induction is found, applicable in E-like regions of planetary ionospheres, and stellar photospheres.
Investigation of geomagnetic induced current at high latitude during the storm-time variation
NASA Astrophysics Data System (ADS)
Falayi, E. O.; Ogunmodimu, O.; Bolaji, O. S.; Ayanda, J. D.; Ojoniyi, O. S.
2017-06-01
During the geomagnetic disturbances, the geomagnetically induced current (GIC) are influenced by the geoelectric field flowing in conductive Earth. In this paper, we studied the variability of GICs, the time derivatives of the geomagnetic field (dB/dt), geomagnetic indices: Symmetric disturbance field in H (SYM-H) index, AU (eastward electrojet) and AL (westward electrojet) indices, Interplanetary parameters such as solar wind speed (v), and interplanetary magnetic field (Bz) during the geomagnetic storms on 31 March 2001, 21 October 2001, 6 November 2001, 29 October 2003, 31 October 2003 and 9 November 2004 with high solar wind speed due to a coronal mass ejection. Wavelet spectrum based approach was employed to analyze the GIC time series in a sequence of time scales of one to twenty four hours. It was observed that there are more concentration of power between the 14-24 h on 31 March 2001, 17-24 h on 21 October 2001, 1-7 h on 6 November 2001, two peaks were observed between 5-8 h and 21-24 h on 29 October 2003, 1-3 h on 31 October 2003 and 18-22 h on 9 November 2004. Bootstrap method was used to obtain regression correlations between the time derivative of the geomagnetic field (dB/dt) and the observed values of the geomagnetic induced current on 31 March 2001, 21 October 2001, 6 November 2001, 29 October 2003, 31 October 2003 and 9 November 2004 which shows a distributed cluster of correlation coefficients at around r = -0.567, -0.717, -0.477, -0.419, -0.210 and r = -0.488 respectively. We observed that high energy wavelet coefficient correlated well with bootstrap correlation, while low energy wavelet coefficient gives low bootstrap correlation. It was noticed that the geomagnetic storm has a influence on GIC and geomagnetic field derivatives (dB/dt). This might be ascribed to the coronal mass ejection with solar wind due to particle acceleration processes in the solar atmosphere.
Swarm Utilisation Analysis: LEO satellite observations for the ESA's SSA Space Weather network
NASA Astrophysics Data System (ADS)
Kervalishvili, Guram; Stolle, Claudia; Rauberg, Jan; Olsen, Nils; Vennerstrøm, Susanne; Gullikstad Johnsen, Magnar; Hall, Chris
2017-04-01
ESA's (European Space Agency) constellation mission Swarm was successfully launched on 22 November 2013. The three satellites achieved their final constellation on 17 April 2014 and since then Swarm-A and Swarm-C orbiting the Earth at about 470 km (flying side-by-side) and Swarm-B at about 520 km altitude. Each of Swarm satellite carries instruments with high precision to measure magnetic and electric fields, neutral and plasma densities, and TEC (Total Electron Content) for which a dual frequency GPS receiver is used. SUA (Swarm Utilisation Analysis) is a project of the ESA's SSA (Space Situational Awareness) SWE (Space Weather) program. Within this framework GFZ (German Research Centre for Geosciences, Potsdam, Germany) and DTU (National Space Institute, Kongens Lyngby, Denmark) have developed two new Swarm products ROT (Rate Of change of TEC) and PEJ (Location and intensity level of Polar Electrojets), respectively. ROT is derived as the first time derivative from the Swarm measurements of TEC at 1 Hz sampling. ROT is highly relevant for users in navigation and communications: strong plasma gradients cause GPS signal degradation or even loss of GPS signal. Also, ROT is a relevant space weather asset irrespective of geomagnetic activity, e.g., high amplitude values of ROT occur during all geomagnetic conditions. PEJ is derived from the Swarm measurements of the magnetic field strength at 1 Hz sampling. PEJ has a high-level importance for power grid companies since the polar electrojet is a major cause for ground-induced currents. ROT and PEJ together with five existing Swarm products TEC, electron density, IBI (Ionospheric Bubble Index), FAC (Field-Aligned Current), and vector magnetic field build the SUA service prototype. This prototype will be integrated into ESA's SSA Space Weather network as a federated service and will be available soon from ESA's SSA SWE Ionospheric Weather and Geomagnetic Conditions Expert Service Centres (ESCs).
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.
2017-12-01
During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the strength of the ionospheric convection, field-aligned current densities and ring current pressure amplitude and distribution.
NASA Astrophysics Data System (ADS)
Pham Thi Thu, H.; Amory-Mazaudier, C.; Le Huy, M.
2011-01-01
Quiet days variations in the Earth's magnetic field (the Sq current system) are compared and contrasted for the Asian, African and American sectors using a new dataset from Vietnam. This is the first presentation of the variation of the Earth's magnetic field (Sq), during the solar cycle 23, at Phu Thuy, Vietnam (geographic latitudes 21.03° N and longitude: 105.95° E). Phu Thuy observatory is located below the crest of the equatorial fountain in the Asian longitude sector of the Northern Hemisphere. The morphology of the Sq daily variation is presented as a function of solar cycle and seasons. The diurnal variation of Phu Thuy is compared to those obtained in different magnetic observatories over the world to highlight the characteristics of the Phu Thuy observations. In other longitude sectors we find different patterns. At Phu Thuy the solar cycle variation of the amplitude of the daily variation of the X component is correlated to the F.10.7 cm solar radiation (~0.74). This correlation factor is greater than the correlation factor obtained in two observatories located at the same magnetic latitudes in other longitude sectors: at Tamanrasset in the African sector (~0.42, geographic latitude ~22.79) and San Juan in the American sector (~0.03, geographic latitude ~18.38). At Phu Thuy, the Sq field exhibits an equinoctial and a diurnal asymmetry: - The seasonal variation of the monthly mean of X component exhibits the well known semiannual pattern with 2 equinox maxima, but the X component is larger in spring than in autumn. Depending of the phase of the sunspot cycle, the maximum amplitude of the X component varies in spring from 30 nT to 75 nT and in autumn from 20 nT to 60 nT. The maximum amplitude of the X component exhibits roughly the same variation in both solstices, varying from about ~20 nT to 50 nT, depending on the position into the solar cycle. - In all seasons, the mean equinoctial diurnal Y component has a morning maximum Larger than the afternoon minimum i.e. the equivalent current flow over a day is more southward than northward. During winter, the asymmetry is maximum, it erases the afternoon minimum. At the Gnangara observatory, in Asian Southern Hemisphere, the diurnal Y pattern is opposite and the current flow is more northward. It seems that in the Asian sector, the northern and southern Sq current cells both contribute strongly to the equatorial electrojet. The pattern is different in the African and American sectors where the northern Sq current cell contribution to the equatorial electrojet is smaller than the southern one. These observations can explain the unexpected maximum of amplitude of the equatorial electrojet observed in the Asian sector where the internal field is very large. During winter the Y component flow presents an anomaly, it is always southward during the whole day and there is no afternoon northward circulation.
Geomagnetic effects caused by rocket exhaust jets
NASA Astrophysics Data System (ADS)
Lipko, Yuriy; Pashinin, Aleksandr; Khakhinov, Vitaliy; Rahmatulin, Ravil
2016-09-01
In the space experiment Radar-Progress, we have made 33 series of measurements of geomagnetic variations during ignitions of engines of Progress cargo spacecraft in low Earth orbit. We used magneto-measuring complexes, installed at observatories of the Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences, and magnetotelluric equipment of a mobile complex. We assumed that engine running can cause geomagnetic disturbances in flux tubes crossed by the spacecraft. When analyzing experimental data, we took into account space weather factors: solar wind parameters, total daily mid-latitude geomagnetic activity index Kp, geomagnetic auroral electrojet index AE, global geomagnetic activity. The empirical data we obtained indicate that 18 of the 33 series showed geomagnetic variations in various time ranges.
Winds in the meteor zone over Trivandrum
NASA Astrophysics Data System (ADS)
Reddi, C. R.; Rajeev, K.; Ramakumar, Geetha
1991-04-01
The height profiles of the zonal and meridional wind obtained from the meteor wind radar data recorded at Trivandrum (8 deg 36 min N, 77 deg E) are presented. Large wind shears were found to exist in the meteor zone over Trivandrum. The profiles showed quasi-sinusoidal variations with altitude and vertical wavelength of the oscillation in the range 15-25 km. Further, there was a large day-to-day variability in the profiles obtained for the same local time on consecutive days. The results are discussed in the light of the winds due to tides and equatorial waves in the low latitudes. The implications of the large wind shears with reference to the local wind effects on the equatorial electrojet are outlined.
Theoretical Studies of Low Frequency Instabilities in the Ionosphere. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimant, Y. S.
2003-08-20
The objective of the current project is to provide a theoretical basis for better understanding of numerous radar and rocket observations of density irregularities and related effects in the lower equatorial and high-latitude ionospheres. The research focused on: (1) continuing efforts to develop a theory of nonlinear saturation of the Farley-Buneman instability; (2) revision of the kinetic theory of electron-thermal instability at low altitudes; (3) studying the effects of strong anomalous electron heating in the high-latitude electrojet; (4) analytical and numerical studies of the combined Farley-Bunemadion-thermal instabilities in the E-region ionosphere; (5) studying the effect of dust charging in Polarmore » Mesospheric Clouds. Revision of the kinetic theory of electron thermal instability at low altitudes.« less
An approach to forecast major GIC events
NASA Astrophysics Data System (ADS)
Stauning, Peter
2013-04-01
In addition to provide fascinating auroral displays, the large and violent magnetic substorms may endanger power grids and cause problems for a variety of other important technical systems. Such substorms generally result from the build-up of excessive stresses in the magnetospheric tail region caused by imbalance between the transpolar antisunward convection of plasma and embedded magnetic fields and the sunward convection (return flow) at auroral latitudes. The stresses are subsequently released through substorm processes, which may, among other, cause rapidly varying ionospheric currents in the million-ampere range that in turn endanger power grids through the related "Geomagnetically Induced Current" (GIC) effects. The presentation will discuss the construction of a geomagnetic stress parameter based on a combination of polar cap indices and auroral electrojet monitoring to be used in the forecasting of major GIC events.
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
Analysis of geomagnetic hourly ranges
NASA Astrophysics Data System (ADS)
Danskin, D. W.; Lotz, S. I.
2015-08-01
In an attempt to develop better forecasts of geomagnetic activity, hourly ranges of geomagnetic data are analyzed with a focus on how the data are distributed. A lognormal distribution is found to be able to characterize the magnetic data for all observatories up to moderate disturbances with each distribution controlled by the mean of the logarithm of the hourly range. In the subauroral zone, the distribution deviates from the lognormal, which is interpreted as motion of the auroral electrojet toward the equator. For most observatories, a substantial deviation from the lognormal distribution was noted at the higher values and is best modeled with a power law extrapolation, which gives estimates of the extreme values that may occur at observatories which contribute to the disturbance storm time (Dst) index and in Canada.
Phobos-Grunt ; Russian Sample Return Mission
NASA Astrophysics Data System (ADS)
Marov, M.
As an important milestone in the Mars exploration, space vehicle of new generation "Phobos-Grunt" is planned to be launched by the Russian Aviation and Space Agency. The project is optimized around Phobos sample return mission and follow up missions targeted to study some Main asteroid belt bodies, NEO , and short period comets. The principal constrain is "Soyuz-Fregat" rather than "Proton" launcher utilization to accomplish these challenging goals. The vehicle design incorporates innovative SEP technology involving electrojet engines that allowed us to increase significantly the missions energetic capabilities, as well as high autonomous on- board systems . Basic criteria underlining the "Phobos-Grunt" mission scenario, scientific objections and rationale, involving Mars observations during the vehicle insertion into Mars orbit and Phobos approach manoeuvres, are discussed and an opportunity for international cooperation is suggested.
NASA Technical Reports Server (NTRS)
Mozer, F.
1974-01-01
A split Langmuir probe has been developed to make in situ measurements of ionospheric current density and plasma bulk flow. The probe consists of two conducting elements that are separated by a thin insulator that shield each other over a 2 pi solid angle, and that are simultaneously swept from negative to positive with respect to the plasma. By measuring the current to each plate and the difference current between plates, information is obtained on the plasma's current density, bulk flow, electron temperature, and density. The instrument was successfully flown twice on sounding rockets into auroral events. Measurement data indicate that the total auroral current configuration is composed of several alternating east and west electrojets associated with several alternating up and down Birkeland currents.
Vernal Point and Plate Tectonics: Indo-Australian
NASA Astrophysics Data System (ADS)
Chavez C, Teodosio; Chavez-Sumarriva, Israel; Chavez S, Nadia
2013-04-01
A precession coordinate system (eccentricity -100Ka, obliquity -40Ka and precession -25Ka) developed by Milankovicht was the precession of the equinoxes, where the vernal point retrograde 1° every 72 years approximately and enter (0°) into the Aquarius constellation on March 20, 1940. On earth this entry was verify through: a) stability of the magnetic equator in the south central zone of Peru and in the north zone of Bolivia, b) the greater intensity of equatorial electrojet (EEJ) in Peru and Bolivia since 1940. The vernal point is a maximum conductivity sensitive axis in the EEJ given at the equinoxes. There was a relationship between the equatorial electrojet - magnetic equator - crust, and besides there was a long history of studies of coupling between earthquake-ionosphere that can be founded in the following revisions: Liperovsky et al. (1990); Gaivoronskaya (1991); Liperovsky et al. (1992); Parrot et al. (1993); Pulinets et al. (1994) and Gokhberg et al. (1995). In IUGG (2007), Cusco was propose as a prime meridian (72° W == 0°) that was parallel to the Andes; the objective was to synchronize the earth sciences phenomena (e.g. geology, geophysics, etc.). The coordinate system had the vernal point from meridian (72° W == 0°) and March 20, 1940. The retrograde movement of the vernal point was the first precessional degree (2012 = 1940 + 72); from the new prime meridian (72° W == 0°) it has obtained the opposite meridian (72° E == 180°). The first precessional degree (2012) near the meridian (72 ° E) was related to the date of April 11, 2012 where a massive earthquake of 8.6 on the Richter scale, followed by several aftershocks, one of 8.2 degrees struck Indonesia with epicenter near Banda Aceh. Five months after that date, Matthias Delescluse et.al (2012), Han Yue et.al (2012), and Fred F. Pollitz et.al, (2012), explained that the two violent earthquakes would be evidence of a break in the Indo-Australian Plate Tectonics caused earthquakes around the world. It is noted that in one of the opposite meridian there was a correlation between the vernal point and the indo-australian plate.
NASA Astrophysics Data System (ADS)
Levitin, A. E.; Kleimenova, N. G.; Gromova, L. I.; Antonova, E. E.; Dremukhina, L. A.; Zelinsky, N. R.; Gromov, S. V.; Malysheva, L. M.
2015-11-01
Features of high-latitude geomagnetic disturbances during the magnetic storm ( Dst min =-144 nT) recovery phase were studied based on the observations on the Scandinavian profile of magnetometers (IMAGE). Certain non-typical effects that occur under the conditions of large positive IMF Bz values (about +20-25 nT) and large negative IMF By values (to-20 nT) were revealed. Thus, an intense (about 400 nT) negative bay in the X component of the magnetic field (the polar electrojet, PE) was observed in the dayside sector at geomagnetic latitudes higher than 70°. As the IMF B y reverses its sign from negative to positive, the bay in the X component was replaced by the bay in the Y component. The possible distribution of the fieldaligned currents of the NBZ system was analyzed based on the CHAMP satellite data. The results were compared with the position of the auroral oval (the OVATION model) and the ion and electron flux observations on the DMSP satellite. Analysis of the particle spectra indicated that these spectra correspond to the auroral oval dayside sector crossings by the satellite, i.e., to the dayside projection of the plasma ring surrounding the Earth. Arguments are presented for the assumption that the discussed dayside electrojet ( PE) is localized near the polar edge of the dayside auroral oval in a the closed magnetosphere. The features of the spectral and spatial dynamics of intense Pc5 geomagnetic pulsations were studied in this time interval. It was established that the spectrum of high-latitude (higher than ~70°) pulsations does not coincide with the spectrum of fluctuations in the solar wind and IMF. It was shown that Pc5 geomagnetic pulsations can be considered as resonance oscillations at latitudes lower than 70° and apparently reflect fluctuations in turbulent sheets adjacent to the magnetopause (the low-latitude boundary layer, a cusp throat) or in a turbulent magnetosheath at higher latitudes.
NASA Astrophysics Data System (ADS)
Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.
2017-12-01
A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared to cases when new or full moon occur further away from the central SSW epoch.
NASA Astrophysics Data System (ADS)
Amory-Mazaudier, C.; et al.
2006-11-01
lhminh@igp.ncst.ac.vn The Hanoi Institute of Geophysics (Vietnam) will participate to international Heliophysical Year. This paper presents Vietnam‘s participation into this International cooperative project : the Vietnamese network of magnetometers, meteorological stations, ionosondes and GPS receivers involved in campaigns of measurements, the research field selected for the training of young Vietnamese scientists, and the Institutes involve in this training. This paper also presents some particularities of geophysical parameters in Vietnam : the strong amplitude of the equatorial electrojet observed by satellite data and confirmed by magnetic observations at the ground level presented for the first time to the international community, the monsoon signature etc. Finally the differences between the Asian sector and the African sector lead to the development of comparative studies between Asia and Africa.
Auroral origin of medium scale gravity waves in neutral composition and temperature
NASA Technical Reports Server (NTRS)
Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.
1979-01-01
The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.
Phobos-Grunt: Russian sample return mission
NASA Astrophysics Data System (ADS)
Marov, M. Ya.; Avduevsky, V. S.; Akim, E. L.; Eneev, T. M.; Kremnev, R. S.; Kulikov, S. D.; Pichkhadze, K. M.; Popov, G. A.; Rogovsky, G. N.
2004-01-01
As an important milestone in the exploration of Mars and small bodies, a new generation space vehicle ``Phobos-Grunt'' is planned to be launched by the Russian Aviation and Space Agency. The project is optimized around a Phobos sample return mission and follow up missions targeted to study some main asteroid belt bodies, NEOs and short period comets. The principal constraint is use of the ``Soyuz-Fregat'' rather than the ``Proton'' launcher to accomplish these challenging goals. The vehicle design incorporates innovative SEP technology involving electrojet engines that allowed us to increase significantly the mission's energetic capabilities, as well as highly autonomous on-board systems. Basic criteria underlining the ``Phobos-Grunt'' mission scenario, scientific objectives and rationale including Mars observations during the vehicle's insertion into Mars orbit and Phobos approach maneuvers, are discussed and an opportunity for international cooperation is suggested.
NASA Astrophysics Data System (ADS)
Abdu, M. A.; Walker, G. O.; Reddy, B. M.; de Paula, E. R.; Sobral, J. H. A.; Fejer, B. G.
1993-07-01
Equatorial ionization anomaly (EIA) responses to magnetospheric disturbances have been investigated using ionosonde and geomagnetic data sets obtained for different longitude sectors during the 9-day (28 May-7 June) globally-coordinated SUNDIAL 87 campaign. Attention is focused on the EIA response features of the two magnetically most-disturbed days of the campaign window, 29 May and 6 June. Anomalous EIA inhibition and development were simultaneously observed at widely separated (American and Asian) longitude sectors, accompanied respectively by events of morning electrojet reversal and evening partial ring current development. A numerical model of the low-latitude ionosphere has been used to quantify the role that a disturbance electric field could play in the observed EIA response features. The implications of the results on the global low-latitude disturbance electric field pattern is discussed.
ULF Generation by Modulated Ionospheric Heating
NASA Astrophysics Data System (ADS)
Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.
2013-12-01
Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.
NASA Astrophysics Data System (ADS)
Factors affecting the atmospheric propagation of EM waves, research on the ionosphere, and advances in radar and communications technology are examined in reviews and reports. Topics discussed include refraction corrections for radio astronomy and geodesy, speckle masking, radar studies of atmospheric motion, EISCAT measurements in the polar electrojet, active experiments in the polar ionosphere, and dispersion relations for drift-Alfven and drift-acoustic waves. Consideration is given to a microcomputer prediction system for HF communications over Europe, frequency determination of a hyperfine line of CH4 at 88 THz, multipath propagation in digital mobile communication, a robust digital voice transmission technique for land mobile radio, CMOS LSI for digital signal processing in mobile radio equipment, the representation of EM fields by dyadic Green functions, scalarization of Maxwell's equations for anisotropic media, and satellite antennas for land vehicles and aircraft.
Antarctic atmospheric infrasound. Final technical report, 1 July 1981-30 September 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, C.R.; McKibben, B.N.
1986-11-01
In order to monitor atmospheric infrasonic waves in the passband from 0.1 to 0.01 Hz a digital infrasonic detection system was installed in Antarctica on the Ross Ice shelf near McMurdo Station on McMurdo Sound. An array of seven infrasonic microphones subtending an area of about 35 sg km was operated in Windless Bight. The analog microphone data were telemetered to McMurdo station where the infrasonic date were digitized and subjected to on-line real-time analysis to detect traveling infrasonic waves with periods from 10 to 100 seconds. During the period of operation of the Antartic infrasonic observatory, hundreds of infrasonicmore » signals were detected in association with many natural sources such as the aurora australis, marine storm sea-air interactions, volcanic eruptions, mountain generated lee-wave effects, large meteors and auroral electrojet supersonic motions.« less
The disturbed geomagnetic field at European observatories. Sources and significance
NASA Astrophysics Data System (ADS)
Greculeasa, Razvan; Dobrica, Venera; Demetrescu, Crisan
2014-05-01
The disturbed geomagnetic field recorded at Earth's surface is given by the effects of electric current systems in the magnetosphere and ionosphere, as a result of the interaction of geomagnetic field with the solar wind and the interplanetary magnetic field. In this paper the geomagnetic disturbance recorded at European observatories has been investigated as regards its sources, for the time interval August 1-10, 2010, in which a moderate storm (Dstmin= -70 nT) occurred (August 3-4). The disturbance has been evidenced against the solar quiet daily variation, for each of the 29 observatories with minute data in the mentioned time interval. Data have been downloaded from the INTERMAGNET web page. The contribution of the magnetospheric ring current and of the auroral electrojet to the observed disturbance field in the X, Z, and D geomagnetic elements is discussed and the corresponding geographical distribution is presented.
Response of the Equatorial Ionosphere to the Geomagnetic DP 2 Current System
NASA Technical Reports Server (NTRS)
Yizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R. De
2016-01-01
The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.
NASA Technical Reports Server (NTRS)
Ravat, Dhananjay; Hinze, William J.
1991-01-01
Analysis of the total magnetic intensity MAGSAT data has identified and characterized the variability of ionospheric current effects as reflected in the geomagnetic field as a function of longitude, elevation, and time (daily as well as monthly variations). This analysis verifies previous observations in POGO data and provides important boundary conditions for theoretical studies of ionospheric currents. Furthermore, the observations have led to a procedure to remove these temporal perturbations from lithospheric MAGSAT magnetic anomaly data based on 'along-the-dip-latitude' averages from dawn and dusk data sets grouped according to longitudes, time (months), and elevation. Using this method, high-resolution lithospheric magnetic anomaly maps have been prepared of the earth over a plus or minus 50 deg latitude band. These maps have proven useful in the study of the structures, nature, and processes of the lithosphere.
Equatorial ionospheric electrodynamics during solar flares
NASA Astrophysics Data System (ADS)
Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding
2017-05-01
Previous investigations on ionospheric responses to solar flares focused mainly on the photoionization caused by the increased X-rays and extreme ultraviolet irradiance. However, little attention was paid to the related electrodynamics. In this letter, we explored the equatorial electric field (EEF) and electrojet (EEJ) in the ionosphere at Jicamarca during flares from 1998 to 2008. It is verified that solar flares increase dayside eastward EEJ but decrease dayside eastward EEF, revealing a negative correlation between EEJ and EEF. The decreased EEF weakens the equatorial fountain effect and depresses the low-latitude electron density. During flares, the enhancement in the Cowling conductivity may modulate ionospheric dynamo and decrease the EEF. Besides, the decreased EEF is closely related to the enhanced ASY-H index that qualitatively reflects Region 2 field-aligned current (R2 FAC). We speculated that solar flares may also decrease EEF through enhancing R2 FAC that leads to an overshielding-like effect.
Source and identification of heavy ions in the equatorial F layer.
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Sterling, D. L.; Woodman, R. F.
1972-01-01
Further evidence is presented to show that the interpretation of some Ogo 6 retarding potential analyzer (RPA) results in terms of ambient Fe+ ions is correct. The Fe+ ions are observed only within dip latitudes of plus or minus 30 deg, and the reason for this latitudinal specificity is discussed in terms of a low-altitude source region and F region diffusion and electrodynamic drift. It is shown that the polarization field associated with the equatorial electrojet will raise ions to 160 km out of a chemical source region below 100 km but it will do so only in a narrow region centered on the dip equator. Subsequent vertical ExB drift, coupled with motions along the magnetic fields, can move the ions to greater heights and greater latitudes. There should be a resultant fountain of metallic ions rising near the equator that subsequently descends back to the E and D layers at tropical latitudes.
The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations
NASA Astrophysics Data System (ADS)
Lühr, H.; Manoj, C.
2013-08-01
Based on 10 yr of magnetic field measurements by the CHAMP satellite we draw a detailed picture of the equatorial electrojet (EEJ) tidal variations. For the first time the complete EEJ spectrum related to average solar tides has been compiled. A large fraction of the resulting spectrum is related to the switch on/off of the EEJ between day and night. This effect has carefully been considered when interpreting the results. As expected, largest amplitudes are caused by the migrating tides representing the mean diurnal variation. Higher harmonics of the daily variations show a 1/f fall-off in amplitude. Such a spectrum is required to represent the vanishing of the EEJ current at night. The migrating tidal signal exhibits a distinct annual variation with large amplitudes during December solstice and equinox seasons but a depression by a factor of 1.7 around June-July. A rich spectrum of non-migrating tidal effects is deduced. Most prominent is the four-peaked longitudinal pattern around August. Almost 90% of the structure can be attributed to the diurnal eastward-propagating tide DE3. In addition the westward-propagating DW5 is contributing to wave-4. The second-largest non-migrating tide is the semi-diurnal SW4 around December solstice. It causes a wave-2 feature in satellite observations. The three-peaked longitudinal pattern, often quoted as typical for the December season, is significantly weaker. During the months around May-June a prominent wave-1 feature appears. To first order it represents a stationary planetary wave SPW1 which causes an intensification of the EEJ at western longitudes beyond 60° W and a weakening over Africa/India. In addition, a prominent ter-diurnal non-migrating tide TW4 causes the EEJ to peak later, at hours past 14:00 local time in the western sector. A particularly interesting non-migrating tide is the semi-diurnal SW3. It causes largest EEJ amplitudes from October through December. This tidal component shows a strong dependence on solar flux level with increasing amplitudes towards solar maximum. We are not aware of any previous studies mentioning this behaviour of SW3. The main focus of this study is to present the observed EEJ spectrum and its relation to tidal driving. For several of the identified spectral components we cannot offer convincing explanations for the generation mechanisms.
NASA Astrophysics Data System (ADS)
Seba, Ephrem Beshir; Nigussie, Melessew
2016-11-01
The variability of the equatorial ionosphere is still a big challenge for ionospheric dependent radio wave technology users. To mitigate the effect of equatorial ionospheric irregularity on trans-ionospheric radio waves considerable efforts are being done to understand and model the equatorial electrodynamics and its connection to the creation of ionospheric irregularity. However, the effect of the East-African ionospheric electrodynamics on ionospheric irregularity is not yet well studied due to lack of multiple ground based instruments. But, as a result of International Heliophysical Year (IHY) initiative, which was launched in 2007, some facilities are being deployed in Africa since then. Therefore, recently deployed instruments, in the Ethiopian sector, such as SCINDA-GPS receiver (2.64°N dip angle) for TEC and amplitude scintillation index (S4) data and two magnetometers, which are deployed on and off the magnetic equator, data collected in the March equinoctial months of the years 2011, 2012, and 2015 have been used for this study in conjunction with geomagnetic storm data obtained from high resolution OMNI WEB data center. We have investigated the triggering and inhibition mechanisms for ionospheric irregularities using, scintillation index (S4), equatorial electrojet (EEJ), interplanetary electric field (IEFy), symH index, AE index and interplanetary magnetic field (IMF) Bz on five selected storm and two storm free days. We have found that when the eastward EEJ fluctuates in magnitude due to storm time induced electric fields at around noontime, the post-sunset scintillation is inhibited. All observed post-sunset scintillations in equinox season are resulted when the daytime EEJ is non fluctuating. The strength of noontime EEJ magnitude has shown direct relation with the strength of the post-sunset scintillations. This indicates that non-fluctuating EEJ stronger than 20 nT, can be precursor for the occurrence of the evening time ionospheric irregularities. It is also found that prolonged eastward undershielding electric field during the daytime intensified the daytime EEJ magnitude and resulted in strong post-sunset scintillations. We have also observed that the rate of change of BZ (i.e. electric field produced by Faraday's Induction law) and eastward IEFy around the PRE hour is nicely correlated with strong post-sunset scintillations. Moreover, discussions about the causes for the appearance and disappearance of ionospheric scintillation are presented in this paper.
NASA Astrophysics Data System (ADS)
Newell, P. T.; Gjerloev, J. W.
2011-12-01
A generalization of the traditional 12-station auroral electrojet (AE) index to include more than 100 magnetometer stations, SME, is an excellent predictor of global auroral power (AP), even at high cadence (1 min). We use this index, and a database of more than 53,000 substorms derived from it, covering 1980-2009, to investigate time and energy scales in the magnetosphere, during substorms and otherwise. We find, contrary to common opinion, that substorms do not have a preferred recurrence rate but instead have two distinct dynamic regimes, each following a power law. The number of substorms recurring after a time Δt, N(Δt), varies as Δt-1.19 for short times (<80 min) and as Δt-1.76 for longer times (>3 hours). Other evidence also shows these distinct regimes for the magnetosphere, including a break in the power law spectra for SME at about 3 hours. The time between two consecutive substorms is only weakly correlated (r = 0.18 for isolated and r = 0.06 for recurrent) with the time until the next, suggesting quasiperiodicity is not common. However, substorms do have a preferred size, with the typical peak SME magnitude reaching 400-600 nT, but with a mean of 656 nT, corresponding to a bit less than 40 GW AP. More surprisingly, another characteristic scale exists in the magnetosphere, namely, a peak in the SME distribution around 61 nT, corresponding to about 5 GW precipitating AP. The dominant form of auroral precipitation is diffuse aurora; thus, these values are properties of the magnetotail thermal electron distribution. The characteristic 5 GW value specifically represents a preferred minimum below which the magnetotail rarely drops. The magnetotail experiences continuous loss by precipitation, so the existence of a preferred minimum implies driving that rarely disappears altogether. Finally, the distribution of SME values across all times, in accordance with earlier work on AE, is best fit by the sum of two distributions, each normal in log(SME). The lower distribution (with a 40% weighting) corresponds to the characteristic quiet peak, while the higher value distribution (60% weighting) is an average over the characteristic substorm peak and the subsequent prolonged recovery.
Three-dimensional Electromagnetic Modeling of the Hawaiian Swell
NASA Astrophysics Data System (ADS)
Avdeev, D.; Utada, H.; Kuvshinov, A.; Koyama, T.
2004-12-01
An anomalous behavior of the geomagnetic deep sounding (GDS) responses at the Honolulu geomagnetic observatory has been reported by many researchers. Kuvshinov et al (2004) found that the predicted GDS Dst C-response does not match the experimental data -- 10-20% disagreement occurs for all periods of 2 to 30 days, qualitatively implying a more resistive, rather than conductive, structure beneath the Hawaiian Islands. Simpson et al. (2000) found that the GDS Sq C-response at the Honolulu observatory is about 4 times larger than that at a Hawaii island site, again suggesting a more resistive (than elsewhere around) structure beneath the observatory. Constable and Heinson (2004, http://mahi.ucsd.edu/Steve/swell.pdf), presenting a 2-D interpretation of the magnetotelluric (MT) and GDS responses recently obtained at 7 seafloor sites to the south of the Hawaii Islands, concluded that the dataset require the presence of a narrow conducting plume just beneath the islands. The main motivation of our work is to reveal the reason of the anomalous behavior of the Honolulu response. Obviously, the cause may be due to heterogeneity of either the conductivity or the source field. We examine this problem in some detail with reference to the Constable and Heinson's seafloor dataset, as well as the available dataset from the Honolulu observatory. To address the problem we apply numerical modeling using the three-dimensional (3-D) forward modeling code of Avdeev et al. (1997, 2002). With this code we simulate various regional 3-D conductivity models that may produce EM responses that better fit the experimental datasets, at least qualitatively. Also, to explain some features of the experimental long-period GDS responses we numerically studied a possible effect in the responses caused by the equatorial electrojet. Our 3-D modeling results show that, in particular: (1) The GDS responses are better explained by models with a resistive lithosphere whereas the MT data are better fit by models without one; (2) A conductive plume under the Hawaiian Islands may not be required by the MT and GDS datasets considered; (3) An equatorial electrojet might affect the imaginary part of the GDS responses at periods of 2 h and more; (4) The anomalous large value of 0.4 observed in the real part of the seafloor GDS responses still cannot be explained by the 3-D models considered. It seems to require more complicated models.
NASA Technical Reports Server (NTRS)
Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend
1994-01-01
Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced dissipation of auroral currents. The participation of the ionosphere in the substorm energization processes seems to be closely, although not solely, associated with the solar wind/magnetosphere coupling. That is, the ionosphere influences actively the substorm energization processes by responding to the increased solar wind/magnetosphere coupling as well as to the unloading dissipation of stored energy, with the increased feeding of new material into the magnetosphere.
NASA Astrophysics Data System (ADS)
Chiang, C. Y.; Chang, T. F.; Tam, S. W. Y.; Syugu, W. J.; Kazama, Y.; Wang, B. J.; Wang, S. Y.; Kasahara, S.; Yokota, S.; Hori, T.; Yoshizumi, M.; Shinohara, I.
2017-12-01
The Exploration of energization and Radiation in Geospace (ERG) satellite has been successfully launched from the Uchinoura Space Center in December 2016. The main goal of the ERG project is to elucidate acceleration and loss mechanisms of relativistic electrons in the radiation belts. In addition, the apogee of the ERG satellite's orbit often exceeds the edge of outer radiation belt in radial distance. Thus the data measured from the higher-L region may be associated with the activities observed in the Earth's high-latitude region. We statistically compare the Auroral Electrojet (AE) index with the data measured by the Low-Energy Particle Experiments - Electron Analyzer (LEP-e) and Medium-Energy Particle Experiments - Electron Analyzer (MEP-e) onboard the ERG satellite in the past months. With the selected data for L > 7, we statistically investigate the contributions of the different electron energies observed in various magnetic local time (MLT) sectors to the Earth's high-latitude disturbances.
Theoretical magnetograms based on quantitative simulation of a magnetospheric substorm
NASA Technical Reports Server (NTRS)
Chen, C.-K.; Wolf, R. A.; Karty, J. L.; Harel, M.
1982-01-01
Substorm currents derived from the Rice University computer simulation of the September 19, 1976 substorm event are used to compute theoretical magnetograms as a function of universal time for various stations, integrating the Biot-Savart law over a maze of about 2700 wires and bands that carry the ring, Birkeland and horizontal ionospheric currents. A comparison of theoretical results with corresponding observations leads to a claim of general agreement, especially for stations at high and middle magnetic latitudes. Model results suggest that the ground magnetic field perturbations arise from complicated combinations of different kinds of currents, and that magnetic field disturbances due to different but related currents cancel each other out despite the inapplicability of Fukushima's (1973) theorem. It is also found that the dawn-dusk asymmetry in the horizontal magnetic field disturbance component at low latitudes is due to a net downward Birkeland current at noon, a net upward current at midnight, and, generally, antisunward-flowing electrojets.
The interplanetary and magnetospheric causes of extreme dB/dt at equatorial locations
NASA Astrophysics Data System (ADS)
Adebesin, Babatunde O.; Pulkkinen, Antti; Ngwira, Chigomezyo M.
2016-11-01
The 1 min resolution solar wind and geomagnetic data obtained from seven equatorial/low-latitude stations during four extreme geomagnetic activities are used to investigate the extreme dB/dt perturbations. Simulations of the magnetospheric-ionospheric environment were also performed for varying amplitudes of the solar proton density. Simulations were carried out using the Space Weather Modeling Framework/BATS-R-US + RCM model. Both the observations and simulations demonstrated that the appearance time of the extreme dB/dt perturbations at equatorial stations during disturbed conditions is instantaneous and equitable to those experienced at auroral regions yielding time lags of the order of a few seconds. We find that the rapid dB/dt enhancements are caused by the electric field of magnetospheric current origin, which is being enhanced by solar wind density and ram pressure variations and boosted by the equatorial electrojet. Our results indicate that the solar wind proton density variations could be used as a predictor of extreme dB/dt enhancement at equatorial latitudes.
Preliminary analysis of one year long space climate simulation
NASA Astrophysics Data System (ADS)
Facsko, G.; Honkonen, I. J.; Juusola, L.; Viljanen, A.; Vanhamäki, H.; Janhunen, P.; Palmroth, M.; Milan, S. E.
2013-12-01
One full year (155 Cluster orbits, from January 29, 2002 to February 2, 2003) is simulated using the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS) in the European Cluster Assimilation Technology project (ECLAT). This enables us to study the performance of a global magnetospheric model in an unprecedented scale both in terms of the amount of available observations and the length of the timeseries that can be compared. The solar wind for the simulated period, obtained from OMNIWeb, is used as input to GUMICS. We present an overview of various comparisons of GUMICS results to observations for the simulated year. Results along the Cluster reference spacecraft orbit to are compared to Cluster measurements. The Cross Polar Cap Potential (CPCP) results are compared to SuperDARN measurements. The IMAGE electrojet indicators (IU, IL) calculated from the ionospheric currents of GUMICS are compared to observations. Finally, Geomagnetically Induced Currents (GIC) calculated from GUMICS results along the Finnish mineral gas pipeline at Mätsälä are also compared to measurements.
NASA Astrophysics Data System (ADS)
Lee, Kwan Chul
2017-11-01
Three examples of electric field formation in the plasma are analyzed based on a new mechanism driven by ion-neutral collisions. The Gyro-Center Shift analysis uses the iteration of three equations including perpendicular current induced by the momentum exchange between ions and neutrals when there is asymmetry over the gyro-motion. This method includes non-zero divergence of current that leads the solution of time dependent state. The first example is radial electric field formation at the boundary of the nuclear fusion device, which is a key factor in the high-confinement mode operation of future fusion reactors. The second example is the reversed rotation of the arc discharge cathode spot, which has been a mysterious subject for more than one hundred years. The third example is electric field formations in the earth's ionosphere, which are important components of the equatorial electrojet and black aurora. The use of one method that explains various examples from different plasmas is reported, along with a discussion of the applications.
On the Topological Changes of Local Hurst Exponent in Polar Regions
NASA Astrophysics Data System (ADS)
Consolini, G.; De Michelis, P.
2014-12-01
Geomagnetic activity during magnetic substorms and storms is related to the dinamical and topological changes of the current systems flowing in the Earth's magnetosphere-ionosphere. This is particularly true in the case of polar regions where the enhancement of auroral electrojet current system is responsible for the observed geomagnetic perturbations. Here, using the DMA-technique we evaluate the local Hurst exponent (H"older exponent) for a set of 46 geomagnetic observatories, widely distributed in the northern hemisphere, during one of the most famous and strong geomagnetic storm, the Bastille event, and reconstruct a sequence of polar maps showing the dinamical changes of the topology of the local Hurst exponent with the geomagnetic activity level. The topological evolution of local Hurst exponent maps is discussed in relation to the dinamical changes of the current systems flowing in the polar ionosphere. G. Consolini has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 313038/STORM for this research.
Dependence of Substorm Evolution on Solar Wind Condition: Simulation Study
NASA Astrophysics Data System (ADS)
Kamiyoshikawa, N.; Ebihara, Y.; Tanaka, T.
2017-12-01
A substorm is one of the remarkable disturbances occurring in the magnetosphere. It is known that the substorm occurs frequently when IMF is southward and solar wind speed is high. However, the physical process to determine substorm scale is not well understood. We reproduced substorms by using global MHD simulation, calculated auroral electrojet (ionospheric Hall current) flowing in the ionosphere to investigate the dependence of substorm evolution on solar wind condition. Solar wind speed of 372.4 km/s and IMF Bz of 5.0 nT were imposed to, obtain the quasi-stationary state of the magnetosphere. Then the solar wind parameters were changed as a step function. For the solar wind speed, we assumed 300 km/s, 500 km/s and 700 km/s. For IMF, we assumed -1.0 nT, -3.0 nT, -5.0 nT, -7.0 nT and -9.0 nT. In total, 15 simulation runs were performed. In order to objectively evaluate the substorm, the onset was identified with the method based on the one proposed by Newell et al. (2011). This method uses the SME index that is an extension of the AE index. In this study, the geomagnetic variation induced by the ionospheric Hall current was obtained every 1 degree from the magnetic latitude 40 degrees to 80 degrees and in every 0.5 hours in the magnetic region direction. The upper and the lower envelopes of the geomagnetic variation are regarded as SMU index and SML index, respectively. The larger the solar wind speed, the larger the southward IMF, the more the onset tends to be faster. This tendency is consistent with the onset occurrence probability indicated by Newell et al. (2016). Moreover, the minimum value of the SML index within 30 minutes from the beginning of the onset tends to decrease with the solar wind speed and the magnitude of the southward IMF. A rapid decrease of the SML index can be explained by a rapid increase in the field-aligned currents flowing in and out of the nightside ionosphere. This means that electromagnetic energies flowing into the ionosphere increase abruptly. To the analogy with electric circuit, dynamo is necessary in the magnetosphere to supply electromagnetic energy to the ionosphere as a load. We will discuss the physical process that may determine the intensity of the electrojet as seen by the SML index in terms of energy flow from the solar wind to the ionosphere and the convection by analyzing the global MHD simulation.
2-D magnetotelluric experiment to investigate the Nassugtoqidian orogeny in South-East Greenland
NASA Astrophysics Data System (ADS)
Heincke, Björn; Chen, Jin; Riisager, Peter; Kolb, Jochen; Jørgensen, Asta F.
2015-04-01
The northwest-trending Palaeoproterozoic Nagssugtoqidian orogen extends over 250 km along the east coast of Greenland in the area around the village Tasiilaq. The geological evolution of this area closely compares with the ones of the Lewisian complex of Scotland and the Nagssugtoqidian orogen in western Greenland and, hence, leads to the suggestion that they belong to the same continental-scale orogenic belt. However, an accurate correlation across the inland ice is challenging and still ambiguous and therefore more detailed knowledge about the individual orogens might help to understand their relationship. Details about the large-scale tectonic evolution during the Nagssugtoqidian orogeny in this remote Arctic region are not known due to complex geology, relatively coarse geological mapping and the lack of extensive geophysical investigations. E.g. the vergence of the orogen, subduction-related magmatism and accretion history are matters of ongoing discussion (Kalsbeek et al., 1993; Nutman et al., 2008 and Kolb, 2013). We performed a 2-D magnetotelluric (MT) experiment across the southern part of the orogen along the Sermilik Fjord in order to improve our understanding of the orogenic process in general and to better constrain the location and vergence of the suture zone. However, because of the rough climate and the lack of infrastructure, this study is considered as a first test to investigate how MT surveys can be most efficiently performed in this remote part of the world. The NE-SW trending profile consists of eight MT stations and has a total length of ~70 km using long period LEMI-420 systems. The quality of the data is severely affected by polar electrojets that do not satisfy the plane wave assumptions, which is typical for regions close to the magnetic poles. In order to reduce the distortion from these signals onto the impedance estimates, we tested different advanced processing schemes. In addition to the more conventional robust response function estimator BIRRP from Chave and Thomson (2004), we applied a recent technique that is based on empirical mode decomposition EMD proposed by Chen et al. (2012). This method works rather in the time than in the frequency domain and appears promising to reduce the impact of such time limited noise signals typically associated with electrojets. As first results, we present obtained impedance estimates, induction vectors and dimensionality analysis. Experience from this first feasibility study will be to develop strategies for larger MT surveys for the challenging conditions in Greenland.
SABRE observations of Pi2 pulsations: case studies
NASA Astrophysics Data System (ADS)
Bradshaw, E. G.; Lester, M.
1997-01-01
The characteristics of substorm-associated Pi2 pulsations observed by the SABRE coherent radar system during three separate case studies are presented. The SABRE field of view is well positioned to observe the differences between the auroral zone pulsation signature and that observed at mid-latitudes. During the first case study the SABRE field of view is initially in the eastward electrojet, equatorward and to the west of the substorm-enhanced electrojet current. As the interval progresses, the western, upward field-aligned current of the substorm current wedge moves westward across the longitudes of the radar field of view. The westward motion of the wedge is apparent in the spatial and temporal signatures of the associated Pi2 pulsation spectra and polarisation sense. During the second case study, the complex field-aligned and ionospheric currents associated with the pulsation generation region move equatorward into the SABRE field of view and then poleward out of it again after the third pulsation in the series. The spectral content of the four pulsations during the interval indicate different auroral zone and mid-latitude signatures. The final case study is from a period of low magnetic activity when SABRE observes a Pi2 pulsation signature from regions equatorward of the enhanced substorm currents. There is an apparent mode change between the signature observed by SABRE in the ionosphere and that on the ground by magnetometers at latitudes slightly equatorward of the radar field of view. The observations are discussed in terms of published theories of the generation mechanisms for this type of pulsation. Different signatures are observed by SABRE depending on the level of magnetic activity and the position of the SABRE field of view relative to the pulsation generation region. A twin source model for Pi2 pulsation generation provides the clearest explanation of the signatures observed Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.-> Correspondence to :P. Francia->
Impact of Stratospheric Sudden Warming on the Occurrence of the Equatorial Spread-F
NASA Astrophysics Data System (ADS)
Jose, Lijo; Vineeth, C.; Pant, T. K.
2017-12-01
This study presents the influence of stratospheric sudden warming (SSW) events in modulating the start time of the equatorial spread-F (ESF) through enhanced planetary wave (PW) activity during the winter months of the SSW years. The analysis based on the data from a digital ionosonde and proton precession magnetometer over Trivandrum (8.5°N, 77°E, 0.5°N dip lat.) revealed that the PWs of quasi-16 day periodicity influence the start time of the ESF to a significant extent during the SSW years. On the other hand, during a normal year such effect is not very evidently present. It has been observed that the quasi-16 day wave propagates to ionospheric dynamo region from the atmosphere below and modifies the electrodynamical processes like the equatorial electrojet and prereversal enhancement, which is more pronounced during both the SSW periods. Such a modification in the electrodynamics can modulate the equatorial plasma fountain and influence the F region neutral dynamics, which in turn can affect the occurrence of ESF by modifying the seeding conditions.
Periodic substorm activity in the geomagnetic tail
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.
1983-01-01
On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.
Geoeffectiveness of Stream Interaction Regions during 2007-2008
NASA Astrophysics Data System (ADS)
Sanchez-Garcia, Elsa; Aguilar-Rodriguez, Ernesto; Ontiveros, Veronica
2016-07-01
The Stream Interaction Regions (SIRs) are generated in the interplanetary medium when a fast solar wind stream overtakes a slower one. If these large-scale phenomena interact with the Earth's magnetosphere they can give rise to geomagnetic storms (GSs). In this study we analyze the degree of geoeffectiveness of 20 events that were generated by SIRs. The events were observed during the 2007-2008 period that comprising the extended downward phase of solar cycle 23. The degree of geoeffectivity is measured using magnetic indices from different latitudes: PCN (Polar cap north), PCS (polar cap south), AA (antipodal amplitude), AE (Auroral Electrojet), Kp (estimated global index) and Dst (Disturbance storm time). We discuss some results on the correlation of these magnetic indices with the characteristics of shocks associated with the SIRs observed by STEREO-A/B, WIND and ACE spacecraft. All the 20 SIRs events generated GSs with Dst values in ranging from -86 nT up to -12 nT. Moreover, 6 out of the 20 events presented storm sudden commencement (SSC). We also discuss on the characteristics of the SIR-associated shocks and the intensity of the GSs.
NASA Astrophysics Data System (ADS)
Chau, J. L.; Urco, J. M.; Milla, M. A.; Vierinen, J.
2017-12-01
We have recently implemented Multiple-input multiple-output (MIMO) radar techniques to resolve temporal and spatial ambiguities of ionospheric and atmospheric irregularities, with improve capabilities than previously experiments using single-input multi-output (SIMO) techniques. SIMO techniques in the atmospheric and ionospheric coherent scatter radar field are usually called aperture synthesis radar imaging. Our implementations have done at the Jicamarca Radio Observatory (JRO) in Lima, Peru, and at the Middle Atmosphere Alomar Radar System (MAARSY) in Andenes, Norway, to study equatorial electrojet (EEJ) field-aligned irregularities and polar mesospheric summer echoes (PMSE), respectively. Figure 1 shows an example of a configuration used at MAARSY and the comparison between the SIMO and MIMO resulting antenna point spread functions, respectively. Although in this work we present the details of the implementations at each facility, we will focus on the observed peculiarities of each phenomenon, making emphasis in the underlying physical mechanisms that govern their existence and their spatial and temporal modulation. For example, what are the typical horizontal scales of PMSE variability in both intensity and wind field?
A global model of the neutral thermosphere in magnetic coordinates based on AE-C data
NASA Technical Reports Server (NTRS)
Stehle, C. G.
1980-01-01
An empirical model of the global atomic oxygen and helium distributions in the thermosphere is developed in a magnetic coordinate system and compared to similar models which are expanded in geographic coordinates. The advantage of using magnetic coordinates is that fewer terms are needed to make predictions which are nearly identical to those which would be obtained from a geographic model with longitudinal and universal time corrections. Magnetic coordinates are more directly related to the major energy inputs in the polar regions than geographic coordinates and are more convenient to use in studies of high latitude energy deposition processes. This is important for comparison with theoretical models where the number of coordinates is limited. The effect of magnetic activity on the atomic oxygen distribution in the morning sector of the high latitude thermosphere in the auroral zone is also considered. A magnetic activity indicator (ML) based on an auroral electrojet index (AL) and the 3 hour ap index are used to relate the atomic oxygen density variations to magnetic activity in this region.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Bame, S. J.; Mccomas, D. J.; Zwickl, R. D.; Slavin, J. A.; Smith, E. J.
1987-01-01
Examination of many individual event periods in the ISEE 3 deep-tail data set has suggested that magnetospheric substorms produce a characteristic pattern of effects in the distant magnetotail. During the growth, or tail-energy-storage phase of substorms, the magnetotail appears to grow diametrically in size, often by many earth radii. Subsequently, after the substorm expansive phase onset at earth, the distant tail undergoes a sequence of plasma, field, and energetic-particle variations as large-scale plasmoids move rapidly down the tail following their disconnection from the near-earth plasma sheet. ISEE 3 data are appropriate for the study of these effects since the spacecraft remained fixed within the nominal tail location for long periods. Using newly available auroral electrojet indices (AE and AL) and Geo particle data to time substorm onsets at earth, superposed epoch analyses of ISEE 3 and near-earth data prior to, and following, substorm expansive phase onsets have been performed. These analyses quantify and extend substantially the understanding of the deep-tail pattern of response to global substorm-induced dynamical effects.
Seasonal Variation of High-Latitude Geomagnetic Activity in Individual Years
NASA Astrophysics Data System (ADS)
Tanskanen, E. I.; Hynönen, R.; Mursula, K.
2017-10-01
We study the seasonal variation of high-latitude geomagnetic activity in individual years in 1966-2014 (solar cycles 20-24) by identifying the most active and the second most active season based on westward electrojet indices AL (1966-2014) and IL (1995-2014). The annual maximum is found at either equinox in two thirds and at either solstice in one third of the years examined. The traditional two-equinox maximum pattern is found in roughly one fourth of the years. We found that the seasonal variation of high-latitude geomagnetic activity closely follows the solar wind speed. While the mechanisms leading to the two-equinox maxima pattern are in operation, the long-term change of solar wind speed tends to mask the effect of these mechanisms for individual years. Large cycle-to-cycle variation is found in the seasonal pattern: equinox maxima are more common during cycles 21 and 22 than in cycles 23 or 24. Exceptionally long winter dominance in high-latitude activity and solar wind speed is seen in the declining phase of cycle 23, after the appearance of the long-lasting low-latitude coronal hole.
NASA Technical Reports Server (NTRS)
Potemra, T. A. (Principal Investigator); Sugiura, M.; Zanettic, L. J.
1982-01-01
Disturbances in the MAGSAT magnetometer data set due to high latitude phenomena were evaluated. Much of the categorization of disturbances due to Birkeland currents, ionospheric Hall currents, fine structure and wave phenomena was done with the MAGSAT data catalog. A color graphics technique was developed for the display of disturbances from multiple orbits, from which one can infer a 'global-image' of the current systems of the auroral zone. The MAGSAT 4/81 magnetic field model appears to represent the Earth's main field at high latitudes very well for the epoch 1980. MAGSAT's low altitude allows analysis of disturbances in the magnetometer data due to ionospheric electrojet currents. These current distributions were modeled properly for single events as a precursor to the inference of the Birkeland current system. MAGSAT's orbit was approximately shared with that of the Navy/APL TRIAD satellite. This allowed space-time studies of the magnetic disturbance signatures to be performed, the result being an approximately 75% agreement in, as well as high frequency of, signatures due to Birkeland currents. Thus the field-aligned currents are a steady-state participant in the Earth's magnetospheric current system.
Prediction of AL and Dst Indices from ACE Measurements Using Hybrid Physics/Black-Box Techniques
NASA Astrophysics Data System (ADS)
Spencer, E.; Rao, A.; Horton, W.; Mays, L.
2008-12-01
ACE measurements of the solar wind velocity, IMF and proton density is used to drive a hybrid Physics/Black- Box model of the nightside magnetosphere. The core physics is contained in a low order nonlinear dynamical model of the nightside magnetosphere called WINDMI. The model is augmented by wavelet based nonlinear mappings between the solar wind quantities and the input into the physics model, followed by further wavelet based mappings of the model output field aligned currents onto the ground based magnetometer measurements of the AL index and Dst index. The black box mappings are introduced at the input stage to account for uncertainties in the way the solar wind quantities are transported from the ACE spacecraft at L1 to the magnetopause. Similar mappings are introduced at the output stage to account for a spatially and temporally varying westward auroral electrojet geometry. The parameters of the model are tuned using a genetic algorithm, and trained using the large geomagnetic storm dataset of October 3-7 2000. It's predictive performance is then evaluated on subsequent storm datasets, in particular the April 15-24 2002 storm. This work is supported by grant NSF 7020201
High-Power Arctic Lidar for observations of Sodium layer and Calcium Ion Cyclotron Resonance Heating
NASA Astrophysics Data System (ADS)
Wuerker, R. F.; Foley, J.; Kidd, P.; Wong, A. Y.
1998-11-01
The UCLA HIPAS Observatory is located at 64o 54' 22"N, 146o 50' 33" W. It passes under the auroral oval, has a 2.7 m diameter liquid mirror collector (LMT), and two bistatic laser illuminators; a Doubled YAG pumped dye laser and a Doubled (tunable) Alexandrite laser. The first emits 0.1 J - 10 ns pulses at 590nm (Na) at 20 Hz. The second laser emits 0.15 J -10 ns pulses at 393 nm (Ca+) and 391.4 nm (N2) at 10 Hz. New sporadic sodium layers have been observed during the passage of the electrojet and auroras in periods of 20-30 seconds, indicating that sodium is liberated from micrometeors during auroral precipitations. The Laser Induced Fluorescence techniques will be used to observe the acceleration of the Ca+ ions when they are driven by the 80 MW (ERP) 2.85MHz RF array, modulated at the Ca+ ion Cyclotron Frequency. 1. Ionospheric Modifaction and Enviromental Research in the Auroral Region in Plasma Science and the Environment. Publisher: AIP Press, Woodbury, NY. Editors: W. Manheimer, L. Sugiyama, T. Stix; Chapter 3, pgs. 41-75, 1997. Research supported by ONR N00014-96-C-0040
A case study of the response of the magnetosphere to changes in the interplanetary medium
NASA Technical Reports Server (NTRS)
Rostoker, G.; Baumjohann, W.; Russell, C. T.
1983-01-01
A detailed analysis of world-wide ground based magnetometer data is presented, together with information on the plasma and magnetic field properties of the interplanetary medium and magnetosheath obtained from the ISEE 1 and 2 and IMP 8 spacecraft. The event concerned exhibited an interval of relatively stable southward IMF followed by a sharp northward turning. It is pointed out that during the interval of southward IMF there were occasional transient northward turnings with significant substorm expansive phase activity appearing to be triggered by these transient northward turnings. The final northward turning of the IMF was linked with an episode of strong magnetospheric substorm expansive phase activity after which the level of high latitude magnetic activity declined to a low level. Evidence is presented indicating that the driven system auroral electrojets begin to decay at the time of the northward turning of the IMF, even as the substorm expansive phase activity is initiated in the midnight sector. The collapse of the substorm current wedge during the final decay of high latitude activity is described in some detail, and it is shown that this collapse occurs progressively from east to west in a series of impulsive episodes.
NASA Astrophysics Data System (ADS)
Panasenko, Sergii V.; Goncharenko, Larisa P.; Erickson, Philip J.; Aksonova, Kateryna D.; Domnin, Igor F.
2018-07-01
We present the results of comparative study of traveling ionospheric disturbances (TIDs) obtained at middle latitudes of different longitudinal sectors during two coordinated observational campaigns. The joint measurements were conducted near the vernal equinox and summer solstice in 2016 using Kharkiv (49.6 N, 36.3 E) and Millstone Hill (42.6 N, 288.5 E) incoherent scatter radars. The same methods and software were used for analysis of both data sets to ensure consistency. We found that TIDs with periods of 40-80 min are observed during all measurements and concentrated predominantly near the sunrise and sunset terminators over both sites. There is no obvious relationship between the observed wave processes and variations in the auroral electrojet. Absolute and relative amplitudes, time of appearance, durations and phase differences of TIDs show strong height and seasonal variability. Relative amplitudes are substantially greater over Millstone Hill, whereas higher absolute amplitudes are observed over Kharkiv. During the summer solstice, the overall wave activity is smaller than during vernal equinox. Additional joint observations are needed to identify the seasonal and longitudinal dependences of TID characteristics.
Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)
NASA Astrophysics Data System (ADS)
Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.
2013-12-01
Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.
NASA Astrophysics Data System (ADS)
Guarnieri, Fernando L.; Tsurutani, Bruce T.; Vieira, Luis E. A.; Hajra, Rajkumar; Echer, Ezequiel; Mannucci, Anthony J.; Gonzalez, Walter D.
2018-01-01
The purpose of this study is to present a wavelet interactive filtering and reconstruction technique and apply this to the solar wind magnetic field components detected at the L1 Lagrange point ˜ 0.01 AU upstream of the Earth. These filtered interplanetary magnetic field (IMF) data are fed into a model to calculate a time series which we call AE∗. This model was adjusted assuming that magnetic reconnection associated with southward-directed IMF Bz is the main mechanism transferring energy into the magnetosphere. The calculated AE∗ was compared to the observed AE (auroral electrojet) index using cross-correlation analysis. The results show correlations as high as 0.90. Empirical removal of the high-frequency, short-wavelength Alfvénic component in the IMF by wavelet decomposition is shown to dramatically improve the correlation between AE∗ and the observed AE index. It is envisioned that this AE∗ can be used as the main input for a model to forecast relativistic electrons in the Earth's outer radiation belts, which are delayed by ˜ 1 to 2 days from intense AE events.
The Wilkes subglacial basin eastern margin electrical conductivity anomaly
NASA Astrophysics Data System (ADS)
Rizzello, Daniele; Armadillo, Egidio; Ferraccioli, Fausto; Caneva, Giorgio
2014-05-01
We have analyzed the deep conductivity structure at the transition between the Transantarctic Mountains (TAM) and the eastern margin of the WSB in NVL, by means of the GDS (Geomagnetic Deep Sounding) technique, in order to constrain the geodynamical interpretation of this antarctic sector. The TAM form the uplifted flank of the Mesozoic and Cenozoic West Antarctic Rift System. Structure of the TAM rift flank has been partially investigated with different geophysical approaches.The Wilkes Subglacial Basin is a broad depression over 400 km wide at the George V Coast and 1200 km long. Geology, lithospheric structure and tectonics of the Basin are only partially known because the Basin is buried beneath the East Antarctic Ice Sheet and is located in a remote region which makes geophysical exploration logistically challenging. Different authors have proposed contrasting hypothesis regarding the origin of the WSB: it could represent a region of rifted continental crust, or it may have a flexural origin or might represent an "extended terrane". Recently aerogeophysical investigations have demonstrated a strong structural control on the margin. Magnetovariational studies carried out at high geomagnetic latitudes are often hampered by source effects, mainly due to the closeness to the Polar Electrojet currents systems (PEJ). Its presence, in fact, makes the uniform magnetic field assumption, on which the magnetovariational methods are based on, often invalid, which outcome is a bias in the GDS transfer functions and to compromise the reliability of the inverted models. Data from the aforementioned campaigns have been then processed under the ISEE project (Ice Sheet Electromagnetic Experiment), aimed at evaluate and mitigate the bias effect of the PEJ on geomagnetic an magnetotelluric transfer functions at high geomagnetic latitudes, by means of suitable processing algorithms, developed upon a statistical analysis study on PEJ effects (Rizzello et al. 2013). Recent results allowed for a new processing of a wide dataset acquired during three different international Antarctic campaigns supported by the Italian Antarctic Project: the BACKTAM, WIBEM and WISE expeditions. The qualitative analysis of the induction arrows, in the period range 20-170 s, reveals an approximately 2D regional electrical conductivity pattern with a clear differentiation between the three Terrains crossed by the GDS transect we have re-analized: the Robertson Bay, the Bowers and the Wilson Terrain. Bi-dimensional conductivity models, jointly with magnetic and gravimetric profiles, suggest a differentiation of the investigated area in three crustal sectors separated by the Daniels Range and the Bowers Mts., in close relation with main known structural lineaments; to the West, a deep conductivity anomaly is associated with the transition to the Wilkes Subglagial Basin. We deem that such anomaly, together with the magnetic and gravimetric signatures, is compatible with an extensional regime in the eastern margin of the WSB. References Rizzello, D., Armadillo, E., Manzella, A."Statistical analysis of the polar electrojet influence on geomagnetic transfer functions estimates, over wide time and space scales". EGU 2013 General Assembly, Wien - poster presentation.
Effects of space weather on high-latitude ground systems
NASA Astrophysics Data System (ADS)
Pirjola, Risto
Geomagnetically induced currents (GIC) in technological systems, such as power grids, pipelines, cables and railways, are a ground manifestation of space weather. The first GIC observations were already made in early telegraph equipment more than 150 years ago. In power networks, GIC may saturate transformers with possible harmful consequences extending even to a collapse of the whole system or to permanent damage of transformers. In pipelines, GIC and the associated pipe-to-soil voltages may enhance corrosion or disturb surveys associated with corrosion control. GIC are driven by the geoelectric field induced by a geomagnetic variation at the Earth’s surface. The electric and magnetic fields are primarily produced by ionospheric currents and secondarily affected by the ground conductivity. Of great importance is the auroral electrojet with other rapidly varying currents indicating that GIC are a particular high-latitude problem. In this paper, we summarize the GIC research done in Finland during about 25 years, and discuss the calculation of GIC in a given network. Special attention is paid to modelling a power system. It is shown that, when considering GIC at a site, it is usually sufficient to take account for a smaller grid in the vicinity of the particular site. Modelling GIC also provides a basis for developing forecasting and warning methods of GIC.
Effects of space weather on high-latitude ground systems
NASA Astrophysics Data System (ADS)
Pirjola, R.
Geomagnetically induced currents (GIC) in technological systems, such as power grids, pipelines, cables and railways, are a ground manifestation of space weather. The first GIC observations were already made in early telegraph equipment about 150 years ago. In power networks, GIC may saturate transformers with possible harmful consequences extending from harmonics in the electricity to excessive reactive power demands and even to a collapse of the system or to damage of transformers. In pipelines, GIC and the associated pipe-to-soil voltages may enhance corrosion or disturb corrosion control. GIC are driven by the geoelectric field induced by a geomagnetic variation at the Earth's surface. The electric and magnetic fields are primarily produced by ionospheric currents and secondarily affected by the ground conductivity. Of great importance is the auroral electrojet with other rapidly-varying currents indicating that GIC are a particular high latitude problem. Thus, a lot of GIC research has been done in North America and Scandinavia. For example in Finland, GIC have been studied for about 25 years in collaboration between scientists and industry. A scientific challenge in GIC research today is to investigate the ionospheric events that produce the largest geoelectric fields and GIC. Forecasting purposes will require fast methods of calculating the geoelectric field.
Generation of whistler waves by continuous HF heating of the upper ionosphere
NASA Astrophysics Data System (ADS)
Vartanyan, A.; Milikh, G. M.; Eliasson, B.; Najmi, A. C.; Parrot, M.; Papadopoulos, K.
2016-07-01
Broadband VLF waves in the frequency range 7-10 kkHz and 15-19 kHz, generated by F region CW HF ionospheric heating in the absence of electrojet currents, were detected by the DEMETER satellite overflying the High Frequency Active Auroral Research Program (HAARP) transmitter during HAARP/BRIOCHE campaigns. The VLF waves are in a frequency range corresponding to the F region lower lybrid (LH) frequency and its harmonic. This paper aims to show that the VLF observations are whistler waves generated by mode conversion of LH waves that were parametrically excited by HF-pump-plasma interaction at the upper hybrid layer. The paper discusses the basic physics and presents a model that conjectures (1) the VLF waves observed at the LH frequency are due to the interaction of the LH waves with meter-scale field-aligned striations—generating whistler waves near the LH frequency; and (2) the VLF waves at twice the LH frequency are due to the interaction of two counterpropagating LH waves—generating whistler waves near the LH frequency harmonic. The model is supported by numerical simulations that show good agreement with the observations. The (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions results and model discussions are complemented by the Kodiak radar, ionograms, and stimulated electromagnetic emission observations.
Radar studies of midlatitude ionospheric plasma drifts
NASA Astrophysics Data System (ADS)
Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.
2001-02-01
We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional
Ground-based studies of ionospheric convection associated with substorm expansion
NASA Technical Reports Server (NTRS)
Kamide, Y.; Richmond, A. D.; Emery, B. A.; Hutchins, C. F.; Ahn, B.-H.; De La Beaujardiere, O.; Foster, J. C.; Heelis, R. A.; Kroehl, H. W.; Rich, F. J.
1994-01-01
The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in general, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the expansion and maximum phases of the substorm show the first clear evidence of the coexistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward IMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement, respectively.
VLF wave generation by beating of two HF waves in the ionosphere
NASA Astrophysics Data System (ADS)
Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John
2011-05-01
Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.
Finite-Difference Time-Domain Modeling of Infrasonic Waves Generated by Supersonic Auroral Arcs
NASA Astrophysics Data System (ADS)
Pasko, V. P.
2010-12-01
Atmospheric infrasonic waves are acoustic waves with frequencies ranging from ˜0.02 to ˜10 Hz [e.g., Blanc, Ann. Geophys., 3, 673, 1985]. The importance of infrasound studies has been emphasized in the past ten years from the Comprehensive Nuclear-Test-Ban Treaty verification perspective [e.g., Le Pichon et al., JGR, 114, D08112, 2009]. A proper understanding of infrasound propagation in the atmosphere is required for identification and classification of different infrasonic waves and their sources [Drob et al., JGR, 108, D21, 4680, 2003]. In the present work we employ a FDTD model of infrasound propagation in a realistic atmosphere to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. We have recently applied similar modeling approaches for studies of infrasonic waves generated from thunderstorms [e.g., Few, Handbook of Atmospheric Electrodynamics, H. Volland (ed.), Vol. 2, pp.1-31, CRC Press, 1995], quantitative interpretation of infrasonic signatures from pulsating auroras [Wilson et al., GRL, 32, L14810, 2005], and studies of infrasonic waves generated by transient luminous events in the middle atmosphere termed sprites [e.g., Farges, Lightning: Principles, Instruments and Applications, H.D. Betz et al. (eds.), Ch.18, Springer, 2009]. The related results have been reported in [Pasko, JGR, 114, D08205, 2009], [de Larquier et al., GRL, 37, L06804, 2010], and [de Larquier, MS Thesis, Penn State, Aug. 2010], respectively. In the FDTD model, the altitude and frequency dependent attenuation coefficients provided by Sutherland and Bass [J. Acoust. Soc. Am., 115, 1012, 2004] are included in classical equations of acoustics in a gravitationally stratified atmosphere using a decomposition technique recently proposed by de Groot-Hedlin [J. Acoust. Soc. Am., 124, 1430, 2008]. The auroral infrasonic waves (AIW) in the frequency range 0.1-0.01 Hz associated with the supersonic motion of auroral arcs have been extensively studied for over four decades [e.g., Wilson and Nichparenko, Nature, 214, 1299, 1967; Wilson, JGR, 74, 1813,1969; JGR, 77, 1820, 1972; JATP, 37, 973, 1975; Inframatics, (10), 1, 2005]. The Lorentz force and Joule heating are discussed in the existing literature as primary sources producing infrasound waves associated with auroral electrojet [Chimonas and Hines, Planet. Space Sci., 18, 565, 1970; Chimonas and Peltier, Planet. Space Sci., 18, 599, 1970; Wilson, 1972; Swift, JGR, 78, 8305, 1973; Wilson et al., Planet. Space Sci., 24, 1155, 1976; Chimonas, JATP, 39, 799, 1977; Brekke, JATP, 41, 475, 1979]. We emphasize that up to now no quantitative multi-dimensional modeling of infrasound generation and propagation in a realistic atmosphere in association with supersonic auroras has been conducted. Results indicate, in particular, that a body force ˜10-8 N/m3 acting in the electrojet volume with cross-sectional area 10 km by 10 km is fully sufficient to produce the observed pressure perturbations on the ground ˜0.2 Pa (2 dynes/cm2) [Wilson, 1969]. We will report quantitative modeling of complex infrasonic waveforms including direct shock and reflected shockwaves, which are refracted back to the earth by the thermosphere [Wilson, 1969].
An ionospheric index suitable for estimating the degree of ionospheric perturbations
NASA Astrophysics Data System (ADS)
Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens
2018-03-01
Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.
Improving geomagnetic observatory data in the South Atlantic Anomaly
NASA Astrophysics Data System (ADS)
Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia
2016-04-01
The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.
NASA Astrophysics Data System (ADS)
Yoshikawa, Akimasa; Fujimoto, Akiko; Ikeda, Akihiro; Uozumi, Teiji; Abe, Shuji
2017-10-01
For study of coupling processes in the Solar-Terrestrial System, International Center for Space Weather Science and Education (ICSWSE), Kyushu University has developed a real time magnetic data acquisition system (the MAGDAS project) around the world. The number of observational sites is increasing every year with the collaboration of host countries. Now at this time, the MAGDAS Project has installed 78 real time magnetometers - so it is the largest magnetometer array in the world. The history of global observation at Kyushu University is over 30 years and number of developed observational sites is over 140. Especially, Collaboration between IKIR is extended back to 1990's. Now a time, we are operating Flux-gate magnetometer and FM-CW Radar. It is one of most important collaboration for space weather monitoring. By using MAGDAS data, ICSWSE produces many types of space weather index, such as EE-index (for monitoring long tern and shot term variation of equatorial electrojet), Pc5 index (for monitoring solar-wind velocity and high energy electron flux), Sq-index (for monitoring global change of ionospheric low and middle latitudinal current system), and Pc3 index (for monitoring of plasma density variation at low latitudes). In this report, we will introduce recent development of MAGDAS/ICSWSE Indexes project and topics for new open policy for MAGDAS data will be also discussed.
Properties of the mesosphere and thermosphere and comparison with CIRA 72
NASA Astrophysics Data System (ADS)
Champion, K. S. W.
Exospheric temperatures of several reference atmosphere are reviewed and a recommendation is made for the exospheric temperature of a proposed mean CIRA. One of the deficiencies of CIRA 72 and other present thermospheric models is the representation of density changes with geomagnetic activity. This deficiency is illustrated with samples of data. The data show the effects of geomagnetic activity, particle precipitation, a solar proton event, and gravity waves. An empirical model developed from the unique AFGL satellite density data bank using multiple linear regression is reviewed. The present model is for low to moderate solar flux and quiet geomagnetic conditions, but it is planned to extend the model to active conditions. Good progress has been made since CIRA 72 was specified in our knowledge and understanding of the properties of the lower thermosphere, although there are still some unresolved problems. The biggest progress has been made in the theory of tidal effects and of particulate energy deposition and of electrojet heating. On the other hand, it is still not possible to define adequately the systematic variations of the lower boundary conditions of thermospheric models. This is due to lack of knowledge of the systematic variations of the structure properties in the 100 to 120 km altitude region and inadequate information on the mesospheric turbulence profile and variations in the turbopause altitude.
Conjugate Magnetic Observations in the Polar Environments by PRIMO and AUTUMNX
NASA Astrophysics Data System (ADS)
Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Raymond, C. A.; Connors, M. G.; Wilson, T. J.; Boteler, D. H.; Rowe, K.; Schofield, I.
2014-12-01
While magnetically conjugate observations by ground-based magnetometers are available at both high and low magnetic latitudes, few have been established at auroral latitudes to monitor the hemispheric asymmetry of auroral electric currents and its impact to geospace dynamics. Due to the limitations of global land areas, the only regions where conjugate ground-based magnetic observations can cover the full range of auroral latitudes are between Quebec, Canada and West Antarctica. Funded by the Canadian Space Agency, the AUTUMNX project is currently emplacing 10 ground-based magnetometers in Quebec, Canada, and will provide the magnetic field observations in the Northern Hemisphere. The proposed U.S. Polar Region Interhemispheric Magnetic Observatories (PRIMO) project plans to establish six new ground-based magnetometers in West Antarctica at L-values between 3.9 and 10.1. The instrument is based on the new low-power fluxgate magnetometer system recently developed at UCLA for operation in the polar environments. The PRIMO magnetometers will operate on the power and communications platform well proven by the POLENET project, and the six PRIMO systems will co-locate with existing ANET stations in the region for synergy in logistic support. Focusing on the American longitudinal sector and leveraging infrastructure through international collaborations, PRIMO and AUTUMNX can monitor the intensity and location of auroral electrojets in both hemispheres simultaneously, enabling the first systematic interhemispheric magnetic observations at auroral latitudes.
Induction of auroral zone electric currents within the Alaska pipeline
Campbell, W.H.
1978-01-01
The Alaskar pipeline is a highly conducting anomaly extending 800 miles (1300 km) from about 62?? to 69?? geomagnetic latitude beneath the most active regions of the ionospheric electrojet current. The spectral behavior of the magnetic field from this current was analyzed using data from standard geomagnetic observatories to establish the predictable patterns of temporal and spatial changes for field pulsation periods between 5 min and 4 hr. Such behavior is presented in a series of tables, graphs and formulae. Using 2- and 3-layer models of the conducting earth, the induced electric fields associated with the geomagnetic changes were established. From the direct relationship of the current to the geomagnetic field variation patterns one can infer counterpart temporal and spatial characteristics of the pipeline current. The relationship of the field amplitudes to geomagnetic activity indices, Ap, and the established occurrence of various levels of Ap over several solar cycles were employed to show that about half of the time the induced currents in the pipe would be under 1 A for the maximum response oscillatory periods near 1 hr. Such currents should be of minimal consequence in corrosion effects for even a section of the pipeline unprotected by sacrificial electrodes. Of greater interest was the result that the extreme surges of current should reach over one-hundred amperes in the pipeline during high activity. ?? 1978 Birkha??user Verlag.
The climatology of low latitude ionospheric currents derived from CHAMP observations
NASA Astrophysics Data System (ADS)
Stolle, Claudia; Alken, Patrik
2010-05-01
The multi-year data base of magnetic field and ionospheric measurements from the CHAMP satellite contain enormous potential to investigate the behaviour and the origin of currents in the E and F region ionosphere. Special advantage is drawn from the satellite's near polar orbit and the full data coverage over all longitudes and local times. This paper will present findings about two prominent features of the low latitude ionosphere: equatorial plasma irregularities and the equatorial electrojet (EEJ). Equatorial plasma irregularities (commonly known as "bubbles") severely disturb the post sunset F region ionosphere and cause the strongest radio wave scintillations globally during solar maximum years. Using CHAMP vector magnetic field data, it was possible for the first time to show on a long term basis that equatorial plasma irregularities have signatures in all components of the magnetic field. The first ever global climatology of the occurrence rate of these magnetic signatures has been compiled. Such a data base of disturbed orbits is especially useful for core and crustal magnetic field modellers. The magnetic field observations of CHAMP, Ørsted, and SAC-C were employed to develop a climatological model of the EEJ. Measurements of the EEJ and empirical values from electron density and thermospheric density and winds have in addition enabled the development of a climatological model of the equatorial electric field. These results provide excellent opportunity to investigate the seasonal/longitudinal characteristics of the EEJ and the influence of atmospheric waves on E region dynamics.
Toward a global multi-scale heliophysics observatory
NASA Astrophysics Data System (ADS)
Semeter, J. L.
2017-12-01
We live within the only known stellar-planetary system that supports life. What we learn about this system is not only relevant to human society and its expanding reach beyond Earth's surface, but also to our understanding of the origins and evolution of life in the universe. Heliophysics is focused on solar-terrestrial interactions mediated by the magnetic and plasma environment surrounding the planet. A defining feature of energy flow through this environment is interaction across physical scales. A solar disturbance aimed at Earth can excite geospace variability on scales ranging from thousands of kilometers (e.g., global convection, region 1 and 2 currents, electrojet intensifications) to 10's of meters (e.g., equatorial spread-F, dispersive Alfven waves, plasma instabilities). Most "geospace observatory" concepts are focused on a single modality (e.g., HF/UHF radar, magnetometer, optical) providing a limited parameter set over a particular spatiotemporal resolution. Data assimilation methods have been developed to couple heterogeneous and distributed observations, but resolution has typically been prescribed a-priori and according to physical assumptions. This paper develops a conceptual framework for the next generation multi-scale heliophysics observatory, capable of revealing and quantifying the complete spectrum of cross-scale interactions occurring globally within the geospace system. The envisioned concept leverages existing assets, enlists citizen scientists, and exploits low-cost access to the geospace environment. Examples are presented where distributed multi-scale observations have resulted in substantial new insight into the inner workings of our stellar-planetary system.
Analysis of the Duration of Rising Tone Chorus Elements
NASA Astrophysics Data System (ADS)
Teng, S.; Tao, X.; Xie, Y.; Zonca, F.; Chen, L.; Fang, W. B.; Wang, S.
2017-12-01
The duration of chorus elements is an important parameter to understand chorus excitation and to quantify the effects of nonlinear wave-particle interactions on energetic electron dynamics. In this work, we analyze the duration of rising tone chorus elements statistically using Van Allen Probes data. We present the distribution of chorus element duration (τ) as a function of magnetic local time (MLT) and the geomagnetic activity level characterized by auroral electrojet (AE) index. We show that the typical value of τ for nightside and dawnside is about 0.12 s, smaller than that for dayside and duskside by about a factor of 2 to 4. Using a previously developed hybrid code, DAWN, we suggest that the background magnetic field inhomogeneity might be an important factor in controlling the chorus element duration. We also report that τ is larger during quiet times and shorter during moderate and active periods; this result is consistent with the MLT dependence of τ and the occurrence pattern of chorus waves at different levels of geomagnetic activity. We then investigate the correlation between τ and the frequency chirping rate (Γ). We show that, from observation, τ scales with Γ as τ∝Γ-1.1, suggesting that statistically the frequency range of chorus elements (τΓ) should be roughly the same for different elements. These findings should be useful to the further development of a theoretical model of chorus excitation and to the quantification of nonlinear wave-particle interactions on energetic electron dynamics.
Observations of Pc5 micropulsation-related electric field oscillations in equatorial ionosphere
NASA Technical Reports Server (NTRS)
Reddy, C. A.; Ravindran, Sudha; Viswanathan, K. S.; Murthy, B. V. Krishna; Rao, D. R. K.; Araki, T.
1994-01-01
A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5 deg N, 77 deg E, 0.5 deg N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (A(sub p) = 161). Simultaneous 100-n T-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6 deg N gm) and at Narsarsuaq, Greenland (70.6 deg N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV/m and it increases with height, while it is about 1.0 mV/m in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brofelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the assoicated ionospheric electric field penetrating from high latitudes to the magnetic equator.
Handling Nonlinearities in ELF/VLF Generation Using Modulated Heating at HAARP
NASA Astrophysics Data System (ADS)
Jin, G.; Spasojevic, M.; Cohen, M.; Inan, U. S.
2011-12-01
George Jin Maria Spasojevic Morris Cohen Umran Inan Stanford University Modulated HF heating of the D-region ionosphere near the auroral electrojet can generate extremely low frequency (ELF) waves in the kilohertz range. This process is nonlinear and generates harmonics at integer multiples of the ELF modulation frequency. The nonlinear distortion has implications for any communications applications since the harmonics contain a substantial fraction of the signal power and use up bandwidth. We examine two techniques for handling the nonlinearity. First we modulate the HF heating with a non-sinusoidal envelope designed to create a sinusoidal change in the Hall conductivity at a particular altitude in the ionosphere to minimize any generated harmonics. The modulation waveform is generated by inverting a numerical HF heating model, starting from the desired conductivity time series, and obtaining the HF power envelope that will result in that conductivity. The second technique attempts to use the energy in the harmonics to improve bit error rates when digital modulation is applied to the ELF carrier. In conventional quadrature phase-shift keying (QPSK), where a ELF carrier is phase-shifted by 0°, 90°, 180°, and 270° in order to transmit a pair of bits, the even harmonics cannot distinguish between the four possible shifts. By using different phase values, all the energy in the harmonics can contribute to determining the phase of the carrier and thus improve the bit error rate.
Auroral Infrasound Observed at I53US at Fairbanks, Alaska
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Olson, J. V.
2003-12-01
In this presentation we will describe two different types of auroral infrasound recently observed at Fairbanks, Alaska in the pass band from 0.015 to 0.10 Hz. Infrasound signals associated with auroral activity (AIW) have been observed in Fairbanks over the past 30 years with infrasonic microphone arrays. The installation of the new CTBT/IMS infrasonic array, I53US, at Fairbanks has resulted in a greatly increased quality of the infrasonic data with which to study natural sources of infrasound. In the historical data at Fairbanks all the auroral infrasonic waves (AIW) detected were found to be the result of bow waves that are generated by supersonic motion of auroral arcs that contain strong electrojet currents. This infrasound is highly anisotropic, moving in the same direction as that of the auroral arc. AIW bow waves observed in 2003 at I53US will be described. Recently at I53US we have observed many events of very high trace velocity that are comprised of continuous, highly coherent wave trains. These waves occur in the morning hours at times of strong auroral activity. This new type of very high trace velocity AIW appears to be associated with pulsating auroral displays. Pulsating auroras occur predominantly after magnetic midnight (10:00 UT at Fairbanks). They are a usual part of the recovery phase of auroral substorms and are produced by energetic electrons precipitating into the atmosphere. Given proper dark, cloudless sky conditions during the AIW events, bright pulsating auroral forms were sometimes visible overhead.
TEC Variations Over Korean Peninsula During Magnetic Storm
NASA Astrophysics Data System (ADS)
Ji, E.-Y.; Choi, B.-K.; Kim, K.-H.; Lee, D.-H.; Cho, J.-H.; Chung, J.-K.; Park, J.-U.
2008-03-01
By analyzing the observations from a number of ground- and space-based instruments, including ionosonde, magnetometers, and ACE interplanetary data, we examine the response of the ionospheric TEC over Korea during 2003 magnetic storms. We found that the variation of vertical TEC is correlated with the southward turning of the interplanetary magnetic field B_z. It is suggested that the electric fields produced by the dynamo process in the high-latitude region and the prompt penetration in the low-latitude region are responsible for TEC increases. During the June 16 event, dayside TEC values increase more than 15%. And the ionospheric F2-layer peak height (hmF2) was ˜300km higher and the vertical E×B drift (estimated from ground-based magnetometer equatorial electrojet delta H) showed downward drift, which may be due to the ionospheric disturbance dynamo electric field produced by the large amount of energy dissipation into high-latitude regions. In contr! ast, during November 20 event, the nightside TEC increases may be due to the prompt penetration westward electric field. The ionospheric F2-layer peak height was below 200km and the vertical E×B drift showed downward drift. Also, a strong correlation is observed between enhanced vertical TEC and enhanced interplanetary electric field. It is shown that, even though TEC increases are caused by the different processes, the electric field disturbances in the ionosphere play an important role in the variation of TEC over Korea.
An Auroral Boundary-Oriented Model of Subauroral Polarization Streams (SAPS)
NASA Astrophysics Data System (ADS)
Landry, R. G.; Anderson, P. C.
2018-04-01
An empirical model of subauroral polarization stream (SAPS) electric fields has been developed using measurements of ion drifts and particle precipitation made by the Defense Meteorological Satellite Program from 1987 to 2012 and Dynamics Explorer 2 as functions of magnetic local time (MLT), magnetic latitude, the auroral electrojet index (AE), hemisphere, and day of year. Over 500,000 subauroral passes are used. This model is oriented in degree magnetic latitude equatorward of the aurora and takes median values instead of the mean to avoid the contribution of low occurrence frequency subauroral ion drifts so that the model is representative of the much more common, latitudinally broad, low-amplitude SAPS field. The SAPS model is in broad agreement with previous statistical efforts in the variation of the SAPS field with MLT and magnetic activity level, although the median field is weaker. Furthermore, we find that the median SAPS field is roughly conjugate in both hemispheres for all seasons, with a maximum in SAPS amplitude and width found for 1800-2000 MLT. The SAPS amplitude is found to vary seasonally only from about 1800-2000 MLT, maximizing in both hemispheres during equinox months. Because this feature exists despite controlling for the AE index, it is suggested that this is due to a seasonal variation in the flux tube averaged ionospheric conductance at MLT sectors where it is more likely that one flux tube footprint is in darkness while the other is in daylight.
A multipoint study of a substorm occurring on 7 December, 1992, and its theoretical implications
NASA Astrophysics Data System (ADS)
Fox, N. J.; Cowley, S. W. H.; Davda, V. N.; Enno, G.; Friis-Christensen, E.; Greenwald, R. A.; Hairston, M. R.; Lester, M.; Lockwood, M.; Lühr, H.; Milling, D. K.; Murphree, J. S.; Pinnock, M.; Reeves, G. D.
1999-11-01
On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF Bz component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the pre-existing convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.
The response of ionospheric convection in the polar cap to substorm activity
NASA Technical Reports Server (NTRS)
Lester, M.; Lockwood, M.; Yeoman, T. K.; Cowley, S. W. H.; Luehr, H.; Bunting, R.; Farrugia, C. J.
1995-01-01
We report multi-instrument observations during an isolated substorm on 17 October 1989. The European Incoherent Scatter (EISCAT) radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71 deg Lambda - 78 deg Lambda. Sub-Auroral Magnetometer Network (SAMNET) and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. Interplanetary Monitoring Platform-8 (IMP-8) magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF). We infer that the polar cap expanded as a result of the addition of open magnetic flux in the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71 deg Lambda by the time of the expansion phase onset. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the distant neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase.
Geomagnetically Induced Currents Around the World During the 17 March 2015 Storm
NASA Technical Reports Server (NTRS)
Carter, B. A.; Yizengaw, E.; Pradipta, R.; Weygand, J. M.; Piersanti, M.; Pulkkinen, Antti Aleksi; Moldwin, M. B.; Norman, R.; Zhang, K.
2016-01-01
Geomagnetically induced currents (GICs) represent a significant space weather issue for power grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patricks Day storm. While significant GIC activity in the high-latitude regions due to storm time substorm activity is shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American and Southeast Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in Southeast Asia and during the main phase of the storm approximately 10 h later in South America. The SSC caused magnetic field variations at the equator in Southeast Asia that were twice the magnitude of those observed only a few degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The large equatorial magnetic field variations measured in South America are also examined, and the coincident solar wind data are used to investigate the causes of the sudden changes in the EEJ approximately 10 h into the storm. From this analysis it is concluded that sudden magnetopause current increases due to increases in the solarwind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current systems, are the primary drivers of equatorial GICs.
Evidence of prompt penetration electric fields during HILDCAA events
NASA Astrophysics Data System (ADS)
Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas
2017-10-01
High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.
Extreme geomagnetically induced currents
NASA Astrophysics Data System (ADS)
Kataoka, Ryuho; Ngwira, Chigomezyo
2016-12-01
We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.
Long-term EEJ variations by using the improved EE-index
NASA Astrophysics Data System (ADS)
Fujimoto, A.; Uozumi, T.; Abe, Sh.; Matsushita, H.; Imajo, Sh.; Ishitsuka, J. K.; Yoshikawa, A.
2016-03-01
In 2008, International Center for Space Weather Science and Education, Kyushu University (ICSWSE) proposed the EE-index, which is an index to monitor the equatorial geomagnetic phenomena. EE-index has been improved with the development of the MAGnetic Data Acquisition System and the Circum-pan Pacific Magnetometer Network (MAGDAS/CPMN) and the enormous archive of MAGDAS/CPMN data over 10 years since the initial article. Using the improved EE-index, we examined the solar cycle variation of equatorial electrojet (EEJ) by the time series analysis for EUEL (one part of EE-index) at Ancon in Peru and the solar activity from September 18, 1998 to March 31, 2015. We found that the long-term variation of daily EEJ peak intensity has a trend similar to that of F10.7 (the solar activity). The power spectrum of the daily EEJ peak has clearly two dominant peaks throughout the analysis interval: 14.5 days and 180 days (semi-annual). The solar cycle variation of daily EEJ peak correlates well with that of F10.7 (the correlation coefficient 0.99). We conclude that the daily EEJ peak intensity is roughly determined as the summation of the long-period trend of the solar activity resulting from the solar cycle and day-to-day variations caused by various sources such as lunar tides, geometric effects, magnetospheric phenomena and atmospheric phenomena. This work presents the primary evidence for solar cycle variations of EEJ on the long-term study of the EE-index
NASA Astrophysics Data System (ADS)
Srinivas, P. G.; Spencer, E. A.; Vadepu, S. K.; Horton, W., Jr.
2017-12-01
We compare satellite observations of substorm electric fields and magnetic fields to the output of a low dimensional nonlinear physics model of the nightside magnetosphere called WINDMI. The electric and magnetic field satellite data are used to calculate the E X B drift, which is one of the intermediate variables of the WINDMI model. The model uses solar wind and IMF measurements from the ACE spacecraft as input into a system of 8 nonlinear ordinary differential equations. The state variables of the differential equations represent the energy stored in the geomagnetic tail, central plasma sheet, ring current and field aligned currents. The output from the model is the ground based geomagnetic westward auroral electrojet (AL) index, and the Dst index.Using ACE solar wind data, IMF data and SuperMAG identification of substorm onset times up to December 2015, we constrain the WINDMI model to trigger substorm events, and compare the model intermediate variables to THEMIS and GEOTAIL satellite data in the magnetotail. By forcing the model to be consistent with satellite electric and magnetic field observations, we are able to track the magnetotail energy dynamics, the field aligned current contributions, energy injections into the ring current, and ensure that they are within allowable limts. In addition we are able to constrain the physical parameters of the model, in particular the lobe inductance, the plasma sheet capacitance, and the resistive and conductive parameters in the plasma sheet and ionosphere.
Near real-time geomagnetic data for space weather applications in the European sector
NASA Astrophysics Data System (ADS)
Johnsen, M. G.; Hansen, T. L.
2012-12-01
Tromsø Geophysical Observatory (TGO) is responsible for making and maintaining long time-series of geomagnetic measurements in Norway. TGO is currently operating 3 geomagnetic observatories and 11 variometer stations from southern Norway to Svalbard . Data from these 14 locations are acquired, processed and made available for the user community in near real-time. TGO is participating in several European Union (EU) and European Space Agency (ESA) space weather related projects where both near real-time data and derived products are provided. In addition the petroleum industry is benefiting from our real-time data services for directional drilling. Near real-time data from TGO is freely available for non-commercial purposes. TGO is exchanging data in near real-time with several institutions, enabling the presentation of near real-time geomagnetic data from more than 40 different locations in Fennoscandia and Greenland. The open exchange of non real-time geomagnetic data has been successfully going on for many years through services such as the world data center in Kyoto, SuperMAG, IMAGE and SPIDR. TGO's vision is to take this one step further and make the exchange of near real-time geomagnetic data equally available for the whole community. This presentation contains an overview of TGO, our activities and future aims. We will show how our near real-time data are presented. Our contribution to the space weather forecasting and nowcasting effort in the EU and ESA will be presented with emphasis on our real-time auroral activity index and brand new auroral activity monitor and electrojet tracker.
Modelling of ionospheric irregularities during geomagnetic storms over African low latitude region
NASA Astrophysics Data System (ADS)
Mungufeni, Patrick
2016-07-01
In this study, empirical models of occurrence of ionospheric irregularities over low latitude African region during geomagnetic storms have been developed. The geomagnetic storms considered consisted of Dst ≤ -50 nT. GNSS-derived ionospheric Total Electron Content (TEC) data over Libreville, Gabon (NKLG) (0.35° N, 9.68° E, geographic, 8.05° S, magnetic) and Malindi, Kenya (MAL2) (2.99° S, 40.19° E, geographic, 12.42° S, magnetic) during 2000 - 2014 were used. Ionospheric irregularities at scale- lengths of a few kilometers and ˜400 m were represented with the rate of change of TEC index (ROTI). The inputs for the models are the local time, solar flux index, Auroral Electrojet index, day of the year, and the Dst index, while the output is the median ROTI during these given conditions. To develop the models, the ROTI index values were binned based on the input parameters and cubic B splines were then fitted to the binned data. Developed models using data over NKLG and MAL2 were validated with independent data over stations within 510 km and 680 km radius, respectively. The models captured the enhancements and inhibitions of the occurrence of the ionospheric irregularities during the storm period. The models even emulated these patterns in the various seasons, during medium and high solar activity conditions. The correlation coefficients for the validations were statistically significant and ranged from 0.58 - 0.73, while the percentage of the variance in the observed data explained by the modelled data ranged from 34 - 53.
NASA Astrophysics Data System (ADS)
Brahmanandam, P. S.; Uma, G.; Pant, T. K.
2017-10-01
This research reports the 250 MHz amplitude ionosphere scintillations recorded at Vaddeswaram (Geographic Latitude 16.31°N, Geographic Longitude 80.30°E, Dip 18°N), a low-latitude station in India. Though amplitude scintillations were recorded for four continuous days (05-08 November 2011), the presence of intense and long-duration scintillations on 06 November 2011 instigated us to verify the ionosphere background conditions. This research, therefore, is also used important databases including, diurnal variations of h‧F (virtual height of the F-layer) and the vertical drifts as measured by an advanced digital ionosonde radar located at an Indian equatorial station i.e. Trivandrum (Geographic Latitude 8.5°N, Geographic Longitude 77°E, Dip 0.5°N), equatorial Electrojet (EEJ) ground strength measured using magnetometers and the total electron content (TEC) maps provided by the International GPS Service (IGS) to study the background ionosphere conditions. The interesting observations are higher E × B drifts, the occurrence of long-duration range-type spread F signatures at Trivandrum and, thereafter, intense scintillations over Vaddeswaram. It was found a secondary peak at around 1600 LT in EEJ strength followed by a higher upward drift velocity (more than 60 m/s) with a significant raise of the F region up to 470 km over the magnetic equator on 06 November 2011. The possible physical mechanisms of these important observational results are discussed in the light of available literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauvaud, J.h.; Winckler, J.R.
We discuss two phases of substorm-associated magnetospheric dynamics in terms of the particles and fields at synchronous orbit. The first phase corresponds to the 'decreases' of energetic particle flux first identified by Erickson and Winckler (1973) and discussed by Walker et al. (1976) and Erickson et al. (1979). This phase begins one-half hour to one hour before the substorm onset and is characterized by (1) a distortion of the magnetosphere to a more taillike configuration caused by (2) an intensification and/or motion toward the earth of the cross-tail current and of its earthward part, the partial ring current, (3) amore » shift of trapped particle trajectories closer to the earth on the nightside following contours of constant B causing the particle 'decreases' accompanied by a change in the pitch angle distributions from 'pancake' to 'butterfly' as observed at geostationary orbit, (4) an initiation of a response of the auroral electrojet (AE) index. The decreases of energetic particle flux can correspond to the substorm growth phase as defined initially by McPherron (1970) or the growth or precursor phase of Erickson et al. (1979). Plasma motions and current during decreases tend to be variable, but the description above nevertheless characterizes the large-scale trend. It is suggested that the electric field induced by the increasing tail current near the earth acts opposite to the cross-tail convection field and can temporarily inhibit convection near the geostationary orbit. The second phase is the conventional expansion phase.« less
Studies of Polar Current Systems Using the IMS Scandinavian Magnetometer Array
NASA Astrophysics Data System (ADS)
Untiedt, J.; Baumjohann, W.
1993-09-01
As a contribution to the International Magnetospheric Study (IMS, 1976 1979) a two-dimensional array of 42 temporary magnetometer stations was run in Scandinavia, supplementary to the permanent observatories and concentrated in the northern part of the region. This effort aimed at the time-dependent (periods above about 100 s) determination of the two-dimensional structure of substorm-related magnetic fields at the Earth's surface with highest reasonable spatial resolution (about 100 km, corresponding to the height of the ionosphere) near the footpoints of field-aligned electric currents that couple the disturbed magnetosphere to the ionosphere at auroral latitudes. It has been of particular advantage for cooperative studies that not only simultaneous data were available from all-sky cameras, riometers, balloons, rockets, and satellites, but also from the STARE radar facility yielding colocated two-dimensional ionospheric electric field distributions. In many cases it therefore was possible to infer the three-dimensional regional structure of substorm-related ionospheric current systems. The first part of this review outlines the basic relationships and methods that have been used or have been developed for such studies. The second short part presents typical equivalent current patterns observed by the magnetometer array in the course of substorms. Finally we review main results of studies that have been based on the magnetometer array observations and on additional data, omitting studies on geomagnetic pulsations. These studies contributed to a clarification of the nature of auroral electrojets including the Harang discontinuity and of ionospheric current systems related to auroral features such as the break-up at midnight, the westward traveling surge, eastward drifting omega bands, and spirals.
NASA Astrophysics Data System (ADS)
Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John
2018-05-01
On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.
NASA Astrophysics Data System (ADS)
Kasinskii, V. V.; Ptitsyna, N. G.; Lyahov, N. N.; Dorman, L. I.; Villoresi, G.; Iucci, N.
The end result of a long chain of space weather events beginning on the Sun is the induction of currents in ground-based long conductors as power lines pipelines and railways Intense geomagnetically induced currents GIC can hamper rail traffic by disturbing signaling and train control systems In few cases induced voltages were believed to have affected signaling equipment in Sweden Jansen et al 2000 and in the North of Russia Belov et al 2005 GIC threats have been a concern for technological systems at high-latitude locations due to disturbances driven by electrojet intensifications However other geomagnetic storm processes such as SSC and ring current enhancement can also cause GIC concerns for the technological systems Objective of this report is to continue our research Ptitsyna et al 2005 on possible influence of geomagnetic storms on mid-latitude railways and to perform a statistical research in addition to case studies This will help in providing a basis for railway companies to evaluate the risk of disruption to signaling and train control equipment and devise engineering solutions In the present report we analyzed anomalies in operation of automatic signaling and train control equipment occurred in 2004-2005 on the East-Siberian Railway located at mid-latitudes latitudes 51N-56N longitudes 96E-114E The anomalies consist mainly in unstable functioning and false operations in traffic automatic control systems rail chain switches locomotive control devices etc often resulting in false engagement of railway
NASA Astrophysics Data System (ADS)
Forsyth, C.; Shortt, M.; Coxon, J. C.; Rae, I. J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.; Milan, S. E.; Burrell, A. G.
2018-04-01
Field-aligned currents (FACs), also known as Birkeland currents, are the agents by which energy and momentum are transferred to the ionosphere from the magnetosphere and solar wind. This coupling is enhanced at substorm onset through the formation of the substorm current wedge. Using FAC data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet technique, we examine the Northern Hemisphere FACs in all local time sectors with respect to substorm onset and subdivided by season. Our results show that while there is a strong seasonal dependence on the underlying FACs, the increase in FACs following substorm onset only varies by 10% with season, with substorms increasing the hemispheric FACs by 420 kA on average. Over an hour prior to substorm onset, the dayside currents in the postnoon quadrant increase linearly, whereas the nightside currents show a linear increase starting 20-30 min before onset. After onset, the nightside Region 1, Region 2, and nonlocally closed currents and the SuperMAG AL (SML) index follow the Weimer (1994, https://doi.org/10.1029/93JA02721) model with the same time constants in each season. These results contrast earlier contradictory studies that indicate that substorms are either longer in the summer or decay faster in the summer. Our results imply that, on average, substorm FACs do not change with season but that their relative impact on the coupled magnetosphere-ionosphere system does due to the changes in the underlying currents.
Extreme EEJ and Topside Ionospheric Response to the 22-23 June 2015 Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Astafyeva, E.; Zakharenkova, I.; Alken, P.; Coisson, P.
2016-12-01
In this work, we study the ionospheric and thermospheric response to the intense geomagnetic storm of 22-23 June 2015. With the minimum SYM-H excursion of -207 nT, this storm is so far the 2nd strongest geomagnetic storm in the current 24th solar cycle. The storm started with the arrival of a coronal mass ejection at 18:37UT on 22 June 2015. The interplanetary magnetic field (IMF) Bz component changed polarity several times during this storm. Consequently, the interplanetary electric field Ey component repeated this oscillatory behavior, and varied from -15 to +20 mV/m, which is comparable with storm-time levels. Data from multiple ground-based and space-borne instruments showed that both positive and negative ionospheric storms occurred during this storm at middle and low latitudes on both day and night sides. To study the drivers of the observed ionospheric effects, we further analyze variations of thermospheric parameters (neutral mass density and thermospheric O/N2 ratio), as well as the equatorial electrojet (EEJ) data as retrieved from magnetic measurements onboard Swarm satellites. One of the most interesting features of the June 2015 storm is observation of extremely high EEJ values (both eastward and westward), that correlate with variations of the IEF Ey. We find that the storm-time penetration electric fields were, most likely, the main driver of the observed ionospheric effects at the initial phase of the storm, and at the beginning of the main phase. At the end of the main phase, the thermospheric composition changes seemed to contribute as well.
The Role of the Auroral Processes in the Formation of the Outer Electron Radiation Belt
NASA Astrophysics Data System (ADS)
Stepanova, M. V.; Antonova, E. E.; Pinto, V. A.; Moya, P. S.; Riazantseva, M.; Ovchinnikov, I.
2016-12-01
The role of the auroral processes in the formation of the outer electron radiation belt during storms is analyzed using the data of RBSP mission, low orbiting satellites and ground based observations. We analyze fluxes of the low energy precipitating ions using data of the Defense Meteorological Satellite Program (DMSP). The location of the auroral electrojet is obtained from the IMAGE magnetometer network, and of the electron distribution in the outer radiation belt from the RBSP mission. We take into account the latest results on the auroral oval mapping in accordance with which the most part of the auroral oval maps not to the plasma sheet. It maps into the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. The development of the ring current and its high latitude continuation generates strong distortion of the Earth's magnetic field and corresponding adiabatic variation of the relativistic electron fluxes. This adiabatic variation should be considered for the analysis of the processes of the acceleration of relativistic electrons and formation of the outer radiation belt. We also analyze the plasma pressure profiles during storms and demonstrate the formation of sharp plasma pressure peak at the equatorial boundary of the auroral oval. It is shown that the observed this peak is directly connected to the creation of the seed population of relativistic electrons. We discuss the possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations.
VLF remote sensing of the ambient and modified lower ionosphere
NASA Astrophysics Data System (ADS)
Demirkol, Mehmet Kursad
2000-08-01
Electron density and temperature changes in the D region are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Both localized and large scale disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth- ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. Large scale auroral disturbances, associated with intensification of the auroral electrojet, as well as ionospheric disturbances produced during relativistic electron enhancements, cause characteristic changes over relatively long time scales that allow the assessment of the `ambient' ionosphere. Localized ionospheric disturbances are also produced by powerful VLF transmitting facilities such as the High Power Auroral Stimulation (HIPAS) facility, the High frequency Active Auroral Research Program (HAARP), and also by lightning discharges. Amplitude and phase changes of VLF waveguide signals scattered from such artificially heated ionospheric patches are known to be detectable. In this study, we describe a new inversion algorithm to determine altitude profiles of electron density and collision frequency within such a localized disturbance by using the measured amplitude and phase of three different VLF signals at three separate receiving sites. For this purpose a new optimization algorithm is developed which is primarily based on the recursive usage of the three dimensional version of the Long Wave Propagation, Capability (LWPC) code used to model the subionospheric propagation and scattering of VLF signals in the earth- ionosphere waveguide in the presence of ionospheric disturbances.
NASA Astrophysics Data System (ADS)
Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coïsson, P.; Hairston, M. R.; Coley, W. R.
2018-03-01
We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22-23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were largely impacted by the prompt penetration electric fields (PPEF). The PPEF were first directed eastward and caused significant ionospheric uplift and positive ionospheric storm on the dayside, and downward drift on the nightside. Furthermore, about 45 min after the storm commencement, the interplanetary magnetic field (IMF) Bz component turned northward, leading to the EEJ changing sign to westward, and to overall decrease of the vertical total electron content (VTEC) and electron density on the dayside. At the end of the main phase of the storm, and with the second long-term IMF Bz southward turn, we observed several oscillations of the EEJ, which led us to conclude that at this stage of the storm, the disturbance dynamo effect was already in effect, competing with the PPEF and reducing it. Our analysis showed no significant upward or downward plasma motion during this period of time; however, the electron density and the VTEC drastically increased on the dayside (over the Asian region). We show that this second positive storm was largely influenced by the disturbed thermospheric conditions.
NASA Astrophysics Data System (ADS)
Sripathi, S.; Sreekumar, Sreeba; Banola, S.
2018-05-01
The characteristics of equatorial and low-latitude plasma irregularities are studied using a meridional chain of ionosondes located at Tirunelveli, Hyderabad, and Allahabad and Global Positioning System (GPS) receivers located at Tirunelveli, Mumbai, and Nagpur during the year 2015. The observations suggest that while stronger and longer duration of equatorial spread F irregularities occur in the postsunset sector during equinoxes and winter, they occur mostly in the postmidnight sector during summer, while being weaker in strength and shorter in duration. Further, the postsunset spread F occurs first at the equator followed by their occurrence at low latitudes during equinoxes and winter, while the postmidnight spread F during summer are found to be stronger and earlier at low latitudes followed by their occurrence at the equator. While plasma irregularities are observed by both the ionosondes and GPS receivers during both equinoxes and winter, it is observed mostly by the ionosondes during summer. The results further strengthen the view that while postsunset spread F in equinoxes and winter are generated by the equatorial processes, postmidnight spread F in the summer may be linked to the nonequatorial processes. The results also reemphasize the asymmetric distribution of plasma irregularities or scintillations during equinoxes wherein vernal (autumn) equinox shows more intense plasma irregularities than autumn (vernal) equinox during certain years. Also, using a larger data set of simultaneous GPS and ionosonde observations, the relationship of prereversal enhancement and strength of L-band scintillations with solar flux, Kp index, and equatorial electrojet strength are examined.
NASA Astrophysics Data System (ADS)
Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.; Olson, C. N.; Smith, C. W.; Denton, R. E.; Thaller, S. A.; Wygant, J. R.; Reeves, G. D.; MacDonald, E. A.; Fennell, J. F.
2017-04-01
We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 RE occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. The fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.
Study of Sun-Earth interactions using equatorial VHF scintillation in the Indian region
NASA Astrophysics Data System (ADS)
Banola, Sridhar
Plasma density irregularities in the ionosphere (associated with ESF, plasma bubbles and Spo-radic E layers) cause scintillations in various frequency ranges. VHF radio wave scintillation technique is extensively used to study plasma density irregularities of sub-kilometre size . Ef-fects of magnetic and solar activity on ionospheric irregularities are studied so as to ascertain their role in the space weather of the near earth environment in space. Indian Institute of Ge-omagnetism operated a ground network of 13 stations monitoring amplitude scintillations on 244/251 MHz (FLEETSAT 73° E) signals in placecountry-regionIndia for more than a decade under AICPITS. At present VHF scintillation is being recorded at Mumbai by monitoring 251 MHz signal transmitted by geostationary satellite UFO2(71.2 E). sampling at 20 Hz. During CAWSES campaign (March-April 2006, low sunspot period) occurrence of daytime scintilla-tions was observed higher than the nighttime scintillations. This could be due to the fact that during low sunspot years occurrence of spread-F is limited to a narrow latitude region near the dip equator. To study solar cycle association of scintillations, long series of simultaneous amplitude scintillation data for period Jan 1989 to Dec 2000 at Indian low-latitude stations Tirunelveli/Trivandrum, close to dip equator, Pondicherry/Karur, located at the fringe of elec-trojet, Mumbai (dip lat. 13.5o N), a temperate station and Ujjain (dip lat. 18.6o N), close to anomaly crest region are utilized. Nighttime scintillation occurrence is solar activity dependent. Equatorial scintillations are inhibited with increase in geomagnetic activity.
NASA Astrophysics Data System (ADS)
Moro, J.; Denardini, C. M.; Resende, L. C. A.; Chen, S. S.; Schuch, N. J.
2016-10-01
In this work, the seasonal dependency of the E region electric field (EEF) at the dip equator is examined. The eastward zonal (Ey) and the daytime vertical (Ez) electric fields are responsible for the overall phenomenology of the equatorial and low-latitude ionosphere, including the equatorial electrojet (EEJ) and its plasma instability. The electric field components are studied based on long-term backscatter radars soundings (348 days for both systems) collected during geomagnetic quiet days (Kp ≤ 3+), from 2001 to 2010, at the São Luís Space Observatory (SLZ), Brazil (2.33°S, 44.20°W), and at the Jicamarca Radio Observatory (JRO), Peru (11.95°S, 76.87°W). Among the results, we observe, for the first time, a seasonal difference between the EEF in these two sectors in South America based on coherent radar measurements. The EEF is more intense in summer at SLZ, in equinox at JRO, and has been highly variable with season in the Brazilian sector compared to the Peruvian sector. In addition, the secular variation on the geomagnetic field and its effect on the EEJ over Brazil resulted that as much farther away is the magnetic equator from SLZ, later more the EEJ is observed (10 h LT) and sooner it ends (16 h LT). Moreover, the time interval of type II occurrence decreased significantly after the year 2004, which is a clear indication that SLZ is no longer an equatorial station due to the secular variation of the geomagnetic field.
NASA Astrophysics Data System (ADS)
Moro, J.; Resende, L. C. A.; Denardini, C. M.; Xu, J.; Batista, I. S.; Andrioli, V. F.; Carrasco, A. J.; Batista, P. P.; Schuch, N. J.
2017-12-01
Equatorial E region electric fields (EEFs) inferred from coherent radar data, sporadic-E (Es) layers observed from a digital ionosonde data, and modeling results are used to study the responses of the equatorial E region over São Luís (SLZ, 2.3°S, 44.2°W, -7° dip angle), Brazil, during the super storm of November 2004. The EEF is presented in terms of the zonal (Ey) and vertical (Ez) components in order to analyze the corresponding characteristics of different types of Es seen in ionograms and simulated with the E region ionospheric model. We bring out the variabilities of Ey and Ez components with storm time changes in the equatorial E region. In addition, some aspects of the electric fields and Es behavior in three cases of weak, very weak, and strong Type II occurrences during the recovery phase of the geomagnetic storm are discussed. The connection between the enhanced occurrence and suppressions of the Type II irregularities and the q-type Es (Esq) controlled by electric fields, with the development or disruption of the blanketing sporadic E (Esb) layers produced by wind shear mechanism, is also presented. The mutual presence of Esq along with the Esb occurrences is a clear indicator of the secular drift of the magnetic equator and hence that of the equatorial electrojet (EEJ) over SLZ. The results show evidence about the EEJ and Es layer electrodynamics and coupling during geomagnetic disturbance time electric fields.
Beating HF waves to generate VLF waves in the ionosphere
NASA Astrophysics Data System (ADS)
Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John
2012-03-01
Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.
NASA Astrophysics Data System (ADS)
Amory-Mazaudier, C.; Fleury, R.; Petitdidier, M.; Soula, S.; Masson, F.; Davila, J.; Doherty, P.; Elias, A.; Gadimova, S.; Makela, J.; Nava, B.; Radicella, S.; Richardson, J.; Touzani, A.; Girgea Team
2017-12-01
This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern solar terrestrial physics, atmospheric physics and space weather. This part B is devoted to the results and capacity building. Our network began in 1991, in solar terrestrial physics, by our participation in the two projects: International Equatorial Electrojet Year IEEY [1992-1993] and International Heliophysical Year IHY [2007-2009]. These two projects were mainly focused on the equatorial ionosphere in Africa. In Atmospheric physics our research focused on gravity waves in the framework of the African Multidisciplinary Monsoon Analysis project n°1 [2005-2009 ], on hydrology in the Congo river basin and on lightning in Central Africa, the most lightning part of the world. In Vietnam the study of a broad climate data base highlighted global warming. In space weather, our results essentially concern the impact of solar events on global navigation satellite system GNSS and on the effects of solar events on the circulation of electric currents in the earth (GIC). This research began in the framework of the international space weather initiative project ISWI [2010-2012]. Finally, all these scientific projects have enabled young scientists from the South to publish original results and to obtain positions in their countries. These projects have also crossed disciplinary boundaries and defined a more diversified education which led to the training of specialists in a specific field with knowledge of related scientific fields.
The Extent to Which Dayside Reconnection Drives Field-Aligned Currents During Substorms
NASA Astrophysics Data System (ADS)
Forsyth, C.; Shortt, M. W.; Coxon, J.; Rae, J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.
2016-12-01
Field-aligned currents, also known as Birkeland currents, are the agents by which energy and momentum is transferred to the ionosphere from the magnetosphere and solar wind. In order to understand this coupling, it is necessary to analyze the variations in these current systems with respect to the main energy sources of the solar wind and substorms. In this study, we perform a superposed epoch analysis of field-aligned currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project with respect to substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) technique. We examine the total upward and downward currents separately in the noon, dusk, dawn and midnight sectors. Our results show that the dusk and dawn currents have up to a 66% linear correlated with the dayside reconnection rate estimated from solar wind measurements, whereas the noon and midnight currents are not. The noon currents show little or no variation throughout the substorm cycle. The midnight currents follows the dusk currents up to 20 min before onset, after which the midnight current increases more rapidly and exponentially. At substorm onset, the exponential growth rate increases. While the midnight field-aligned currents grow exponentially after substorm onset, the auroral indices vary with a 1/6th power law. Overall, our results show that the growth and decay rates of the Region 1 and 2 current systems, which are strongest at dawn and dusk, are directly driven by the solar wind, whereas the growth and decay rates of the substorm current system, which are dominant at midnight, act independently of the upstream driver.
NASA Astrophysics Data System (ADS)
Murphy, B. S.; Egbert, G. D.
2017-12-01
Discussion of possible bias in magnetotelluric (MT) transfer functions due to the finite spatial scale of external source fields has largely focused on long periods (>1000 s), where skin depths are large, and high latitudes (>60° N), where sources are dominated by narrow electrojets. However, a significant fraction ( 15%) of the 1000 EarthScope USArray apparent resistivity and phase curves exhibit nonphysical "humps" over a narrow period range (typically between 25-60 s) that are suggestive of narrow-band source effects. Maps of locations in the US where these biases are seen support this conclusion: they mostly occur in places where the Earth is highly resistive, such as cratonic regions, where skin depths are largest and hence where susceptibility to bias from short-wavelength sources would be greatest. We have analyzed EarthScope MT time series using cross-phase techniques developed in the space physics community to measure the period of local field line resonances associated with geomagnetic pulsations (Pc's). In most cases the biases occur near the periods of field line resonance determined from this analysis, suggesting that at mid-latitude ( 30°-50° N) Pc's can bias the time-averaged MT transfer functions. Because Pc's have short meridional wavelengths (hundreds of km), even at these relatively short periods the plane-wave assumption of the MT technique may be violated, at least in resistive domains with large skin depths. It is unclear if these biases (generally small) are problematic for MT data inversion, but their presence in the transfer functions is already a useful zeroth-order indicator of resistive regions of the Earth.
NASA Astrophysics Data System (ADS)
Sripathi, S.; Singh, Ram; Banola, S.; Sreekumar, Sreeba; Emperumal, K.; Selvaraj, C.
2016-08-01
We present here characteristics of the Doppler drift measurements over Tirunelveli (8.73°N, 77.70°E; dip 0.5°N), an equatorial site over Southern India using Doppler interferometry technique of Canadian ionosonde. Three-dimensional bulk motions of the scatterers as reflected from the ionosphere are derived by using Doppler interferometry technique at selected frequencies using spaced receivers arranged in magnetic E-W and N-S directions. After having compared with Lowell's digisonde drifts at Trivandrum, we studied the temporal and seasonal variabilities of quiet time drifts for the year 2012. The observations showed higher vertical drifts during post sunset in the equinox followed by winter and summer seasons. The comparison of Doppler vertical drifts with the drifts obtained from (a) virtual height and (b) Fejer drift model suggests that Doppler vertical drifts are relatively higher as compared to the drifts obtained from model and virtual height methods. Further, it is seen that vertical drifts exhibited equinoctial asymmetry in prereversal enhancement quite similar to such asymmetry observed in the spread F in the ionograms and GPS L band scintillations. The zonal drifts, on the other hand, showed westward during daytime with mean drifts of ~150-200 m/s and correlated well with equatorial electrojet strength indicating the role of E region dynamo during daytime, while they are eastward during nighttime with mean drifts of ~100 m/s resembling F region dynamo process. Also, zonal drifts showed large westward prior to the spread F onset during autumn equinox than vernal equinox, suggesting strong zonal shears which might cause equinoctial asymmetry in spread F.
NASA Astrophysics Data System (ADS)
Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.
Inclusion in the Global Self-consistent Model of the Thermosphere Ionosphere and Protonosphere GSM TIP developed in WD IZMIRAN of the new block of the electric field calculation allows to carry out the investigation of the equatorial ionosphere In this block the decision of the three-dimensional equation of the full current density conservation in the ionosphere of the Earth is realized by adduction it to the two-dimensional by integration on thickness of the current conductive layer along geomagnetic field lines which are expected equipotential In the given work are presented the calculation results on the basis of the model GSM TIP in which the composition and the temperature of neutral atmosphere computed on the basis of model MSIS The calculations were carried out for the quiet equinox conditions in the minimum of the solar activity The magnetosphere convection field calculated in the model by two ways paid in models - by setting of the field aligned currents of the first zone or potential difference across the polar caps Herewith in the first variant of calculations the currents of the first zone were selected so as got the potential difference through the polar caps was approximately such as assigned in the second variant There are considered two events - an absence of the screening by Alfven layer electric field that is to say the absence of the field aligned currents of the second zone and presence of such screening under given field aligned currents of the second zone All calculations were carried out with taking into account of
Survey of Ionospheric Pc3-5 ULF Wave Signatures in SuperDARN High Time Resolution Data
NASA Astrophysics Data System (ADS)
Shi, X.; Ruohoniemi, J. M.; Baker, J. B. H.; Lin, D.; Bland, E. C.; Hartinger, M. D.; Scales, W. A.
2018-05-01
Ionospheric signatures of ultralow frequency (ULF) wave in the Pc3-5 band (1.7-40.0 mHz) were surveyed using ˜6-s resolution data from Super Dual Auroral Radar Network (SuperDARN) radars in the Northern Hemisphere from 2010 to 2016. Numerical experiments were conducted to derive wave period-dependent thresholds for automated detection of ULF waves using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition, and geomagnetic activity level dependence have been studied. Pc5 wave events were found to dominate at high and polar latitudes with a most probable frequency of 2.08 ± 0.07 mHz, while Pc3-4 waves were relatively more common at midlatitudes on the nightside with a most probable frequency of 11.39 ± 0.14 mHz. At high latitudes, the occurrence rate of Pc4-5 waves maximizes in the dusk sector and during winter. These events tend to occur during low geomagnetic activity and northward interplanetary magnetic field. For the category of radially bounded but longitudinally extended Pc4 events in the duskside ionosphere, an internal driving source is suggested. At midlatitudes, the poloidal Pc3-4 occurrence rate maximizes premidnight and during equinox. This tendency becomes more prominent with increasing auroral electrojet (AE) index and during southward interplanetary magnetic field, which suggests that many of these events are Pi2 and Pc3-4 pulsations associated with magnetotail dynamics during active geomagnetic intervals. The overall occurrence rate of Pc3-5 wave events is lowest in summer, which suggests that the ionospheric conductivity plays a role in controlling ULF wave occurrence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.
In this paper, we have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 R E relative to the PP. Very few events occurred only within 0.1 R E of the PP, and events with a width in L of < 0.2 R E occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ringmore » current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. Finally, the fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.« less
Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.; ...
2017-03-17
In this paper, we have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 R E relative to the PP. Very few events occurred only within 0.1 R E of the PP, and events with a width in L of < 0.2 R E occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ringmore » current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. Finally, the fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.« less
NASA Astrophysics Data System (ADS)
Liu, J., Sr.
2014-12-01
Multiple instrumental observations including GPS TEC, foF2 and hmF2 from ionosondes, vertical ion drift measurements from C/NOFS, magnetometer data and far-ultraviolet airglow measured by TIMED/GUVI are used to investigate the profound ionospheric disturbances at mid- and low-latitudes during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 hours below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the Equatorial Ionospheric Anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIME/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electric electrojet (EEJ) observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm enhanced density (SED) plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields (PPEF) appeared during stable southward IMF Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.
NASA Astrophysics Data System (ADS)
Liu, Jing; Liu, Libo; Nakamura, Takuji; Zhao, Biqiang; Ning, Baiqi; Yoshikawa, A.
2014-09-01
Multiple instrumental observations including GPS total electron content (TEC), foF2 and hmF2 from ionosondes, vertical ion drift measurements from Communication/Navigation Outage Forecasting System, magnetometer data, and far ultraviolet airglow measured by Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI) are used to investigate the profound ionospheric disturbances at midlatitude and low latitude during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 h below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the equatorial ionospheric anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIMED/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electrojet observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm-enhanced density plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields appeared during stable southward interplanetary magnetic field (IMF) Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.
NASA Astrophysics Data System (ADS)
Mendes, Odim; Oliveira Domingues, Margarete; Echer, Ezequiel; Hajra, Rajkumar; Everton Menconi, Varlei
2017-08-01
Considering the magnetic reconnection and the viscous interaction as the fundamental mechanisms for transfer particles and energy into the magnetosphere, we study the dynamical characteristics of auroral electrojet (AE) index during high-intensity, long-duration continuous auroral activity (HILDCAA) events, using a long-term geomagnetic database (1975-2012), and other distinct interplanetary conditions (geomagnetically quiet intervals, co-rotating interaction regions (CIRs)/high-speed streams (HSSs) not followed by HILDCAAs, and events of AE comprised in global intense geomagnetic disturbances). It is worth noting that we also study active but non-HILDCAA intervals. Examining the geomagnetic AE index, we apply a dynamics analysis composed of the phase space, the recurrence plot (RP), and the recurrence quantification analysis (RQA) methods. As a result, the quantification finds two distinct clusterings of the dynamical behaviours occurring in the interplanetary medium: one regarding a geomagnetically quiet condition regime and the other regarding an interplanetary activity regime. Furthermore, the HILDCAAs seem unique events regarding a visible, intense manifestations of interplanetary Alfvénic waves; however, they are similar to the other kinds of conditions regarding a dynamical signature (based on RQA), because it is involved in the same complex mechanism of generating geomagnetic disturbances. Also, by characterizing the proper conditions of transitions from quiescent conditions to weaker geomagnetic disturbances inside the magnetosphere and ionosphere system, the RQA method indicates clearly the two fundamental dynamics (geomagnetically quiet intervals and HILDCAA events) to be evaluated with magneto-hydrodynamics simulations to understand better the critical processes related to energy and particle transfer into the magnetosphere-ionosphere system. Finally, with this work, we have also reinforced the potential applicability of the RQA method for characterizing nonlinear geomagnetic processes related to the magnetic reconnection and the viscous interaction affecting the magnetosphere.
NASA Astrophysics Data System (ADS)
Bagiya, Mala S.; Sunil, A. S.; Chakrabarty, D.; Sunda, Surendra
2017-10-01
Based on TEC observations by India's GPS Aided GEO Augmented Navigation (GAGAN) GPS network, we report the dayside low latitude ionospheric variations over the Indian region during the moderate main phase step-I of the 17 March 2015 geomagnetic storm. In addition, we assess the efficacy of GPS inferred TEC maps by International GNSS service (IGS) in capturing large scale diurnal features of equatorial ionization anomaly (EIA) over the Indian region during this period. Following the prompt penetration electric field (PPE) at ∼0605 UT, equatorial electrojet (EEJ) enhances by ∼55 nT over 75 ± 3oE longitudes where main phase step-I is coincided with local noon. Initial moderate EIA gradually strengthens with the storm commencement. Although GAGAN TEC exhibits more intense EIA evolution compare to IGS TEC maps, latitudinal extent of EIA are comparable in both. The enhanced EEJ reverses by ∼0918 UT under the effect of overshielding electric field, the later is accompanied by northward turning of interplanetary magnetic field (IMF) Bz. The weakening of well evolved EIA reflects in IGS TEC maps after ∼45 min of the overshielding occurrence. In contrary, GAGAN TEC shows the corresponding feature after ∼0115 h. Resurgence of EIA, following the PPE ∼1115 UT, shows up in GAGAN TEC but IGS TEC maps fails in capturing this feature. The observed low latitude TEC variations and EIA modulations are explained in terms of the varying storm time disturbance electric fields. The anomalies between the GAGAN TEC and IGS TEC maps are discussed in terms of the possible limitations of the IGS TEC maps in capturing storm time EIA variability over the Indian region.
Investigating the development of double-peak subauroral ion drift (DSAID)
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2017-04-01
This study focuses on the newly described ionospheric feature, called double-peak subauroral ion drift (DSAID), which is a subclass of the well-known single-peak SAID. Double-layer Region 2 (R2) field aligned currents (FACs) could be the main driver of DSAID. Our aim is to gain new insights into the development of DSAID during its two-stage progression. Observational results are provided by five scenarios, each demonstrating a certain progression sequence of DSAID. Results show that SAID/DSAID occurred during flux transfer events and was accompanied by flow channels (FCs) associated with dayside magnetopause (FC-2) and nightside magnetotail (FC-3) reconnections, with westward electrojet (eastward FC), and with auroral streamers (FC-4). In the premidnight magnetic local time (MLT) sector of stage 2, DSAID development was due to the short-circuiting of the reconnection-injected plasma jets during substorms or pseudobreakups. Thus, the related ring current pressure buildup enhanced the downward R2 FACs leading to double/multiple circuits forming double-layer R2 FACs. During the midnight MLT hours of stage 2, DSAID development was closely related to the westward traveling surge (WTS)/substorm current wedge (SCW). WTS/SCW-related strong upward R1 FACs closed with meriodional currents producing eastward and downward (i.e., downward R2 FAC-style) return currents enhancing the downward R2 FACs and thus leading to double/multiple circuits forming double-layer R2 FACs. Auroral streamers/FC-4 represent a substorm substructure and their occurrence with DSAID after stage 2 demonstrates that this substructure occasionally includes DSAID. Our results demonstrate also that the short-circuited system underlying SAID/DSAID acted sometimes as a current generator and sometimes as a voltage generator.
Evidence for OI 630.0 nm dayglow variations over low latitudes during onset of a substorm
NASA Astrophysics Data System (ADS)
Chakrabarty, D.; Sekar, R.; Sastri, J. H.; Pathan, B. M.; Reeves, G. D.; Yumoto, K.; Kikuchi, T.
2010-10-01
Observations of OI 630.0 nm dayglow intensity from Mt. Abu (magnetic latitude (MLAT): 16.2°N magnetic longitude (MLONG): 148°E) at two different directions corresponding to two different magnetic latitudes (MLATZenith: 16.2°N and MLAT20°Elevation: 22.2°N) revealed nearly simultaneous intensity enhancements on 2 February 2002 (Ap = 19) during 0554-0635 universal time (UT) (1124-1205 Indian Standard Time (IST); IST = UT + 5.5 h). This feature is found to be absent on a typical control day (3 February 2002; Ap = 4). The dayglow enhancements were concomitant with enhancements in the E-region zonal electric field inferred from deviations of the northward component of magnetic field (ΔH) obtained from a meridional chain of magnetometers encompassing the dip equatorial and low-latitude regions. Simultaneous positive bay signatures in ΔH were also recorded at all stations along the 210° magnetic meridian (MM) in the afternoon sector (˜1454-1535 magnetic local time). The changes in the solar wind parameters including the dawn-to-dusk component of IEF and ram pressure are found negligible during 0554-0635 UT. However, the variations in the auroral electrojet and ring current indices indicate the presence of a substorm during 0554-0635 UT. Sudden enhancements in the energetic particle fluxes measured by the Los Alamos National Laboratory (LANL) 1991-080 satellite at geosynchronous altitude provide evidence for the onset of the expansion phase of a magnetospheric substorm. Therefore, the present investigation adduces the response of 630.0 nm dayglow intensities over low latitudes corresponding to the onset of the expansion phase of an auroral/magnetospheric substorm.
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Gaikwad, H. P.; Ratnam, M. Venkat; Gurav, O. B.; Ramanjaneyulu, L.; Chavan, G. A.; Sathishkumar, S.
2018-04-01
Medium Frequency (MF) radar located at Kolhapur (16.8°N, 74.2°E) has been upgraded in August 2013. Since then continuous measurements of zonal and meridional winds are obtained covering larger altitudes from the Mesosphere and Lower Thermosphere (MLT) region. Diurnal, monthly and seasonal variation of these mean winds is presented in this study using four years (2013-2017) of observations. The percentage occurrence of radar echoes show maximum between 80 and 105 km. The mean meridional wind shows Annual Oscillation (AO) between 80 and 90 km altitudes with pole-ward motion during December solstice and equatorial motion during June solstice. Quasi-biennial oscillation (QBO) with weaker amplitudes are also observed between 90 and 104 km. Zonal winds show semi-annual oscillation (SAO) with westward winds during equinoxes and eastward winds during solstices between 80 and 90 km. AO with eastward winds during December solstice and westward wind in the June solstice is also observed in the mean zonal wind between 100 and 110 km. These results match well with that reported from other latitudes within Indian region between 80 and 90 km. However, above 90 km the results presented here provide true mean background winds for the first time over Indian low latitude region as the present station is away from equatorial electro-jet and are not contaminated by ionospheric processes. Further, the results presented earlier with an old version of this radar are found contaminated due to unknown reasons and are corrected in the present work. This upgraded MF radar together with other MLT radars in the Indian region forms unique network to investigate the vertical and lateral coupling.
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Gerrard, A. J.; Miller, E. S.; Marini, J. P.; West, M. L.; Bristow, W. A.
2014-09-01
A climatology of daytime midlatitude medium-scale traveling ionospheric disturbances (MSTIDs) observed by the Blackstone Super Dual Auroral Radar Network (SuperDARN) radar is presented. MSTIDs were observed primarily from fall through spring. Two populations were observed: a dominant population heading southeast (centered at 147° geographic azimuth, ranging from 100° to 210°) and a secondary population heading northwest (centered at -50° azimuth, ranging from -75° to -25°). Horizontal velocities ranged from 50 to 250 m s-1 with a distribution maximum between 100 and 150 m s-1. Horizontal wavelengths ranged from 100 to 500 km with a distribution peak at 250 km, and periods between 23 and 60 min, suggesting that the MSTIDs may be consistent with thermospheric gravity waves. A local time (LT) dependence was observed such that the dominant (southeastward) population decreased in number as the day progressed until a late afternoon increase. The secondary (northwestward) population appeared only in the afternoon, possibly indicative of neutral wind effects or variability of sources. LT dependence was not observed in other parameters. Possible solar-geomagnetic and tropospheric MSTID sources were considered. The auroral electrojet (AE) index showed a correlation with MSTID statistics. Reverse ray tracing with the HINDGRATS model indicates that the dominant population has source regions over the Great Lakes and near the geomagnetic cusp, while the secondary population source region is 100 km above the Atlantic Ocean east of the Carolinas. This suggests that the dominant population may come from a region favorable to either tropospheric or geomagnetic sources, while the secondary population originates from a region favorable to secondary waves generated via lower atmospheric convection.
Optimizing ELF/VLF generation via HF heating utilizing beam motion
NASA Astrophysics Data System (ADS)
Cohen, M. B.; Inan, U. S.; Lehtinen, N. G.; Golkowski, M. A.
2008-12-01
ELF/VLF (300 Hz - 30 kHz) waves are difficult to generate with conventional antennae due to their extraordinary long wavelengths, and the good conductance of the Earth at these frequencies. Recently, ELF and VLF waves have been generated using HF (3-10 MHz) heating of the lower ionosphere, in the presence of natural currents such as the auroral electrojet, which modulates the ionospheric conductivity and therefore turns the lower ionosphere into a large radiating element. The recently upgraded HAARP facility, near Gakona Alaska, utilizes 3.6 MW of HF power, along with an unprecedented ability to steer the HF heating beam over a large area extremely rapidly. Since the completion of the upgrade in 2007, the first successful implementation of techniques such as geometric modulation [Cohen et al. 2008, Borisov et al. 1998], and beam painting [Papadopoulos et al. 1989] have occurred. These results have shown as much as 7-11 dB improvement in the signal strengths, as well as the first ability to direct ELF/VLF signals via an unprecedented ELF/VLF phased array. Here, we use a combination of experimental and theoretical investigations to discuss the optimization of ELF/VLF generation via HF heating, including the effect of HF and ELF frequency on the amplitude and the directional pattern for various generation techniques. The experimental observations occur over an array of receivers across Alaska. The theoretical formulation utilizes a 3D model of the HF heating and subsequent electron cooling processes, leading to spatial structure of modulated ionospheric conductivities, the results of which are input into a model of ELF/VLF propagation in the Earth-ionosphere waveguide.
Observations of field-aligned currents, waves, and electric fields at substorm onset
NASA Technical Reports Server (NTRS)
Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.
1986-01-01
Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.
NASA Astrophysics Data System (ADS)
Setty, V.; Sharma, A.
2013-12-01
Characterization of extreme conditions of space weather is essential for potential mitigation strategies. The non-equilibrium nature of magnetosphere makes such efforts complicated and new techniques to understand its extreme event distribution are required. The heavy tail distribution in such systems can be a modeled using Stable distribution whose stability parameter is a measure of scaling in the cumulative distribution and is related to the Hurst exponent. This exponent can be readily measured in stationary time series using several techniques and detrended fluctuation analysis (DFA) is widely used in the presence of non-stationarities. However DFA has severe limitations in cases with non-linear and atypical trends. We propose a new technique that utilizes nonlinear dynamical predictions as a measure of trends and estimates the Hurst exponents. Furthermore, such a measure provides us with a new way to characterize predictability, as perfectly detrended data have no long term memory akin to Gaussian noise Ab initio calculation of weekly Hurst exponents using the auroral electrojet index AL over a span of few decades shows that these exponents are time varying and so is its fractal structure. Such time series data with time varying Hurst exponents are modeled well using multifractional Brownian motion and it is shown that DFA estimates a single time averaged value for Hurst exponent in such data. Our results show that using time varying Hurst exponent structure, we can (a) Estimate stability parameter, -a measure of scaling in heavy tails, (b) Define and identify epochs when the magnetosphere switches between regimes with and without extreme events, and, (c) Study the dependence of the Hurst exponents on the solar activity.
NASA Astrophysics Data System (ADS)
Hajra, Rajkumar; Chakraborty, Shyamal Kumar; Tsurutani, Bruce T.; DasGupta, Ashish; Echer, Ezequiel; Brum, Christiano G. M.; Gonzalez, Walter D.; Sobral, José Humberto Andrade
2016-07-01
We present a geomagnetic quiet time (Dst > -50 nT) empirical model of ionospheric total electron content (TEC) for the northern equatorial ionization anomaly (EIA) crest over Calcutta, India. The model is based on the 1980-1990 TEC measurements from the geostationary Engineering Test Satellite-2 (ETS-2) at the Haringhata (University of Calcutta, India: 22.58° N, 88.38° E geographic; 12.09° N, 160.46° E geomagnetic) ionospheric field station using the technique of Faraday rotation of plane polarized VHF (136.11 MHz) signals. The ground station is situated virtually underneath the northern EIA crest. The monthly mean TEC increases linearly with F10.7 solar ionizing flux, with a significantly high correlation coefficient (r = 0.89-0.99) between the two. For the same solar flux level, the TEC values are found to be significantly different between the descending and ascending phases of the solar cycle. This ionospheric hysteresis effect depends on the local time as well as on the solar flux level. On an annual scale, TEC exhibits semiannual variations with maximum TEC values occurring during the two equinoxes and minimum at summer solstice. The semiannual variation is strongest during local noon with a summer-to-equinox variability of ~50-100 TEC units. The diurnal pattern of TEC is characterized by a pre-sunrise (0400-0500 LT) minimum and near-noon (1300-1400 LT) maximum. Equatorial electrodynamics is dominated by the equatorial electrojet which in turn controls the daytime TEC variation and its maximum. We combine these long-term analyses to develop an empirical model of monthly mean TEC. The model is validated using both ETS-2 measurements and recent GNSS measurements. It is found that the present model efficiently estimates the TEC values within a 1-σ range from the observed mean values.
NASA Astrophysics Data System (ADS)
Bhawre, Purushottam
2016-07-01
Ionospheric anomaly crest regions are most challenging for scientific community to understand its mechanism and investigation, for this purpose we are investigating some inospheric result for this region. The study is based on the ionogram data recorded by IPS-71 Digital Ionosonde installed over anomaly crust region Bhopal (Geo.Lat.23.2° N, Geo. Long77.4° E, Dip latitude18.4°) over a four year period from January 2007 to December 2010, covering the ending phase of 23rd Solar Cycle and starting phase of 24th solar cycle. This particular period is felt to be very suitable for examining the sunspot number and it encompasses periods of low solar activities. Quarterly ionograms are analyzed for 24 hours during these study years and have been carefully examined to note down the presence of sporadic- E. We also note down the space weather activities along with the study. The studies are divided in mainly four parts with space and geomagnetic activities during these periods. The occurrence probability of this layer is highest in summer solstice, moderate during equinox and low during winter solstice. Remarkable occurrence peaks appear from June to July in summer and from December to January in winter. The layer occurrence showed a double peak variation with distinct layer groups, in the morning (0200 LT) and the other during evening (1800 LT).The morning layer descent was associated with layer density increase indicating the strengthening of the layer while it decreased during the evening layer descent. The result indicates the presence of semi-diurnal tide over the location while the higher descent velocities could be due to the modulation of the ionization by gravity waves along with the tides. The irregularities associated with the gradient-drift instability disappear during the counter electrojet and the current flow is reversed in westward.
NASA Astrophysics Data System (ADS)
Andriyas, Tushar
2016-08-01
A statistical analysis of the equatorward and poleward auroral boundary movement during substorm onsets, the related solar wind activity, GOES 8 and 10 magnetic field, and the westward auroral electrojet (AL) index is undertaken, during the years 2000-2002. Auroral boundary data were obtained from the British Antarctic Survey (BAS). These boundaries were derived using auroral images from the IMAGE satellite. The timing of the onsets was derived from the Frey et al. (2004) database. Data were also classified based on the peak AL around the onset and the onset latitude, in order to analyze the differences, if any, in the rates of movement. It was found that the absolute ratio of the rate of movement of the mean poleward and equatorward boundaries was slower than the rate of mean movement around the midnight sector. The stronger the onset (in terms of the peak AL around the onset) was, the faster the rate of movement for both the boundaries. This implies that the stronger the AL signature around the onset, the weaker the magnetic field was prior to the onset and the faster it increased after the onset at GOES 8 and 10 locations. The stronger the AL signature, the thicker the latitudinal width of the aurora was, prior to the onset and higher was the increase in the width after the onset, due to large poleward and average equatorward expansion. Magnetotail field line stretching and relaxation rates as measured by GOES were also found to lie in the same order of magnitude. It is therefore concluded that the rates of latitudinal descent prior to a substorm onset and ascent after the onset, of the mean auroral boundaries, corresponds to the rate at which the tail field lines stretch and relax before and after the onset, respectively.
GPS and GLONASS 1 Hz phase rate observations to study high latitudes ionospheric irregularities
NASA Astrophysics Data System (ADS)
Ghoddousi-Fard, R.; Prikryl, P.; Jacobsen, K. S.; Lahaye, F.
2016-12-01
It has been shown that dual frequency 1 Hz GPS phase rate observations can serve as a promising proxy for phase scintillation over high latitudes (see e.g. Ghoddousi-Fard et al., 2013, 2015). However signals from other GNSS constellations including GLONASS have been available and widely used for positioning applications. Usage of additional GNSS constellations should allow improved sampling of the ionosphere, a critical advantage to study small scale ionospheric irregularities over high latitudes. Migration of global GPS networks to multi-GNSS are now underway such as International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) and other national, public and private sector networks. In this presentation, GPS and GLONASS observations from high latitude MGEX stations as well as a dense regional network over Norway are used to map high latitude ionospheric irregularities by means of standard deviation of phase rate variations. Occurrence of GPS phase irregularities as a function of magnetic latitude and local time are compared with those from both GPS and GLONASS. By including 1 Hz GLONASS measurements at about 185 stations over Norway during geomagnetic storm of March 17-18, 2015, this study complements a recently submitted paper that examined the GPS phase scintillation occurrence in the context of solar wind coupling to the magnetosphere-ionosphere system and auroral electrojet currents (Prikryl et al., 2016). Ghoddousi-Fard et al. (2013). GPS phase difference variation statistics: A comparison between phase scintillation index and proxy indices. Adv. Space Res., 52, 1397-1405, doi: 10.1016/j.asr.2013.06.035. Ghoddousi-Fard et al. (2015). Analysis of GPS phase rate variations in response to geomagnetic field perturbations over the Canadian auroral region. Adv. Space Res., 55, 1372-1381, doi: 10.1016/j.asr.2014.12.021. Prikryl et al. (2016). GPS phase scintillation at high latitudes during the geomagnetic storm of March 17-18, 2015, submitted to J. Geophys. Res. ESS contribution number: 20160112
NASA Astrophysics Data System (ADS)
Miloch, Wojciech; Moen, Joran; Spicher, Andres
Ionospheric plasma is often characterized by irregularities, instabilities, and turbulence. Two regions of the ionospheric F-layer are of particular interest: low-latitudes for the equatorial anomaly and electrojet, and high-latitude regions where the most dynamic phenomena occur due to magnetic field lines coupling to the magnetosphere and the solar wind. The spectra of plasma fluctuations in the low-latitude F-layer usually exhibit a power law with a steeper slope at high frequencies [1]. Until recently, there was no clear evidence of the corresponding double slope spectra for plasma fluctuations in the high latitude ionospheric F-layer, and this difference was not well understood. We report the first direct observations of the double slope power spectra for plasma irregularities in the F-layer of the polar ionosphere [2]. The ICI-2 sounding rocket, which intersected enhanced plasma density regions with decameter scale irregularities in the cusp region, measured the electron density with unprecedented high resolution. This allowed for a detailed study of the plasma irregularities down to kinetic scales. Spectral analysis reveals double slope power spectra for regions of enhanced fluctuations associated mainly with density gradients, with the steepening of the spectra occurring close to the oxygen gyro-frequency. The double slope spectra are further supported by the results from the ICI-3 sounding rocket. Double slope spectra were not resolved in previous works presumably due to limited resolution of instruments. The study is a part of the 4DSpace initiative for integrated studies of the ionospheric plasma turbulence with multi-point, multi-scale in-situ studies by sounding rockets and satellites, and numerical and analytical models. A brief overview of the 4DSpace initiative is given. [1] M.C. Kelley, The Earth’s Ionosphere Plasma Physics and Electrodynamics (Elsevier, Amsterdam 2009). [2] A. Spicher, W. J. Miloch, and J. I. Moen, Geophys. Res. Lett. 40, (in press, accepted 13.02.2014).
Effects of including electrojet turbulence in LFM-RCM simulations of geospace storms
NASA Astrophysics Data System (ADS)
Oppenheim, M. M.; Wiltberger, M. J.; Merkin, V. G.; Zhang, B.; Toffoletto, F.; Wang, W.; Lyon, J.; Liu, J.; Dimant, Y. S.
2016-12-01
Global geospace system simulations need to incorporate nonlinear and small-scale physical processes in order to accurately model storms and other intense events. During times of strong magnetospheric disturbances, large-amplitude electric fields penetrate from the Earth's magnetosphere to the E-region ionosphere where they drive Farley-Buneman instabilities (FBI) that create small-scale plasma density turbulence. This induces nonlinear currents and leads to anomalous electron heating. Current global Magnetosphere-Ionosphere-Thermosphere (MIT) models disregard these effects by assuming simple laminar ionospheric currents. This paper discusses the effects of incorporating accurate turbulent conductivities into MIT models. Recently, we showed in Liu et al. (2016) that during storm-time, turbulence increases the electron temperatures and conductivities more than precipitation. In this talk, we present the effect of adding these effects to the combined Lyon-Fedder-Mobarry (LFM) global MHD magnetosphere simulator and the Rice Convection Model (RCM). The LFM combines a magnetohydrodynamic (MHD) simulation of the magnetosphere with a 2D electrostatic solution of the ionosphere. The RCM uses drift physics to accurately model the inner magnetosphere, including a storm enhanced ring current. The LFM and coupled LFM-RCM simulations have previously shown unrealistically high cross-polar-cap potentials during strong solar wind driving conditions. We have recently implemented an LFM module that modifies the ionospheric conductivity to account for FBI driven anomalous electron heating and non-linear cross-field current enhancements as a function of the predicted ionospheric electric field. We have also improved the LFM-RCM code by making it capable of handling dipole tilts and asymmetric ionospheric solutions. We have tested this new LFM version by simulating the March 17, 2013 geomagnetic storm. These simulations showed a significant reduction in the cross-polar-cap potential during the strongest driving conditions, significant increases in the ionospheric conductivity in the auroral oval, and better agreement with DMSP observations of sub-auroral polarization streams. We conclude that accurate MIT simulations of geospace storms require the inclusion of turbulent conductivities.
NASA Astrophysics Data System (ADS)
Yizengaw, E.; Moldwin, M.; Zesta, E.
2015-12-01
The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the American sector and weaker in the African sector - why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?
NASA Astrophysics Data System (ADS)
Alken, P.; Chulliat, A.; Maus, S.
2012-12-01
The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.
NASA Astrophysics Data System (ADS)
Liu, T. C.; Shao, X.; Cao, C.; Zhang, B.; Fung, S. F.; Sharma, S.
2015-12-01
A G4 level (severe) geomagnetic storm occurred on March 17 (St. Patrick's Day), 2015 and it is among the strongest geomagnetic storms of the current solar cycle (Solar Cycle 24). The storm is identified as due to the Coronal Mass Ejections (CMEs) which erupted on March 15 from Region 2297 of solar surface. During this event, the geomagnetic storm index Dst reached -223 nT and the geomagnetic aurora electrojet (AE) index increased and reached as high as >2200 nT with large amplitude fluctuations. Aurora occurred in both hemispheres. Ground auroral sightings were reported from Michigan to Alaska and as far south as southern Colorado. The Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP represents a major advancement in night time imaging capabilities. The DNB senses radiance that can span 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band and provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. In this paper, DNB observations of aurora activities during the St. Patrick's Day geomagnetic storm are analyzed. Aurora are observed to evolve with salient features by DNB for orbital pass on the night side (~local time 1:30am) in both hemispheres. The radiance data from DNB observation are collected at the night sides of southern and northern hemispheres and geo-located onto geomagnetic local time (MLT) coordinates. Regions of aurora during each orbital pass are identified through image processing by contouring radiance values and excluding regions with stray light near day-night terminator. The evolution of aurora are characterized with time series of the poleward and low latitude boundary of aurora, their latitude-span and area, peak radiance and total light emission of the aurora region in DNB observation. These characteristic parameters are correlated with solar wind and geomagnetic index parameters.
100 Days of ELF/VLF Generation via HF Heating with HAARP (Invited)
NASA Astrophysics Data System (ADS)
Cohen, M.; Golkowski, M.
2013-12-01
ELF/VLF radio waves are difficult to generate with conventional antennas. Ionospheric HF heating facilities generate ELF/VLF waves via modulated heating of the lower ionosphere. HF heating of the ionosphere changes the lower ionospheric conductivity, which in the presence of natural currents such as the auroral electrojet, creates an antenna in the sky when heating is modulated at ELF/VLF frequencies. We present a summary of nearly 100 days of ELF/VLF wave generation experiments at the 3.6 MW HAARP facility near Gakona, Alaska, and provide a baseline reference of ELF/VLF generation capabilities with HF heating. Between February 2007 and August 2008, HAARP was operated on close to 100 days for ELF/VLF wave generation experiments, at a variety of ELF/VLF frequencies, seasons and times of day. We present comprehensive statistics of generated ELF/VLF magnetic fields observed at a nearby site, in the 500-3500 Hz band. Transmissions with a specific HF beam configuration (3.25 MHz, vertical beam, amplitude modulation) are isolated so the data comparison is self-consistent, across nearly 5 million individual measurements of either a tone or a piece of a frequency-time ramp. There is a minimum in the average generation close to local midnight. It is found that generation during local nighttime is on average weaker, but more highly variable, with a small number of very strong generation periods. Signal amplitudes from day to day may vary by as much as 20-30 dB. Generation strengthens by ~5 dB during the first ~30 minutes of transmission, which may be a signature of slow electron density changes from sustained HF heating. Theoretical calculations are made to relate the amplitude observed to the power injected into the waveguide and reaching 250 km. The median power generated by HAARP and injected into the waveguide is ~0.05-0.1 W in this base-line configuration (vertical beam, 3.25 MHz, amplitude modulation), but may have generated hundreds of Watts for brief durations. Several efficiency improvements have improved the ELF/VLF wave generation efficiency further.
NASA Astrophysics Data System (ADS)
Stamper, R.; Davis, C. J.; Bradford, W. J.; Hapgood, M. A.; McCrea, I. W.
2009-04-01
Ionosondes continue to be important for the study of the ionosphere; they are relatively cheap and simple to install and operate, so can be distributed widely across the globe; they can give information on plasma density, structure and motion; their direct measurements of electron densities are also important for calibrating other more complicated observation methods such as incoherent scatter radar, satellite beacon tomography and radio occultation. The low cost of sounders, however, is relative to facilities such as space-based instrumentation and incoherent scatter radars; one type of ionosonde widely used for monitoring costs in excess of €150,000, representing a significant investment for many organisations. A new instrument design is under development at RAL for a low-power sounder using pulse-coding techniques to get good signal-to-noise. The design uses COTS components wherever possible, and has a projected cost in the region of €6,000 for the simplest version, making such a system accessible to all. The design is tiered so that the simplest version would give information about layer heights and electron densities, but adding multiple receivers would enable plasma velocities and echo direction to be determined, increasing the science output. The intention is that sounders of this new design be installed widely, in particular in developing nations. This would be especially beneficial for study of the equatorial and low-latitude ionosphere, which is relatively poorly understood because of a relative lack of instrumentation in this region. A wide range of studies would be enabled or enhanced by a much denser network of ionosondes across Africa, South America and Asia including: study of planetary-scale oscillations and gravity waves in the ionosphere; investigation of longitudinal variation in the equatorial electrojet and equatorial anomaly; examination of mechanisms for vertical coupling in the atmosphere with, for example, global thunderstorm activity being concentrated in Africa and South America; the study of ionospheric scintillation mechanisms and occurrence in the equatorial region; thorough characterisation of ionospheric variability on a wide range of spatial and temporal scales across a wide range of longitudes.
NASA Astrophysics Data System (ADS)
Stamper, R.; Davis, C.; Bradford, J.
2005-12-01
Ionosondes continue to be important for the study of the ionosphere; they are relatively cheap and simple to install and operate, so can be distributed widely across the globe; they can give information on plasma density, structure and motion; their direct measurements of electron densities are also important for calibrating other more complicated observation methods such as incoherent scatter radar, satellite beacon tomography and radio occultation. The low cost of sounders, however, is relative to facilities such as space-based instrumentation and incoherent scatter radars; one type of ionosonde widely used for monitoring costs in excess of 200,000, representing a significant investment for many organisations. A new instrument design is under development at RAL for a low-power sounder using pulse-coding techniques to get good signal-to-noise. The design uses COTS components wherever possible, and has a projected cost in the region of 7,500 for the simplest version, making such a system accessible to all. The design is tiered so that the simplest version would give information about layer heights and electron densities, but adding multiple receivers would enable plasma velocities and echo direction to be determined, increasing the science output. The intention is that sounders of this new design be installed widely, in particular in developing nations. This would be especially beneficial for study of the equatorial and low-latitude ionosphere, which is relatively poorly understood because of a relative lack of instrumentation in this region. A wide range of studies would be enabled or enhanced by a much denser network of ionosondes across Africa, South America and Asia including: study of planetary-scale oscillations and gravity waves in the ionosphere; investigation of longitudinal variation in the equatorial electrojet and equatorial anomaly; examination of mechanisms for vertical coupling in the atmosphere with, for example, global thunderstorm activity being concentrated in Africa and South America; the study of ionospheric scintillation mechanisms and occurrence in the equatorial region; thorough characterisation of ionospheric variability on a wide range of spatial and temporal scales across a wide range of longitudes.
Observations of meteor-head echoes using the Jicamarca 50MHz radar in interferometer mode
NASA Astrophysics Data System (ADS)
Chau, J. L.; Woodman, R. F.
2004-03-01
We present results of recent observations of meteor-head echoes obtained with the high-power large-aperture Jicamarca 50MHz radar (11.95°S, 76.87°W) in an interferometric mode. The large power-aperture of the system allows us to record more than 3000 meteors per hour in the small volume subtended by the 1° antenna beam, albeit when the cluttering equatorial electrojet (EEJ) echoes are not present or are very weak. The interferometry arrangement allows the determination of the radiant (trajectory) and speed of each meteor. It is found that the radiant distribution of all detected meteors is concentrated in relative small angles centered around the Earth's Apex as it transits over the Jicamarca sky, i.e. around the corresponding Earth heading for the particular observational day and time, for all seasons observed so far. The dispersion around the Apex is ~18° in a direction transverse to the Ecliptic plane and only 8.5° in heliocentric longitude in the Ecliptic plane both in the Earth inertial frame of reference. No appreciable interannual variability has been observed. Moreover, no population related to the optical (larger meteors) Leonid showers of 1998-2002 is found, in agreement with other large power-aperture radar observations.
A novel cross-correlation detection technique (adaptive match-filtering) is used in combination with a 13 baud Barker phase-code. The technique allows us to get good range resolution (0.75km) without any sensitivity deterioration for the same average power, compared to the non-coded long pulse scheme used at other radars. The matching Doppler shift provides an estimation of the velocity within a pulse with the same accuracy as if a non-coded pulse of the same length had been used. The velocity distribution of the meteors is relatively narrow and centered around 60kms-1. Therefore most of the meteors have an almost circular retrograde orbit around the Sun. Less than 8% of the velocities correspond to interstellar orbits, i.e. with velocities larger than the solar escape velocity (72kms-1). Other statistical distributions of interest are also presented.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.
2014-12-01
XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an active instrument can be deployed in a sRLV under a satellite track, and serve as a "standard candle" for instruments on satellites. Yearly calibrations of the Solar Extreme Ultraviolet Experiment (SEE) instrument aboard the TIMED orbiter using sounding rockets depict the necessity of calibrations and illustrates calibration frequency.
NASA Astrophysics Data System (ADS)
Lockwood, M.; Barnard, L.; Nevanlinna, H.; Owens, M. J.; Harrison, R. G.; Rouillard, A. P.; Davis, C. J.
2013-11-01
We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in Part 2, Lockwood et al., 2013a) to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845-1890 (inclusive) and 1893-1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891-1892 and 1897-1907) and the nearby Seddin observatories (1908-1910) and intercalibration achieved using the Potsdam-Seddin sequence. The new index is termed IDV(1d) because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010), inspired by the u index of Bartels (1932); however, we revert to using one-day (1d) means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2-6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is amplified in the proxy data used before 1872. This is therefore also true of the IDV index which makes direct use of the u index values.
NASA Astrophysics Data System (ADS)
Xu, Heqiucen; Shiokawa, Kazuo; Frühauff, Dennis
2017-10-01
We statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet at 6-12 RE (Earth radii; 1 RE = 6371 km), because they are important for non-magnetohydrodynamics (non-MHD) effects in the magnetotail and are considered to be necessary for current disruption in the inside-out substorm model. We used magnetic field data from 2013 and 2014 obtained by the Time History of Events and Macroscale Interactions during Substorms E (THEMIS-E) satellite (sampling rate: 4 Hz). A total of 1283 severe magnetic fluctuation events were identified that satisfied the criteria σB/B > 0. 5, where σB and B are the standard deviation and the average value of magnetic field intensity during the time interval of the local proton gyroperiod, respectively. We found that the occurrence rates of severe fluctuation events are 0.00118, 0.00899, and 0.0238 % at 6-8, 8-10, and 10-12 RE, respectively, and most events last for no more than 15 s. From these occurrence rates, we estimated the possible scale sizes of current disruption by severe magnetic fluctuations as 3.83 RE3 by assuming that four substorms with 5 min intervals of current disruption occur every day. The fluctuation events occurred most frequently at the ZGSM (Z distance in the geocentric solar magnetospheric coordinate system) close to the model neutral sheet within 0.2 RE. Most events occur in association with sudden decreases in the auroral electrojet lower (AL) index and magnetic field dipolarization, indicating that they are related to substorms. Sixty-two percent of magnetic fluctuation events were accompanied by ion flow with velocity V > 100 km s-1, indicating that the violation of ion gyromotion tends to occur during high-speed flow in the near-Earth plasma sheet. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We discuss how both the inside-out and outside-in substorm models can explain this increase in flow speeds before magnetic fluctuation events.
NASA Astrophysics Data System (ADS)
Malcolm, Perry Robert
The ECHO-6 sounding rocket was launched from the Poker Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injecting 10-36 KeV beams during the existence of a moderate growth phase aurora, an easterly electrojet system, and a pre -midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid state detectors and electrostatic analyzers. In spite of the perfect operation of the TAD system and a rigorous analysis of the particle data, no conjugate echoes have been identified. Through the use of a new dynamic magnetic field model (Olson and Pfitzer, 1982) and satellite magnetometer measurements, it has been determined that the echoing electrons returned out of range of the TADs as a result of their bounce times and curvature-gradient drifts being increased beyond the expected limits for an inflated magnetic field. This dynamic model was then applied to the study of echoes seen during the ECHO-4 flight resulting in a significant increase in the calculated energy of the echo electrons and better agreement between the locally measured and bounce integrated electric field.
NASA Astrophysics Data System (ADS)
Zou, S.; Lu, J.; Varney, R. H.
2017-12-01
This study aims to investigate the occurrence rate of ion upflow and downflow events in the auroral ionosphere, using a full 3-year (2011-2013) dataset collected by the Poker Flat Incoherent Scatter Radar (PFISR) at 65.5° magnetic latitude. Ion upflow and downflow events are defined if there are three consecutive data points larger/smaller than 100/-100 m/s in the ion field-aligned velocity altitude profile. Their occurrence rates have been evaluated as a function of magnetic local time (MLT), season, geomagnetic activity, solar wind and interplanetary magnetic field (IMF). We found that the ion upflows are twice more likely to occur on the nightside than the dayside, and have slightly higher occurrence rate near Fall equinox. In contrast, the ion downflow events are more likely to occur in the afternoon sector but also during Fall equinox. In addition, the occurrence rate of ion upflows on the nightside increases when the aurora electrojet index (AE) and planetary K index (Kp) increase, while the downflows measured on the dayside clearly increase as the AE and Kp increase. In general, the occurrence rate of ion upflows increases with enhanced solar wind and IMF drivers. This correlation is particularly strong between the upflows on the nightside and the solar wind dynamic pressure and IMF Bz. The lack of correlation of upflows on the dayside with these parameters is due to the location of PFISR, which is usually equatorward of the dayside auroral zone and within the nightside auroral zone under disturbed conditions. The occurrence rate of downflow at all MLTs does not show strong dependence on the solar wind and IMF conditions. However, it occurs much more frequently on the dayside when the IMF By is strongly positive, i.e., >10 nT and the IMF Bz is strongly negative, i.e., < -10 nT. We suggest that the increased occurrence rate of downflows on the dayside is associated with dayside storm-enhanced density and the plume.
The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program
NASA Astrophysics Data System (ADS)
Schuch, Nelson Jorge; Cupertino Durao, Otavio S.
The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program (CBP) and the results of the NANOSATC-BR1, the first Brazilian CubeSat launching, expected for 2014's first semester, are presented. The CBP consists of two CubeSats, NANOSATC-BR 1 (1U) & 2 (2U) and is expected operate in orbit for at least 12 months each, with capacity building in space science, engineering and computer sciences for the development of space technologies using CubeSats satellites. The INPE-UFSM’s CBP Cooperation is basically among: (i) the Southern Regional Space Research Center (CRS), from the Brazilian INPE/MCTI, where acts the Program's General Coordinator and Projects NANOSATC-BR 1 & 2 Manager, having technical collaboration and management of the Mission’s General Coordinator for Engineering and Space Technology at INPE’s Headquarter (HQ), in São José dos Campos, São Paulo; (ii) the Santa Maria Space Science Laboratory (LACESM/CT) from the Federal University of Santa Maria - (UFSM); (iii) the Santa Maria Design House (SMDH); (iv) the Graduate Program in Microelectronics from the Federal University of Rio Grande do Sul (MG/II/UFRGS); and (v) the Aeronautic Institute of Technology (ITA/DCTA/CA-MD). The INPE-UFSM’s CBP has the involvement of UFSM' undergraduate students and graduate students from: INPE/MCTI, MG/II/UFRGS and ITA/DCTA/CA-MD. The NANOSATC-BR 1 & 2 Projects Ground Stations (GS) capacity building operation with VHF/UHF band and S-band antennas, are described in two specific papers at this COSPAR-2014. This paper focuses on the development of NANOSATC-BR 1 & 2 and on the launching of NANOSATC-BR1. The Projects' concepts were developed to: i) monitor, in real time, the Geospace, the Ionosphere, the energetic particle precipitation and the disturbances at the Earth's Magnetosphere over the Brazilian Territory, and ii) the determination of their effects on regions such as the South American Magnetic Anomaly (SAMA) and the Brazilian sector of the Equatorial Electrojet (EEJ). The Program has support from The Brazilian Space Agency (AEB).
NASA Astrophysics Data System (ADS)
McPherron, Robert L.; Baker, Daniel N.; Pulkkinen, T. I.; Hsu, T.-S.; Kissinger, J.; Chu, X.
2013-07-01
Geomagnetic activity depends on a variety of factors including solar zenith angle, solar UV, strength of the interplanetary magnetic field, speed and density of the solar wind, orientation of the Earth’s dipole, distance of the Earth from Sun, occurrence of CMEs and CIRs, and possibly other parameters. We have investigated some of these using state-dependant linear prediction filters. For a given state a prediction filter transforms a coupling function such as rectified solar wind electric field (VBs) to an output like the auroral electrojet index (AL). The area of this filter calculated from the sum of the filter coefficients measures the strength of the coupling. When the input and output are steady for a time longer than the duration of the filter the ratio of output to input is equal to this area. We find coupling strength defined in this way for Es=VBs to AL (and AU) is weakest at solar maximum and strongest at solar minimum. AL coupling displays a semiannual variation being weakest at the solstices and strongest at the equinoxes. AU coupling has only an annual variation being strongest at summer solstice. AL and AU coupling also vary with time relative to a stream interface. Es coupling is weaker after the interface, but ULF coupling is stronger. Total prediction efficiency remains about constant at the interface. The change in coupling strength with the solar cycle can be explained as an effect of more frequent saturation of the polar cap potential causing a smaller ratio of AL to Es. Stronger AL coupling at the equinoxes possibly indicates some process that makes magnetic reconnection less efficient when the dipole axis is tilted along the Earth-Sun line. Strong AU coupling at summer solstice is likely due to high conductivity in northern summer. Coupling changes at a stream interface are correlated with the presence of strong wave activity in ground and satellite measurements and may be an artifact of the method by which solar wind data are propagated.
Classification of Regional Ionospheric Disturbances Based on Support Vector Machines
NASA Astrophysics Data System (ADS)
Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil
2016-07-01
Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification technique to the Global Ionospheric Map (GIM) TEC data which is provided by the NASA Jet Propulsion Laboratory (JPL), it will be shown that SVM can be a suitable learning method to detect the anomalies in Total Electron Content (TEC) variations. This study is supported by TUBITAK 114E541 project as a part of the Scientific and Technological Research Projects Funding Program (1001).
Ranking ICME's efficiency for geomagnetic and ionospheric storms and risk of false alarms
NASA Astrophysics Data System (ADS)
Gulyaeva, T. L.
2017-11-01
A statistical analysis is undertaken on ICME's efficiency in producing the geomagnetic and ionospheric storms. The mutually-consistent thresholds for the intense, moderate and weak space weather storms and quiet conditions are introduced with an analytical model based on relations between the equatorial Dst index and geomagnetic indices AE, aa, ap, ap(τ) and the ionospheric Vσ indices. The ionosphere variability Vσ index is expressed in terms of the total electron content (TEC) deviation from the -15-day sliding median normalized by the standard deviation for the 15 preceding days. The intensity of global positive ionospheric storm, Vσp, and negative storm, Vσn, is represented by the relative density of anomalous ±Vσ index occurrence derived from the global ionospheric maps GIM-TEC for 1999-2016. An impact of total 421 ICME events for 1999-2016 on the geomagnetic and ionospheric storms expressed by AE, Dst, aa, ap, ap(τ), Vσp, Vσn indices and their superposition is analyzed using ICME catalogue by Richardson and Cane (2010) during 24 h after the ICME start time t0. Hierarchy of efficiency of ICME → storm relation is established. The ICMEs have a higher probability (22-25%) to be followed by the intense ionospheric and auroral electrojet storms at global and high latitudes as compared to the intense storms at middle and low latitudes (18-20%) and to moderate and weak storms at high latitudes (5-17%). At the same time ICMEs are more effective in producing the moderate storms (24-28%) at the middle and low latitudes as compared to the intense and weak storms at these latitudes (13-22%) and to moderate storms at high latitudes (8-17%). The remaining cases when quiet conditions are observed after ICMEs present higher chance for a false alarm. The risk factor for a false alarm can vary from 18% if the superposition of all indices is considered, to 51-64% for individual AE, Vσp and Vσn indices. The analysis indicates that the mutually-consistent thresholds can be successfully applied to the external sources of the geomagnetic and ionospheric storms other than ICME which present challenge for the further investigation.
NASA Astrophysics Data System (ADS)
Kikuchi, Takashi; Hashimoto, Kumiko K.
2016-12-01
The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Tanaka, T.; Tomizawa, I.; Nagatsuma, T.
2016-12-01
The solar wind energy is transmitted to the low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter-electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night-sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents also develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC) and ULF pulsations, which appear simultaneously at high latitude and equator within the temporal resolution of 10 sec. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both the day- and night-sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.
The impacts of the St. Patrick's Day superstorm on selected technologies
NASA Astrophysics Data System (ADS)
Carter, B. A.; Yizengaw, E.; Lin, C. S.; Pradipta, R.; Norman, R.; Tseng, T.; Bennett, J.; Bishop, R. L.; Weygand, J. M.; Francis, M.; Terkildsen, M. B.; Groves, K. M.; Caton, R. G.; Tripathi, N.; Zhang, K.
2015-12-01
In the past, significant research efforts have been directed towards understanding how severe geomagnetic storms affect the near-Earth space environment. From this research, we have learned that many technologies are affected by these severe space weather events. The 2015 St. Patrick's Day geomagnetic storm has provided a great opportunity to analyze three selected space weather phenomena that adversely impact modern technologies; (1) Geomagnetically Induced Currents (GICs), (2) increased thermospheric mass density, and (3) the occurrence of Equatorial Plasma Bubbles (EPBs). The serious effects of GICs on power grids in the high-latitude regions is well known. Recent research has indicated that the equatorial region is also susceptible to increased GIC activity due to the equatorial electrojet. Thus, an examination of the equatorial magnetometer data during the St. Patrick's Day storm will be presented. It is also well understood that during geomagnetic storms, the thermospheric mass density at a given altitude increases due to the increase in Joule heating in the high-latitude regions. As a consequence of this, low-Earth orbiting satellites and space debris experience increased atmospheric drag. Changes in atmospheric drag causes orbits to be perturbed, resulting in less accurate orbit predictions. An investigation of the orbits of several low-Earth orbiting satellites will be presented and discussed in the context of collision avoidance, as part of the ongoing space debris problem. Finally, Equatorial Plasma Bubbles (EPBs) are a common phenomenon in the nighttime low-latitude ionosphere. EPBs are known to cause random fluctuations (i.e., scintillations) in the amplitude and phase of trans-ionospheric radio signals. While EPBs have been reported during both geomagnetically quiet and disturbed periods, research clearly indicates that the occurrence of EPBs is dependent on the geomagnetic activity level. The occurrence of EPBs around the world will be presented using data from both ground- and space-based EPB detection platforms. The results will be interpreted in the context of the disturbed ionosphere-thermosphere state and the subsequent impacts on the Generalized Rayleigh-Taylor plasma instability during the St. Patrick's Day storm.
The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region
NASA Astrophysics Data System (ADS)
Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.
2008-10-01
The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos|
NmF2 and hmF2 measurements at 95° E and 127° E around the EIA northern crest during 2010-2014
NASA Astrophysics Data System (ADS)
Kalita, Bitap Raj; Bhuyan, Pradip Kumar; Yoshikawa, Akimasa
2015-11-01
The characteristics of the F2 layer parameters NmF2 and hmF2 over Dibrugarh (27.5° N, 95° E, 17° N geomagnetic, 43° dip) measured by a Canadian Advanced Digital Ionosonde (CADI) for the period of August 2010 to July 2014 are reported for the first time from this low mid-latitude station lying within the daytime peak of the longitudinal wave number 4 structure of equatorial anomaly (EIA) around the northern edge of anomaly crest. Equinoctial asymmetry is clearly observed at all solar activity levels whereas the midday winter anomaly is observed only during high solar activity years and disappears during the temporary dip in solar activity in 2013 but forenoon winter anomaly can be observed even at moderate solar activity. The NmF2/hmF2 variations over Dibrugarh are compared with that of Okinawa (26.5° N, 127° E, 17° N geomagnetic), and the eastward propagation speed of the wave number 4 longitudinal structure from 95° E to 127° E is estimated. The speed is found to be close to the theoretical speed of the wave number 4 (WN4) structure. The correlation of daily NmF2 over Dibrugarh and Okinawa with solar activity exhibits diurnal and seasonal variations. The highest correlation in daytime is observed during the forenoon hours in equinox. The correlation of daily NmF2 (linear or non-linear) with solar activity exhibits diurnal variation. A tendency for amplification with solar activity is observed in the forenoon and late evening period of March equinox and the postsunset period of December solstice. NmF2 saturation effect is observed only in the midday period of equinox. Non-linear variation of neutral composition at higher altitudes and variation of recombination rates with solar activity via temperature dependence may be related to the non-linear trend. The noon time maximum NmF2 over Dibrugarh exhibits better correlation with equatorial electrojet (EEJ) than with solar activity and, therefore, new low-latitude NmF2 index is proposed taking both solar activity and EEJ strength into account.
Total electron content responses to HILDCAAs and geomagnetic storms over South America
NASA Astrophysics Data System (ADS)
Mara de Siqueira Negreti, Patricia; Rodrigues de Paula, Eurico; Nicoli Candido, Claudia Maria
2017-12-01
Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O / N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from ˜ 25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.
NASA Astrophysics Data System (ADS)
Ogasawara, K.; Dayeh, M. A.; Fuselier, S. A.; Goldstein, J.; McComas, D. J.; Valek, P. W.
2017-12-01
We report daylong continuous observations of bright terrestrial energetic neutral atom (ENA) emissions in the energy of 0.5-6.0 keV by Interstellar Boundary Explorer (IBEX). The unique vantage point of IBEX, 48 Earth radii (Re) from the dawn/dusk side, made an unprecedented long duration monitoring of ENAs possible from almost stable locations. This type of observation is difficult with the other ENA imager satellites since they are orbiting closer to the Earth in shorter periods. The studied energy range is unique due to the coverage of the transition from the solar wind plasma to the magnetospheric particles with a single sensor. In addition, the Coulomb decay becomes important for the protons with energy less than 1 keV. In order to minimize contamination from the sub-solar magnetosphere or the cusp emissions, we focused on two events when the auroral electrojet (AE) index exceeded 300 nT in this study. We will also show the ENA images from Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) in support of the IBEX observations. We found a significant correlation between the observed ENA profile and the AE indices, whose correlation coefficients were maximized at >0.75 for >1.4 keV energy. There are systematic differences between two events in terms of AU, AL, and Asy-H correlations: One event has the stronger AU correlation than AL and the Asy-H correlation, suggesting partial ring current contribution. The other has the stronger AL correlation than AU without Asy-H correlation, which suggests substorm related ENA emissions. On the contrary, we could not find a meaningful correlation with Sym-H for these two events. The other important finding is the decay time of these ENA emissions. The observed e-folding decay time, 2 to 4 hours for most of the energy bands, was a little shorter than the conventional ring-current decay time (typically >6 hours) expected from the charge exchange and the field-line curvature effect, suggesting the stronger effect of the Coulomb collision in the energy range investigated in this study. These observations can potentially provide a key to understanding the dependence of geomagnetic indices (e.g., AE and Sym-H) by monitoring and parameterizing the evolution of global ENA emissions from a new perspective.
Annual Variations of the Geomagnetic Field in the Earth's Polar Regions
NASA Astrophysics Data System (ADS)
Ou, Jiaming; Du, Aimin
2017-04-01
The annual variations of the geomagnetic field play an important role in the coupling processes between the solar wind, magnetosphere and ionosphere. The annual variation is a well-established feature of the geomagnetic field, and usually is applied for modeling the conductivity of the lower mantle [Parkinson, 1983], and for long-term space weather forecasting [Bartels, 1932; Malin and Mete Isikara, 1976; Gonzalez et al., 1994]. Considerable effort has been devoted toward understanding the causes of the geomagnetic field variations, but the suggested physical mechanisms differ widely. The annual variation is relatively weak in many magnetic indices, but it has a distinct signature in the geomagnetic components. Thus, we use the components for this analysis. The components have a positive peak in northern summer and a negative dip in winter [Vestine, 1954]. Vestine [1954] suggested that the annual variation is caused by an ionospheric dynamo in which electric currents in the ionosphere are generated by meridional winds. The winds blow from north-to-south during northern summer, and south-to-north in northern winter. Malin and Mete Isikara [1976], using near-midnight geomagnetic data, concluded that the annual variation results from a latitudinal movement of the auroral electrojet or the ring current. Stauning [2011] derived of the seasonal variation of the quiet daily variations and examined the influence of the sector structure of the interplanetary magnetic field. Ziegger and Mursula [1998] have suggested a third mechanism: that the cause is related to an asymmetric solar wind speed distribution across the heliographic equator. In this paper, we study the annual variation problem using long-term magnetic observation and ionospheric conductivity. The sunlight incident on the ionosphere will be calculated. Although a global analysis is done, particular focus will be placed on the polar regions. This study covers the interval 1990-2010, and the cause of the well-known fundamental north-south and seasonal anti-correlations is discussed. Reference 1. Malin, S. R. C., A. Mete Isikaka (1976), Annual variation of the geomagnetic field, J. R. Astron. Soc., 47, 445-457, doi: 10.1111/j.1365-246X.1976.tb07096.x. 2. Stauning, P. (2011), Determination of the quiet daily geomagnetic variations for polar regions, J. Atmos. Sol-Terr. Phy., 73, 2314-2330, doi:10.1016/j.jastp.2011.07.004.
Quipus and System of Coordinated Precession
NASA Astrophysics Data System (ADS)
Campos, T. C.
2004-05-01
The Incas of ancient Peru possessed no writing. Instead, they developed a unique system expressed on spatial arrays of colored knotted cords called Quipus to record and transmit information throughout their vast empire. In their thorough description of quipus, Ascher & Ascher observed that in two cases the numbers registered in their strings have a very special relationship to each other. For this to occur the numbers must have been obtained through the multiplication of whole numbers by fractions or decimals, operations apparently beyond the arithmetic knowledge of the Incas. The quipus AS120 and AS143, coming from Ica (Peru) and conserved in the Museum of Berlin has the suitable characteristics previously. In the AS143 there is a the relationship with the systems of coordinated precession (tilt of Earth's spin axis (40036); eccentricity of Earth's orbit (97357); and precession of equinoxes (between 18504 and 23098)). For the history of the Earth are necessary an chronometer natural to coordinate and to classify the observations and this chronometer comes to be the vernal point, defining the vernal point as" a sensitive axis of maximum conductivity" as itdemonstrates it the stability of the geomagnetic equator (inclination of the field is zero grades), in the year 1939 calculated with the IGRF from the year 1900 up to the 2004 and that it is confirmed with tabulated data of the Geophysical Institute of Huancayo (Peru),from that date until this year (2004) and this fluctuating between the 12-14 South.,on the other hand in the area of Brazil it has advanced very quickly toward the north, and above to 108 km. approximately it is located the equatorial electrojet that is but intense in the equinoxes in South America. And this stability from the point of view of the precession of the equinoxes this coinciding with the entrance of the apparent sun for the constellation of Aquarius, being this mechanism the base to establish a system of coordinated precession where it is also considered tilt of Earth's spin axis; eccentricity of Earth's orbit; and precession of equinoxes:Together these, yield a complex curve for the solar constant at different latitudes,as first suggested by Croll( 1875) y Milankovitch (1920, 1930), Zeuner ( e. g. 1945), and other.
NASA Astrophysics Data System (ADS)
Gulyaeva, Tamara; Stanislawska, Iwona; Arikan, Feza; Arikan, Orhan
The probability of occurrence of the positive and negative planetary ionosphere storms is evaluated using the W index maps produced from Global Ionospheric Maps of Total Electron Content, GIM-TEC, provided by Jet Propulsion Laboratory, and transformed from geographic coordinates to magnetic coordinates frame. The auroral electrojet AE index and the equatorial disturbance storm time Dst index are investigated as precursors of the global ionosphere storm. The superposed epoch analysis is performed for 77 intense storms (Dst≤-100 nT) and 227 moderate storms (-100
Application of Dusty Plasmas for Space
NASA Astrophysics Data System (ADS)
Bhavasar, Hemang; Ahuja, Smariti
In space, dust particles alone are affected by gravity and radiation pressure when near stars and planets. When the dust particles are immersed in plasma, the dust is usually charged either by photo ionization, due to incident UV radiation, secondary electron emission, due to collisions with energetic ions and electrons, or absorption of charged particles, due to collisions with thermal ions and electrons. A 1 micron radius dust particle in a plasma with an electron temperature of a few eV, will have a charge corresponding to a few thousand electron volts, with a resulting charge to mass ratio, Q/m ¡1. They will also be affected by electric and magnetic fields. Since the electrons are magnetized in these regions, electron E B or diamagnetic cross-field drifts may drive instabilities. Dust grains (micron to sub-micron sized solid particles) in plasma and/or radiative environments can be electrically charged by processes such as plasma current collection or photoemission. The effect of charged dust on known electrojet instabil-ities and low frequency dust acoustic and dust drift instabilities. As the plasma affects the dust particles, the dust particles can affect the plasma environment. In Dust Plasma, Plasma is Combination of ions and electrons. Dusty plasmas (also known as complex plasmas) are ordinary plasmas with embedded solid particles consisting of electrons, ions, and neutrals. The particles can be made of either dielectric or conducting materials, and can have any shape. The typical size range is anywhere from 100 nm up to say 100 m. Most often, these small objects or dust particles are electrically charged. Dusty plasmas are ubiquitous in the universe as proto-planetary and solar nebulae, molecular clouds, supernova explosions, interplanetary medium, circumsolar rings, and steroids. Closer to earth, there are the noctilucent clouds, clouds of tiny (charged) ice particles that form in the summer polar mesosphere at an altitude of about 85 km. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. Perhaps the most intriguing aspect of dusty plasmas is that the particles can be directly imaged and their dynamic behavior recorded as digital images. This is accomplished by laser light scattering from the particles. Since the particle mass is relatively high, their dynamical timescales are much longer than that of the ions or electrons. Dusty plasmas has a broad range of applications including interplanetary space dust, comets, planetary rings, dusty surfaces in space, and aerosols in the atmosphere.
NASA Astrophysics Data System (ADS)
Sridharan, S.
2017-04-01
The Global Positioning System (GPS) deduced total electron content (TEC) data at 15°N (geomagnetic), which is the northern crest region of equatorial ionization anomaly, are used to study solar and lunar tidal variabilities during the years 2008 and 2009 and also during the 2009-2010 winter, when a major sudden stratospheric warming (SSW) event has occurred. The diurnal and semidiurnal tidal amplitudes show semiannual variation with maximum amplitudes during February-March and September-November, whereas terdiurnal tide is larger during April-September. They show significant longitudinal variability with larger (smaller) amplitudes over 250°E-150°E (200°E-250°E). Lunar semidiurnal tidal amplitudes show sporadic enhancements during northern winter months and negligible amplitudes during northern summer months. They also show notable longitudinal variabilities. The solar migrating tides DW1 and SW2 show semiannual variation with larger amplitudes during spring equinox months, whereas TW3 maximizes during northern summer. DW2 shows larger amplitudes during summer months. During the SSW, except TW3, the migrating tides DW1 and SW2 show considerable enhancements. Among solar nonmigrating tides, SW1, TW2, and DS0 show larger enhancements. Solar tides in TEC and equatorial electrojet strength over Tirunelveli vary with the time scale of 60 days during October 2009-March 2010 similar to ozone mass mixing ratio at 10 hPa, and this confirms the vital role of ozone in tidal variabilities in ionospheric parameters. Lunar tidal amplitudes in changes in horizontal component of geomagnetic field (ΔH) are larger over Tirunelveli, a station near dip equator. Solar semidiurnal tides in ΔH have larger amplitudes than lunar tides over polar stations, Mawson and Godhavn.
NASA Astrophysics Data System (ADS)
Gordon, R. G.; Horner-Johnson, B. C.
2010-12-01
Prior studies have shown that Pacific hotspots and Indo-Atlantic hotspots have moved in approximate unison relative to the spin axis since 65 Ma B.P. [Morgan, 1981; Gordon and Cape, 1981; Gordon, 1982] and since 56 Ma B.P. [Petronotis et al., 1994], which is most simply interpreted as true polar wander. In contrast, Pacific hotspots and Indo-Atlantic hotspots give conflicting results for 72 Ma B.P. and for 81 Ma B.P., which may indicate motion between Pacific hotspots and Indo-Atlantic hotspots [Tarduno and Cottrell, 1997; Petronotis et al., 1999; Tarduno et al., 2003]. Thus it is important to estimate Pacific plate apparent polar wander (APW) for more time intervals. From such estimates the APW of Pacific hotspots can be inferred and compared with that of Indo-Atlantic hotspots [e.g., Besse and Courtillot 2002]. Here we present a study of the skewness of anomaly 12r between the Galapagos and Clipperton and between the Clipperton and Clarion fracture zones. We chose this region for several reasons: First, numerical experiments, like those conducted by Acton and Gordon [1991], indicate that magnetic profiles between the Galapagos and Clarion fracture zones should contain the most information about the Pacific plate paleomagnetic pole for chron C12r (32 Ma B.P.). Second, in these two spreading rate corridors, spreading half rates range from 72 to 86 mm/a and therefore have negligible anomalous skewness, given that they exceed ≈50 mm/a [Roest et al., 1992; Dyment et al. 1994]. Third, vector aeromagnetic profiles are available for analysis. One of the challenges to interpreting magnetic anomalies in low latitudes where the anomalies strike nearly north-south is the very low amplitude of the signal relative to the noise, the latter of which can be especially intense near the present magnetic equator due to the amplification of diurnal variation by the equatorial electrojet. Previously we showed that vector aeromagnetic profiles record low-latitude Pacific plate magnetic anomalies due to seafloor spreading with much greater clarity than do shipboard profiles in the same region [Horner-Johnson and Gordon, 2003]. The pole that we obtain has compact 95% confidence limits. We reduce the profiles to this pole and show that the appearance of the reduced-to-the-pole profiles is sensitive to the assumed pole position. The new pole shows that Pacific hotspots have moved significantly relative to the spin axis during the formation of the Hawaiian island and seamount chain, and is consistent with Pacific hotspots having moved in approximate unison with Indo-Atlantic hotspots relative to the spin axis since 32 Ma B.P.
NASA Technical Reports Server (NTRS)
Spence, Harlan E.
1996-01-01
This section outlines those tasks undertaken in the final year that contribute integrally to the overarching project goals. Fast, during the final year, it is important to note that the project benefited greatly with the addition of a Boston University graduate student, Ms. Karen Hirsch. Jointly, we made substantial progress on the development of and improvements to magnetotail magnetic field and plasma models. The ultimate aim of this specific task was to assess critically the utility of such models for mapping low-altitude phenomena into the magnetotail (and vice-versa). The bulk of this effort centered around the finite-width- magnetotail convection model developed by and described by Spence and Kivelson (J. Geophys. Res., 98, 15,487, 1993). This analytic, theoretical model specifies the bulk plasma characteristics of the magnetotail plasma sheet (number density, temperature, pressure) across the full width of the tail from the inner edge of the plasma sheet to lunar distances. Model outputs are specified by boundary conditions of the source particle populations as well as the magnetic and electric field configuration. During the reporting period, we modified this code such that it can be interfaced with the auroral particle precipitation model developed by Dr. Terry Onsager. Together, our models provide a simple analytic specification of the equatorial distribution of fields and plasma along with their low-altitude consequences. Specifically, we have built a simple, yet powerful tool which allows us to indirectly 'map' auroral precipitation signatures (VDIS, inverted-V's, etc.) measured by polar orbiting spacecraft in the ionosphere, to the magnetospheric equatorial plane. The combined models allow us to associate latitudinal gradients measured in the ion energy fluxes at low-altitudes with the large-scale pressure gradients in the equatorial plane. Given this global, quasi-static association, we can then make fairly strong statements regarding the location of discrete features in the context of the global picture. We reported on our initial study at national and international meetings and published the results of our predictions of the low-altitude signatures of the plasma sheet. In addition, the PI was invited to contribute a publication to the so-called 'Great Debate in Space Physics' series that is a feature of EOS. The topic was on the nature of magnetospheric substorms. Specific questions of the when and where a substorm occurs and the connection between the auroral and magnetospheric components were discussed in that paper. This paper therefore was derived exclusively from the research supported by this grant. Attachment: Empirical modeling of the quite time nightside magnetosphere.' 'CRRES observations of particle flux dropout event.' The what, where, when, and why of magnetospheric substorm triggers'. and 'Low altitude signature of the plasma sheet: model prediction of local time dependence'.
NASA Astrophysics Data System (ADS)
Chavez-Campos, Teodosio; Chavez S, Nadia; Chavez-Sumarriva, Israel
2014-05-01
The time scale was based on the internationally recognized formal chronostratigraphical /geochronological subdivisions of time: The Phanerozoic Eonathem/Eon; the Cenozoic Erathem/Era; the Quaternary System/Period; the Pleistocene and Holocene Series/Epoch. The Quaternary was divided into: (1) The Pleistocene that was characterized by cycles of glaciations (intervals between 40,000 and 100,000 years). (2) The Holocene that was an interglacial period that began about 12,000 years ago. It was believed that the Milankovitch cycles (eccentricity, axial tilt and the precession of the equinoxes) were responsible for the glacial and interglacial Holocene periods. The magnetostratigraphic units have been widely used for global correlations valid for Quaternary. The gravitational influence of the sun and moon on the equatorial bulges of the mantle of the rotating earth causes the precession of the earth. The retrograde motion of the vernal point through the zodiacal band is 26,000 years. The Vernal point passes through each constellation in an average of 2000 years and this period of time was correlated to Bond events that were North Atlantic climate fluctuations occurring every ≡1,470 ± 500 years throughout the Holocene. The vernal point retrogrades one precessional degree approximately in 72 years (Gleissberg-cycle) and approximately enters into the Aquarius constellation on March 20, 1940. On earth this entry was verify through: a) stability of the magnetic equator in the south central zone of Peru and in the north zone of Bolivia, b) the greater intensity of equatorial electrojet (EEJ) in Peru and Bolivia since 1940. With the completion of the Holocene and the beginning of the Anthropocene (widely popularized by Paul Crutzen) it was proposed the date of March 20, 1940 as the beginning of the Anthropocene. The date proposed was correlated to the work presented in IUGG (Italy 2007) with the title "Cusco base meridian for the study of geophysical data"; Cusco was proposed as a prime meridian that was based on: (1) the new prime meridian (72º W == 0º) was parallel to the Andes and its projection the meridian (108° E == 180º) intersects the Tibetan plate (Asia). (2) On earth these two areas present the greatest thickness of the crust with an average depth of 70 kilometers. The aim was to synchronize the earth sciences phenomena (e.g. geology, geophysics, etc.). During the Holocene the vernal point retrograde 12,000 years and enters into the Aquarius constellation on March 20, 1940. That date was proposed as the beginning of the Anthropocene because on that date proposed the vernal point passes from the Pisces constellation to Aquarius constellation, besides that event around the date proposed, the Second World War begun. This event was a global change in the earth. The base of the Anthropocene was defined by the passage of the vernal point from the Pisces Constellation to the Aquarius constellation.
NASA Astrophysics Data System (ADS)
Prabhu, M.; Unnikrishnan, K.
2018-04-01
In the present work, we analyzed the daytime vertical E × B drift velocities obtained from Jicamarca Unattended Long-term Ionosphere Atmosphere (JULIA) radar and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca, and Piura in Peru for 22 geomagnetically disturbed events in which either SC has occurred or Dstmax < -50 nT during the period 2006-2011. The ΔH component of geomagnetic field is measured as the differences in the magnitudes of horizontal H component between magnetometer placed directly on the magnetic equator and one displaced 6-9° away. It will provide a direct measure of the daytime electrojet current, due to the eastward electric field. This will in turn gives the magnitude of vertical E × B drift velocity in the F region. A positive correlation exists between peak values of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of the events. It was observed that 45% of the events have daytime vertical E × B drift velocity peak in the magnitude range 10-20 m/s and 20-30 m/s and 20% have peak ΔH in the magnitude range 50-60 nT and 80-90 nT. It was observed that the time of occurrence of the peak value of both the vertical E × B drift velocity and the ΔH have a maximum (40%) probability in the same time range 11:00-13:00 LT. We also investigated the correlation between E × B drift velocity and Dst index and the correlation between delta H and Dst index. A strong positive correlation is found between E × B drift and Dst index as well as between delta H and Dst Index. Three different techniques of data analysis - linear, polynomial (order 2), and polynomial (order 3) regression analysis were considered. The regression parameters in all the three cases were calculated using the Least Square Method (LSM), using the daytime vertical E × B drift velocity and ΔH. A formula was developed which indicates the relationship between daytime vertical E × B drift velocity and ΔH, for the disturbed periods. The E × B drift velocity was then evaluated using the formulae thus found for the three regression analysis and validated for the 'disturbed periods' of 3 selected events. The E × B drift velocities estimated by the three regression analysis have a fairly good agreement with JULIA radar observed values under different seasons and solar activity conditions. Root Mean Square (RMS) errors calculated for each case suggest that polynomial (order 3) regression analysis provides a better agreement with the observations from among the three.
NASA Astrophysics Data System (ADS)
Perna, L.; Venkatesh, K.; Pillat, V. G.; Pezzopane, M.; Fagundes, P. R.; Ezquer, R. G.; Cabrera, M. A.
2018-01-01
Bottom side electron density profiles for two stations at the southern crest of the Equatorial Ionization Anomaly (EIA), São José dos Campos (23.1°S, 314.5°E, dip latitude 19.8°S; Brazil) and Tucumán (26.9°S, 294.6°E, dip latitude 14.0°S; Argentina), located at similar latitude and separated by only 20° in longitude, have been compared during equinoctial, winter and summer months under low (year 2008, minimum of the solar cycle 23/24) and high solar activity (years 2013-2014, maximum of the solar cycle 24) conditions. An analysis of parameters describing the bottom side part of the electron density profile, namely the peak electron density NmF2, the height hmF2 at which it is reached, the thickness parameter B0 and the shape parameter B1, is carried out. Further, a comparison of bottom side profiles and F-layer parameters with the corresponding outputs of IRI-2012 and NeQuick2 models is also reported. The variations of NmF2 at both stations reveal the absence of semi-annual anomaly for low solar activity (LSA), evidencing the anomalous activity of the last solar minimum, while those related to hmF2 show an uplift of the ionosphere for high solar activity (HSA). As expected, the EIA is particularly visible at both stations during equinox for HSA, when its strength is at maximum in the South American sector. Despite the similar latitude of the two stations upon the southern crest of the EIA, the anomaly effect is more pronounced at Tucumán than at São José dos Campos. The differences encountered between these very close stations suggest that in this sector relevant longitudinal-dependent variations could occur, with the longitudinal gradient of the Equatorial Electrojet that plays a key role to explain such differences together with the 5.8° separation in dip latitude between the two ionosondes. Furthermore at Tucumán, the daily peak value of NmF2 around 21:00 LT during equinox for HSA is in temporal coincidence with an impulsive enhancement of hmF2, showing a kind of "elastic rebound" under the action of the EIA. IRI-2012 and NeQuick2 bottom side profiles show significant deviations from ionosonde observations. In particular, both models provide a clear underestimation of the EIA strength at both stations, with more pronounced differences for Tucumán. Large discrepancies are obtained for the parameter hmF2 for HSA during daytime at São José dos Campos, where clear underestimations made by both models are observed. The shape parameter B0 is quite well described by the IRI-2012 model, with very good agreement in particular during equinox for both stations for both LSA and HSA. On the contrary, the two models show poor agreements with ionosonde data concerning the shape parameter B1.
NASA Astrophysics Data System (ADS)
Semenov, Alexey; Kuvshinov, Alexey
2012-12-01
The global 3-D electrical conductivity distribution in the mantle (in the depth range between 400 and 1600 km) is imaged by inverting C-responses estimated on a global net of geomagnetic observatories. Very long time-series (up to 51 years; 1957-2007) of hourly means of three components of the geomagnetic field from 281 geomagnetic observatories are collected and analysed. Special attention is given to data processing in order to obtain unbiased C-responses with trustworthy estimates of experimental errors in the period range from 2.9 to 104.2 d. After careful inspection of the obtained C-responses the data from 119 observatories are chosen for the further analysis. Squared coherency is used as a main quality indicator to detect (and then to exclude from consideration) observatories with a large noise-to-signal ratio. During this analysis we found that—along with the C-responses from high-latitude observatories (geomagnetic latitudes higher than 58°)—the C-responses from all low-latitude observatories (geomagnetic latitudes below 11°) also have very low squared coherencies, and thus cannot be used for global induction studies. We found that the C-responses from the selected 119 mid-latitude observatories show a huge variability both in real and imaginary parts, and we investigated to what extent the ocean effect can explain such a scatter. By performing the systematic model calculations we conclude that: (1) the variability due to the ocean effect is substantial, especially at shorter periods, and it is seen for periods up to 40 d or so; (2) the imaginary part of the C-responses is to a larger extent influenced by the oceans; (3) two types of anomalous C-response behaviour associated with the ocean effect can be distinguished; (4) to accurately reproduce the ocean effect a lateral resolution of 1°× 1° of the conductance distribution is needed, and (5) the ocean effect alone does not explain the whole variability of the observed C-responses. We also detected that part of the variability in the real part of the C-responses is due to the auroral effect. In addition we discovered that the auroral effect in the C-responses reveals strong longitudinal variability, at least in the Northern Hemisphere. Europe appears to be the region with smallest degree of distortion compared with North America and northern Asia. We found that the imaginary part of the C-responses is weakly affected by the auroral source, thus confirming the fact that in the considered period range the electromagnetic (EM) induction from the auroral electrojet is small. Assuming weak dependence of the auroral signals on the Earth's conductivity at considered periods, and longitudinal variability of the auroral effect, we developed a scheme to correct the experimental C-responses for this effect. With these developments and findings in mind we performed a number of regularized 3-D inversions of our experimental data in order to detect robust features in the recovered 3-D conductivity images. Although differing in details, all our 3-D inversions reveal a substantial level of lateral heterogeneity in the mantle at the depths between 410 and 1600 km. Conductivity values vary laterally by more than one order of magnitude between resistive and conductive regions. The maximum lateral variations of the conductivity have been detected in the layer at depths between 670 and 900 km. By comparing our global 3-D results with the results of independent global and semi-global 3-D conductivity studies, we conclude that 3-D conductivity mantle models produced so far are preliminary as different groups obtain disparate results, thus complicating quantitative comparison with seismic tomography or/and geodynamic models. In spite of this, our 3-D EM study and most other 3-D EM studies reveal at least two robust features: reduced conductivity beneath southern Europe and northern Africa, and enhanced conductivity in northeastern China.
2017 International Conference on Space Science and Communication
NASA Astrophysics Data System (ADS)
2017-05-01
Table of Content Preface 2017 International Conference on Space Science and Communication “Space Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration & Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much credit for all the time for the successful run of the conference. We also wish to express our appreciation to all speakers and authors whose papers and presentations make the event a very exciting forum to add values to learn, discussion and exchanges of ideas, and to meet old or new people from different countries and interact with them. We would also like to express our sincerest gratitude to our sponsors: Malaysian Communications and Multimedia Commission (MCMC) for making this conference more valuable. Wayan Suparta The Editor Proceeding Editor Wayan Suparta Mahamod Ismail Mardina Abdullah Member of Editor Mohammad Rashed Iqbal Faruque Khairul Nizam Abdul Maulud Mohd Shahrul Mohd Nadzir Mandeep Singh Jit Singh Zamri Zainal Abidin Sabirin Abdullah Teh Wai Leong Md Firoz Khan Tariqul Islam Siti Aminah Bahari Noridawaty Mat Daud Papers Astrophysics and Astronomy Surface charging of a crater near lunar terminator A K Anuar Limiting magnitudes and night sky brightness at the Langkawi National Observatory based on observations of standard stars C-C Ngeow and S-C Luo Limb flares measurement from Langkawi National Observatory on 5th January 2016 F Kamarudin, MR Tahar, N R Saibaka Comparison of relative sunspot numbers measured in Malaysia with international sunspot number calculated by SIDC-SILSO N Rasmani, N S A Hamid, F Kamarudin, W M A W M Kamil and I Sarudin Atmospheric and Magnetospheric Sciences An analysis of heat wave trends using heat index in East Malaysia W Suparta and A N M Yatim A short review on the effects of aerosols on visibility impairment M E Emetere and M L Akinyemi Atmospheric configurations of aerosols loading and retention over Bolgatanga-Ghana M E Emetere, S E Sanni and P Tunji-Olayen Altering rainfall patterns through aerosol dispersion M E Emetere, M Bakeko, L Onyechekwa and W Ayara Satellite observation analysis of aerosols loading effect over Monrovia-Liberia M E Emetere, F Esisio and F Oladapo Effect of aerosols loading and retention on surface temperature in the DJF months M E Emetere, L Onyechekwa and P Tunji-Olayeni Aerosols loading statistical dimensions over SerekundaGambia M E Emetere, I Ebubechukwu, O Ekene and E Charles Impact of meteorological parameters over Covenant University, Ota, Nigeria E O Falayi, M R Usikalu, T V Omotosho, O S Ojoniyi and S A Akinwumi Year to year variation of rainfall rate and rainfall regime in Ota, southwest Nigeria for the year 2012 to 2015 T V Omotosho, O O Ometan, S A Akinwumi, O M Adewusi, A O Boyo and J S Mandeep Investigation of zonal velocity of equatorial plasma bubbles (EPBs) by using GPS data I Sarudin, N S A Hamid, M Abdullah and S M Buhari Peak time of equatorial electrojet from different longitude sectors during fall solar minimum N S A Hamid, H Liu, T Uozumi, A Yoshikawa and N M N Annadurai Comparison of ionospheric profile parameters with IRI-2012 model over Jicamarca S A Bello, M Abdullah, N S A Hamid and B W Reinisch Irregularities of ionospheric VTEC during lightning activity over Antarctic Peninsula W Suparta and W N A Wan Mohd Nor Derivation of GPS TEC and receiver bias for Langkawi station in Malaysia W L Teh, W S Chen, and M Abdullah Longitudinal variation of EEJ current during different phases of solar cycle W N I Ismail, N S A Hamid, M Abdullah, A Yoshikawa and T Uozumi Response of lightning energy and total electron content with sprites over Antarctic Peninsula W Suparta and N Yusop Geoscience and Remote Sensing Distribution ozone concentration in Klang valley using GIS approaches A Sulaiman, A A Ab Rahman, K N Abdul Maulud, M T Latif, M A Abdul Wahid, M A Ibrahim and N D Abdul Halim Alteration mineral mapping in inaccessible regions using target detection algorithms to ASTER data A B Pour, M Hashim and Y Park Mapping land slide occurrence zones using remote sensing and GIS techniques in Kelantan state, Malaysia M Hashim, A B Pour and S Misbari Spectral mineral mapping for characterization of subtle geothermal prospects using ASTER data A J Abubakar, M Hashim, A B Pour Application of ASTER SWIR bands in mapping anomaly pixels for Antarctic geological mapping A B Pour, Mazlan Hashim and Y Park Modelling airborne dispersion for disaster management I A Musliman and L Yohnny Remote sensing assessment of absorbing aerosol over peninsular malaysia from OMI onboard Aura satellite K C Tan, H S Lim and M Z Mat Jafri Measurement of radon concentration in selected houses in Ibadan, Nigeria M R Usikalu, V Olatinwo, M Akpochafor, M A Aweda, G Giannini and V Massimo Validation of sea levels from coastal altimetry waveform retracking expert system: a case study around the Prince William Sound in Alaska N H Idris, X Deng and N H Idris Investigation to determine the vulnerability of reclaimed land to building collapse using near surface geophysical method O O Adewoyin, E O Joshua, M L Akinyemi and M Omeje Extraction of shoreline changes in Selangor coastal area using GIS and remote sensing techniques S N Selamat, K N Abdul Maulud, O Jaafar and H Ahmad Estimation of lidar ratios during haze events in Penang, Malaysia W Y Khor, M Z Mat Jafri and H S Lim Application of 2D electrical resistivity imaging and cone penetration test (CPT) to assess the harzadous effect of near surface water on foundations in Lagos Nigeria O O Adewoyin, E O Joshua, M L Akinyemi, M Omeje and E S Joel Satellite and Communication Technology Design of a dual C slot reflect array with enhanced phase range performance H I Malik, M Y Ismail, M Amin and F Mohamed Design and analysis of dual U slot reflect array antenna for X-band applications M Y Ismail, H I Malik and M. Amin Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film N I Mohd Ali, N Misran, M F Mansor and M F Jamlos The analysis of the algorithms of the complex optimal estimates interpolation in tasks of satellite navigation A I Perov, O V Chernoyarov, E N Boldenkov and A N Faulgaber Efficient pricing technique for resource allocation problem in downlink OFDM cognitive radio networks O B Abdulghafoor, M M.R. Shaat, M Ismail, R Nordin, T Yuwono and O N A Alwahedy Analysis of non-rainy attenuation on earth-space path in Ota, Southwest Nigeria T V Omotosho, S A Akinwumi, M R Usikalu, O O Ometan, M O Adewusi and M Abdullah Installing the earth station of Ka-band satellite frequency in Malaysia: conceptual framework for site decision M R Mahmud, M N M Reba, S W Jaw, A Arsyad and M A M Ibrahim Interdisciplinary Space Science Estimation water vapor content using the mixing ratio method and validated with the ANFIS PWV model W Suparta, K M Alhasa and M S J Singh Measurements of radioactivity levels in part of Ota Southwestern Nigeria: Implications for radiological hazards indices and excess lifetime cancer-risks K D Oyeyemi, M R Usikalu, A P Aizebeokhai, J A Achuka and O Jonathan Micro - ring resonator with variety of gap width for acid rain sensing application: preliminary study B Mulyanti, H Ramza, R E Pawinanto, J A Rahman, M S Ab-Rahman, W S Putro, L Hasanah and A B Pantjawati Development of a solar charged laboratory bench power supply W A Ayara, T V Omotosho, M R Usikalu, M S J Singh and W Suparta Background radiation dose of dumpsites in Ota and Environs M R Usikalu, O O Ola, J A Achuka, I O Babarimisa and W A Ayara Impacts of ionospheric electric fields on the GPS tropospheric delays during geomagnetic storms in Antarctica Wayan Suparta Photographs from the conference can be found in the PDF