Science.gov

Sample records for electrokinetic chromatographic study

  1. Liposomes for entrapping local anesthetics: a liposome electrokinetic chromatographic study.

    PubMed

    Lokajová, Jana; Laine, Jaana; Puukilainen, Esa; Ritala, Mikko; Holopainen, Juha M; Wiedmer, Susanne K

    2010-05-01

    Bupivacaine is a lipophilic, long-acting, amide class local anesthetic commonly used in clinical practice to provide local anesthesia during surgical procedures. Several cases of accidental overdose with cardiac arrest and death have been reported since bupivacaine was introduced to human use. Recent case reports have suggested that Intralipid (Fresenius Kabi) is an effective therapy for cardiac toxicity from high systemic concentrations of, e.g. bupivacaine, even though the mechanism behind the interaction is not fully clear yet. Our long-term aim is to develop a sensitive, efficient, and non-harmful lipid-based formulation to specifically trap harmful substances in vivo. In this study, the in vitro interaction of local anesthetics (bupivacaine, prilocaine, and lidocaine) with Intralipid or lipid vesicles containing phosphatidylglycerol, phosphatidylcholine, cardiolipin, cholesterol, and N-palmitoyl-D-erythro-sphingosine (ceramide) was determined by liposome electrokinetic chromatography. The interactions were evaluated by calculating the retention factors and distribution constants. Atomic force microscopy measurements were carried out to confirm that the interaction mechanism was solely due to interactions between the analytes and the moving pseudostationary phase and not by interactions with a stationary lipid phase adsorbed to the fused-silica wall. The heterogeneity of the liposomes was also studied by atomic force microscopy. The liposome electrokinetic chromatography results demonstrate that there is higher interaction between the drugs and negatively charged liposome dispersion than with the commercial Intralipid dispersion.

  2. [Evaluation of capillary chromatographic columns packed by electrokinetic packing method].

    PubMed

    Li, Z; You, H; Hu, S; Wei, W; Luo, G

    1997-01-01

    In this paper, a method for electrokinetic packing capillary columns is reported. A higher column effeciency was obtained by performing electrochromatography on electrokinetic packing columns. The highest column efficiency in number of theoretical plate per meter was more than 200000, corresponding to reduced plate height less than 2. The reproducibilities of the same column in different intervals and different columns prepared from the same or different batches were compared. The relative standard deviations of the number of theoretical plate and retention time were less than 10% and 8%, respectively. The results indicated that high column efficiency and good reproducibility can be obtained on these new capillary packed columns.

  3. Micellar electrokinetic chromatographic determination of triazine herbicides in water samples.

    PubMed

    Li, Zhi; Zhang, Shuaihua; Yin, Xiaofang; Wang, Chun; Wang, Zhi

    2014-09-01

    Dispersive liquid-liquid microextraction combined with online sweeping preconcentration in micellar electrokinetic chromatography was developed for the simultaneous determination of five triazine herbicides (atrazine, simazine, propazine, prometon and simetryn) in water samples. Several experimental parameters affecting the extraction efficiencies such as the type and volume of both the extraction and dispersive solvents, the addition of salt to sample solution, the extraction time and the pH of the sample solution were investigated. Under optimum conditions, the linearity of the method was good in the range from 0.33 to 20 ng mL(-1) for simazine, propazine, atrazine and simetryn, and from 0.17 to 20 ng mL(-1) for prometon, respectively. The sensitivity enrichment factors were in the range from 1750 to 2100, depending on the compound. The limit of detection (S/N = 3) ranged from 0.05 to 0.10 ng mL(-1). The developed method was successfully applied to the analysis of the five triazines in river, ground and well waters.

  4. Stacking-cyclodextrin-microchip electrokinetic chromatographic determination of gabapentinoid drugs in pharmaceutical and biological matrices.

    PubMed

    Zeid, Abdallah M; Kaji, Noritada; Nasr, Jenny Jeehan M; Belal, Fathalla F; Baba, Yoshinobu; Walash, Mohamed I

    2017-06-23

    A facile, rapid, and highly sensitive microchip-based electrokinetic chromatographic method was developed for the simultaneous analysis of two gabapentinoid drugs, gabapentin (GPN) and pregabalin (PGN). Both drugs were first reacted with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) via nucleophilic substitution reactions to yield highly fluorescent products with λex/em 470/540nm. Analyses of both fluorescently labeled compounds were achieved within 200s in a poly(methyl methacrylate) (PMMA) microchip with a 30mm separation channel. Optimum separation was achieved using a borate buffer (pH 9.0) solution containing methylcellulose and β-cyclodextrin (β-CD) as buffer additives. Methylcellulose acted as a dynamic coating to prevent adsorption of the studied compounds on the inner surfaces of the microchannels, while β-CD acted as a pseudo-stationary phase to improve the separation efficiency between the labeled drugs with high resolution (Rs>7). The fluorescence intensities of the labeled drugs were measured using a light emitting diode-induced fluorescence detector at 540nm after excitation at 470nm. The sensitivity of the method was enhanced 14- and 17-fold for PGN and GPN, respectively by field-amplified stacking relative to traditional pinched injection so that it could quantify 10ngmL(-1) for both analytes, with a detection limit lower than 3ngmL(-1). The developed method was efficiently applied to analyze PGN and GPN in their pharmaceutical dosage forms and in biological fluids. The extraction recoveries of the studied drugs from plasma and urine samples were more than 89% with%RSD values lower than 6.2. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Micellar electrokinetic chromatographic method for the dabrafenib determination in biological samples.

    PubMed

    Rodríguez, Juana; Castañeda, Gregorio; Muñoz, Lorena; Lizcano, Isabel; Berciano, Miguel A

    2016-05-01

    Two different micellar electrokinetic chromatographic methods to determine dabrafenib in urine and serum, both using borate buffer (pH 9.2, 20 mM) and SDS as separation electrolyte, are developed and validated. The analyses were carried out in a fused-silica capillary of 75 μm of internal diameter and total length of 47 and 37 cm for urine and serum determination, respectively. The detection of the target compound was performed at 227 nm in urine samples and at 251 nm in serum samples. The linearity range was from 1 to 21 mg/L of dabrafenib in urine and from 2 to 40 mg/L in serum. In all cases, inter- and intraday RSDs were <4%. Sample preparation of serum samples consists of an only step of 1:1 dilution with water before its injection in the electrophoretic system. These simple, sensitive, accurate, and cost-effective methods can be used in routine clinical practice to monitor dabrafenib concentrations in urine and serum of metastatic melanoma skin cancer patients.

  6. Study of electrokinetic effects to quantify groundwater flow

    SciTech Connect

    Brown, S.R.; Haupt, R.W.

    1997-04-01

    An experimental study of electrokinetic effects (streaming potential) in earth materials was undertaken. The objective was to evaluate the measurement of electrokinetic effects as a method of monitoring and predicting the movement of groundwater, contaminant plumes, and other fluids in the subsurface. The laboratory experiments verified that the electrokinetic effects in earth materials are prominent, repeatable, and can be described well to first order by a pair of coupled differential equations.

  7. Micellar electrokinetic chromatographic determination of rosuvastatin in rabbit plasma and evaluation of its pharmacokinetics and interaction with niacin.

    PubMed

    El-Kommos, Michael E; Mohamed, Niveen A; Ali, Hassan R H; Abdel Hakiem, Ahmed F

    2014-12-01

    A specific, accurate, precise and reproducible micellar electrokinetic chromatographic method was developed for in vitro and in vivo estimation of rosuvastatin, a synthetic and potent HMG-CoA inhibitor, in rabbit plasma. Further, its pharmacokinetics in the presence of niacin, which could be co-administered for monitoring of severe hypercholestremia, was investigated. The assay procedures involved simple liquid-liquid extraction of rosuvastatin and internal standard, atorvastatin, from a small plasma volume directly into acetonitrile. The organic layer was separated and evaporated under a gentle stream of nitrogen. The residue was reconstituted in the mobile phase and injected electrokinetically into electropherosis system. The background electrolyte consisted of borate buffer (25.0 mm, pH 9.5), 10.0% organic modifier (5.0% methanol + 5.0% acetonitrile) and 25.0 mm sodium dodecyl sulfate at 20.0 kV applied voltage and 215.0 nm detection wavelength for the effective separation of rosuvastatin, niacin and atorvastatin.

  8. Micellar electrokinetic capillary chromatographic determination of artificial sweeteners in low-Joule soft drinks and other foods.

    PubMed

    Thompson, C O; Trenerry, V C; Kemmery, B

    1995-03-10

    A rapid method for the determination of artificial sweeteners in low-Joule soft drinks and other foods by micellar electrokinetic capillary chromatography (MEKC) is described. Caffeine, benzoic acid and sorbic acid, which are often added to soft drinks, can also be determined with this procedure. The artificial sweeteners, aspartame, saccharin, acesulfame-K, alitame and dulcin, and the other food additives are well separated in less than 12 min using an uncoated fused-silica capillary column with a buffer consisting of 0.05 M sodium deoxycholate, 0.01 M potassium dihydrogenorthophosphate, 0.01 M sodium borate operating at 20 kV. Dehydroacetic acid was used as the internal standard for the determinations. The levels of artificial sweeteners, preservatives and caffeine were in good agreement with those determined by the high-performance liquid chromatographic (HPLC) procedure currently used in our Laboratory. The MEKC procedure has the same order of repeatability, is faster and less costly to operate than the HPLC method.

  9. A Novel Micellar Electrokinetic Chromatographic Method for Separation of Metal-DDTC Complexes

    PubMed Central

    Mallah, Arfana; Memon, Saima Q.; Solangi, Amber R.; Memon, Najma; Abbassi, Kulsoom; Khuhawar, Muhammad Yar

    2012-01-01

    Micellar electrokinetic chromatography (MEKC) was examined for the separation and determination of Mo(VI), Cr(VI), Ni(II), Pd(II), and Co(III) as diethyl dithiocarbamate (DDTC) chelates. The separation was achieved from fused silica capillary (52 cm × 75 μm id) with effective length 40 cm, background electrolyte (BGE) borate buffer pH 9.1 (25 mM), CTAB 30% (100 mM), and 1% butanol in methanol (70 : 30 : 5 v/v/v) with applied voltage of −10 kV using reverse polarity. The photodiode array detection was achieved at 225 nm. The linear calibration for each of the element was obtained within 0.16–10 μg/mL with a limit of detection (LOD) 0.005–0.0167 μg/mL. The separation and determination was repeatable with relative standard deviation (RSD) within 2.4–3.3% (n = 4) in terms of migration time and peak height/peak area. The method was applied for the determination of Mo(VI) from potatoes and almond, Ni(II) from hydrogenated vegetable oil, and Co(III) from pharmaceutical preparations with RSD within 3.9%. The results obtained were checked by standard addition and rechecked by atomic absorption spectrometry. PMID:22649320

  10. Nonlinear studies of AC electrokinetic micropumps

    NASA Astrophysics Data System (ADS)

    Bruus, Henrik; Olesen, Laurits H.; Ajdari, Armand

    2006-03-01

    Recent experiments have demonstrated that AC electrokinetic micropumps permit integrable, local, and fast pumping (velocities ˜ mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects indeed affect the pump performance in a way that we can rationalize by physical arguments.

  11. Effects of ammonioalkyl sulfonate internal salts on electrokinetic micropump performance and reversed-phase high-performance liquid chromatographic separations.

    PubMed

    Reichmuth, David S; Kirby, Brian J

    2003-09-26

    Ammonioalkyl sulfonate internal salts are explored owing to their potential for improving electrokinetic pumps used to perform miniaturized HPLC separations. The internal salts investigated can be added at high molarity since they are net-neutral, and furthermore show potential for increasing electroosmotic pumping owing to their large positive dielectric increment. Streaming potential measurements of buffered aqueous systems with varying concentrations of ammonioalkyl sulfonate internal salts have been used to measure these dielectric increments, which increase with the length of the alkyl linker. Due to their positive dielectric increments and their decremental effect on solution conductivity, all of the measured species are predicted to improve the pressure generation (up to 85%) and efficiency performance (up to 140%) of electrokinetic pumps when added at 1 M concentration. RP-HPLC separations with an ammonioalkyl sulfonate (TMAPS) have been performed and indicate that separation performance is essentially unaffected by these species. These results indicate the potential for a variety of ammonioalkyl sulfonates to be used to improve electrokinetic pump performance for miniaturized HPLC.

  12. Chromatographic methods in the study of autism.

    PubMed

    Żurawicz, Ewa; Kałużna-Czaplińska, Joanna; Rynkowski, Jacek

    2013-10-01

    Research into biomarkers of autism is a new means of medical intervention in this disease. Chromatographic techniques, especially coupled with mass spectrometry, are widely used in determination of biomarkers and assessment of effectiveness of autism therapy owing to their sensitivity and selectivity. Among the chromatographic techniques gas chromatography and liquid chromatography, especially high-performance liquid chromatography, have found application in clinical trials. The high-performance liquid chromatography technique allows an analysis of liquid samples with a wide range of molecules, small and large, providing an opportunity to perform advanced assays within a short time frame. Gas chromatography with the appropriate preparation of samples (gaseous and liquid) and a selection of analysis conditions enables the separation of thermally stable, volatile and non-volatile organic substances in short runtimes. The chromatographic techniques that are currently used in metabolic studies in autism are designed to identify abnormalities in three areas: the metabolism of neurotransmitters, nutritional and metabolic status and manifestations of oxidative stress. This review presents a necessary theoretical introduction and examples of applications of chromatographic studies of disorder markers in autism.

  13. Nanocapillary Membrane Devices: A Study in Electrokinetic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod

    There is considerable interest in developing micro-total analysis systems, also known as lab-on-a-chip devices, for applications in chemical and biological analysis. These devices often employ electrokinetic transport phenomena to move, mix, concentrate and separate dissolved species. The details of these phenomena in micro- and nanometer scale geometries are not fully understood; consequently, the basic principles of device operation are often unclear. For example, nanocapillary membranes (NCM) and other nanometer-sized passages can exhibit charge-selectivity and rectification effects similar to those observed in biological membranes. This dissertation addresses several issues related to ion transport in these membranes. Leading-order 1D steady-state models for diffusion-layer modulated transport through non-ideal membranes are used to study ionic rectification in geometrically asymmetric devices. These models provide qualitative explanations of the operation of a variety of fluidic rectifiers and experimentally observed hysteresis effects. By taking the first steps in the full boundary-layer analysis of the model, it is shown that non-ideal membranes do not maintain local electro-neutrality under passage of electric current. This is in contrast to the usual assumption of membrane local electro-neutrality, but is compatible with the existence of the non-equilibrium macroscopic space charge known to appear in the flanking electrolyte and the requirement of overall charge conservation. Lastly, the problem of electrokinetic instability due to non-equilibrium electro-osmotic slip is considered for the case of an electrolyte-membrane interface inside a 2D channel.

  14. Electrokinetic chromatographic estimation of the enantioselective binding of nomifensine to human serum albumin and total plasma proteins.

    PubMed

    Asensi-Bernardi, Lucía; Martín-Biosca, Yolanda; Sagrado, Salvador; Medina-Hernández, María J

    2012-11-01

    This report is the first evidence of enantioselective binding of nomifensine to human serum albumin (HSA) and plasma proteins. The overall process with HSA included: (i) consistent experimental design along two independent sessions; (ii) incubation of nomifensine-HSA designed mixtures; (iii) ultrafiltration for separating the unbound enantiomers fraction; (iv) electrokinetic chromatography (EKC) using heptakis-2,3,6-tri-O-methyl-β-cyclodextrin as chiral selector to provide experimental data for enantiomers (first, E1, and second, E2, eluted ones); and (v) a recent direct equation allowing univariate tests and robust statistics to provide consistent parameters and uncertainty. A significant enantioselectivity to HSA (2.7 ± 0.1) was encountered, related to a 1:1 stoichiometry and log affinity constants of 3.24 ± 0.10 and 3.67 ± 0.08 for E1 and E2, respectively. The protein binding (PB) estimated at physiological concentration levels was 40 ± 5 and 63 ± 4% for E1 and E2, respectively. The use of synthetic human sera allowed in vitro estimation of the total plasma PB for the racemate (61 ± 5%; coincident with in vivo values), and its enantiomers (58 ± 7 and 64 ± 4% for E1 and E2, respectively). Comparison allowed the relative importance of HSA respect to other plasma proteins for binding nomifensine to be established.

  15. Experimental Study and ANN Dual-Time Scale Perturbation Model of Electrokinetic Properties of Microbiota.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernandez-Lozano, Carlos; Pazos, Alejandro; Ran, Tao; Tan, Zhiliang; Yu, Yizun; Zhou, Chuanshe; Tang, Shaoxun; González-Díaz, Humberto

    2017-01-01

    The electrokinetic properties of the rumen microbiota are involved in cell surface adhesion and microbial metabolism. An in vitro study was carried out in batch culture to determine the effects of three levels of special surface area (SSA) of biomaterials and four levels of surface tension (ST) of culture medium on electrokinetic properties (Zeta potential, ξ; electrokinetic mobility, μe), fermentation parameters (volatile fatty acids, VFAs), and ST over fermentation processes (ST-a, γ). The obtained results were combined with previously published data (digestibility, D; pH; concentration of ammonia nitrogen, c(NH3-N)) to establish a predictive artificial neural network (ANN) model. Concepts of dual-time series analysis, perturbation theory (PT), and Box-Jenkins Operators were applied for the first time to develop an ANN model to predict the variations of the electrokinetic properties of microbiota. The best dual-time series Radial Basis Functions (RBR) model for ξ of rumen microbiota predicted ξ for >30,000 cases with a correlation coefficient >0.8. This model provided insight into the correlations between electrokinetic property (zeta potential) of rumen microbiota and the perturbations of physical factors (specific surface area and surface tension) of media, digestibility of substrate, and their metabolites (NH3-N, VFAs) in relation to environmental factors.

  16. Surface Charge Development on Transition Metal Sulfides: An Electrokinetic Study

    NASA Astrophysics Data System (ADS)

    Bebie, Joakim; Schoonen, Martin A. A.; Fuhrmann, Mark; Strongin, Daniel R.

    1998-02-01

    The isoelectric points, pH i.e.p., of ZnS, PbS, CuFeS 2, FeS, FeS 2, NiS 2, CoS 2, and MnS 2 in NaCl supported electrolyte solutions are estimated to be between pH 3.3 and 0.6, with most of the isoelectric points below pH 2. The first electrokinetic measurements on NiS 2, CoS 2, and MnS 2 are reported here. Below pH i.e.p. the metal-sulfide surfaces are positively charged, above pH i.e.p. the surfaces are negatively charged. The addition of Me 2+ ions shifts the pH i.e.p. and changes the pH dependence considerably. The isoelectric points of the measured transition metal sulfides in the absence of metal ions or dissolved sulfide (H 2S or HS -) are in agreement with those found in earlier studies. The pH range of observed isoelectric points for metal sulfides (0.6-3.3) is compared to the considerably wider pH i.e.p. range (2-12) found for oxides. The correlation between pH i.e.p. and the electronegativities of the metal sulfides suggests that all metal sulfides will have an isoelectric point between pH 0.6 and 3.3. Compared to metal oxides, sulfides exhibit an isoelectric point that is largely independent of the nature of the metal cation in the solid.

  17. Micellar electrokinetic capillary chromatographic method for the quantitative analysis of uricosuric and antigout drugs in pharmaceutical preparations.

    PubMed

    Kou, Hwang-Shang; Lin, Tsai-Pei; Chung, Tang-Chia; Wu, Hsin-Lung

    2006-06-01

    A simple MEKC method is described for the separation and quantification of seven widely used uricosuric and antigout drugs, including allopurinol (AP), benzbromarone (BZB), colchicine (COL), orotic acid (OA), oxypurinol (OP), probenecid (PB), and sulfinpyrazone (SPZ). The drugs were separated in a BGE of borate buffer (45 mM; pH 9.00) with SDS (20 mM) as the micellar source and the separated drugs were directly monitored with a UV detector (214 nm). Several parameters affecting the separation and analysis of the drugs were studied. Based on the normalized peak-area ratios of the drugs to an internal standard versus the concentration of the drugs, the method is applicable to quantify BZB, COL, and SPZ (each 5-200 microM), AP, OA, OP, and PB (each 10-200 microM) with detection limits (S/N = 3, 0.5 psi, 5 s injection) in the range of 0.6-4.0 microM. The precision (RSD; n = 5) and accuracy (relative error; n = 5) of the method for intraday and interday analyses of the analytes at three levels (30, 120, and 180 microM) are below 4% (n = 3). The method was demonstrated to be suitable for the analysis of AP and COL in commercial tablets with speed and simplicity.

  18. Electrokinetic Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Santiago, Juan

    2005-03-01

    Microfabrication technology has enabled the application of electrokinetics as a method of performing chemical analyses and achieving liquid pumping in electronically-controlled microchip systems with no moving parts. Electrokinetics involves the interaction of solid surfaces, ionic solutions, and electric fields. Electric fields can be used to generate bulk fluid motion (electroosmosis) and to separate charged species (electrophoresis). Microfabrication technology has enabled the application of electrokinetics as a method of performing chemical analyses and achieving liquid pumping in electronically-controlled microsystems with no moving parts. This seminar reviews progress at Stanford including methods for sample stacking in capillary electrophoresis assays and fundamental studies of electrokinetic flow instabilities. Field amplified sample stacking (FASS) leverages conductivity gradients as a robust method of increasing sample concentration prior to electrophoretic separation. A major challenge to achieving robust, high-efficiency FASS is the role of electrokinetic instabilities (EKI) generated by a coupling of electric fields and ionic conductivity gradients. This coupling results in electric body forces in the bulk liquid that can generate instabilities. Suppression and/or control of electrokinetic flow instabilities is critical as they dramatically increase dispersion rates and thereby limit stacking efficiency. We have identified the key physical mechanisms in EKI; developed generalized models for electrokinetic systems; and validated the models with experiments. We have applied this understanding to the development of chip systems that achieve signal increases of more than 20,000 fold using FASS. This stacking ratio is over 200 times larger than previous on-chip FASS devices.

  19. Mechanistic studies of partial-filing micellar electrokinetic chromatography

    SciTech Connect

    Nelson, W.M.; Lee, C.S. |

    1996-09-15

    The need for coupling micellar electrokinetic chromatography (MEKC) with electrospray mass spectrometry initiates the development of partial-filling MEKC. In comparison with conventional MEKC, only a small portion of the capillary is filled with a micellar solution for performing the separation in partial-filling MEKC. Analytes first migrate into the micellar plug, where the separation occurs, and then into the leading electrophoresis buffer, which is free of surfactants. A theoretical model is proposed for predicting the separation behavior of triazine herbicides in partial-filling MEKC. The comparisons between conventional and partial-filling MEKC in terms of separation efficiency and resolution of triazine herbicides are presented and discussed. The optimization techniques, possible applications, and advantages of partial-filling MEKC are similarly addressed. 11 refs., 6 figs., 5 tabs.

  20. Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes

    PubMed Central

    Yang Ng, Wee; Ramos, Antonio; Cheong Lam, Yee; Rodriguez, Isabel

    2012-01-01

    This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics. PMID:22662084

  1. Fundamental studies of chalcogenide nanocrystals, carbonaceous nanoparticles, and chromatographic materials

    NASA Astrophysics Data System (ADS)

    Baker, Jared Scott

    2011-12-01

    The development of novel nanomaterials and the understanding of their fundamental physical and chemical properties represent an exciting area of research. These materials are continuously being sought for ever-increasing applications; finding their way into uses that influence mankind on a daily basis. Combining elements from traditional nanoparticle characterization with electrophoretic-based techniques, this dissertation presents the analysis of carbon nanoparticles (CNPs) generated from a novel source (candle soot) as well as a unique perspective on the reactivity and degradation process of magic-sized cadmium chalcogenide nanocrystals. One potential application of CNPs is their use as an alternative fluorophore in a separation-based sensor system. Laser-induced-fluorescence (LIF) is a commonly used manner of detection in this type of platform, but is limited in many cases by problems associated with the fluorophore. Carbon-based nanoparticles have the potential to improve upon traditional fluorophores in applications that make use of LIF as the detection scheme. CNPs were extracted from the carbonaceous material produced by the incomplete combustion of a candle. The soot was submitted to an oxidizing treatment and extraction/filtration procedures rendering watersoluble luminescent species. Electron microscopy was used to identify globular, amorphous structures in the nanometer size-range. An aqueous suspension of CNPs demonstrated excellent stability in terms of its electronic properties, showing little change in absorption and emission spectra upon storage under ambient conditions over a two-year period. Capitalizing on the strengths of capillary electrophoresis (CE) as a characterization technique, we have analyzed the negatively-charged CNPs in terms of charge and size by studying the influence of variable CE conditions on the resulting separation. Separations at different pH revealed a highly complex mixture of CNPs, containing species with large

  2. Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel.

    PubMed

    Daghighi, Yasaman; Li, Dongqing

    2010-03-01

    A major challenge in lab-on-a-chip devices is how to concentrate sample molecules from a dilute solution, which is critical to the effectiveness and the detection limit of on-chip bio-chemical reactions. A numerical study of sample concentration control by electrokinetic microfluidic means in a closed-end microchannel is presented in this paper. The present method provides a simple and efficient way of concentration control by using electrokinetic trapping of a charged species of interest, controlling liquid flow and separating different sample molecules in the microchannel. The electrokinetic-concentration process and the controlled transport of the sample molecules are numerically studied. In this system, in addition to the electroosmotic flow and the electrophoresis, the closed-end of the chamber causes velocity variation at both ends of the channel and induces a pressure gradient and the associated fluid movement in the channel. The combined effects determine the final concentration field of the sample molecules. The influences of a number of parameters such as the channel dimensions, electrode size and the applied electric field are investigated.

  3. Electrokinetic study on the oil flotation of oxidized coal. [Separation from ash materials and pyrite

    SciTech Connect

    Wen, W.W.; Sun, S.C.

    1981-01-01

    The objective of this investigation was to study the electrokinetic behavior of oxidized coals and of hydrocarbon emulsion droplets of flotation reagents to indicate the feasibility of separating the oxidized coals from ash materials and pyrite by an oil flotation process. The effects of surfactants and hydrolyzed metal ions were also included. The electrokinetic behavior of the oxidized coals and the hydrocarbon emulsion droplets were studied by an electrophoresis technique. Generally the isoelectric point (IEP) of the coals decreased with increasing degree of oxidation. A model of selective flotation of oxidized coal is postulated on the basis of the electrokinetic results. This model simply states that in the presence of a suitable amount of collector and frother, the optimal selective flotation of oxidized coal will occur at the IEP of the oxidized coal. To achieve this condition at the coal surface, it is necessary to adsorb heavy metal hydroxide ions prior to flotation and to absorb hydrocarbon oil droplets containing positively charged organic functional groups during flotation. Oxidized coal becomes more hydrophobic at its IEP because most of its surface is relatively non-polarizable surfaces and remain in suspension even when they are at an IEP. 14 figures.

  4. Electrokinetically enhanced bioremediation of creosote-contaminated soil: laboratory and field studies.

    PubMed

    Suni, Sonja; Malinen, Essi; Kosonen, Jarmo; Silvennoinen, Hannu; Romantschuk, Martin

    2007-02-15

    Creosote is a toxic and carcinogenic substance used in wood impregnation. Approximately 1,200 sites in Finland are contaminated with creosote. This study examined the possibility of enhancing bioremediation of creosote-contaminated soil with a combination of electric heating and infiltration and electrokinetic introduction of oxygenated, nutrient-rich liquid. Preliminary tests were performed in the laboratory, and a pilot test was conducted in situ at a creosote-contaminated former wood impregnation plant in Eastern Finland. Wood preservation practices at the plant were discontinued in 1989, but the soil and the groundwater in the area are still highly contaminated. The laboratory tests were mainly performed as a methodological test aiming for upscaling. The soils used in these tests were a highly polluted soil from a marsh next to the impregnation plant and a less polluted soil near the base of the impregnation building. The laboratory test showed that the relative degradation was significantly higher in high initial contaminant concentrations than with low initial concentrations. During the first 7 weeks, PAH-concentrations decreased by 68% in the marsh soil compared with a 51% reduction in the building soil. The field test was performed to a ca. 100 m3 soil section next to the former impregnation building. Nutrient and oxygen levels in the soils were elevated by hydraulic and electrokinetic pumping of urea and phosphate amended, aerated water into the soil. The DC current introduced into the soil raised the temperature from the ambient ca. 6 degrees C up to between 16 and 50 degrees C. Total PAH concentrations decreased by 50-80% during 3 months of treatment while mineral oil concentrations decreased approximately 30%. Electrokinetically enhanced in situ - bioremediation, which also significantly raised the soil temperature, proved to be a promising method to remediate creosote-contaminated soils.

  5. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  6. Chromatographic studies on a herb decoction

    PubMed Central

    Thankamma, A.; Radhika, L.G.; Soudamini, C.

    1998-01-01

    Argwadhadhi Kwatham is a compound preparation of 3 single drugs viz cassia fistula L. Azadirachta indica A., Tinospora cordifolia L. Literature survey show tat all3 ingredients are very effective for skin diseases. Kahayams prepared individually with these 3 drugs was found to be more effective for skin dideases. This paper deals with a comparative study of the chemical constituents present in aragwadhadhi kwatham and the individual kwathams, all the four kwarham were chemically analysed T.L.C. studies were mainly used for the comparative studies. PMID:22556839

  7. Interactions of structurally modified surfactants with reservoir minerals: Calorimetric, spectroscopic and electrokinetic study

    SciTech Connect

    Somasundaran, P.; Sivakumar, A.; Xu, Q.

    1991-03-01

    The objective of this project is to elucidate mechanisms of adsorption of structurally modified surfactants on reservoir minerals and to develop a full understanding of the effect of the surfactant structure on the nature of the adsorbed layers at the molecular level. An additional aim is to study the adsorption of surfactant mixtures on simple well-characterized minerals and on complex minerals representing real conditions. The practical goal of these studies is the identification of the optimum surfactant structures and their combinations for micellar flooding. In this work, the experiments on adsorption were focussed on the position of sulfonate and methyl groups on the aromatic ring of alkyl xylene sulfonates. A multi-pronged approach consisting of calorimetry, electrokinetics, wettability and spectroscopy is planned to elucidate the adsorption mechanism of surfactants and their mixtures on minerals such as alumina and kaolinite. 32 refs., 15 figs., 7 tabs.

  8. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  9. Chromatographic selectivity study of 4-fluorophenylacetic acid positional isomers separation.

    PubMed

    Chasse, Tyson; Wenslow, Robert; Bereznitski, Yuri

    2007-07-13

    Unique properties of the fluorine atom stimulate widespread use and development of new organofluorine compounds in agrochemistry, biotechnology and pharmacology applications. However, relatively few synthetic methods exhibit a high degree of fluorination selectivity, which ultimately results in the presence of structurally related fluorinated isomers in the synthetic product. This outcome is undesirable from a pharmaceutical perspective as positional isomers possess different reactivity, biological activity and toxicity as compared to the desired product. It is advantageous to control positional isomers in the early stages of the synthetic process, as rejection and analysis of these isomers will likely become more difficult in later stages. The current work reports the development of a chromatographic analysis of 2- and 3-fluorophenylacetic acid positional isomer impurities in 4-fluorophenylacetic acid (4-FPAA), a building block in the synthesis of an active pharmaceutical ingredient. The method is employed as a part of a Quality by Design Approach to control purity of the starting material in order to eliminate the presence of undesirable positional isomers in the final drug substance. During method development, a wide range of chromatographic conditions and structurally related positional isomer probe molecules were exploited in an effort to gain insight into the specifics of the separation mechanism. For the systems studied it was shown that the choice of organic modifier played a key role in achieving acceptable separation. Further studies encompassed investigation of temperature influence on retention and selectivity of the FPAA isomers separation. Thermodynamic analysis of these data showed that the selectivity of the 2- and 4- fluorophenylacetic acids separation was dominated by an enthalpic process, while the selectivity of the 4- and 3-fluorophenylacetic acids separation was exclusively entropy driven (Delta(DeltaH degrees approximately 0). Studies of

  10. ELECTROKINETIC PHENOMENA

    PubMed Central

    Abramson, H. A.; Grossman, E. B.

    1931-01-01

    1. The conditions are described which are necessary for the comparison of certain types of electrokinetic potentials. An experimental comparison is made of (a) electrophoresis of quartz particles covered with egg albumin; and (b) similar experiments by Briggs on streaming potentials. A slight, consistent, difference is found between the electrophoretic potential and the streaming potential. This difference is probably due to the difference in the protein preparations used rather than to real difference in the electrophoretic and streaming potentials. 2. Data are given which facilitate the measurements and enhance the precision of the estimation of electrical mobilities of microscopic particles. PMID:19872605

  11. Chromatographic study of formation conditions of rhombododecahedral diamond crystals

    NASA Astrophysics Data System (ADS)

    Zhimulev, E. I.; Sonin, V. M.; Chepurov, A. I.; Tomilenko, A. A.

    2009-06-01

    The results of chromatographic study of the formation of rhombododecahedral diamonds synthesized in the Fe-Ni-(Ti)-C system at 5.5-6.0 GPa and 1350-1450°C are presented, including crystals with rounded surfaces of the rhombododecahedron with parallel striation, which are morphological analogues of natural diamonds abundant at various kimberlite, lamproite, and placer deposits. Chromatography was performed at 150°C with mechanical breakup of diamonds. The stable release of methane when diamonds of habit {110} are crushed is established. It is concluded that the appearance of the habit rhombododecahedron may be related not only to the effect of temperature and pressure on crystal growth but also to reductive conditions of crystallization. At the same time, the appearance of significant amounts of hydrocarbons in the system probably results in stopping of the growth of faces {110} and {100} and, instead, formation of specific surfaces that are composed of microscopic accessories faced by planes {111}.

  12. Mass transfer in chromatographic columns studied by PFG NMR.

    PubMed

    Tallarek, U; van Dusschoten, D; Van As, H; Guiochon, G; Bayer, E

    1998-01-01

    Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) is applied to study convective and diffusional transport in chromatographic columns packed with totally porous support particles. Here stagnant zones exist in the particle pores, and diffusional mass-transfer limitations between fluid molecules diffusing in the intraparticle pore network and flowing in the interparticle void space are detected quantitatively. Axial displacement probability distributions were measured for water over a range of Peclet numbers and observation times, with diffusion lengths between 0.15 and 0.91 times the average support particle diameter. The transition towards complete diffusional exchange is demonstrated, thereby also revealing the development of the classical convective dispersion process in a packed bed of (porous) particles.

  13. Numerical study of a novel induced-charge electrokinetic micro-mixer.

    PubMed

    Daghighi, Yasaman; Li, Dongqing

    2013-02-06

    A novel micro-mixer based on the induced-charge electrokinetic motion of an electrically conducting particle is proposed and numerically demonstrated in this paper. For most microfluidic applications, it is desired to mix different streams of solutions rapidly in a continuous flow mode. Therefore, in this work, we consider a mixing chamber containing an electrically conducting particle and the mixing chamber is located in the middle of a microchannel. Vortices are generated around the electrically conducting particle in an aqueous solution due to the interaction of the applied electric field and the induced surface charge on the particle. These vortices will enhance significantly the mixing of different solutions around the particle. The effectiveness of mixing the two streams entering the mixing chamber is numerically studied as functions of the applied electric field. Excellent mixing can be achieved in this system under two perpendicularly applied electric fields. The proposed micro-mixer is simple and easy to be fabricated for lab-on-a-chip applications.

  14. Separation of neutral compounds by microemulsion electrokinetic chromatography: fundamental studies on selectivity.

    PubMed

    Gabel-Jensen, C; Honoré Hansen, S; Pedersen-Bjergaard, S

    2001-04-01

    The selectivity of microemulsion electrokinetic chromatography (MEEKC) was studied utilizing some uncharged model compounds like aromatic amides, steroids, and esters of nicotinic acid. The cosurfactant of the microemulsion was found to be the most important factor affecting the selectivity, and alteration between 6.6% of 1-propanol, 1-butanol, tetrahydrofuran, and 2-ethoxyethanol caused several substantial changes in the migration order. In addition, the nature of the surfactant was found to significantly affect the selectivity. In this case, changes in order of migration was observed by replacement of half the content of sodium dodecyl sulfate (SDS) with either sodium dioctyl sulfosuccinate (SDOSS), 3-(N,N-dimethylmyristylammonio) propanesulfonate (MAPS), polyoxyethylene sorbitan monolaurate (Tween 21), and polyoxyethylene 23 lauryl ether (Brij 35). MEEKC was also accomplished with 3.3% of the anionic surfactant sodium cholate and with the cationic surfactant N-cetyl-N,N,N-trimethylammonium bromide (CTMA). Both provided substantial differences in selectivity as compared to the SDS-based systems. With SDS as surfacant, the concentration was varied within 1.0-4.5%. Minor selectivity changes were observed as the concentration of the surfacant was reduced, but the major effect was a reduction in the total migration time. The organic solvent of the microemulsion droplets was found only to have minor impact on the selectivity.

  15. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.

    PubMed

    Gui, Lin; Ren, Carolyn L

    2008-03-18

    Joule heating is an inevitable phenomenon for microfluidic chips involving electrokinetic pumping, and it becomes a more important issue when chips are made of polymeric materials because of their low thermal conductivities. Therefore, it is very important to develop methods for evaluating Joule heating effects in microfluidic chips in a relatively easy manner. To this end, two analytical models have been established and solved using the Green's function for evaluating Joule heating effects on the temperature distribution in a microfluidic-based PCR chip. The first simplified model focuses on the understanding of Joule heating effects by ignoring the influences of the boundary conditions. The second model aims to consider practical experimental conditions. The analytical solutions to the two models are particularly useful in providing guidance for microfluidic chip design and operation prior to expensive chip fabrication and characterization. To validate the analytical solutions, a 3-D numerical model has also been developed and the simultaneous solution to this model allows the temperature distribution in a microfluidic PCR chip to be obtained, which is used to compare with the analytical results. The developed numerical model has been applied for parametric studies of Joule heating effects on the temperature control of microfluidic chips.

  16. Polymer nanoparticles in electrokinetic chromatography

    NASA Astrophysics Data System (ADS)

    Hyslop, Jesse Samuel

    This dissertation reports the mobility, methylene selectivity, efficiency, linear solvation relationship (LSER) parameters, and practical chromatographic performance of a large set of NP PSPs and develops the first empirical relationships between NP architecture and chromatographic performance of NP PSPs in EKC. It is found that under typical EKC conditions ionic block chemistry has little effect on performance for 5-10 mer blocks. Solute-PSP interactions appear to be localized on the hydrophobic block of the copolymer with the length of alkyl chains on the hydrophobic block controlling the cohesively and hydrophobicity of the PSP. Small (100 nm) NP PSPs with small hydrophobic NP PSPs providing the best overall performance. This work provides the fundamental understanding of the behavior of RAFT polymerized NP PSPs essential for their further development and application in electrokinetic chromatography. (Abstract shortened by ProQuest.).

  17. CHROMATOGRAPHIC AND MASS SPECTRAL STUDIES OF PERFLUOROOCTANESULFONATE AND THREE PERFLUOROOCTANESULFONAMIDES

    EPA Science Inventory

    The chromatographic and mass spectral characteristics of perfluorooctanesulfonate (PFOS) and three nitrogen-substituted perfluorooctanesulfonamides have been obtained. A methyl/phenol mixed phase fused silica capillary column was used for GC analysis, while a C18 reversed phase ...

  18. CHROMATOGRAPHIC AND MASS SPECTRAL STUDIES OF PERFLUOROOCTANESULFONATE AND THREE PERFLUOROOCTANESULFONAMIDES

    EPA Science Inventory

    The chromatographic and mass spectral characteristics of perfluorooctanesulfonate (PFOS) and three nitrogen-substituted perfluorooctanesulfonamides have been obtained. A methyl/phenol mixed phase fused silica capillary column was used for GC analysis, while a C18 reversed phase ...

  19. Modeling electrokinetics in ionic liquids.

    PubMed

    Wang, Chao; Bao, Jie; Pan, Wenxiao; Sun, Xin

    2017-03-17

    Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electro-osmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on a curved ion-selective surface. We also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems. This article is protected by copyright. All rights reserved.

  20. Electrochemical studies on the performance of SS316L electrode in electrokinetics

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-10-01

    Organic and trace metal pollutants are removed by employing various electrodes in an electrokinetic (EK) process. Stainless steel was used either as an anode or a cathode by various investigators in electroremediation systems. In the present study, the role of SS316L as an anode and cathode in EK system was studied by the measurements of pH, conductivity of electrolyte, and potential of the anode and cathode at different current densities. The weight loss of the anode and cathode and the leaching of chromium, iron, and nickel at different current densities were measured and discussed with an electroosmosis process. The electrochemical behavior of SS316L electrode in neutral, acidic and alkaline pH in soil environment was studied by an electrochemical technique viz. polarization study. Surface analysis of SS316L after EK was done by XPS and SEM. The higher conductivity was noticed at anolyte when compared to catholyte. The weight loss of the anode was in the following order 0.615 > 0.307 > 0.123 mA/cm2 and the cathode corrosion rate was vice versa. Peroxide production was also noticed at the anolyte, which may encourage the degradation of the total organic content (TOC) in the soil. The OCP (open circuit potential) of SS316L was about +75 mV vs SCE in the soil extract; while adding acetic acid, the potential shifted to the positive side, to about +380 mV vs SCE. The breakdown potential and the range of passivation potential were higher in acetic acid added system when compared to other systems. Pitting was observed on both the anode and cathode within 48 h during the EK process. The present study concludes that SS is not a proper electrode material for the EK process.

  1. Joule heating in electrokinetic flow.

    PubMed

    Xuan, Xiangchun

    2008-01-01

    Electrokinetic flow is an efficient means to manipulate liquids and samples in lab-on-a-chip devices. It has a number of significant advantages over conventional pressure-driven flow. However, there exists inevitable Joule heating in electrokinetic flow, which is known to cause temperature variations in liquids and draw disturbances to electric, flow and concentration fields via temperature-dependent material properties. Therefore, both the throughput and the resolution of analytic studies performed in microfluidic devices are affected. This article reviews the recent progress on the topic of Joule heating and its effect in electrokinetic flow, particularly the theoretical and experimental accomplishments from the aspects of fluid mechanics and heat/mass transfer. The primary focus is placed on the temperature-induced flow variations and the accompanying phenomena at the whole channel or chip level.

  2. Electrokinetics of non-Newtonian fluids: a review.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2013-12-01

    This work presents a comprehensive review of electrokinetics pertaining to non-Newtonian fluids. The topic covers a broad range of non-Newtonian effects in electrokinetics, including electroosmosis of non-Newtonian fluids, electrophoresis of particles in non-Newtonian fluids, streaming potential effect of non-Newtonian fluids and other related non-Newtonian effects in electrokinetics. Generally, the coupling between non-Newtonian hydrodynamics and electrostatics not only complicates the electrokinetics but also causes the fluid/particle velocity to be nonlinearly dependent on the strength of external electric field and/or the zeta potential. Shear-thinning nature of liquids tends to enhance electrokinetic phenomena, while shear-thickening nature of liquids leads to the reduction of electrokinetic effects. In addition, directions for the future studies are suggested and several theoretical issues in non-Newtonian electrokinetics are highlighted. © 2013.

  3. Chromatographic Studies of Protein-Based Chiral Separations.

    PubMed

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S

    2016-09-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations.

  4. Chromatographic Studies of Protein-Based Chiral Separations

    PubMed Central

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S.

    2016-01-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations. PMID:28344977

  5. Revealing fibrinogen monolayer conformations at different pHs: electrokinetic and colloid deposition studies.

    PubMed

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Wasilewska, Monika; Sadowska, Marta

    2015-07-01

    Adsorption mechanism of human fibrinogen on mica at different pHs is studied using the streaming potential and colloid deposition measurements. The fibrinogen monolayers are produced by a controlled adsorption under diffusion transport at pH of 3.5 and 7.4. Initially, the electrokinetic properties of these monolayers and their stability for various ionic strength are determined. It is shown that at pH 3.5 fibrinogen adsorbs irreversibly on mica for ionic strength range of 4×10(-4) to 0.15 M. At pH 7.4, a partial desorption is observed for ionic strength below 10(-2) M. This is attributed to the desorption of the end-on oriented molecules whereas the side-on adsorbed molecules remain irreversibly bound at all ionic strengths. The orientation of molecules and monolayer structure is evaluated by the colloid deposition measurements involving negatively charged polystyrene latex microspheres, 820 nm in diameter. An anomalous deposition of negative latex particles on substrates exhibiting a negative zeta potential is observed. At pH 3.5 measurable deposition of latex is observed even at low ionic strength where the approach distance of latex particles exceeded 70 nm. At pH 7.4 this critical distance is 23 nm. This confirms that fibrinogen monolayers formed at both pHs are characterized by the presence of the side-on and end-on oriented molecules that prevail at higher coverage range. It is also shown that positive charge is located at the end parts of the αA chains of the adsorbed fibrinogen molecules. Therefore, it is concluded that the colloid deposition method is an efficient tool for revealing protein adsorption mechanisms at solid/electrolyte interfaces.

  6. Separation of bisbenzylisoquinoline alkaloids by micellar electrokinetic chromatography.

    PubMed

    Kuo, Ching-Hua; Sun, Shao-Wen

    2002-01-01

    The micellar electrokinetic chromatographic (MEKC) separation of seven bisbenzylisoquinoline alkaloids has been developed. The effects of various separating factors were studied. Optimum separation was achieved using a buffer (pH 9.2) of 20 mM sodium borate and 20 mM sodium dihydrogen phosphate buffer containing 55 mM sodium cholate; the optimum voltage and injection time were 21 kV and 0.05 min, respectively. Highest peak efficiency was obtained when the analytes were dissolved in 10 mM sodium dodecyl sulphate as sample matrix for injection. The elution order of the bisbenzylisoquinoline alkaloids was related to their lipophilicity. The resolution, run time and detection limits of the MEKC method were compared with those of an HPLC method developed previously.

  7. Tadpole toxicity prediction using chromatographic systems.

    PubMed

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Fuguet, Elisabet; Rosés, Martí

    2015-10-30

    Toxicity has been emulated in tadpole species through chromatographic systems. The parameter studied to evaluate the non-specific toxicity of a compound is the narcosis concentration (Cnar), which is defined as the concentration needed for the immobilization of the organism. Because experimental investigation with animals is lengthy, costly, technically difficult, and ethically questionable, there is a great interest in developing surrogate physicochemical systems able to emulate biological systems to obtain the same information in a faster, more economic, and easier manner. In order to see which chromatographic systems would be able to emulate tadpole narcosis, both, tadpole narcosis data and data in several chromatographic and electrophoretic systems, were fitted to a linear solvation energy relationship (LSER) model. Thus, by comparison of the models it was possible to see which of the chromatographic systems were more similar to the biological one. The physicochemical systems that best emulate tadpole narcosis were an HPLC system based on an immobilized artificial membrane (IAM) column, and two micellar electrokinetic chromatography (MEKC) systems based on sodium taurocholate (STC) and a mixture of sodium dodecylsulphate (SDS) and Brij 35 as surfactants. A system based on a RP18 HPLC column also was selected for comparison because it is a common column in most analytical laboratories. To establish the models, a set of compounds with known Cnar values were analyzed in the chromatographic, and electrophoretic selected systems and, then, the retention factor (k) was correlated to the concentration of narcosis. Statistics showed that the system based on STC micelles was the best to emulate toxicity in tadpoles. The robustness and predictive ability of the developed models were validated.

  8. Electrokinetics as a Propellantless Propulsion Source

    NASA Astrophysics Data System (ADS)

    Valone, Thomas

    This is a review of the worthwhile, innovative theories and concepts in electrogravitics and electrokinetics that could yield tremendous technological and economic dividends in both investment dollars and potential applications for future generations. Electrogravitics is most commonly associated with the 1918 work by Professor Nipher followed by the 1928 British patent #300,311 of T. Townsend Brown, the 1952 Special Inquiry File #24-185 of the Office of Naval Research into the "Electro-Gravity Device of Townsend Brown" and two widely circulated 1956 Aviation Studies Ltd. Reports on "Electrogravitics Systems" and "The Gravitics Situation." By definition, electrogravitics historically has had a purported relationship to gravity or the object's mass, as well as the applied voltage. An analysis of the 90-year old science of electrogravitics (or electrogravity) necessarily includes an analysis of electrokinetics. Electrokinetics, on the other hand, is more commonly associated with many patents of T. Townsend Brown as well as Agnew Bahnson, starting with the 1960 US patent #2,949,550 entitled, "Electrokinetic Apparatus." Electrokinetics, which often involves a capacitor and dielectric, has virtually no relationship that can be connected with mass or gravity. The Army Research Lab has recently issued a report on electrokinetics, analyzing the force on an asymmetric capacitor, while NASA has received three patents on the same design topic. To successfully describe and predict the purported motion in the direction of the positive terminal of the capacitor, it is desirable to use the classical electrokinetic field and force equations for the specific geometry involved. This initial review also suggests directions for further confirming measurements. This paper also reviews the published electrokinetic experiments by the Army Research Lab by Bahder and Fazi, California State University at Fullerton work by Woodward and Mahood, Erwin Saxl, and others.

  9. Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: A laboratory feasibility study

    NASA Astrophysics Data System (ADS)

    Tsai, Tzai-Tang; Sah, Jygau; Kao, Chih-Ming

    2010-01-01

    SummaryDiesel soil contamination on gas stations or refinery plants is a worldwide environmental problem. The main objectives of this study were to (1) evaluate the efficiency of electrokinetic (EK) by using different electrode materials (graphite and iron rods) and electrolytes (tap water, 0.01 M NaCl, and 0.1 M NaCl) on the remediation of diesel contaminated soils, and (2) evaluate the feasibility of total petroleum hydrocarbon-diesel (TPH-D) reducing in soils via EK-Fenton oxidation enhanced by corroded iron electrode. The EK and EK-Fenton experiments were conducted in batch and sand box experiments, respectively. Batch experiments reveal that the most appropriate electrolyte was 0.1 M NaCl when iron electrode was used in the EK system. Sand box experiments indicate that the TPH-D concentration dropped from 10,000 to 300 mg kg -1 when amorphous iron/total iron (Fe o/Fe t) ratio increased from 0.1 to 0.33, with the addition of 8% of H 2O 2 and 0.1 M NaCl after 60 days of EK-Fenton operation. Electrokinetically enhanced oxidation with the presence of both H 2O 2 and Fe 3O 4 (iron electrode corrosion) resulted in higher TPH-D removal efficiency (97%) compared to the efficiencies observed from EK (55%) or Fenton oxidation (27%) alone. This demonstrates that EK-Fenton oxidation catalyzed by iron electrode corrosion is a valuable direction to efficiently and effectively remediate diesel contaminated soils.

  10. Electrokinetic pumps and actuators

    SciTech Connect

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  11. Using Aspen to Teach Chromatographic Bioprocessing: A Case Study in Weak Partitioning Chromatography for Biotechnology Applications

    ERIC Educational Resources Information Center

    Evans, Steven T.; Huang, Xinqun; Cramer, Steven M.

    2010-01-01

    The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…

  12. Using Aspen to Teach Chromatographic Bioprocessing: A Case Study in Weak Partitioning Chromatography for Biotechnology Applications

    ERIC Educational Resources Information Center

    Evans, Steven T.; Huang, Xinqun; Cramer, Steven M.

    2010-01-01

    The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…

  13. Liquid chromatographic methods for biotransformation studies of ochratoxin A.

    PubMed

    Schaut, A; De Saeger, S; Sergent, T; Schneider, Y-J; Larondelle, Y; Pussemier, L; Blank, R; Van Peteghem, C

    2008-09-01

    Liquid chromatographic methods were used for the detection of ochratoxin A (OTA) and its metabolites ochratoxin alpha (OTalpha), 10-hydroxy OTA (10-OHOTA), 4R-hydroxy OTA (4R-OHOTA) and the ethyl ester of OTA (OTC) in in vitro samples, obtained with Caco-2 cell culture experiments and in in vivo urine samples from sheep. A high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) and a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method were developed and validated for the detection of OTA and its metabolites OTalpha, 10-OHOTA, 4R-OHOTA and OTC, which was used as internal standard. The LOD/LOQ values for OTalpha, 4R-OHOTA and OTA were 0.63/2.11, 0.99/3.31 and 0.84/2.81 microg/L, respectively, for the HPLC-FLD method and 0.98/3.28, 1.11/3.72 and 0.88/2.96 microg/L, respectively for the LC-MS/MS method. Within-day and between-day precision were both <12% for the HPLC-FLD method, and <10% for the LC-MS/MS method. The recovery of OTA and its metabolites ranged between 71 and 111% for the HPLC-FLD method and between 79 and 110% for the LC-MS/MS method. In the first experiment only OTA was added to the Caco-2 cells while in the second experiment 3-methylcholanthrene (3MC) was also present in the cell culture systems. Besides OTA, which was recovered in all the samples, an unknown compound was also observed in the second experiment. When 3MC was added, the results showed that the OTA concentration in the basolateral samples was decreased by 50%. The methods were also implemented for the analysis of urine samples of sheep, fed increasing amounts of OTA. With the HPLC-FLD method it could be concluded that the concentration of OTA and OTalpha increased according to ingested amounts of OTA, with OTalpha being the most abundant compound. The results obtained with the LC-MS/MS method confirmed these results.

  14. Electrokinetic desalination using honeycomb carbon nanotubes (HC-CNTs): a conceptual study by molecular simulation.

    PubMed

    Chen, Qile; Kong, Xian; Li, Jipeng; Lu, Diannan; Liu, Zheng

    2014-09-21

    A new concept of electrokinetic desalination using a CNT honeycomb is presented through molecular dynamics simulation. The preferential translocation of ions towards the outlets near two electrodes was realized by applying an electric field perpendicular to bulk fluid flow in a CNT network, which, in the meantime, generated deionized water flux discharged from the central outlets. The effects of the major factors such as electric field strength, numbers of separation units, diameter of CNT, and ion concentration on the desalination were examined. It was shown that over 95% salt rejection and around 50% fresh water recovery were achieved by the presented module by applying an electric field of 0.8 V nm(-1). CNT diameter, which is critical to ion rejection without the electric field, had a marginal effect on the desalination of this new module when a strong electric field was applied. The desalination was also not sensitive to ion concentration, indicating its excellent workability for a wide range of water salinity, e.g. from brackish water to seawater. A potential of mean force profile revealed a free energy barrier as large as 2.0-6.0 kcal mol(-1) for ions to move opposite to the implemented electrical force. The simulation confirmed the high potential of the CNT honeycomb in water desalination.

  15. Development of electrokinetic remediation for caesium: A feasibility study of 2D electrode configuration system

    NASA Astrophysics Data System (ADS)

    Syah Putra, Rudy

    2016-02-01

    Agar matrix was artificially contaminated with caesium and subjected to rapid assessment of electrokinetic treatment on the basis of the 2D electrode configuration. The effect of caesium concentration on the process was investigated using different electrode configuration (i.e. rectangular, hexagonal and triangular). During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment, the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, pH control is essential in order to create a suitable environment throughout the agar matrix to enable contaminant removal. It was found that the type of electrode configuration used to control the pH affected the rate of caesium accumulation. All of the electrode configurations tested was effective, but the highest caesium extraction was achieved when the hexagonal pattern was used to control the pH. After 72 h of treatment at 50 mA, the concentration of caesium decreased gradually from the second and first layer of agar matrix throughout the cell, suggesting that most of the caesium was concentrated on the cathode part.

  16. Insights into head-column field-amplified sample stacking: Part I. Detailed study of electrokinetic injection of a weak base across a short water plug.

    PubMed

    Šesták, Jozef; Thormann, Wolfgang

    2017-06-16

    The fundamentals of electrokinetic injection of the weak base methadone across a short water plug into a phosphate buffer at low pH were studied experimentally and with computer simulation. The current during electrokinetic injection, the formation of the analyte zone, changes occurring within and around the water plug and mass transport of all compounds in the electric field were investigated. The impact of water plug length, plug injection velocity, and composition of sample, plug and background electrolyte are discussed. Experimental data revealed that properties of sample, water plug and stacking boundary are significantly and rapidly altered during electrokinetic injection. Simulation provided insight into these changes, including the nature of the migrating boundaries and the stacking of methadone at the interface to a newly formed phosphoric acid zone. The data confirm the role of the water plug to prevent contamination of the sample by components of the background electrolyte and suggest that mixing caused by electrohydrodynamic instabilities increases the water plug conductivity. The sample conductivity must be controlled by addition of an acid to prevent generation of reversed flow which removes the water plug and to create a buffering environment. Results revealed that a large increase in background electrolyte concentration is not accompanied with a significant increase in stacking. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems.

  18. Electrokinetic soil remediation: Advances and process enhancement

    SciTech Connect

    Hodko, D.; Franaszczuk, K.; Rogers, T.D.

    1995-12-31

    Electrokinetic remediation is an in situ emerging technology that offers potential cost and process benefits for contaminated soil treatment. The innovative approach under development at Lynntech, Inc. is based on the application of nonhomogeneous pulsed DC or AC electric fields with the objective to maximize rates of contaminant removal. The process combines several DC and AC electrokinetic phenomena occurring in soil when pulsed electric fields are applied across the electrodes positioned in the soil and utilize them for an enhanced contaminant removal from soil. Removal of contaminants is achieved by: (i) electroosmotic pore fluid flow; (ii) electromigration of anionic and cationic contaminants towards electrode wells, where they can be removed by electrodeposition, and, (iii) dielectrophoretically induced pore fluid flow and migration of charged and noncharged contaminants through the soil. Successful combination of DC and AC electrokinetic phenomena in soil presents a basis for an enhanced electrokinetic process for removal of both charged and noncharged contaminants from soil. The process utilizes an electrochemically produced acid in the anode well which propagates through the soil and solubilizes heavy metal ions in the pore fluid. An appropriate leachant. which depends on the type of soil and heavy metal contaminant, is electrokinetically delivered and distributed in soil to further enhance solubilization and mobilization of heavy metal contaminants through the soil. It can be efficiently combined with other existing in situ contaminated soil treatment processes, e.g. bioremediation, soil extraction and soil washing. A field scale study is initiated in 1995 and preliminary results will be described.

  19. Hybrid electrokinetic manipulation in high-conductivity media.

    PubMed

    Gao, Jian; Sin, Mandy L Y; Liu, Tingting; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2011-05-21

    This study reports a hybrid electrokinetic technique for label-free manipulation of pathogenic bacteria in biological samples toward medical diagnostic applications. While most electrokinetic techniques only function in low-conductivity buffers, hybrid electrokinetics enables effective operation in high-conductivity samples, such as physiological fluids (∼1 S m(-1)). The hybrid electrokinetic technique combines short-range electrophoresis and dielectrophoresis, and long-range AC electrothermal flow to improve its effectiveness. The major technical hurdle of electrode instability for manipulating high conductivity samples is tackled by using a Ti-Au-Ti sandwich electrode and a 3-parallel-electrode configuration is designed for continuous isolation of bacteria. The device operates directly with biological samples including urine and buffy coats. We show that pathogenic bacteria and biowarfare agents can be concentrated for over 3 orders of magnitude using hybrid electrokinetics.

  20. A comprehensive strategy in the development of a cyclodextrin-modified microemulsion electrokinetic chromatographic method for the assay of diclofenac and its impurities: Mixture-process variable experiments and quality by design.

    PubMed

    Orlandini, S; Pasquini, B; Caprini, C; Del Bubba, M; Squarcialupi, L; Colotta, V; Furlanetto, S

    2016-09-30

    A comprehensive strategy involving the use of mixture-process variable (MPV) approach and Quality by Design principles has been applied in the development of a capillary electrophoresis method for the simultaneous determination of the anti-inflammatory drug diclofenac and its five related substances. The selected operative mode consisted in microemulsion electrokinetic chromatography with the addition of methyl-β-cyclodextrin. The critical process parameters included both the mixture components (MCs) of the microemulsion and the process variables (PVs). The MPV approach allowed the simultaneous investigation of the effects of MCs and PVs on the critical resolution between diclofenac and its 2-deschloro-2-bromo analogue and on analysis time. MPV experiments were used both in the screening phase and in the Response Surface Methodology, making it possible to draw MCs and PVs contour plots and to find important interactions between MCs and PVs. Robustness testing was carried out by MPV experiments and validation was performed following International Conference on Harmonisation guidelines. The method was applied to a real sample of diclofenac gastro-resistant tablets. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electrokinetics dependence on water-content: laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Allègre, Vincent; Sénéchal, Pascale; Lehmann, François; Bordes, Clarisse; Jouniaux, Laurence; Sailhac, Pascal; Bano, Maksim

    2010-05-01

    Electrokinetics results from the coupling between the water flow and the electrical current through the electrokinetic coefficient. The Self-Potential (SP) method, which is based on this phenomenon, is currently used to investigate shallow transport in the vadose zone. Thus, the understanding of the electrokinetic coefficient behaviour in unsaturated conditions is crucial to interpret such methods. Empirical and theoretical models proposed in the literature to describe this behaviour are still discussed. Consequently, physical processes involved in the electrokinetic coefficient behaviour in unsaturated conditions need to be futher investigate. We propose here to study the electrokinetics dependence on water content through an experimental approach and the numerical solving of the Richards' equation. We show several continuous records of the electrokinetic coefficient as a function of water saturation. We found that the normalized electrokinetic coefficient behaviour in unsaturated conditions is more complex than it was previously proposed. Indeed, we first observed its increasing with decreasing water saturation. After it reaches a maximum, identified around 80 % of water saturation, it begins to decrease with decreasing saturation. It is an important result since previous works predicted a monotically decreasing of the electrokinetic coefficient with decreasing saturation. We found that the normalized value of the measured electrokinetic coefficient could be two orders of magnitude greater than the classical value in saturated conditions, Csat. We performed several experiments and tried to invert the electrokinetic coefficient data and interpret it in terms of physical processes. We also propose a field study through several geophysical methods, as electrical resistivity tomography, seismoelectrics, and GPR, in order to combine the results in terms of water-content dependence in soils.

  2. Modeling electrokinetics in ionic liquids: General

    DOE PAGES

    Wang, Chao; Bao, Jie; Pan, Wenxiao; ...

    2017-04-01

    Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson–Nernst–Planck equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the modified Poisson-Nernst-Planck equations are coupled with Navier–Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electroosmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on amore » curved ionselective surface. Lastly, we also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less

  3. Effect of Joule heating on electrokinetic transport.

    PubMed

    Cetin, Barbaros; Li, Dongqing

    2008-03-01

    The Joule heating (JH) is a ubiquitous phenomenon in electrokinetic flow due to the presence of electrical potential gradient and electrical current. JH may become pronounced for applications with high electrical potential gradients or with high ionic concentration buffer solutions. In this review, an in-depth look at the effect of JH on electrokinetic processes is provided. Theoretical modeling of EOF and electrophoresis (EP) with the presence of JH is presented and the important findings from the previous studies are examined. A numerical study of a fused-silica capillary PCR reactor powered by JH is also presented to extend the discussion of favorable usage of JH.

  4. Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Bald, Edward; Kubalczyk, Paweł

    Since the introduction of micellar electrokinetic chromatography by Terabe, several authors have paid attention to the fundamental characteristics of this separation method. In this chapter the theoretical and practical aspects of resolution optimization, as well as the effect of different separation parameters on the migration behavior are discussed. These among others include fundamentals of separation, retention factor and resolution equation, efficiency, selectivity, and various surfactants and additives. Initial conditions for method development and instrumental approaches such as mass spectrometry detection are also mentioned covering the proposals for overcoming the difficulties arising from the coupling micellar electrokinetic chromatography with mass spectrometry detection.

  5. Investigation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Morgan, I.L.; Ally, M.R.

    1995-12-31

    Experiments have been conducted to investigate the capabilities of electrokinetic decontamination of concrete. Batch equilibration studies have determined that the loading of cesium and strontium on concrete may be decreased using electrolyte solutions containing competing cations, while solubilization of uranium and cobalt, that precipitate at high pH, will require lixiviants containing complexing agents. Dynamic electrokinetic experiments showed greater mobility of cesium than strontium, while some positive results were obtained for the transport of cobalt through concrete using EDTA and for uranium using carbonate.

  6. Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study

    PubMed Central

    Kasiotis, Konstantinos M.; Anastasiadou, Pelagia; Papadopoulos, Antonis; Machera, Kyriaki

    2017-01-01

    Propolis is a bee product that has been extensively used in alternative medicine and recently has gained interest on a global scale as an essential ingredient of healthy foods and cosmetics. Propolis is also considered to improve human health and to prevent diseases such as inflammation, heart disease, diabetes and even cancer. However, the claimed effects are anticipated to be correlated to its chemical composition. Since propolis is a natural product, its composition is consequently expected to be variable depending on the local flora alignment. In this work, we present the development of a novel HPLC-PDA-ESI/MS targeted method, used to identify and quantify 59 phenolic compounds in Greek propolis hydroalcoholic extracts. Amongst them, nine phenolic compounds are herein reported for the first time in Greek propolis. Alongside GC-MS complementary analysis was employed, unveiling eight additional newly reported compounds. The antioxidant activity study of the propolis samples verified the potential of these extracts to effectively scavenge radicals, with the extract of Imathia region exhibiting comparable antioxidant activity to that of quercetin. PMID:28103258

  7. Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study.

    PubMed

    Kasiotis, Konstantinos M; Anastasiadou, Pelagia; Papadopoulos, Antonis; Machera, Kyriaki

    2017-01-01

    Propolis is a bee product that has been extensively used in alternative medicine and recently has gained interest on a global scale as an essential ingredient of healthy foods and cosmetics. Propolis is also considered to improve human health and to prevent diseases such as inflammation, heart disease, diabetes and even cancer. However, the claimed effects are anticipated to be correlated to its chemical composition. Since propolis is a natural product, its composition is consequently expected to be variable depending on the local flora alignment. In this work, we present the development of a novel HPLC-PDA-ESI/MS targeted method, used to identify and quantify 59 phenolic compounds in Greek propolis hydroalcoholic extracts. Amongst them, nine phenolic compounds are herein reported for the first time in Greek propolis. Alongside GC-MS complementary analysis was employed, unveiling eight additional newly reported compounds. The antioxidant activity study of the propolis samples verified the potential of these extracts to effectively scavenge radicals, with the extract of Imathia region exhibiting comparable antioxidant activity to that of quercetin.

  8. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    SciTech Connect

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  9. Induced charge effects on electrokinetic entry flow

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Rama Aravind; Zhou, Yilong; Zhao, Cunlu; Hu, Guoqing; Song, Yongxin; Wang, Junsheng; Yang, Chun; Xuan, Xiangchun

    2017-06-01

    Electrokinetic flow, due to a nearly plug-like velocity profile, is the preferred mode for transport of fluids (by electroosmosis) and species (by electrophoresis if charged) in microfluidic devices. Thus far there have been numerous studies on electrokinetic flow within a variety of microchannel structures. However, the fluid and species behaviors at the interface of the inlet reservoir (i.e., the well that supplies the fluid and species) and microchannel are still largely unexplored. This work presents a fundamental investigation of the induced charge effects on electrokinetic entry flow due to the polarization of dielectric corners at the inlet reservoir-microchannel junction. We use small tracing particles suspended in a low ionic concentration fluid to visualize the electrokinetic flow pattern in the absence of Joule heating effects. Particles are found to get trapped and concentrated inside a pair of counter-rotating fluid circulations near the corners of the channel entrance. We also develop a depth-averaged numerical model to understand the induced charge on the corner surfaces and simulate the resultant induced charge electroosmosis (ICEO) in the horizontal plane of the microchannel. The particle streaklines predicted from this model are compared with the experimental images of tracing particles, which shows a significantly better agreement than those from a regular two-dimensional model. This study indicates the strong influences of the top/bottom walls on ICEO in shallow microchannels, which have been neglected in previous two-dimensional models.

  10. Toxic Elements in Soil and Groundwater: Short-Time Study on Electrokinetic Removal of Arsenic in the Presence of other Ions

    PubMed Central

    Leszczynska, Danuta; Ahmad, Hafiz

    2006-01-01

    The electrokinetic technique is an emerging technology presently tested in situ to remove dissolved heavy metals from contaminated groundwater. There is a growing interest for using this system to cleanse clayey soil contaminated by toxic metallic ions. Currently, there are very few available non-destructive treatment methods that could be successfully applied in situ on low permeable type of soil matrix. The main objective of presented study was to validate and possibly enhance the overall efficiency of decontamination by the electrokinetic technique of the low permeable soil polluted by the arsenic in combination with chromium and copper ions. The chosen mixture of ions was imitating leak of pesticide well known as chromate copper arsenate (CCA). The chosen technique is showing a big promise to be used in the future as a portable, easy to install and run on sites with spills or leaks hard to reach otherwise; such as in the dense populated and urbanized areas. Laboratory electrokinetic experiments were designed to understand and possibly manipulate main mechanisms involved during forced migration of ions. All tests were conducted on artificially contaminated kaolinite (low permeable clay soil). Electrokinetic migration was inducted by the low voltage dc current applied through soil column. Series of experiments were designed to assess the efficiency of arsenic-chromium-copper remediation by applying (1) only dc current; and (2) by altering the soil environment. Obtained results showed that arsenic could be successfully removed from the soil in one day (25 hours) span. It was significant time reduction, very important during emergency response. Mass recovered at the end of each test depended on initial condition of soil and type of flushing solution. The best results were obtained, when soil was flushed with either NaOH or NaOCl (total removal efficiency 74.4% and 78.1%, respectively). Direct analysis of remained arsenic in soil after these tests confirmed

  11. Electrokinetic effects near a membrane

    NASA Astrophysics Data System (ADS)

    Lacoste, David

    2009-03-01

    We discuss the electrostatic and electrokinetic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., 77, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; we predict similar ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions.

  12. Particle tracking techniques for electrokinetic microchannel flows.

    PubMed

    Devasenathipathy, Shankar; Santiago, Juan G; Takehara, Kohsei

    2002-08-01

    We have applied particle tracking techniques to obtain spatially resolved velocity measurements in electrokinetic flow devices. Both micrometer-resolution particle image velocimetry (micro-PMV) and particle tracking velocimetry (PTV) techniques have been used to quantify and study flow phenomena in electrokinetic systems applicable to microfluidic bioanalytical devices. To make the flow measurements quantitative, we performed a series of seed particle calibration experiments. First, we measure the electroosmotic wall mobility of a borosilicate rectangular capillary (40 by 400 microm) using current monitoring. In addition to this wall mobility characterization, we apply PTV to determine the electrophoretic mobilities of more than 1,000 fluorescent microsphere particles in aqueous buffer solutions. Particles from this calibrated particle/ buffer mixture are then introduced into two electrokinetic flow systems for particle tracking flow experiments. In these experiments, we use micro-PIV, together with an electric field prediction, to obtain electroosmotic flow bulk fluid velocity measurements. The first example flow system is a microchannel intersection where we demonstrate a detailed documentation of the similitude between the electrical fields and the velocity fields in an electrokinetic system with uniform zeta potential, zeta. In the second system, we apply micro-PIV to a microchannel system with nonuniform zeta. The latter experiment provides a simultaneous measurement of two distinct wall mobilities within the microchannel.

  13. Electrokinetic effects on detection time of nanowire biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Guo, Qingjiang; Wang, Shunqiang; Hu, Walter

    2012-04-01

    We develop a multiphysics model to study the contribution of electrokinetics on the biomolecular detection process and provide a physical explanation of the two to three orders of magnitude difference in detection time between experimental results and theoretical predications at ultralow concentration. The electrokinetic effects, including electrophoretic force and electroosmotic flow, have been systematically studied under various sensor design and test conditions. In a typical single nanowire-based sensor, it is found that electrokinetic effects could result in a reduction of detection time over 90 times, compared with that induced by pure biomolecular diffusion. The detection time difference is further enhanced by increasing the applied gate voltage or the number of nanowires. It is proposed that accelerated biomolecular detection at ultralow concentration could be achieved by appropriate combinations of electrokinetic effects and nanowire sensor design.

  14. ELECTROKINETICS, INC. INSITU BIO REMEDIATION BY ELECTROKINETIC INJECTION EMERGING TECHNOLOGY SUMMARY

    EPA Science Inventory

    Electrokinetics, Inc. through a cooperative agreement with USEPA's NRMRL conducted a laboratory evaluation of electrokinetic transport as a means to enhance in-situ bioremediation of trichloroethene (TCE). Four critical aspects of enhancing bioremediation by electrokinetic inject...

  15. New approaches to the kinetic study of alcoholic fermentation by chromatographic techniques.

    PubMed

    Lainioti, Georgia Ch; Karaiskakis, George

    2013-09-01

    The kinetics of the fermentation process has gained increasing interest, not only in the scientific community, but in the industrial world as well. Information concerning the improvement of batch fermentation performance may potentially be valuable for the designing of scale-up processes. Intensive studies have been conducted with the use of various chromatographic techniques, such as conventional gas chromatography, reversed-flow gas chromatography (RFGC), high-performance liquid chromatography, field-flow fractionation and others. In the present study, specific focus is placed on the employment of RFGC, a method that can successfully be applied for the determination of physicochemical quantities, such as reaction rate constants and activation energies, at each phase of the alcoholic fermentation. In contrast to conventional chromatographic techniques, RFGC can lead to substantial information referring to the evaluation of fermentation kinetics at any time of the process. Moreover, gravitational field-flow fractionation, a sub-technique of field-flow fractionation, presents the ability to monitor the proliferation of Saccharomyces cerevisiae cells through their elution profiles that can be related to the different cell growth stages. The combination of the two techniques can provide important information for kinetic study and the distinction of the growth phases of yeast cell proliferation during alcoholic fermentations conducted under different environmental conditions.

  16. Multivariate analysis of variance of designed chromatographic data. A case study involving fermentation of rooibos tea.

    PubMed

    Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata

    2017-03-17

    An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation.

  17. Gas chromatographic determination of volatile congeners in spirit drinks: interlaboratory study.

    PubMed

    Kelly, J; Chapman, S; Brereton, P; Bertrand, A; Guillou, C; Wittkowski, R

    1999-01-01

    An interlaboratory study of a gas chromatographic (GC) method for the determination of volatile congeners in spirit drinks was conducted; 31 laboratories from 8 countries took part in the study. The method uses GC with flame ionization detection and incorporates several quality control measures which permit the choice of chromatographic system and conditions to be selected by the user. Spirit drink samples were prepared and sent to participants as 10 blind duplicate or split-level test materials for the determination of 1,1-diethoxyethane (acetal), 2-methylbutan-1-ol (active amyl alcohol), 3-methylbutan-1-ol (isoamyl alcohol), methanol (methyl alcohol), ethyl ethanoate (ethyl acetate), butan-1-ol (n-butanol), butan-2-ol (sec-butanol), 2-methylpropan-1-ol (isobutyl alcohol), propan-1-ol (n-propanol), and ethanal (acetaldehyde). The precision of the method for 9 of the 10 analytes was well within the range predicted by the Horwitz equation. The precision of the most volatile analyte, ethanal, was just above statistically predicted levels. This method is recommended for official regulatory purposes.

  18. Liquid chromatographic separation in metal-organic framework MIL-101: a molecular simulation study.

    PubMed

    Hu, Zhongqiao; Chen, Yifei; Jiang, Jianwen

    2013-02-05

    A molecular simulation study is reported to investigate liquid chromatographic separation in metal-organic framework MIL-101. Two mixtures are considered: three amino acids (Arg, Phe, and Trp) in aqueous solution and three xylene isomers (p-, m-, and o-xylene) dissolved in hexane. For the first mixture, the elution order is found to be Arg > Phe > Trp. The hydrophilic Arg has the strongest interaction with the polar mobile phase (water) and the weakest interaction with the stationary phase (MIL-101), and thus transports at the fastest velocity. Furthermore, Arg forms the largest number of hydrogen bonds with water and possesses the largest hydrophilic solvent-accessible surface area. For the second mixture, the elution order is p-xylene > m-xylene > o-xylene, consistent with available experimental observation. With the largest polarity as compared to p- and m-xylenes, o-xylene interacts the most strongly with the stationary phase and exhibits the slowest transport velocity. For both mixtures, the underlying separation mechanism is elucidated from detailed energetic and structural analysis. It is revealed that the separation can be attributed to the cooperative solute-solvent and solute-framework interactions. This simulation study, for the first time, provides molecular insight into liquid chromatographic separation in a MOF and suggests that MIL-101 might be an interesting material for the separation of industrially important liquid mixtures.

  19. Electrokinetic instability in microchannel ferrofluid/water co-flows

    NASA Astrophysics Data System (ADS)

    Song, Le; Yu, Liandong; Zhou, Yilong; Antao, Asher Reginald; Prabhakaran, Rama Aravind; Xuan, Xiangchun

    2017-04-01

    Electrokinetic instability refers to unstable electric field-driven disturbance to fluid flows, which can be harnessed to promote mixing for various electrokinetic microfluidic applications. This work presents a combined numerical and experimental study of electrokinetic ferrofluid/water co-flows in microchannels of various depths. Instability waves are observed at the ferrofluid and water interface when the applied DC electric field is beyond a threshold value. They are generated by the electric body force that acts on the free charge induced by the mismatch of ferrofluid and water electric conductivities. A nonlinear depth-averaged numerical model is developed to understand and simulate the interfacial electrokinetic behaviors. It considers the top and bottom channel walls’ stabilizing effects on electrokinetic flow through the depth averaging of three-dimensional transport equations in a second-order asymptotic analysis. This model is found accurate to predict both the observed electrokinetic instability patterns and the measured threshold electric fields for ferrofluids of different concentrations in shallow microchannels.

  20. Electrokinetic instability in microchannel ferrofluid/water co-flows

    PubMed Central

    Song, Le; Yu, Liandong; Zhou, Yilong; Antao, Asher Reginald; Prabhakaran, Rama Aravind; Xuan, Xiangchun

    2017-01-01

    Electrokinetic instability refers to unstable electric field-driven disturbance to fluid flows, which can be harnessed to promote mixing for various electrokinetic microfluidic applications. This work presents a combined numerical and experimental study of electrokinetic ferrofluid/water co-flows in microchannels of various depths. Instability waves are observed at the ferrofluid and water interface when the applied DC electric field is beyond a threshold value. They are generated by the electric body force that acts on the free charge induced by the mismatch of ferrofluid and water electric conductivities. A nonlinear depth-averaged numerical model is developed to understand and simulate the interfacial electrokinetic behaviors. It considers the top and bottom channel walls’ stabilizing effects on electrokinetic flow through the depth averaging of three-dimensional transport equations in a second-order asymptotic analysis. This model is found accurate to predict both the observed electrokinetic instability patterns and the measured threshold electric fields for ferrofluids of different concentrations in shallow microchannels. PMID:28406228

  1. Studies on chromatographic fingerprint and fingerprinting profile-efficacy relationship of polygoni perfoliati herba.

    PubMed

    Tian, Li; Zhao, Yang; Zhou, Xin; Chen, Hua-Guo; Zhao, Chao; Gong, Xiao-Jian

    2013-01-01

    Polygoni Perfoliati Herba is widely used in China with antibacterium, anti-inflammatory, expectorant, antitumor, and antivirus activities. To reveal the mechanisms of the activities of Polygoni Perfoliati Herba, the relationship between the fingerprinting profile and its bioactivities was investigated. In the present study, high-performance liquid chromatographic (HPLC) fingerprinting method was developed. The established method was applied to analyze 51 batches of Polygoni Perfoliati Herba samples collected from different locations or in different harvesting times in China. Chemometrics, including similarity analysis, hierarchical clustering analysis, and principal component analysis, were used to express their similarities. It was found that similarity values of the samples were in the range of 0.432-0.998. The results of analgesic tests indicated that Polygoni Perfoliati Herba could significantly inhibit pain induced by hot plate and acetic acid in mice. The results of anti-inflammatory tests showed that Polygoni Perfoliati Herba had good anti-inflammatory effects (P < 0.01) in two models including dimethyl benzene-induced ear edema and acetic acid-induced peritoneal permeability in mice. Combining the results from chromatographic fingerprints with those from bioactivities, we found that seven peaks from Polygoni Perfoliati Herba were mainly responsible for analgesic and anti-inflammatory activities.

  2. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  3. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.

    PubMed

    Xuan, Xiangchun; Li, Dongqing

    2005-02-04

    Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.

  4. Electrokinetic investigation of surfactant adsorption.

    PubMed

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  5. Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Farhana, S. M. S.

    2016-11-01

    Landfills are major sources of contamination due to the presence of harmful bacteria and heavy metals. Electrokinetic-Bioremediation (Ek-Bio) is one of the techniques that can be conducted to remediate contaminated soil. Therefore, the most prominent bacteria from landfill soil will be isolated to determine their optimal conditions for culture and growth. The degradation rate and the effectiveness of selected local bacteria were used to reduce soil contamination. Hence, this enhances microbiological activities to degrade contaminants in soil and reduce the content of heavy metals. The aim of this study is to investigate the ability of isolated bacteria (Lysinibacillus fusiformis) to remove mercury in landfill soil. 5 kg of landfill soil was mixed with deionized water to make it into slurry condition for the purpose of electrokinetic and bioremediation. This remediation technique was conducted for 7 days by using 50 V/m of electrical gradient and Lysinibacillus fusiformis bacteria was applied at the anode reservoir. The slurry landfill soil was located at the middle of the reservoir while distilled water was placed at the cathode of reservoir. After undergoing treatment for 7 days, the mercury analyzer showed that there was a significant reduction of approximately up to 78 % of mercury concentration for the landfill soil. From the results, it is proven that electrokinetic bioremediation technique is able to remove mercury within in a short period of time. Thus, a combination of Lysinibacillus fusiformis and electrokinetic technique has the potential to remove mercury from contaminated soil in Malaysia.

  6. Studies on improved integrated membrane-based chromatographic process for bioseparation

    NASA Astrophysics Data System (ADS)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  7. Immersed molecular electrokinetic finite element method

    NASA Astrophysics Data System (ADS)

    Kopacz, Adrian M.; Liu, Wing K.

    2013-07-01

    A unique simulation technique has been developed capable of modeling electric field induced detection of biomolecules such as viruses, at room temperatures where thermal fluctuations must be considered. The proposed immersed molecular electrokinetic finite element method couples electrokinetics with fluctuating hydrodynamics to study the motion and deformation of flexible objects immersed in a suspending medium under an applied electric field. The force induced on an arbitrary object due to an electric field is calculated based on the continuum electromechanics and the Maxwell stress tensor. The thermal fluctuations are included in the Navier-Stokes fluid equations via the stochastic stress tensor. Dielectrophoretic and fluctuating forces acting on the particle are coupled through the fluid-structure interaction force calculated within the surrounding environment. This method was used to perform concentration and retention efficacy analysis of nanoscale biosensors using gold particles of various sizes. The analysis was also applied to a human papillomavirus.

  8. Competition between Dukhin's and Rubinstein's electrokinetic modes

    NASA Astrophysics Data System (ADS)

    Chang, H.-C.; Demekhin, E. A.; Shelistov, V. S.

    2012-10-01

    The combined effect of two modes of electroconvection, i.e., (a) the electro-osmotic flow of the second kind induced by a curved membrane surface and (b) electrokinetic instability, is studied numerically. Both physical mechanisms are responsible for electric current enhancement to the surface, and these modes are strongly nonlinearly coupled. For the limiting regimes, their resonant interaction near the threshold of instability with a corresponding resonantly amplified current enhancement is found. For the overlimiting regimes, inside the unstable region, their interaction becomes more complex with negative “sideband” and positive “subharmonic” resonant interactions. Wall corrugation can still be in resonance with the unstable modes. At some wave numbers of corrugation, these two mechanisms compete and electrokinetic instability can even be completely suppressed by the wall corrugation.

  9. Electrokinetic flow near an undulated, charged surface.

    PubMed

    Lin, Sung-Hwa

    2010-11-01

    In this study, using the iterative finite difference method, the effect of an irregular condition at boundary, the surface undulation, in a charged surface system on the two dimensional electrokinetic flow near the surface is analyzed. The results reveal that, for the electrokinetic flow, the undulation of charged surface may have two major effects: one is that it changes the flow pattern of electrolyte solution, especially in the region close to the undulated surface; the other is that, due to the increase of effective surface area, the magnitude of velocity field may be increased considerably. In addition, when either the amplitude of undulation is increased, or the period of undulation is decreased, both the maximum velocity and the tangential flow rate will be raised to an extent. This is important for applications, for example, the electrophoresis of a biological cell, the electroosmosis of electrolyte solution in a micro-channel, etc. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Electrokinetic remediation prefield test methods

    NASA Technical Reports Server (NTRS)

    Hodko, Dalibor (Inventor)

    2000-01-01

    Methods for determining the parameters critical in designing an electrokinetic soil remediation process including electrode well spacing, operating current/voltage, electroosmotic flow rate, electrode well wall design, and amount of buffering or neutralizing solution needed in the electrode wells at operating conditions are disclosed These methods are preferably performed prior to initiating a full scale electrokinetic remediation process in order to obtain efficient remediation of the contaminants.

  11. Electrokinetically controlled fluid injection into unicellular microalgae.

    PubMed

    Zhou, Xuewen; Zhang, Xixi; Boualavong, Jonathan; Durney, Andrew R; Wang, Tonghui; Kirschner, Scott; Wentz, Michaela; Mukaibo, Hitomi

    2017-04-04

    Electrokinetically-controlled microinjection is reported as an effective transport mechanism for microinjection into the wild-type strain of the widely-studied model microalga Chlamydomonas reinhardtii. Microinjection system using glass capillary pipettes was developed to capture and impale the motile cell. To apply an electric field and induce electrokinetic flow (e.g. electrophoresis and electroosmosis), an electrode was inserted directly to the solution inside the impaling injection pipette (IP) and another electrode was inserted into the external cell media. The viability of the impaled cells was confirmed for more than an hour under 0.01 V using the fluorescein diacetate (FDA)/propidium iodide (PI) dual fluorescent dye-based assay. The viability was also found to increase almost logarithmically with decreasing voltage and to depend strongly on the solution within the IP. Successful electrokinetic microinjection into the cell was confirmed by both the increase in the cell volume under an applied voltage and the electric-field dependent delivery of fluorescent fluorescein molecule into an impaled cell. Our study offers novel opportunities for quantitative delivery of biomolecules into microalgae and advancing the research and development of these organisms as biosynthetic factories. This article is protected by copyright. All rights reserved.

  12. Tensorial electrokinetics in articular cartilage.

    PubMed

    Reynaud, Boris; Quinn, Thomas M

    2006-09-15

    Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.

  13. Stability and electrokinetic potential of silicon carbide suspensions in aqueous organic media

    NASA Technical Reports Server (NTRS)

    Yeremenko, B. V.; Lyubchenko, I. N.; Skobets, I. Y.

    1984-01-01

    The method of electroosmosis was used to study the dependence of the electrokinetic potential of silicon carbide suspensions in mixtures of water -n. alcohol. The reasons for the dependence of the electrokinetic potential on the composition of the intermicellar liquid are discussed.

  14. A Miniature Gas Chromatograph Mass Spectrometer (GCMS) for Planetary Atmospheres Studies

    NASA Astrophysics Data System (ADS)

    Simcic, J.; Madzunkov, S. M.; Bae, B.; Nikolic, D.; Darrach, M.

    2016-10-01

    Presented herein are the latest achievements in developing an instrument with the same analytical performance of commercial Gas Chromatograph Mass Spectrometer systems but approximately an order of magnitude smaller and optimized for space missions.

  15. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher P.

    1999-11-01

    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  16. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    EPA Science Inventory

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  17. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    EPA Science Inventory

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  18. Study of the metabolism of pyrazinamide using a high-performance liquid chromatographic analysis of urine samples.

    PubMed

    Yamamoto, T; Moriwaki, Y; Takahashi, S; Hada, T; Higashino, K

    1987-02-01

    A reversed-phase high-performance liquid chromatographic method was developed for the simultaneous determination of pyrazinamide and its metabolites in urine. Study of the metabolism of pyrazinamide by this method demonstrated that 5-hydroxypyrazinamide excretion was compatible with pyrazinoic acid excretion and allopurinol decreased in vivo conversion of pyrazinamide to 5-hydroxypyrazinamide and blocked that of pyrazinoic acid to 5-hydroxypyrazinoic acid.

  19. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis.

    PubMed

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Arpád

    2013-01-01

    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  20. Use of a biomimetic chromatographic stationary phase for study of the interactions occurring between inorganic anions and phosphatidylcholine membranes.

    PubMed Central

    Hu, Wenzhi; Haddad, Paul R; Hasebe, Kiyoshi; Mori, Masanobu; Tanaka, Kazuhiko; Ohno, Masako; Kamo, Naoki

    2002-01-01

    A liquid chromatographic method for the study of ion-membrane interactions is reported. A phosphatidylcholine biomimetic stationary phase was established by loading dimyristoylphosphatidylcholine (DMPC) onto a reversed-phase octadecylsilica packed column. This column was then used to study the interaction of some inorganic anions with the stationary phase by UV and conductivity detection. Ten inorganic anions were selected as model ions and were analyzed with the proposed chromatographic system. Anion-DMPC interactions of differing magnitudes were observed for all of the model anions. Perchlorate-DMPC interactions were strongest, followed by thiocyanate-DMPC, iodide-DMPC, chlorate-DMPC, nitrate-DMPC, bromide-DMPC, chloride-DMPC, fluoride-DMPC, and then sulfate-DMPC. Cations in the eluent, especially H(+) ions and divalent cations such as Ca(2+), showed strong effects on anion-DMPC interactions. The chromatographic data suggest that DMPC interacts with both the anions and the cations. Anion-DMPC interactions were dependent on the surface potential of the stationary phase: at low surface potentials anion-DMPC interactions were predominantly solvation dependent in nature whereas at more positive surface potentials anion-DMPC interactions were predominantly electrostatic in nature. Cation-DMPC interactions served to raise the surface potential, causing the anion-DMPC interactions to vary from solvation dependent to electrostatic. The chromatographic data were used to provide quantitative estimates of the enthalpies of the anion-DMPC interactions. PMID:12496102

  1. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  2. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  3. Electrokinetic induced solute dispersion in porous media; pore network modeling

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Schotting, Ruud; Raoof, Amir

    2013-04-01

    Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.

  4. Comparative study of two chromatographic methods for quantifying 2,4,6-trichloranisole in wines.

    PubMed

    Riu, M; Mestres, M; Busto, O; Guasch, J

    2007-01-05

    Here we present the validation and the comparative study of two chromatographic methods for quantifying 2,4,6-trichloroanisole (TCA) in wines (red, rosé and white wines). The first method involves headspace solid-phase microextraction and gas chromatography with electron-capture detection (ECD). The evaluation of the performance parameters shows limit of detection of 0.3 ng l(-1), limit of quantification of 1.0 ng l(-1), recoveries around 100% and repeatability of 10%. The second one implies a headspace solid-phase microextraction and gas chromatography with mass spectrometric detection. The performance parameters of this second method are limit of detection of 0.2 ng l(-1), limit of quantification of 0.8 ng l(-1) and repeatability of 10.1%. From the comparative study we can state that both methods provide similar results and the differences between them are the better sensitivity of the GC-ECD method and the very shorter chromatogram running time of the GC-MS method. The two methods are able to quantify TCA below the sensorial threshold in red, rosé and white wines using just a calibration graph, thus they could be a very good tool for quality control in wineries.

  5. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces.

    PubMed

    Cooper, Justin; Harris, Joel M

    2014-12-02

    Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.

  6. Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC.

    PubMed

    Kozlik, Petr; Goldman, Radoslav; Sanda, Miloslav

    2017-09-01

    Analysis of glycosylation is challenging due to micro- and macro-heterogeneity of the protein attachment. A combination of LC with MS/MS is one of the most powerful tools for glycopeptide analysis. In this work, we show the effect of various monosaccharide units on the retention time of glycopeptides. Retention behavior of several glycoforms of six peptides obtained from tryptic digest of haptoglobin, hemopexin, and sex hormone-binding globulin was studied on a reversed phase chromatographic column. We observed reduction of the retention time with increasing number of monosaccharide units of glycans attached to the same peptide backbone. Fucosylation of larger glycans provides less significant retention time shift than for smaller ones. Retention times of glycopeptides were expressed as relative retention times. These relative retention times were used for calculation of upper and lower limits of glycopeptide retention time windows under the reversed phase conditions. We then demonstrated on the case of a glycopeptide of haptoglobin that the predicted retention time window boosts confidence of identification and minimizes false-positive identification. Relative retention time, as a qualitative parameter, is expected to improve LC-MS/MS characterization of glycopeptides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte.

    PubMed

    Kim, Do-Hyung; Jeon, Chil-Sung; Baek, Kitae; Ko, Sung-Hwan; Yang, Jung-Seok

    2009-01-15

    The feasibility of anolyte conditioning on electrokinetic remediation of fluorine-contaminated soil was investigated with a field soil. The initial concentration of fluorine, pH and water content in the soil were 414mg/kg, 8.91 and 15%, respectively. Because the extraction of fluorine generally increased with the soil pH, the pH of the anode compartment was controlled by circulating strong alkaline solution to enhance the extraction of fluorine during electrokinetic remediation. The removal of fluorine increased with the concentration of the alkaline solution and applied current density and fluorine removed up to 75.6% within 14 days. Additionally, anolyte conditioning sharply increased the electro-osmotic flow, which enhanced the removal of fluorine in this study. In many respects, anolyte conditioning in electrokinetic remediation of fluorine-contaminated soil will be a promising technology.

  8. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  9. Electrokinetic effects in power transformers

    SciTech Connect

    Nelson, J.K.; Lee, M.J. . Dept. of Electric Power Engineering)

    1990-06-01

    The behavior of dielectric fluids used for the cooling and insulation of power system equipment is significantly influenced by motion enforced by the action of circulating pumps. Not only can charges generated by streaming electrification accumulate to distort the electric field in positions where dielectric integrity is prejudiced, but the dielectric strength of the fluid is also altered per se by the actions of the flow in a complex, but predictable manner. Three important electrokinetic effects in transformer oil subjected to forced circulation are experimentally investigated using laboratory model ducts. Careful breakdown measurements with sustained voltage on flowing fluids have been extended to pulse voltages with a view to establishing the nature of time dependencies. The use of Schlieren optics on the duct has also demonstrated that flow patterns are modified by the imposition of electric fields through electrohydrodynamic (EHD) effects. Present model studies invite speculation that not only streaming electrification but also forced circulation per se may prejudice dielectric structure in power system equipment and these effects need to be understood to permit informed design and safe operation. These models are discussed in this paper. 122 refs., 82 figs., 10 tabs.

  10. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect

    E. James Davis

    1996-04-01

    The objective of this research is to apply electrokinetics to remove colloidal coal and mineral particles from coal washing ponds without the addition of chemical additives. Colloidal particles do not settle gravitationally, but because their surfaces are charged one can produce settling by applying an external electric field. Of specific interest is a lake near Centralia, Washington used to wash coal prior to combustion in an electrical power generation facility. Laboratory experiments have demonstrated that electrokinetic treatment is feasible, so this project is examining how to scale up laboratory results to an industrial level. Electrode configurations, power requirements, and system properties are being studied.

  11. Size-exclusion chromatographic study of ECF and TCF softwood kraft pulp bleaching liquors.

    PubMed

    Kukkola, Jukka; Knuutinen, Juha; Paasivirta, Jaakko; Herve, Sirpa; Pessala, Piia; Schultz, Eija

    2011-08-01

    compounds. The lignin content in HMW matter was higher than in stages that consisted of low molecular matter. Bleaching effluents contained the highest amounts of HMW material, mainly lignin, in the beginning of the sequences; the amounts decreased towards the end of the bleaching sequence. Determinations of MWD by the SEC method showed that effluents from the TCF sequence contained more HMW material than those from the ECF stage. This might be due to peroxide stages (P) that dissolve HMW lignin effectively. However, the molecular weights of ozone stages (Z) were very low compared to other stages. Chlorine dioxide stages also dissolved mostly low molecular weight lignin. Ultrafiltration of bleaching liquors showed that high molecular weight fraction also included some low molecular weight compounds and vice versa. High polydispersity and high lignin content correlated with the amount of HMW material in ECF and TCF bleaching stages. Our liquor samples were studied by using a UV detector commonly used for lignin preparations; in upcoming investigations, it will be interesting to determine carbohydrates such as hemicelluloses. The results are applicable in papermaking in order to improve commonly used bleaching procedures, to test new potential bleaching systems, and to study chemical behavior of HMW materials in various bleaching liquors. The present results also form a good basis for toxicity measurements of ECF and TCF bleaching effluents and for more comprehensive spectroscopic and chromatographic experiments with samples taken from various bleaching stages. From the behavior of liquors studied, it appears that our other structure investigations by spectroscopic and chromatographic (NMR, Py-GC/MS, etc.) methods mostly correlate well with the present results.

  12. Electrokinetic remediation of oil-contaminated soils.

    PubMed

    Korolev, Vladimir A; Romanyukha, Olga V; Abyzova, Anna M

    2008-07-01

    This investigation was undertaken to determine the factors influencing electrokinetic remediation of soils from petroleum pollutants. The remediation method was applied in two versions: (i) static and (ii) flowing, when a sample was washed with leaching solution. It was found that all the soils studied can be purified using this technique. It was also observed that the mineral and grain-size composition of soils, their properties, and other parameters affect the remediation efficiency. The static and flowing versions of the remediation method removed 25-75% and 90-95% of the petroleum pollutants, respectively from the soils under study.

  13. Comparative study of multi walled carbon nanotubes-based electrodes in micellar media and their application to micellar electrokinetic capillary chromatography.

    PubMed

    Chicharro, Manuel; Arribas, Alberto Sánchez; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio

    2007-12-15

    This work reports on a comparative study of the electrochemical performance of carbon nanotubes-based electrodes in micellar media and their application for amperometric detection in micellar electrokinetic capillary chromatography (MEKC) separations. These electrodes were prepared in two different ways: immobilization of a layer of carbon nanotubes dispersed in polyethylenimine (PEI), ethanol or Nafion onto glassy carbon electrodes or preparation of paste electrodes using mineral oil as binder. Scanning electron microscopy (SEM) was employed for surface morphology characterization while cyclic voltammetry of background electrolyte was used for capacitance estimation. The amperometric responses to hydrogen peroxide, amitrol, diuron and 2,3-dichlorophenol (2,3CP) in the presence and in the absence of sodium dodecylsulphate (SDS) were studied by flow injection analysis (FIA), demonstrating that the electrocatalytic activity, background current and electroanalytical performance were strongly dependent on the electrodes preparation procedure. Glassy carbon electrodes modified with carbon nanotubes dispersed in PEI (GC/(CNT/PEI)) displayed the most adequate performance in micellar media, maintaining good electrocatalytic properties combined with acceptable background currents and resistance to passivation. The advantages of using GC/(CNT/PEI) as detectors in capillary electrophoresis were illustrated for the MEKC separations of phenolic pollutants (phenol, 3-chlorophenol, 2,3-dichlorophenol and 4-nitrophenol) and herbicides (amitrol, asulam, diuron, fenuron, monuron and chlortoluron).

  14. Numerical studies of continuous nutrient delivery for tumour spheroid culture in a microchannel by electrokinetically-induced pressure-driven flow.

    PubMed

    Movahed, Saeid; Li, Dongqing

    2010-12-01

    Continuous nutrient delivery to cells by pressure-driven flow is desirable for cell culture in lab-on-a-chip devices. An innovative method is proposed to generate an induced pressure-driven flow by using an electrokinetically-driven pump in a H-shape microchannel. A three-dimensional numerical model is developed to study the effectiveness of the proposed mechanism. It is shown that the average velocity of the generated pressure-driven flow is linearly dependent on the applied voltage. Considering the culture of a multicellular tumour spheroid (MTS) in such a microfluidic system, numerical simulations based on EMT6/Ro tumour cells is performed to find the effects of the nutrient distribution (oxygen and glucose), bulk velocity and channel size on the cell growth. Using an empirical formula, the growth of the tumour cell is studied. For low nutrient concentrations and low speed flows, it is found that the MTS grows faster in larger channels. It is also shown that, for low nutrient concentrations, a higher bulk liquid velocity provide better environment for MTS to grow. For lower velocities, it is found that the local MTS growth along the flow direction deviates from the average growth.

  15. Liquid chromatographic analysis of vitamin B6 in reconstituted infant formula: collaborative study.

    PubMed

    Mann, Dudley L; Ware, George M; Bonnin, Evelyn; Eitenmiller, Ronald R; Barna, Eva; Christiansen, Scott; De Borde, Jean Luc; DeVries, Jonathan; Gilliland, Pamela; Hemmer, Jane; Kalman, Andras; Konings, Erik; Levin, David; Salvati, Louis; Woollard, David

    2005-01-01

    A liquid chromatographic (LC) method was validated for the determination of total vitamin B6 in infant formula. Total vitamin B6 was quantified by converting the phosphorylated and free vitamers into pyridoxine. Pyridoxine was determined by ion pair reversed-phase LC with fluorescence detection. The method was subjected to an AOAC collaborative study involving a factory-manufactured, milk- and soy-based infant formula. Each was spiked at 3 concentrations in the range of 0-1 microg/g and sent as blind duplicate to participant laboratories. Nine laboratories returned valid data which were statistically analyzed for outliers and precision parameters. The repeatability relative standard deviation (RSD(r)) ranges were 2.0-4.0 and 3.5-5.9% for fortified milk- and soy-based formulas, respectively. The reproducibility relative standard deviation (RSD(R)) ranges were 8.2-8.4 and 6.7-11.2% for fortified milk- and soy-based formulas, respectively. HORRAT values ranged from 0.42 to 0.53, indicating that the precision of the method is acceptable. The mean RSD(r):RSD(R) values were 0.60 and 0.55 for milk- and soy-based formulas, respectively. As expected, RSDs for the unfortified samples were higher, but their HORRAT values (0.81 and 2.06) helped define a realistic limit of quantitation as 0.05 microg/g. Recovery data were quantitative and varied between 81.4 and 98.0% (mean = 89.8%) for each of 6 spiked materials.

  16. High-performance liquid chromatographic determination of tianeptine in plasma applied to pharmacokinetic studies.

    PubMed

    Gaulier, J M; Marquet, P; Lacassie, E; Desroches, R; Lachatre, G

    2000-10-10

    An improved analytical method for the quantitative measurement of tianeptine and its main metabolite MC5 in human plasma was designed. Extraction involved ion-paired liquid-liquid extraction of the compounds from 1.0 ml of human plasma adjusted to pH 7.0. HPLC separation was performed using a Nucleosil C18, 5 microm column (150x4.6 mm I.D.) and a mixture of acetonitrile and pH 3, 2.7 g l(-1) solution of sodium heptanesulfonate in distilled water (40:60, v/v) as mobile phase. UV detection was performed using a diode array detector in the 200-400 nm passband, and quantification of the analytes was made at 220 nm. For both tianeptine and MC5 metabolite, the limit of quantitation was 5 microg l(-1) and the calibration curves were linear from 5 to 500 microg l(-1). Intra- and inter-assay precision and accuracy fulfilled the international requirements. The recovery of tianeptine and its metabolite from plasma was, respectively, 71.5 and 74.3% at 20 microg l(-1), 71.2 and 70.8% at 400 microg l(-1). The selectivity of the method was checked by verifying the absence of chromatographic interference from pure solutions of the most commonly associated therapeutic drugs. This method, validated according to the criteria established by the Journal of Chromatography B, was applied to the determination of tianeptine and MC5-metabolite in human plasma in pharmacokinetic studies.

  17. Studies on Chromatographic Fingerprint and Fingerprinting Profile-Efficacy Relationship of Saxifraga stolonifera Meerb.

    PubMed

    Wu, Xing-Dong; Chen, Hua-Guo; Zhou, Xin; Huang, Ya; Hu, En-Ming; Jiang, Zheng-Meng; Zhao, Chao; Gong, Xiao-Jian; Deng, Qing-Fang

    2015-12-19

    This work investigated the spectrum-effect relationships between high performance liquid chromatography (HPLC) fingerprints and the anti-benign prostatic hyperplasia activities of aqueous extracts from Saxifraga stolonifera. The fingerprints of S. stolonifera from various sources were established by HPLC and evaluated by similarity analysis (SA), hierarchical clustering analysis (HCA) and principal component analysis (PCA). Nine samples were obtained from these 24 batches of different origins, according to the results of SA, HCA and the common chromatographic peaks area. A testosterone-induced mouse model of benign prostatic hyperplasia (BPH) was used to establish the anti-benign prostatic hyperplasia activities of these nine S. stolonifera samples. The model was evaluated by analyzing prostatic index (PI), serum acid phosphatase (ACP) activity, concentrations of serum dihydrotestosterone (DHT), prostatic acid phosphatase (PACP) and type II 5α-reductase (SRD5A2). The spectrum-effect relationships between HPLC fingerprints and anti-benign prostatic hyperplasia activities were investigated using Grey Correlation Analysis (GRA) and partial least squares regression (PLSR). The results showed that a close correlation existed between the fingerprints and anti-benign prostatic hyperplasia activities, and peak 14 (chlorogenic acid), peak 17 (quercetin 5-O-β-d-glucopyranoside) and peak 18 (quercetin 3-O-β-l-rhamno-pyranoside) in the HPLC fingerprints might be the main active components against anti-benign prostatic hyperplasia. This work provides a general model for the study of spectrum-effect relationships of S. stolonifera by combing HPLC fingerprints with a testosterone-induced mouse model of BPH, which can be employed to discover the principle components of anti-benign prostatic hyperplasia bioactivity.

  18. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  19. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  20. [Chromatographic Fingerprinting Study of Zhenyuan Granules Dry Extract by HPLC-DAD and HPLC-MS/MS].

    PubMed

    Li, Yuan-yuan; Shan, Jin-feng; Tan, Qing-jie; Wang, Song-lin; Jiang, Jian-lan

    2015-09-01

    To establish a novel, accurate and valid fingerprint method of Zhenyuan granules dry extract by using HPLC-DAD method, to study herbs belonging of fingerprint peaks and to identify some of the chromatographic peaks by HPLC-MS/MS analysis, for providing the basis for scientific evaluation of the quality. The sample solutions were analyzed by an Agilent SB C18 (250 mm x 4.6 mm, 5 µm) column, and gradiently eluted with acetonitrile (containing 0.1% formic acid) and aqueous phase (containing 0.1% formic acid) as the mobile phase. The flow rates were 1.2 mL/min (0~70 min) and 0.8 mL/min (70~150 min); the column temperature was 30 °C; and the detection wavelength was 254 nm. 40 peaks were selected as fingerprint peaks under the optimal chromatographic condition, and the similarity coefficients of 10 batches of Zhenyuan granules dry extract were all greater than 0.98. 27 peaks were tentatively identified with reference to literature data based on their mass spectrometry. The chromatographic fingerprint of Zhenyuan granules is proved to be a reliable method for comprehensive quality control and assessment.

  1. High-performance reversed-phase ion-pair chromatographic study of myo-inositol phosphates. Separation of myo-inositol phosphates, some common nucleotides and sugar phosphates.

    PubMed

    Patthy, M; Balla, T; Arányi, P

    1990-12-07

    A detailed study of all the major chromatographic variables affecting the retention behaviour and separation of myo-inositol phosphates in reversed-phase ion-pair chromatographic systems was carried out. The parameters studied included the eluent concentration of the pairing ion, the eluent concentration of the organic modifier and the buffer salt, the pH of the eluent, the minimum column plate count necessary for the separation of the inositol trisphosphate isomers and isocratic and gradient modes of separation. The retention behaviour of some common nucleotides and sugar phosphates was also investigated as these phosphates present chromatographic interference problems in biochemical studies based on the cellular incorporation of [32P]Pi. The separation methods developed appear to be superior to established anion-exchange separation techniques in terms of separation speed and "mildness" of the chromatographic conditions.

  2. Microwave assisted extraction, antioxidant potential and chromatographic studies of some Rasayana drugs.

    PubMed

    Mishra, Ashish; Mishra, Shilpi; Bhargav, Shilpi; Bhargava, Cs; Thakur, Mayank

    2015-07-01

    To study and compare the conventional extraction procedure with microwave assisted extraction (MAE) for some Ayurvedic Rasayana drugs and to evaluate their antioxidant potential and carry out the characterization of extracts by thin layer chromatography. Three Ayurvedic rasayana plants Allium sativum Linn., Bombax ceiba Linn. and Inula racemosa Hook. were evaluated for an improved MAE methodology by determining the effects of grinding degree, extraction solvent, effect of dielectric constant and duration of time on the extractive value. Antioxidant potential of all three drugs was evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and reducing power was determined by using Gallic acid as standard. Further thin layer chromatographic (TLC) analysis was performed on pre-activated Silica Gel G plates and Rf value were compared with those reported for the important biomarkers. The total extractive value for Allium sativum Linn. was 36.95% (w/w) and 49.95% (w/w) for ethanol extraction respectively. In case of Bombax ceiba Linn. the yield of aqueous extract by MAE was 50% (w/w) compared to 42% (w/w) in ethanol (50% v/v). Percent yield of Inula racemosa Hook. in aqueous extract was found to be 27.55% (w/w) which was better than ethanol extract (50%) where the yield was 25.95% (w/w). Upon antioxidant activity evaluation. sativum extract showed an absorbance of 0.980±0.92 at concentration of 500 μg with maximum reducing capacity. This was followed by. ceiba Linn. 0.825±0.98 and. racemosa Hook. with 0.799±2.01 at a concentration of 500 μg. TLC based standardization of. sativum Linn. extract shows single spot with Rf value of 0.38, B. ceiba Linn. extract shows Rf values were 0.23, 0.58, 0.77, 0.92 and I. racemosa Hook. extract spot had a Rf value of 0.72. A significant improvement in extractive values was observed as a factor of time and other advantages by using MAE technology. All three drugs have high antioxidant potential and a TLC

  3. Coherent structures of electrokinetic instability in microflows

    NASA Astrophysics Data System (ADS)

    Dubey, Kaushlendra; Gupta, Amit; Bahga, Supreet Singh

    2016-11-01

    Electrokinetic instabilities occur in fluid flow where gradients in electrical properties of fluids, such as conductivity and permittivity, lead to a destabilizing body force. We present an experimental investigation of electrokinetic instability (EKI) in a microchannel flow with orthogonal conductivity gradient and electric field, using time-resolved visualization of a passive fluorescent scalar. This particular EKI has applications in rapid mixing at low Reynolds number in microchannels. Previous studies have shown that such EKI can be characterized by the electric Rayleigh number (Rae) which is the ratio of diffusive and electroviscous time scales. However, these studies were limited to temporal power spectra and time-delay phase maps of fluorescence data at a single spatial location. In the current work, we use dynamic mode decomposition (DMD) of time-resolved snapshots of EKI to investigate the spatio-temporal coherent structures of EKI for a wide range of Rae . Our analysis yields spatial variation of modes in EKI along with their corresponding temporal frequencies. We show that EK instability with orthogonal conductivity-gradient and electric field can be characterized by transverse and longitudinal coherent structures which depend strongly on Rae .

  4. [Anolyte enhanced electrokinetic remediation of fluorine-contaminated soils].

    PubMed

    Zhu, Shu-Fa; Yan, Chun-Li; Dong, Tie-You; Tang, Hong-Yan

    2009-07-15

    An experimental study was carried out in order to determine the characteristics of migration and its influencing factor of soil fluorine in the electrokinetic process under different applied voltage and concentration of anolyte. The feasibility of anolyte enhanced on electrokinetic remediation of fluorine-contaminated soil was analyzed. The results show that when deionized water is used as anolyte with the 1.0 V/cm voltage gradient, the cumulative mass of fluorine in catholyte and anolyte are 8.2 mg and 47.7 mg respectively and the removal rate of fluorine is only 8.8%. Anolyte enhanced electrokinetic process can promote effectively the migration of fluoride in soil. When 0.02 mol/L NaOH solutionis employed as the anolyte, the removal rates are 25.9%, 31.2% and 47.3% with 1.0, 1.5 and 2.0 V/cm voltage gradient respectively. As the concentration of anolyte increased to 0.1 mol/L, the removal rates are 55.4%, 61.1% and 73.0%. The electromigration is the main transport mechanism and the electroosmotic flow has an effect on the migration of fluorine in soil. The voltage gradient and the concentration of anolyte are the main factors influencing the removal rate of fluorine in soil. Appropriate anolyte enhanced electrokinetic method can be applied to remediate fluorine from contaminated soil.

  5. A Gas Chromatograph/Mass Spectrometer System for UltraLow-Emission Combustor Exhaust Studies

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Wey, Chowen Chou

    1996-01-01

    A gas chromatograph (GC)/mass spectrometer (MS) system that allows the speciation of unburnt hydrocarbons in the combustor exhaust has been developed at the NASA Lewis Research Center. Combustion gas samples are withdrawn through a water-cooled sampling probe which, when not in use, is protected from contamination by a high-pressure nitrogen purge. The sample line and its connecting lines, filters, and valves are all ultraclean and are heated to avoid condensation. The system has resolution to the parts-per-billion (ppb) level.

  6. Hematite nanoparticle monolayers on mica electrokinetic characteristics.

    PubMed

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena

    2012-11-15

    Electrokinetic properties of α-Fe(2)O(3) (hematite) nanoparticle monolayers on mica were thoroughly characterized using the streaming potential method. Hematite suspensions were obtained by acidic hydrolysis of ferric chloride. The average size of particles (hydrodynamic diameter), determined by dynamic light scattering (DLS) and AFM, was 22 nm (pH=5.5, I=10(-2)M). The hematite monolayers on mica were produced under diffusion-controlled transport from the suspensions of various bulk concentration. The monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express zeta potential of hematite monolayers, determined by the streaming potential measurements, in terms of the particle coverage. Such dependencies, obtained for various pH, were successfully interpreted in terms of the three-dimensional electrokinetic model. A universal calibrating graph was produced enabling one to determine hematite monolayer coverage from the measured value of the streaming potential. The influence of the ionic strength, varied between 10(-4) and 10(-2)M, on the zeta potential of hematite monolayers was also studied. Additionally, the stability of monolayers (desorption kinetics) was determined under in situ conditions using the streaming potential method. Our experimental data prove that it is feasible to produce uniform and stable hematite particle monolayers of well-controlled coverage. Such monolayers may find practical applications as universal substrates for protein immobilization (biosensors) and in electrocatalytic applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Development of microtitre plates for electrokinetic assays

    NASA Astrophysics Data System (ADS)

    Burt, J. P. H.; Goater, A. D.; Menachery, A.; Pethig, R.; Rizvi, N. H.

    2007-02-01

    Electrokinetic processes have wide ranging applications in microsystems technology. Their optimum performance at micro and nano dimensions allows their use both as characterization and diagnostic tools and as a means of general particle manipulation. Within analytical studies, measurement of the electrokinesis of biological cells has the sensitivity and selectivity to distinguish subtle differences between cell types and cells undergoing changes and is gaining acceptance as a diagnostic tool in high throughput screening for drug discovery applications. In this work the development and manufacture of an electrokinetic-based microtitre plate is described. The plate is intended to be compatible with automated sample loading and handling systems. Manufacturing of the microtitre plate, which employs indium tin oxide microelectrodes, has been entirely undertaken using excimer and ultra-fast pulsed laser micromachining due to its flexibility in materials processing and accuracy in microstructuring. Laser micromachining has the ability to rapidly realize iterations in device prototype design while also having the capability to be scaled up for large scale manufacture. Device verification is achieved by the measurement of the electrorotation and dielectrophoretic properties of yeast cells while the flexibility of the developed microtitre plate is demonstrated by the selective separation of live yeast from polystyrene microbeads.

  8. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  9. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  10. Study of the mechanism of acetonitrile stacking and its application for directly combining liquid-phase microextraction with micellar electrokinetic chromatography.

    PubMed

    Sun, Jingru; Feng, Jing; Shi, Ludi; Liu, Laping; He, Hui; Fan, Yingying; Hu, Shibin; Liu, Shuhui

    2016-08-26

    Acetonitrile stacking is an online concentration method that is distinctive due to its inclusion of a high proportion of organic solvent in sample matrices. We previously designed a universal methodology for the combination of liquid-phase microextraction (LPME) and capillary electrophoresis (CE) using acetonitrile stacking and micellar electrokinetic chromatography (MEKC) mode, thereby achieving large-volume injection of the diluted LPME extractant and the online concentration. In this report, the methodology was extended to the analysis of highly substituted hydrophobic chlorophenols in wines using diethyl carbonate as the extractant. Additionally, the mechanism of acetonitrile stacking was studied. The results indicated that the combination of LPME and MEKC exhibited good analytical performance: with ∼40-fold concentration by LPME, a 20-cm (33% of the total length) sample plug injection of an eight-fold dilution of diethyl carbonate with the organic solvent-saline solution produced enrichments higher by a factor of 260-791. Limits of qualification ranged from 5.5 to 16.0ng/mL. Acceptable reproducibilities of lower than 1.8% for migration time and 8.6% for peak areas were obtained. A dual stacking mechanism of acetonitrile stacking was revealed, involving transient isotachophoresis plus pH-junction stacking. The latter was associated with a pH shift induced by the presence of acetonitrile. The pseudo-stationary phase (Brij-35) played an important role in reducing the CE running time by weakening the isotachophoretic migration of the analyte ions following Cl(-) ions. The combination of acetonitrile stacking and nonionic micelle-based MEKC appears to be a perfect match for introducing water-immiscible LPME extractants into an aqueous CE system and can thus significantly expand the application of LPME-CE in green analytical chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Chromatographic and mass spectrometric techniques in studies on oxidative stress in autism.

    PubMed

    Kałużna-Czaplińska, Joanna; Jóźwik-Pruska, Jagoda

    2016-04-15

    Healthy body is characterized by the presence of a dynamic and balanced equilibrium between the production of reactive oxygen species (ROS) and the antioxidant capacity. In oxidative stress this balance is switched to reactions of oxidation leading to increased production of ROS, exceeding the capacity of physiological antioxidant systems. Oxidative stress is known to be linked to many disturbances, disorders and diseases. One of these is the autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder manifested by abnormalities in social communication and interaction, as well as by occurrence of repetitive, restricted patterns of behavior or activities. It is believed that adequate knowledge about the oxidative stress biomarkers and the possibility of their reliable measuring could be useful in broadening knowledge on various diseases including ASD. A high number of compounds have been proposed as biomarkers of oxidative stress. Some of these are connected with the severity of ASD. The present review gives a summary of the chromatographic techniques used for the determination of biomarkers for oxidative stress in autism, and of other compounds important in this context. The first part of the review focuses on the correlation between oxidative stress and autism. The second part describes applications of chromatographic and mass spectrometric methods to the analysis of different metabolites connected with oxidative stress in biological fluids of autistic children. Advantages as well as disadvantages of the application of these methods for the analysis of different types of oxidative stress biomarkers are discussed.

  12. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  13. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  14. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders.

    PubMed

    Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna

    2016-01-01

    Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.

  15. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1993--January 31, 1996

    SciTech Connect

    Sepaniak, M.J.

    1998-02-01

    The seminal work of Jorgenson in 1981 ushered in the modern era of capillary electrophoresis (CE). Since that time, research activities involving capillary electrokinetic methods of separation have grown exponentially. Numerous conferences, symposia, monographs, and dedicated journals attest to the maturing of these techniques. While many of the obvious approaches have been explored, and instrumentation is reasonably well-developed, the full potential of CE has clearly not yet been reached. Moreover, CE techniques are not universally accepted as desirable alternatives to traditional chromatographic and electrophoretic methods of separation. Thus, it is likely that research into various aspects of capillary electrokinetic separations will continue at a torrid pace for at least the remainder of this decade.

  16. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.

    PubMed

    Kim, Seong-Hye; Han, Hyo-Yeol; Lee, You-Jin; Kim, Chul Woong; Yang, Ji-Won

    2010-07-15

    Electrokinetic remediation has been successfully used to remove organic contaminants and heavy metals within soil. The electrokinetic process changes basic soil properties, but little is known about the impact of this remediation technology on indigenous soil microbial activities. This study reports on the effects of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. The main removal mechanism of diesel was electroosmosis and most of the bacteria were transported by electroosmosis. After 25 days of electrokinetic remediation (0.63 mA cm(-2)), soil pH developed from pH 3.5 near the anode to pH 10.8 near the cathode. The soil pH change by electrokinetics reduced microbial cell number and microbial diversity. Especially the number of culturable bacteria decreased significantly and only Bacillus and strains in Bacillales were found as culturable bacteria. The use of EDTA as an electrolyte seemed to have detrimental effects on the soil microbial activity, particularly in the soil near the cathode. On the other hand, the soil dehydrogenase activity was enhanced close to the anode and the analysis of microbial community structure showed the increase of several microbial populations after electrokinetics. It is thought that the main causes of changes in microbial activities were soil pH and direct electric current. The results described here suggest that the application of electrokinetics can be a promising soil remediation technology if soil parameters, electric current, and electrolyte are suitably controlled based on the understanding of interaction between electrokinetics, contaminants, and indigenous microbial community.

  17. Column performance study of different variants of liquid chromatographic technique: an application on pharmaceutical ternary mixtures containing tetryzoline.

    PubMed

    Salem, Hesham; Hassan, Nagiba Y; Lotfy, Hayam M; Saleh, Sarah S

    2015-01-01

    High-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (UPLC) and rapid resolution liquid chromatographic (RRLC) methods have been developed and validated for the separation and quantitation of both or either of two ternary mixtures present in ophthalmic solutions. The first mixture contains chloramphenicol, dexamethasone sodium phosphate and tetryzoline HCl (TZH); while the second one contains ofloxacin, prednisolone acetate and TZH. Both preparations contain benzalkonium chloride as a preservative. The columns used were a HPLC column (C18 5 µm particle size), a RRLC column (C18 2.6 µm particle size) and a UPLC column (C18 1.7 µm particle size). A comparative study was conducted to illustrate the effect of the change in column particle size and dimensions on the other chromatographic conditions, backpressure and the separation of both ternary mixtures. The methods were validated as per ICH guidelines where accuracy, repeatability, interday precision and robustness were found to be within the acceptable limits. The RRLC column provided shorter run time and better resolution than HPLC, while the UPLC column gave the shortest run time for all columns. The RRLC column resulted in minimum backpressure, so it could be used with any HPLC instrument, which makes the method more practical and economic. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.

  18. A high-performance liquid chromatographic method for determination of scopolin in rat plasma: application to pharmacokinetic studies.

    PubMed

    Xia, Yu-Feng; Dai, Yue; Wang, Qiang; Cai, Fei

    2008-10-01

    An analytical method based on high-performance liquid chromatographic (HPLC) with ultraviolet (UV) detection was developed for determination of scopolin in rat plasma using aesculin as internal standard (IS). After protein precipitation of plasma sample with methanol, the supernatant was directly injected and analyzed. Chromatographic separation was achieved on a C18 column using methanol and distilled water (22:78, v/v) containing 0.2% (v/v) glacial acetic acid as mobile phase with a column temperature of 30 degrees C. The UV detector was set at 338 nm. The calibration curve was linear over the range of 0.105-13.125 microg/mL with a correlation coefficient of 0.9998. The retention times of aesculin and scopolin were 10.4 and 12.8 min, respectively. The recoveries for plasma samples of 0.105, 4.725 and 13.125 microg/mL were 91.08, 95.30 and 96.10%, respectively. The RSD of intra- and inter-day assay variations was less than 7.35%. The lower limit of detection was 0.03 microg/mL .This HPLC assay is a simple, sensitive and accurate and was successfully applied to the pharmacokinetic study of scopolin in rats.

  19. Chromatographic analysis of some drugs employed in erectile dysfunction therapy: qualitative and quantitative studies using calixarene stationary phase.

    PubMed

    Hashem, Hisham; Ibrahim, Adel Ehab; Elhenawee, Magda

    2014-10-01

    In this study, the effect of change in chromatographic process variables on the retention behavior of four drugs employed in erectile dysfunction therapy on a calixarene stationary phase is described. Three of these drugs are known to treat erectile dysfunction, namely, sildenafil citrate, tadalafil, and apomorphine hydrochloride, and one drug that is used as opioid analgesic, tramadol hydrochloride, which is quiet widely misused to treat premature ejaculation. The results indicate the importance of considering the structure and pKa values of drugs to be separated along with mobile phase composition. A new optimized, rapid, and accurate liquid chromatography method is also established for simultaneous determination of sildenafil citrate, tadalafil, and apomorphine hydrochloride in pharmaceutical preparations and bulk powders. The chromatographic separation of the three pharmaceuticals was achieved on a calixarene column in less than 10 min using a binary mobile phase of 35% acetonitrile and 65% 50 mM sodium perchlorate pH2.5 at 1 mL/min flow rate. The method was validated for system efficiency, linearity, accuracy, precision, limits of detection and quantitation, specificity, stability, and robustness. Statistical analysis proved that the method enabled reproducible and selective quantification of all three analytes in bulk drugs and in pharmaceutical preparations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    PubMed

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  1. Electrokinetic demonstration at Sandia National Laboratories: Use of transference numbers for site characterization and process evaluation

    SciTech Connect

    Lindgren, E.R.; Mattson, E.D.

    1997-03-01

    Electrokinetic remediation is generally an in situ method using direct current electric potentials to move ionic contaminants and/or water to collection electrodes. The method has been extensively studied for application in saturated clayey soils. Over the past few years, an electrokinetic extraction method specific for sandy, unsaturated soils has been developed and patented by Sandia National Laboratories. A RCRA RD&D permitted demonstration of this technology for the in situ removal of chromate contamination from unsaturated soils in a former chromic acid disposal pit was operated during the summer and fall of 1996. This large scale field test represents the first use of electrokinetics for the removal of heavy metal contamination from unsaturated soils in the United States and is part of the US EPA Superfund Innovative Technology Evaluation (SITE) Program. Guidelines for characterizing a site for electrokinetic remediation are lacking, especially for applications in unsaturated soil. The transference number of an ion is the fraction of the current carried by that ion in an electric field and represents the best measure of contaminant removal efficiency in most electrokinetic remediation processes. In this paper we compare the transference number of chromate initially present in the contaminated unsaturated soil, with the transference number in the electrokinetic process effluent to demonstrate the utility of evaluating this parameter.

  2. Enhanced electrokinetic manipulation and impedance sensing using FPGA digital signal processing

    NASA Astrophysics Data System (ADS)

    Higginbotham, Steven N.; Sweatman, Denis R.

    2006-01-01

    Electrokinetic manipulation of microscopic biological particles, such as bacteria and other cells, is useful in the technology of lab-on-a-chip devices and micro-total-analysis systems (μTAS). In electrokinetic manipulation, non-uniform electric fields are used to exploit the dielectric properties of suspended biological microparticles, to induce forces and torques on the particles. The electric fields are produced by planar electrode arrays patterned on electrically-insulating substrates. Biological microparticles are dielectrically-heterogeneous structures. Each different type of biological cell has a distinct dielectric frequency response signature. This dielectric distinction allows specificity when manipulating biological microparticles using electrokinetics. Electrokinetic microbiological particle manipulation has numerous potential applications in biotechnology, such as the separation and study of cancerous cells, determining the viability of cells, as well as enabling more automation and parallelization in microbiological research and pathology. This paper presents microfabricated devices for the manipulation of biological microparticles using electrokinetics. Methods of impedance sensing for determining microparticle concentration and type are also discussed. This paper also presents methods of using digital signal processing systems to enhance the manipulation and sensing of the microbiological particles. A Field-Programmable Gate Array (FPGA) based system is demonstrated which is used to digitally synthesize signals for electrokinetic actuation, and to process signals for impedance sensing.

  3. Incorporating Electrokinetic Phenomena into EBNavierStokes

    SciTech Connect

    Chu, K; Trebotich, D

    2006-01-10

    Motivated by the recent interest in using electrokinetic effects within microfluidic devices, they have extended the EBNavierStokes code to be able to handle electrokinetic effects. With this added functionality, the code becomes more useful for understanding and designing microfluidic devices that take advantage of electrokinetic effects (e.g. pumping and mixing). Supporting the simulation of electrokinetic effects required three main extensions to the existing code: (1) addition of an electric field solver, (2) development of a module for accurately computing the Smulochowski slip-velocity at fluid-solid boundaries, and (3) extension of the fluid solver to handle nonuniform inhomogeneous Dirichlet boundary conditions. The first and second extensions were needed to compute the electrokinetically generated slip-velocity at fluid-solid boundaries. The third extension made it possible for the fluid flow to be driven by a slip-velocity boundary condition (rather than by a pressure difference between inflow and outflow). In addition, several small changes were made throughout the code to make it compatible with these extensions. This report documents the changes to the EBNavierStokes code required to support the simulation of electrokinetic effects. They begin with a brief overview of the problem of electrokinetically driven flow. Next, they present a detailed description of the changes to the EBNavierStokes code. Finally, they present some preliminary results and discuss future directions and improvements to the code.

  4. Qualification of an electro-deionization module via experimental design and ion-chromatographic studies.

    PubMed

    Castillo, Elodie; Coleman, David E; Darbouret, Daniel; Dimitrakopoulos, Telis; Feuillas, Emmanuel; Vanatta, Lynn E

    2004-06-11

    To meet the needs of the laboratory-water market, a modified electro-deionization (EDI) module has been developed to produce Type 2 purified water. An EDI module consists of desalting and concentrating fluidic compartments that are both filled with anion and cation ion-exchange resins; an anode and a cathode electrode are at opposite ends. In the design in this research, the anode electrode is segmented into three parts and individual dc amperages are applied to each segment; the cathode electrode is a single common electrode. Critical to the performance and longevity of this type of EDI module are: (1) the optimization of the applied dc amperages and (2) the ionic mass balance (i.e., the concentrations of specific and total ions of the RO feedwater to the module compared to the concentrations in the water exiting the module via the desalting and concentrating compartments). To determine a suitable current for each electrode pair, a full-factorial experimental design was developed and employed. For the application of this combination of amperages, the critical parameter of specific-ion mass balance was determined using ion-chromatographic measurements.

  5. An inverse gas chromatographic methodology for studying gas-liquid mass transfer.

    PubMed

    Paloglou, A; Martakidis, K; Gavril, D

    2017-01-13

    A novel methodology of reversed flow inverse gas chromatography (RF-IGC) is presented. It permits the simultaneous determination of mass transfer coefficients across the gas liquid interface as well as the respective solubility parameters and thermodynamic functions of dissolution of gases into liquids. The standard deviation of the experimentally determined parameters is estimated for first time, which combined with the successful comparison of the values of the present parameters with other literature ones ascertain the reliability of the methodology. Another novelty of the present work is that the chromatographic sampling of the physicochemical phenomena is done without performing the usual flow reversals procedure. Vinyl chloride monomer's (VCM) interaction with various composition liquid foods: orange juice, milk and olive oil was used as model system. The present transfer rates are controlled by the gas film at lower temperatures, but at higher temperatures the resistances in both films tend to become equal. The found liquid diffusivity values express the total mass transfer from the gas phase into the liquid's bulk and they decrease with rising temperature, as the solubilities of gases in liquids do. Solubility, expressed by Henry's law constant and the mean values of interfacial thickness are of the same order of magnitude to literature ones. From the thermodynamic point of view, VCM dissolution in all liquids is accompanied by significant heat release and it is a slightly non-spontaneous process, near equilibrium, while the entropy change values are negative. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Gas chromatographic method for analysis of 2,4-D in wheat: interlaboratory study.

    PubMed

    Smith, A E

    1984-01-01

    A procedure is described for the determination of 2,4-D (2,4-dichlorophenoxyacetic acid) in dried green plant material. Samples are first extracted with dilute sodium hydroxide, and then after acidification and solvent extraction, the residues are methylated using boron trifluoride-methanol reagent. The methyl ester of 2,4-D is cleaned up on a Florisil column and quantitated using a gas chromatograph equipped with an electron capture detector. Six laboratories made quadruplicate determinations on control, dried green wheat check samples, on 4 similar samples fortified at the 0.50 ppm level, and on 4 samples fortified at the 1.00 ppm level with 2,4-D. Based on the data from 5 laboratories, the plant fortifications of 0.50 and 1.00 ppm yielded average interlaboratory recoveries of 2,4-D of 83.3 and 88.2%, respectively. The procedure also has potential for the determination of 2,4-D in wheat straw and wheat grain.

  7. Implementation of Electrokinetic-ISCO Remediation

    NASA Astrophysics Data System (ADS)

    Wu, M. Z.; Reynolds, D.; Fourie, A.; Prommer, H.; Thomas, D.

    2011-12-01

    Significant challenges remain in the remediation of low-permeability porous media (e.g. clays, silts) contaminated with dissolved and sorbed organic contaminants. Current remediation technologies, such as in-situ chemical oxidation (ISCO), are often ineffective and the treatment region is limited by very slow rates of groundwater flow (advection) or molecular diffusion. At the laboratory-scale several studies (e.g. Reynolds et al. 2008) have highlighted the potential for utilising electrokinetic transport, as induced by the application of an electric field, to deliver a remediation compound (e.g. permanganate, persulfate) within heterogeneous and low-permeability sediments for ISCO (termed EK-ISCO) or other treatments. Process-based numerical modelling of the coupled flow, transport and reaction processes can provide important insights into the prevailing controls and feedback mechanisms and therefore guide the optimisation of EK-ISCO remediation efficacy. In this study, a numerical model was developed that simulates groundwater flow and multi-species reactive transport under both hydraulic and electric gradients (Wu et al. 2010). Coupled into the existing, previously verified reactive transport model PHT3D (Prommer et al. 2003), the model was verified against analytical solutions and data from experimental studies. Using the newly developed model, the sensitivity of electrokinetic, hydraulic and engineering parameters as well as alternative configurations of the EK-ISCO treatment process were investigated. The duration and energy required for remediation was most dependent upon the applied voltage gradient and the natural oxidant demand and all investigated parameters affected the remediation process to some extent. Investigated variants of treatment configurations included several alternative locations for oxidant injection and a series of one-dimensional and two-dimensional electrode configurations.

  8. Electrokinetic phenomena in a kerosene-based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Zakinyan, A. R.; Vegera, Zh. G.; Borisenko, O. V.

    2012-03-01

    We propose the methods for studying electrokinetic phenomena in magnetic colloidal systems (magnetic fluids), which make it possible to use the magnetic properties of particles of the disperse phase. Electrophoresis and the sedimentation potential in a kerosene-based magnetic fluid are studied. It is shown that only a small part (approximately one-thousandth) of all disperse particles in the magnetic fluid under investigation are charged, the sign of the particle charge being negative.

  9. Dielectrophoretic concentration of particles under electrokinetic flow

    DOEpatents

    Miles, Robin R.; Bettencourt, Kerry A.; Fuller, Christopher K.

    2004-09-07

    The use of dielectrophoresis to collect particles under the conditions of electrokinetically-driven flow. Dielectrophortic concentration of particles under electrokinetic flow is accomplished by interdigitated electrodes patterned on an inner surface of a microfluid channel, a DC voltage is applied across the ends to the channel, and an AC voltage is applied across the electrodes, and particles swept down the channel electrokinetically are trapped within the field established by the electrodes. The particles can be released when the voltage to the electrodes is released.

  10. Characteristics of near-surface electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Beamish, David

    1999-04-01

    Naturally occurring electric potentials at the Earth's surface are traditionally studied using self-potential geophysics. Recent theoretical and experimental work has reinvestigated the manner in which the measurement can be made dynamically using a pressure source. The methodology, often referred to as seismoelectric, relies on electrokinetic coupling at interfaces in the streaming potential coefficient. The ultimate aim of the developing methodologies lies in the detection of zones of high fluid mobility (permeability) and fluid geochemical contrasts within the subsurface. As yet there are no standard methods of recording and interpretation: the technique remains experimental. Field measurements are made using a seismic source and by recording electric voltage across arrays of surface dipoles. This study presents observational characteristics of electrokinetic coupling based on experiments carried out in a wide range of environments. Theory concerning the coupled elastic and electromagnetic wave equations in a saturated porous medium is discussed. It is predicted that coupling will produce electromagnetic radiation patterns from vertical electric dipoles generated at interfaces. Surface- and body-wave coupling mechanisms should provide different time-distance patterns. Vertical electric dipole radiation sources are modelled and their spatial characteristics presented. A variety of experimental configurations have been used, and geometries that exploit phase asymmetry to enhance the separation of signal and noise are emphasized. The main experimental results presented are detailed observations in the immediate vicinity of the source. Simultaneous arrivals across arrays of surface dipoles are not common. The majority of such experiments have indicated that shot-symmetric voltages which display low-velocity moveout are the dominant received waveforms.

  11. Electrokinetic coupling in hydraulic fracture propagation

    NASA Astrophysics Data System (ADS)

    Cuevas, Nestor Herman

    2009-12-01

    Electrokinetic coupling is the most popular mechanism proposed to explain observed electromagnetic signals associated with the hydraulic fracturing of rocks. Measurements in both controlled laboratory and in situ conditions show clear evidence of the phenomenon. However there have been no reports on the description of the source mechanism, its relationship to a propagating crack, nor the electromagnetic field distribution due to such a source advancing through an electrically conductive medium. In this work it is shown that a surface electric current density arising on the walls of a fluid driven propagating crack can explain the measurements of electric streaming potential recorded during hydraulic fracturing experiments. The properties of the streaming current source are studied at the microscopic scale in light of the electrokinetic coupling expected at the outermost grains of the crack's surface. Expressions are derived for the average macroscopic transport equations describing the coupled fluid, and electrical current flow, at the interface between a fluid continuum and a homogeneous porous medium, where a Darcy flow regime (porous medium) competes with a rather Poiseuille type (fracture channels). The properties of the electrokinetic boundary sources are analyzed in light of the average electrical current density arising on the interface, as the fluid electrolyte flows in both the porous media and the adjacent fluid continuum. It is found that two coupling coefficients are required to describe the streaming current density. Indeed the flow is driven by both, a tangential pressure gradient, as well as by forward momentum transfer across the permeable boundary. The coupling coefficients are obtained from the spatial average of the tangential stress exerted on the pore surfaces, and they are found to be position dependent, as the tangential stress transitions from that on the porous conduits, to that on the surface of the outer most grains. Furthermore each

  12. Electrokinetic Microstrirring to Enhance Immunoassays

    NASA Astrophysics Data System (ADS)

    Feldman, Hope; Sigurdson, Marin; Meinhart, Carl

    2006-11-01

    Electrokinetic microstirring is used to improve the sensitivity of microfluidic heterogeneous immuno-sensors by enhancing the transport in diffusion-limited reactions. The AC electrokinetic force, Electrothermal Flow, is exploited to create a circular stirring fluid motion, thereby providing more binding opportunities between suspended and wall-immobilized molecules. This process can significantly reduce test times, important for both field-portable biosensors and for lab-based assays. A 2-D numerical simulation model is used to predict the effect of electrothermal flow on a heterogeneous immunoassay resulting from an AC potential applied to two parallel electrodes. The binding is increased by a factor of 7 for an applied voltage of 10 Vrms. The effect was investigated experimentally using a high affinity biotin-streptavidin reaction. Microstirred reaction rates were compared with passive reactions. The measurements show on average an order of magnitude increase in binding between immobilized biotin and fluorescently-labeled streptavidin after 5 minutes. Therefore, this technique shows significant promise for reducing incubation time and enhancing the sensitivity of immunoassays.

  13. Multivariate curve resolution of incomplete fused multiset data from chromatographic and spectrophotometric analyses for drug photostability studies.

    PubMed

    De Luca, Michele; Ragno, Gaetano; Ioele, Giuseppina; Tauler, Romà

    2014-07-21

    An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid-base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described.

  14. AC Electrokinetics of Physiological Fluids for Biomedical Applications

    PubMed Central

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C.; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2016-01-01

    AC electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration and separation, makes it possible to develop integrated systems for clinical diagnostics in non-traditional healthcare settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented. PMID:25487557

  15. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    PubMed

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  16. Testing and evaluation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Ally, M.R.

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  17. Electrokinetics: insights from simulation on the microscopic scale

    NASA Astrophysics Data System (ADS)

    Rotenberg, Benjamin; Pagonabarraga, Ignacio

    2013-04-01

    Electrokinetic effects, i.e. the coupled hydrodynamic and electric phenomena which occur near charged interfaces, constitute a challenge to theorists due to the variety of length and time scales involved. We discuss recent advances in the modelling of these phenomena, emphasising the interplay between the molecular specificity and the collective induced flows that emerge. We discuss the complementary simulation methodologies that have been developed either to focus on the molecular aspects of electrokinetics or on their effective properties on larger scales, as well as the proposed hybrid schemes that can incorporate both aspects. We highlight the insights that molecular studies have brought on the nature of interfacial charges and their implications for kinetic phenomena in confined fluids and also discuss advances in a number of relevant contexts.

  18. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  19. Mild electrokinetic treatment of cadmium-polluted manure for improved applicability in greenhouse soil.

    PubMed

    Huang, Bin; Chi, Guangyu; Chen, Xin; Shi, Yi

    2017-09-07

    Applications of cadmium (Cd) and salinity-containing manures contribute to Cd pollution and salinization in greenhouse soils. In this study, chicken manure polluted with Cd (5.6 mg/kg) was mildly electrokinetically treated (0.25 V/cm) for 48 h with intermittent replacement of catholyte with 20 mM acetic acid solution to remove Cd and salinity for application without need of post-treatment in greenhouse soil. The electrokinetic treatment created pH conditions mainly ranging from 5.0 to 8.0 within the manure for minimizing re-precipitation of desorbed Cd and evaporative loss of ammonium. However, without manure pre-acidification, electrokinetic treatment resulted in negligible removal of total Cd but 61.7% of increase in the small fraction of exchangeable Cd, due to poor desorption but enhanced formation of exchangeable Cd. In contrast, manure pre-acidification with 20 mM acetic acid favored Cd desorption, leading to electrokinetic removal of exchangeable, carbonate-bound, and total Cd by 32.2%, 34.5%, and 14.5%, respectively. Mild electrokinetic treatment of manure with and without pre-acidification resulted in similar removal of salinity (72.3% and 68.0%), similar pH condition (7.2 and 7.4), and basically same evaporative loss of ammonium (14.6% and 14.2%). Overall, the mild electrokinetic treatment considerably lowered the risk of Cd and the salinity from the pre-acidified manure for improved applicability in greenhouse soil, and more studies are needed to enhance the performance of electrokinetic Cd removal from manure.

  20. A rotating disk electrokinetic method for characterizing polyelectrolyte pharmaceutical gels.

    PubMed

    Qu, Beibei; Lee, Ping I

    2012-05-01

    Charge groups in polyelectrolyte gels can affect the entrapment and release of ionic drugs as well as influencing the stability of colloidal and nanoparticulate drug delivery systems. An accurate knowledge of gel charge properties is therefore important to the understanding and design of such drug delivery systems. Existing rotating disk method for quantifying the surface potential of flat surfaces is based on the classical electrokinetic model that neglects the effect of surface conductivity and is therefore only applicable to ion-impenetrable hard surfaces. This classical electrokinetic model would be inaccurate for polyelectrolyte gel systems involving ion-penetrable charged layers or "soft" surfaces. In this study, we developed a new rotating disk model for characterizing charge properties of ion penetrable soft surfaces and tested it on polyvinyl alcohol (PVA)/polyacrylic acid (PAA), gelatin, and gelatin/PAA polyelectrolyte gels. In addition to classical electrokinetic parameters, the contribution of surface conductivity known to be very significant for soft and ion-penetrable gel surfaces has been taken into account in this new rotating disk model. Based on this new approach, two rotating gel disks of different radius but with identical gel composition and preparation procedures were employed for determining the gel surface potential and density of fixed charge groups. A comparison of the resulting data with that obtained from existing rotating disk model ignoring the surface conductivity reveals a significant underestimation of the gel surface potential and the density of fixed charge groups by the ion-impenetrable hard surface approach. Our results thus confirm that the contribution of surface conductivity is significant in the electrokinetic characterization of polyelectrolyte gels that can be evaluated with our new rotating disk model. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Study on 3D surfactant assisted electrokinetic remediation of 1,2,4-trichlorobenzene in low permeability soil

    NASA Astrophysics Data System (ADS)

    Qiao, W.; Ye, S.; Wu, J.

    2014-12-01

    Electrickinetic(EK) is a promising remediation technology because of its capability to remediate soils with low permeability. It has been used for heavy metals and organic pollutant(OPs) contaminated soils. As the most OPs are poor solubility and strong sorption capacity, combined EK technology is usually used, for example, EK combined with surfactants. Numerous combined EK tests are done in one-dimension(1D) column, however, it is proved that there is a big gap between 1D tests and field application. The objectives of this study are to investigate the remediation efficiency and EK behavior of 1,2,4-trichlorobenzene(1,2,4-TCB) contaminated clay enhanced by surfactants in a three-dimension reactor with 28cm length×15cm width×16cm height. 1,2,4-TCB was one of the main contaminants at a field site in Nanjing, China, where the polluted soils are clay. Soil filled in EK cell was divided into six layers in depth, and each layer was divided into six parts in length and three parts in width. There were 108 specimens in total which realized 3D monitoring the effects of EK. Triton X-100(Exp1) and Tween80(Exp2) dissolved in NaCO3/NaHCO3 buffer respectively, were used as the anode purging solution. The distributions of soil pH and water content showed that the buffer was sufficient to neutralize H+ produced at anode and the direction of electroosmotic flow(EOF) remained constant. Exp2 generated a higher EOF than Exp1, but remediation efficiencies were not satisfactory so far. The concentration of 1,2,4-TCB in soil reached a peak and nadir in the normalized distances of 0.75 and 0.9 from cathode after 5 days, respectively. The 1,2,4-TCB concentration in the peak was almost twice as much as the initial concentration. It suggested that 1,2,4-TCB was desorbed from soil by surfactants and was transported from anode to cathode by EOF, which proved the capability of EK with surfactants to move 1,2,4-TCB in clay. The concentration of 1,2,4-TCB in the normalized distances of 0

  2. An electrokinetic study on a synthetic adsorbent of crystalline calcium silicate hydrate and its mechanism of endotoxin removal.

    PubMed

    Wang, Qun; Zhang, John P; Smith, Timothy R; Hurst, William E; Sulpizio, Thomas

    2005-08-01

    A synthetic, disposable adsorbent of crystalline calcium silicate hydrate, LRA product by Advanced Minerals Corp., has been found highly effective for endotoxin removal from aqueous solutions. Endotoxin removal by this adsorbent is greatly enhanced by the addition of an electrolyte, such as NaCl or Tris-HCl. The electrophoretic method has been used to study the mechanism of endotoxin adsorption. In many cases, adding the electrolyte increases the magnitude of negative zeta potential of the adsorbent in water, while endotoxin adsorption reduces the magnitude. It is hypothesized that ion-exchange between monovalent cations from the aqueous phase and Ca2+ ions near the surface of the adsorbent shift zeta potential of the adsorbent to the more negative direction. It is further hypothesized that endotoxins form cationic species through binding between its phosphate groups and Ca2+ ions dissolved from the adsorbent. The adsorption of endotoxins in the form of cationic species is enhanced by the increased negative zeta potential of the adsorbent when an electrolyte is added.

  3. [Optimization of electrode configuration in soil electrokinetic remediation].

    PubMed

    Liu, Fang; Fu, Rong-Bing; Xu, Zhen

    2015-02-01

    Electric field distributions of several different electrode configurations in non-uniform electric field were simulated using MATLAB software, and the electrokinetic remediation device was constructed according to the best electrode configuration. The changes of soil pH and heavy metal residues in different parts of the device during the electrokinetic remediation were also studied. The results showed that, in terms of the effectiveness of the electric field strength, the square (1-D-1) and hexagonal (2-D-3) were the optimal electrode configurations for one-dimensional and two-dimensional respectively and the changes of soil pH, the removal of heavy metals and the distribution of electric field were closely related to one another. An acidic migration band, which could prevent premature precipitation of heavy metals to a certain extent and promote electrokinetic removal of heavy metals, was formed gradually along with the remediation in the whole hexagon device when the cathodic pH was controlled during the remediation of the four cationic metallic ions, Cd2+, Ni2+, Pb2+ and Cu2+. After 480-hour remediation, the total removals of Cd, Ni, Pb and Cu were 86.6%, 86.2%, 67.7% and 73.0%, respectively. Remediation duration and replacement frequency of the electrodes could be adjusted according to the repair target.

  4. AC Electrokinetic Cell Separation on a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary; Chang, Hsueh-Chia

    2009-03-01

    Rapid cell separation and collection is demonstrated through the integration of electrokinetic pumps, dielectrophoretic (DEP) traps and field driven valves into a well designed microfluidic channel loop. We present the ground-up design and analysis of this fully functional microfluidic device for the rapid separation and collection of live and dead yeast cells and malaria red blood cells (RBCs) at low concentrations. DEP cell sorting and concentration schemes are based on the exploitation of cell specific DEP crossover frequencies (cof's). A rigorous DEP study of yeast and RBCs is presented and used to determine optimal conditions for cell separation. By utilizing a glutaraldehyde crosslinking cell fixation reaction that is sensitive to cell membrane protein concentration, we demonstrate the ability to further amplify these differences between healthy and unhealthy cells as well as stabilize their DEP cof's. Pumping is achieved with a new type of electrokinetic flow, AC electrothermal electro-osmosis (ETEO) and is shown to scale inversely with the field induced debye length and drive fluid velocities in excess of 6 mm/sec. The well characterized electrokinetic phenomena are integrated into a microchannel loop with a specifically designed electrode field penetration length for low concentration cell separation and concentration.

  5. INTERLABORATORY STUDY OF A THERMOSPRAY-LIQUID CHROMATOGRAPHIC/MASS SPECTROMETRIC METHOD FOR SELECTED N-METHYL CARBAMATES, N-METHYL CARBAMOYLOXIMES, AND SUBSTITUTED UREA PESTICIDES

    EPA Science Inventory

    A thermospray-liquid chromatographic/mass spectrometric (TS-LC/MS) method was evaluated in an interlaboratory study for determining 3 N-methyl carbamates (bendiocarb, carbaryl, and carbofuran), 3-N-methyl carbamoyloximes (aldicarb, methomyl, and oxamyl), 2 substituted urea pestic...

  6. INTERLABORATORY STUDY OF A THERMOSPRAY-LIQUID CHROMATOGRAPHIC/MASS SPECTROMETRIC METHOD FOR SELECTED N-METHYL CARBAMATES, N-METHYL CARBAMOYLOXIMES, AND SUBSTITUTED UREA PESTICIDES

    EPA Science Inventory

    A thermospray-liquid chromatographic/mass spectrometric (TS-LC/MS) method was evaluated in an interlaboratory study for determining 3 N-methyl carbamates (bendiocarb, carbaryl, and carbofuran), 3-N-methyl carbamoyloximes (aldicarb, methomyl, and oxamyl), 2 substituted urea pestic...

  7. Capillary Separation: Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Terabe, Shigeru

    2009-07-01

    Micellar electrokinetic chromatography (MEKC), a separation mode of capillary electrophoresis (CE), has enabled the separation of electrically neutral analytes. MEKC can be performed by adding an ionic micelle to the running solution of CE without modifying the instrument. Its separation principle is based on the differential migration of the ionic micelles and the bulk running buffer under electrophoresis conditions and on the interaction between the analyte and the micelle. Hence, MEKC's separation principle is similar to that of chromatography. MEKC is a useful technique particularly for the separation of small molecules, both neutral and charged, and yields high-efficiency separation in a short time with minimum amounts of sample and reagents. To improve the concentration sensitivity of detection, several on-line sample preconcentration techniques such as sweeping have been developed.

  8. Electrokinetic properties of polymer colloids

    NASA Technical Reports Server (NTRS)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  9. Analysis of selected designer benzodiazepines by UHPLC with high-resolution time-of-flight mass spectrometry and the estimation of their partition coefficients by micellar electrokinetic chromatography.

    PubMed

    Tomková, Jana; Švidrnoch, Martin; Maier, Vítězslav; Ondra, Peter

    2017-03-07

    A new ultra high performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry method for the selective and sensitive separation, identification and determination of selected designer benzodiazepines (namely, pyrazolam, phenazepam, etizolam, flubromazepam, diclazepam, deschloroetizolam, bentazepam, nimetazepam and flubromazolam) in human serum was developed. The separation of the studied designer benzodiazepines was achieved on C18 chromatographic column using gradient elution within 6 min without any significant matrix interferences. Liquid-liquid extraction with butyl acetate was applied for serum samples clean-up and preconcentration of studied designer benzodiazepines. The method was validated in terms of linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability. The limit of detection values were in range 0.10-0.15 ng/mL. The method was applied on spiked serum sample to demonstrate its applicability for systematic toxicology analysis. Furthermore, a capillary chromatographic method with micellar electrokinetic chromatography was used for the estimation of partition coefficients of studied designer benzodiazepines as important parameters to evaluate their pharmacological and toxicological properties. This article is protected by copyright. All rights reserved.

  10. Chromatographic assay to study the activity of multiple enzymes involved in the synthesis and metabolism of dopamine and serotonin.

    PubMed

    Morgan, Lindsay D; Baker, Hannah; Yeoman, Mark S; Patel, Bhavik Anil

    2012-03-21

    Serotonin and dopamine are crucial regulators of signalling in the peripheral and central nervous systems. We present an ex-vivo, isocratic chromatographic method that allows for the measurement of tyrosine, L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), tryptophan, 5-hydroxytryptophan (5-HTP), serotonin and 5-hydroxy-3-indoleacetic acid (5-HIAA) in a model central nervous (CNS) system, to study the role of key enzymes involved in the synthesis and metabolism of serotonin and dopamine. By utilising a sample splitting technique, we could test a single CNS sample at multiple time points under various pharmacological treatments. In, addition, we were able to conduct this assay by utilising the endogenous biochemical components of the CNS to study the synthesis and metabolism of serotonin and dopamine, negating the requirement of additional enzyme activators or stabilisers in the biological matrix. Finally we utilised NSD-1015, an aromatic amino acid decarboxylase enzyme inhibitor used to study the synthesis of dopamine and serotonin to monitor alterations in levels of key neurochemicals. 3-hydroxybenzylhydrazine dihydrochloride (NSD-1015) was able to reduce levels of serotonin and dopamine, whilst elevating precursors L-DOPA and 5-HTP.

  11. Evaluation of microwave-assisted extraction for aristolochic acid from Aristolochiae Fructus by chromatographic analysis coupled with nephrotoxicity studies.

    PubMed

    Zhou, Ting; Xiao, Xiao-Hua; Wang, Jia-Yue; Chen, Jin-Ling; Xu, Xian-Fang; He, Zhi-Feng; Li, Gong-Ke

    2012-02-01

    In this paper, a microwave-assisted extraction (MAE) method was established for aristolochic acid-I from Aristolochiae Fructus, and the advantage of MAE was evaluated by chromatographic analysis coupled with nephrotoxicity studies. The experimental parameters of MAE for aristolochic acid-I in Aristolochiae Fructus were investigated and MAE was compared with Soxhlet extraction and ultrasound-assisted extraction in terms of extraction yields and extraction conditions. Under the optimum conditions, MAE could provide higher extraction yields of aristolochic acid-I (1.10 mg/g) than ultrasound-assisted extraction (0.82 mg/g) and Soxhlet extraction (0.95 mg/g), in addition to using less solvent and having a shorter extraction time. Furthermore, the nephrotoxicities of the extracts of Aristolochiae Fructus from different extraction procedures were investigated in Sprague-Dawley rats. The results of nephrotoxicity studies of, for example, general conditions, biochemistry parameters and histopathology examination showed no significantly differences in the nephrotoxicity levels of the extracts from MAE and that from Soxhlet extraction. These results indicated that MAE technique is a simple, rapid and effective extraction method, and the microwave irradiation during MAE procedure did not have any influence on the nephrotoxicity of Aristolochiae Fructus compared with Soxhlet extraction.

  12. Comparative study of different chromatographic techniques for the analysis of multi-residues of some approved antimicrobials in fish tissues.

    PubMed

    Riad, Safa'a M; Rezk, Mamdouh R; Khattab, Fatma I; Marzouk, Hoda M

    2015-01-01

    Two chromatographic methods were developed, optimized and validated for the simultaneous determination of three approved aquaculture antimicrobials, namely sulphadimethoxine sodium, trimethoprim and florphenicol in fish tissues. The developed methods were based on simple liquid extraction technique. The first method employs thin-layer chromatography as a clean-up procedure coupled with densitometric determination for the separated drugs. The second method is an HPLC one using X-Terra™ C18 column. Several mobile-phase systems and extracting solvents were tried to optimize the separation and the extraction procedures from fish tissues. The procedures were applied for the analysis of spiked fish tissue samples at three different concentration levels (10, 50 and 100 ppm). A comparative study was conducted between the proposed methods to discuss the advantage of each one. The methods were validated according to the international conference on harmonization guidelines. The proposed methods were successfully applied for the determination of the studied drugs in spiked fish tissues, pure powders and in their veterinary pharmaceutical formulation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Chromatographic techniques coupled with mass spectrometry for the determination of organic acids in the study of autism.

    PubMed

    Kałużna-Czaplińska, Joanna; Zurawicz, Ewa; Jóźwik, Jagoda

    2014-08-01

    Chromatographic methods find application in the diagnostics and prognosis of diseases. They are used in finding new biomarkers, which may result in early medical intervention. Early diagnosis and intervention are especially important in the case of diseases of unknown etiology. One of these is autism. Autism is a neurodevelopmental disorder characterized by severe impairment in reciprocal social interaction and communication and a pattern of repetitive or stereotyped behavior. Organic acids are intermediate metabolites of all major groups of organic cellular components and can play a role in the pathogenesis of autism. This review presents information about abnormal levels of some organic acids observed in the urine of children with autism and determination of acids with the use of chromatographic techniques. 342 literature sources on frequency (2005-2012) of the use of chromatographic methods in the determination of organic compounds in various body fluids were searched. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. High-performance liquid chromatographic method for the quantification of Mitragyna inermis alkaloids in order to perform pharmacokinetic studies.

    PubMed

    Sinou, Veronique; Fiot, Julien; Taudon, Nicolas; Mosnier, Joël; Martelloni, Maryse; Bun, Sok S; Parzy, Daniel; Ollivier, Evelyne

    2010-06-01

    In Africa, Mitragyna inermis (Willd.) O. Kuntze (Rubiaceae) is commonly used in traditional medicine to treat malaria. Antimalarial activity is mostly due to the hydromethanolic extract of M. inermis leaves and especially to the main alkaloids, uncarine D and isorhynchophilline. In the present study, we describe for the first time an HPLC method for the simultaneous quantification of uncarine D and isorhynchophylline in biological matrices. SPE was used to extract the components and the internal standard naphthalene from human and pig plasma samples. Chromatographic separation was performed on a C-18 reversed column at a flow rate of 1 mL/min, using methanol-phosphate buffer (10:90, pH 7), as a mobile phase. Good linearity was observed over the concentration ranges of 0.0662-3.31 microg/mL for uncarine D and 0.0476-2.38 microg/mL for isorynchophylline. The precision was less than 12% and the accuracy was from 86 to 107% without any discrepancy between the two species. Uncarine D and isorhynchophylline recoveries were over 80%. These results allowed the quantification of both uncarine D and isorhynchophylline in pig plasma after intravenous administration of M. inermis extract.

  15. Performance of chromatographic systems to model soil-water sorption.

    PubMed

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients.

  16. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil.

    PubMed

    Lear, G; Harbottle, M J; Sills, G; Knowles, C J; Semple, K T; Thompson, I P

    2007-03-01

    Electrokinetic techniques have been used to stimulate the removal of organic pollutants within soil, by directing contaminant migration to where remediation may be more easily achieved. The effect of this and other physical remediation techniques on the health of soil microbial communities has been poorly studied and indeed, largely ignored. This study reports the impact on soil microbial communities during the application of an electric field within ex situ laboratory soil microcosms contaminated with pentachlorophenol (PCP; 100mg kg(-1) oven dry soil). Electrokinetics reduced counts of culturable bacteria and fungi, soil microbial respiration and carbon substrate utilisation, especially close to the acidic anode where PCP accumulated (36d), perhaps exacerbated by the greater toxicity of PCP at lower soil pH. There is little doubt that a better awareness of the interactions between soil electrokinetic processes and microbial communities is key to improving the efficacy and sustainability of this remediation strategy.

  17. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.

    PubMed

    Ouhadi, V R; Yong, R N; Shariatmadari, N; Saeidijam, S; Goodarzi, A R; Safari-Zanjani, M

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of "calcite or carbonate" (CaCO(3)) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  18. Investigations of Induced Charge Electrokinetic Phenomena

    NASA Astrophysics Data System (ADS)

    Pascall, Andrew James

    Recent developments in microfluidics have highlighted the importance of efficiently transporting fluids at the micron scale. This has lead to a resurgence of interest in utilizing electrokinetic phenomena, which scale favorably with the small channel dimensions encountered in microfluidics, to drive fluid flows. This dissertation focuses on induced charge electro-osmosis (ICEO), a nonlinear electrokinetic effect in which an applied electric field both induces and drives a layer of charged fluid near an electrically conductive surface. ICEO has been shown to produce time-averaged flows with AC electric fields and may provide an on-chip means of generating high pressure flows with low applied voltages. Experimental studies of ICEO have shown that standard theories generally overpredict the observed slip velocity, frequently by orders of magnitude. This discrepancy could be explained by the presence of a thin coating of an adventitious dielectric over the conductive surface. In this work, I develop a modified theory of ICEO that incorporates the effects of a dielectric coating and its surface chemistry, both of which act to decrease the slip velocity relative to a clean metal. This theory shows that a layer of dielectric contaminant of only nanometer thickness can lead to significantly suppressed ICEO flows. In order to test this theory, I developed a novel experimental apparatus, the details of which are presented herein, that allows for the observation of ICEO flows over planar surfaces coated with dielectrics of controlled physical properties. Data for over 8000 combinations of parameters over both an oxide dielectric and alkanethiol self-assembled monolayer show unprecedented quantitative agreement with this modified theory. The goal for engineering practical microfluidic devices is to generate the fastest flows possible for a given set of conditions. I end the dissertation with a discussion of how to generate flows that are orders of magnitude faster than those

  19. Simultaneous enantioselective separation of azelastine and three of its metabolites for the investigation of the enantiomeric metabolism in rats. I. Liquid chromatography-ionspray tandem mass spectrometry and electrokinetic capillary chromatography.

    PubMed

    Heinemann, Ute; Blaschke, Gottfried; Knebel, Norbert

    2003-08-15

    Enantioselective separation methods and the enantioselective determination of the anti-allergic drug azelastine and of three of its main phase I metabolites in a biological matrix underwent chromatographic and electrophoretic investigations. An enantioselective assay of a coupling of HPLC using a beta-cyclodextrin chiral stationary phase to ionspray tandem mass spectrometry is presented. Additionally, this assay is compared to another enantioselective assay using electrokinetic capillary chromatography with beta-cyclodextrin and carboxymethyl-beta-cyclodextrin in polyacrylamide-coated capillaries. For capillary electrophoresis (CE) the importance of polyacrylamide coating for the validation of this separation method is highlighted. Extracted rat plasma samples of enantioselective metabolism studies were measured by both validated assays. Differences in the pharmacokinetics and pharmacodynamics were evaluated for the main substance azelastine and its main metabolite demethylazelastine. So, a first hint about the enantioselectivity of biotransformation of azelastine in rats was seen after oral application of either enantiomer or the racemate to rats.

  20. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia.

    PubMed

    Mohamed Johar, S; Embong, Z

    2015-11-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h(-1). As the background radiation is correlated to the amount of parent nuclides, (238)U and (232)Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 × 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of (238)U and (232)Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Electrokinetic energy conversion efficiency in nanofluidic channels.

    PubMed

    van der Heyden, Frank H J; Bonthuis, Douwe Jan; Stein, Derek; Meyer, Christine; Dekker, Cees

    2006-10-01

    We theoretically evaluate the prospect of using electrokinetic phenomena to convert hydrostatic energy to electrical power. An expression is derived for the energy conversion efficiency of a two-terminal fluidic device in terms of its linear electrokinetic response properties. For a slitlike nanochannel of constant surface charge density, we predict that the maximum energy conversion efficiency occurs at low salt concentrations. An analytic expression for the regime of strong double-layer overlap reveals that the efficiency depends only on the ratio of the channel height to the Gouy-Chapman length, and the product of the viscosity and the counterion mobility. We estimate that an electrokinetic energy conversion device could achieve a maximum efficiency of 12% for simple monovalent ions in aqueous solution.

  2. Electrokinetic focusing and separation of mammalian cells in conductive biological fluids.

    PubMed

    Gao, Jian; Riahi, Reza; Sin, Mandy L Y; Zhang, Shufeng; Wong, Pak Kin

    2012-11-21

    Active manipulation of cells, such as trapping, focusing, and isolation, is essential for various bioanalytical applications. Herein, we report a hybrid electrokinetic technique for manipulating mammalian cells in physiological fluids. This technique applies a combination of negative dielectrophoretic force and hydrodynamic drag force induced by electrohydrodynamics, which is effective in conductive biological fluids. With a three-electrode configuration, the stable equilibrium positions of cells can be adjusted for separation and focusing applications. Cancer cells and white blood cells can be positioned and isolated into specific locations in the microchannel under both static and dynamic flow conditions. To investigate the sensitivity of the hybrid electrokinetic process, AC voltage, frequency, and bias dependences of the cell velocity were studied systematically. The applicability of the hybrid electrokinetic technique for manipulating cells in physiological samples is demonstrated by continuous focusing of human breast adenocarcinoma spiked in urine, buffy coats, and processed blood samples with 98% capture efficiency.

  3. The high-performance liquid chromatographic fingerprints study of Awei capsules

    PubMed Central

    Han, Rong; Xue, Jie; Hua, Erwei; Zhou, Longlong

    2013-01-01

    Background: Awei Capusules are Hospital preparation for Hyperlipidemia. It was composed by Awei, Magnoliae Officinalis and Polygonum Bistoral etc. Manufacture and quality standard of Awei Capusules had been studied. Results of animal pharmacodynamic and clinical study all displayed that Awei Capusules can reduce serum levels of TC, TG, LDL-C, increases HDL-C/TC. It was safe. It could improve hemorrheology and vessel function of blood stasis animal. On the basis of these, we studied on fingerprint of Awei capsule. Materials and Methods: The gradient elution method was used for analyzing samples on HPLC. Fingerprint similarity calculation software was used for data analysis. Results: We got a good separation of Awei Capusules peaks. There were 15 peaks in fingerprint of Awei capusles. Gallic acid, magnolol and honokiol were identified. Conclusion: HPLC fingerprinting of Awei Capusules can provide to reference. It can control preparations quality of Awei Capusules. PMID:23661996

  4. Cyclodextrin, an efficient tool for trans-anethole encapsulation: chromatographic, spectroscopic, thermal and structural studies.

    PubMed

    Kfoury, Miriana; Auezova, Lizette; Greige-Gerges, Hélène; Ruellan, Steven; Fourmentin, Sophie

    2014-12-01

    Inclusion complexes of trans-anethole (AN) with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), randomly methylated-β-cyclodextrin (RAMEB) and a low methylated-β-cyclodextrin (CRYSMEB) were investigated in aqueous solution by static headspace gas chromatography (SH-GC), phase solubility study, UV-Visible, (1)H NMR and (2D) ROESY NMR spectroscopies. The obtained results indicated the formation of 1:1 inclusion complex for all the studied CDs. Water solubility of AN was significantly improved upon complexation with CDs as demonstrated by phase solubility and retention studies. Solid inclusion complexes were prepared by the freeze-drying method and the encapsulation of AN was confirmed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies. Moreover, the degradation of AN, induced by UVC irradiation, was markedly reduced by the formation of CD inclusion complexes. Results showed that encapsulation in CDs was an efficient way to increase solubility and stability of AN, thereby making it valuable for food or pharmaceutical applications.

  5. MULTISPECTRAL IDENTIFICATION OF POTENTIALLY HAZARDOUS BYPRODUCTS OF OZONATION AND CHLORINATION - PART I: STUDIES OF CHROMATOGRAPHIC AND SPECTROSCOPIC PROPERTIES OF MX

    EPA Science Inventory

    The gas chromatographic (GC) and Fourier transform infrared and mass spectroscopic (FT-IR and MS, respectively) properties of (Z)-2-chloro-3-(dichloromethyl)4-oxobutenoic acid (MX) (a highly mutagenic byproduct of drinking water chlorination) and several related compounds were st...

  6. MULTISPECTRAL IDENTIFICATION OF POTENTIALLY HAZARDOUS BYPRODUCTS OF OZONATION AND CHLORINATION - PART I: STUDIES OF CHROMATOGRAPHIC AND SPECTROSCOPIC PROPERTIES OF MX

    EPA Science Inventory

    The gas chromatographic (GC) and Fourier transform infrared and mass spectroscopic (FT-IR and MS, respectively) properties of (Z)-2-chloro-3-(dichloromethyl)4-oxobutenoic acid (MX) (a highly mutagenic byproduct of drinking water chlorination) and several related compounds were st...

  7. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  8. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  9. Electrokinetic ion breakdown in a nanochannel

    NASA Astrophysics Data System (ADS)

    Wang, Jun-yao; Xu, Zheng

    2016-07-01

    In this paper, the electrokinetic ion breakdown in a nanochannel is investigated. The Poisson-Nernst-Planck equations are employed to simulate the influence of the voltage on the concentration. Both theoretical research and experiments show that increasing the voltage can promote the ion concentration, but high voltage will break up the repulsion effect of the electric double layer and bring the concentration down. For a given micro-nanochannel, the ion concentration has a peak value corresponding with a peak voltage. Narrowing the width of a nanochannel improves the peak voltage and the peak concentration. The results will be beneficial to research the internal discipline of electrokinetic concentration.

  10. Fuzzy C-means clustering for chromatographic fingerprints analysis: A gas chromatography-mass spectrometry case study.

    PubMed

    Parastar, Hadi; Bazrafshan, Alisina

    2016-03-18

    Fuzzy C-means clustering (FCM) is proposed as a promising method for the clustering of chromatographic fingerprints of complex samples, such as essential oils. As an example, secondary metabolites of 14 citrus leaves samples are extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The obtained chromatographic fingerprints are divided to desired number of chromatographic regions. Owing to the fact that chromatographic problems, such as elution time shift and peak overlap can significantly affect the clustering results, therefore, each chromatographic region is analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) to address these problems. Then, the resolved elution profiles are used to make a new data matrix based on peak areas of pure components to cluster by FCM. The FCM clustering parameters (i.e., fuzziness coefficient and number of cluster) are optimized by two different methods of partial least squares (PLS) as a conventional method and minimization of FCM objective function as our new idea. The results showed that minimization of FCM objective function is an easier and better way to optimize FCM clustering parameters. Then, the optimized FCM clustering algorithm is used to cluster samples and variables to figure out the similarities and dissimilarities among samples and to find discriminant secondary metabolites in each cluster (chemotype). Finally, the FCM clustering results are compared with those of principal component analysis (PCA), hierarchical cluster analysis (HCA) and Kohonon maps. The results confirmed the outperformance of FCM over the frequently used clustering algorithms. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Spore germination, colony development, and secondary metabolism in Penicillium brevicompactum: a radiogas chromatographic and morphological study.

    PubMed

    Doerfler, D L; Nulton, C P; Bartman, C D; Gottlieb, F J; Campbell, I M

    1978-12-01

    A study of the first 76 h of development of spores of Penicillium brevicompactum in batch-mode shake culture indicates that mycophenolic acid biosynthesis begins when the hyphae of germinating spores aggregate to form pellets. Supplies of mycophenolic acid so produced augment a pre-existing pool of the material that is associated with the dormant spore. Although acetate metabolism is active at all stages of development, incorporation of [1-(14)C]acetate into 2,4-dihydroxy-6-(1',2'-dioxopropyl)benzoic acid, another secondary metabolite of the fungus, could not be demonstrated. The significance of these data are considered in terms of the function of mycophenolic acid and the substituted benzoic acid in the producing organism.

  12. Gas chromatographic study of degradation phenomena concerning building and cultural heritage materials.

    PubMed

    Metaxa, E; Agelakopoulou, T; Bassiotis, I; Karagianni, Ch; Roubani-Kalantzopoulou, F

    2009-05-30

    Air pollution influences all aspects of social and economical life nowadays. In order to investigate the impact of air pollution on materials of works of art, the method of Reversed Flow-Inverse Gas Chromatography has been selected. The presence of various atmospheric pollutants is studied on marbles, oxides--building materials and samples of authentic statues from the Greek Archaeological Museums of Kavala and of Philippi. The method leads to the determination of several physicochemical quantities and the characterization of the heterogeneous surfaces of these solids. Moreover, the influence of a second pollutant (synergistic effect) is examined. The structure, the properties and the behavior of the materials are examined by X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy. Therefore, the precise measurement of the above mentioned quantities form the scientific basis for elucidation of the mechanism of the whole phenomenon of the degradation, thus providing a scientific platform to conservation procedures.

  13. Charge-transfer chromatographic study of the interaction of antibiotics with sodium dodecylsulfate.

    PubMed

    Forgács, E; Csethati, T

    1997-06-01

    The interaction of 29 antibiotics with the anionic surfactant sodium dodecylsulfate (SDS) was studied by charge-transfer reversed-phase chromatography carried out on impregnated silica layers using water-methanol mixtures as eluents. The hydrophobicity of antibiotics and the relative strength of SDS-antibiotic interaction was calculated separately for each antibiotic-SDS pair. SDS interacted with 17 antibiotics where the antibiotic-SDS complex was either more hydrophilic or more hydrophobic than the uncomplexed molecule. The relative strength of interaction depended considerably on the molecular structure of the antibiotics. No significant linear correlation was found between the hydrophobicity parameters of antibiotics and their capacity to interact with SDS. Stepwise regression analysis proved that the inductive effect of substituents, their electron-withdrawing power and proton-acceptor capacity exert a significance influence on the strength of interaction.

  14. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies.

    PubMed

    de Moraes, Marcela Cristina; Temporini, Caterina; Calleri, Enrica; Bruni, Giovanna; Ducati, Rodrigo Gay; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Massolini, Gabriella

    2014-04-18

    The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis.

    PubMed

    Naureen, Rizwana; Tariq, Muhammad; Yusoff, Ismail; Chowdhury, Ahmed Jalal Khan; Ashraf, Muhammad Aqeel

    2015-05-01

    Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR ((1)H and (13)C). The chemical composition of sunflower oil biodiesel was determined by GC-MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by (1)H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%.

  16. Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis

    PubMed Central

    Naureen, Rizwana; Tariq, Muhammad; Yusoff, Ismail; Chowdhury, Ahmed Jalal Khan; Ashraf, Muhammad Aqeel

    2014-01-01

    Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR (1H and 13C). The chemical composition of sunflower oil biodiesel was determined by GC–MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by 1H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%. PMID:25972756

  17. Micellar electrokinetic chromatography with acid labile surfactant.

    PubMed

    Stanley, Bob; Lucy, Charles A

    2012-02-24

    We present a study of a degradable surfactant, sodium 4-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propane sulfonate that is also known as an acid-labile surfactant (ALS). The performance of ALS as a pseudostationary phase is assessed and compared with established pseudostationary phases such as sodium dodecyl sulphate (SDS), volatile surfactants and polymeric micelles. ALS achieves separation efficiency of 100,000-145,000 theoretical plates and relative standard deviation (RSD) of electrophoretic mobility (n=5) of less than 3%. Retention factors with ALS are strongly correlated with those with SDS. This is shown by the R2=0.79 for all eleven analytes and an R2=0.992 for specifically the non-hydrogen bonding (NHB) analytes. However, ALS displays different selectivity than SDS for hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) solutes (R2 of 0.74 and 0.88, respectively). ALS is degraded to less surface active compounds in acidic solution. These less surface-active compounds are more compatible with the electrospray ionization mass spectrometry (ESI-MS). ALS has a half-life of 48 min at pH 4. ALS has the potential to couple micellar electrokinetic chromatography (MEKC) with the ESI-MS. ALS can be used as a pseudostationary phase for a high efficiency separation and later acid hydrolyzed to enable an ESI-MS analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier.

    PubMed

    Tian, Kan; Qi, Shengda; Cheng, Yuqiao; Chen, Xingguo; Hu, Zhide

    2005-06-17

    In this paper, a micellar electrokinetic chromatographic (MEKC) method using ionic liquid as modifier for the quantification of the active components of lignans found in the medicinal herbs Schisandra species was developed for the first time. Preliminary investigations employing sodium dodecyl sulfate (SDS) as surfactant did not lead to the necessary resolution of the studied compounds, the addition of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) to the SDS micellar system resulted in the complete separation of all the compounds. The effects on the separation by several parameters such as BMIM-BF4 and SDS concentration, applied voltage, background electrolyte pH and concentration, were evaluated. Under the optimal conditions (5 mM borate-5 mM phosphate buffer in the presence of 20 mM SDS and 10 mM BMIM-BF4, pH 9.2, applied voltage 25 kV and detection at 254 nm), the method successfully applied to the determination of lignans in extracts of Schisandra chinensis (Turcz.) Baill. and Schisandra henryi C.B. Clarke in less than 13 min. The separation mechanism was also discussed.

  19. The chromatographic performance of flow-through particles: A computational fluid dynamics study.

    PubMed

    Smits, Wim; Nakanishi, Kazuki; Desmet, Gert

    2016-01-15

    The performance of flow-through particles has been studied by computational fluid dynamics. Computational fluid dynamics simulations was used to calculate the flow behaviour around and inside the particles rather than estimate it. The obtained flow field has been used to accurately simulate plate heights generated by flow-through particles and compare them to standard fully porous particles. The effects of particle size, particle porosity and microparticle size on the intra-particle flow and plate heights is investigated. It is shown that the intra-particle flow generates mass transfer enhancement which lowers the total plate height. An empirical model is proposed for the mass transfer enhancement and it is compared to previously proposed models. Kinetic plots are constructed for the flow-through particles. Counter-intuitively, columns packed with flow-through particles have a higher flow resistance which counters the advantages of lower plate heights. Flow-through particles offer no significant gain in kinetic performance over fully porous particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. High-performance liquid chromatographic assay for metamizol metabolites in rat plasma: application to pharmacokinetic studies.

    PubMed

    Domínguez-Ramírez, Adriana Miriam; Calzadilla, Patricia Carrillo; Cortés-Arroyo, Alma Rosa; Hurtado Y de la Peña, Marcela; López, José Raúl Medina; Gómez-Hernández, Martín; López-Muñoz, Francisco Javier

    2012-12-01

    In order to evaluate the pharmacokinetics of metamizol in the presence of morphine in arthritic rats, after subcutaneous administration of the drugs, an easy, rapid, sensitive and selective analytical method was proposed and validated. The four main metamizol metabolites (4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoantipyrine) were extracted from plasma samples (50-100μl) by a single solid-phase extraction method prior to reverse-phase high performance liquid chromatography with diode-array detection. Standard calibration graphs for all metabolites were linear within a range of 1-100μg/ml (r(2)≥0.99). The intra-day coefficients of variation (CV) were in the range of 1.3-8.4% and the inter-day CV ranged from 1.5 to 8.4%. The intra-day assay accuracy was in the range of 0.6-9.6% and the inter-day assay accuracy ranged from 0.9 to 7.5% of relative error. The lower limit of quantification was 1μg/ml for all metabolites using a plasma sample of 100μl. Plasma samples were stable at least for 4 weeks at -20°C. This method was found to be suitable for studying metamizol metabolites pharmacokinetics in arthritic rats, after simultaneous administration of metamizol and morphine, in single dose. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. High-Performance Liquid Chromatographic Determination of Rivastigmine in Human Plasma for Application in Pharmacokinetic Studies

    PubMed Central

    Amini, Hossein; Ahmadiani, Abolhassan

    2010-01-01

    A simple and reproducible HPLC method with spectrophotometric detection was developed for determination of rivastigmine in human plasma. Liquid-liquid extraction of rivastigmine and donepezil (as internal standard) from plasma samples was performed with 1-butanol/n-hexane (2:98 v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a Silica column (250 mm × 4.6 mm, 5 μm) under isocratic elution with acetonitrile-50 mM aqueous sodium dihydrogen phosphate (17: 83 v/v, pH 3.1. Analyses were run at a flow-rate of 1.3 mL/min at of 50°C. The recovery was 90.8% and 95.7% for rivastigmine and the internal standard donepezil, respectively. The precision of the method was 2.6% to 9.1% over the concentration range of 0.5-16 ng/mL for rivastigmine in plasma with a linearity greater than 0.999. The method was specific and sensitive, with a quantification limit of 0.5 ng/mL and a detection limit of 0.2 ng/mL in plasma. The method was used for a bioequivalence study in healthy subjects. PMID:24363716

  2. Modeling Aquatic Toxicity through Chromatographic Systems.

    PubMed

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  3. Gas chromatographic study of the volatile products from co-pyrolysis of coal and polyethylene wastes.

    PubMed

    Domínguez, A; Blanco, C G; Barriocanal, C; Alvarez, R; Díez, M A

    2001-05-18

    The aim of this study was to determine the volatile products distribution of co-processing of coal with two plastic wastes, low-density polyethylene from agriculture greenhouses and high-density polyethylene from domestic uses, in order to explain the observed decrease in coal fluidity caused by polyethylene waste addition. Polymeric materials, although they are not volatile themselves, may be analysed by gas chromatography through the use of pyrolysis experiments. In this way, a series of pyrolysis tests were performed at 400 and 500 degrees C in a Gray-King oven with each of the two plastic wastes, one high-volatile bituminous coal and blends made up of coal and plastic waste (9:1, w/w, ratio). The pyrolysis temperatures, 400 and 500 degrees C, were selected on the basis of the beginning and the end of the coal plastic stage. The organic products evolved from the oven were collected, dissolved in pyridine and analysed by capillary gas chromatography using a flame ionization detector. The analysis of the primary tars indicated that the amount of n-alkanes is always higher than that of n-alkenes and the formation of the alkenes is favoured by increasing the pyrolysis temperature. However, this effect may be influenced by the size of the hydrocarbon. Thus, the fraction C17-C31 showed a higher increase of n-alkenes/n-alkanes ratio than other fractions. On the other hand, the difference between the experimental and estimated values from tars produced from single components was positive for n-alkanes and n-alkenes, indicating that co-pyrolysis of the two materials enhanced the chemical reactivity during pyrolysis and produced a higher conversion than that from individual components.

  4. [Study on UPLC fingerprint of red ginseng based on good separation and good purity of chromatographic peaks].

    PubMed

    Feng, Wei-Hong; Li, Chun; Ji, Li-Na; Yang, Li-Xin; Rong, Li-Xin; Chen, Liang-Mian; Yi, Hong; Wang, Zhi-Min

    2016-10-01

    This study is to establish the UPLC fingerprint of red ginseng. The separation was performed on a Waters Acquity BEH C₁₈ column (2.1 mm × 50 mm,1.7 μm), with the mobile phase consisting of acetonitrile and water for gradient elution. The detection wavelength was set at 203 nm. The UPLC fingerprint of red ginseng was established by using sample chromatography of 22 different purchase areas and 26 common peaks were found. Compared with the reference substances, 11 of the common peaks were identified as ginsenosides Rg₁, ginsenoside Re, ginsenoside Rf, ginsenoside Rh₁, ginsenoside Rg₂, ginsenoside Rb₁, 20(S)-ginsenoside F₁, ginsenoside Rb₂, ginsenoside Rb3, 20(S)-ginsenoside Rg₃ and 20(R)-ginsenoside Rg₃, respectively. It is worth noting that 20(S)-ginsenoside Rg₃ and 20(R)-ginsenoside Rg₃ are the characteristic ingredients of red ginseng, and they could be used not only for distinguishing red ginseng and ginseng, but also for process controlling of the preparation of red ginseng. The similarity was analyzed with' Similarity Evaluation System for Chromatographic Fingerprint of Chinese Materia Medica, and the similarity of 18 batches samples is up to 0.9. Compared to the literature methods, the method is simple, time-saving,specific for the separation of ginsenosides from red ginseng. So, this method could be used for the species identification and quality control of ginseng, red ginseng and American ginseng, and it will alsoprovide a theoretical basis of raising quality standards of the above mentioned Chinese herb medicines. Copyright© by the Chinese Pharmaceutical Association.

  5. Liquid chromatographic determination of fumonisins B1, B2, and B3 in corn: AOAC-IUPAC Collaborative Study.

    PubMed

    Sydenham, E W; Shephard, G S; Thiel, P G; Stockenström, S; Snijman, P W; Van Schalkwyk, D J

    1996-01-01

    A liquid chromatographic (LC) method for simultaneous determination of fumonisins B1 (FB1), B2 (FB2), and B3 (FB3) in corn was subjected to a collaborative study involving 12 participants from 10 countries, in which the accuracy and reproducibility characteristics of the method were established. Mean analyte recoveries from corn ranged from 81.1 to 84.2% for FB1 (at a spiking range of 500 to 8000 ng/g), from 75.9 to 81.9% for FB2 (at a spiking range of 200 to 3200 ng/g), and from 75.8 to 86.8% for FB3 (at a spiking range of 100 to 1600 ng/g). The valid data were statistically evaluated after exclusion of outliers. Relative standard deviations for within-laboratory repeatability ranged from 5.8 to 13.2% for FB1, from 7.2 to 17.5% for FB2, and from 8.0 to 17.2% for FB3. Relative standard deviations for between-laboratory reproducibility varied from 13.9 to 22.2% for FB1, from 15.8 to 26.7% for FB2, and from 19.5 to 24.9% for FB3. HORRAT ratios, calculated for the individual toxin analogues, ranged from 0.75 to 1.73. The LC method for determination of fumonisins B1, B2, and B3 in corn (at concentrations of 800-12800 ng total fumonisins/g) has been adopted by AOAC INTERNATIONAL.

  6. Determination of scopoletin in rat plasma by high performance liquid chromatographic method with UV detection and its application to a pharmacokinetic study.

    PubMed

    Xia, Yufeng; Dai, Yue; Wang, Qiang; Liang, Huizheng

    2007-10-01

    A rapid and simple high-performance liquid chromatographic (HPLC) method has been developed and validated for determination of scopoletin in rat plasma using psoralen as internal standard. Chromatographic separation was achieved on a C(18) column using methanol and distilled water (49:51, v/v) containing 0.05% (v/v) phosphoric acid as mobile phase. The UV detector was set at 345 nm. The calibration curve was linear over the range of 0.165-9.90 microg/ml with a correlation coefficient of 0.9994. The recovery for plasma samples of 0.165, 1.32 and 6.60 microg/ml was 93.2%, 95.9% and 95.5%, respectively. The RSD of intra- and inter-day assay variations was less than 6.7%. This HPLC assay is a precise and reliable method for the analysis of scopoletin in pharmacokinetic studies.

  7. Chiral Recognition and Enantioseparation Mechanisms in Capillary Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Chankvetadze, Bezhan

    This chapter deals with the basic theory of enantiomeric separations in electrokinetic chromatography (EKC) in general and with the relationships between the recognition and the separation of enantiomers in EKC, in particular. It is important to note that the dependence between recognition and separation is not as straightforward in EKC as it is in chromatographic separation techniques. Therefore, a clear understanding of these dependences is very important for the explanation of experimentally observed results, as well as for a design of new powerful separation systems, technologies, and materials. Cyclodextrins (CDs) are mainly discussed as chiral selectors not only because the author has a long-term experience of working with these multifunctional macrocycles but also because CDs belong to the most widely used chiral selectors in EKC. In addition, these materials are quite well-characterized molecules of medium size. In addition, CDs are used for separation of enantiomers almost in all analytical separation techniques, as well as for determination of the enantiomeric excess in nonseparation techniques such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This chapter does not address applications of chiral EKC in chemistry, pharmaceutical and biomedical, environmental, and food analyses.

  8. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    SciTech Connect

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    2014-02-12

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.

  9. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    NASA Astrophysics Data System (ADS)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    2014-02-01

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm-1 electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.

  10. Simultaneous determination of paracetamol, caffeine and propyphenazone in ternary mixtures by micellar electrokinetic capillary chromatography.

    PubMed

    Emre, Deniz; Ozaltin, Nuran

    2007-03-01

    A new micellar electrokinetic capillary chromatographic method has been developed to analyze the pharmaceutical preparations containing ternary combination of paracetamol (PAR), caffeine (CAF) and propyphenazone (PRO). Best results were obtained by using 20mM pH 9.0 borate buffer containing 30mM sodiumdodecylsulphate as the background electrolyte. Diflunisal (DIF) was used as internal standard (IS). The separation was performed through a fused silica capillary (50microm internal diameter, 44cm total length, 35.5cm effective length) at 25 degrees C with the application of 3s of hydrodynamic injection at 50mbar pressure and a potential of 29kV. Detection wavelength was 200nm. Under these conditions, the migration times were found to be 5.174min for PAR, 5.513min for CAF, 7.195min for DIF, and 9.366min for PRO. Linearity ranges for the method were determined as 2-200microgmL(-1) for PAR and CAF and 3-200microgmL(-1) for PRO. Limit of detections were found as 0.6microgmL(-1) for PAR and CAF and 0.8microgmL(-1) for PRO. According to the validation study, the developed method was proved to be accurate, precise, sensitive, specific, rugged and robust. Three pharmaceutical preparations, which are produced by different drug companies in Turkey, were analyzed by the developed method. One of the same preparations was also analyzed by the derivative ratio spectro zero-crossing spectrophotometric method reported in literature. No significant differences were found statistically.

  11. Electrokinetic instability near charge-selective hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Shelistov, V. S.; Demekhin, E. A.; Ganchenko, G. S.

    2014-07-01

    The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.

  12. Electrokinetic instability near charge-selective hydrophobic surfaces.

    PubMed

    Shelistov, V S; Demekhin, E A; Ganchenko, G S

    2014-07-01

    The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.

  13. Opto-electrokinetic manipulation technique for highperformance

    SciTech Connect

    Kwon, Jae-Sung; Ravindranath, Sandeep; Kumar, Aloke; Irudayaraj, Joseph; Wereley, Steven T.

    2012-01-01

    This communication first demonstrates bio-compatibility of a recently developed opto-electrokinetic manipulation technique, using microorganisms. Aggregation, patterning, translation, trapping and size-based separation of microorganisms performed with the technique firmly establishes its usefulness for development of a high-performance on-chip bioassay system.

  14. Modeling the electrokinetic decontamination of concrete

    SciTech Connect

    Harris, M.T.; DePaoli, D.W.; Ally, M.R.

    1997-01-01

    The decontamination of concrete is a major concern in many Department of (DOE) facilities. Numerous techniques (abrasive methods, manual methods, ultrasonics, concrete surface layer removal, chemical extraction methods, etc.) have been used to remove radioactive contamination from the surface of concrete. Recently, processes that are based on electrokinetic phenomena have been developed to decontaminate concrete. Electrokinetic decontamination has been shown to remove from 70 to over 90% of the surface radioactivity. To evaluate and improve the electrokinetic processes, a model has been developed to simulate the transport of ionic radionuclei constituents through the pores of concrete and into the anolyte and catholyte. The model takes into account the adsorption and desorption kinetics of the radionuclei from the pore walls, and ion transport by electro-osmosis, electromigration, and diffusion. A numerical technique, orthogonal collocation, is used to simultaneously solve the governing convective diffusion equations for a porous concrete slab and the current density equation. This paper presents the theoretical framework of the model and the results from the computation of the dynamics of ion transport during electrokinetic treatment of concrete. The simulation results are in good agreement with experimental data.

  15. A review of combinations of electrokinetic applications.

    PubMed

    Moghadam, Mohamad Jamali; Moayedi, Hossein; Sadeghi, Masoud Mirmohamad; Hajiannia, Alborz

    2016-12-01

    Anthropogenic activities contaminate many lands and underground waters with dangerous materials. Although polluted soils occupy small parts of the land, the risk they pose to plants, animals, humans, and groundwater is too high. Remediation technologies have been used for many years in order to mitigate pollution or remove pollutants from soils. However, there are some deficiencies in the remediation in complex site conditions such as low permeability and complex composition of some clays or heterogeneous subsurface conditions. Electrokinetic is an effective method in which electrodes are embedded in polluted soil, usually vertically but in some cases horizontally, and a low direct current voltage gradient is applied between the electrodes. The electric gradient initiates movement of contaminants by electromigration (charged chemical movement), electro-osmosis (movement of fluid), electrolysis (chemical reactions due to the electric field), and diffusion. However, sites that are contaminated with heavy metals or mixed contaminants (e.g. a combination of organic compounds with heavy metals and/or radionuclides) are difficult to remediate. There is no technology that can achieve the best results, but combining electrokinetic with other remediation methods, such as bioremediation and geosynthetics, promises to be the most effective method so far. This review focuses on the factors that affect electrokinetic remediation and the state-of-the-art methods that can be combined with electrokinetic.

  16. Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar Electrokinetic Chromatography Data for the Quantitation of Trinitrotoluene in Mixtures of Other Nitroaromatic Compounds

    DTIC Science & Technology

    2014-02-24

    ABSTRACT Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar Electrokinetic Chromatography Data for the Quantitation of...Unclassified Unlimited Unclassified Unlimited 13 Braden C. Giordano (202) 404-6320 Micellar electrokinetic chromatography Nitroaromatic explosives...Capillary electrophoresis DNT – Dinitrotoluene EOF – Electroosmotic flow MEKC – Micellar electrokinetic chromatography PLS – Partial least squares regression TNT – Trinitrotoluene 11

  17. Spectral induced polarization for monitoring electrokinetic remediation processes

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Losito, Gabriella

    2015-12-01

    Electrokinetic remediation is an emerging technology for extracting heavy metals from contaminated soils and sediments. This method uses a direct or alternating electric field to induce the transport of contaminants toward the electrodes. The electric field also produces pH variations, sorption/desorption and precipitation/dissolution of species in the porous medium during remediation. Since heavy metal mobility is pH-dependent, the accurate control of pH inside the material is required in order to enhance the removal efficiency. The common approach for monitoring the remediation process both in laboratory and in the field is the chemical analysis of samples collected from discrete locations. The purpose of this study is the evaluation of Spectral Induced Polarization as an alternative method for monitoring geochemical changes in the contaminated mass during remediation. The advantage of this technique applied to field-scale is to offer higher resolution mapping of the remediation site and lower cost compared to the conventional sampling procedure. We carried out laboratory-scale electrokinetic remediation experiments on fine-grained marine sediments contaminated by heavy metal and we made Spectral Induced Polarization measurements before and after each treatment. Measurements were done in the frequency range 10- 3-103 Hz. By the deconvolution of the spectra using the Debye Decomposition method we obtained the mean relaxation time and total chargeability. The main finding of this work is that a linear relationship exists between the local total chargeability and pH, with good agreement. The observed behaviour of chargeability is interpreted as a direct consequence of the alteration of the zeta potential of the sediment particles due to pH changes. Such relationship has a significant value for the interpretation of induced polarization data, allowing the use of this technique for monitoring electrokinetic remediation at field-scale.

  18. Protein selectivity with immobilized metal ion-tacn sorbents: chromatographic studies with human serum proteins and several other globular proteins.

    PubMed

    Jiang, W; Graham, B; Spiccia, L; Hearn, M T

    1998-01-01

    The chromatographic selectivity of the immobilized chelate system, 1,4,7-triazocyclononane (tacn), complexed with the borderline metal ions Cu2+, Cr3+, Mn2+, Co2+, Zn2+, and Ni2+ has been investigated with hen egg white lysozyme, horse heart cytochrome c, and horse skeletal muscle myoglobin, as well as proteins present in partially fractionated preparations of human plasma. The effects of ionic strength and pH of the loading and elution buffers on protein selectivities of these new immobilized metal ion affinity chromatographic (IMAC) systems have been examined. The results confirm that immobilized Mn;pl-tacn sorbents exhibit a novel type of IMAC behavior with proteins. In particular, the chromatographic properties of these immobilized M(n+)-tacn ligand systems were significantly different compared to the IMAC behavior observed with other types of immobilized tri- and tetradentate chelating ligands, such as iminodiacetic acid, O-phosphoserine, or nitrilotriacetic acid, when complexed with borderline metal ions. The experimental results have consequently been evaluated in terms of the additional contributions to the interactive processes mediated by effects other than solely the conventional lone pair Lewis soft acid-Lewis soft base coordination interactions, typically found for the IMAC of proteins with borderline and soft metal ions, such as Cu2+ or Ni2+.

  19. Solute-solvent interactions in micellar electrokinetic chromatography. Selectivity of lithium dodecyl sulfate-lithium perfluorooctanesulfonate mixed-micellar buffers.

    PubMed

    Fuguet, E; Ràfols, C; Bosch, E; Rosés, M; Abraham, M H

    2001-01-12

    The solvation parameter model has been applied to the characterization of micellar electrokinetic chromatographic (MEKC) systems with mixtures of lithium dodecyl sulfate and lithium perfluorooctanesulfonate as surfactant. The variation in MEKC surfactant composition results in changes in the coefficients of the correlation equation, which in turns leads to information on solute-solvent and solute-micelle interactions. Lithium perfluorooctanesulfonate is more dipolar and hydrogen bond acidic but less polarizable and hydrogen bond basic than lithium dodecyl sulfate. Therefore mixtures of lithium dodecyl sulfate and lithium perfluorooctanesulfonate cover a very wide range of polarity and hydrogen bond properties, which in turn results in important selectivity changes for analytes with different solute properties.

  20. Study on urinary metabolic profile of phenylketonuria by micellar electrokinetic capillary chromatography with dual electrochemical detection--potential clinical application in fast diagnosis of phenylketonuria.

    PubMed

    Zhang, Dongli; Li, Wenli; Zhang, Junbo; Tang, Wanrong; Qian, Chenxu; Feng, Minghao; Chu, Qingcui; Ye, Jiannong

    2011-05-23

    The urinary metabolic marker compounds, namely phenylpyruvic acid (PPA), 2-hydroxyphenylacetic acid (oOPAA), 4-hydroxyphenylacetic acid (pOPAA), phenyllactic acid (PLA) and phenylacetic acid (PAA) of phenylketonuric individuals were detected by a novel method of micellar electrokinetic capillary chromatography with capacitively coupled contactless conductivity detection and amperometric detection (MECC-C(4)D/AD). Electrophoretic runs were performed in a 35 mmol L(-1) SDS/60 mmol L(-1) H(3)BO(3)-Na(2)B(4)O(7) running buffer (pH 8.2) at a separation voltage of 16 kV, and five marker compounds and the major coexisting compound uric acid (UA) could be well separated within 23 min. Highly linear response was obtained for five marker compounds over three orders of magnitude with detection limits ranging from 6.6×10(-6) to 6.4×10(-8) g mL(-1) (S/N=3). The proposed method has been used to detect the marker compounds simultaneously in urine samples with the advantages of obtaining more information about target analytes and avoiding redundant measurements and high assay cost. Urinary patterns in phenylketonuric babies were distinct and easily distinguished from those of healthy newborns. The proposed MECC-C(4)D/AD method could find clinical application in early noninvasive diagnosis of phenylketonuria (PKU), as significant differences could be found in the urinary content of five marker compounds among the phenylketonuric babies without or with dietotherapy and the healthy babies.

  1. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  2. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  3. Nonlinear Electroosmosis and Biomolecule Electrokinetic Trapping Induced by Ion Selective Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Chih; Han, Jongyoon

    2006-03-01

    This paper describes a nanofluidic device that can concentrate dilute biomolecule by electrokinetic trapping mechanism. This device has nanofluidic channels with a depth down to 40 nm, therefore, having significant Debye layer overlap. Depending on the strength of the applied potential across the nanochannel, one can observe phenomena such as concentration polarization; charge depletion and nonlinear electrokinetic flow in the adjacent microfluidic channel using fluorescent microscopy. By manipulating the electric field, the device can generate an extended space charge region, maintained for several hours, within a microchannel as a mean to collect and trap biomolecules. Our studies demonstrate such device can achieve up to 10 million fold sample preconcentration within 30 minutes. Besides, if applied a higher potential, a much faster chaotic flow can be seen in the microchannel adjacent to nanochannels. This kind of nonlinear electrokinetic flow is often called the electroosmosis of the second kind or induced-charge electroosmosis in electrode and ion exchange membrane studies. The presented device can be used as either a preconcentrator or an injector to other separation and detection systems preferred its performance and integrabilty. Also, it is an ideal experimental platform for studying such nonlinear electrokinetic effects, by directly tracking molecules in situ.

  4. The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolytic conditioning

    SciTech Connect

    Yang, Jung-Seok; Kwon, Man Jae; Choi, Jaeyoung; Baek, Kitae; O'Loughlin, Edward J.

    2014-12-01

    Electrokinetic remediation (also known as electrokinetics) is a promising technology for removing metals from fine-grained soils. However, few studies have been conducted regarding the transport behavior of multi-metals during electrokinetics. We investigated the transport of As, Cu, Pb, and Zn from soils during electrokinetics, the metal fractionation before and after electrokinetics, the relationships between metal transport and fractionation, and the effects of electrolyte conditioning. The main transport mechanisms of the metals were electroosmosis and electromigration during the first two weeks and electromigration during the following weeks. The direction of electroosmotic flow was from the anode to the cathode, and the metals in the dissolved and reducible-oxides fractions were transported to the anode or cathode by electromigration according to the chemical speciation of the metal ions in the pore water. Moreover, a portion of the metals that were initially in the residual fraction transitioned to the reducible and soluble fractions during electrokinetic treatment. However, this alteration was slow and resulted in decreasing metal removal rates as the electrokinetic treatment progressed. In addition, the use of NaOH, H3PO4, and Na2SO4 as electrolytes resulted in conditions that favored the precipitation of metal hydroxides, phosphates, and sulfates in the soil. These results demonstrated that metal removal was affected by the initial metal fractionation, metal speciation in the pore solution, and the physical–chemical parameters of the electrolytes, such as pH and electrolyte composition. Therefore, the treatment time, use of chemicals, and energy consumption could be reduced by optimizing pretreatment and by choosing appropriate electrolytes for the target metals.

  5. The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning.

    PubMed

    Yang, Jung-Seok; Kwon, Man Jae; Choi, Jaeyoung; Baek, Kitae; O'Loughlin, Edward J

    2014-12-01

    Electrokinetic remediation (also known as electrokinetics) is a promising technology for removing metals from fine-grained soils. However, few studies have been conducted regarding the transport behavior of multi-metals during electrokinetics. We investigated the transport of As, Cu, Pb, and Zn from soils during electrokinetics, the metal fractionation before and after electrokinetics, the relationships between metal transport and fractionation, and the effects of electrolyte conditioning. The main transport mechanisms of the metals were electroosmosis and electromigration during the first two weeks and electromigration during the following weeks. The direction of electroosmotic flow was from the anode to the cathode, and the metals in the dissolved and reducible-oxides fractions were transported to the anode or cathode by electromigration according to the chemical speciation of the metal ions in the pore water. Moreover, a portion of the metals that were initially in the residual fraction transitioned to the reducible and soluble fractions during electrokinetic treatment. However, this alteration was slow and resulted in decreasing metal removal rates as the electrokinetic treatment progressed. In addition, the use of NaOH, H3PO4, and Na2SO4 as electrolytes resulted in conditions that favored the precipitation of metal hydroxides, phosphates, and sulfates in the soil. These results demonstrated that metal removal was affected by the initial metal fractionation, metal speciation in the pore solution, and the physical-chemical parameters of the electrolytes, such as pH and electrolyte composition. Therefore, the treatment time, use of chemicals, and energy consumption could be reduced by optimizing pretreatment and by choosing appropriate electrolytes for the target metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids.

    PubMed

    Yuan, Quan; Wu, Jie

    2013-02-01

    One major motivation for microfluidic research is to develop point of care diagnostic tools, which often demands a solution for chip-scale pumping that is of low cost, small size and light weight. Electrokinetics has been extensively studied for disposable pumping since only electrodes are needed to induce microflows. However, it encounters difficulties with conductive biofluids because of the associated high salt content. In electrokinetic pumps, electrodes are in direct contact with fluid, so high salt content will compress the electric double layer that is essential to electroosmostic flows. Alternating current electrothermal (ACET) effect is the only electrokinetic method found viable for biofluid actuation. While high frequency (>10 kHz) operation can suppress electrochemical reactions, electrical potential that could be applied over biofluids is still limited within several volts due to risk of electrolysis or impedance mismatch. Since ACET flow velocity has a quartic dependence on the voltage, ACET flows would be rather slow if electric field alone is used for actuation. This work studies the effect of a thermal bias on enhancing AC electrokinetic pumping. With proper imposition of external thermal gradients, significant improvement in flow velocity has been demonstrated by numerical simulation and preliminary experiments. Both showed that with 4 V(rms) at 100 kHz, flow velocity increased from ~10 μm/s when there was no thermal biasing to ~112 μm/s when a heat flux was applied.

  7. Separation studies of As(III), Sb(III) and Bi(III) by reversed-phase paper chromatographic technique

    SciTech Connect

    Raman, B.; Shinde, V.M.

    1987-07-01

    Reversed-phase paper chromatographic separations of As(III), Sb(III) and Bi(III) have been carried out on Whatman No 1 filter paper impregnated with triphenylphosphine oxide as stationary phase and using organic complexing agents such as sodium acetate, sodium succinate and sodium malonate solutions as active mobile phases. Results for the separation of binary and ternary mixtures are reported and the method has been successfully applied to the separation and detection of these elements present in real samples and at ppm level concentration.

  8. Electrokinetic phenomena and dielectrophoresis in charged colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Karttunen, Mikko; Yu, K. W.; Dong, L.

    2003-03-01

    AC electrokinetic phenomena, i.e., electrorotation, dielectrophoresis and traveling wave dielectrophoresis, have gained an increasing amount of attention. This is due to their wide range of applications from cancer research to identifying and separating parasites, cell populations and viruses, and even to design of nanomotors. Despite the number of applications, there is need for a theory that treats the different aspects of electrokinetic phenomena on an equal footing starting from the general underlying physical principles. Here, we present a theoretical study of dielectrophoretic (DEP) crossover spectrum of two polarizable particles under the action of a nonuniform AC electric field. For two approaching particles, the mutual polarization interaction yields a change in their respective dipole moments, and hence, in the DEP crossover spectrum. We use the multiple image method to study the induced polarization effects and using spectral representation theory, an analytic expression for the DEP force is derived. Our results shows that the mutual polarization effects can change the crossover frequency at which the DEP force changes sign. The results are in agreement with recent experimental observations. Importantly, this approach goes beyond the standard theory and helps to clarify the important question of the underlying polarization mechanisms. The extension to dense systems and relation to electrorotation is discussed.

  9. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    PubMed Central

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-01-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg−1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg−1·d−1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment. PMID:27032838

  10. Application of Electrokinetic Stabilisation (EKS) Method for Soft Soil: A Review

    NASA Astrophysics Data System (ADS)

    Azhar, ATS; Azim, MAM; Syakeera, NN; Jefferson, IF; Rogers, CDF

    2017-08-01

    Soil properties such as low shear strength, excessive compression, collapsing behavior, high swell potential are some of the undesirable properties of soils in geotechnical engineering and those properties would cause severe distress to the structures. To solve these, an innovative stabilization of Electrokinetic (EKS) has been introduced. Electrokinetic is an applicable technique to transport charged particles and fluid in an electric potential. The EKS demonstrates changes in soil pH due to electrolysis reactions, water flow between the electrodes and migration of ions towards the cathode. This treatment has proven its efficiency in consolidating organic, peat and clayey silt as well as less expensive than other methods. Otherwise, this method also gives advantage by not disturbing site. The primary objective of this review is to discuss the application of electrokinetic and to investigate the current knowledge of electrokinetic in geotechnical application through a literature search and review, including consideration of certain aspects related to the soft soil application that may be relevant to the future study and at the same time addressing some key issues and their implications on soil behaviors.

  11. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    NASA Astrophysics Data System (ADS)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg‑1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg‑1·d‑1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  12. Electrokinetics Enhanced Delivery of Nano-scale Zero Valent Iron

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. I.; O'Carroll, D. M.; Xu, Y.; Sleep, B. E.

    2010-12-01

    Nano-scale zero valent iron (NZVI) has shown promising results for remediation of a wide range of chlorinated hydrocarbons in the subsurface. Although rapid aggregation and subsequent sedimentation limit bare NZVI migration in subsurface systems, surface modifications have improved the colloidal stability of NZVI, enhancing NZVI migration through porous media in lab-scale experiments. However, delivery of NZVI through low permeability soil is still an unresolved challenge. Electrokinetics (EK) has been used extensively in low permeability porous media for the remediation of a variety of hazardous wastes and in particular heavy metals. Since NZVI has a net negative surface charge electrokinetics has been proposed to enhance NZVI transport in the subsurface. However, increased dissolved oxygen and lower pH, due to electrolysis of water at the anode, oxidizes Fe0 particles to Fe2+/Fe3+ and thus affects the remediation potential. This study focuses on minimization of NZVI oxidation and quantification of NZVI migration enhancement due to the EK application. Application of 50 and 100 mA currents delivered 6.0 and 4.8 times more NZVI through coarse sand, respectively, when compared to no EK application. This ratio increased to 21 and 31 at 50 and 100 mA currents when finer sand was used. In addition, a numerical model based on traditional colloidal filtration theory (CFT) fit the experimental results well.

  13. Electrokinetic removal of uranium from contaminated, unsaturated soils

    SciTech Connect

    Booher, W.F.; Lindgren, E.R.; Brady, P.V.

    1997-01-01

    Electrokinetic remediation of uranium-contaminated soil was studied in a series of laboratory-scale experiments in test cells with identical geometry using quartz sand at approximately 10 percent moisture content. Uranium, when present in the soil system as an anionic complex, could be migrated through unsaturated soil using electrokinetics. The distance that the uranium migrated in the test cell was dependent upon the initial molar ratio of citrate to uranium used. Over 50 percent of the uranium was recovered from the test cells using the citrate and carbonate complexing agents over of period of 15 days. Soil analyses showed that the uranium remaining in the test cells had been mobilized and ultimately would have been extracted. Uranium extraction exceeded 90 percent in an experiment that was operated for 37 days. Over 70 percent of the uranium was removed from a Hanford waste sample over a 55 day operating period. Citrate and carbonate ligand utilization ratios required for removing 50 percent of the uranium from the uranium-contaminated sand systems were approximately 230 moles ligand per mole uranium and 1320 moles ligand per mole uranium for the waste. Modifying the operating conditions to increasing the residence time of the complexants is expected to improved the utilization efficiency of the complexing agent.

  14. Electrokinetic remediation of soils contaminated with electroplating wastes

    SciTech Connect

    Reddy, K.R.; Parupudi, U.S.; Devulapalli, S.

    1996-10-01

    Electrokinetic remediation of soils simulated with electroplating waste contamination was investigated in two soils, kaolin and glacial till. Soil samples were contaminated with nickel, cadmium and hexavalent chromium and subjected to an external electric field for four days. Results of these experiments revealed that the soil composition plays an important role in electrokinetic remediation. Due to induced electric potential, a distinct pH gradient was developed in kaolin; however, in glacial till alkaline conditions existed throughout the soil because of its high carbonate buffering capacity. The movement of cationic metallic contaminants, Ni(II) and Cd(II), from the anode to the cathode was significant in kaolin as compared to glacial till. Because of high pH conditions near the cathode, Ni(II) and Cd(II) were precipitated in kaolin. In glacial till, however, because of alkaline conditions throughout the soil, most of Ni(II) and Cd(II) precipitated without migration. Overall, this study demonstrates that anion exchange, cation exchange and precipitation were the significant fixation mechanisms of nickel, cadmium and chromium in soils.

  15. Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel

    PubMed Central

    Lu, Xinyu; DuBose, John; Joo, Sang Woo; Qian, Shizhi

    2015-01-01

    Focusing suspended particles in a fluid into a single file is often necessary prior to continuous-flow detection, analysis, and separation. Electrokinetic particle focusing has been demonstrated in constricted microchannels by the use of the constriction-induced dielectrophoresis. However, previous studies on this subject have been limited to Newtonian fluids only. We report in this paper an experimental investigation of the viscoelastic effects on electrokinetic particle focusing in non-Newtonian polyethylene oxide solutions through a constricted microchannel. The width of the focused particle stream is found NOT to decrease with the increase in DC electric field, which is different from that in Newtonian fluids. Moreover, particle aggregations are observed at relatively high electric fields to first form inside the constriction. They can then either move forward and exit the constriction in an explosive mode or roll back to the constriction entrance for further accumulations. These unexpected phenomena are distinct from the findings in our earlier paper [Lu et al., Biomicrofluidics 8, 021802 (2014)], where particles are observed to oscillate inside the constriction and not to pass through until a chain of sufficient length is formed. They are speculated to be a consequence of the fluid viscoelasticity effects. PMID:25713690

  16. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration.

    PubMed

    Martínez-López, José I; Moncada-Hernández, Héctor; Baylon-Cardiel, Javier L; Martínez-Chapa, Sergio O; Rito-Palomares, Marco; Lapizco-Encinas, Blanca H

    2009-05-01

    Insulator-based dielectrophoresis (iDEP), an efficient technique with great potential for miniaturization, has been successfully applied for the manipulation of a wide variety of bioparticles. When iDEP is applied employing direct current (DC) electric fields, other electrokinetic transport mechanisms are present: electrophoresis and electroosmotic flow. In order to concentrate particles, iDEP has to overcome electrokinetics. This study presents the characterization of electrokinetic flow under the operating conditions employed with iDEP; in order to identify the optimal conditions for particle concentration employing DC-iDEP, microparticle image velocimetry (microPIV) was employed to measure the velocity of 1-microm-diameter inert polystyrene particles suspended inside a microchannel made from glass. Experiments were carried out by varying the properties of the suspending medium (conductivity from 25 to 100 microS/cm and pH from 6 to 9) and the strength of the applied electric field (50-300 V/cm); the velocities values obtained ranged from 100 to 700 microm/s. These showed that higher conductivity and lower pH values for the suspending medium produced the lowest electrokinetic flow, improving iDEP concentration of particles, which decreases voltage requirements. These ideal conditions for iDEP trapping (pH = 6 and sigma(m) = 100 microS/cm) were tested experimentally and with the aid of mathematical modeling. The microPIV measurements allowed obtaining values for the electrokinetic mobilities of the particles and the zeta potential of the glass surface; these values were used with a mathematical model built with COMSOL Multiphysics software in order to predict the dielectrophoretic and electrokinetic forces exerted on the particles; the modeling results confirmed the microPIV findings. Experiments with iDEP were carried out employing the same microparticles and a glass microchannel that contained an array of cylindrical insulating structures. By applying DC

  17. Quartz Channel Fabrication for Electrokinetically Driven Separations

    SciTech Connect

    Arnold, D.W.; Ashby, C.I.H.; Bailey, C.G.; Kravitz, S.H., Warren, M.E.; Matzke, C.M.

    1998-12-01

    For well resolved electrokinetic separation, we L tilize crystalline quartz to micromachine a uniformly packe Q&iKLmnel. Packing features are posts 5 Vm on a side with:} pm spacing and etched 42 Vm deep. In addition to anisotropic wet etch characteristics for micromachining, quartz propmties are compatible with chemical soiutioits, ekctrokinetic high voltage operation, and stationary phase film depositions. To seal these channels, we employ a room temperature silicon-oxynhride deposition to forma membrane, that is subsequently coated for mechanical stability. Using this technique, particulate issues and global warp, that make large area wafer bon ding methods difficult, are avoided, and a room temperature process, in contrast to high temperature bonding techniques, accommodate preprocessing of metal films for electrical interconnect. After sealing channels, a number of macro-assembly steps are required to attach a micro-optical detection system and fluid interconnects. Keywords: microcharmel, integrated channel, micromachined channel, packed channel, electrokinetic channel, eleetrophoretic channel

  18. In situ soil remediation using electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive {sup 137}Cs and {sup 60}Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented.

  19. Electrokinetic extraction of chromate from unsaturated soils

    SciTech Connect

    Mattson, E.D.; Lindgren, E.R.

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  20. Laboratory scale electrokinetic remediation and geophysical monitoring of metal-contaminated marine sediments

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Pazzi, Veronica; Losito, Gabriella

    2013-04-01

    Electrokinetic remediation is an emerging technology that can be used to remove contaminants from soils and sediments. This technique relies on the application of a low-intensity electric field to extract heavy metals, radionuclides and some organic compounds. When the electric field is applied three main transport processes occur in the porous medium: electromigration, electroosmosis and electrophoresis. Monitoring of electrokinetic processes in laboratory and field is usually conducted by means of point measurements and by collecting samples from discrete locations. Geophysical methods can be very effective in obtaining high spatial and temporal resolution mapping for an adequate control of the electrokinetic processes. This study investigates the suitability of electrokinetic remediation for extracting heavy metals from dredged marine sediments and the possibility of using geophysical methods to monitor the remediation process. Among the geophysical methods, the spectral induced polarization technique was selected because of its capability to provide valuable information about the physico-chemical characteristics of the porous medium. Electrokinetic remediation experiments in laboratory scale were made under different operating conditions, obtained by varying the strength of the applied electric field and the type of conditioning agent used at the electrode compartments in each experiment. Tap water, 0.1M citric acid and 0.1M ethylenediamine tetraacetic acid (EDTA) solutions were used respectively as processing fluids. Metal removal was relevant when EDTA was used as conditioning agent and the electric potential was increased, as these two factors promoted the electroosmotic flow which is considered to be the key transport mechanism. The removal efficiencies ranged from 9.5% to 27% depending on the contaminant concerned. These percentages are likely to be raised by a further increase of the applied electric field. Furthermore, spectral induced polarization

  1. Electrokinetic soil remediation--critical overview.

    PubMed

    Virkutyt, Jurate; Sillanpää, Mika; Latostenmaa, Petri

    2002-04-22

    In recent years, there has been increasing interest in finding new and innovative solutions for the efficient removal of contaminants from soils to solve groundwater, as well as soil, pollution. The objective of this review is to examine several alternative soil-remediating technologies, with respect to heavy metal remediation, pointing out their strengths and drawbacks and placing an emphasis on electrokinetic soil remediation technology. In addition, the review presents detailed theoretical aspects, design and operational considerations of electrokinetic soil-remediation variables, which are most important in efficient process application, as well as the advantages over other technologies and obstacles to overcome. The review discusses possibilities of removing selected heavy metal contaminants from clay and sandy soils, both saturated and unsaturated. It also gives selected efficiency rates for heavy metal removal, the dependence of these rates on soil variables, and operational conditions, as well as a cost-benefit analysis. Finally, several emerging in situ electrokinetic soil remediation technologies, such as Lasagna, Elektro-Klean, electrobioremediation, etc., are reviewed, and their advantages, disadvantages and possibilities in full-scale commercial applications are examined.

  2. Electrokinetic transport in microchannels with random roughness

    SciTech Connect

    Wang, Moran; Kang, Qinjun

    2008-01-01

    We present a numerical framework to model the electrokinetic transport in microchannels with random roughness. The three-dimensional microstructure of the rough channel is generated by a random generation-growth method with three statistical parameters to control the number density, the total volume fraction, and the anisotropy characteristics of roughness elements. The governing equations for the electrokinetic transport are solved by a high-efficiency lattice Poisson?Boltzmann method in complex geometries. The effects from the geometric characteristics of roughness on the electrokinetic transport in microchannels are therefore modeled and analyzed. For a given total roughness volume fraction, a higher number density leads to a lower fluctuation because of the random factors. The electroosmotic flow rate increases with the roughness number density nearly logarithmically for a given volume fraction of roughness but decreases with the volume fraction for a given roughness number density. When both the volume fraction and the number density of roughness are given, the electroosmotic flow rate is enhanced by the increase of the characteristic length along the external electric field direction but is reduced by that in the direction across the channel. For a given microstructure of the rough microchannel, the electroosmotic flow rate decreases with the Debye length. It is found that the shape resistance of roughness is responsible for the flow rate reduction in the rough channel compared to the smooth channel even for very thin double layers, and hence plays an important role in microchannel electroosmotic flows.

  3. Comparing micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for the analysis of preservatives in pharmaceutical and cosmetic products.

    PubMed

    Huang, Hsi-Ya; Lai, Yu-Cheng; Chiu, Chen-Wen; Yeh, Jui-Ming

    2003-04-18

    In this study, separation and determination of nine preservatives ranging from hydrophilic to hydrophobic properties, which are commonly used as additives in various pharmaceutical and cosmetic products, by micellar electrokinetic chromatograpy (MEKC) and microemulsion electrokinetic chromatography (MEEKC) were compared. The effect of temperature, buffer pH, and concentration of surfactant on separation were examined. In MEKC, the separation resolution of preservatives improved markedly by changing the sodium dodecyl sulfate concentration. Temperature and pH of running buffers were used mainly to shorten the magnitude of separation time. However, in order to detect all preservatives in a single run in a MEEKC system, a microemulsion of higher pH was needed. The separation resolution was improved dramatically by changing temperature, and a higher concentration of SDS was necessary for maintaining a stable microemulsion solution, therefore the separation of the nine preservatives in MEEKC took longer than in MEKC. An optimum MEKC method for separation of the nine preservatives was obtained within 9.0 min with a running buffer of pH 9.0 containing 20 mM SDS at 25 degrees C. A separation with baseline resolution was also obtained within 16 min using a microemulsion of pH 9.5 which composed of SDS, 1-butanol, and octane, and a shorter capillary column at 34 degrees C. Finally, the developed MEKC and MEEKC methods determined successfully preservatives in various cosmetic and pharmaceutical products.

  4. Determination of the antibiotic fungicide validamycin A in formulated products by micellar electrokinetic chromatography.

    PubMed

    Hsiao, Y M; Lo, C C

    1999-09-01

    A micellar electrokinetic capillary chromatographic method (MEKC) was used to determine validamycin A content in commercial products. The results indicated that this method was capable of analyzing the validamycin A content in formulated products with an instrument detection limit of 0.94 microg/mL and a method detection limit of 1. 70 microg/mL. Relative standard deviation (RSD) values of MEKC determination of validamycin A in formulated products ranged from 0. 61 to 2.09%. Recoveries of validamycin A in formulated products were in the region of 99.5-105.1%. All commercial products collected from markets contained validamycin A. The high percentage of recovery, the low detection limit, and the low RSD values confirmed that the MEKC technique is a senstivie and selective method.

  5. Separation of cationic analytes by nonionic micellar electrokinetic chromatography using polyoxyethylene lauryl ether surfactants with different polyoxyethylene length.

    PubMed

    Quirino, Joselito P; Kato, Masaru

    2014-09-01

    Although nonionic micellar electrokinetic chromatography is used for the separation of charged compounds that are not easily separated by capillary zone electrophoresis, the effect of the hydrophilic moiety of the nonionic surfactant has not been studied well. In this study, the separation of ultraviolet-absorbing amino acids was studied in electrokinetic chromatography using neutral polyoxyethylene lauryl ether surfactants (Adekatol) in the separation solution. The effect of the polyethylene moiety (the number of repeating units was from 6.5 to 50) of the hydrophobic test amino acids (methionine, tryptophan, and tysorine) was studied using a 10 cm effective length capillary. The separation mechanism was based on hydrophobic as well as hydrogen bonding interactions at the micellar surface, which was made of the polyoxyethylene moiety. The length of the polyoxyethylene moiety of the surfactants was not important in nonionic micellar electrokinetic chromatography mode.

  6. Remediation of (137)Cs contaminated concrete using electrokinetic phenomena and ionic salt washes in nuclear energy contexts.

    PubMed

    Parker, Andrew J; Joyce, Malcolm J; Boxall, Colin

    2017-10-15

    This work describes the first known the use of electrokinetic treatments and ionic salt washes to remediate concrete contaminated with (137)Cs. A series of experiments were performed on concrete samples, contaminated with K(+) and (137)Cs, using a bespoke migration cell and an applied electric field (60V potential gradient and current limit of 35mA). Additionally, two samples were treated with an ionic salt wash (≤400molm(-3) of KCl) alongside the electrokinetic treatment. The results show that the combined treatment produces removal efficiencies three times higher (>60%) than the electrokinetic treatment alone and that the decontamination efficiency appears to be proportional to the initial degree of contamination. Furthermore, the decontamination efficiencies are equivalent to previous electrokinetic studies that utilised hazardous chemical enhancement agents demonstrating the potential of the technique for use on nuclear licensed site. The results highlight the relationship between the initial contamination concentration within the concrete and achievable removal efficiency of electrokinetic treatment and other treatments. This information would be useful when selecting the most appropriate decontamination techniques for particular contamination scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chromatographic Degradation of Phloridzin

    PubMed Central

    Grochowska, Maria J.

    1966-01-01

    Phloridzin, the main phenolic glucoside in apple leaves, has been found to undergo transformation during chromatography. When chromatographed repeatedly in ammoniacal solvents, at least 2 new derivatives appeared. One of these was identified as phloretic acid. When bioassayed in the presence of indole-3-acetic acid this substance behaved as though it promoted the destruction of the auxin. Comparative bioassay with naphthaleneacetic acid suggested that phloretic acid acts on indoleacetic acid destruction via stimulation of indoleacetic acid oxidase. However, at low concentration and in presence of a small amount of phloridzin it also showed a synergistic effect with indoleacetic acid. A substance with the same characteristics was obtained directly from apple leaves, which are known to contain phloridzin when the extracts were chromatographed only once in the same (alkaline) solvent. While not completely confirmed, this suggests that phloretic acid is normally present in apple leaves, where it may affect growth there by promoting indoleacetic acid oxidation. Images PMID:16656273

  8. Gas chromatograph injection system

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Henderson, M. E.; Donaldson, R. W., Jr. (Inventor)

    1975-01-01

    An injection system for a gas chromatograph is described which uses a small injector chamber (available in various configurations). The sample is placed in the chamber while the chamber is not under pressure and is not heated, and there is no chance of leakage caused by either pressure or heat. It is injected into the apparatus by changing the position of a valve and heating the chamber, and is volatilized and swept by a carrier gas into the analysis apparatus.

  9. Development of high-performance liquid chromatographic determination of salicylaldehyde isonicotinoyl hydrazone in rabbit plasma and application of this method to an in vivo study.

    PubMed

    Kovaríková, Petra; Klimes, Jirí; Stĕrba, Martin; Popelová, Olga; Mokrý, Milan; Gersl, Vladimír; Ponka, Premysl

    2005-08-01

    An analytical methodology appropriate for the determination of the novel drug candidate salicylaldehyde isonicotinoyl hydrazone (SIH) in rabbit plasma has been developed and validated. Desirable chromatographic separation was achieved on a C18 column employing a mixture of phosphate buffer (0.01 M NaH2PO4 x 2 H2O with 2 mM EDTA, pH 6.0) and methanol (53:47; v/v) as the mobile phase. In order to develop a suitable sample preparation procedure, different methods have been tested (solid-phase extraction, liquid-liquid extraction, and protein precipitation). Protein precipitation using 0.1 M HClO4 and acetonitrile allowed the highest recoveries of the analyte to be reproducibly attained. The analytical methodology developed in this study was validated with respect to linearity (0.26-30.0 microg/mL), accuracy, precision, selectivity, recovery, and stability. A concentration of 0.26 microg/mL was determined as the LLOQ. The chromatographic method was applied to a preliminary plasma pharmacokinetic study. This study has provided the first information about the concentrations of SIH in plasma of a living subject. These results could have a significant impact on further progress in the development of this promising compound.

  10. Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors

    DTIC Science & Technology

    2010-11-01

    1 ELECTROKINETICS MODELS FOR MICRO AND NANO FLUIDIC IMPEDANCE SENSORS Yi Wang*, Hongjun Song, Ketan Bhatt, Kapil Pant CFD Research Corporation...analysis, design, and protocol development of novel micro - and nano - fluidics based impedance sensors. 1. INTRODUCTION Exposure to toxic...electrokinetic transport process at the micro - and nano -scale and to interrogate the sensor performance subject to the variations in design

  11. FEASIBILITY OF ELECTROKINETIC SOIL REMEDIATION IN HORIZONTAL LASAGNA CELLS

    EPA Science Inventory

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The...

  12. Electrokinetic profiles of nonowoven cotton for absorbent incontinence material

    USDA-ARS?s Scientific Manuscript database

    This paper discusses recent work on cotton/synthetic nonwovens, their electrokinetic analysis, and their potential use in incontinence materials. Electrokinetic analysis is useful in exploring fiber surface polarity properties, and it is a useful tool to render a snap shot of the role of fiber char...

  13. FEASIBILITY OF ELECTROKINETIC SOIL REMEDIATION IN HORIZONTAL LASAGNA CELLS

    EPA Science Inventory

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The...

  14. Chiral high-performance liquid chromatographic studies of 2-(4-chloro-2-methylphenoxy)propanoic acid.

    PubMed

    Blessington, B; Crabb, N; O'Sullivan, J

    1987-06-19

    The direct enantiomeric resolution of the racemic herbicide 2-(4-chloro-2-methylphenoxy)propanoic acid (CMPP) was demonstrated on an Enantiopac (alpha 1-acid glycoprotein) chiral high-performance liquid chromatographic (HPLC) column. The HPLC separation of various amide derivatives of CMPP on a chiral "Ionic Pirkle" column comprising of N-(3,5-dinitrobenzoyl) (R)-(-)phenylglycine as chiral ligand, was also accomplished. These amides and racemic ibuprofen, however could not be separated on the Enantiopac system. The performance, stability and cost of the two systems were compared. Using optically pure CMPP enantiomers the elution order was determined and shown to reverse between the two systems. It was also shown that negligible racemisation occurred during derivatization.

  15. High-pressure/high-temperature gas-solubility study in hydrogen-phenanthrene and methane-phenanthrene systems using static and chromatographic techniques

    SciTech Connect

    Malone, P.V.

    1987-01-01

    The design and discovery of sources for alternative energy such as coal liquefaction has become of major importance over the past two decades. One of the major problems in such design in the lack of available data, particularly, for gas solubility in polycyclic aromatics at high temperature and pressure. Static and gas-liquid partition chromatographic methods were used for the study of hydrogen-phenanthrene and methane-phenanthrene systems. The static data for these two binaries were taken along 398.2, 423.2, 448.2, and 473.2 K isotherms up to 25.23 MPa. Gas-liquid partition chromatography was used to study the infinite dilution behavior of methane, ethane, propane, n-butane, and carbon dioxide in the hydrogen-phenanthrene system as well as hydrogen, ethane, n-butane, and carbon dioxide in the methane-phenanthrene binary. The principle objective was to examine the role of the elution gas. Temperatures were along the same isotherms as the static data and up to 20.77 MPa. With the exception of carbon dioxide, Henry's constants were calculated for all systems. Expressions for the heat of solution as a function of pressure were derived for both binary and chromatographic data. Estimates of delta H/sub i/sup sol/ at high pressure were presented.

  16. Comparative study of the dynamic gravimetric and pulse chromatographic methods for the determination of Henry constants of adsorption for VOC zeolite systems

    NASA Astrophysics Data System (ADS)

    Nokerman, J.; Canet, X.; Mougin, P.; Limborg-Noetinger, S.; Frère, M.

    2005-09-01

    In this paper, we propose a comparative study between a gravimetric apparatus operating under dynamic conditions and a pulse chromatographic device developed for the determination of Henry constants of adsorption for VOC-zeolite systems. In both cases, we provide a description of the experimental set-up and procedure, as well as a complete report on the treatment of the rough experimental data. The experimental errors are also discussed. The comparison work is based on the study of the adsorption of toluene on a NaY zeolite (Si/Al 2.43) for temperatures ranging from 503 to 623 K. The maximal discrepancy found between the experimental Henry constants was 15.0%. The pulse chromatographic method is only dedicated to high-temperature measurements. For low-temperature experiments, the rough data cannot be treated in an efficient way, and it is not possible to obtain reliable Henry constant values. The dynamic gravimetric method is not temperature limited. It is however time-consuming, especially when low-temperature measurements (not presented in this paper) are concerned. Both methods are complementary if the determination of Henry constants is required in a wide temperature range.

  17. Packed multi-channels for parallel chromatographic separations in microchips.

    PubMed

    Nagy, Andrea; Gaspar, Attila

    2013-08-23

    Here we report on a simple method to fabricate microfluidic chip incorporating multi-channel systems packed by conventional chromatographic particles without the use of frits. The retaining effectivities of different bottlenecks created in the channels were studied. For the parallel multi-channel chromatographic separations several channel patterns were designed. The obtained multipackings were applied for parallel separations of dyes. The implementation of several chromatographic separation units in microscopic size makes possible faster and high throughput separations.

  18. Chemometric quality control of chromatographic purity.

    PubMed

    Laursen, Kristoffer; Frederiksen, Søren Søndergaard; Leuenhagen, Casper; Bro, Rasmus

    2010-10-15

    It is common practice in chromatographic purity analysis of pharmaceutical manufacturing processes to assess the quality of peak integration combined by visual investigation of the chromatogram. This traditional method of visual chromatographic comparison is simple, but is very subjective, laborious and seldom very quantitative. For high-purity drugs it would be particularly difficult to detect the occurrence of an unknown impurity co-eluting with the target compound, which is present in excess compared to any impurity. We hypothesize that this can be achieved through Multivariate Statistical Process Control (MSPC) based on principal component analysis (PCA) modeling. In order to obtain the lowest detection limit, different chromatographic data preprocessing methods such as time alignment, baseline correction and scaling are applied. Historical high performance liquid chromatography (HPLC) chromatograms from a biopharmaceutical in-process analysis are used to build a normal operation condition (NOC) PCA model. Chromatograms added simulated 0.1% impurities with varied resolutions are exposed to the NOC model and monitored with MSPC charts. This study demonstrates that MSPC based on PCA applied on chromatographic purity analysis is a powerful tool for monitoring subtle changes in the chromatographic pattern, providing clear diagnostics of subtly deviating chromatograms. The procedure described in this study can be implemented and operated as the HPLC analysis runs according to the process analytical technology (PAT) concept aiming for real-time release. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The characterizations of rheological, electrokinetical and structural properties of ODTABr/MMT and HDTABr/MMT organoclays

    SciTech Connect

    Isci, S. Uslu, Y.O.; Ece, O.I.

    2009-05-15

    In the present paper, we have investigated as a function of surfactant concentration the rheological (yield value, plastic viscosity) and electrokinetic (mobility, zeta potential) properties of montmorillonite (MMT) dispersions. The influence of surfactants (Octadeccyltrimethylammonium bromide, ODTABr and Hexadecyltrimethylammonium bromide, HDTABr) on dispersions of Na-activated bentonite was evaluated by rheological and electrokinetic measurements, and X-ray diffraction (XRD) studies. The interactions between clay minerals and surfactants in water-based Na-activated MMT dispersions (2 wt.%) were examined in detail using rheologic parameters, such as viscosity, yield point, apparent and plastic viscosity, hysteresis area, and electrokinetic parameters of mobility and zeta potentials, and XRD also analyses helped to determine swelling properties of d-spacings. MMT and organoclay dispersions showed Bingham Plastic flow behavior. The zeta potential measurements displayed that the surfactant molecules hold on the clay particle surfaces and the XRD analyses displayed that they get into the basal layers.

  20. Investigation of the surfactant type and concentration effect on the retention factors of glutathione and its analogues by micellar electrokinetic chromatography.

    PubMed

    Kazarjan, Jana; Mahlapuu, Riina; Hansen, Mats; Soomets, Ursel; Kaljurand, Mihkel; Vaher, Merike

    2015-10-01

    In the present study, a micellar electrokinetic chromatographic method was used to determine the retention factors of hydrophilic monomeric and homodimeric forms of glutathione analogues. Ionic-liquid-based surfactant, 1-tetradecyl-3-methylimidazolium chloride, as well as cetyltrimethylammonium bromide and phosphate buffer (pH 7.4) were employed in the experiments. Since the studied peptides possess a negative charge under physiological conditions, it is expected that the peptides interact with the oppositely charged 1-tetradecyl-3-methylimidazolium chloride and cetyltrimethylammonium bromide micelles via hydrophobically assisted electrostatic forces. The dependence of the retention factor on the micellar concentration of 1-tetradecyl-3-methylimidazolium chloride and cetyltrimethylammonium bromide is nonlinear and the obtained curves converge to a limiting value. The retention factor values of GSH analogues were in the range of 0.36-2.22 for glutathione analogues and -1.21 to 0.37 for glutathione when 1-tetradecyl-3-methylimidazolium chloride was used. When cetyltrimethylammonium bromide was employed, the retention factor values were in the range of 0.27-2.17 for glutathione analogues and -1.22 to 0.06 for glutathione. If sodium dodecyl sulfate was used, the retention factor values of glutathione analogues with carnosine moiety were in the range of -1.54 to 0.38.

  1. Trace analysis of three antihistamines in human urine by on-line single drop liquid-liquid-liquid microextraction coupled to sweeping micellar electrokinetic chromatography and its application to pharmacokinetic study.

    PubMed

    Gao, Wenhua; Chen, Yunsheng; Chen, Gaopan; Xi, Jing; Chen, Yaowen; Yang, Jianying; Xu, Ning

    2012-09-01

    A rapid and efficient dual preconcentration method of on-line single drop liquid-liquid-liquid microextraction (SD-LLLME) coupled to sweeping micellar electrokinetic chromatography (MEKC) was developed for trace analysis of three antihistamines (mizolastine, chlorpheniramine and pheniramine) in human urine. Three analytes were firstly extracted from donor phase (4 mL urine sample) adjusted to alkaline condition (0.5 M NaOH). The unionized analytes were subsequently extracted into a drop of n-octanol layered over the urine sample, and then into a microdrop of acceptor phase (100 mM H(3)PO(4)) suspended from a capillary inlet. The enriched acceptor phase was on-line injected into capillary with a height difference and then analyzed directly by sweeping MEKC. Good linear relationships were obtained for all analytes in a range of 6.25 × 10(-6) to 2.5 × 10(-4)g/L with correlation coefficients (r) higher than 0.987. The proposed method achieved limits of detections (LOD) varied from 1.2 × 10(-7) to 9.5 × 10(-7)g/L based on a signal-to-noise of 3 (S/N=3) with 751- to 1372-fold increases in detection sensitivity for analytes, and it was successfully applied to the pharmacokinetic study of three antihistamines in human urine after an oral administration. The results demonstrated that this method was a promising combination for the rapid trace analysis of antihistamines in human urine with the advantages of operation simplicity, high enrichment factor and little solvent consumption.

  2. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices

    PubMed Central

    2017-01-01

    We recently reported acupuncture sample injection that leads to reproducible injection of nL-scale sample segments into a polydimethylsiloxane (PDMS) microchannel for microchip capillary electrophoresis. The advantages of the acupuncture injection in microchip capillary electrophoresis include capability of minimizing sample loss and voltage control hardware and capability of introducing sample plugs into any desired position of a microchannel. However, the challenge in the previous study was to achieve reproducible, pL-scale sample injections into PDMS microchannels. In the present study, we introduce an acupuncture injection technique combined with electrokinetic injection (AICEI) technique to inject pL-scale sample segments for microchip capillary electrophoresis. We carried out the capillary zone electrophoresis (CZE) separation of FITC and fluorescein, and the mixture of 10 μM FITC and 10 μM fluorescein was separated completely by using the AICEI method. PMID:28326222

  3. Determination of melamine and related triazine by-products ammeline, ammelide, and cyanuric acid by micellar electrokinetic chromatography.

    PubMed

    Hsu, Yi-Fen; Chen, Kuan-Ting; Liu, Yu-Wei; Hsieh, Shih-Huan; Huang, Hsi-Ya

    2010-07-19

    In this study, micellar electrokinetic chromatographic (MEKC) methods were developed for the detection of traces of melamine and its related by-products (ammeline, ammelide, and cyanuric acid). Two on-line sample concentration steps namely reversed electrode polarity stacking mode (REPSM) and cation-selective injection (CSI) were used for improving the detection sensitivity. For REPSM, a borate-NaOH buffer (pH 10, 35 mM) composed of 60 mM SDS and 10% (v/v) methanol, was used as carrier electrolyte, and samples were prepared in an aqueous solution of 10 mM NaOH. In CSI, a phosphate buffer (pH 2, 50 mM) containing 41 mM SDS was used as the carrier electrolyte, and samples were prepared with an aqueous solution of 10 mM NaOH and a phosphate buffer (pH 2.0, 25 mM) in a volume ratio of 1:9. The results indicated that REPSM enhanced all analyte signals except for melamine, which could be concentrated only by the CSI. The detection limit was reduced from 1.7 mg L(-1) to 2.8 microg L(-1) for melamine by the optimal CSI step, and from 0.23-1.2 mg L(-1) to 2.4-5.0 microg L(-1) for the other three analytes by the optimal REPSM step. Tableware made of melamine and samples of flour were used as test samples, and the results indicated that the proposed MEKC methods can successfully determine contaminations from melamine. The study also indicated that when the plastic made of melamine was exposed only once to an acidic solution (acetic or phosphoric acid) at 80 degrees C for 30 min, melamine continuously leached out from the test sample even without any further treatment with an acidic solution.

  4. Improvement of derivatized amino acid detection sensitivity in micellar electrokinetic capillary chromatography by means of acid-induced pH-mediated stacking technique.

    PubMed

    Dziomba, Szymon; Bekasiewicz, Adrian; Prahl, Adam; Bączek, Tomasz; Kowalski, Piotr

    2014-10-01

    Derivatization is a frequently used sample preparation procedure applicable to the enhancement of analyte detection sensitivity. Amino acids mostly require derivatization prior to electrophoretic or chromatographic analysis, especially if spectrophotometric detection is used. This study presents an on-line preconcentration technique for derivatized amino acids. The sensitivity of the method was improved by the utilization of the proposed acid-induced pH-mediated stacking mechanism. The method is demonstrated by preconcentration of amino acids labeled with 2,4-dinitrofluorobenzene. Use of optimized conditions for a large sample volume injection (40 s, 13.8 kPa) followed by electrokinetic injection of 0.1 M HCl (20 s, 10 kV) gave a 20- to 30-fold enhancement of sensitivity. The significance of the sweeping mechanism and pseudo-isotachophoresis for the on-line sample focusing and the influence of parameters on the preconcentration process were discussed. The applicability of the elaborated method was demonstrated using human urine samples.

  5. Simultaneous determination of phosphorus-containing amino acid-herbicides by nonionic surfactant micellar electrokinetic chromatography with laser-induced fluorescence detection.

    PubMed

    Molina, M; Silva, M

    2001-04-01

    The potential of micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection for the separation and determination of phosphorus-containing amino acid-herbicides (glufosinate and glyphosate), and aminomethylphosphonic acid (the major metabolite of glyphosate), involving derivatization with fluorescein isothiocyanate (FITC) isomer I, was investigated. Different variables that affect derivatization (pH, FITC concentration, time and temperature) and separation (pH and concentration of the buffer, kind and concentration of surfactants and applied voltage) were studied. The analysis was conducted within about 8 min and the use of the nonionic surfactant Triton X-100 improved the selectivity, thus indirectly enhancing sensitivity by shifting of the interfering peaks of the FITC excess. Dynamic ranges of 2.0-3,000 microg/L, limits of detection at microgram or submicrogram-per-liter level, and relative standard deviations from 4.7 to 6.4% were obtained. The ensuing method--nonionic surfactant MEKC-- is a useful choice for the determination of these herbicides as it provides limits of detection similar or lower than those reported by existing chromatographic alternatives without the use of an additional preconcentration technique such as solid-phase extraction. The separation of a mixture of nine FITC-derivatized amino acids, selected as target compounds, was also carried out to assess the discrimination power of the nonionic surfactant MEKC method for the analysis of closely related anionic analytes.

  6. Catalytically induced electrokinetics for motors and micropumps.

    PubMed

    Paxton, Walter F; Baker, Paul T; Kline, Timothy R; Wang, Yang; Mallouk, Thomas E; Sen, Ayusman

    2006-11-22

    We have explored the role of electrokinetics in the spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2) solutions that may arise from the bimetallic electrochemical decomposition of H2O2. The electrochemical decomposition pathway was confirmed by measuring the steady-state short-circuit current between platinum and gold interdigitated microelectrodes (IMEs) in the presence of H2O2. The resulting ion flux from platinum to gold implies an electric field in the surrounding solution that can be estimated from Ohm's Law. This catalytically generated electric field could in principle bring about electrokinetic effects that scale with the Helmholtz-Smoluchowski equation. Accordingly, we observed a linear relationship between bimetallic rod speed and the resistivity of the bulk solution. Previous observations relating a decrease in speed to an increase in ethanol concentration can be explained in terms of a decrease in current density caused by the presence of ethanol. Furthermore, we found that the catalytically generated electric field in the solution near a Pt/Au IME in the presence of H2O2 is capable of inducing electroosmotic fluid flow that can be switched on and off externally. We demonstrate that the velocity of the fluid flow in the plane of the IME is a function of the electric field, whether catalytically generated or applied from an external current source. Our findings indicate that the motion of PtAu nanorods in H2O2 is primarily due to a catalytically induced electrokinetic phenomenon and that other mechanisms, such as those related to interfacial tension gradients, play at best a minor role.

  7. Chromatographic methods of fractionation.

    PubMed

    Friesen, A D

    1987-01-01

    Chromatography's functional versatility, separation efficiency, gentle non-denaturing separating process and ease of automation and scale-up make it attractive for industrial scale protein purification. The Winnipeg Rh Institute's new Plasma Fractionation facility is an example of the use of chromatography for the large scale purification of plasma protein fractions. The fractionation facility has a capacity to process 800 litres of plasma per batch into blood clotting factor VIII and IX, albumin and intravenous immune serum globulin (i.v. ISG). Albumin and i.v. ISG are purified using ion exchange columns of DEAE-Sepharose (230 litre size), DEAE-Biogel (150 litre size) and CM-Sepharose (150 litre size). The chromatographic process is automated using a Modicon 584 Programmable Logic Controller to regulate valves, pumps and sensors which control plasma flow during fractionation. The stainless steel tanks and piping are automatically cleaned-in-place. The high degree of automation and cleaning provides efficient operation and sanitary processing. Chromatographic methods (DEAE-Sepharose and metal chelation) are also being used at the pilot scale to purify the human blood products superoxide dismutase and hemoglobin from outdated red blood cells. Characterization of the protein fractions produced by chromatography has shown them to be of equal or higher quality than fractions produced by other techniques.

  8. Electrokinetic ion transport in confined micro-nanochannel.

    PubMed

    Wang, Junyao; Liu, Chong; Xu, Zheng

    2016-03-01

    In this paper, a confined micronanochannel is presented to concentrate ions in a restricted zone. A general model exploiting the Poisson-Nernst-Plank equations coupled with the Navier-Stokes equation is employed to simulate the electrokinetic ion transport. The influences of the micronanochannel dimension and the surface charge density on the potential distribution, the ion concentration, and the fluid flow are investigated. The numerical results show that the potential drop depends mainly on the nanochannel, instead of the confined channel. Both decreasing the width and increasing the length enhance the ion enrichment performance. For a given nanochannel, ultimate value of ion concentration may be determined by the potential at the center point of the nanochannel. The study also shows that the enrichment stability can be improved by increasing the micronanochannel width, decreasing the micronanochannel length and reducing the surface charge density.

  9. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect

    E. James Davis

    1998-05-01

    The objective of this research is to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. In this experimental and analytical study the authors elucidate the transport processes that control the rate of concentrated colloidal particle removal, demonstrate the process on a laboratory scale, and develop the scale-up laws needed to design commercial-scale processes. The authors are also addressing the fundamental problems associated with particle-particle interactions (electrical and hydrodynamic), the effects of particle concentration on the applied electric field, the electrochemical reactions that occur at the electrodes, and the prediction of power requirements.

  10. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect

    E. James Davis

    1997-04-30

    The objective of this research is to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. In this experimental and analytical study the authors elucidate the transport processes that control the rate of concentrated colloidal particle removal, demonstrate the process on a laboratory scale, and develop the scale-up laws needed to design commercial-scale processes. They then address the fundamental problems associated with particle-particle interactions (electrical and hydrodynamic), the effects of particle concentration on the applied electric field, the electrochemical reactions that occur at the electrodes, and the prediction of power requirements.

  11. Electrokinetic transport in unsteady flow through peristaltic microchannel

    NASA Astrophysics Data System (ADS)

    Tripathi, Dharmendra; Mulchandani, Janak; Jhalani, Shubham

    2016-04-01

    We analyze the electrokinetic transport of aqueous electrolyte fluids with Newtonian model in presence of peristalsis through microchannel. Debye-Hückel linearization is employed to simplify the problem. Low Reynolds number and large wavelength approximations are taken into account subjected to microfluidics applications. Electrical double layer (EDL) is considered very thin and electroosmotic slip velocity (i.e. Helmholtz-Smoluchowski velocity) at the wall is subjected to study the effect of applied electrical field. The solutions for axial velocity and pressure difference along the channel length are obtained analytically and the effects of adding and opposing the flow by applied electric field have been discussed. It is revealed that the axial velocity and pressure gradient enhances with adding electric field and an opposite behavior is found in the flow direction on opposing the electric field. These results may also help towards designing organ-on-a-chip like devices for better drug design.

  12. A method of producing electrokinetic power through forward osmosis

    NASA Astrophysics Data System (ADS)

    Cherng Hon, Kar; Zhao, Cunlu; Yang, Chun; Chay Low, Seow

    2012-10-01

    A power generation method for harvesting renewable energy from salinity gradient is proposed. The principle of the proposed method encompasses forward osmosis (FO) and electrokinetic phenomena. With the salinity difference between draw and feed solutions, FO allows spontaneous water flow across a semi-permeable membrane. The flow of water is then directed through a porous medium where the electric power is generated from the electrokinetic streaming potential. With a glass porous medium and a commercial flat sheet FO membrane in a batch mode configuration, our lab scale experimental system has demonstrated the produced electrokinetic voltages of about several hundreds of milli-volts.

  13. A comparative study of extractant and chromatographic phases for the rapid and sensitive determination of six phthalates in rainwater samples.

    PubMed

    Fernández-Amado, M; Prieto-Blanco, M C; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2017-05-01

    Six phthalic acid esters were determined in rainwater samples, from which a very low sample volume was collected. This method combines on-line in-tube solid-phase microextraction coupled to high-performance liquid chromatography with a diode-array detector. In order to obtain a short analysis time and to reduce the consumption of organic solvents, two chromatographic phases (C18 monolithic and cyanopropyl silica) are compared. Although three critical pairs are found, faster separation, good resolution and lower pressures are achieved using C18 monolithic column. In order to achieve a simple and sensitive method, two commercial capillaries (a porous polymer with divinylbenzene-4-vinylpyridine and a liquid-phase capillary with 95% poly(dimethylsiloxane)-5% poly(diphenylsiloxane)) are tested for the extraction process. Due to great differences of hydrophobicity among the six phthalates, the selection of a modifier is necessary for a good extraction. The best conditions are achieved using 5 mL of sample containing 40% methanol in a 70 cm-long porous polymer capillary. The procedural blanks are controlled and taken into account in the calculation of the detection limits. Except for dimethylphthalate, the method detection limits are in the range from 0.2 to 0.9 ng mL(-1) and the inter-day precision is between 5.3% and 12.5%. The recoveries were within the range of 71%-101%. Rainwater samples are analyzed in order to examine the dilution effect and washout of phthalates in the atmosphere. Dibutyl phthalate is the predominant phthalate found and di-(2-ethylhexyl) phthalate is detected in all analyzed samples.

  14. Chromatographic studies of drug interactions with alpha1-acid glycoprotein by ultrafast affinity extraction and peak profiling.

    PubMed

    Beeram, Sandya; Bi, Cong; Zheng, Xiwei; Hage, David S

    2017-05-12

    Interactions with serum proteins such as alpha1-acid glycoprotein (AGP) can have a significant effect on the behavior and pharmacokinetics of drugs. Ultrafast affinity extraction and peak profiling were used with AGP microcolumns to examine these processes for several model drugs (i.e., chlorpromazine, disopyramide, imipramine, lidocaine, propranolol and verapamil). The association equilibrium constants measured for these drugs with soluble AGP by ultrafast affinity extraction were in the general range of 10(4)-10(6)M(-1) at pH 7.4 and 37°C and gave good agreement with literature values. Some of these values were dependent on the relative drug and protein concentrations that were present when using a single-site binding model; these results suggested a more complex mixed-mode interaction was actually present, which was also then used to analyze the data. The apparent dissociation rate constants that were obtained by ultrafast affinity extraction when using a single-site model varied from 0.14 to 7.0s(-1) and were dependent on the relative drug and protein concentrations. Lower apparent dissociation rate constants were obtained by this approach as the relative amount of drug versus protein was decreased, with the results approaching those measured by peak profiling at low drug concentrations. This information should be useful in better understanding how these and other drugs interact with AGP in the circulation. In addition, the chromatographic approaches that were optimized and used in this report to examine these systems can be adapted for the analysis of other solute-protein interactions of biomedical interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Liquid chromatographic determination of the glycoalkaloids alpha-solanine and alpha-chaconine in potato tubers: NMKL Interlaboratory Study. Nordic Committee on Food Analysis.

    PubMed

    Hellenäs, K E; Branzell, C

    1997-01-01

    Twelve laboratories participated in a collaborative study to evaluate precision parameters of a liquid chromatographic method for analysis of the glycoalkaloids alpha-solanine and alpha-chaconine in potato tubers. Samples consisted of frozen potato tuber homogenates distributed as 3 blind duplicates and 3 split-level pairs. The analytical method included aqueous extraction, workup on disposable solid-phase extraction cartridges, and reversed-phase chromatography with photometric detection at 202 nm. Results for alpha-solanine and alpha-chaconine were received from 10 and 9 laboratories, respectively. Relative standard deviations for reproducibility for alpha-solanine and alpha-chaconine were similar, ranging from 8 to 13% in the applied concentration range of 12 to 260 mg/kg fresh weight.

  16. Analysis of fat-soluble vitamins. XXVIII. High performance liquid chromatographic determination of vitamin D in pet foods and feeds: collaborative study.

    PubMed

    de Vries, E J; Van Bemmel, P; Borsje, B

    1983-05-01

    A high performance liquid chromatographic (HPLC) method for vitamin D in pet foods and feeds at low concentrations (2-8 IU/g = 50-200 ppb) was studied collaboratively. The procedure consists of the following purification steps: saponification, extraction of the unsaponifiable fraction, chromatography on alumina, cleanup on reverse phase HPLC, and quantitation with straight phase HPLC. The original method, developed by Knapstein, was simplified by deleting the quantitative TLC step. Six coded samples were distributed to 31 laboratories, along with a known sample containing 15 IU/g to allow practice of the rather complicated procedure. Eighteen collaborators returned their results. Results for the spiked samples show good recovery. The estimates of repeatability and reproducibility are 0.96 and 2.2 IU/g for spiked samples and 1.5 and 3.1 IU/g for commercial samples, respectively, which are considered acceptable for these low concentrations. The method has been adopted official first action.

  17. Characteristic chromatographic fingerprint study of short-chain fatty acids in human milk, infant formula, pure milk and fermented milk by gas chromatography-mass spectrometry.

    PubMed

    Jiang, Zhenzuo; Liu, Yanan; Zhu, Yan; Yang, Jing; Sun, Lili; Chai, Xin; Wang, Yuefei

    2016-09-01

    Human milk, infant formula, pure milk and fermented milk as food products or dietary supplements provide a range of nutrients required to both infants and adults. Recently, a growing body of evidence has revealed the beneficial roles of short-chain fatty acids (SCFAs), a subset of fatty acids produced from the fermentation of dietary fibers by gut microbiota. The objective of this study was to establish a chromatographic fingerprint technique to investigate SCFAs in human milk and dairy products by gas chromatography coupled with mass spectrometry. The multivariate method for principal component analysis assessed differences between milk types. Human milk, infant formula, pure milk and fermented milk were grouped independently, mainly because of differences in formic acid, acetic acid, propionic acid and hexanoic acid levels. This method will be important for the assessment of SCFAs in human milk and various dairy products.

  18. Electrokinetic Fingering In Hele-Shaw Cells

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Bazant, Martin

    2016-11-01

    Large scale flow problems in porous media, such as those encountered in underground oil reservoirs, are typically described by the Darcy's law. However, it is well known that many underground rock formations contain surface groups and minerals that dissociate in the presence of water. Convection of these charges by the pressure driven flow can then set up streaming current and streaming potential that affects the flow. Furthermore, electric fields that are often used to enhance oil recovery, e.g. by reducing the oil's viscosity through electro-thermal heating, drive electro-osmotic flows that could set up very large pressure in small pores. The full description of fluid flow thus requires a solution to the fully coupled electrokinetic problem. In their seminal work, Saffman and Taylor showed that the moving interface between two immiscible fluids in a porous medium becomes unstable if pushed by the low-viscosity fluid. Here we report on the role of electrokinetic phenomena on stability of these viscous fronts in Hele-Shaw cells by using analytic as well as numerical approaches. Interestingly, we find that the instability could be suppressed if the right physical conditions are met or otherwise enhanced, leading to greater mixing of two fluids.

  19. Electrokinetic removal of caesium from kaolin.

    PubMed

    Al-Shahrani, S S; Roberts, E P L

    2005-06-30

    Soil, in the form of kaolin and a sample of natural soil from an industrial site, was artificially contaminated with caesium and subjected to electrokinetic treatment. The effect of catholyte pH control on the process was investigated using different acids to control the catholyte pH. During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment the pore fluid conductivity and the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, catholyte pH control is essential in order to create a suitable environment throughout the soil to enable contaminant removal. It was found that the type of acid used to control the catholyte pH affected the rate of caesium removal (nitric, sulphuric, acetic and citric acids were tested). All of the acids tested were effective, but the highest caesium extraction was achieved when nitric acid was used to control the catholyte pH. The relatively high adsorption capacity of the soil for caesium was found to significantly reduce the rate of removal. After 240 h of treatment at 1 Vcm(-1) (using sulphuric acid to control the catholyte pH), less than 80% of the caesium was removed from a 30 cm long sample of kaolin. Electrokinetic treatment of the industrial soil sample was slower than for the kaolin, but a significant extraction rate for caesium was achieved.

  20. Microtubule alignment and manipulation using AC electrokinetics.

    PubMed

    Uppalapati, Maruti; Huang, Ying-Ming; Jackson, Thomas N; Hancock, William O

    2008-09-01

    The kinesin-microtubule system plays an important role in intracellular transport and is a model system for integrating biomotor-driven transport into microengineered devices. AC electrokinetics provides a novel tool for manipulating and organizing microtubules in solution, enabling new experimental geometries for investigating and controlling the interactions of microtubules and microtubule motors in vitro. By fabricating microelectrodes on glass substrates and generating AC electric fields across solutions of microtubules in low-ionic-strength buffers, bundles of microtubules are collected and aligned and the electrical properties of microtubules in solution are measured. The AC electric fields result in electro-osmotic flow, electrothermal flow, and dielectrophoresis of microtubules, which can be controlled by varying the solution conductivity, AC frequency, and electrode geometry. By mapping the solution conductivity and AC frequency over which positive dielectrophoresis occurs, the apparent conductivity of taxol-stabilized bovine-brain microtubules in PIPES buffer is measured to be 250 mS m(-1). By maximizing dielectrophoretic forces and minimizing electro-osmotic and electrothermal flow, microtubules are assembled into opposed asters. These experiments demonstrate that AC electrokinetics provides a powerful new tool for kinesin-driven transport applications and for investigating the role of microtubule motors in development and maintenance of the mitotic spindle.

  1. Electrokinetics of pure clay minerals revisited

    SciTech Connect

    Sondi, I.; Biscan, J.; Pravdic, V.

    1996-03-25

    Clay minerals have long attracted the attention of colloid scientists. This paper considers, specifically, their important role in the transport of various contaminants from land to sea, e.g., metal ions and organic detrital and man-made material in watercourses. Advance in experimental techniques have enabled precise characterization of clays and then electrokinetic experiments at high electrolyte concentrations, such as in seawater. Three of the most important clay minerals encountered in suspended matter in natural waters, montmorillonite, illite, and chlorite, were prepared in a very pure state. Electrokinetic experiments were done in pure aqueous single and complex electrolyte solutions and in solutions in which natural organic matter was simulated using a humic substance, fulvic acid, of defined provenance and properties, typical of riverine waters. An isoelectric point was found at pH 5.0 {+-} 0.2 for chlorite; none were found for illite and montmorillonite. Only Ca{sup 2+} showed a charging effect on chlorite, indeed a reversal of sign from negative to positive at 1 {times} 10{sup {minus}3} mol dm{sup {minus}3}. Addition of fulvic acid affected only chlorite, illite less, and Na montmorillonite not at all.

  2. Atomistic simulations of nanoscale electrokinetic transport

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Wang, Moran; Chen, Shiyi; Robbins, Mark

    2011-11-01

    An efficient and accurate algorithm for atomistic simulations of nanoscale electrokinetic transport will be described. The long-range interactions between charged molecules are treated using the Particle-Particle Particle-Mesh method and the Poisson equation for the electric potential is solved using an efficient multi-grid method in physical space. Using this method, we investigate two important applications in electrokinetic transport: electroosmotic flow in rough channels and electowetting on dielectric (EWOD). Simulations of electroosmotic and pressure driven flow in exactly the same geometries show that surface roughness has a much more pronounced effect on electroosmotic flow. Analysis of local quantities shows that this is because the driving force in electroosmotic flow is localized near the wall where the charge density is high. In atomistic simulations of EWOD, we find the contact angle follows the continuum theory at low voltages and always saturates at high voltages. Based on our results, a new mechanism for saturation is identified and possible techniques for controlling saturation are proposed. This work is supported by the National Science Foundation under Grant No. CMMI 0709187.

  3. Electro-kinetic dewatering of oily sludges.

    PubMed

    Yang, Lin; Nakhla, George; Bassi, Amarjeet

    2005-10-17

    An oily sludge from a rendering facility was treated using electro-kinetic (EK) techniques employing two different experimental designs. The bench scale used vertical electrodes under different operational conditions, i.e. varied electrode spacing at 4, 6 and 8 cm with electric potential of 10, 20 and 30 V, respectively. The highest water removal efficiency (56.3%) at bench scale was achieved at a 4 cm spacing and 30 V. Comparison of the water removal efficiency (51.9%) achieved at the 20 V at 4 cm spacing showed that power consumption at 30 V was 1.5 times larger than that at 20 V, suggesting a further increase of electric potential is unnecessary. The solids content increased from an initial 5 to 11.5 and 14.1% for 20 and 30 V, respectively. The removal of oil and grease (O&G) was not significant at this experimental design. Another larger scale experiment using a pair of horizontal electrodes in a cylinder with 15 cm i.d. was conducted at 60 V at an initial spacing of 22 cm. More than 40.0% of water was removed and a very efficient oil separation from the sludge was achieved indicating the viability of electro-kinetic recovery of oil from industrial sludge.

  4. Treatment of sewage sludge using electrokinetic geosynthetics.

    PubMed

    Glendinning, Stephanie; Lamont-Black, John; Jones, Colin J F P

    2007-01-31

    The treatment and disposal of sewage sludge is one of the most problematical issues affecting wastewater treatment in the developed world. The traditional outlets for sewage sludge are to spread it on agricultural land, or to form a cake for deposit to landfill or incineration. In order to create a sludge cake, water must be removed. Existing dewatering technology based on pressure can only remove a very limited amount of this water because of the way in which water is bound to the sludge particles or flocs. Several researchers have shown that electrokinetic dewatering of sludge is more efficient than conventional hydraulically driven methods. This involves the application of a dc voltage across the sludge, driving water under an electrical gradient from positive (anode) electrode to negative (cathode) electrode. However, there have been several reasons why this technique has not been adopted in practice, not least because the, normally metallic, anode rapidly dissolves due to the acidic environment created by the electrolysis of water. This paper will describe experimentation using electrokinetic geosynthetics (EKG): polymer-based materials containing conducting elements. These have been used to minimise the problem of electrode corrosion and create a sludge treatment system that can produce dry solids contents in excess of 30%. It will suggest different options for the treatment of sludges both in situ in sludge lagoons and windrows, and ex situ as a treatment process.

  5. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  6. Microminiature gas chromatograph

    DOEpatents

    Yu, Conrad M.

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  7. Microminiature gas chromatograph

    DOEpatents

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  8. Liquid chromatographic-mass spectrometry analysis and pharmacokinetic studies of a novel rabeprazole formulation, sterile powder for injection, in dogs and rats.

    PubMed

    Shao, Feng; Sun, Jianguo; Wang, Guangji; Xie, Haitang; Zhu, Xiaoyan; Zhang, Jingwei

    2007-05-01

    Rabeprazole is among the most potent proton pump inhibitors (PPI) identified to date and it has been demonstrated that it is effective in such diseases as gastroesophageal reflux disease (GERD), duodenal ulcer and gastric ulcer. There is currently interest in developing a new formulation: rabeprazole sterile powder for injection (RSPI). This investigation was conducted to evaluate the preclinical pharmacokinetics of RSPI in rats and at the same time a comparative study was carried out in dogs between RSPI and Pariet tablets using liquid chromatographic-mass spectrometry analysis. The liquid chromatographic-mass spectrometry method was first conducted and validated as being specific, and having accuracy, precision, sensitivity and a satisfactory recovery. After intravenous administration of RSPI (i.v.: 2, 6 and 18 mg/kg) to rats, no significant dose-dependency was found in the CL (4.20-5.72 l/h/kg), V(area) (d) (0.94-1.32 l/kg), dose-normalized AUC (197.20-245.82 microg/l*h based on 1 mg/kg) and t(1/2) (p>0.05). In the dog, a randomized, open-label, crossover experiment was carried out to show that the mean area under the plasma concentration-time curve (AUC(0-infinity)) after i.v. administration of RSPI was at least four times larger than that following oral administration of Pariet tablet at an equivalent dose but the elimination half-life of these two formulation was similar (p>0.05). The results showed that the pharmacokinetics of RSPI was linear (r(2) = 0.98) in the dose range 2-18 mg/kg and the RSPI had a much higher AUC(0-infinity) and similar t(1/2) values compared with the enteric-coated tablet. Copyright (c) 2007 John Wiley & Sons, Ltd.

  9. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II.

    PubMed

    Sierra, Raymond G; Gati, Cornelius; Laksmono, Hartawan; Dao, E Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S; Young, Iris D; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S; Koglin, Jason E; Boutet, Sébastien; Junco, Elia A; Hayes, Brandon; Bogan, Michael J; Hampton, Christina Y; Puglisi, Elisabetta V; Sauter, Nicholas K; Stan, Claudiu A; Zouni, Athina; Yano, Junko; Yachandra, Vittal K; Soltis, S Michael; Puglisi, Joseph D; DeMirci, Hasan

    2016-01-01

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  10. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    DOE PAGES

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; ...

    2015-11-30

    In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  11. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    SciTech Connect

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; Dao, E. Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S.; Young, Iris D.; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S.; Koglin, Jason E.; Boutet, Sébastien; Junco, Elia A.; Hayes, Brandon; Bogan, Michael J.; Hampton, Christina Y.; Puglisi, Elisabetta V.; Sauter, Nicholas K.; Stan, Claudiu A.; Zouni, Athina; Yano, Junko; Yachandra, Vittal K.; Soltis, S. Michael; Puglisi, Joseph D.; DeMirci, Hasan

    2015-11-30

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  12. Impact of pore size variability and network coupling on electrokinetic transport in porous media

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Bazant, Martin Z.; Mani, Ali

    2016-11-01

    We have developed and validated an efficient and robust computational model to study the coupled fluid and ion transport through electrokinetic porous media, which are exposed to external gradients of pressure, electric potential, and concentration. In our approach a porous media is modeled as a network of many pores through which the transport is described by the coupled Poisson-Nernst-Planck-Stokes equations. When the pore sizes are random, the interactions between various modes of transport may provoke complexities such as concentration polarization shocks and internal flow circulations. These phenomena impact mixing and transport in various systems including deionization and filtration systems, supercapacitors, and lab-on-a-chip devices. In this work, we present simulations of massive networks of pores and we demonstrate the impact of pore size variation, and pore-pore coupling on the overall electrokinetic transport in porous media.

  13. Short channel effects on electrokinetic energy conversion in solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; He, Yuhui; Tsutsui, Makusu; Miao, Xiang Shui; Taniguchi, Masateru

    2017-04-01

    The ion selectivity of nanopores due to the wall surface charges is capable of inducing strong coupling between fluidic and ionic motion within the system. This interaction opens up the prospect of operating nanopores as nanoscale devices for electrokinetic energy conversion. However, the very short channel lengths make the ionic movement and fluidics inside the pore to be substantially affected by the ion depletion/accumulation around the pore ends. Based on three-dimensional electrokinetic modeling and simulation, we present a systematic theoretical study of nanopore electrical resistance, fluidic impedance, and streaming conductance. Our results show that by utilizing the short channel effect and preparing slippery nanopores the energy conversion efficiency can be dramatically increased to about 9% under large salt concentrations.

  14. Electrokinetic Transport in Nanochannels Grafted with Polyelectrolyte Brushes with End-Charging

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Chen, Guang

    2015-11-01

    Electrokinetic transport in nanochannels grafted with polyelectrolyte (PE) brushes is important for applications such as ion transport, ion manipulation, flow valving, etc. We discuss here a semi-analytical mean field theory approach to study electrokinetic transport in nanochannels grafted with polyelectrolyte brushes with end-charging. The model first probes the thermodynamics and the electrostatics of the PE brushes by appropriately accounting for the entropic (elastic), excluded volume, and electrostatic effects. The resulting knowledge on the electrostatic potential and the PE configuration is next used to obtain the electroosmotic transport. Results demonstrate the role of surface charges (at the end of the PE brushes) in modifying (shrinking or swelling) the brush height. This, in turn, alters the electroosmotic body force and the PE brush layer induced drag force on the fluid flow; therefore, the flow field eventually evolves from a non-trivial interplay of the PE electrostatic, entropic, and excluded volume effects.

  15. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    PubMed

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  16. Modelling of electrokinetic phenomena for capture of PEGylated ribonuclease A in a microdevice with insulating structures

    PubMed Central

    Mata-Gomez, Marco A.; Rito-Palomares, Marco

    2016-01-01

    Synthesis of PEGylated proteins results in a mixture of protein-polyethylene glycol (PEG) conjugates and the unreacted native protein. From a ribonuclease A (RNase A) PEGylation reaction, mono-PEGylated RNase A (mono-PEG RNase A) has proven therapeutic effects against cancer, reason for which there is an interest in isolating it from the rest of the reaction products. Experimental trapping of PEGylated RNase A inside an electrokinetically driven microfluidic device has been previously demonstrated. Now, from a theoretical point of view, we have studied the electrokinetic phenomena involved in the dielectrophoretic streaming of the native RNase A protein and the trapping of the mono-PEG RNase A inside a microfluidic channel. To accomplish this, we used two 3D computational models, a sphere and an ellipse, adapted to each protein. The effect of temperature on parameters related to trapping was also studied. A temperature increase showed to rise the electric and thermal conductivities of the suspending solution, hindering dielectrophoretic trapping. In contrast, the dynamic viscosity of the suspending solution decreased as the temperature rose, favoring the dielectrophoretic manipulation of the proteins. Also, our models were able to predict the magnitude and direction of the velocity of both proteins indicating trapping for the PEGylated conjugate or no trapping for the native protein. In addition, a parametric sweep study revealed the effect of the protein zeta potential on the electrokinetic response of the protein. We believe this work will serve as a tool to improve the design of electrokinetically driven microfluidic channels for the separation and recovery of PEGylated proteins in one single step. PMID:27375815

  17. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  18. Theory of electrostatics and electrokinetics of soft particles.

    PubMed

    Ohshima, Hiroyuki

    2009-12-01

    We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  19. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  20. Selective Label-free Electrokinetic Cell Tracker (SELECT): a novel liquid platform for cell characterization

    NASA Astrophysics Data System (ADS)

    Taruvai Kalyana Kumar, Rajeshwari; de Mello Gindri, Izabelle; Kinnamon, David; Kanchustambham, Pradyotha; Rodrigues, Danieli; Prasad, Shalini; BiomaterialsOsseointegration; Novel Engineering Lab Collaboration

    2015-03-01

    Characterization and analysis of rare cells provide critical cues for early diagnosis of diseases. Electrokinetic cell separation has been previously established to have greater efficiency when compared to traditional flow cytometry methods. It has been shown by many researchers that buffer solutions in which cells are suspended in, have enormous effects on producing required dielectrophoretic (DEP) forces to characterize cells. Most commonly used suspension buffers used are deionized water and cell media. However, these solutions exhibit high level of intrinsic noise, which greatly masks the electrokinetic signals from cells under study. Ionic liquids (ILs) show promise towards the creation of conductive fluids with required electrical properties. The goal of this project is to design and test ILs for enhancing DEP forces on cells while creating an environment for preserving their integrity. We analyzed two methylimidazolium based ILs as suspension medium for cell separation. These dicationic ILs possess slight electrical and structural differences with high thermal stability. The two ILs were tested for cytotoxicity using HeLa and bone cells. The effects of electrical neutrality, free charge screening due to ILs towards enhanced electrokinetic signals from cells were studied with improved system resolution and no harmful effects.

  1. Influence of soil texture on the electrokinetic transport of diesel-degrading microorganisms.

    PubMed

    Mena, Esperanza; Villaseñor, José; Cañizares, Pablo; Rodrigo, Manuel A

    2011-01-01

    This work studied the mobilisation of diesel-degrading microorganisms in soils of different textures using electrokinetic techniques. The mobilisation tests were performed using a laboratory-scale electrokinetic cell in which a synthetic soil column was inserted between the cathode and anode compartments. Model soils of different textures were prepared by mixing silica and kaolin at different weight ratios. Microorganisms were obtained from an undefined diesel-degrading microbial culture and located at the anode compartment. In each four hours experiment, constant cell voltage was applied, and samples were taken from the cathode compartment. Changes in the pH due to water electrolysis were found to significantly influence the process performance, and the effect of the carbonate concentration (buffer) was studied to clarify this effect. With respect to soil texture, it was observed that large particle size led to high numbers of microorganisms passing through the soil column, and the presence of small particles, which give rise to small pores, was required to improve the retention of microorganisms. Finally, current-intensity measurements with different soil textures revealed that it was favourable to use only large or small particles, whereas a sandy clay soil (50% silica/50% clay) did not favour any of the fundamental electrokinetic processes.

  2. Electrokinetics dependence on water-content in sand

    NASA Astrophysics Data System (ADS)

    Allègre, V.; Lehmann, F.; Jouniaux, L.; Sailhac, P.; Matthey, P.

    2009-12-01

    The electrokinetic potential results from the coupling between the water flow and the electrical current because of the presence of ions within water. This coupling is well described in fluid-saturated media, however its behavior under unsaturated flow conditions is still discussed. We propose here an experimental approach which can clearly describe streaming potential variations in unsaturated conditions. Several drainage experiments have been performed within a column filled with a clean sand. Streaming potential measurements are combined to capillary pressure and to water content measurements each 10 centimeter along the column. In order to model hydrodymanics during each experiment, we solve Richards equation in an inverse way which allows us to establish the relation between hydraulic conductivity and water content, and retention relation. The electrokinetic coefficient C shows a more complex behavior than it was previously reported and can not be fitted by the existing models. We show that the normalized electrokinetic coefficient increases first when water saturation decreases from 100% to about 80% - 95%, and then decreases as the water saturation decreases, whereas all previous works described a unifrom decrease of the normalized electrokinetic coefficient as water saturation decreases. We delimited two water saturation domains, and deduced two different empirical laws describing the evolution of the electrokinetic coefficient in unsaturated conditions. Finally, electrical potentials data from four different drainage experiments and hydrodynamics were jointly inversed, including electrical conductivity measurements in order to find a robust description of the electrokinetic coefficient behavior in unsaturated conditions.

  3. Uncertainty Quantification of Nonlinear Electrokinetic Response in a Microchannel-Membrane Junction

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Iaccarino, Gianluca; Mani, Ali

    2015-11-01

    We have conducted uncertainty quantification (UQ) for electrokinetic transport of ionic species through a hybrid microfluidic system using different probabilistic techniques. The system of interest is an H-configuration consisting of two parallel microchannels that are connected via a nafion junction. This system is commonly used for ion preconcentration and stacking by utilizing a nonlinear response at the channel-nafion junction that leads to deionization shocks. In this work, the nafion medium is modeled as many parallel nano-pores where, the nano-pore diameter, nafion porosity, and surface charge density are independent random variables. We evaluated the resulting uncertainty on the ion concentration fields as well as the deionization shock location. The UQ methods predicted consistent statistics for the outputs and the results revealed that the shock location is weakly sensitive to the nano-pore surface charge and primarily driven by nano-pore diameters. The present study can inform the design of electrokinetic networks with increased robustness to natural manufacturing variability. Applications include water desalination and lab-on-a-chip systems. Shima is a graduate student in the department of Mechanical Engineering at Stanford University. She received her Master's degree from Stanford in 2011. Her research interests include Electrokinetics in porous structures and high performance computing.

  4. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    PubMed

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation.

  5. Analytical investigation of electrokinetic effects of micropolar fluids in nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Ding, Zhaodong; Jian, Yongjun; Wang, Lin; Yang, Liangui

    2017-08-01

    The effects of microstructure of fluid particles on the electrokinetic phenomena are investigated analytically based on a micropolar fluid model, where micro-rotation of fluid particles and material parameters like viscosity and angular viscosity coefficients are involved. Meanwhile, the influences of velocity slip at the surface of a nanofluidic channel and overlapped electrical double layers (EDLs) are incorporated. Results indicate that the introduction of micropolarity will significantly affect the electrokinetic effects, especially in the case of overlapped EDLs. Qualitatively, it leads to evident reductions in the flow rate, streaming current, and streaming potential relative to Newtonian fluids. The velocity slip is an opposing and competitive mechanism which tends to increase the flow rate, streaming current, and potential. Furthermore, the interplay between the micropolarity and slip effects is studied in detail. The influence of micropolarity on the electrokinetic energy conversion (EKEC) efficiency depends on the ionic Peclet number R. For small values of R (e.g., R = 0.1), the EKEC efficiency for micropolar fluids may exceed that for Newtonian fluids in some range of parameter K in the case of overlapped EDLs for nanochannels. However, for R ≥ 0.2, the EKEC efficiency for micropolar fluids is always less than that for Newtonian fluids.

  6. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.

    PubMed

    Huang, Kuan-Da; Yang, Ruey-Jen

    2006-05-01

    In electrokinetically driven microfluidic systems, the driving voltage applied during operation tends to induce a Joule heating effect in the buffer solution. This heat source alters the solution's characteristics and changes both the electrical potential field and the velocity field during the transport process. This study performs a series of numerical simulations to investigate the Joule heating effect and analyzes its influence on the electrokinetic focusing performance. The results indicate that the Joule heating effect causes the diffusion coefficient of the sample to increase, the potential distribution to change, and the flow velocity field to adopt a nonuniform profile. These variations are particularly pronounced under tighter focusing conditions and at higher applied electrical intensities. In numerical investigations, it is found that the focused bandwidth broadens because thermal diffusion effect is enhanced by Joule heating. The variation in the potential distribution induces a nonuniform flow field and causes the focused bandwidth to tighten and broaden alternately as a result of the convex and concave velocity flow profiles, respectively. The present results confirm that the Joule heating effect exerts a considerable influence on the electrokinetic focusing ratio.

  7. Method and apparatus for electrokinetic transport

    NASA Technical Reports Server (NTRS)

    James, Patrick Ismail (Inventor); Stejic, George (Inventor)

    2012-01-01

    Controlled electrokinetic transport of constituents of liquid media can be achieved by connecting at least two volumes containing liquid media with at least one dielectric medium with opposing dielectric surfaces in direct contact with said liquid media, and establishing at least one conduit across said dielectric medium, with a conduit inner surface surrounding a conduit volume and at least a first opening and a second opening opposite to the first opening. The conduit is arranged to connect two volumes containing liquid media and includes a set of at least three electrodes positioned in proximity of the inner conduit surface. A power supply is arranged to deliver energy to the electrodes such that time-varying potentials inside the conduit volume are established, where the superposition of said potentials represents at least one controllable traveling potential well that can travel between the opposing conduit openings.

  8. Effects of electrokinetic treatment of contaminated sludge on migration and transformation of Cd, Ni and Zn in various bonding states.

    PubMed

    Gao, Jie; Luo, Qi-Shi; Zhu, Jiang; Zhang, Chang-Bo; Li, Bing-Zhi

    2013-11-01

    This study assesses the effect of electrokinetic processes on the migration and bonding states of various heavy metals in municipal sludge. The transformation and migration are discussed through the examination of sludge characteristics and distribution of Cd, Zn and Ni after electrokinetic treatments. The migration and distribution of the contaminants after the electrokinetic treatments were determined for each sludge sample by sequential extraction. The noticeable changes on the average speciation fractions of Cd, Zn and Ni were observed that oxidizable heavy metals increased and reducible fraction decreased due to the application of voltage. Bivariate correlation analysis indicated that the amounts of different bonding states of Zn and Ni were significantly correlated (P<0.05) with durations and resistance. The oxidizable Zn was negatively correlated with exchangeable and reducible Zn. Moreover, reducible Zn had a close negative relationship with residual Zn. The bonding state of Ni was significantly related to the durations of electrokinetic processes, indicating the existing of mutual transformation between different speciation fractions over time. The analysis also indicated that the exchangeable Cd showed a close negative relationship with reducible Cd (P<0.01), whereas the reducible Cd was negatively related to residual Cd (P<0.05). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A bridging study for oxytetracycline in the edible fillet of rainbow trout: Analysis by a liquid chromatographic method and the official microbial inhibition assay

    USGS Publications Warehouse

    Stehly, G.R.; Gingerich, W.H.; Kiessling, C.R.; Cutting, J.H.

    1999-01-01

    Oxytetracycline (OTC) is a drug approved by the U.S. Food and Drug Administration (FDA) to control certain diseases in salmonids and catfish. OTC is also a likely control agent for diseases of other fish species and for other diseases of salmonids and catfish not currently on the label. One requirement for FDA to extend and expand the approval of this antibacterial agent to other fish species is residue depletion studies. The current regulatory method for OTC in fish tissue, based on microbial inhibition, lacks sensitivity and specificity. To conduct residue depletion studies for OTC in fish with a liquid chromatographic method, a bridging study was required to determine its relationship with the official microbial inhibition assay. Triplicate samples of rainbow trout fillet tissue fortified with OTC at 0.3, 0.6, 1.2, 2.4, 4.8, and 9.6 ppm and fillet tissue with incurred OTC at approximately 0.75, 1.5, and 3.75 ppm were analyzed by high-performance liquid chromatography (HPLC) and the microbial inhibition assay. The results indicated that the 2 methods are essentially identical in the tested range, with mean coefficients of variation of 1.05% for the HPLC method and 3.94% for the microbial inhibition assay.

  10. Determination of plant stanols and plant sterols in phytosterol enriched foods with a gas chromatographic-flame ionization detection method: NMKL collaborative study.

    PubMed

    Laakso, Päivi H

    2014-01-01

    This collaborative study with nine participating laboratories was conducted to determine the total plant sterol and/or plant stanol contents in phytosterol fortified foods with a gas chromatographic method. Four practice and 12 test samples representing mainly commercially available foodstuffs were analyzed as known replicates. Twelve samples were enriched with phytosterols, whereas four samples contained only natural contents of phytosterols. The analytical procedure consisted of two alternative approaches: hot saponification method, and acid hydrolysis treatment prior to hot saponification. As a result, sterol/stanol compositions and contents in the samples were measured. The amounts of total plant sterols and total plant stanols varying from 0.005 to 8.04 g/100 g product were statistically evaluated after outliers were eliminated. The repeatability RSD (RSDr) varied from 1.34 to 17.13%. The reproducibility RSD (RSDR) ranged from 3.03 to 17.70%, with HorRat values ranging from 0.8 to 2.1. When only phytosterol enriched food test samples are considered, the RSDr ranged from 1.48 to 6.13%, the RSD, ranged from 3.03 to 7.74%, and HorRat values ranged from 0.8 to 2.1. Based on the results of this collaborative study, the study coordinator concludes the method is fit for its purpose.

  11. Electrokinetic demonstration at the unlined chromic acid pit

    SciTech Connect

    Lindgren, E.R.; Hankins, M.G.; Mattson, E.D.; Duda, P.M.

    1998-01-01

    Heavy-metal contaminated soils are a common problem at Department of Energy (DOE)-operated sites and privately owned facilities throughout the nation. One emerging technology which can remove heavy metals from soil in situ is electrokinetics. To conduct electrokinetic (EK) remediation, electrodes are implanted into the ground, and a direct current is imposed between the electrodes. Metal ions dissolved in the soil pore water migrate towards an electrode where they can be removed. The electrokinetic program at Sandia National Laboratories (SNL) has been focusing on electrokinetic remediation for unsaturated soils. A patent was awarded for an electrokinetic electrode system designed at SNL for applications to unsaturated soils. Current research described in this report details an electrokinetic remediation field demonstration of a chromium plume that resides in unsaturated soil beneath the SNL Chemical Waste Landfill (CWL). This report describes the processes, site investigation, operation and monitoring equipment, testing procedures, and extraction results of the electrokinetic demonstration. This demonstration successfully removed chromium contamination in the form of chromium(VI) from unsaturated soil at the field scale. After 2700 hours of operation, 600 grams of Cr(VI) was extracted from the soil beneath the SNL CWL in a series of thirteen tests. The contaminant was removed from soil which has moisture contents ranging from 2 to 12 weight percent. This demonstration was the first EK field trial to successfully remove contaminant ions from and soil at the field scale. Although the new patented electrode system was successful in removing an anionic contaminant (i.e., chromate) from unsaturated sandy soil, the electrode system was a prototype and has not been specifically engineered for commercialization. A redesign of the electrode system as indicated by the results of this research is suggested for future EK field trials.

  12. Development of a High-Performance Liquid Chromatographic Method for Determination of Letrozole in Wistar Rat Serum and its Application in Pharmacokinetic Studies

    PubMed Central

    Acharjya, Sasmita Kumari; Bhattamisra, Subrat Kumar; Muddana, Bhanoji Rao E.; Bera, Ravikumar V. V.; Panda, Pinakini; Panda, Bibhu Prasad; Mishra, Gitanjali

    2012-01-01

    A fast, sensitive, and specific reversed-phase high-performance liquid chromatographic (RP–HPLC) method for the determination of letrozole in Wistar rat serum was developed. In this method, liquid–liquid extraction of letrozole was achieved using diethyl ether as the extracting solvent. The analysis was carried out on a reversed-phase C18 (250 mm × 4.6 mm, 5 μm) column with an isocratic mobile phase of methanol–water (70:30,v/v), at a flow rate of 1.0 mL min−1. Detection was carried out at 239 nm with a UV–visible spectrophoto-metric detector. The method was shown to be selective and linear over the concentration range of 0.15–100 μg mL−1. The intra-day and inter-day precision studies showed good reproducibility with coefficients of variation less than 11% for the analyte. The relative errors of intra– and inter–day accuracy were within −11.52 to −2.26%. The limit of quantification was evaluated to be 0.15 μg mL−1. The method was successfully applied for the pharmacokinetic study of letrozole after oral administration of 10 mg kg−1 of letrozole in six healthy Wistar rats. PMID:23264941

  13. Study on separation of aristolochic acid I and II by micellar electrokinetic capillary chromatography and competition mechanism between SDS and beta-cyclodextrin.

    PubMed

    Li, Wei; Chen, Zheng; Liao, Yiping; Liu, Huwei

    2006-02-01

    In this study, a rapid MEKC method using 40 mM sodium borate buffer containing 50 mM SDS as surfactant was developed for the analysis of aristolochic acid (AA) in Aristolochia plants. Baseline separation of AA-I and AA-II was achieved within 3 min with high separation efficiency, satisfactory sensitivity, repeatability, and recovery. Resolution between AA-I and AA-II is above 5 and great performance with higher than 200,000 theoretical plate numbers was obtained. The detection limits (based on 3 S/N) were both 1.0 microg/mL. Two kinds of AA in 35 herbal samples of Aristolochia plants were successfully determined. The competition mechanism between beta-CD and SDS was also investigated by changing the content ratio of beta-CD and SDS.

  14. High-performance liquid chromatographic determination of clindamycin in human plasma or serum: application to the bioequivalency study of clindamycin phosphate injections.

    PubMed

    Liu, C M; Chen, Y K; Yang, T H; Hsieh, S Y; Hung, M H; Lin, E T

    1997-08-29

    This paper presents an assay of clindamycin phosphate injection in human plasma or serum. A 0.5-ml volume of plasma was used with the internal standard, propranolol. The sample was loaded onto a silica extraction column. The column was washed with deionized water and then eluted with methanol. The eluates were evaporated under nitrogen gas. The residue was reconstituted with the mobile phase and injected onto the high-performance liquid chromatographic system: a 5-micron, 25 cm X 4.6 mm I.D. ODS2 column was used with acetonitrile, tetrahydrofuran and 0.05 M phosphate buffer as the mobile phase and with ultraviolet detection at 204 nm. A limit of quantitation of 0.05 microgram/ml was found, with a coefficient of variation of 11.6% (n = 6). The linear range is between 0.05 and 20.00 micrograms/ml and gives a coefficient of determination (r2) or 0.9992. The method has been successfully applied to the bioavailability study of two commercial preparations of clindamycin phosphate injection (300 mg each) in twelve healthy adult male volunteers.

  15. High-performance liquid chromatographic method for the simultaneous determination of nalbuphine and its prodrug, sebacoyl dinalbuphine ester, in dog plasma and application to pharmacokinetic studies in dogs.

    PubMed

    Pao, L H; Hsiong, C H; Hu, O Y; Ho, S T

    2000-09-15

    For the determination of nalbuphine and its long acting prodrug, sebacoyl dinalbuphine ester (SDN), in biological samples, a reversed-phase high-performance liquid chromatographic method using dual detectors was established. Ultraviolet and fluorescence detectors were connected in series for determining SDN and nalbuphine, respectively. The two analytes and internal standard were extracted from plasma by alkaline liquid-liquid extraction using n-hexane-isoamyl alcohol (9:1, v/v). The calibration curve for nalbuphine was linear over the range from 10 to 2,500 ng/ml, while the range was 25 to 2,500 ng/ml for SDN. The within- and between-day precision and accuracy were all within 10% for both nalbuphine and SDN over these concentrations. The method was applied successfully to a pharmacokinetic study of SDN administered at 20 mg/kg to two beagle dogs. Pharmacokinetic analysis revealed that SDN followed a linear one-compartment model with an elimination half-life of 74.7 min. Formation of nalbuphine after intravenous administration of SDN was observed in the first time point sample (5 min). These results indicate that SDN is rapidly metabolized to its active moiety, nalbuphine, in dogs and no other metabolites are detected in plasma.

  16. Designer drug 2,4,5-trimethoxyamphetamine (TMA-2): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques.

    PubMed

    Ewald, Andreas H; Fritschi, Giselher; Maurer, Hans H

    2006-09-01

    Studies are described on the metabolism and the toxicological detection of the amphetamine-derived designer drug 2,4,5-trimethoxyamphetamine (TMA-2) in rat urine using gas chromatographic/mass spectrometric (GC/MS) techniques. The identified metabolites indicated that TMA-2 was metabolized by oxidative deamination to the corresponding ketone followed by reduction to the corresponding alcohol, O-demethylation followed by oxidative deamination, and finally O,O-bis-demethylation. All metabolites carrying hydroxy groups were found to be partly excreted in urine as glucuronides and/or sulfates. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction, and microwave-assisted acetylation allowed the detection, in rat urine, of an intake of TMA-2 that corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure in human urine should be suitable as proof of an intake of TMA-2. Copyright (c) 2006 John Wiley & Sons, Ltd.

  17. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  18. A simple novel device for air sampling by electrokinetic capture

    SciTech Connect

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the

  19. A simple novel device for air sampling by electrokinetic capture.

    PubMed

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is

  20. Electrokinetics of nanoparticle gel-electrophoresis.

    PubMed

    Hill, Reghan J

    2016-09-28

    Gel-electrophoresis has been demonstrated in recent decades to successfully sort a great variety of nanoparticles according to their size, charge, surface chemistry, and corona architecture. However, quantitative theoretical interpetations have been limited by the number and complexity of factors that influence particle migration. Theoretical models have been fragmented and incomplete with respect to their counterparts for free-solution electrophoresis. This paper unifies electrokinetic models that address complex nanoparticle corona architectures, corona and gel charge regulation (e.g., by the local pH), multi-component electrolytes, and non-linear electrostatics and relaxation effects. By comprehensively addressing the electrokinetic aspects of the more general gel-electrophoresis problem, in which short-ranged steric interactions are significant, a stage is set to better focus on the physicochemical and steric factors. In this manner, it is envisioned that noparticle gel-electrophoresis may eventually be advanced from a nanoparticle-characterization tool to one that explicitly probes the short-ranged interactions of nanoparticles with soft networks, such as synthetic gels and biological tissues. In this paper, calculations are undertaken that identify a generalized Hückel limit for nanoparticles in low-conductivity gels, and a new Smoluchowski limit for polyelectrolyte-coated particles in high-conductivity gels that is independent of the gel permeability. Also of fundamental interest is a finite, albeit small, electrophoretic mobility for uncharged particles in charged gels. Electrophoretic mobilities and drag coefficients (with electroviscous effects) for nanoparticles bearing non-uniform coronas show that relaxation effects are typically weak for the small nanoparticles (radius ≈3-10 nm) to which gel-electrophoresis has customarily been applied, but are profound for the larger nanoparticles (radius ≳ 40 nm in low conductivity gels) to which passivated gel

  1. On-line preferential solvation studies of polymers by coupled chromatographic-Fourier transform infrared spectroscopic flow-cell technique.

    PubMed

    Malanin, M; Eichhorn, K-J; Lederer, A; Treppe, P; Adam, G; Fischer, D; Voigt, D

    2009-12-18

    Qualitative and quantitative comparison between liquid chromatography (LC) and LC coupled with Fourier transform infrared spectroscopy (LC-FTIR) to evaluate preferential solvation phenomenon of polymers in a mixed solvent has been performed. These studies show that LC-FTIR technique leads to detailed structural information without the requirement for determination of additional parameters for quantitative analysis except calibration. Appropriate experimental conditions for preferential solvation study have been established by variation of polymer concentration, molar mass and eluent content.

  2. Tobacco smoking and oxidative stress to DNA: a meta-analysis of studies using chromatographic and immunological methods.

    PubMed

    Ellegaard, Pernille K; Poulsen, Henrik E

    2016-01-01

    Oxidative stress to DNA from smoking was investigated in one randomized smoking cessation study and in 36 cohort studies from excretion of urinary 8-oxo-7-hydrodeoxyguanosine (8-oxodG). Meta-analysis of the 36 cohort studies showed smoking associated with a 15.7% (95% CL 11.0:20.3, p < 0.0001) increased oxidative stress to DNA, in agreement with the reduction of oxidative stress to DNA found in the smoking cessation study. Meta-analysis of the 22 studies that used chromatography methodology on 1709 persons showed a significant 29.3% increase in smokers (95% CL 17.3;41.3), but meta-analysis of 14 studies on 3668 persons using ELISA methodology showed a non-significant effect of 8.7% [95% CL -1.2;18.6]. Tobacco smoke induces oxidative damage to DNA; however, this is not detected with ELISA methodology. Currently, the use of existing ELISA methodology to measure urinary excretion of 8-oxo-7-hydrodeoxyguanosine cannot be recommended.

  3. Method for eliminating gas blocking in electrokinetic pumping systems

    DOEpatents

    Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.

    2001-09-11

    A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

  4. Reducing spurious flow in simulations of electrokinetic phenomena

    NASA Astrophysics Data System (ADS)

    Rempfer, Georg; Davies, Gary B.; Holm, Christian; de Graaf, Joost

    2016-07-01

    Electrokinetic transport phenomena can strongly influence the behaviour of macromolecules and colloidal particles in solution, with applications in, e.g., DNA translocation through nanopores, electro-osmotic flow in nanocapillaries, and electrophoresis of charged macromolecules. Numerical simulations are an important tool to investigate these electrokinetic phenomena, but are often plagued by spurious fluxes and spurious flows that can easily exceed physical fluxes and flows. Here, we present a method that reduces one of these spurious currents, spurious flow, by several orders of magnitude. We demonstrate the effectiveness and generality of our method for both the electrokinetic lattice-Boltzmann and finite-element-method based algorithms by simulating a charged sphere in an electrolyte solution and flow through a nanopore. We also show that previous attempts to suppress these spurious currents introduce other sources of error.

  5. Transport of radioactive ions in soil by electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-10-01

    An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, {sup 137}Cs and {sup 60}60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications.

  6. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, Don D.

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  7. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  8. Comparative use of three electrokinetic capillary methods for the determination of drugs in body fluids. Prospects for rapid determination of intoxications.

    PubMed

    Caslavska, J; Lienhard, S; Thormann, W

    1993-05-28

    Three electrokinetic capillary methods, micellar electrokinetic capillary chromatography, capillary zone electrophoresis and capillary isotachophoresis, are shown to be well suited for the rapid screening and confirmation of drugs in serum and urine of patients with medical drug overdoses (intoxications), situations where rapid identification without precise quantification is needed. Patients' samples obtained from the emergency care unit were analysed in an instrument featuring on-column, fast forward-scanning multi-wavelength detection and the data were compared with those obtained by conventional methods. The drugs studied included salicylate, acetaminophen (paracetamol) and antiepileptics. In cases with high drug concentrations, body fluids can be injected directly or may have only to be diluted (urine) or ultrafiltered (serum) prior to analysis, providing results within about 30 min. Thus, electrokinetic capillary methods can be employed for rapid drug screening, provided that instrumentation with a database for peak identification is available.

  9. Gas chromatographic/mass spectrometric determination of 3-methoxy-1,2-propanediol and cyclic diglycerols, by-products of technical glycerol, in wine: interlaboratory study.

    PubMed

    Fauhl, Carsten; Wittkowski, Reiner; Lofthouse, Janice; Hird, Simon; Brereton, Paul; Versini, Giuseppe; Lees, Michele; Guillou, Claude

    2004-01-01

    The aim of the present study was to provide the official wine control authorities with an internationally validated method for the determination of 3-methoxy-1,2-propanediol (3-MPD) and cyclic diglycerols (CycDs)-both of which are recognized as impurities of technical glycerol-in different types of wine. Because glycerol gives a sweet flavor to wine and contributes to its full-body taste, an economic incentive is to add glycerol to a wine to mask its poor quality. Furthermore, it is known that glycerol, depending on whether it is produced from triglycerides or petrochemicals, may contain considerable amounts of 3-MPD in the first case or CycDs in the second. However, because these compounds are not natural wine components, it is possible to detect glycerol added to wine illegally by determining the above-mentioned by-products. To this end, one of the published methods was adopted, modified, and tested in a collaborative study. The method is based on gas chromatographic/mass spectrometric analysis of diethyl ether extracts after salting out with potassium carbonate. The interlaboratory study for the determination of 3-MPD and CycDs in wine was performed in 11 laboratories in 4 countries. Wine samples were prepared and sent to participants as 5 blind duplicate test materials and 1 single test material. The concentrations covered ranges of 0.1-0.8 mg/L for 3-MPD and 0.5-1.5 mg/L for CycDs. The precision of the method was within the range predicted by the Horwitz equation. HORRAT values obtained for 3-MPD ranged from 0.8 to 1.7, and those obtained for CycDs ranged from 0.9 to 1.3. Average recoveries were 104 and 109%, respectively.

  10. Integration of gas chromatographs into the Federal Highway Administration/Environmental Protection Agency near road MSAT study in Las Vegas, NV

    EPA Science Inventory

    This paper documents the technical evaluation of a semi-continuous gas chromatograph (GC) for the measurement of benzene and 1,33butadiene in the near road environment. This paper will also consider the some of the non-technical implications associated with the operation of a GC ...

  11. Integration of gas chromatographs into the Federal Highway Administration/Environmental Protection Agency near road MSAT study in Las Vegas, NV

    EPA Science Inventory

    This paper documents the technical evaluation of a semi-continuous gas chromatograph (GC) for the measurement of benzene and 1,33butadiene in the near road environment. This paper will also consider the some of the non-technical implications associated with the operation of a GC ...

  12. Gas chromatographic/nitrogen-phosphorus detection method for determination of ethylene thiourea in finished drinking waters: collaborative study.

    PubMed

    Longbottom, J E; Edgell, K W; Erb, E J; Lopez-Avila, V

    1993-01-01

    A joint U.S. Environmental Protection Agency (USEPA)-AOAC interlaboratory method validation study was conducted on USEPA National Pesticide Survey (NPS) Method 6, "Determination of Ethylene Thiourea (ETU) in Finished Drinking Water by Gas Chromatography with a Nitrogen-Phosphorus Detector." The purpose of the study was to determine and compare the mean recoveries and precision for determination of ETU in reagent water and finished drinking waters. The study design was based on Youden's nonreplicate plan for collaborative tests of analytical methods. The waters were spiked with ETU at 6 concentrations levels, prepared as 3 Youden pairs. In the method, the test water is extracted by passing the sample through an absorbent matrix type tube. ETU is recovered from the tube with methylene chloride, the extract is solvent-exchanged to ethyl acetate, and an aliquot of each extract is analyzed by gas chromatography using a nitrogen-phosphorus detector. Twelve laboratories participated in the study. Data were analyzed using a USEPA computer program, which measured recovery and precision for ETU and compared the performance of the method between the 2 water types. Over the concentration range tested, the mean percent recoveries of ETU were 82-92% in reagent water and 85-98% in finished drinking water. The range of the between-laboratory relative standard deviations (RSDR) for the 6 concentrations was 5-24% in reagent water, but was only 4-9% in finished drinking water. The range of the within-laboratory relative standard deviations (RSDr) was 6-14% for reagent water and 6-10% for finished drinking water. Results for the 2 water matrixes showed no statistically significant differences.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Chromatographic fingerprint analysis of Pycnogenol dietary supplements.

    PubMed

    Chen, Pei; Song, Fenhong; Lin, Long-Ze

    2009-01-01

    The bark of maritime pine (Pinus pinaster Aiton) has been widely used as a remedy for various degenerative diseases. A standard high-performance liquid chromatographic (HPLC) procedure for Pycnogenol analysis is a method specified in the United States Pharmacopeia (USP) monograph, which requires measurement of peak areas and identification of four components of the extract: caffeic acid, catechin, ferulic acid, and taxifolin. In this study, a fingerprint analysis using an HPLC method based on the USP monograph has been developed to provide additional qualitative information for the analysis of Pycnogenol-containing dietary supplements (PDS). Twelve commercially available PDS samples were purchased and analyzed along with a standard Pycnogenol extract. Their chromatographic fingerprints were analyzed using principal component analysis. The results showed that two of the samples were not consistent with the standard reference Pycnogenol extract. One contained other active ingredients in addition to Pycnogenol, and the other may have resulted from a quality control issue in manufacturing.

  14. Chromatographic purification of highly active yeast ribosomes.

    PubMed

    Meskauskas, Arturas; Leshin, Jonathan A; Dinman, Jonathan D

    2011-10-24

    Eukaryotic ribosomes are much more labile as compared to their eubacterial and archael counterparts, thus posing a significant challenge to researchers. Particularly troublesome is the fact that lysis of cells releases a large number of proteases and nucleases which can degrade ribosomes. Thus, it is important to separate ribosomes from these enzymes as quickly as possible. Unfortunately, conventional differential ultracentrifugation methods leaves ribosomes exposed to these enzymes for unacceptably long periods of time, impacting their structural integrity and functionality. To address this problem, we utilize a chromatographic method using a cysteine charged Sulfolink resin. This simple and rapid application significantly reduces co-purifying proteolytic and nucleolytic activities, producing high yields of intact, highly biochemically active yeast ribosomes. We suggest that this method should also be applicable to mammalian ribosomes. The simplicity of the method, and the enhanced purity and activity of chromatographically purified ribosome represents a significant technical advancement for the study of eukaryotic ribosomes.

  15. Unintended compositional changes in transgenic rice seeds ( Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods.

    PubMed

    Jiao, Zhe; Si, Xiao-xi; Li, Gong-ke; Zhang, Zhuo-min; Xu, Xin-ping

    2010-02-10

    Unintended compositional changes in transgenic rice seeds were studied by near-infrared reflectance, GC-MS, HPLC, and ICP-AES coupled with chemometrics strategies. Three kinds of transgenic rice with resistance to fungal diseases or insect pests were comparatively studied with the nontransgenic counterparts in terms of key nutrients such as protein, amino acids, fatty acids, vitamins, elements, and antinutrient phytic acid recommended by the Organization for Economic Co-operation and Development (OECD). The compositional profiles were discriminated by chemometrics methods, and the discriminatory compounds were protein, three amino acids, two fatty acids, two vitamins, and several elements. Significance of differences for these compounds was proved by analysis of variance, and the variation extent ranged from 20 to 74% for amino acids, from 19 to 38% for fatty acids, from 25 to 57% for vitamins, from 20 to 50% for elements, and 25% for protein, whereas phytic acid content did not change significantly. The unintended compositional alterations as well as unintended change of physical characteristic in transgenic rice compared with nontransgenic rice might be related to the genetic transformation, the effect of which needs to be elucidated by additional studies.

  16. Electrolysis-reducing electrodes for electrokinetic devices.

    PubMed

    Erlandsson, Per G; Robinson, Nathaniel D

    2011-03-01

    Direct current electrokinetic systems generally require Faradaic reactions to occur at a pair of electrodes to maintain an electric field in an electrolyte connecting them. The vast majority of such systems, e.g. electrophoretic separations (capillary electrophoresis) or electroosmotic pumps (EOPs), employ electrolysis of the solvent in these reactions. In many cases, the electrolytic products, such as H+ and OH⁻ in the case of water, can negatively influence the chemical or biological species being transported or separated, and gaseous products such as O₂ and H₂ can break the electrochemical circuit in microfluidic devices. This article presents an EOP that employs the oxidation/reduction of the conjugated polymer poly(3,4-ethylenedioxythiophene), rather than electrolysis of a solvent, to drive flow in a capillary. Devices made with poly(3,4-ethylenedioxythiophene) electrodes are compared with devices made with Pt electrodes in terms of flow and local pH change at the electrodes. Furthermore, we demonstrate that flow is driven for applied potentials under 2 V, and the electrodes are stable for potentials of at least 100 V. Electrochemically active electrodes like those presented here minimize the disadvantage of integrated EOP in, e.g. lab-on-a-chip applications, and may open new possibilities, especially for battery-powered disposable point-of-care devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Frequency dispersion of electrokinetically activated Janus particles

    NASA Astrophysics Data System (ADS)

    Boymelgreen, Alicia; Balli, Tov; Yossifon, Gilad; Miloh, Touvia

    2015-11-01

    We examine the influence of the applied frequency of the electric field on the induced-charge electroosmotic flow around a metallo-dielectric Janus particle. Previously, we have used three dimensional-two component micro-particle-image-velocimetry (3D-2C μ PIV) around a stagnant particle, to illustrate the presence of a number of competing effects including dielectrophoresis and electrohydrodynamic flow which distort both the strength and shape of the frequency dispersion predicted for pure induced-charge effects. Here, we extend this work by examining the frequency dispersion of mobile Janus particles of different sizes (3 - 15 μm in diameter) at different electrolyte concentrations. In all cases, towards the DC limit, and in the frequency domain where previously EHD flow was shown to dominate, the velocity of a mobile particle decays to zero. At the same time significant variations in the frequency dispersion, including its shape and the value for maximum velocity are recorded as a function of both electrolyte concentration and particle size. This work is of both fundamental and practical importance and may be used to further refine non-linear electrokinetic theory and optimize the application of Janus particles as carriers in lab-on-a-chip analysis systems.

  18. Environmental Electrokinetics for a sustainable subsurface.

    PubMed

    Lima, A T; Hofmann, A; Reynolds, D; Ptacek, C J; Van Cappellen, P; Ottosen, L M; Pamukcu, S; Alshawabekh, A; O'Carroll, D M; Riis, C; Cox, E; Gent, D B; Landis, R; Wang, J; Chowdhury, A I A; Secord, E L; Sanchez-Hachair, A

    2017-08-01

    Soil and groundwater are key components in the sustainable management of the subsurface environment. Source contamination is one of its main threats and is commonly addressed using established remediation techniques such as in-situ chemical oxidation (ISCO), in-situ chemical reduction (ISCR; most notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control contaminants in higher permeability subsurface materials such as sands, but achieve only limited success at sites where low permeability soils, such as silts and clays, prevail. Electrokinetics (EK), a soil remediation technique mostly recognized in in-situ treatment of low permeability soils, has, for the last decade, been combined with more conventional techniques and can significantly enhance the performance of several of these remediation technologies, including ISCO, ISCR, EISB and phytoremediation. Herein, we discuss the use of emerging EK techniques in tandem with conventional remediation techniques, to achieve improved remediation performance. Furthermore, we highlight new EK applications that may come to play a role in the sustainable treatment of the contaminated subsurface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electrokinetic control of bacterial deposition and transport.

    PubMed

    Qin, Jinyi; Sun, Xiaohui; Liu, Yang; Berthold, Tom; Harms, Hauke; Wick, Lukas Y

    2015-05-05

    Microbial biofilms can cause severe problems in technical installations where they may give rise to microbially influenced corrosion and clogging of filters and membranes or even threaten human health, e.g. when they infest water treatment processes. There is, hence, high interest in methods to prevent microbial adhesion as the initial step of biofilm formation. In environmental technology it might be desired to enhance bacterial transport through porous matrices. This motivated us to test the hypothesis that the attractive interaction energy allowing cells to adhere can be counteracted and overcome by the shear force induced by electroosmotic flow (EOF, i.e. the water flow over surfaces exposed to a weak direct current (DC) electric field). Applying EOF of varying strengths we quantified the deposition of Pseudomonas fluorescens Lp6a in columns containing glass collectors and on a quartz crystal microbalance. We found that the presence of DC reduced the efficiency of initial adhesion and bacterial surface coverage by >85%. A model is presented which quantitatively explains the reduction of bacterial adhesion based on the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory of colloid stability and the EOF-induced shear forces acting on a bacterium. We propose that DC fields may be used to electrokinetically regulate the interaction of bacteria with surfaces in order to delay initial adhesion and biofilm formation in technical installations or to enhance bacterial transport in environmental matrices.

  20. Chromatographic analysis of tryptophan metabolites

    PubMed Central

    Sadok, Ilona; Gamian, Andrzej

    2017-01-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate‐limiting enzymes indoleamine 2,3‐dioxygenase, or tryptophan 2,3‐dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. PMID:28590049

  1. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the

  2. Modeling of mesoscopic electrokinetic phenomena using charged dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Deng, Mingge; Li, Zhen; Karniadakis, George

    2015-11-01

    In this work, we propose a charged dissipative particle dynamics (cDPD) model for investigation of mesoscopic electrokinetic phenomena. In particular, this particle-based method was designed to simulate micro- or nano- flows which governing by Poisson-Nernst-Planck (PNP) equation coupled with Navier-Stokes (NS) equation. For cDPD simulations of wall-bounded fluid systems, a methodology for imposing correct Dirichlet and Neumann boundary conditions for both PNP and NS equations is developed. To validate the present cDPD model and the corresponding boundary method, we perform cDPD simulations of electrostatic double layer (EDL) in the vicinity of a charged wall, and the results show good agreement with the mean-field theoretical solutions. The capacity density of a parallel plate capacitor in salt solution is also investigated with different salt concentration. Moreover, we utilize the proposed methodology to study the electroosmotic and electroosmotic/pressure-driven flow in a micro-channel. In the last, we simulate the dilute polyelectrolyte solution both in bulk and micro-channel, which show the flexibility and capability of this method in studying complex fluids. This work was sponsored by the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) supported by DOE.

  3. Physicochemical and electrokinetic properties of silica/lignin biocomposites.

    PubMed

    Klapiszewski, Łukasz; Nowacka, Magdalena; Milczarek, Grzegorz; Jesionowski, Teofil

    2013-04-15

    A new method of synthesis of novel composites obtained from silica and Kraft lignin has been proposed. Silica used in the study was obtained by three methods (hydrolysis and condensation of tetraethoxysilane, precipitation in a nonpolar and polar medium with the use of sodium silicate). To extend the possible range of applications, the silica was preliminary modified with N-2-(aminoethyl)-3-aminopropyltrimethoxsysilane, and finally it was modified with Kraft lignin earlier oxidised with sodium periodate (lignin bonded to SiO2 by covalent interactions). The products physicochemical and electrokinetic properties were thoroughly analysed. The dispersive properties and surface morphology were evaluated on the basis of particle size distributions and SEM images. The stability of dispersion in inorganic-organic systems were characterised on the basis of the zeta potential, whose value also permitted concluding on the interactions between colloidal molecules dispersed in water solutions. The products were subjected to elemental analysis to get percentage contents of N, C, H, S elements and were also characterised by XPS and FT-IR spectroscopy. Results of the study are of practical importance in prospective applications of SiO2/lignin biocomposites.

  4. The influence of soft layer electrokinetics on bacterial electroporation

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey; Dingari, Naga Neehar; Buie, Cullen

    2015-11-01

    Electroporation of mammalian cells has received a significant amount of theoretical attention over the last decade because of its ability to deliver biologically active molecules into cells using short and strong electric field pulses. However, application of the same theory to bacterial electroporation presents significant challenges because of the presence of charged soft layers around bacteria. The soft layer charge distribution has been found to significantly influence bacterial electrophoretic mobility and polarizability because it alters the electric potential spatial distribution around the cell envelope. In addition, the RC charging time scale of both the soft layer and electric double layer is of the order of microseconds, which is also of similar order of magnitude as the pore creation time scale. Therefore in this study, we investigate the influence of soft layer electrokinetics on the spatial pore distribution and the temporal pore radius evolution during bacteria electroporation, which are quantitative measures of a bacterium's amenability to electroporation. The study will have significant impact on designing and optimizing bacteria electroporation platforms for gene and drug delivery applications.

  5. Study of the Behaviors of Gunshot Residues from Spent Cartridges by Headspace Solid-Phase Microextraction-Gas Chromatographic Techniques.

    PubMed

    Chang, Kah Haw; Yew, Chong Hooi; Abdullah, Ahmad Fahmi Lim

    2015-07-01

    Gunshot residues, produced after shooting activity, have acquired their importance in analysis due to the notoriety of firearms-related crimes. In this study, solid-phase microextraction was performed to extract the headspace composition of spent cartridges using 85-μm polyacrylate fiber at 66°C for 21 min. Organic compounds, that is, naphthalene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, diphenylamine, and dibutyl phthalate were detected and analyzed by gas chromatography-flame ionization detection technique. Evaluation of chromatograms for diphenylamine, dibutyl phthalate, and naphthalene indicates the period after a gunshot was discharged, whether it was 1 days, 2-4 days, <5 days, 10 days, 20 days, or more than 30 days ago. This study revealed the potential effects of environmental factors such as occasional wind blow and direct sunlight on the estimation of time after spent cartridges were discharged. In conclusion, we proposed reliable alternative in analyzing the headspace composition of spent cartridges in a simulated crime scene.

  6. Simultaneous liquid chromatographic assessment of thiamine, thiamine monophosphate and thiamine diphosphate in human erythrocytes: a study on alcoholics.

    PubMed

    Mancinelli, Rosanna; Ceccanti, Mauro; Guiducci, Maria Soccorsa; Sasso, Guido Francesco; Sebastiani, Gemma; Attilia, Maria Luisa; Allen, John Paul

    2003-06-15

    An isocratic HPLC procedure for the assessment of thiamine (T), thiamine monophosphate (TMP) and thiamine diphosphate (TDP) in human erythrocytes is described. Several aspects of the procedure make it suitable for both clinical and research purposes: limits of detection and quantification of 1 and 2.5 nmol/l, respectively, recovery of 102% on average (range 93-112%), intra- and inter-day precisions within 5 and 9%, respectively, total elution time 15 min. This analytical methodology was applied to a case-control study on erythrocyte samples from 103 healthy subjects and 36 alcohol-dependent patients at risk of thiamine deficiency. Mean control values obtained were: T=89.6+/-22.7 nmol/l, TMP=4.4+/-6.6 nmol/l and TDP=222.23+/-56.3 nmol/l. T and TDP mean values of alcoholics were significantly lower than those of control cases: T=69.4+/-35.9 nmol/l (P<0.001) and TDP=127.4+/-62.5 nmol/l (P<10(-5)). The diagnostic role of TDP was evaluated and a significant role for thiamine was established in the study of alcohol related problems.

  7. Application of a liquid chromatographic/tandem mass spectrometric method to a urinary excretion study of rabeprazole and two of its metabolites in healthy human urine.

    PubMed

    Lu, Chengtao; Jia, Yanyan; Song, Ying; Li, Xueqing; Sun, Yuan; Zhao, Jinyi; Wang, Shan; Shi, Lei; Wen, Aidong; Ding, Li

    2015-04-15

    To study urinary excretion properties of rabeprazole and two of its metabolites, i.e. rabeprazole thioether and desmethyl rabeprazole thioether in human urine, a sensitive, selective, accurate and precise method for the quantification of rabeprazole and two of its metabolites using a liquid chromatographic/tandem mass spectrometric method has been developed and validated. Starting with a 200 μL urine aliquot, a general sample preparation was performed using protein precipitation with methanol. Analytes were separated on a Dikma Inspire™ C18 column (150 mm × 2.1mm, 5 μm) using a mixture of methanol and aqueous 10mM ammonium acetate buffer containing 0.05% formic acid (55:45, v/v) as mobile phase. Linearity was obtained over the concentration range of 0.1446-96.38 ng/mL, 0.3198-319.8 ng/mL and 0.05160-82.53 ng/mL for rabeprazole, rabeprazole thioether, desmethyl rabeprazole thioether in human urine, respectively. The fully validated method was applied to a urine excretion study of rabeprazole sodium administered as a 30 min intravenous infusion for the first time. The calculated cumulative urinary recovery just reached 0.04745‰, 1.272‰ and 0.1631‰ of dose within 24h post-dose for rabeprazole, rabeprazole thioether, and desmethyl rabeprazole thioether, respectively, after intravenous infusion administration, indicating that rabeprazole and its two main metabolites undergo substantial non-renal elimination in healthy Chinese volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Monoclonal Antibodies Production Platforms: An Opportunity Study of a Non-Protein-A Chromatographic Platform Based on Process Economics.

    PubMed

    Grilo, António L; Mateus, Marília; Aires-Barros, Maria R; Azevedo, Ana M

    2017-09-13

    Monoclonal antibodies currently dominate the biopharmaceutical market with growing sales having reached 80 billion USD in 2016. As most top-selling mAbs are approaching the end of their patent life, biopharmaceutical companies compete fiercely in the biosimilars market. These two factors present a strong motivation for alternative process strategies and process optimization. In this work a novel purification strategy for monoclonal antibodies comprising phenylboronic acid multimodal chromatography for capture followed by polishing by ion-exchange monolithic chromatography and packed bed hydrophobic interaction chromatography is presented and compared to the traditional protein-A-based process. Although the capital investment is similar for both processes, the operation cost is 20% lower for the novel strategy. This study shows that the new process is worthwhile investing in and could present a viable alternative to the platform process used by most industrial players. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fast Myoglobin Detection Using Nanofluidic Electrokinetic Trapping Technique

    NASA Astrophysics Data System (ADS)

    Chun, DongWon; Kim, Sang Hui; Song, Hyungwan; Kwak, Seungmin; Kim, YooChan; Seok, HyunGwang; Lee, Sang-Myung; Lee, Jeong Hoon

    2013-01-01

    We report on the preconcentration-enhanced fast collection of myoglobin protein for the rapid detection of myocardial infarction. We use a one-dimensional micro/nanofluidic chip for electrokinetic preconcentration and demonstrate that the preconcentration factor of 1 ng/ml Alexa Fluor 488-labeled myoglobin is ˜1000 within 200 s, where the protein had a weak negative charge, thereby making it hard to perform electrokinetic trapping for neutral-like proteins. The potential feasibility with new assay strategies for use in a rapid immunoassay screening test for myocardial infarction is discussed.

  10. Deconvolution of gas chromatographic data

    NASA Technical Reports Server (NTRS)

    Howard, S.; Rayborn, G. H.

    1980-01-01

    The use of deconvolution methods on gas chromatographic data to obtain an accurate determination of the relative amounts of each material present by mathematically separating the merged peaks is discussed. Data were obtained on a gas chromatograph with a flame ionization detector. Chromatograms of five xylenes with differing degrees of separation were generated by varying the column temperature at selected rates. The merged peaks were then successfully separated by deconvolution. The concept of function continuation in the frequency domain was introduced in striving to reach the theoretical limit of accuracy, but proved to be only partially successful.

  11. A simple chromatographic method for determining norfloxacin and enoxacin in pharmacokinetic study assessing CYP1A2 inhibition.

    PubMed

    Kobayashi, Toshimi; Homma, Masato; Momo, Kenji; Kobayashi, Daisuke; Kohda, Yukinao

    2011-04-01

    We developed a simple assay method for the determination of serum and urine norfloxacin and enoxacin using reversed-phase high-performance liquid chromatography and perchloric acid precipitation for sample pre-treatment. Optimized conditions can permit detection of norfloxacin and enoxacin in the same chromatogram, so either compound can be used as an internal standard for another determinant. Supernatants of the precipitated samples were analyzed by the octadecylsilyl silica-gel column under ambient temperature and an ultraviolet wavelength of 272  nm. A mobile phase solvent consisting of 20 mm sodium dihydrogenphosphate (pH 3.0) and acetonitrile (85:15, v/v) was pumped at a flow rate of 1.0 mL/min. The calibration curves for norfloxacin and enoxacin at a concentration of 62.5-1000 ng/mL for serum and 250-4000 ng/mL for urine were linear (r > 0.9997). The recoveries of norfloxacin and enoxacin from serum and urine were >94% with the coefficient of variations (CV) <5%. The CVs for intra- and inter-day assay of norfloxacin and enoxacin were <4.2 and <5.5%, respectively. This method can be applied to the pharmacokinetic study of norfloxacin and enoxacin after repeated administration to assess changes in CYP1A2 activity in healthy subjects. Copyright © 2010 John Wiley & Sons, Ltd.

  12. High-performance liquid chromatographic determination and metabolic study of sennoside a in daiokanzoto by mouse intestinal bacteria.

    PubMed

    Takayama, Kento; Matsui, Emi; Kobayashi, Takeshi; Inoue, Hirofumi; Tsuruta, Yasuto; Okamura, Nobuyuki

    2011-01-01

    Daiokanzoto (DKT, combination of rhubarb and glycyrrhiza), a Kampo medicine, is clinically effective for constipation. Sennoside A is well known to induce diarrhea. Sennoside A is a prodrug that is transformed into an active metabolite, rheinanthrone, by intestinal bacteria. In this study, we investigated the effects of glycyrrhiza on the activity of sennoside A metabolism in intestinal bacteria using mouse feces. A high-performance liquid chromatography (HPLC) method for the determination of sennoside A in incubation mixture of DKT with mouse feces was established. The retention time of sennoside A was 9.26±0.02 min with a TSKgel ODS-80TsQA column by linear gradient elution using a mobile phase containing aqueous phosphoric acid and acetonitrile and detection at 265 nm. We found that the activity of sennoside A metabolism in intestinal bacteria was significantly accelerated when glycyrrhiza, liquiritin or liquiritin apioside coexisted with sennoside A, whereas that of glycyrrhizin was not altered. This method is applicable for determination of the activity of sennoside A metabolism by anaerobic incubation of DKT with mouse feces.

  13. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges.

    PubMed

    Domínguez, A; Menéndez, J A; Inguanzo, M; Bernad, P L; Pis, J J

    2003-09-19

    The pyrolysis of sewage sludge was studied in a microwave oven using graphite as microwave absorber. The pyrolysis temperature ranged from 800 to 1000 degrees C depending on the type of sewage sludge. A conventional electrical furnace was also employed in order to compare the results obtained with both methods. The pyrolysis oils were trapped in a series of condensers and their characteristics such as elemental analysis and calorific value were determined and compared with those of the initial sludge. The oil composition was analyzed by GC-MS. The oils from the microwave oven had n-alkanes and 1-alkenes, aromatic compounds, ranging from benzene derivatives to polycyclic aromatic hydrocarbons (PAHs), nitrogenated compounds, long chain aliphatic carboxylic acids, ketones and esters and also monoterpenes and steroids. The oil from the electric oven was composed basically of PAHs such as naphthalene, acenapthylene, phenanthrene, fluoranthene, benzo[a]anthracene, benzofluoranthenes, benzopyrenes, indenepyrene, benzo[ghi]perylene, and anthanthrene. In contrast, these compounds were not produced in the case of microwave-assisted pyrolysis.

  14. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  15. Gas-liquid chromatographic determination of milk fat and cocoa butter equivalents in milk chocolate: interlaboratory study.

    PubMed

    Buchgraber, Manuela; Androni, Simona

    2007-01-01

    A collaborative trial was conducted to validate an analytical approach comprising method procedures for determination of milk fat and the detection and quantification of cocoa butter equivalents (CBEs) in milk chocolate. The whole approach is based on (1) comprehensive databases covering the triacylglycerol composition of a wide range of authentic milk fat, cocoa butter, and CBE samples and 947 gravimetrically prepared mixtures thereof; (2) the availability of a certified cocoa butter reference material for calibration; (3) an evaluation algorithm, which allows reliable quantitation of the milk fat content in chocolate; (4) a subsequent correction to take account of the triacylglycerols derived from milk fat; (5) mathematical expressions to detect the presence of CBEs in milk chocolate; and (6) a multivariate statistical formula to quantitate the amount of CBEs in milk chocolate. Twelve laboratories participated in the validation study. CBE admixtures were detected down to a level of 0.5 g CBE/100 g milk chocolate, without false-positive or -negative results. The applied quantitation model performed well at the statutory limit of 5% CBE addition to milk chocolate, with a prediction error of 0.7%, and HorRat values ranging from 0.8 to 1.5. The relative standard deviation for reproducibility (RSDR) values for quantitation of CBEs in analyses of chocolate fat solutions ranged from 2.2 to 3.8% and for analyses of real chocolate samples, from 4.1 to 4.7%, demonstrating that the whole approach, based solely on chocolate fat blends, is applicable to real milk chocolate samples.

  16. Anion-selective exhaustive injection-sweeping microemulsion electrokinetic chromatography.

    PubMed

    Huang, Hsi-Ya; Lien, Wei-Chih; Huang, I-Yun

    2006-08-01

    In this study, anion-selective exhaustive injection-sweeping (ASEI-sweeping) technique, which is a selective on-line sample concentration technique, was first proposed in microemulsion electrokinetic chromatography (MEEKC) for analyses of eight acidic phenolic compounds. In contrast to a capillary that is typically filled with nonmicellar background solution in conventional ASEI-sweeping MEKC method, in the proposed ASEI-sweeping MEEKC method, a capillary is filled with a low pH microemulsion solution (pH 2.0), and then with a short acid plug (pH 2.0, 1.9 cm) before field-amplified sample injection. This proposed design has two functions. First, the microemulsion solution that is present at the front of capillary column is able to avoid phase separation of microemulsion solution during MEEKC separation. Second, the presence of the short acid plug would effectively limit the partition behavior of acid analytes with the oil droplets in the microemulsion during field-amplified sample injection; otherwise, the stacking effect of acid analytes would be markedly reduced. This optimal ASEI-sweeping MEEKC method afforded about 96,000-fold to 238,000-fold increases in detection sensitivity in terms of peak areas without any separation efficiency loss when compared to normal MEEKC separation. Furthermore, trace levels (about 3 ng/g) of gallic acid and catechin in foods were also detected successfully by the proposed ASEI-sweeping MEEKC technique.

  17. Analyses of phenolic compounds by microemulsion electrokinetic chromatography.

    PubMed

    Huang, Hsi-Ya; Lien, Wei-Chih

    2005-08-01

    In this study, a microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect 13 phenolic compounds (syringic acid, p-cumaric acid, vanillic acid, caffeic acid, gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, (-)-epicatechin, and (-)-gallocatechin), which are present in many plant-derived foods. The effects of cosurfactant, organic modifier, and oil were examined in order to optimize the separation of these phenolic compounds. The amounts of cosurfactant (cyclohexanol) and organic modifier (acetonitrile) were determined as the major influence on the separation selectivity, while the type of oil partially affected the separation resolution of the phenolic compounds. A highly efficient MEEKC separation method was achieved within 14 min by using a microemulsion solution of pH 2.0 containing 2.89% w/v SDS, 1.36% w/v heptane, 7.66% w/v cyclohexanol, and 2% w/v ACN. Furthermore, the present work could demonstrate that the nature of the oil phase has a significant influence on the separation selectivity of phenolic compounds.

  18. Charged colloids and polyelectrolytes: from statics to electrokinetics

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Esztermann, A.; Wysocki, A.; Allahyarov, E.; Messina, R.; Jusufi, A.; Hoffmann, N.; Gottwald, D.; Kahl, G.; Konieczny, M.; Likos, C. N.

    2005-01-01

    A review is given on recent studies of charged colloidal suspensions and polyelectrolytes both in static and non-equilibrium situations. As far as static equilibrium situations are concerned, we discuss three different problems: 1) Sedimentation density profiles in charged suspensions are shown to exhibit a stretched non-bariometric wing at large heights and binary suspensions under gravity can exhibit an analog of the brazil-nut effect known from granular matter, i.e. the heavier particles settle on top of the lighter ones. 2) Soft polyelectrolyte systems like polyelectrolyte stars and microgels show an ultra-soft effective interaction and this results into an unusual equilibrium phase diagram including reentrant melting transitions and stable open crystalline lattices. 3) The freezing transition in bilayers of confined charged suspensions is discussed and a reentrant behaviour is obtained. As far as nonequilibrium problems are concerned, we discuss an interface instability in oppositely driven colloidal mixtures and discuss possible approaches to simulate electrokinetic effects in charged suspensions.

  19. Modeling of electrokinetic transport in silica nanofluidic channels.

    PubMed

    Wang, Moran; Kang, Qinjun; Ben-Naim, Eli

    2010-04-07

    We present a theoretical and numerical modeling study of the multiphysicochemical process in electrokinetic transport in silica nanochannels. The electrochemical boundary condition is solved by considering both the chemical equilibrium on solid-liquid interfaces and the salt concentration enrichment caused by the double layer interaction. The transport behavior is modeled numerically by solving the governing equations using the lattice Poisson-Boltzmann method. The framework is validated by good agreements with the experimental data for all range of ionic concentrations. The modeling results suggest that when the double layers interact, the bulk salt concentration enrichment results in the saturation of conductances for low ionic concentrations. Both the streaming conductance and the electrical conductance are enhanced by the double layer interaction, and such enhancements diminish when the channel size is larger than 10 times of the Debye length. The streaming conductance increases with pH almost linearly when pH<8, while the electrical conductance increases with pH exponentially. Published by Elsevier B.V.

  20. Qualitative analysis of mycotoxins using micellar electrokinetic capillary chromatography

    SciTech Connect

    Holland, R.D.; Sepaniak, M.J. )

    1993-05-01

    Naturally occurring mycotoxins are separated using micellar electrokinetic capillary chromatography. Trends in the retention of these toxins, resulting from changes in mobile-phase composition and pH, are reported and presented as a means of alleviating coelution problems. Two sets of mobile-phase conditions are determined that provide unique separation selectivity. The facile manner by which mobile-phase conditions can be altered, without changes in instrumental configuration, allowed the acquisition of two distinctive, fully resolved chromatograms of 10 mycotoxins in a period of approximately 45 min. By adjusting retention times, using indigenous or added components in mycotoxin samples as normalization standards, it is possible to obtain coefficients of variation in retention time that average less than 1%. The qualitative capabilities of this methodology are evaluated by separating randomly generated mycotoxin-interferent mixtures. In this study, the utilization of normalized retention times applied to separations obtained with two sets of mobile-phase conditions permitted the identification of all the mycotoxins in five unknown samples without any misidentifications. 24 refs., 3 figs., 2 tabs.

  1. Electrokinetically modulated peristaltic transport of power-law fluids.

    PubMed

    Goswami, Prakash; Chakraborty, Jeevanjyoti; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-01-01

    The electrokinetically modulated peristaltic transport of power-law fluids through a narrow confinement in the form of a deformable tube is investigated. The fluid is considered to be divided into two regions - a non-Newtonian core region (described by the power-law behavior) which is surrounded by a thin wall-adhering layer of Newtonian fluid. This division mimics the occurrence of a wall-adjacent cell-free skimming layer in blood samples typically handled in microfluidic transport. The pumping characteristics and the trapping of the fluid bolus are studied by considering the effect of fluid viscosities, power-law index and electroosmosis. It is found that the zero-flow pressure rise is strongly dependent on the relative viscosity ratio of the near-wall depleted fluid and the core fluid as well as on the power-law index. The effect of electroosmosis on the pressure rise is strongly manifested at lower occlusion values, thereby indicating its importance in transport modulation for weakly peristaltic flow. It is also established that the phenomenon of trapping may be controlled on-the-fly by tuning the magnitude of the electric field: the trapping vanishes as the magnitude of the electric field is increased. Similarly, the phenomenon of reflux is shown to disappear due to the action of the applied electric field. These findings may be applied for the modulation of pumping in bio-physical environments by means of external electric fields.

  2. Removal of MTBE from a clay soil using electrokinetic technique.

    PubMed

    Estabragh, A R; Bordbar, A T; Ghaziani, F; Javadi, A A

    2016-01-01

    Remediation of a soil contaminated with methyl tertiary butyl ether (MTBE) was studied by using the electrokinetic technique. A series of experimental tests were carried out on contaminated soil in an electro-osmotic apparatus at different applied gradients of voltage and time. The tests were conducted with distilled water and ethylenediaminetetra acetic acid (EDTA) solution as electrolyte. During each test the values of pH at anode and cathode reservoirs and also the discharge from cathode were measured. At the end of each test a number of soil samples were extracted from the middle of the soil at different distances from the anode and the removal of contaminant was measured by a gas chromatography apparatus. The results indicate that with EDTA as electrolyte the highest efficiency for removal of MTBE is achieved with 2.0 V/cm gradient and in the duration of 14 days. In addition, EDTA causes the values of pH to increase and decrease in the cathode and anode reservoirs, respectively. It also decreases the effluent and electro-osmotic permeability in comparison with distilled water. Experimental data were analysed by ANOVA and t-test methods. These statistical analyses showed significant difference (at 5% level) between the reference and other tests.

  3. Variation in properties of the sediment following electrokinetic treatments.

    PubMed

    Touch, Narong; Hibino, Tadashi; Nakashita, Shinya; Nakamoto, Kenji

    2017-02-01

    Many studies have reported variation in properties of the sediment within electrokinetic treatments (EKTs). However, we aim to reveal the variation in properties of the sediment following EKTs through laboratory experiments. We collected sewage-derived sediment from a littoral region, and passed it through a 2-mm sieve. We used a potentiostat to cause electrical current in EKT. We measured the sediment properties such as pH, redox potential (ORP), and hydrogen sulphide (H2S) concentration at the end of EKT and at 30 days following EKT. Results showed decreases in pH, increases in ORP, and decreases in H2S concentration at the end of EKT. Compared with the sediment without EKT, the decrease in ORP for the sediment within EKT was higher at 30 days following EKT. These suggest that anaerobic digestion of organic compounds occurs in the sediment following EKT, of which the oxidants produced by EKT serve as electron acceptors and organic compounds serve as electron donors. Furthermore, we found that EKT can remove H2S from the sediment and reduce H2S production in the sediment within EKT when compared to the case without EKT. These ensure that EKT can be used to remove H2S and control H2S production in the sediment.

  4. Alternating current electrokinetics enhanced in situ capacitive immunoassay.

    PubMed

    Li, Shanshan; Ren, Yukun; Cui, Haochen; Yuan, Quan; Wu, Jie; Eda, Shigetoshi; Jiang, Hongyuan

    2015-02-01

    A rapid in situ capacitive immunoassay is presented herein. Conventional immunoassay typically relies on diffusion for transport of analytes in many cases causing long detection time and lack of sensitivity. By integrating alternating current electrokinetics (ACEK) and impedance sensing, this work provides a rapid in situ capacitive affinity biosensing. ACEK induces both fluid flow and particle motion, conveying target molecules toward electrodes immobilized with probes, resulting in rapid enrichment of target molecules and a capacitance change at the ''electrode-fluid'' interface. The benefit of ACEK enhanced immunoassay was demonstrated using the antigen and antibody from Johne's disease (JD) as an example. To clarify the importance of DEP and ACET effects for binding reaction, two different electrode pattern designs for capacitive immunoassay are studied. The asymmetric array and symmetric electrodes exhibit very similar response at lower electric field due to DEP effects, while asymmetric array has remarkable higher response at high-electric field because the convection becomes more important at high field. The disease positive and negative serum samples are distinguished in few minutes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A simple high-performance liquid chromatographic method for the determination of acyclovir in human plasma and application to a pharmacokinetic study.

    PubMed

    Yu, Liyan; Xiang, Bingren; Zhan, Ying

    2008-01-01

    A rapid, simple and sensitive reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the measurement of acyclovir (CAS 59277-89-3) concentrations in human plasma and its use in bioavailability studies is evaluated. The method was linear in the concentration range of 0.05-4.0 microg/ml. The lower limit of quantification (LLOQ) was 0.05 microg/ml in 0.5 ml plasma sample. The intra- and inter-day relative standard deviations across three validation runs over the entire concentration range were less than 8.2%. This method was successfully applied for the evaluation of pharmacokinetic profiles of acyclovir capsule in 19 healthy volunteers. The main pharmacokinetic parameters obtained were: AUC(o-t) 6.50 +/- 1.47 and 7.13 +/- 1.44 microg x h/ml, AUC(0-infinity) 6.77 +/- 1.48 and 7.41 +/- 1.49 microg x h/ml, C(max) 2.27 +/- 0.57 and 2.27 +/- 0.62 microg/ml, t(1/2) 2.96 +/- 0.41 and 2.88 +/- 0.33 h, t(max) 0.8 +/- 0.3 and 1.0 +/- 0.5 h for test and reference formulations, respectively. No statistical differences were observed for C(max) and the area under the plasma concentration--time curve for acyclovir. 90% confidence limits calculated for C(max) and AUC from zero to infinity (AUC(0-infinity)) of acyclovir were included in the bioequivalence range (0.8-1.25 for AUC).

  6. Stability study of fotemustine in PVC infusion bags and sets under various conditions using a stability-indicating high-performance liquid chromatographic assay.

    PubMed

    Dine, T; Khalfi, F; Gressier, B; Luyckx, M; Brunet, C; Ballester, L; Goudaliez, F; Kablan, J; Cazin, M; Cazin, J C

    1998-11-01

    The stability and compatibility of fotemustine, a nitrosourea anticancer agent, in 5% dextrose solution with polyvinyl chloride (PVC) containers and administration sets were studied under different conditions of temperature and light. The drug was diluted to 0.8 and 2 mg ml(-1) in 100 or 250 ml 5% dextrose injection solutions for 1-h simulated infusions using PVC bags and administration sets with protection from light. After preparation in the PVC bags containing 5% dextrose, fotemustine was also prepared at the same concentrations and stored at 4 degrees C for 48 h and at room temperature (22 degrees C) or at sunray exposure ( > 30 degrees C) over 8 h with or without protection from light. The solution samples were removed immediately at various time points of simulated infusions and storage, and stored at -20 degrees C until analysis. The physical compatibility with PVC and chemical stability in solution of fotemustine were assessed by visual examination and by measuring the concentration of the drug in duplicate using a stability-indicating high-performance chromatographic assay. When admixed with a 5% dextrose solution, fotemustine 2 and 0.8 mg ml(-1) was compatible and stable over 1-h of simulated infusion using PVC bags through PVC administration sets with protection from light. On the other hand, in the same diluent, fotemustine was compatible and stable with PVC bags for at least 8 h at 22 degrees C with protection from light and for at least 48 h at 4 degrees C with protection from light. There were no pH variation, no visual change, no color change, no visible precipitation and no loss of the drug. Conversely, when the solutions were exposed to light (ambient or solar), the drug concentration decreased rapidly, leading to the production of a degradation product as shown by mass spectral analysis and a discoloration of the solutions. Finally, in all cases, no DEHP (di-2-ethylhexyl phthalate) was detected in the injection solution.

  7. Gas chromatographic method for putrescine and cadaverine in canned tuna and mahimahi and fluorometric method for histamine (minor modification of AOAC Official Method 977.13): collaborative study.

    PubMed

    Rogers, P L; Staruszkiewicz, W

    1997-01-01

    A collaborative study was conducted to test a modification to the AOAC fluorometric method for histamine (AOAC Official Method 977.13) that substitutes 75% methanol as the extracting solvent. All other steps remain unchanged. The extracts prepared with 75% methanol were also used to collaboratively test a gas chromatographic (GC) method for determination of putrescine and cadaverine in seafood. In the GC method, the extracted diamines are converted to fluorinated derivatives, the reaction mixtures are passed through solid-phase extraction columns, and the derivatives are quantitated by electron capture GC after separation on an OV-225 column. Fourteen laboratories using the GC method for putrescine and cadaverine and 16 laboratories using the fluorometric method for histamine analyzed 14 canned tuna and raw mahimahi (including blind duplicates and a spike) containing 0.2-2.6 ppm putrescine, 0.6-9.1 ppm cadaverine, and 0.6-154 ppm histamine. At the 5 ppm level, recoveries ranged from 71 to 102% for putrescine and 77 to 112% for cadaverine; the respective repeatability relative standard deviations (RSDr) were 5.2 and 15%, and the respective reproducibility relative standard deviations (RSDR) were 8.8 and 18%. At the 50 ppm level, histamine recoveries ranged from 84 to 125%, RSDr was 3.6%, and RSDR was 9.4%. The GC method for determination of putrescine in canned tuna and cadaverine in canned tuna and mahimahi has been adopted first action by AOAC INTERNATIONAL, and the AOAC Official Method 977.13, Histamine in Seafood, Fluorometric Method, has been modified.

  8. Solute-solvent interactions in micellar electrokinetic chromatography: IV. Characterization of electroosmotic flow and micellar markers.

    PubMed

    Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Rosés, Martí

    2002-01-01

    A wide study of the compounds and procedures mostly used to determine the electroosmotic flow (EOF) and micelle elution times has been done in seven different micellar electrokinetic chromatography (MEKC) systems. These systems are formed from mixtures of an aqueous buffer with the surfactants sodium dodecyl sulfate, lithium dodecyl sulfate, lithium perfluorooctane sulfonate, sodium cholate, sodium deoxycholate, tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium bromide. The solvation parameter model has been used to evaluate the usefulness of the compounds studied as EOF or micellar markers in each of the seven MEKC systems. It is demonstrated that methanol, acetonitrile and formamide are the best EOF markers, and that dodecanophenone is the best micellar marker.

  9. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  10. Analysis of lamotrigine and its metabolites in human plasma and urine by micellar electrokinetic capillary chromatography.

    PubMed

    Pucci, Vincenzo; Bugamelli, Francesca; Baccini, Cesare; Raggi, Maria Augusta

    2005-02-01

    A reliable micellar electrokinetic capillary chromatographic method was developed and validated for the determination of lamotrigine and its metabolites in human plasma and urine. The variation of different parameters, such as pH of the background electrolyte (BGE) and Sodium dodecyl sulfate (SDS) concentration, were evaluated in order to find optimal conditions. Best separation of the analytes was achieved using a BGE composed of 10 mM borate and 50 mM SDS, pH 9.5; melatonin was selected as the internal standard. Isolation of lamotrigine and its metabolites from plasma and urine was accomplished with an original solid-phase extraction procedure using hydrophilic-lypophilic balance cartridges. Good absolute recovery data and satisfactory precision values were obtained. The calibration plots for lamotrigine and its metabolites were linear over the 1-20 microg/mL concentration range. Sensitivity was satisfactory; the limits of detection and quantitation of lamotrigine were 500 ng/mL and 1 microg/mL, respectively. The application of the method to real plasma samples from epileptic patients under therapy with lamotrigine gave good results in terms of accuracy and selectivity, and in agreement with those obtained with an high-performance liquid chromatography (HPLC) method.

  11. Determination of polymer log D distributions by micellar and microemulsion electrokinetic chromatography.

    PubMed

    Jin, Xiaoyun; Leclercq, Laurent; Cottet, Hervé

    2013-11-29

    The characterization of the hydrophobicity of polymer compounds in solution remains a challenging issue of importance, especially for biomedical or pharmaceutical applications. To our knowledge, there is no data of polymer hydrophobicity (log D) in the literature. In this work, for the first time, the log D distributions of cationic polymers were characterized using micellar or microemulsion electrokinetic chromatography at physiological pH. The log D distributions of the polymer samples were obtained from the electrophoretic/chromatographic retardation of the polymer derivatives in presence of neutral micelles (or neutral microemulsion), using small cationic molecules for calibration. Separating electrolytes were based on a TRIS–chloride buffer containing a neutral surfactant (polyoxyethyleneglycoldodecyl ether) for the formation of micelles (in water) or microemulsion (in water/n-pentanol mixture).The log D distributions obtained at pH 7.4 using this method were in good agreement with the chemical structures of cationic polypeptides: poly(lys, phe) 1:1 > poly(lys, tyr) 1:1 > poly(lys, trp) 4:1 > poly(lys, ser)3:1 > poly(l-lysine), where x:y represents the molar ratio of each amino acid in the copolymer. Weight average octanol–water log D values and the dispersion of the log D distribution were also defined and determined for each polymer sample.

  12. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides.

    PubMed

    Rageh, Azza H; Pyell, Ute

    2013-11-05

    Ionic liquid (IL)-type surfactants have been shown to interact more strongly with polar compounds than traditionally used quaternary ammonium cationic surfactants. The aim of this study is to provide an alternative micellar electrokinetic chromatographic method (MEKC) for the analysis of urinary nucleosides in their ionic form at low surfactant concentration. This approach could overcome the use of high surfactant concentrations typically associated with the analysis of these highly hydrophilic metabolites as neutral species, which is frequently accompanied by high electric current, Joule heating and long analysis time. The investigated IL-type surfactant; 1-tetradecyl-3-methylimidazolium bromide (C14MImBr) is similar to the commonly employed cationic surfactant; tetradecyltrimethylammonium bromide (TTAB) but it provides a different separation selectivity. We employed C14MImBr micelles for the MEKC analysis of seven urinary nucleosides. The studied analytes possess a negative charge at pH 9.38 (exceptions are adenosine and cytidine which are neutral at this pH value). Borate imparts an additional negative charge to these compounds after complexation with the cis-diol functionality of the ribose unit, which in turn enables them to interact with the oppositely charged C14MImBr micelles via electrostatic (Coulomb) forces. The effect of the concentration of borate (the complexing, competing and buffering ion) on the effective electrophoretic mobilities and on the retention factors was investigated. The effective electrophoretic mobility data show that complexation between these nucleosides and borate occurs with high degree of complexation even at very low borate concentration (2.5 mmol L(-1) disodium tetraborate). In addition, we found that the retention factors are strongly dependent on the borate concentration being the highest when using the lowest borate concentration and they can be regulated by variation of either tetraborate concentration or the pH of the

  13. Electrokinetic flow in a nanochannel with an overlapped electrical double layer

    NASA Astrophysics Data System (ADS)

    Song, Zhuorui

    Electrokinetic flows within an overlapped Electrical Double Layer (EDL), which are not well-understood, were theoretically investigated in this study with the particular attention on the consideration of hydronium ions in the EDL. Theoretical models for fully-developed steady pressure-driven flow for salt-free water or a binary salt solution in a slit-like nanochannel connecting to two reservoirs were developed. The transient flow in such a domain was also simulated from static state to the final steady state. In these models, the Poisson equation and the Nernst-Planck equation were solved either by analytic methods or by the finite element method. Surface adsorption-desorption equilibrium and water equilibrium were considered to account for the proton exchange at the surface and in the fluid. These models were the first to include those comprehensive processes that are uniquely important for overlapped EDL scenarios. This study improves the understanding of electrokinetic flows within an overlapped EDL by demonstrating the profound impact of hydronium ions on the EDL structure. In the steady flow of potassium chloride solutions, hydronium ions are more enriched than potassium ions by up to 2~3 orders of magnitude, making the electrokinetic effects greatly depressed. The unequal enrichment effects of counterions were omitted in the traditional theory partially because the transient is extremely slow. The simulation results show that a concentration hump of hydronium ions initially forming at the channel entrance gradually expands over the whole channel in a way similar to the concentration plug flow moving downstream. The time required for the flow to reach the steady state could be as long as thousands of times the hydraulic retention time, dependent on the degree of the EDL overlap. This study improves the fundamental understanding for nanofluidic flows.

  14. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    PubMed

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  15. Quantifying process tradeoffs in the operation of chromatographic sequences.

    PubMed

    Ngiam, Sheau-Huey; Bracewell, Daniel G; Zhou, Yuhong; Titchener-Hooker, Nigel J

    2003-01-01

    A method for the rapid representation of key process tradeoffs that need to be made during the analysis of chromatographic sequences has been proposed. It involves the construction of fractionation and maximum purification factor versus yield diagrams, which can be completed easily on the basis of chromatographic data. The output of the framework developed reflects the degree of tradeoff between levels of yield and purity and provides a fast and precise prediction of the sample fraction collection strategy needed to meet a desired process specification. The usefulness of this approach for the purposes of product purification and contaminant removal in a single chromatographic step has been successfully demonstrated in an earlier paper and it is now extended by application to a chromatographic sequence: the separation of a hypothetical three-component protein system by hydrophobic interaction chromatography (HIC) followed by size exclusion chromatography (SEC). The HIC operation has a strong impact upon the subsequent SEC step. The studies show how the analysis of performance in such a chromatographic sequence can be carried out easily and in a straightforward fashion using the fractionation diagram approach. The methodology proposed serves as a useful tool for identifying the process tradeoffs that must be made during operation of a sequence of chromatographic steps and indicates the impact on further processing of the cut-point decisions that are made.

  16. Electrokinetic motion of a spherical micro particle at an oil-water interface in microchannel.

    PubMed

    Wang, Chengfa; Li, Mengqi; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2017-09-19

    The electrokinetic motion of a negatively charged spherical particle at an oil-water interface in a microchannel is numerically investigated and analyzed in this paper. A three-dimensional (3D) transient numerical model is developed to simulate the particle electrokinetic motion. The channel wall, the surface of the particle and the oil-water interface are all considered negatively charged. The effects of the direct current (DC) electric field, the zeta potentials of the particle-water interface and the oil-water interface, and the dynamic viscosity ratio of oil to water on the velocity of the particle are studied in this paper. In addition, the influences of the particle size are also discussed. The simulation results show that the micro-particle with a small value of negative zeta potential moves in the same direction of the external electric field. However, if the zeta potential value of the particle-water interface is large enough, the moving direction of the particle is opposite to that of the electric field. The velocity of the particle at the interface increases with the increase in the electric field strength and the particle size, but decreases with the increase in the dynamic viscosity ratio of oil to water, and the absolute value of the negative zeta potentials of both the particle-water interface and the oil-water interface. This work is the first numerical study of the electrokinetic motion of a charged particle at an oil-water interface in a microchannel. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative determination of amygdalin epimers by cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Isoza, T; Matano, Y; Yamamoto, K; Kosaka, N; Tani, T

    2001-07-20

    A new capillary electrophoresis method was developed for the quantitative determination of the amygdalin epimers, amygdalin and neoamygdalin, which are biologically significant constituents in the crude drugs, namely Persicae Semen and Armeniacae Semen. The effects of surfactants, additives and other analytical parameters were studied. As a result, the resolution of two epimers was performed by cyclodextrin-modified micellar electrokinetic chromatography with a buffer containing alpha-cyclodextrin and sodium deoxycholate. By the application of this method, a simple, fast and simultaneous quantitative determinations of amygdalin epimers in the crude drugs (Persicae Semen and Armeniacae Semen) and the Chinese herbal prescriptions (Keishi-bukuryo-gan and Mao-to) were achieved.

  18. MICELLAR ELECTROKINETIC CHROMATOGRAPHY-MASS SPECTROMETRY (R823292)

    EPA Science Inventory

    The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...

  19. MICELLAR ELECTROKINETIC CHROMATOGRAPHY-MASS SPECTROMETRY (R823292)

    EPA Science Inventory

    The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...

  20. Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report

    SciTech Connect

    Wittle, J.K.; Pamukcu, S.

    1993-04-01

    The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

  1. Use of a fluorosurfactant in micellar electrokinetic capillary chromatography.

    PubMed

    de Ridder, R; Damin, F; Reijenga, J; Chiari, M

    2001-05-04

    A fluorosurfactant, the anionic N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]glycine potassium salt, trade name FC-129 [CAS 2991-51-7] was investigated for possible application in micellar electrokinetic capillary chromatography (MEKC). The surfactant was characterized with conductometric titration and test sample mixtures were investigated in MEKC systems, and compared with sodium dodecylsulphate. An increased efficiency and interesting selectivity differences were observed.

  2. Investigation of the enantiomerization barriers of the phthalimidone derivatives EM12 and lenalidomide by dynamic electrokinetic chromatography.

    PubMed

    Walz, Sarah; Weis, Sylvia; Franz, Mareike; Rominger, Frank; Trapp, Oliver

    2015-03-01

    The phthalimidone derivatives EM12 and lenalidomide, which are both structurally related to thalidomide, are highly interesting drugs and very recently lenalidomide attracted great attention as an antitumor and immune-modulating drug in the therapy for multiple myeloma. EM12 and lenalidomide are chiral, and the stereogenic carbon C-3 in the piperidine-2,6-dione moiety of these phthalimidone derivatives is prone to interconversion due to keto-enol tautomerization. The knowledge of the enantiomerization barrier is mandatory for pharmacokinetic studies and to develop a tailored therapy using the enantiopure or racemic drug. Here, we used dynamic EKC in combination with direct-calculation methods to determine the enantiomerization barriers of EM12 and lenalidomide. The separations of the enantiomers of EM12 and lenalidomide were performed in 50 mM aqueous disodium hydrogen phosphate buffer at pH 8 and 50 mM aqueous sodium tetraborate buffer at pH 9.3, respectively, using 20 mg/mL heptakis-(2,3-diacetyl-6-sulfato)-β-CD as a chiral additive. Enantiomerization of the compounds during the electrokinetic chromatographic separation resulted in pronounced plateau formation between the well-separated enantiomers. Peak form analysis of the experimentally obtained interconversion profiles yielded the enantiomerization rate constants k1 of EM12 and lenalidomide as well as the kinetic activation parameters ΔG(‡), ΔH(‡‡), and ΔS(‡) of enantiomerization by the evaluation of temperature-dependent measurements. The enantiomerization barrier ΔG(‡) was determined to be 98.3 ± 1.0 kJ/mol; the activation parameters ΔH(‡) = 46.1 ± 2.4 kJ/mol and ΔS(‡) = -170 ± 61 J/(K·mol) for EM12 and ΔG(‡) = 91.5 ± 1.0 kJ/mol, ΔH(‡) = 62.4 ± 5.4 kJ/mol, and ΔS(‡) = -98 ± 7 J/(K·mol) for lenalidomide. These findings were corroborated by density functional theory calculations at the B3LYP/3-21G level of theory of the ground state and intermediates considering an

  3. Resistivity imaging during electrokinetic remediation of sediments: practical challenges in the field

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Ceccarini, Alessio; Iannelli, Renato

    2016-04-01

    The use of geophysical techniques such as electrical resistivity and impedance tomography have proven to be effective for the investigation and monitoring of a variety of environmental processes. This study investigates the possibility of using resistivity imaging to monitor the progress of electrokinetic remediation, a decontamination process based on electrochemical methods. The resistivity is a parameter of great theoretical and practical interest. On one side, resistivity is strictly related to the pore fluid composition and provides information about the chemical state of the material subjected to remediation. On the other side, knowing the evolution and distribution of resistivity is of practical importance both at the design stage and during operation because it directly affects the electrical energy expenditures. Monitoring of electrokinetic processes both in laboratory and in field is usually carried out by point measurements and sample collection from discrete locations. Resistivity imaging is effective in providing low-cost, non-destructive, high space and time resolution mapping. During electrokinetic remediation an electric field is applied to the contaminated matrix to extract the pollutants. In the field, array of electrodes are generally employed to apply the electric field, arranged in a two-dimensional grid. The electrodes are installed inside wells to allow the circulation of electrolytes employed to enhance the extraction of the pollutants. In this study we describe the practical challenges both in the measurements and in the data processing encountered during the tomographic imaging of marine sediments subjected to electrokinetic remediation in a 150 m3 ex-situ treatment plant. In such system there are a number of constraints to overcome in order to obtain an effective tomographic image of the sediments: (1) the electric field applied for remediation cannot be powered off, thus this field represents the source for current injection for the

  4. Acquisition of a Gas Chromatograph/Mass Spectrometer System for Laboratory Study of Prebiotic Organic Geochemical Processes on the Early Earth, Mars, and Meteorites

    NASA Technical Reports Server (NTRS)

    McCollom, Thomas

    2004-01-01

    This was a major equipment grant that provided funds ($72K) for purchase of a benchtop gas chromatograph-mass spectrometer (GC-MS) for use in experimental studies of prebiotic organic compounds. An Agilent model 689015973 GC-MS was purchased and installed in the PI's lab in August of 2003. The instrument is now being used for a variety of research projects. The primary use of the instrument is to analyze and quantify organic products of laboratory experiments conducted by the PI. One example is shown, which shows organic products (predominantly n-alkanes) formed during Fischer-Tropsch-type abiotic synthesis under hydrothermal conditions. The analytical capabilities of the GC- MS allowed identification of the numerous organic products of this as well as other laboratory experiments. A key use of the instrument in this research is that the mass spectrometer capabilities allow use of isotopically labeled reactants to trace the progress of reactions and evaluate background contaminants. collaborative projects with other scientists involved in exobiology & astrobiology research (e.g., Mitch Schulte, NASA Ames; Katrina Edwards, Woods Hole Oceanographic Institution). For instance, an analysis of membrane lipids of an lithoautotrophic iron-oxidizing bacteria being grown on basalt as a source of metabolic energy, a project where the instrument is being used to evaluate possible biomarker compounds from these organisms is shown. These iron oxidizers are thought to be similar to those living within the ocean crust, and are being investigated as possible analog organisms to those on the early Earth or crust of Mars. The instrument has also been used by an outside investigator (graduate student Brandon Canfeld, Arizona State University) for identification and isotopic characterization of experimental products of abiotic organic synthesis experiments he is conducting with Dr. John Holloway. analysis of quality control samples for other NASA-funded projects. For instance, an

  5. Acquisition of a Gas Chromatograph/Mass Spectrometer System for Laboratory Study of Prebiotic Organic Geochemical Processes on the Early Earth, Mars, and Meteorites

    NASA Technical Reports Server (NTRS)

    McCollom, Thomas

    2004-01-01

    This was a major equipment grant that provided funds ($72K) for purchase of a benchtop gas chromatograph-mass spectrometer (GC-MS) for use in experimental studies of prebiotic organic compounds. An Agilent model 689015973 GC-MS was purchased and installed in the PI's lab in August of 2003. The instrument is now being used for a variety of research projects. The primary use of the instrument is to analyze and quantify organic products of laboratory experiments conducted by the PI. One example is shown, which shows organic products (predominantly n-alkanes) formed during Fischer-Tropsch-type abiotic synthesis under hydrothermal conditions. The analytical capabilities of the GC- MS allowed identification of the numerous organic products of this as well as other laboratory experiments. A key use of the instrument in this research is that the mass spectrometer capabilities allow use of isotopically labeled reactants to trace the progress of reactions and evaluate background contaminants. collaborative projects with other scientists involved in exobiology & astrobiology research (e.g., Mitch Schulte, NASA Ames; Katrina Edwards, Woods Hole Oceanographic Institution). For instance, an analysis of membrane lipids of an lithoautotrophic iron-oxidizing bacteria being grown on basalt as a source of metabolic energy, a project where the instrument is being used to evaluate possible biomarker compounds from these organisms is shown. These iron oxidizers are thought to be similar to those living within the ocean crust, and are being investigated as possible analog organisms to those on the early Earth or crust of Mars. The instrument has also been used by an outside investigator (graduate student Brandon Canfeld, Arizona State University) for identification and isotopic characterization of experimental products of abiotic organic synthesis experiments he is conducting with Dr. John Holloway. analysis of quality control samples for other NASA-funded projects. For instance, an

  6. Immobilization of arginase and its application in an enzymatic chromatographic column: thermodynamic studies of nor-NOHA/arginase binding and role of the reactive histidine residue.

    PubMed

    Bagnost, Teddy; Guillaume, Yves-Claude; Thomassin, Mireille; Robert, Jean-François; Berthelot, Alain; Xicluna, Alain; André, Claire

    2007-09-01

    A biochromatographic approach is developed to measure for the first time changes in enthalpy, heat capacity change and protonation for the binding of nor-NOHA to arginase in a wide temperature range. For this, the arginase enzyme was immobilized on a chromatographic support. It was established that this novel arginase column was stable during an extended period of time. The affinity of nor-NOHA to arginase is high and changes slightly with the pH, because the number of protons linked to binding is low. The determination of the enthalpy change at different pH values suggested that the protonated group in the nor-NOHA-arginase complex exhibits a heat protonation of approximately -33 kJ/mol. This value agrees with the protonation of an imidazole group. Our result confirmed that active-site residue Hist 141 is protonated as imidazolium cation. Hist 141 can function as a general acid to protonate the leaving amino group of L-ornithine during catalysis. The thermodynamic data showed that nor-NOHA-arginase binding, for low temperature (<15 degrees C), is enthalpically unfavourable and being dominated by a positive entropy change. This result suggests that dehydration at the binding interface and charge-charge interactions contribute to the nor-NOHA-arginase complex formation. The temperature dependence of the free energy of binding is weak because of the enthalpy-entropy compensation caused by a large heat capacity change, DeltaC(p)=-2.43 kJ/mol/K, of arginase. Above 15 degrees C, the thermodynamic data DeltaH and DeltaS became negative due to van der Waals interactions and hydrogen bonding which are engaged at the complex interface confirming strong enzyme-inhibitor hydrogen bond networks. As well, by the use of these thermodynamic data and known correlations it was clearly demonstrated that the binding of nor-NOHA to arginase produces slight conformational changes in the vicinity of the active site. Our work indicated that our biochromatographic approach could soon

  7. A liquid chromatographic-electrospray-tandem mass spectrometric method for quantitation of quetiapine in human plasma and liver microsomes: application to study in vitro metabolism.

    PubMed

    Lin, Shen-Nan; Chang, Yan; Moody, David E; Foltz, Rodger L

    2004-09-01

    Quetiapine is an atypical antipsychotic agent for the treatment of schizophrenia. After an oral dose it is absorbed rapidly and extensively metabolized in the liver, resulting in low plasma concentrations of the parent drug. A sensitive analytical method is needed. A liquid chromatographic-electrospray-tandem mass spectrometric (LC-ESI-MS-MS) method combined with a simple liquid-liquid extraction has been developed for the measurement of quetiapine in human plasma and in human liver microsomes (HLM). Clozapine is used as internal standard. Plasma samples or microsomes quenched with methanol (100 microL) were made basic and extracted with 3 mL n-butyl chloride. The reconstituted extracts were analyzed by LC-ESI-MS-MS. Selective reaction monitoring of MH(+) at m/z 384 and 327 resulted in strong fragment ions at m/z 253 and 192 for quetiapine and clozapine, respectively. Recovery of quetiapine and clozapine ranged from 62 to 73%. Intrarun accuracy and precision determined at 1.0 (lower limit of quantitation), 2.5, 200, and 400 ng/mL did not exceed 7% deviation from target and the %CV did not exceed 5.5%. The % target +/- %CV for interrun accuracy and precision were at least 95% +/- 7.4% at concentrations of 2.5, 200, and 400 ng/mL. Plasma samples (2.5 and 400 ng/mL) stored at room temperature for 24 h or after 3 cycles of freeze/thaw were all stable (maximum % deviation < or = 11.0%). Processed extracts (2.5 and 400 ng/mL) stored for 7 days at -20 degrees C or 6 days on the autosampler were all stable (maximum % deviation < or = 11.5%). The method has been used to study quetiapine utilization during incubation with HLM or with cDNA-expressed human cytochrom P450s (CYP). Quetiapine is extensively metabolized by CYP 3A4 and CYP 2D6 and to a lesser extent by CYP 3A7, CYP 3A5, and CYP 2C19.

  8. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments

    SciTech Connect

    Reddy, K.R.; Chinthamreddy, S. . Dept. of Civil and Materials Engineering)

    1999-01-01

    This paper describes the migration of hexavalent chromium, Cr(VI), nickel, Ni(II), and cadmium, Cd(II), in clayey soils that contain different reducing agents under an induced electric potential. Bench-scale electrokinetic experiments were conducted using two different clays, kaolin and glacial till, both with and without a reducing agent. The reducing agent used was either humic acid, ferrous iron, or sulfide, in a concentration of 1000 mg/kg. These soils were then spiked with Cr(VI), Ni(II), and Cd(II) in concentrations of 1000, 500 and 250 mg/kg, respectively, and tested under an induced electric potential of 1 VDC/cm for a duration of over 200 h. The reduction of chromium from Cr(VI) to Cr(III) occurred prior to electrokinetic treatment. The extent of this Cr(VI) reduction was found to be dependent on the type and amount of reducing agents present in the soil. The maximum reduction occurred in the presence of sulfides, while the minimum reduction occurred in the presence of humic acid. The concentration profiles in both soils following electrokinetic treatment showed that Cr(VI) migration was retarded significantly in the presence of sulfides due both to the reduction of Cr(VI) to Cr(III) as well as an increase in soil pH. This low migration of chromium is attributed to: (1) migration of Cr(VI) and the reduced Cr(III) fraction in opposite directions, (2) low Cr(III) migration due to adsorption and precipitation in high pH regions near the cathode in kaolin and throughout the glacial till, and (3) low Cr(VI) migration due to adsorption in the pH regions near the anode in both soils. Ni(II) and Cd(II) migrated towards the cathode in kaolin; however, the migration was significantly retarded in the presence of sulfides due to increased pH through most of the soil. Initial high pH conditions within the glacial till resulted in Ni(II) and Cd(II) precipitation, so the effects of reducing agents were inconsequential. Overall, this study demonstrated that the reducing

  9. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.

    PubMed

    Roach, Nicole; Reddy, Krishna R; Al-Hamdan, Ashraf Z

    2009-06-15

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  10. The Influence of Dielectric Decrement on Electrokinetics

    PubMed Central

    Zhao, Hui; Zhai, Shengjie

    2013-01-01

    We treat the dielectric decrement induced by excess ion polarization as a source of ion specificity and explore its impact on electrokinetics. We employ a modified Poisson-Nernst-Planck (PNP) equations accounting for the dielectric decrement. The dielectric decrement is determined by the excess ion polarization parameter α and when α = 0 the standard PNP model is recovered. Our model shows that ions saturate at large zeta potentials (ζ). Because of ion saturation, a condensed counterion layer forms adjacent to the charged surface, introducing a new length scale, the thickness of the condensed layer (lc). For the electro-osmotic mobility, the dielectric decrement weakens the electro-osmotic flow owing to the decrease of the dielectric permittivity. At large ζ, when α ≠ 0, the electro-osmotic mobility is found to be proportional to ζ/2, in contrast to ζ predicted by the standard PNP model. This is attributed to ion saturation at large ζ. In terms of the electrophoretic mobility Me, we carry out both an asymptotic analysis in the thin-double-layer limit and solve the full modified PNP model to compute Me. Our analysis reveals that the impact of the dielectric decrement is intriguing. At small and moderate ζ, the dielectric decrement decreases Me with an increasing α. At large ζ, it is well known that the surface conduction becomes significant and plays an important role in determining Me. It is observed that the dielectric decrement effectively reduces the surface conduction. Hence in stark contrast, Me increases as α increases. Our predictions of the contrast dependence of the mobility on α at different zeta potentials qualitatively agree with experimental results on the dependence of the mobility among ions and provide a possible explanation for such ion specificity. Finally, the comparisons between the thin-double-layer asymptotic analysis and the full simulations of the modified PNP model suggest that at large ζ the validity of the thin

  11. Ask the experts: chromatographic baselines.

    PubMed

    Smith, Graeme; James, Christopher A; Scott, Rebecca; Woolf, Eric

    2014-05-01

    Bioanalysis invited a selection of leading researchers to express their views on chromatographic baseline assignment in the bioanalytical laboratory. The topics discussed include the challenges presented with ensuring automated baseline assignment is correct, when reintegration is necessary, regulation and consistency in terminology. Their enlightening responses provide a valuable insight into developing an industry consensus towards reintegration. An accompanying commentary article in this issue, authored by Howard Hill and colleagues (Huntingdon Life Sciences), provides background to this much debated topic.

  12. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    PubMed Central

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

  13. Comprehensive analysis of alternating current electrokinetics induced motion of colloidal particles in a three-dimensional microfluidic chip

    NASA Astrophysics Data System (ADS)

    Honegger, Thibault; Peyrade, David

    2013-05-01

    AC electrokinetics is becoming a strategic tool for lab-on-a-chip systems due to its versatility and its high level of integration. The ability to foreseen the behaviour of fluids and particles under non-uniform AC electric fields is important to allow new generations of devices. Though most of studies predicted motion of particles in co-planar electrodes configurations, we explore a pure 3-D AC electrokinetic effect that can open the way to enhance contact-less handling throughout the microchannel. By fabricating 3D microfluidic chips with a bi-layer electrodes configuration where electrodes are patterned on both sides of the microfluidic channel, we present a detailed study of the AC electrokinetic regimes that govern particles motion suspended in different host media subjected to a non-uniform AC electric field that spreads through the cross-section of the microchannel. We simulate and observe the motion of 1, 5, and 10 μm polystyrene particles relative to the electrodes and provide an insight on the competition between electro-hydrodynamical forces and dielectrophoresis. We demonstrate that using relevant electrode designs combined with the appropriate applied AC potential, particles can be handled in 3-D in the micro-channel at a single or a collective level in several medium conductivities. Both numerical simulations and experimental results provide a useful basis for future biological applications.

  14. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.

    PubMed

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  15. In-Situ Electrokinetic Remediation of Metal Contaminated Soils Technology Status Report

    DTIC Science & Technology

    2000-07-01

    demonstration of electrokinetic remediation at Naval Air Weapons Station (NAWS) Point Mugu. Dr. R. Mark Bricka, David Gent , and Chris Fetter of the...Profile 23 5 I. Introduction Electrokinetic remediation is an in-situ process in which an electrical field is created in a soil matrix by...technology at its current stage of development. 6 II. Technology Description Electrokinetic remediation is an in-situ process in which an

  16. Evaluation of the suitability of chromatographic systems to predict human skin permeation of neutral compounds.

    PubMed

    Hidalgo-Rodríguez, Marta; Soriano-Meseguer, Sara; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2013-12-18

    Several chromatographic systems (three systems of high-performance liquid chromatography and two micellar electrokinetic chromatography systems) besides the reference octanol-water partition system are evaluated by a systematic procedure previously proposed in order to know their ability to model human skin permeation. The precision achieved when skin-water permeability coefficients are correlated against chromatographic retention factors is predicted within the framework of the solvation parameter model. It consists in estimating the contribution of error due to the biological and chromatographic data, as well as the error coming from the dissimilarity between the human skin permeation and the chromatographic systems. Both predictions and experimental tests show that all correlations are greatly affected by the considerable uncertainty of the skin permeability data and the error associated to the dissimilarity between the systems. Correlations with much better predictive abilities are achieved when the volume of the solute is used as additional variable, which illustrates the main roles of both lipophilicity and size of the solute to penetrate through the skin. In this way, the considered systems are able to give precise estimations of human skin permeability coefficients. In particular, the HPLC systems with common C18 columns provide the best performances in emulating the permeation of neutral compounds from aqueous solution through the human skin. As a result, a methodology based on easy, fast, and economical HPLC measurements in a common C18 column has been developed. After a validation based on training and test sets, the method has been applied with good results to the estimation of skin permeation of several hormones and pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Electrokinetic remediation of six emerging organic contaminants from soil.

    PubMed

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gas-chromatographic studies of the sorption thermodynamics of adamantanes on a carbon adsorbent modified with polyethylene glycol with β-cyclodextrin additives

    NASA Astrophysics Data System (ADS)

    Yashkin, S. N.; Ageeva, Yu. A.

    2013-11-01

    The thermodynamic characteristics of sorption of adamantane and its derivatives on a mixed stationary phase consisting of a graphite-like solid substrate, polyethylene glycol, and β-cyclodextrin (βCD) were determined by gas chromatography. The introduction of β-CD additives to a polar polymer matrix was shown to considerably decrease the chromatographic retention of the sorbates, which is evidence of the macrocyclic effect. The presence of β-CD molecules was found to increase the selective properties of the mixed sorbent with respect to the structural isomers of adamantanes.

  19. Influence of temperature on the electrokinetic properties and power generation efficiency of Nafion® 117 membranes

    NASA Astrophysics Data System (ADS)

    Catalano, Jacopo; Bentien, Anders

    2014-09-01

    In the present study we investigate the transport properties of Nafion® 117 membranes in temperatures ranging from ambient temperature up to 70 °C. The hydraulic permeability, streaming potential and ion conductivity have been measured as function of temperature in 0.03 M LiCl solutions in purposely designed, non-conductive set-ups. In particular, the apparent activation energies of the processes have been retrieved: 29.4 kJ mol-1, 9.3 kJ mol-1 and 22.9 kJ mol-1 for the hydraulic permeability, streaming potential coefficient and ion conductivity respectively. Based on the knowledge of the temperature dependence of these three independent properties the figure-of-merit of the electrokinetic energy conversion process has been calculated obtaining a monotonous increase of the efficiency with temperature. At 70 °C the electrokinetic efficiency is rather high about 26.6%:50% higher with respect to the one found at room temperature. The electrokinetic transport properties were also used to esteem the average pore size of the water channels in the polymer matrix resulting in pore diameters ranging approximately from 2.0 (25 °C) to 2.8 nm (70 °C).

  20. Electrokinetics of natural and mechanically modified ripidolite and beidellite clays

    SciTech Connect

    Sondi, I.; Pravdic, V.

    1996-08-10

    Particles of clay minerals were studied due to their importance in geochemical processes in natural waters, such as adsorption and transfer of ionic contaminants, stabilization by organics, and flocculation and sedimentation phenomena. Information on the behavior of clays was sought by experiments with model systems. Measurements of electrophoretic mobilities in relation to pH, at varying concentrations of well-characterized fulvic acid (FA), were performed on two structurally well defined, representative clay minerals prepared with clean surfaces: ripidolite (a well-known trioctahedral nonswelling chlorite) and beidellite (a typical dioctahedral smectite). Natural ripidolite and beidellite show high negative electrokinetic potentials in the range pH 2 ({minus}10 and {minus}20 mV, respectively) to pH 10 ({minus}60 and {minus}50 mV, respectively). Experiments utilizing mechanical particle disintegration (dry milling), mimicking natural wear and physical weathering, resulted in increases of specific surface area (12.3 and 1.5 times, respectively) and of cation exchange capacity (3.2 and 1.2 times, respectively). Such small-sized particles, shown by SEM figures, retain their crystal structure (X ray) and the nature of their structural bonds (FTIR), exhibiting an IEP (at pH 6.0 and 3.0, respectively). This was interpreted to be the creation of positively charged edge surfaces. Exposed to fulvic acid in solutions of 10{sup {minus}3} NaCl at pH = 6.5, these new surfaces showed an increase in negative {zeta}-potential for ripidolite, and, to a smaller extent, for beidellite. In the interaction of clay mineral particles with aqueous medium, it is concluded that the degree of mechanical wear is more decisive than the type of the mineral.

  1. Electrokinetic-enhanced permanganate delivery and remediation of contaminated low permeability porous media.

    PubMed

    Chowdhury, Ahmed I A; Gerhard, Jason I; Reynolds, David; Sleep, Brent E; O'Carroll, Denis M

    2017-04-15

    Back diffusion of contaminants from low permeability strata has inhibited site remediation and closure due to an inability to deliver remediants into these strata. This study demonstrates the potential of electrokinetics (EK) to significantly reduce back diffusion of chlorinated compounds from low permeability porous media. Experiments were conducted in a two-dimensional sandbox packed with vertical layers of coarse sand and silt contaminated with aqueous trichloroethene (TCE). Three experiments, each approximately 41 days in duration, compared EK-enhanced in situ chemical oxidation (EK-ISCO) to EK or ISCO alone. EK-ISCO successfully delivered the oxidant (permanganate, PM) throughout the silt cross-section while ISCO without EK resulted only in PM delivery to the edges of the silt layer fringes. EK-ISCO resulted in a 4.4-fold reduction in TCE concentrations in the coarse sand compared to a 3.5-fold reduction from ISCO alone. EK-ISCO with a 25 mA current was found to be more effective than with 300 mA current. Overall, this study suggests that electrokinetics coupled with an appropriate in situ remediation technique, such as ISCO, can enhance remediation of lower permeability strata and limit the extent of contaminant back diffusion.

  2. Electrokinetic device design and constraints for use in high conductance solutions.

    PubMed

    Heineck, D P; Lewis, J M; Heller, M J

    2017-06-01

    The quest for new cell-free DNA and exosome biomarker-based molecular diagnostics require fast and efficient sample preparation techniques. Conventional methods for isolating these biomarkers from blood are both time-consuming and laborious. New electrokinetic microarray devices using dielectrophoresis (DEP) to isolate cell-free DNA and exosome biomarkers have now greatly improved the sample preparation process. Nevertheless, these devices still have some limitations when used with high conductance biological fluids, e.g. blood, plasma, and serum. This study demonstrates that electrochemical damage may occur on the platinum electrodes of DEP microarray devices. It further examines two model device designs that include a parallel wire arrangement and a planar array. Effective isolation of fluorescent beads with parallel wires is shown under low-conductance conditions (10(-4)  S/m), but electrothermal flow overcomes DEP forces under high conductance conditions (>0.1 S/m). Planar devices are shown to be effective under high conductance conditions (∼1 S/m) without the deleterious effects of electrothermal flow. This study provides new insights into design compromises and limitations for producing future electrokinetic devices for better performance with high conductance solutions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Laboratory pre-assays for soil remediation by electro synthesis of oxidants and their electrokinetic distribution.

    PubMed

    Mikkola, Heidi; Schmale, Julia Y; Wesner, Wolfgang; Petkovska, Slagjana

    2008-07-01

    The feasibility of an innovative electrokinetic soil remediation technique for an in situ application against fuel-contaminated soil has been studied in this work. This technique combines the anodic production of oxidizing agents on boron-doped diamond (BDD) electrode surfaces with their electrokinetic distribution in soil. In this study, the production of oxidizing agents, i.e., hydroxyl radicals (OH degrees ) and peroxodisulfate (S(2)O(8)(2 -)), from a 0.85 M sodium sulfate electrolyte with mechanically implanted BDD anodes at room temperature has been investigated. It was found that about 12 mmol/L of oxidants could be produced after 10 Ah/L with a current density of 200 mA/cm(2). For investigating the transport velocity of peroxodisulfate in soil a vertical column system has been created. Experimental results show linear velocity behaviour for the oxidants' migration in 100% sand soil reaching up to 2 cm/h at an electrical gradient of 4 V/cm. As for different soil textures which have been tested, the assays stated that the highest velocity can be achieved in a 100% silt soil with 3.3 cm/h.

  4. Gas chromatographic methods for determination of gamma-BHC in technical emulsifiable concentrates and water-dispersible powder formulations and in lindane shampoo and lotion: collaborative study.

    PubMed

    Miles, J W; Mount, D L; Beckmann, T J; Carrigan, S K; Galoux, I M; Hitos, P; Hodge, M C; Kissler, K; Martijn, A; Sanchez-Rasero, F

    1984-01-01

    Although the gas chromatographic separation of the isomers of BHC was demonstrated two decades ago, the present AOAC method of analysis of BHC for gamma-isomer (lindane) content is based on a separation carried out on a liquid chromatographic partition column. A method of analysis has been developed that uses an OV-210 column for separation of the gamma-isomer from the other isomers and impurities in technical BHC. Di-n-propyl phthalate was chosen as an internal standard. The same system allows quantitation of lindane in lotion and shampoo after these products are extracted with ethyl acetate-isooctane (1 + 4). The analytical methods were subjected to a collaborative trial with 10 laboratories. The coefficient of variation for technical BHC was 2.83%. For the water-dispersible powder and emulsifiable concentrate, the coefficients of variation were 2.89% and 4.62%, respectively. Coefficients of variation for 1% lindane lotion and shampoo were 4.36% and 11.92%, respectively. The method has been adopted official first action.

  5. Importance of MS selectivity and chromatographic separation in LC-MS/MS-based methods when investigating pharmaceutical metabolites in water. Dipyrone as a case of study.

    PubMed

    Ibáñez, M; Gracia-Lor, E; Sancho, J V; Hernández, F

    2012-08-01

    Pharmaceuticals are emerging contaminants of increasing concern because of their presence in the aquatic environment and potential to reach drinking-water sources. After human and/or veterinary consumption, pharmaceuticals can be excreted in unchanged form, as the parent compound, and/or as free or conjugated metabolites. Determination of most pharmaceuticals and metabolites in the environment is commonly made by liquid chromatography (LC) coupled to mass spectrometry (MS). LC coupled to tandem MS is the technique of choice nowadays in this field. The acquisition of two selected reaction monitoring (SRM) transitions together with the retention time is the most widely accepted criterion for a safe quantification and confirmation assay. However, scarce attention is normally paid to the selectivity of the selected transitions as well as to the chromatographic separation. In this work, the importance of full spectrum acquisition high-resolution MS data using a hybrid quadrupole time-of-flight analyser and/or a suitable chromatographic separation (to reduce the possibility of co-eluting interferences) is highlighted when investigating pharmaceutical metabolites that share common fragment ions. For this purpose, the analytical challenge associated to the determination of metabolites of the widely used analgesic dipyrone (also known as metamizol) in urban wastewater is discussed. Examples are given on the possibilities of reporting false positives of dypirone metabolites by LC-MS/MS under SRM mode due to a wrong assignment of identity of the compounds detected.

  6. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1993--January 31, 1994

    SciTech Connect

    Sepaniak, M.J.

    1993-10-01

    This program seeks the development of capillary electrokinetic separation techniques and associated optical methods of detection. Fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on understanding systems that include highly-ordered assemblies as running buffer additives. The additives include cyclodextrins, affinity reagents, and soluble (entangled) polymers and are employed with capillary electrophoresis, CE and/or micellar electrokinetic capillary chromatography, MECC modes of separation. The utility of molecular modeling techniques for predicting the effects of highly ordered assemblies on the retention behavior of isomeric compounds is under investigation. The feasibility of performing separations using a non-aqueous solvent/fullerene electrochromatographic system is being explored. The analytical methodologies associated with these capillary separation techniques are being advanced through the development of retention programming instumentation/techniques and new strategies for performing optical detection. The advantages of laser fluorimetry are extended through the inclusion of fluorogenic, reagents in the running buffer. These reagents include oligonucleotide intercalation reagents for detecting DNA fragments. Chemiluminescence detection using post-capillary reactors/flow cells is also in progress. Successful development of these separation and detection systems will fill current voids in the capabilities of capillary separation techniques.

  7. Computational modeling of electrokinetic transport in random networks of micro-pores and nano-pores

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Mani, Ali

    2014-11-01

    A reduced order model has been developed to study the nonlinear electrokinetic behaviors emerging in the transport of ionic species through micro-scale and nano-scale porous media. In this approach a porous structure is modeled as a network of long and thin pores. By assuming transport equilibrium in the thin dimensions for each pore, a 1D transport equation is developed in the longitudinal direction covering a wide range of conditions including extreme limits of thick and thin electric double layers. This 1D model includes transport via diffusion, electromigration and wide range of advection mechanisms including pressure driven flow, electroosmosis, and diffusion osmosis. The area-averaged equations governing the axial transport from different pores are coupled at the pore intersections using the proper conservation laws. Moreover, an asymptotic treatment has been included in order to remove singularities in the limit of small concentration. The proposed method provides an efficient framework for insightful simulations of porous electrokinetic systems with applications in water desalination and energy storage. PhD student in Mechanical Engineering, Stanford University. She received her Master's degree in Mechanical Engineering from Stanford at 2013. Her research interests include CFD, high performance computing, and optimization.

  8. Zn (II) Removal from River Water Samples of Sembrong, Johor State, Malaysia by Electrokinetic Remediation

    NASA Astrophysics Data System (ADS)

    Zaidi, E.; Husna, MNF; Shakila, A.; Azhar, ATS; Arif, AM; Norshuhaila, MS

    2017-08-01

    Heavy metals pollution has become one of the most serious environmental problems today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. Even many physical, chemical and biological treatment processes have been proposed to remove heavy metals from river water, the use of these treatment processes are not efficient and relatively costly. This study focused on the potential application of electrokinetic (EK) remediation in Sembrong River water to remove zinc (Zn2+). The physicochemical and biological parameters and water quality index (WQI) of Sembrong River water was characterized. The electrokinetic remediation experiments were performed by controlling pH, and electric density on voltage were observed and investigated. The results indicated that all physicochemical and biological parameters of Sembrong River complied with the standard discharged limit set by the Department of Environment (DOE). However, suspended solids (SS) and pH can be categorized as Class III according to INWQS. The best performance of 88% efficiency of zinc can be achieved EK experiment run at a fixed voltage of 30 V at pH 5.14 after 60 min of the process operate. This technology may be proposed for faster and eco-friendly removal of heavy metals in the environment.

  9. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump.

    PubMed

    Gregersen, Misha Marie; Olesen, Laurits Højgaard; Brask, Anders; Hansen, Mikkel Fougt; Bruus, Henrik

    2007-11-01

    Microfluidic chips have been fabricated in Pyrex glass to study electrokinetic pumping generated by a low-voltage ac bias applied to an in-channel asymmetric metallic electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility of the measurements over several days. A large coverage fraction of the electrode array in the microfluidic channels has led to an increased sensitivity allowing for pumping measurements at low bias voltages. Depending on the ionic concentration a hitherto unobserved reversal of the pumping direction has been measured in a regime, where both the applied voltage and the frequency are low, V(rms)<1.5 V and f<20 kHz , compared to previously investigated parameter ranges. The impedance spectrum has been thoroughly measured and analyzed in terms of an equivalent circuit diagram to rule out trivial circuit explanations of our findings. Our observations agree qualitatively, but not quantitatively, with theoretical electrokinetic models published in the literature.

  10. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil.

    PubMed

    Guo, Shuhai; Fan, Ruijuan; Li, Tingting; Hartog, Niels; Li, Fengmei; Yang, Xuelian

    2014-08-01

    The present study evaluated the coupling interactions between bioremediation (BIO) and electrokinetics (EK) in the remediation of total petroleum hydrocarbons (TPH) by using bio-electrokinetics (BIO-EK) with a rotatory 2-D electric field. The results demonstrated an obvious positive correlation between the degradation extents of TPH and electric intensity both in the EK and BIO-EK tests. The use of BIO-EK showed a significant improvement in degradation of TPH as compared to BIO or EK alone. The actual degradation curve in BIO-EK tests fitted well with the simulated curve obtained by combining the degradation curves in BIO- and EK-only tests during the first 60 d, indicating a superimposed effect of biological degradation and electrochemical stimulation. The synergistic effect was particularly expressed during the later phase of the experiment, concurrent with changes in the microbial community structure. The community composition changed mainly according to the duration of the electric field, leading to a reduction in diversity. No significant spatial shifts in microbial community composition and bacterial numbers were detected among different sampling positions. Soil pH was uniform during the experimental process, soil temperature showed no variations between the soil chambers with and without an electric field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sample Transport and Electrokinetic Injection in a Microchip Device for Chemical Cytometry

    PubMed Central

    Kovarik, Michelle L.; Lai, Hsuan-Hong; Xiong, Jessie C.; Allbritton, Nancy L.

    2012-01-01

    Sample transport and electrokinetic injection bias are well-characterized in capillary electrophoresis and simple microchips, but a thorough understanding of sample transport on devices combining electroosmosis, electrophoresis, and pressure-driven flow is lacking. In this work, we evaluate the effects of electric fields from 0–300 V/cm, electrophoretic mobilities from 10−4–10−6 cm2/Vs, and pressure-driven fluid velocities from 50–250 µm/s on sample injection in a microfluidic chemical cytometry device. By studying a continuous sample stream, we find that increasing electric field strength and electrophoretic mobility result in improved injection and that COMSOL simulations accurately predict sample transport. The effects of pressure-driven fluid velocity on injection are complex, and relative concentration values lie on a surface defined by pressure-driven flow rates. For high mobility analytes, this surface is flat, and sample injection is robust despite fluctuations in flow rate. For lower mobility analytes, the surface becomes steeper, and injection depends strongly on pressure-driven flow. These results indicate generally that device design must account for analyte characteristics and specifically that this device is suited to high mobility analytes. We demonstrate that for a suitable pair of peptides fluctuations in injection volume are correlated; electrokinetic injection bias is minimized; and electrophoretic separation achieved. PMID:22012764

  12. Electrokinetic transport of diesel-degrading microorganisms through soils of different textures using electric fields.

    PubMed

    Mena, Esperanza; Rubio, Patricia; Cañizares, Pablo; Villaseñor, José; Rodrigo, Manuel A

    2012-01-01

    The mobilisation of diesel-degrading microorganisms in soils of three different textures (sandy, clay and silty) using electrokinetic techniques was studied. The mobilisation tests were performed using a laboratory-scale electrokinetic cell in which a synthetic soil column was inserted between the cathode and anode compartments. Microorganisms were located at the anode compartment at the beginning of each assay. A constant cell voltage was applied, and samples were taken from the cathode and anode compartments. Microbial transport through the soil strongly depended on soil particle size. Small particle sizes (silty and clay soil) travelled at low velocities (microbial transport rates of approximately 0.06 and 0.17 cm/min, respectively), while large particle sizes (sandy soil) led to high numbers of microorganisms passing through the soil column. In sandy soil, an increase in the voltage gradient did not increase the quantity of mobilised microorganisms (approximately 10(7) CFU/mL for every voltage gradient applied). For clay and silty soils, a higher voltage gradient led to a higher quantity of microorganisms mobilised to the cathodic compartment and a lower delay time for detecting the presence of microorganisms in the same compartment.

  13. Surface properties of coal fines in water. 1. Electrokinetics and surfactant adsorption

    SciTech Connect

    Ayub, A.L.; Al Taweel, A.M.; Kwak, J.C.T.

    1985-01-01

    The adsorption of phenol, p-nitrophenol, the nonionic surfactant Triton X-100 (a commercial mixture of octylphenol poly ethoxylates) and the cationic surfactant dodecyltrimethyl ammonium bromide (DTAB) from aqueous solution on coal fines from a coal washing plant has been studied. Adsorbate solution concentrations range from 0-8 x 10/sup -4/ m. For the cationic and nonionic surfactants both adsorption isotherms and electrokinetic isotherms were determined. The adsorption of phenol, but not of Triton X-100 and DTAB, is found to increase with time for periods up to three hundred h. For short contract times (less than thirty h.), the amount of Triton X-100 adsorbed is about three times higher than the amount of phenol adsorbed at the same solution concentration. The electrokinetic data show that the zeta potential of the coal is not affected by the adsorption of Triton X-100. On the other hand, adsorption of the cationic surfactant strongly influences the zeta potential. For negatively charged coal, i.e., at higher solution pH (iep of the coal used is 5.3), the adsorption of cationic surfactant leads to charge reversal at a typical free surfactant concentration often well below 10/sup -4/ molal. 20 references.

  14. Modeling Electrokinetic Flows by the Smoothed Profile Method

    PubMed Central

    Luo, Xian; Beskok, Ali; Karniadakis, George Em

    2010-01-01

    We propose an efficient modeling method for electrokinetic flows based on the Smoothed Profile Method (SPM) [1–4] and spectral element discretizations. The new method allows for arbitrary differences in the electrical conductivities between the charged surfaces and the the surrounding electrolyte solution. The electrokinetic forces are included into the flow equations so that the Poisson-Boltzmann and electric charge continuity equations are cast into forms suitable for SPM. The method is validated by benchmark problems of electroosmotic flow in straight channels and electrophoresis of charged cylinders. We also present simulation results of electrophoresis of charged microtubules, and show that the simulated electrophoretic mobility and anisotropy agree with the experimental values. PMID:20352076

  15. Application of electrokinetic soil flushing to four herbicides: A comparison.

    PubMed

    dos Santos, E Vieira; Souza, F; Saez, C; Cañizares, P; Lanza, M R V; Martinez-Huitle, C A; Rodrigo, M A

    2016-06-01

    In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes.

  16. Feasibility of electrokinetic soil remediation in horizontal Lasagna cells.

    PubMed

    Roulier, M; Kemper, M; Al-Abed, S; Murdoch, L; Cluxton, P; Chen, J; Davis-Hoover, W

    2000-10-02

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The technology was developed by two groups, one involving industrial partners and the DOE and another involving US EPA and the University of Cincinnati, who pursued different electrode geometries. The Industry/DOE group has demonstrated the technology using electrodes and treatment zones installed vertically from the soil surface. We have demonstrated the feasibility of installing horizontal electrodes and treatment zones in subsurface soils by hydraulic fracturing, a process that we adapted from petroleum industry practices. When horizontal electrodes were connected to a dc power supply, uniform electrical potential gradients of 10-40 V/m were created in soil between the electrodes, inducing electroosmotic flow that facilitated movement of water and contaminants into treatment zones between the electrodes.

  17. Bubble-free electrokinetic flow with propylene carbonate.

    PubMed

    Sritharan, Deepa; Chen, Abraham Simpson; Aluthgama, Prabhath; Naved, Bilal; Smela, Elisabeth

    2015-10-01

    For electroosmotic pumping, a large direct-current (DC) electric field (10+ V/cm) is applied across a liquid, typically an aqueous electrolyte. At these high voltages, water undergoes electrolysis to form hydrogen and oxygen, generating bubbles that can block the electrodes, cause pressure fluctuations, and lead to pump failure. The requirement to manage these gases constrains system designs. This article presents an alternative polar liquid for DC electrokinetic pumping, propylene carbonate (PC), which remains free of bubbles up to at least 10 kV/cm. This offers the opportunity to create electrokinetic devices in closed configurations, which we demonstrate with a fully sealed microfluidic hydraulic actuator. Furthermore, the electroosmotic velocity of PC is similar to that of water in PDMS microchannels. Thus, water could be substituted by PC in existing electroosmotic pumps.

  18. Joule Heating Effects on Electrokinetic Flow Instabilities in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Brumme, Christian; Shaw, Ryan; Zhou, Yilong; Prabhakaran, Rama; Xuan, Xiangchun

    We have demonstrated in our earlier work that the application of a tangential electric field can draw fluid instabilities at the interface of a ferrofluid/water co-flow. These electrokinetic flow instabilities are produced primarily by the mismatch of electric conductivities of the two fluids. We demonstrate in this talk that the Joule heating induced fluid temperature rises and gradients can significantly suppress the electrokinetic flow instabilities. We also develop a two-dimensional depth-averaged numerical model to predict the fluid temperature, flow and concentration fields in the two-fluid system with the goal to understand the Joule heating effects on electric field-driven ferrofluid flow instabilities. This work was supported by the Honors and Creative Inquiry programs at Clemson University.

  19. Modeling electrokinetic flow by Lagrangian particle-based method

    NASA Astrophysics Data System (ADS)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre; Parks, Mike

    2015-11-01

    This work focuses on mathematical models and numerical schemes based on Lagrangian particle-based method that can effectively capture mesoscale multiphysics (hydrodynamics, electrostatics, and advection-diffusion) associated in applications of micro-/nano-transport and technology. The order of accuracy is significantly improved for particle-based method with the presented implicit consistent numerical scheme. Specifically, we show simulation results on electrokinetic flows and microfluidic mixing processes in micro-/nano-channel and through semi-permeable porous structures.

  20. Cast-to-shape electrokinetic trapping medium

    DOEpatents

    Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander

    2004-08-03

    A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.

  1. Cast-to-shape electrokinetic trapping medium

    DOEpatents

    Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander

    2006-05-30

    A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.

  2. Vibrational Spectroscopy of Chromatographic Interfaces

    SciTech Connect

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  3. Application of response function methodology for the simultaneous determination of potential fragrance allergens and preservatives in personal care products using micellar electrokinetic chromatography.

    PubMed

    Lopez-Gazpio, J; Garcia-Arrona, R; Millán, E

    2014-01-01

    A micellar electrokinetic chromatography method was developed for determination of 15 suspected fragrance allergens and preservatives. The target compounds are widely used as ingredients in many personal care products, and all of them are included in the European Regulation concerning cosmetic products. The method was optimized by using a central composite experimental design and response surface methodology. A modified chromatographic response function was defined to weigh the terms in the response function adequately. After optimization of experimental conditions, a background electrolyte of 100 mM sodium dodecyl sulphate and 24 mM sodium tetraborate and pH 9.0 was selected for the separation of the analytes. The developed methodology was evaluated in terms of linearity, limits of detection and quantification, precision and accuracy, showing appropriate values (i.e., R (2) = ≥0.99 and accuracy of 89-115 %). Finally, applicability of the micellar electrokinetic chromatography method was assessed by successfully quantifying fragrance allergens and preservatives in commercial personal care products. The most commonly found analyte was linalool (48.3 % of samples) followed by benzoic acid (37.6 %). All samples contained at least one of the target compounds, thus confirming the ubiquity of fragrance allergens and preservatives in personal care products.

  4. Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene

    SciTech Connect

    Li, A.; Cheung, K.A.; Reddy, K.R.

    2000-06-01

    This research was carried out to evaluate feasibility of using an electrokinetic technique to remove hydrophobic organic pollutants from soils, with the assistance of a cosolvent (n-butylamine, tetrahydrofuran, or acetone) added to the conducting fluid. The experiments were carried out on glacial till clay with phenanthrene as the test compound. Desorption equilibrium was investigated by batch tests. The electrokinetic experiments were conducted using a 19.1 cm long x 6.2 cm inside diameter column under controlled voltage. Water or 20% (volume) cosolvent solution was constantly supplied at the anode. The concentration of phenanthrene in the effluent collected at the cathode was monitored. Each experiment lasted for 100 to 145 days. Results showed that the presence of n-butylamine significantly enhanced the desorption and electrokinetic transport of phenanthrene; about 43% of the phenanthrene was removed after 127 days or 9 pore volumes. The effect of acetone was not as significant as butylamine. The effluent flow in the tetrahydrofuran experiments was minimal, and phenanthrene was not detected in the effluent. The use of water as the conducting solution did not cause observable phenanthrene migration.

  5. Solute-solvent interactions in micellar electrokinetic chromatography. Characterization of sodium dodecyl sulfate-Brij 35 micellar systems for quantitative structure-activity relationship modelling.

    PubMed

    Rosés, M; Ràfols, C; Bosch, E; Martínez, A M; Abraham, M H

    1999-06-11

    The solvation parameter model has been applied to the characterization of micellar electrokinetic chromatographic (MEKC) systems with mixtures of sodium dodecyl sulfate and Brij 35 as surfactant. The variation in MEKC surfactant composition results in changes in the coefficients of the correlation equation, which in turns leads to information on solute-solvent and solute-micelle interactions. Since the same solvation model can be used to describe many biological processes, particular MEKC surfactant compositions can be selected that model the solute-solvent interactions of some of these processes. Two different MEKC systems have been selected to model the solute-solvent interactions of two processes of biological interest (octanol-water partition and tadpole narcosis).

  6. High-performance capillary electrophoresis analysis of mate infusions prepared from stems and leaves of Ilex paraguariensis using automated micellar electrokinetic capillary chromatography.

    PubMed

    Pomilio, Alicia B; Trajtemberg, Silvia; Vitale, Arturo A

    2002-01-01

    An automated micellar electrokinetic capillary chromatographic method has been developed in order to determine xanthines, e.g. caffeine, theobromine and theophylline, and chlorogenic acid in samples of yerba mate (Ilex paraguariensis). The target constituents were detected by photodiode array, and quantified by an external standard method. In addition, each constituent was collected separately and identified by EIMS. The method has been used to analyse 30 samples of mate infusions prepared at 30 and 75 degrees C with milled leaves and stems of 14 commercial brands which had been subjected to different elaboration processes. Suspended powdered material of each infusion was also analysed after three sieving steps. There was a remarkable difference in the relative xanthine composition of the finely suspended material, the amount of which varied according to the yerba mate brand, the elaboration process and the temperature of the infusion. The importance of these results with respect to gastrointestinal disorders which have been observed by habitual consumers of mate are discussed.

  7. Hydrodynamics and electrokinetics of spherical liposomes with coatings of terminally anchored poly(ethylene glycol): Numerically exact electrokinetics with self-consistent mean-field polymer

    NASA Astrophysics Data System (ADS)

    Hill, Reghan J.

    2004-11-01

    A detailed theoretical model is presented to interpret electrokinetic experiments performed on colloids with uncharged polymer layers. The methodology removes many of the degrees of freedom that otherwise have to be accounted for by adopting multiple empirical fitting parameters. Furthermore, the level of detail provides a firm basis for future studies examining liposome surface chemistry and charge, surface-charge mobility, and the dynamics of adsorbed polymer on fluidlike membranes. The model predictions are compared with experimental measurements of the electrophoretic mobility of stealth liposomes with molecular weights of terminally anchored poly(ethylene glycol) (PEG) in the range 0.35-10kgmol-1 [J. A. Cohen and V. A. Khorosheva, Colloids Surf. A 195, 113 (2001)]. The experimental data are interpreted by drawing upon self-consistent mean-field calculations of the polymer segment density distributions and numerically exact solutions of the governing transport equations [R. J. Hill, D. A. Saville, and W. B. Russel, J. Colloid Interface Sci. 258, 56 (2003)]. The approach leads to excellent agreement between theory and experiment with one adjustable parameter—the hydrodynamic size (Stokes radius) as≈0.175Å of the statistical PEG segments with (Kuhn) length l=7.1Å . The remarkably small Stokes radius is demonstrated to be consistent with other applications of the well-known Debye-Brinkman model and, consequently, this work reveals important limitations of the mean-field hydrodynamic model. Despite such limitations, the “full” electrokinetic model is robust in its predictive capacity. The molecular weights of the terminally anchored PEG span the range where the coatings undergo a transition from mushroomlike to brushlike conformations, and the hydrodynamic size and electrophoretic mobility of the liposomes are demonstrated to be sensitive to the PEG chain length and the effects of double-layer polarization.

  8. Determination of biological toxins using capillary electrokinetic chromatography with multiphoton-excited fluorescence.

    PubMed

    Wei, J; Okerberg, E; Dunlap, J; Ly, C; Shear, J B

    2000-03-15

    We report a highly sensitive and rapid strategy for characterizing biological toxins based on capillary electrokinetic chromatography with multiphoton-excited fluorescence. In this approach, aflatoxins B1, B2, and G1 and the cholera toxin A-subunit are fractionated in approximately 80 s in a narrow-bore electrophoretic channel using the negatively charged pseudostationary phase, carboxymethyl-beta-cyclodextrin. The aflatoxins--highly mutagenic multiple-ringed heterocycles produced by Aspergillus fungi--are excited at the capillary outlet through the simultaneous absorption of two to three 750-nm photons to yield characteristic blue fluorescence; cholera toxin A-subunit, the catalytic domain of the bacterial protein toxin from Vibrio cholera, is excited through an unidentified multiphoton pathway that apparently includes photochemical transformation of an aromatic residue in the polypeptide. The anionic carboxymethyl-beta-cyclodextrin, used to chromatographically resolve the uncharged aflatoxins, enhances emission from these compounds without contributing substantially to the background. Detection limits for these toxins separated in 2.1-micron-i.d. capillaries range from 4.4 zmol (approximately 2700 molecules) for aflatoxin B2 to 3.4 amol for the cholera toxin A-subunit. Larger (16-micron-i.d.) separation capillaries provide concentration detection limits for aflatoxins in the 0.2-0.4 nM range, severalfold lower than achieved in 2.1-micron capillaries. These results represent an improvement of > 10(4) in mass detectability compared to previously published capillary separations of aflatoxins and demonstrate new possibilities for the analysis of proteins and peptides.

  9. Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy.

    PubMed

    Zhou, Ming; Zhu, Shufa; Liu, Yana; Wang, Xuejian

    2013-08-01

    Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3%, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency.

  10. Polymers of sodium-N-undec-10-ene-1-oyl taurate and sodium-N-undec-10-ene-1-oyl aminoethyl-2-phosphonate as pseudostationary phases for electrokinetic chromatography.

    PubMed

    Tellman, K T; Palmer, C P

    1999-01-01

    The use of micelle polymers, a class of polysoaps with a polymerized hydrophobic interior and a charged hydrophillic exterior, as pseudostationary phases in electrokinetic chromatography has generated significant interest. Their stable structure has been shown to provide significant advantages over conventional micelles when used as pseudostationary phases. In previous studies, micelle polymers have had carboxylate and sulfate head groups. These chemistries have limitations: carboxylate micelle polymers precipitate out of solution at pH less than seven or eight and sulfate head groups are not stable to hydrolysis and are hydrolyzed during polymerization. Additionally, while the chemical selectivity of conventional micelles varies with head group chemistry, no significant differences in chemical selectivity were observed between analogous polymers with sulfate and carboxylate groups. To overcome the limitations of carboxylate and sulfate head groups, and to further investigate the chemical selectivity of micelle polymers, poly(sodium-N-undec-10-ene-1-oyl-taurate) and poly(sodium-N-undec-10-ene-1-oyl-ethyl-2-phosphonate) micellar polymers have been synthesized and characterized as pseudostationary phases. These polymers have amide functionality and stable, strongly acidic sulfonate and phosphonate head groups. These polymers did provide improved solubility at low pH, and are stable under the conditions studied. The chromatographic performance and chemical selectivity of the polymers has been studied by several methods, including linear solvation energy relationships. Poly(sodiumN-undec-10-ene-1-oyl-taurate) has greater electrophoretic mobility than other polymers of this type, and can be used for the separation of hydrophobic compounds. The polymers do exhibit unique selectivity, but the differences in selectivity are not significant for the majority of compounds studied.

  11. High-capacity pressurized continuous chromatograph

    SciTech Connect

    Begovich, J.M.; Byers, C.H.; Sisson, W.G.

    1983-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. The feed material is continuously introduced at a stationary point at the top of the bed, and eluent is allowed to flow everwhere else around the annulus. The rotation of the sorbent bed causes the separation components to appear as helical bands, each of which has a characteristic, stationary exit point; hence the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effects of annulus width and diameter have been studied using the same device with annulus widths up to 114.3 mm. With this largest width, approximately 96% of the area available within the outer cylinder is devoted to the rotating sorbent bed. Further annulus-width studies have been pursued on units with 89- and 445-mm diameters. These geometric extensions to the basic concept allow extremely large capacity increases with minimal loss in separation and no increase in chromatograph diameter. The effects associated with increased feed concentration have also been studied. In this effort as well as in the annulus-width program, the separation of copper, nickel, and cobalt components from a carbonate solution was studied in detail. The nickel and cobalt components are found in the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Nominally 50-..mu..m0-diam Dowex 50W-X8 cation exchange resin was used as the bed material. The nickel concentration of the feed was varied tenfold, from 136.1 to approximately 1400 meq/L. The combined effects of the bed loading and annulus width were studied and compared with nonlinear theory.

  12. High-capacity pressurized continuous chromatograph

    SciTech Connect

    Begovich, J.M.; Byers, C.H.; Sisson, W.G.

    1983-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. The feed material is continuously introduced at a stationary point at the top of the bed, and eluent is allowed to flow everywhere else around the annulus. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effects of annulus width and diameter have been studied using the same device with annulus widths up to 114.3 mm. With this largest width, approximately 96% of the area available within the outer cylinder is devoted to the rotating sorbent bed. Further annulus-width studies have been pursued on units with 89- and 445-mm diameters. These geometric extensions to the basic concept allow extremely large capacity increases with minimal loss in separation and no increase in chromatograph diameter. The effects associated with increased feed concentration have also been studied. In this effort as well as in the annulus-width program, the separation of copper, nickel, and cobalt components from a carbonate solution was studied in detail. The nickel and cobalt components are found in the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Nominally 50-..mu..m-diam Dowex 50W-X8 cation exchange resin was used as the bed material. The nickel concentration of the feed was varied tenfold, from 136.1 to approximately 1400 meq/L. The combined effects of the bed loading and annulus width were studied and compared with nonlinear theory. 17 references, 9 figures, 1 table.

  13. High-capacity pressurized continuous chromatograph

    SciTech Connect

    Begovich, J.M.; Byers, C.H.; Sisson, W.G.

    1983-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. The feed material is continuously introduced at a stationary point at the top of the bed, and eluent is allowed to flow everywhere else around the annulus. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6m-long device with a 12.7-mm-wide annulus. The effects of annulus width and diameter have been studied using the same device with annulus widths up to 114.3 mm. With this largest width, approximately 96% of the area available within the outer cylinder is devoted to the rotating sorbent bed. Further annulus-width studies have been pursued on units with 89- and 445-mm diameters. These geometric extensions to the basic concept allow extremely large capacity increases with minimal loss in separation and no increase in chromatograph diameter. The effects associated with increased feed concentration have also been studied. In this effort as well as in the annulus-width program, the separation of copper, nickel, and cobalt components from a carbonate solution was studied in detail. The nickel and cobalt components are found in the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Nominally 50-..mu..m-diam Dowex 50W-X8 cation exchange resin was used as the bed material. The nickel concentration of the feed was varied tenfold, from 136.1 to approximately 1400 meq/L. The combined effects of the bed loading and annulus width were studied and compared with nonlinear theory. 9 figures, 1 table.

  14. Note on the chromatographic analyses of marine polyunsaturated fatty acids

    USGS Publications Warehouse

    Schultz, D.M.; Quinn, J.G.

    1977-01-01

    Gas-liquid chromatography was used to study the effects of saponification/methylation and thin-layer chromatographic isolation on the analyses of polyunsaturated fatty acids. Using selected procedures, the qualitative and quantitative distribution of these acids in marine organisms can be determined with a high degree of accuracy. ?? 1977 Springer-Verlag.

  15. Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil.

    PubMed

    Shin, Su-Yeon; Park, Sang-Min; Baek, Kitae

    2017-04-01

    Electrokinetic remediation (EKR) is the most efficient technique for remediation of fine-grained soil. The primary removal mechanisms of heavy metal in EKR are the electromigration and electroosmosis flow under appropriate electric gradients. Most EKR studies have researched the variation according to the electrolyte and electric voltage. Also, EKR could be influenced by the migration velocity of ions, while few studies have investigated the effect of moisture content. In this study, soil moisture was controlled by using tap water and NaOH as electrolytes to enhance electromigration and electroosmosis flow. In both electrolytes, the higher moisture content led to the more As removal efficiency, but there were no differences between tap water and NaOH. Therefore, tap water was the most cost-effective electrolyte to remove As from fine-grained soil.

  16. Hair analysis, a novel tool in forensic and biomedical sciences: new chromatographic and electrophoretic/electrokinetic analytical strategies.

    PubMed

    Tagliaro, F; Smith, F P; De Battisti, Z; Manetto, G; Marigo, M

    1997-02-07

    Hair analysis for abused drugs is recognized as a powerful tool to investigate exposure of subjects to these substances. In fact, drugs permeate the hair matrix at the root level and above. Evidence of their presence remains incorporated into the hair stalk for the entire life of this structure. Most abusive drugs (e.g. opiates, cocaine, amphetamines, cannabinoids etc.) and several therapeutic drugs (e.g. antibiotics, theophylline, beta 2-agonists, etc.) have been demonstrated to be detectable in the hair of chronic users. Hence, hair analysis has been proposed to investigate drug abuses for epidemiological, clinical, administrative and forensic purposes, such as in questions of drug-related fatalities and revocation of driving licences, alleged drug addiction or drug abstinence in criminal or civil cases and for the follow-up of detoxication treatments. However, analytical and interpretative problems still remain and these limit the acceptance of this methodology, especially when the results from hair analysis represent a single piece of evidence and can not be supported by concurrent data. The present paper presents an updated review (with 102 references) of the modern techniques for hair analysis, including screening methods (e.g. immunoassays) and more sophisticated methodologies adopted for results confirmation and/or for research purposes, with special emphasis on gas chromatography-mass spectrometry, liquid chromatography and capillary electrophoresis.

  17. Quantification of main bioactive metabolites from saffron (Crocus sativus) stigmas by a micellar electrokinetic chromatographic (MEKC) method.

    PubMed

    Gonda, Sándor; Parizsa, Péter; Surányi, Gyula; Gyémánt, Gyöngyi; Vasas, Gábor

    2012-07-01

    Saffron is an expensive spice, cultivated in many regions of the world. Its chief metabolites include crocins, which are responsible for the coloring ability, safranal, which is the main essential oil constituent, and picrocrocin which is the main bitter constituent of the spice. A simple micellar capillary electrochromatographic (MEKC) method capable of quantifying all three types of main constituents was established. The pH, sodium dodecyl sulphate (SDS) content and electrolyte concentration of the background electrolyte was optimized. A simple extraction protocol was developed which can extract all metabolites of different polarity from the saffron stigmas. Optimal background electrolyte composed of 20 mM disodium phosphate, 5mM sodium tetraborate, 100 mM SDS, pH was set 9.5. Optimal extracting solvent was the background electrolyte, incubated with the sample for 60 min. The proposed method allows quantification of picrocrocin, safranal, crocetin- Di-(β-D-gentiobiosyl) ester and crocetin (β-D-glycosyl)-(β-D-gentiobiosyl) ester within 17.5 min, with limit of detection values ranging from 0.006 to 0.04 mg/ml, from a single stigma.

  18. Development and validation of a reliable high-performance liquid chromatographic method for determination of nodakenin in rat plasma and its application to pharmacokinetic study.

    PubMed

    Liu, Zhigang; Li, Famei

    2011-10-01

    A simple and reliable high-performance liquid chromatographic (HPLC) method has been developed for the determination of nodakenin in rat plasma. The concentration of nodakenin was determined in plasma samples after deproteinization with methanol using hesperidin as internal standard. HPLC analysis was performed on a Diamonsil C(18) analytical column using acetonitrile-water (25:75, v/v) as the mobile phase and a UV detection at 330 nm. This method was validated in terms of recovery, linearity, accuracy and precision (intra- and inter-day variation). The extraction recoveries were 91.3 ± 10, 87.8 ± 4.8 and 92.6 ± 5.1 at concentrations of 0.500, 5.00 and 40.0 μg/mL, respectively. The standard curve for nodakenin was linear (r(2) ≥ 0.99) over the concentration range 0.250-50.0 μg/mL with a lower limit of quantification of 0.250 μg/mL. The intra- and inter-day precision (relative standard deviation, RSD) values were not higher than 12% and the accuracy (relative error, RE) was within ± 5.8% at three quality control levels. The validated method was successfully applied for the evaluation of the pharmacokinetics of nodakenin in rats after oral administration of Rhizoma et Radix Notopterygii decoction and nodakenin solution.

  19. [Study of the detection characteristics of clozapine, N-desmethyl clozapine and olanzapine with high performance liquid chromatograph-electrochemical detector].

    PubMed

    Li, W B; Zhai, Y M; Wang, C Y; Qin, Y F; Weng, Y Z

    2000-11-01

    In order to analyze clozapine, N-desmethyl clozapine and olanzapine, their detection characteristics with high performance liquid chromatograph-electrochemical detector (HPLC-ECD) were investigated. The separation was performed on an ODS-3 column with the mobile phase of methanol and 0.1 mol/L phosphate buffer(60:40, V/V). The retention times of clozapine, N-desmethyl clozapine and olanzapine were all prolonged with higher pH of the mobile phase. These three compounds could be separated on the baseline at pH 4.56 and 5.56. The relationships of peak heights and detection voltages shown typical "S" shaped curves, and these curves shifted to the left with higher pH. To get stable detection current, the detection voltages for clozapine, N-desmethyl clozapine and olanzapine must be higher than 0.60 V, 0.60 V and 0.35 V at pH 4.56, and 0.48 V, 0.48 V and 0.30 V at pH 5.56, respectively. The typical "S" shaped ampere-volt curves were very important for the selection of suitable voltage for quantitative detection, and could be used for the qualitative detection of these three compounds.

  20. Control of flow rate and concentration in microchannel branches by induced-charge electrokinetic flow.

    PubMed

    Zhang, Fang; Daghighi, Yasaman; Li, Dongqing

    2011-12-15

    This paper presents a numerical study of controlling the flow rate and the concentration in a microchannel network by utilizing induced-charge electrokinetic flow (ICEKF). ICEKF over an electrically conducting surface in a microchannel will generate vortices, which can be used to adjust the flow rates and the concentrations in different microchannel branches. The flow field and concentration field were studied under different applied electric fields and with different sizes of the conducting surfaces. The results show that, by using appropriate size of the conducting surfaces in appropriate locations, the microfluidic system can generate not only streams of the same flow rate or linearly decreased flow rates in different channels, but also different, uniform concentrations within a short mixing length quickly.

  1. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil.

    PubMed

    Wan, Chunli; Du, Maoan; Lee, Duu-Jong; Yang, Xue; Ma, Wencheng; Zheng, Lina

    2011-03-01

    Electrokinetic (EK) migration of β-cyclodextrin (β-CD), which is inclusive of total petroleum hydrocarbon (TPH), is an economically beneficial and environmentally friendly remediation process for oil-contaminated soils. Remediation studies of oil-contaminated soils generally prepared samples using particular TPHs. This study investigates the removal of TPHs from, and electromigration of microbial cells in field samples via EK remediation. Both TPH content and soil respiration declined after the EK remediation process. The strains in the original soil sample included Bacillus sp., Sporosarcina sp., Beta proteobacterium, Streptomyces sp., Pontibacter sp., Azorhizobium sp., Taxeobacter sp., and Williamsia sp. Electromigration of microbial cells reduced the biodiversity of the microbial community in soil following EK remediation. At 200 V m(-1) for 10 days, 36% TPH was removed, with a small population of microbial cells flushed out, demonstrating that EK remediation is effective for the present oil-contaminated soils collected in field.

  2. Electrokinetics of diffuse soft interfaces. IV. Analysis of streaming current measurements at thermoresponsive thin films.

    PubMed

    Duval, Jérôme F L; Zimmermann, Ralf; Cordeiro, Ana L; Rein, Nelly; Werner, Carsten

    2009-09-15

    Streaming current measurements were performed on poly(N-isopropylacrylamide)-co-N-(1-phenylethyl) acrylamide [P(NIPAAm-co-PEAAm)] thermoresponsive thin films above and below the transition temperature of the polymer (i.e., at 22 and 4 degrees C, respectively). Electrokinetic measurements (ionic strength 0.01-10 mM KCl, pH 2.5-9.5 in 1 mM KCl) revealed that the charging of the polymer/aqueous solution interface is determined by unsymmetrical adsorption of hydroxide and hydronium ions onto the Teflon AF substrate that supports the hydrogel film. The magnitude of the streaming current significantly decreased with decreasing temperature, that is, when the hydrogel was swelling. The pH- and ionic strength-dependent data for unswollen and swollen films were interpreted on the basis of the here-reported general theory for the electrokinetics of diffuse soft gel layers. The formalism based on the Debye-Brinkman equation for hydrodynamics and the nonlinear Poisson-Boltzmann equation for electrostatics extends previous theoretical studies by considering the most general situation of a charged gel layer supported by a charged rigid surface. Full analytical expression is provided for the streaming current in the limit of homogeneous distribution of segments under low potential conditions. Numerical analysis of the governing transport and electrostatic equations allows for the computation of streaming current for cases where analytical developments are not possible. The theory successfully reproduces the electrokinetic data for the P(NIPAAm-co-PEAAm) copolymer film at 22 and 4 degrees C over the whole range of pH and ionic strength examined. It is found that the 3-fold increase of the hydrogel film thickness with decreasing temperature from 22 to 4 degrees C (i.e., from 23 to 70 nm as measured by ellipsometry), is in line with homogeneous swelling and an increase of the hydrodynamic penetration length (1/lambdao) by a factor of approximately 1.6. Additionally, the hydrodynamic

  3. Electrokinetics for removal of low-level radioactivity from soil

    SciTech Connect

    Pamukcu, S.; Wittle, J.K.

    1993-03-01

    The electrokinetic process is an emerging technology for in situ soil decontamination in which chemical species, both ionic and nonionic, are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. The work presented here describes part of the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentrations of a selected heavy-metal salt solution. These metals included surrogate radionuclides such as Sr, Cs and U, and an anionic species of Cr. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. Removals of some metal species up to 99% were achieved at the anode or cathode end of the soil upon 24 to 48 hours of treatment or a maximum of 1 pore volume of water displacement toward the cathode compartment. Transient pH change through the soil had an effect on the metal movement, as evidenced by accumulation of the metals at the discharge ends of the soil specimens. This accumulation was attributed to the precipitation of the metal and increased cation retention capacity of the clay in high pH environment at the cathode end. In general, the reduced mobility and dissociation of the ionic species as they encounter areas of higher ionic concentration in their path of migration resulted in the accumulation of the metals at the discharge ends of the soil specimens.

  4. Electrokinetic treatment of hazardous wastes in soil and groundwater

    SciTech Connect

    Loo, W.W.

    1995-09-01

    Electrokinetic (EK) treatment processes are recognized by the US department of Defense, US Department of Energy, and the US EPA as the most potentially cost effective treatment of hazardous wastes. Recently, EK has attracted the attention of Dupont, General Electric, and Monsanto for various aspects of hazardous waste treatment. Electrolysis and electro-osmosis are known electrokinetic processes. Electrolysis is one of the principal industrial process used in the production of aluminum, chlorine, metal plating, welding, corrosion protection, etc. Electro-osmosis is a very well established process used to dewater and stabilize the clayey foundations of buildings and structures. These processes are very effective in the treatment of hazardous metals and organic compounds in soil, sludge, and water. Electrolysis can be applied in both permeable and impermeable media. It can be used as a neutralization process for pH control. It can also be used for the isolation or capture of metallic ions, or positively charged ions, at and near the cathode electrode. and negatively charged ions at and near the anode electrode. Electrolyis will also oxidize petroleum hydrocarbons and benzene-based organic chemicals such as PCBs, pesticides, and PAHs. Electro-osmosis can be used in the treatment of hazardous chemicals in silty and clayey material. The electro-osmotic process causes and imbalance of charge bonds in clayey material that results in clay compaction and chemical desorption. The compaction and desorption processes will reduce the cleanup time and are particularly successful in the desorption of organic chemicals and metals from clayey materials. This accelerates and improves the performance of typically inefficient pump and treat projects. Electrokinetic processes can be applied both above ground (ex situ) or in the subsurface (in situ).

  5. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  6. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre M.; Parks, Michael L.

    2017-04-01

    We present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  7. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    DOE PAGES

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...

    2017-01-03

    In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  8. Determination of urinary hippuric acid by micellar electrokinetic capillary chromatography.

    PubMed

    Zuppi, Cecilia; Rossetti, Diana Valeria; Vitali, Alberto; Vincenzoni, Federica; Giardina, Bruno; Castagnola, Massimo; Messana, Irene

    2003-08-15

    We propose a method for the simultaneous determination of hippuric acid (HA) and creatinine based on capillary micellar electrokinetic chromatography. Experimental conditions were 20 mM sodium phosphate, pH 7.20, 25 mM sodium dodecyl sulfate, 5% (v/v) acetonitrile. Electropherograms evidenced HA and creatinine peaks in less than 12 min. The method showed good linearity for both analytes and satisfactory within-day precision. The present method, which is accurate, sensitive, rapid and simple, may be applied to single-spot urine samples.

  9. Energetically stable discretizations for charge transport and electrokinetic models

    NASA Astrophysics Data System (ADS)

    Metti, Maximilian S.; Xu, Jinchao; Liu, Chun

    2016-02-01

    A finite element discretization using a method of lines approached is proposed for approximately solving the Poisson-Nernst-Planck (PNP) equations. This discretization scheme enforces positivity of the computed solutions, corresponding to particle density functions, and a discrete energy estimate is established that takes the same form as the energy law for the continuous PNP system. This energy estimate is extended to finite element solutions to an electrokinetic model, which couples the PNP system with the incompressible Navier-Stokes equations. Numerical experiments are conducted to validate convergence of the computed solution and verify the discrete energy estimate.

  10. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    PubMed

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.

  11. Performance characteristics of an automated gas chromatograph-ion trap mass spectrometer system used for the 1995 Southern Oxidants Study field investigation in Nashville, Tennessee

    NASA Astrophysics Data System (ADS)

    Daughtrey, E. Hunter; Adams, Jeffrey R.; Oliver, Karen D.; Kronmiller, Keith G.; McClenny, William A.

    1998-09-01

    A trailer-deployed automated gas chromatograph-mass spectrometer (autoGC-MS) system capable of making continuous hourly measurements was used to determine volatile organic compounds (VOCs) in ambient air at New Hendersonville, Tennessee, and Research Triangle Park, North Carolina, in 1995. The system configuration, including the autoGC-MS, trailer and transfer line, siting, and sampling plan and schedule, is described. The autoGC-MS system employs a pair of matched sorbent traps to allow simultaneous sampling and desorption. Desorption is followed by Stirling engine cryofocusing and subsequent GC separation and mass spectral identification and quantification. Quality control measurements described include evaluating precision and accuracy of replicate analyses of independently supplied audit and round-robin canisters and determining the completeness of the data sets taken in Tennessee. Data quality objectives for precision (±10%) and accuracy (±20%) of 10- to 20-ppbv audit canisters and a completeness of >75% data capture were met. Quality assurance measures used in reviewing the data set include retention time stability, calibration checks, frequency distribution checks, and checks of the mass spectra. Special procedures and tests were used to minimize sorbent trap artifacts, to verify the quality of a standard prepared in our laboratory, and to prove the integrity of the insulated, heated transfer line. A rigorous determination of total system blank concentration levels using humidified scientific air spiked with ozone allowed estimation of method detection limits, ranging from 0.01 to 1.0 ppb C, for most of the 100 target compounds, which were a composite list of the target compounds for the Photochemical Assessment Monitoring Station network, those for Environmental Protection Agency method TO-14, and selected oxygenated VOCs.

  12. Development of a liquid chromatographic system with fluorescent detection for beta-secretase immobilized enzyme reactor on-line enzymatic studies.

    PubMed

    Mancini, Francesca; Andrisano, Vincenza

    2010-07-08

    A novel liquid chromatographic method has been developed for use in throughput screening of new inhibitors of human recombinant beta-amyloid precursor protein cleaving enzyme (hrBACE1). The approach is based on the use of an immobilized enzyme reactor (IMER) containing the target enzyme (hrBACE1-IMER) and uses fluorescence detection. The bioreactor was prepared by immobilizing hrBACE1 on an ethylendiamine (EDA) monolithic disk (CIM) and a fluorogenic peptide (M-2420) containing the beta-secretase site of the Swedish mutation of amyloid precursor protein (APP) was used as substrate. After injection into the hrBACE1-IMER system, M-2420 was enzymatically cleaved, giving rise to a fluorescent methoxycoumaryl-fragment (Rt=1.6min), which was separated from the substrate and selectively detected at lambda(exc)=320 and lambda(em)=420nm. Product and substrate were characterized by using a post monolithic C18 stationary phase coupled to an ion trap mass analyser. A calibration curve was constructed to determine the immobilized hrBACE1-IMER rate of catalysis and kinetic constants. Specificity of the enzymatic cleavage was confirmed by injecting the substrate on a blank CIM-EDA. The proposed method was validated by the determination of the inhibitory potency of five reference compounds with activities ranked over four order of magnitude (four peptidic inhibitors and a green tea polyphenol, (-)gallocatechin gallate). The obtained results were found in agreement with the data reported in literature, confirming the validity and the applicability of the hrBACE1-IMER as a tool for the fast screening of unknown inhibitors (more than 6 compounds per hour). Moreover, the hrBACE1-IMER showed high stability during the analysis, permitting its use for more than three months without affecting enzyme activity.

  13. FTIR gas chromatographic analysis of perfumes

    NASA Astrophysics Data System (ADS)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  14. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale.

    PubMed

    Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em

    2016-10-14

    We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.

  15. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale

    NASA Astrophysics Data System (ADS)

    Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em

    2016-10-01

    We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.

  16. Separation of human, bovine, and porcine insulins, three very closely related proteins, by micellar electrokinetic chromatography.

    PubMed

    Lamalle, Caroline; Roland, Diane; Crommen, Jacques; Servais, Anne-Catherine; Fillet, Marianne

    2015-10-01

    Human, bovine, and porcine insulins are small proteins with very closely related amino acid sequences, which makes their separation challenging. In this study, we took advantage of the high-resolution power of CE, and more particularly of micellar electrokinetic chromatography, to separate those biomolecules. Among several surfactants, perfluorooctanoic acid ammonium salt was selected. Then, using a design of experiments approach, the optimal BGE composition was found to consist of 50 mM ammonium acetate pH 9.0, 65 mM perfluorooctanoic acid ammonium salt, and 4% MeOH. The three insulins could be separated within 12 min with a satisfactory resolution. This method could be useful to detect possible counterfeit pharmaceutical formulations. Indeed, it would be easy to determine if human insulin was replaced by bovine or porcine insulin.

  17. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1994--January 31, 1995

    SciTech Connect

    Sepaniak, M.J.

    1995-05-01

    This multifarious research program is dedicated to the development of capillary electrokinetic separation techniques and associated optical methods of detection. Currently, research is directed at three general objectives. First, fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on achieving rapid separations and understanding separation systems that include highly-ordered assemblies as running buffer additives. Second, instrumentation and methodologies associated with these capillary separation techniques are being advanced. Third, applications of these separation and detection systems should fill current voids in the capabilities of capillary separation techniques. In particular, it should be possible to perform rapid, highly efficient, and selective separations of hydrophobic compounds (e.g., higher MW polycyclic aromatic hydrocarbons (PAHs) and fullerenes), certain optical isomers, DNA fragments, and various pollutants including certain heavy metals.

  18. Self-consistent description of electrokinetic phenomena in particle-based simulations.

    PubMed

    Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-07-07

    A new computational method is presented for study suspensions of charged particles undergoing fluctuating hydrodynamic and electrostatic interactions. The proposed model is appropriate for polymers, proteins, and porous particles embedded in a continuum electrolyte. A self-consistent Langevin description of the particles is adopted in which hydrodynamic and electrostatic interactions are included through a Green's function formalism. An Ewald-like split is adopted in order to satisfy arbitrary boundary conditions for the Stokeslet and Poisson Green functions, thereby providing a formalism that is applicable to any geometry and that can be extended to deformable objects. The convection-diffusion equation for the continuum ions is solved simultaneously considering Nernst-Planck diffusion. The method can be applied to systems at equilibrium and far from equilibrium. Its applicability is demonstrated in the context of electrokinetic motion, where it is shown that the ionic clouds associated with individual particles can be severely altered by the flow and concentration, leading to intriguing cooperative effects.

  19. Electrokinetic characteristic and coagulation behavior flocculant polyaluminum silicate chloride (PASiC).

    PubMed

    Yue, Qin-Yan; Gao, Bao-Yu; Wang, Bing-Jian

    2003-01-01

    The electrokinetic characteristics and coagulation behaviors of polyaluminum silicate chloride (PASiC) and polyaluminum chloride (PAC) were studied and compared by streaming current (SC) measurement and jar test method. The experimental results showed that the interaction between polysilicic acid characterized negative charge and hydrolyzed aluminum species result in a decrease of the charge-neutralizing ability of PASiC, compared to PAC. The decrease has a close relationship with the basicity (B) and Al/Si molar ratio in PASiC. The less the B value and the Al/Si molar ratio, the lower the charge-neutralizing ability of PASiC is. In contrast, the preparation technique for PASiC affects the charge - neutralization of PASiC to a smaller extent. In addition, compared with PAC, PASiC may enhance aggregating efficiency and give better coagulating effects.

  20. Self-consistent description of electrokinetic phenomena in particle-based simulations

    NASA Astrophysics Data System (ADS)

    Hernández-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-01

    A new computational method is presented for study suspensions of charged particles undergoing fluctuating hydrodynamic and electrostatic interactions. The proposed model is appropriate for polymers, proteins, and porous particles embedded in a continuum electrolyte. A self-consistent Langevin description of the particles is adopted in which hydrodynamic and electrostatic interactions are included through a Green's function formalism. An Ewald-like split is adopted in order to satisfy arbitrary boundary conditions for the Stokeslet and Poisson Green functions, thereby providing a formalism that is applicable to any geometry and that can be extended to deformable objects. The convection-diffusion equation for the continuum ions is solved simultaneously considering Nernst-Planck diffusion. The method can be applied to systems at equilibrium and far from equilibrium. Its applicability is demonstrated in the context of electrokinetic motion, where it is shown that the ionic clouds associated with individual particles can be severely altered by the flow and concentration, leading to intriguing cooperative effects.

  1. On-line micellar electrokinetic chromatography-electrospray ionization mass spectrometry using anodically migrating micelles

    SciTech Connect

    Yang, L.; Harrata, A.K.; Lee, C.S. |

    1997-05-15

    On-line micellar electrokinetic chromatography (MEKC)-electrospray ionization mass spectrometry (ESIMS) is demonstrated for the analysis of chlorotriazine herbicides and barbiturates. In this study, the micellar velocity is directly manipulated by the adjustment of electroosmosis rather than the electrophoretic velocity of the micelle. The electroosmotic flow is adjusted against the electrophoretic velocity of the micelle by changing the solution pH in MEKC. The elimination of MEKC surfactant introduction into ESIMS is achieved with an anodically migrating micelle, moving away from the electrospray interface. The effects of moving surfactant boundary in the MEKC capillary on separation efficiency and resolution of triazine herbicides and barbiturates are investigated. The mass detection of herbicides and barbiturates sequentially eluted from the MEKC capillary is acquired using the positive and negative electrospray modes, respectively. 30 refs., 8 figs., 3 tabs.

  2. Separation and determination of clotrimazole, methylparaben and propylparaben in pharmaceutical preparation by micellar electrokinetic chromatography.

    PubMed

    Hamoudová, Rafífa; Pospísilová, Marie; Kavalírová, Andrea; Solich, Petr; Sícha, Jan

    2006-01-23

    In this study, micellar electrokinetic chromatography (MEKC) method was developed for the determination of clotrimazole (CLO), methylparaben (MP) and propylparaben (PP) in a pharmaceutical preparation. Separation was carried out in a fused silica capillary (60 cm x 75 microm i.d.) at 25 kV with UV detection at 212 nm. Optimized background electrolyte (BGE) was 15 mM phosphate buffer (pH 7.2) containing 30 mM sodium dodecyl sulfate (SDS) as a surfactant. Rectilinear calibration ranges were 50-500 mg l(-1) for CLO, 10-100 mg l(-1) for MP and 2.5-25 mg l(-1) for PP. The total analysis time was < 12 min.

  3. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows.

    PubMed

    Chein, Reiyu; Yang, Yeong Chin; Lin, Yushan

    2006-02-01

    In this study we present simple analytical models that predict the temperature and pressure variations in electrokinetic-driven microchannel flow under the Joule heating effect. For temperature prediction, a simple model shows that the temperature is related to the Joule heating parameter, autothermal Joule heating parameter, external cooling parameter, Peclet number, and the channel length to channel hydraulic diameter ratio. The simple model overpredicted the thermally developed temperature compared with the full numerical simulation, but in good agreement with the experimental measurements. The factors that affect the external cooling parameters, such as the heat transfer coefficient, channel configuration, and channel material are also examined based on this simple model. Based on the mass conservation, a simple model is developed that predicts the pressure variations, including the temperature effect. An adverse pressure gradient is required to satisfy the mass conservation requirement. The temperature effect on the pressure gradient is via the temperature-dependent fluid viscosity and electroosmotic velocity.

  4. Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction.

    PubMed

    Amrate, S; Akretche, D E; Innocent, C; Seta, P

    2005-10-15

    Electrokinetic extraction has been tested to remove lead from an Algerian contaminated soil ([Pb] = 4.432 +/- 0.275 mg g(-1)) sited near a battery plant. The effect of EDTA at various concentrations (0.05-0.20 M) on the enhancement of lead transport has been studied by applying a constant voltage corresponding to a nominal electric field strength of 1 V cm(-1) (duration: 240 h). Results of contaminant distribution across the experimental cell have shown efficient transport of lead toward the anode despite the presence of calcite (25%) and the high acid/base buffer capacity of the soil. To avoid ligand loss, which would be anodically oxidized, the cell was modified by adding extra compartments and inserting cation exchange membranes (Neosepta CMX). Thus, simultaneous recovery of EDTA and lead from their chelated solutions has been made possible using the same set-up and by controlling fluids chemistry.

  5. Self-consistent description of electrokinetic phenomena in particle-based simulations

    SciTech Connect

    Hernández-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-07

    A new computational method is presented for study suspensions of charged particles undergoing fluctuating hydrodynamic and electrostatic interactions. The proposed model is appropriate for polymers, proteins, and porous particles embedded in a continuum electrolyte. A self-consistent Langevin description of the particles is adopted in which hydrodynamic and electrostatic interactions are included through a Green's function formalism. An Ewald-like split is adopted in order to satisfy arbitrary boundary conditions for the Stokeslet and Poisson Green functions, thereby providing a formalism that is applicable to any geometry and that can be extended to deformable objects. The convection-diffusion equation for the continuum ions is solved simultaneously considering Nernst-Planck diffusion. The method can be applied to systems at equilibrium and far from equilibrium. Its applicability is demonstrated in the context of electrokinetic motion, where it is shown that the ionic clouds associated with individual particles can be severely altered by the flow and concentration, leading to intriguing cooperative effects.

  6. DNA/Protein Concentration and Identification by Nano-Channel Electrokinetics

    NASA Astrophysics Data System (ADS)

    Yossifon, Gilad; Chang, Hsueh-Chia

    2008-03-01

    Electric field focusing into charged nano-channels can concentrate and filter charged biological molecules. This transport specificity is further enhanced with sequence or receptor specific DNA probes and antibodies functionalized onto the channel wall or nano-colloids. Our theoretical and experimental studies show, however, the same field-focusing phenomenon can discharge mobile ions from the channel and produce a growing polarized layer outside the channel, both of which can significantly affect the I-V characteristics and molecular migration rate within the channel. Conversely, the presence of trapped molecules or nano-colloids can be sensitively detected with nano-channel impedance spectroscopy due to such field-focusing phenomena. We present several DC and AC electrokinetic techniques for concentrating, filtering and detecting biomolecules in nano-channels based on this principle.

  7. Separation of benzene, toluene, ethylbenzene, and xylenes by micellar electrokinetic capillary chromatography.

    PubMed

    Shim, H; Hwang, B; Yang, S T

    2004-01-01

    The use of sodium dodecyl sulfate, urea, beta-cyclodextrin, and methanol as additives to the electrophoretic medium containing a Na2HPO4-boric acid buffer in the micellar electrokinetic capillary chromatography of benzene, toluene, ethylbenzene, and three isomers of xylene (collectively known as BTEX) was investigated. The results showed that with the addition of sodium dodecyl sulfate only, higher selectivity and sensitivity and shorter migration time could be achieved, which consequently resulted in better separation of BTEX studied. For this buffer system, good linearity (R2>0.99) was found over the range of 5 to 500 microg ml(-1) for individual BTEX compound and separation time of less than 5 min for BTEX was possible.

  8. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil.

    PubMed

    Mao, Xinyu; Han, Fengxiang X; Shao, Xiaohou; Guo, Kai; McComb, Jacqueline; Arslan, Zikri; Zhang, Zhanyu

    2016-03-01

    The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electro-kinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants.

  9. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil

    PubMed Central

    Mao, Xinyu; Han, Fengxiang X.; Shao, Xiaohou; Guo, Kai; McComb, Jacqueline; Arslan, Zikri; Zhang, Zhanyu

    2017-01-01

    The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electrokinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants. PMID:26650421

  10. Applications and theory of electrokinetic enrichment in micro-nanofluidic chips.

    PubMed

    Chen, Xueye; Zhang, Shuai; Zhang, Lei; Yao, Zhen; Chen, Xiaodong; Zheng, Yue; Liu, Yanlin

    2017-09-01

    This review reports the progress on the recent development of electrokinetic enrichment in micro-nanofluidic chips. The governing equations of electrokinetic enrichment in micro-nanofluidic chips are given. Various enrichment applications including protein analysis, DNA analysis, bacteria analysis, viruses analysis and cell analysis are illustrated and discussed. The advantages and difficulties of each enrichment method are expatiated. This paper will provide a particularly convenient and valuable reference to those who intend to research the electrokinetic enrichment based on micro-nanofluidic chips.

  11. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.

    PubMed

    Davidson, Christian; Xuan, Xiangchun

    2008-03-01

    A thermo-electro-hydro-dynamic model is developed to analytically account for the effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels. The optimum electrokinetic devices performance is dependent on a figure of merit, in which the Stern layer conductance appears as a nondimensional Dukhin number. Such surface conductance is found to significantly reduce the figure of merit and thus the efficiency and power output. This finding may explain why the recently measured electrokinetic devices performances are far below the theoretical predictions where the effects of Stern layer conductance have been ignored.

  12. UPLC and LC-MS studies on degradation behavior of irinotecan hydrochloride and development of a validated stability-indicating ultra-performance liquid chromatographic method for determination of irinotecan hydrochloride and its impurities in pharmaceutical dosage forms.

    PubMed

    Kumar, Navneet; Sangeetha, Dhanaraj; Reddy, Sunil P

    2012-10-01

    The objective of the current investigation was to study the degradation behavior of irinotecan hydrochloride under different International Conference on Harmonization (ICH) recommended stress conditions using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry and to establish a validated stability-indicating reverse-phase ultra-performance liquid chromatographic method for the quantitative determination of irinotecan hydrochloride and its seven impurities and degradation products in pharmaceutical dosage forms. Irinotecan hydrochloride was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Irinotecan hydrochloride was found to degrade significantly in oxidative and base hydrolysis and photolytic degradation conditions. The degradation products were well resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. Chromatographic separation was achieved on a Waters Acquity BEH C8 (100 × 2.1 mm) 1.7-µm column with a mobile phase containing a gradient mixture of solvent A (0.02M KH(2)PO(4) buffer, pH 3.4) and solvent B (a mixture of acetonitrile and methanol in the ratio of 62:38 v/v). The mobile phase was delivered at a flow rate of 0.3 mL/min with ultraviolet detection at 220 nm. The run time was 8 min, within which irinotecan and its seven impurities and degradation products were satisfactorily separated. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of irinotecan hydrochloride in pharmaceutical dosage forms.

  13. Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment.

    PubMed

    Bocos, Elvira; Fernández-Costas, Carmen; Pazos, Marta; Sanromán, M Ángeles

    2015-04-01

    In this study, electrokinetic-Fenton treatment was used to remediate a soil polluted with PAHs and the pesticide pyrimethanil. Recently, this treatment has emerged as an interesting alternative to conventional soil treatments due to its peculiar advantages, namely the capability of treating fine and low-permeability materials, as well as that of achieving a high yield in the removals of salt content and inorganic and organic pollutants. In a standard electrokinetic-Fenton treatment, the maximum degradation of the pollutant load achieved was 67%, due to the precipitation of the metals near the cathode chamber that reduces the electro-osmotic flow of the system and thus the efficiency of the treatment. To overcome this problem, different complexing agents and pH control in the cathode chamber were evaluated to increase the electro-osmotic flux as well as to render easier the solubilization of the metal species present in the soil. Four complexing agents (ascorbic acid, citric acid, oxalic acid and ethylenediaminetetraacetic acid) in the Fenton-like treatment were evaluated. Results revealed the citric acid as the most suitable complexing agent. Thereby its efficiency was tested as pH controller by flushing it in the cathode chamber (pH 2 and 5). For the latter treatments, near total degradation was achieved after 27 d. Finally, phytotoxicity tests for polluted and treated samples were carried out. The high germination levels of the soil treated under enhanced conditions concluded that nearly complete restoration was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Separation of steroids using vegetable oils in microemulsion electrokinetic capillary chromatography.

    PubMed

    Sirén, Heli; Vesanen, Sari; Suomi, Johanna

    2014-01-15

    The steroids, hydrocortisone, androstenedione, 17-α-hydroxyprogesterone, testosterone, 17-α-methyltestosterone, and progesterone were separated with microemulsion electrokinetic chromatography (MEEKC) and detected with UV absorption. The microemulsion phases were prepared from both artificial and vegetable oils, from them the first was made of alkane and alcohol and the latter from colza, olive, linseed, and walnut oils. The electrolyte solutions were made to emulsions using sodium dodecyl sulfate and alkaline tetraborate. The solution mixtures made from ethyl acetate, sodium dodecyl sulfate, 1-butanol, acetonitrile, and sodium tetraborate were used as the reference solutions to evaluate the performance of the vegetable oil emulsions. Our study showed that the lipophilic organic phase in the microemulsion did provide resolution improvements but not selectivity changes. The results also correlate with real interactions of the steroids with the lipophilic organic microemulsion phase. The quality of the oils between the manufacturers did not have importance, which was noticed from the equal behavior of the steroids in the vegetable oil emulsions. Detection limits of the steroids in vegetable oil emulsions were at the level of 0.20-0.43μg/L. Thus, they were 2-10 times higher than the concentrations in the partial filling micellar electrokinetic chromatography (PF-MEKC), which we have obtained earlier. The repeatability (RSD%) of the electrophoretic mobilities of the steroids was between 0.50 and 3.70. The RSD% values between the inter-day separations were below 1%, but when walnut and olive oils were used the values exceeded even 10%.

  15. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  16. Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil.

    PubMed

    Barba, Silvia; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2017-03-03

    This work studies the feasibility of the periodic polarity reversal strategy (PRS) in a combined electrokinetic-biological process for the remediation of clayey soil polluted with a herbicide. Five two-weeks duration electrobioremediation batch experiments were performed in a bench scale set-up using spiked clay soil polluted with oxyfluorfen (20 mg kg(-1)) under potentiostatic conditions applying an electric field between the electrodes of 1.0 V cm(-1) (20.0 V) and using PRS with five frequencies (f) ranging from 0 to 6 d(-1). Additionally, two complementary reference tests were done: single bioremediation and single electrokinetic. The microbial consortium used was obtained from an oil refinery wastewater treatment plant and acclimated to oxyfluorfen degradation. Main soil conditions (temperature, pH, moisture and conductivity) were correctly controlled using PRS. On the contrary, the electroosmotic flow clearly decreased as f increased. The uniform soil microbial distribution at the end of the experiments indicated that the microbial activity remained in every parts of the soil after two weeks when applying PRS. Despite the adapted microbial culture was capable of degrade 100% of oxyfluorfen in water, the remediation efficiency in soil in a reference test, without the application of electric current, was negligible. However, under the low voltage gradients and polarity reversal, removal efficiencies between 5% and 15% were obtained, and it suggested that oxyfluorfen had difficulties to interact with the microbial culture or nutrients and that PRS promoted transport of species, which caused a positive influence on remediation. An optimal f value was observed between 2 and 3 d(-1).

  17. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites.

    PubMed

    Sandu, Ciprian; Popescu, Marius; Rosales, Emilio; Bocos, Elvira; Pazos, Marta; Lazar, Gabriel; Sanromán, M Angeles

    2016-08-01

    The feasibility of the electrokinetic-Fenton technology coupled with surfactants in the treatment of real historically hydrocarbons polluted soils has been studied. The characterisation of these soils from Spain and Romania was performed and identified as diesel and diesel-motor oil spillages, respectively. Moreover, the ageing of the spillages produced by the soil contamination was estimated showing the historical pollution of the sites (around 11 and 20 years for Romanian and Spanish soils, respectively). An ex-situ electrochemical treatment was performed to evaluate the adequacy of surfactants for the degradation of the hydrocarbons present in the soils. It was found an enhancement in the solubilisation and removal of TPHs with percentages increasing from 25.7 to 81.8% by the presence of Tween 80 for Spanish soil and from 15.1% to 71.6% for Triton X100 in Romanian soil. Therefore, the viability of coupling enhanced electrokinetic and Fenton remediation was evaluated through a simulated in-situ treatment at laboratory scale. The results demonstrated that the addition of the selected surfactants improved the solubilisation of the hydrocarbons and influenced the electroosmotic flow with a slight decrease. The efficiency of the treatment increased for both considered soil samples and a significant degradation level of the hydrocarbons compounds was observed. Buffering of pH coupled with the addition of a complexing agent showed to be important in the treatment process, facilitating the conditions for the degradation reactions that take place into the soil matrix. The results demonstrated the effectiveness of the selected techniques for remediation of the investigated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.

    PubMed

    Quirino, Joselito P; Aranas, Agnes T

    2011-10-14

    The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes.

  19. Electrophoretic concentration and sweeping-micellar electrokinetic chromatography analysis of cationic drugs in water samples.

    PubMed

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2015-07-03

    Sample preparation by electrophoretic concentration, followed by analysis using sweeping-micellar electrokinetic chromatography, was studied as a green and simple analytical strategy for the trace analysis of cationic drugs in water samples. Electrophoretic concentration was conducted using 50 mmol/L ammonium acetate at pH 5 as acceptor electrolyte. Electrophoretic concentration was performed at 1.0 kV for 50 min and 0.5 kV and 15 min for purified and 10-fold diluted waste water samples, respectively. Sweeping-micellar electrokinetic chromatography was with 100 mmol/L sodium phosphate at pH 2, 100 mmol/L sodium dodecyl sulfate and 27.5%-v/v acetonitrile as separation electrolyte. The separation voltage was -20 kV, UV-detection was at 200 nm, and the acidified concentrate was injected for 36 s at 1 bar (or 72% of the total capillary length, 60 cm). Both purified water and 10-fold diluted waste water exhibited a linear range of two orders of concentration magnitude. The coefficient of determination, and intra- and interday repeatability were 0.991-0.997, 2.5-6.2, and 4.4-9.7%RSD (n=6), respectively, for purified water. The values were 0.991-0.997, 3.4-7.1, and 8.7-9.8%RSD (n=6), correspondingly, for 10-fold diluted waste water. The method detection limit was in the range from 0.04-0.09 to 1.20-6.97 ng/mL for purified and undiluted waste water, respectively.

  20. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Alshawabkeh, Akram N; Cang, Long

    2005-08-01

    Effect of electrokinetic treatment on copper partitioning and distribution in mine tailings were studied. In particular the effects of catholyte enhancement by HAc-NaAc, HCl, HAc-NaAc+EDTA and lactic acid+NaOH were evaluated. The results show that conditioning the catholyte plays a very important role in improving Cu removal. When HAc-NaAc is used in the catholyte, the removal percentage of total Cu from the mine tailings sample reached 12.3% under 40 V in 15 days of treatment. The removal percentage of Cu increased to 31.2% when EDTA was used together with HAc-NaAc in the catholyte. At the same time, increasing the applied voltage and treatment time result in an increase in the Cu removal from the mine tailings. Compared with HAc-NaAc (pH=3.52), the use of lactic acid+NaOH (pH=3.15) in the catholyte resulted in better performance in Cu removal from the mine tailings. HCl treatment resulted in removal of about 17.5% of Cu from the mine tailings; however, it resulted in production of significant amounts of toxic chlorine gas. Copper partitioning in the mine tailings was analyzed before and after the electrokinetic treatments. The analysis was conducted using 0.25 mol/l MgCl2 and 0.5 mol/l HCl as extractants, consequently, to assess the mobility of Cu after treatment. The results showed that lowering the pH of the mine tailings increased the exchangeable Cu fraction (or the portion extracted by MgCl2). Accordingly, further acidification results in an increased mobility of Cu and increase in the environmental risk of mine tailings.

  1. Electrokinetic turbulence in a microchannel at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Wang, Guiren

    2015-11-01

    Turbulence is commonly viewed as a type of macroflow phenomenon under a sufficiently high Reynolds number (Re). On the other hand, it has been widely perceived in science, engineering and medicine that there is never any turbulence in low Re flow for Newtonian fluids. There is even difficulty to characterize turbulence in microchannels with current available velocimeters, due to the requirement of simultaneously high spatial and temporal resolution. Recently, we generated micro-electrokinetic (EK) turbulence in a microchannel when a pressure driven flow at low Re on the order of unity is electrokinetically forced. We also developed a novel velocimeter, i.e. laser induced fluorescence photobleaching anemometer (LIFPA) that enables us to measure the velocity fluctuations with simultaneously high spatial and temporal resolution. Here we surprisingly observed with LIFPA that the corresponding micro EK turbulence can also have some features of high Re flows, such as Kolmogorov -5/3 spectrum and the exponential tail of probability density function of velocity fluctuation, and the scaling behavior of velocity structure function. This work could provide a new perspective on turbulence. The work was supported by NSF under grant no. CAREER CBET-0954977, MRI CBET-1040227.

  2. Probing size-dependent electrokinetics of hematite aggregates.

    PubMed

    Kedra-Królik, Karolina; Rosso, Kevin M; Zarzycki, Piotr

    2017-02-15

    Aqueous particle suspensions of many kinds are stabilized by the electrostatic potential developed at their surfaces from reaction with water and ions. An important and less well understood aspect of this stabilization is the dependence of the electrostatic surface potential on particle size. Surface electrostatics are typically probed by measuring particle electrophoretic mobilities and quantified in the electrokinetic potential (ζ), using commercially available Zeta Potential Analyzers (ZPA). Even though ZPAs provide frequency-spectra (histograms) of electrophoretic mobility and hydrodynamic diameter, typically only the maximal-intensity values are reported, despite the information in the remainder of the spectra. Here we propose a mapping procedure that inter-correlates these histograms to extract additional insight, in this case to probe particle size-dependent electrokinetics. Our method is illustrated for a suspension of prototypical iron (III) oxide (hematite, α-Fe2O3). We found that the electrophoretic mobility and ζ-potential are a linear function of the aggregate size. By analyzing the distribution of surface site types as a function of aggregate size we show that site coordination increases with increasing aggregate diameter. This observation explains why the acidity of the iron oxide particles decreases with increasing particle size. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  4. Electrokinetic remediation using surfactant-coated ceramic casings

    SciTech Connect

    Mattson, E.D.; Bowman, R.S.; Lindgren, E.R.

    2000-06-01

    Electrokinetic remediation is an emerging technique that can be used to remove metals from saturated or unsaturated soils. In unsaturated soils, control of the medium's water content is essential. Previously used electrode designs have caused detrimental soil wetting due to excess electroosmotic flow out of ceramic-encased anodes. The authors tested a method to reverse the electroosmotic flow at the anode by treating the ceramic casing with the cationic surfactant hexadecyltrimethylammonium (HDTMA). Laboratory tests showed the untreated ceramic had an electroosmotic permeability of 2.4 x 10{sup {minus}5} cm{sup 2} V{sup {minus}1} s{sup {minus}1}. Ceramic treated with HDTMA had an electroosmotic permeability of {minus}1.3 x 10{sup {minus}5} cm{sup 2} V{sup {minus}1} s{sup {minus}1}. Under an applied electric potential, electroosmotic flow was reversed in the HDTMA-treated ceramic, indicating a reversed zeta potential due to formation of an HDTMA bilayer on the ceramic surface. Field tests conducted over a 6-month period showed negligible water loss from HDTMA-treated ceramic compared to untreated ceramics. The results indicated that a surfactant treatment to the anode ceramic casing can greatly improve the application of electrokinetics in unsaturated environments.

  5. Microemulsion electrokinetic chromatography for analysis of phthalates in soft drinks.

    PubMed

    Hsieh, Sung-Yu; Wang, Chun-Chi; Wu, Shou-Mei

    2013-12-15

    Microemulsion electrokinetic chromatography (MEEKC) is proposed for analysis of di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in soft drinks. However, the instability of microemulsion is a critical issue. In this research, a novel material, Pluronic® F-127, which has the properties of polymer and surfactant, was added for stabilizing the microemulsion in the MEEKC system. Our data demonstrate that the presence of Pluronic® F-127 (0.05-0.30%) also helps enhance resolution of highly hydrophobic compounds, DBP and DEHP. The electrokinetic injection of sodium dodecyl sulphate (SDS) including sample (-10 kV, 20 s) was introduced in this MEEKC system and this yielded about 25-fold sensitivity enhancement compared with hydrodynamic injection (1 psi, 10 s). During method validation, calibration curves were linear (r≥0.99), within a range of 75-500 ng/mL for DBP and 150-1000 ng/mL for DEHP. As the precision and accuracy assays, absolute values of relative standard deviation (RSD) and relative error (RE) in intraday (n=3) and interday (n=5) observations were less than 4.93%. This method was further applied for analyzing six commercial soft drinks and one was found containing 453.67 ng/mL of DEHP. This method is considered feasible for serving as a tool for analysis of highly hydrophobic molecules.

  6. Pore network model of electrokinetic transport through charged porous media

    NASA Astrophysics Data System (ADS)

    Obliger, Amaël; Jardat, Marie; Coelho, Daniel; Bekri, Samir; Rotenberg, Benjamin

    2014-04-01

    We introduce a method for the numerical determination of the steady-state response of complex charged porous media to pressure, salt concentration, and electric potential gradients. The macroscopic fluxes of solvent, salt, and charge are computed within the framework of the Pore Network Model (PNM), which describes the pore structure of the samples as networks of pores connected to each other by channels. The PNM approach is used to capture the couplings between solvent and ionic flows which arise from the charge of the solid surfaces. For the microscopic transport coefficients on the channel scale, we take a simple analytical form obtained previously by solving the Poisson-Nernst-Planck and Stokes equations in a cylindrical channel. These transport coefficients are upscaled for a given network by imposing conservation laws for each pores, in the presence of macroscopic gradients across the sample. The complex pore structure of the material is captured by the distribution of channel diameters. We investigate the combined effects of this complex geometry, the surface charge, and the salt concentration on the macroscopic transport coefficients. The upscaled numerical model preserves the Onsager relations between the latter, as expected. The calculated macroscopic coefficients behave qualitatively as their microscopic counterparts, except for the permeability and the electro-osmotic coupling coefficient when the electrokinetic effects are strong. Quantitatively, the electrokinetic couplings increase the difference between the macroscopic coefficients and the corresponding ones for a single channel of average diameter.

  7. Electrokinetics for control of on-chip chemical reactions.

    NASA Astrophysics Data System (ADS)

    Erickson, David; Venditti, Roberto

    2005-03-01

    It is well known that electrokinetics affords precise control over flow and species transport in microfluidic systems through simple manipulation of externally applied electric potentials. In this work it is demonstrated how electrokinetic effects can be extended to provide simultaneous control over on-chip chemical reactions through manipulation of the local thermal (ohmic/joule heating), shear (electroosmosis) and electrical (electrophoresis) energies at the reaction site. The coupling of the electrical, flow and ``whole-chip'' thermal effects in both the fluidic and substrate domains are investigated through extensive finite element simulations and experimentally validated using microscale fluorescence thermometry. The simulations reveal changes in viscosity and local conductivity on the order of 50% induced by changes in the fluidic geometry. General chip design guidelines for maximizing or minimizing these effects will also be discussed. The degree of precision available and clinical utility of the technique is demonstrated through the detection of a single base pair mutation (single nucleotide polymorphism) in a DNA microarray integrated into a PDMS/glass microfluidic chip.

  8. Computing the Electrokinetic Response with Simple Models via Eigenvalue Decomposition

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Malama, B.

    2010-12-01

    The efficient solution of coupled hydrogeophysical problems both numerically and analytically is important to their use in parameter estimation. We present a general approach for decoupling the governing equations for groundwater flow and the associated electrokinetic problem. The approach can use either a symbolic or numerical eigenvector decomposition of the matrix that arises when writing the two equations in vector form. The two coupled problems, once uncoupled, can then be solved using any existing approaches for the simple non-coupled component problems. Solutions can be either analytic or numerical in nature with the effective parameters being computed in the decomposition. The final solution, in terms of the physical potentials of interest, is computed through a simple matrix multiplication. We solve the fully coupled electrokinetic problem (water flow driving electrical flow and electrical flow driving water flow) for a single layer using the Theis solution, and for multilayer problems using MODFLOW. The approach is quite general, with the main limitation being a required symmetry between the coupled processes in their differential equation (e.g., both processes must be governed by the diffusion equation). The solution obtained with this approach is shown to agree with that obtained by Malama et al. (2009). Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  9. Improving electrokinetic microdevice stability by controlling electrolysis bubbles.

    PubMed

    Lee, Hwi Yong; Barber, Cedrick; Minerick, Adrienne R

    2014-07-01

    The voltage-operating window for many electrokinetic microdevices is limited by electrolysis gas bubbles that destabilize microfluidic system causing noise and irreproducible responses above ∼3 V DC and less than ∼1 kHz AC at 3 Vpp. Surfactant additives, SDS and Triton X-100, and an integrated semipermeable SnakeSkin® membrane were employed to control and assess electrolysis bubbles from platinum electrodes in a 180 by 70 μm, 10 mm long microchannel. Stabilized current responses at 100 V DC were observed with surfactant additives or SnakeSkin® barriers. Electrolysis bubble behaviors, visualized via video microscopy at the electrode surface and in the microchannels, were found to be influenced by surfactant function and SnakeSkin® barriers. Both SDS and Triton X-100 surfactants promoted smaller bubble diameters and faster bubble detachment from electrode surfaces via increasing gas solubility. In contrast, SnakeSkin® membranes enhanced natural convection and blocked bubbles from entering the microchannels and thus reduced current disturbances in the electric field. This data illustrated that electrode surface behaviors had substantially greater impacts on current stability than microbubbles within microchannels. Thus, physically blocking bubbles from microchannels is less effective than electrode functionalization approaches to stabilize electrokinetic microfluidic systems.

  10. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  11. Gas Chromatographic Determination of Enrivonmentally Significant Pesticides.

    ERIC Educational Resources Information Center

    Rudzinski, Walter E.; Beu, Steve

    1982-01-01

    A chromatographic procedure for analyzing organophosphorus pesticides (such as PCB's, nitrosamines, and phthalate esters) in orange juice is described, including a summary of the method, instrumentation, methodology, results/discussion, and calculations. (JN)

  12. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  13. Gas Chromatographic Determination of Enrivonmentally Significant Pesticides.

    ERIC Educational Resources Information Center

    Rudzinski, Walter E.; Beu, Steve

    1982-01-01

    A chromatographic procedure for analyzing organophosphorus pesticides (such as PCB's, nitrosamines, and phthalate esters) in orange juice is described, including a summary of the method, instrumentation, methodology, results/discussion, and calculations. (JN)

  14. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  15. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  16. Enhancing the speed of morpholino-DNA biosensor by electrokinetic concentration of DNA in a microfluidic chip.

    PubMed

    Martins, Diogo; Levicky, Rastislav; Song, Yong-Ak

    2015-10-15

    Electrokinetic methods that conveniently concentrate charged analytes by orders of magnitude are highly attractive for nucleic acid assays where they can bypass the complexity and costs of enzyme-based amplification. The present study demonstrates an electrokinetic concentration device incorporating charge-neutral morpholino (MO) probes: as DNA analyte is concentrated in a microfluidic channel using ion concentration polarization (ICP) it is simultaneously hybridized to spots of complementary MO probes immobilized on the channel floor. This approach is uniquely favored by the match between the optimum buffer ionic strength of approximately 10mM for both MO-DNA surface hybridization and electrokinetic concentration. The simple and easily scalable poly(dimethylsiloxane) (PDMS) microfluidic device was fabricated using soft lithography and contact printing of a conductive polymer, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate ( PSS) as a cation-selective membrane material. Using the microfluidic concentrator, we could increase the concentration of DNA by three orders of magnitude in less than 5 min at an electric field of 75 Vcm(-1). The 1000-fold increase in concentration of DNA led to an increase in the speed of MO-DNA hybridization by two orders of magnitude and enabled a detection sensitivity of ~1 nM within 15 min of concentration. Using the proposed microfluidic concentrator, we also demonstrated a rapid hybridization with a binary DNA mixture, containing a fully complementary and a non-complementary sequence to mimic molecular backgrounds present in real DNA samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    PubMed

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F L

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3), cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  18. Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    PubMed Central

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F. L.

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  19. Liquid Chromatographic Analysis of Hydraulic Fluids.

    DTIC Science & Technology

    1979-11-01

    ADOO36 ARMY MATERIALS AND MECHANICS RESEARCH CENTER WATERTOWN 9* F/s 7/4 LIQUID CHROMATOGRAPHIC ANALYSIS OF HYDRAULIC FLUIDS. (U) I NOV 79 & L...HABNAUER, 9 M DOWSEI UNCLASSIFIED AMMRC-TR-79-57 ML 2.EhhhEh MOOSO fllllfffflllfff AMMRC TR 79-57 ALWI i e LIQUID CHROMATOGRAPHIC ANALYSIS o.;OF HYDRAULIC...methods Liquid chromatography Quality control Chemical analysis 20. ABSTRACT (Continue en reverse aidet it necoserr end identifly by block number) (SEE

  20. Nanofluidic Size-Exclusion Chromatograph

    NASA Technical Reports Server (NTRS)

    Feldman, Sabrina; Svehla, Danielle; Grunthaner, Frank; Feldman, Jason; Shakkottai, P.

    2004-01-01

    Efforts are under way to develop a nanofluidic size-exclusion chromatograph (SEC), which would be a compact, robust, lightweight instrument for separating molecules of interest according to their sizes and measuring their relative abundances in small samples. About as large as a deck of playing cards, the nanofluidic SEC would serve, in effect, as a laboratory on a chip that would perform the functions of a much larger, conventional, bench-top SEC and ancillary equipment, while consuming much less power and much smaller quantities of reagent and sample materials. Its compactness and low power demand would render it attractive for field applications in which, typically, it would be used to identify and quantitate a broad range of polar and nonpolar organic compounds in soil, ice, and water samples. Size-exclusion chromatography is a special case of high-performance liquid chromatography. In a conventional SEC, a sample plug is driven by pressure along a column packed with silica or polymer beads that contain uniform nanopores. The interstices between, and the pores in, the beads collectively constitute a size-exclusion network. Molecules follow different paths through the size-exclusion network, such that characteristic elution times can be related to sizes of molecules: basically, smaller molecules reach the downstream end of the column after the larger ones do because the smaller ones enter minor pores and stay there for a while, whereas the larger ones do not enter the pores. The volume accessible to molecules gradually diminishes as their size increases. All molecules bigger than a pore size elute together. For most substances, the elution times and sizes of molecules can be correlated directly with molecular weights. Hence, by measuring the flux of molecules arriving at the downstream end as a function of time, one can obtain a liquid mass spectrum for the molecules present in a sample over a broad range of molecular weights.