Metallization of Kevlar fibers with gold.
Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G
2011-06-01
Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society
Muench, Falk; Schaefer, Sandra; Hagelüken, Lorenz; Molina-Luna, Leopoldo; Duerrschnabel, Michael; Kleebe, Hans-Joachim; Brötz, Joachim; Vaskevich, Alexander; Rubinstein, Israel; Ensinger, Wolfgang
2017-09-13
Metal nanowires (NWs) represent a prominent nanomaterial class, the interest in which is fueled by their tunable properties as well as their excellent performance in, for example, sensing, catalysis, and plasmonics. Synthetic approaches to obtain metal NWs mostly produce colloids or rely on templates. Integrating such nanowires into devices necessitates additional fabrication steps, such as template removal, nanostructure purification, or attachment. Here, we describe the development of a facile electroless plating protocol for the direct deposition of gold nanowire films, requiring neither templates nor complex instrumentation. The method is general, producing three-dimensional nanowire structures on substrates of varying shape and composition, with different seed types. The aqueous plating bath is prepared by ligand exchange and partial reduction of tetrachloroauric acid in the presence of 4-dimethylaminopyridine and formaldehyde. Gold deposition proceeds by nucleation of new grains on existing nanostructure tips and thus selectively produces curvy, polycrystalline nanowires of high aspect ratio. The nanofabrication potential of this method is demonstrated by producing a sensor electrode, whose performance is comparable to that of known nanostructures and discussed in terms of the catalyst architecture. Due to its flexibility and simplicity, shape-selective electroless plating is a promising new tool for functionalizing surfaces with anisotropic metal nanostructures.
Replicate Wolter-I x-ray mirrors
NASA Technical Reports Server (NTRS)
Engelhaupt, D. E.; Rood, R.; Fawcett, S.; Griffith, C.; Khanijow, R.
1994-01-01
Cylindrical (hyperbolic - parabolic Wolter I) mirrors have been electroformed from nickel over an electroless nickel-phosphorous (NiP) plated aluminum mandrel in support of the NASA AXAF-S x-ray spectrometer program. The electroless nickel was diamond turned and polished to achieve a surface finish of 10 angstroms rms or better. Gold was then plated on the nickel alloy after an electrochemical passivation step. Next a heavy layer of pure nickel was plated one millimeter thick with controlled stress at zero using a commercial PID program to form the actual mirror. This shell was removed from the NiP alloy coated mandrel by cryogenic cooling and contraction of the aluminum to release the mirror. It is required that the gold not adhere well to the NiP but all other plated coatings must exhibit good adherence. Four mirrors were fabricated from two mandrels prepared by this method. The area of each part is 0.7 square meters (7.5 square feet).
Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang
2017-01-01
The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed. PMID:28772497
Wang, Yi; Luo, Jie; Chen, Hengwu; He, Qiaohong; Gan, Nin; Li, Tianhua
2008-09-12
A novel chip-based flow injection analysis (FIA) system has been developed for automatic, rapid and selective determination of dopamine (DA) in the presence of ascorbic acid (AA). The system is composed of a polycarbonate (PC) microfluidic chip with an electrochemical detector (ED), a gravity pump, and an automatic sample loading and injection unit. The selectivity of the ED was improved by modification of the gold working microelectrode, which was fabricated on the PC chip by UV-directed electroless gold plating, with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA). Postplating treatment methods for cleaning the surface of electroless gold microelectrodes were investigated to ensure the formation of high quality SAMs. The effects of detection potential, flow rate, and sampling volume on the performance of the chip-based FIA system were studied. Under optimum conditions, a detection limit of 74 nmol L(-1) for DA was achieved at the sample throughput rate of 180 h(-1). A RSD of 0.9% for peak heights was observed for 19 runs of a 100 micromol L(-1) DA solution. Interference-free determination of DA could be conducted if the concentration ratio of AA-DA was no more than 10.
NASA Astrophysics Data System (ADS)
Kuo, C.-Y.; Chen, P.-S.; Chen, H.-T.; Lu, C.-J.; Tian, W.-C.
2017-03-01
In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2 > 0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH) <1.5 s) preconcentration factors for both VOCs are >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).
Electroless nickel plating on stainless steels and aluminum
NASA Technical Reports Server (NTRS)
1966-01-01
Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.
NASA Astrophysics Data System (ADS)
Seo, Wonil; Kim, Kyoung-Ho; Kim, Young-Ho; Yoo, Sehoon
2018-01-01
The growth of interfacial intermetallic compound and the brittle fracture behavior of Sn-3.0Ag-0.5-Cu solder (SAC305) joints on electroless nickel immersion gold (ENIG) surface finish have been investigated using Ni-P plating solution at temperatures from 75°C to 85°C and fixed pH of 4.5. SAC305 solder balls with diameter of 450 μm were mounted on the prepared ENIG-finished Cu pads and reflowed with peak temperature of 250°C. The interfacial intermetallic compound (IMC) thickness after reflow decreased with increasing Ni-P plating temperature. After 800 h of thermal aging, the IMC thickness of the sample prepared at 85°C was higher than for that prepared at 75°C. Scanning electron microscopy of the Ni-P surface after removal of the Au layer revealed a nodular structure on the Ni-P surface. The nodule size of the Ni-P decreased with increasing Ni-P plating temperature. The Cu content near the IMC layer increased to 0.6 wt.%, higher than the original Cu content of 0.5 wt.%, indicating that Cu diffused from the Cu pad to the solder ball through the Ni-P layer at a rate depending on the nodule size. The sample prepared at 75°C with thicker interfacial IMC showed greater high-speed shear strength than the sample prepared at 85°C. Brittle fracture increased with decreasing Ni-P plating temperature.
NASA Technical Reports Server (NTRS)
Malina, R. F.; Cash, W.
1978-01-01
Measured reflection efficiencies are presented for flat samples of diamond-turned aluminum, nickel, and evaporated gold surfaces fabricated by techniques suited for EUV telescopes. The aluminum samples were 6.2-cm-diameter disks of 6061-T6, the electroless nickel samples were formed by plating beryllium disks with 7.5-microns of Kanigen. Gold samples were produced by coating the aluminum and nickel samples with 5 strips of evaporated gold. Reflection efficiencies are given for grazing angles in the 5-75 degree range. The results indicate that for wavelengths over about 100 A, the gold-coated nickel samples yield highest efficiencies. For shorter wavelengths, the nickel samples yield better efficiencies. 500 A is found to be the optimal gold thickness.
Nanoporous gold membranes: From morphological control to fuel cell catalysis
NASA Astrophysics Data System (ADS)
Ding, Yi
Porous noble metals are particularly attractive for scientific research and industrial applications such as catalysis, sensing, and filtration. In this thesis, I will discuss the fabrication, characterization, and application of a new class of porous metals, called nanoporous metals (NPM). NPM is made during selective dissolution (also called dealloying) of reactive components (e.g., silver) from multi-component alloys (e.g., Ag/Au alloy). Commercially available white gold leaf (Ag65Au35) can, for example, be etched into nanoporous gold (NPG) membrane by simply floating the leaf on concentrated nitric acid for periods of a few minutes. NPG leaf adopts a single crystal porous structure within individual grains. The microstructure of NPG, such as the pore size, is tunable between a few nanometers to sub-micron length scale by either thermal annealing or post-treatment in nitric acid for extended period of time. A new gas-liquid-solid interface electroless plating technique is developed to uniformly cover the NPG surface with other metals, such as silver and platinum. This technique allows new opportunities of making functionalized nanostructures. We show that a combination of silver plating and dealloying can be used to make multimodal porous metals, which are expected to have application in sensing field. Electroless platinum plating onto NPG shows very usual growth mode. TEM observation indicates that the platinum layer on NPG surface takes a novel form of layer-islanding growth (Stranski-Krastanov growth). Annealing the Pt/NPG composite smoothens the Pt islands and forms a 1 nm coherent Pt layer on the NPG backbone, possibly with dislocation formation at the Pt/Au interface. Furthermore, it was found that we could dissolve the gold away in aqueous gold etchant, leaving behind the 1 nm-thick Pt shell, a structure we call nanotubular mesoporous platinum (NMP). Pt plated NPG has a series of unique structural properties, such as high active surface area, thermally stable, low Pt usage, and better tolerance to CO poisoning. We incorporated it as a membrane electrode into a working proton exchange membrane fuel cells (PEMFC). Preliminary results show that Pt/NPG has very good fuel cell performance at a very low platinum loading.
Electroless shielding of plastic electronic enclosures
NASA Astrophysics Data System (ADS)
Thompson, D.
1985-12-01
The containment or exclusion of radio frequency interference (RFI) via metallized plastic enclosures and the electroless plating as a solution are examined. The electroless coating and process, shielding principles and test data, shielding design requirements, and shielding advantages and limitations are reviewed. It is found that electroless shielding provides high shielding effectiveness to plastic substrates. After application of a conductive metallic coating by electroless plating, various plastics have passed the ASTM adhesion test after thermal cycle and severe environmental testing. Electroless shielding provides a lightweight, totally metallized housing to EMI/RFI shielding. Various compositions of electroless deposits are found to optimize electroless shielding cost/benefit ratio.
Electroless Cu Plating on Anodized Al Substrate for High Power LED.
Rha, Sa-Kyun; Lee, Youn-Seoung
2015-03-01
Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.
Phase 2 of the array automated assembly task for the low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Petersen, R. C.
1980-01-01
Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work was directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The process was found to be extremely lengthy and cumbersome, and was also found to produce a product virtually identical to that produced by single step electroless nickel plating, as shown by adhesion tests and electrical characteristics of cells under illumination.
40 CFR 413.70 - Applicability: Description of the electroless plating subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the electroless plating subcategory. 413.70 Section 413.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroless...
Electroless plated maghemite for three-dimensional magneto photonic crystals
NASA Astrophysics Data System (ADS)
Mito, Shinichiro; Kawashima, Takuya; Kawaguchi, Takuma; Sasano, Junji; Takagi, Hiroyuki; Inoue, Mitsuteru
2017-05-01
Three-dimensional magneto photonic crystals (3D-MPCs) are promising material for manipulating light in 3D space. In this study, we fabricated 3D-MPC that is filling the air-gap of opal photonic crystal with magnetic material by electroless plating. The electroless plating is an attractive film-forming method which provides magnetic material films on various substrates in aqueous solution at 24-90 °C. As magnetic material for filling the air-gap, maghemite (γ-Fe2O3) film was plated in opal photonic crystal. The plated maghemite film showed a Faraday rotation of 0.6 deg./μm at 440 nm and significantly lower absorption than magnetite. The plated opal showed photonic band gap and magneto-optic response. Faraday rotation of the plated opal was enhanced at the band edge. The photonic band gap and the Faraday rotation spectra were changed as a function of incident angle of light. Electroless plating of maghemite could be promising technique for fabricating 3D-MPCs.
Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish
NASA Astrophysics Data System (ADS)
Bui, Q. V.; Nam, N. D.; Yoon, J. W.; Choi, D. H.; Kar, A.; Kim, J. G.; Jung, S. B.
2011-09-01
The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.
Gill, Thomas Mark; Zhao, Jiheng; Berenschot, Erwin J W; Tas, Niels; Zheng, Xiaolin
2018-06-25
Nickel (Ni) plating has garnered great commercial interest, as it provides excellent hardness, corrosion resistance, and electrical conductivity. Though Ni plating on conducting substrates is commonly employed via electrodeposition, plating on semiconductors and insulators often necessitates electroless approaches. Corresponding plating theory for deposition on planar substrates was developed as early as 1946, but for substrates with micro- and nanoscale features, very little is known of the relationships between plating conditions, Ni deposition quality, and substrate morphology. Herein, we describe the general theory and mechanisms of electroless Ni deposition on semiconducting silicon (Si) substrates, detailing plating bath failures and establishing relationships between critical plating bath parameters and the deposited Ni film quality. Through this theory, we develop two different plating recipes: galvanic displacement (GD) and autocatalytic deposition (ACD). Neither recipe requires pretreatment of the Si substrate, and both methods are capable of depositing uniform Ni films on planar Si substrates and convex Si pyramids. In comparison, ACD has better tunability than GD, and it provides a more conformal Ni coating on complex and high-aspect-ratio Si structures, such as inverse fractal Si pyramids and ultralong Si nanowires. Our methodology and theoretical analyses can be leveraged to develop electroless plating processes for other metals and metal alloys and to generally provide direction for the adaptation of electroless deposition to modern applications.
NASA Astrophysics Data System (ADS)
Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.
2018-01-01
Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, W.W.; Sullivan, H.H.
Electroless nicke-plate characteristics are substantially influenced by percent phosphorous concentrations. Available ASTM analytical methods are designed for phosphorous concentrations of less than one percent compared to the 4.0 to 20.0% concentrations common in electroless nickel plate. A variety of analytical adaptations are applied through the industry resulting in poor data continuity. This paper presents a statistical comparison of five analytical methods and recommends accurate and precise procedures for use in percent phosphorous determinations in electroless nickel plate. 2 figures, 1 table.
NASA Astrophysics Data System (ADS)
Karagoz, Bunyamin; Sirkecioglu, Okan; Bicak, Niyazi
2013-11-01
A surface rejuvenation process was developed for generation variable thickness of metal deposits on polymer microspheres via electroless plating. Thus, Ni(II), Cu(II) and Ag(I) complexes formed on triethylenetetramine (TETA) functional crosslinked poly(glycidyl methacrylate) (PGMA) microspheres were reduced to zero-valent metals. The resulting metals (1.1-1.5 mmol g-1) were employed as seed points for electroless metal plating (self-seeding) without using Pd or tin pre-activating species. Treatment of the metalized surfaces with hydrazine or hydrazinium formate was demonstrated to reactivate (rejuvenate) the surface and allows further metal deposition from electroless plating solutions. Followed repeating of the surface rejuvenation-metalization steps resulted in step wise increasing of the metal deposits (90-290 mg per g in each cycle), as inferred from metal analyses, ESEM and XPS analysis. Experiments showed that, after 6 times of cycling the metal deposits exceed 1 g per g of the microspheres on average. The process seemed to be promising for tuning up of the metal thickness by stepwise electroless plating.
NASA Astrophysics Data System (ADS)
Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong
2015-12-01
A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.
Electroless-plated Ni pattern with catalyst printing on indium-gallium-zinc oxide surface
NASA Astrophysics Data System (ADS)
Onoue, Miki; Ogura, Shintaro; Kusaka, Yasuyuki; Fukuda, Nobuko; Yamamoto, Noritaka; Kojima, Keisuke; Chikama, Katsumi; Ushijima, Hirobumi
2017-05-01
Electroless plated metals have been used for wiring and electrodes in the manufacture of electronic devices. To obtain plated patterns, etching and photoresist are generally used. However, through catalyst patterning by printing, we can obtain metal patterns without etching and photoresists by electroless plating. Solution-processed indium-gallium-zinc oxide (IGZO) has received significant attention for showing high performance and ease of preparation in air atmosphere. In this study, we prepared an electroless plated pattern by catalyst printing as electrodes of IGZO TFT. There are few reports on the application of plated metal electrodes prepared by catalyst printing to the source and drain electrodes of IGZO TFT. The prepared IGZO TFT exhibits a typical current-voltage (I-V) curve. The plated electrodes caused many problems such as performance degradation. However, our result showed that the plated metal electrodes can drive IGZO TFT. In addition, we confirm plated metal growth into the catalyst layer by cross sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) of the plated Ni. We discuss the relevance of the measured work function (WF) of the electrode materials and the performance of IGZO TFT.
NASA Technical Reports Server (NTRS)
Spiers, G. D.
1981-01-01
Plated silicon wafers with surface roughness ranging from 0.4 to 130 microinches were subjected to tensile pull strength tests. Electroless Ni/electroless Cu/electroplated Cu and electroless Ni/electroplated Cu were the two types of plate contacts tested. It was found that smoother surfaces had higher pull strength than rougher, chemically etched surfaces. The presence of the electroless Cu layer was found to be important to adhesion. The mode of fracture of the contact as it left the silicon was studied, and it was found that in almost all cases separation was due to fracture of the bulk silicon phase. The correlation between surface roughness and mode of contact failure is presented and interpreted.
Kim, Soo-Dong; Choe, Won-Gyun; Jeong, Jong-Ryul
2013-11-01
In this work, high-reflectance brilliant white color magnetic microspheres comprising a Fe/TiO2/Ag core-shell structure with a continuous, uniform compact silver layer were successfully fabricated by TiO2-assisted electroless plating in a simple and eco-friendly method. The coating procedure for TiO2 and Ag involved a sol-gel reaction and electroless plating with ultrasound treatment. The electroless plating step was carried out in an eco-friendly manner in a single process without environmentally toxic additives. The TiO2 layer was used as a modification layer between the Fe microspheres and the silver layer to improve adhesion. A continuous and compact silver layer could be formed with a high degree of morphological control by introducing ultrasonication and adjusting the ammonium hydroxide concentration. Copyright © 2013 Elsevier B.V. All rights reserved.
Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline
NASA Astrophysics Data System (ADS)
Mu, Shipeng; Xie, Huayang; Wang, Wei; Yu, Dan
2015-10-01
Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO3) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50-90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.
Copper circuit patterning on polymer using selective surface modification and electroless plating
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2017-02-01
We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.
NASA Technical Reports Server (NTRS)
Stalmach, C. J., Jr.
1975-01-01
Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy, and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy was deposited on the plastic surface that provides a hard, uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale shuttle orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose was to assess the heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.
NASA Astrophysics Data System (ADS)
Chen, Sung-Te; Cheng, Yu-Syun; Chang, Yiu-Hsiang; Yang, Tzu-Ming; Lee, Jyun-Ting; Chen, Giin-Shan
2018-05-01
In this paper, we present the method and results of electroless plating of through-silicon via (TSV) contacts using Ni nanoparticle seeds on self-assembled monolayers (SAMs). This approach where the nanoparticles are evenly distributed and stabilized on the SAM allows the successive electroless metallization schemes such as Co-alloy barrier and Cu plug used typically in TSV as interconnects. The seeding was tested on SiO2 layers with surfaces functionalized by an amino-based aminopropyltrimethoxysilane (APTMS) SAM. APTMS-SAM after a suitable SC-1 treatment yielded a remarkably good barrier layer, with high adhesion strength (70 MPa) and low electrical resistivity (28 μΩ-cm). Moreover, the SAM assisted seeding protocol was followed by an ultrasonic-assisted (or mechanically agitated) electroless-plating stage together with a relatively simple plating solution. Conformal plating of Co-alloy barrier and seem/void-free Cu-plug filling into high-aspect-ratio TSVs (>10) was only achieved by using an ultrasonic-assisted plating process. The SAM layers were characterized by X-ray photoelectron spectroscopy to elucidate the surface functionalization effect.
Pd menbrane having improved H.sub.2-permeance, and method of making
Vanderspurt, Thomas Henry [Glastonbury, CT; She, Ying [Worcester, MA; Dardas, Zissis [Worcester, MA; Walker, Craig [South Glastonbury, CT; MacLeod, James D [Vernon, CT
2011-12-06
An H.sub.2-permeable membrane system (117) comprises an electroless-deposited plating (115) of Pd or Pd alloy on a porous support (110, 110'). The Pd plating comprises face-centered cubic crystals cumulatively having a morphology of hexagonal platelets. The permeability to H.sub.2 of the membrane plating (115) on the porous support is significantly enhanced, being at least greater than about 1.3.times.10.sup.-8 molm.sup.-1s.sup.-Pa.sup.-0.5 at 350.degree. C., and even greater than about 3.4.times.10.sup.-8 molm.sup.-1s.sup.-1Pa.sup.-0.5. The porous support (110, 110') may be stainless steel (1100 and include a thin ceramic interlayer (110') on which the Pd is plated. The method of providing the electroless-deposited plating includes preheating a Pd electroless plating solution to near a plating temperature substantially greater than room temperature, e.g. 60.degree. C., prior to plating.
Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil
2014-07-01
This article addresses furthering the role of sonication for the optimal fabrication of nickel ceramic composite membranes using electroless plating. Deliberating upon process modifications for surfactant induced electroless plating (SIEP) and combined surfactant and sonication induced electroless plating (SSOEP), this article highlights a novel method of contacting of the reducing agent and surfactant to the conventional electroless nickel plating baths. Rigorous experimental investigations indicated that the combination of ultrasound (in degas mode), surfactant and reducing agent pattern had a profound influence in altering the combinatorial plating characteristics. For comparison purpose, purely surfactant induced nickel ELP baths have also been investigated. These novel insights consolidate newer research horizons for the role of ultrasound to achieve dense metal ceramic composite membranes in a shorter span of total plating time. Surface and physical characterizations were carried out using BET, FTIR, XRD, FESEM and nitrogen permeation experiments. It has been analyzed that the SSOEP baths provided maximum ratio of percent pore densification per unit metal film thickness (PPDδ) and hold the key for further fine tuning of the associated degrees of freedom. On the other hand SIEP baths provided lower (PPDδ) ratio but higher PPD. For SSOEP baths with dropwise reducing agent and bulk surfactant, the PPD and metal film thickness values were 73.4% and 8.4 μm which varied to 66.9% and 13.3 μm for dropwise reducing agent and drop surfactant case. Copyright © 2014 Elsevier B.V. All rights reserved.
INVESTIGATION INTO THE REJUVENATION OF SPENT ELECTROLESS NICKEL BATHS BY ELECTRODIALYSIS
Electroless nickel plating generates substantially more waste than other metal-finishing processes due to the inherent limited bath life and the need for regular bath disposal. Electrodialysis can be used to generate electroless nickel baths, but poor membrane permselectivity, l...
CURRENT AND EMERGING TECHNOLOGIES FOR EXTENDING THE LIFETIME OF ELECTROLESS NICKEL PLATING BATHS
The waste treatment and rejuvenation of spent electroless nickel baths has attracted a considerable amount of interest from electroplating shops, electroless nickel suppliers, universities and regulatory agencies due to the finite life of the baths and the associated waste that t...
Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.
Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan
2013-12-01
A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.
Ultrasound influence on the activation step before electroless coating.
Touyeras, F; Hihn, J Y; Delalande, S; Viennet, R; Doche, M L
2003-10-01
This paper is devoted to the electroless plating of non-conductive substrates under ultrasound at 530 kHz. The ultrasonic irradiation is applied to the activation and to the plating steps. Effects are measured by following the final copper thickness obtained in 1 h of plating time, easily correlated to the average plating rate. It appears that ultrasound has a strong influence on the plating rates enhancement, and assumptions can be made that this increase could be linked to the catalyst cleaning. This is confirmed by XPS measurements.
Making a Lightweight Battery Plaque
NASA Technical Reports Server (NTRS)
Reid, M. A.; Post, R. E.; Soltis, D.
1986-01-01
Plaque formed in porous plastic by electroless plating. Lightweight plaque prepared by electroless plating of porous plastic contains embedded wire or expanded metal grid. Plastic may or may not be filled with soluble pore former. If it contains soluble pore former, treated to remove soluble pore former and increase porosity. Porous plastic then clamped into rig that allows plating solutions to flow through plastic. Lightweight nickel plaque used as electrode substrate for alkaline batteries, chiefly Ni and Cd electrodes, and for use as electrolyte-reservoir plates for fuel cells.
NASA Astrophysics Data System (ADS)
Jang, Gyoung Gug
The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under controlled hydraulic conditions. A method to achieve the time-resolved optical profile of EL Au plating was devised and provided a new transitional EL Au film growth model which validated mass transfer model prediction of the deposited thickness of ≤100 nm thin films. As a part of the project, validation of mass transfer model, a spectrophotometric method for quantitative analysis of metal ion is developed that improves the limit of detection comparable to conventional instrumental analysis. The present work suggests that modeling, fabrication and characterization of this novel CF-EL plating method is performed to achieve an ultimate purpose: developing a reliable, inexpensive wet chemical process for controlled metal thin film and nanostructure fabrication.
Reliability of copper wire bonds on a novel over-pad metallization
NASA Astrophysics Data System (ADS)
Kawashiro, Fumiyoshi; Itoh, Satoshi; Maeda, Takehiko; Hirose, Tetsuya; Yajima, Akira; Etoh, Takaki; Nishikawa, Hiroshi
2015-05-01
Wire bonding technology is used in most semiconductor products. Recently, high gold prices have forced semiconductor manufacturers to replace Au wires with Cu wires. Because Cu wire bonds are vulnerable to high temperature and humidity, they remain unpopular in automotive and industrial applications with narrow-bond-pad pitches and small deformed ball diameters. To avoid forming the corrosive Cu-rich intermetallic compound Cu9Al4, the use of a Ni/Pd(/Au) over-pad metallization (OPM) structure produced by electroless plating on the Al metallization has been proposed. However, certain technical issues must be overcome, such as variations in the purity and thickness of the plating. To tackle these issues, a novel OPM structure produced by physical vapor deposition is proposed and evaluated in this study.
Process for metallization of a substrate by irradiative curing of a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
1999-01-01
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by irradiating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface having metallic clusters. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
Process for metallization of a substrate by curing a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
2002-10-08
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by heating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface coated with catalyst solution. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
Investigate zero-stress replicated optics
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell; Rood, Robert
1993-01-01
The contracted activities for the procurement of 'Investigate Zero-Stress Replicated Optics' to support the AXAF-S x-ray spectrometer mirrors has been completed. To date four large Wolter I grazing incidence x-ray optical shells have been electroformed from nickel. The mirrors were fabricated utilizing each of two nickel alloy plated aluminum substrates twice. A wide variety of testing has been completed by NASA MSFC and UAH. This testing includes heat treatment control tests, subscale plating and fixture testing, alloy control of the electroless nickel, adhesion and release testing of the gold to electroless nickel, electroforming instrumentation and software and fabrication of subscale models. The full scale shells are one millimeter thick nickel electrodeposited over a thin gold layer which in turn has the optical surface on the inside. The optical surface is the replicate of the surface prepared on the substrate. Appendix I briefly outlines the fabrication process. Major objectives which were shared by UAH and MSFC include the design of facilities, equipment and tooling and procurement of materials and equipment. Process development followed with the fabrication of small scale pilot units. Procurement commenced immediately and equipment and materials were ordered to implement the fabrication of first surface full scale substrates (mandrels) and the second surface electroformed optical components. All principal objectives have been achieved. Inspection of the mirrors in visible and x-ray modes validates that the required performance and the quality can be achieved by an electroforming replication process. A very distinct progressive improvement has been achieved with each of the four mirrors produced. The final mirror exceeded the original goals and set an improved standard for flight hardware. The future goal of a 30 arc second resolution at 8 KEV x-ray appears to be achievable by this process when proper cleanliness and process control is utilized.
NASA Astrophysics Data System (ADS)
Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.
2018-03-01
Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.
Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment
NASA Astrophysics Data System (ADS)
Rajabalizadeh, Z.; Seifzadeh, D.
2017-11-01
The titanate conversion coating was applied as CrO3/HF free pretreatment for the electroless Ni-P plating on AM60B magnesium alloy. The microscopic images revealed that the alloy surface was completely covered by a cracked conversion film after titanate pretreatment which was mainly composed of Mg(OH)2/MgO, MgF2, TiO2, SiO2, and Al2O3/Al(OH)3. The microscopic images also revealed that numerous Ni nucleation centers were formed over the titanate film after short electroless plating times. The nucleation centers were created not only on the cracked area but also over the whole pretreated surface due to the catalytic action of the titanate film. Also, uniform, dense, and defect-free Ni-P coating with fine structure was achieved after 3 h plating. The Ni-P coating showed mixed crystalline-amorphous structure due to its moderate phosphorus content. The results of two traditional corrosion monitoring methods indicated that the Ni-P coating significantly increases the corrosion resistance of the magnesium alloy. Moreover, Electrochemical Noise (EN) method was used as a non-polarized technique to study the corrosion behavior of the electroless coating at different immersion times. The results of the EN tests were clearly showed the localized nature of the corrosion process. Micro-hardness value of the magnesium alloy was remarkably enhanced after the electroless plating. Finally, suitable adhesion between the Ni-P coating and the magnesium alloy substrate was confirmed by thermal shock and pull-off-adhesion tests.
Optimization of formaldehyde concentration on electroless copper deposition on alumina surface
NASA Astrophysics Data System (ADS)
Shahidin, S. A. M.; Fadil, N. A.; Yusop, M. Zamri; Tamin, M. N.; Osman, S. A.
2018-05-01
The effect of formaldehyde concentration on electroless copper plating on alumina wafer was studied. The main composition of plating bath was copper sulphate (CuSO4) as precursor and formaldehyde as a reducing agent. The copper deposition films were assessed by varying the ratio of CuSO4 and formaldehyde. The plating rate was calculated from the weight gained after plating process whilst the surface morphology was observed by field emission scanning electron microscopy (FESEM). The results show that 1:3 ratio of copper to formaldehyde is an optimum ratio to produce most uniform coating with good adhesion between copper layer and alumina wafer substrate.
Study of electroless Ni-W-P alloy coating on martensitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com
Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acidmore » or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).« less
Recovery process for electroless plating baths
Anderson, Roger W.; Neff, Wayne A.
1992-01-01
A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.
Recovery process for electroless plating baths
Anderson, R.W.; Neff, W.A.
1992-05-12
A process is described for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO[sub 3]. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths. 18 figs.
Extreme ultraviolet reflectivity studies of gold on glass and metal substrates
NASA Technical Reports Server (NTRS)
Jelinsky, Sharon R.; Malina, Roger F.; Jelinsky, Patrick
1988-01-01
The paper reports measurements of the extreme ultraviolet reflectivity of gold from 44 to 920 A at grazing incidence. Gold was deposited using vacuum evaporation and electroplating on substrates of glass and polished nickel, respectively. Measurements are also presented of the extreme ultraviolet reflectivity of electroless nickel in the same wavelength region, where one of the polished nickel substrates was used as a sample. Derived optical constants for evaporated and electroplated gold and electroless nickel are presented. Additional studies of the effects of various contaminants on the EUV reflectivity are also reported. The variations of the optical constants are discussed in terms of density variations, surface roughness and contamination effects. These results ae reported as part of studies for the Extreme Ultraviolet Explorer satellite program to determine acceptance criteria for the EUV optics, contamination budgets and calibration plans.
Tsao, Chia-Wen; Yang, Zhi-Jie
2015-10-14
Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.
NASA Astrophysics Data System (ADS)
Geng, Yamin; Lu, Canhui; Liang, Mei; Zhang, Wei
2010-12-01
In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.
Real time monitoring of electroless nickel plating
NASA Astrophysics Data System (ADS)
Rains, Aaron E.; Kline, Ronald A.
2013-01-01
This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.
Method of making sulfur-resistant composite metal membranes
Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO
2012-01-24
The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.
NASA Astrophysics Data System (ADS)
Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan
2016-03-01
How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.
Over the last decade electrodialysis has emerged as an effective technique for removing accumulated reactant counterions (sodium and sulfate) and reaction products (orthophosphite) that interfere with the electroless nickel plating process, thus extending bath life by up to 50 me...
A novel process of electroless Ni-P plating with plasma electrolytic oxidation pretreatment
NASA Astrophysics Data System (ADS)
Liu, Zhenmin; Gao, Wei
2006-12-01
A novel Ni based coating - plasma electrolytic oxidation (PEO) pre-treatment followed by electroless nickel (EN) plating - has been developed to produce pore free Ni coatings on AZ91 magnesium alloy. The application of the PEO film between the nickel coating and the substrate acts as an effective barrier and catalytic layer for the subsequent nickel plating. The potentiodynamic tests indicated that the corrosion current density of the PEO + EN plating on AZ91 decreased by almost two orders of magnitudes compared to the traditional EN coating. Salt fog spray testing further proved this improvement. More importantly, the new technique does not use Cr +6 and HF in its pretreatment, therefore is a much environmentally friendlier process.
Aluminum transfer method for plating plastics
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Stalmach, C. J., Jr.
1977-01-01
Electroless plating technique produces plate of uniform thickness. Hardness and abrasion resistance can be increased further by heat treatment. Method results in seamless coating over many materials, has low thermal conductivity, and is relatively inexpensive compared to conventional methods.
NASA Astrophysics Data System (ADS)
Ishikawa, Atsushi; Kato, Taiki; Takeyasu, Nobuyuki; Fujimori, Kazuhiro; Tsuruta, Kenji
2017-10-01
A technique of selective electroless plating onto PLA-ABS (Polylactic Acid-Acrylonitrile Butadiene Styrene) composite structures fabricated by three-dimensional (3D) printing is demonstrated to construct 3D microwave metamaterials. The reducing activity of the PLA surface is selectively enhanced by the chemical modification involving Sn2+ in a simple wet process, thereby forming a highly conductive Ag-plated membrane only onto the PLA surface. The fabricated metamaterial composed of Ag-plated PLA and non-plated ABS parts is characterized experimentally and numerically to demonstrate the important bi-anisotropic microwave responses arising from the 3D nature of metallodielectric structures. Our approach based on a simple wet chemical process allows for the creation of highly complex 3D metal-insulator structures, thus paving the way toward the sophisticated microwave applications of the 3D printing technology.
Aeroheating model advancements featuring electroless metallic plating
NASA Technical Reports Server (NTRS)
Stalmach, C. J., Jr.; Goodrich, W. D.
1976-01-01
Discussed are advancements in wind tunnel model construction methods and hypersonic test data demonstrating the methods. The general objective was to develop model fabrication methods for improved heat transfer measuring capability at less model cost. A plated slab model approach was evaluated with cast models containing constantan wires that formed single-wire-to-plate surface thermocouple junctions with a seamless skin of electroless nickel alloy. The surface of a space shuttle orbiter model was selectively plated with scaled tiles to simulate, with high fidelity, the probable misalignments of the heatshield tiles on a flight vehicle. Initial, Mach 8 heating results indicated a minor effect of tile misalignment roughness on boundary layer transition, implying a possible relaxation of heatshield manufacturing tolerances. Some loss of the plated tiles was experienced when the model was tested at high heating rates.
Evaluation of ENEPIG and Immersion Silver Surface Finishes Under Drop Loading
NASA Astrophysics Data System (ADS)
Pearl, Adam; Osterman, Michael; Pecht, Michael
2016-01-01
The effect of printed circuit board surface finish on the drop loading reliability of ball grid array (BGA) solder interconnects has been examined. The finishes examined include electroless nickel/electroless palladium/immersion gold (ENEPIG) and immersion silver (ImAg). For the ENEPIG finish, the effect of the Pd plating layer thickness was evaluated by testing two different thicknesses: 0.05 μm and 0.15 μm. BGA components were assembled onto the boards using either eutectic Sn-Pb or Sn-3.0Ag-0.5Cu (SAC305) solder. Prior to testing, the assembled boards were aged at 100°C for 24 h or 500 h. The boards were then subjected to multiple 1500-g drop tests. Failure analysis indicated the primary failure site for the BGAs to be the solder balls at the board-side solder interface. Cratering of the board laminate under the solder-attached pads was also observed. In all cases, isothermal aging reduced the number of drops to failure. The components soldered onto the boards with the 0.15- μm-Pd ENEPIG finish with the SAC305 solder had the highest characteristic life, at 234 drops to failure, compared with the other finish-solder combinations.
Enhanced Dissolution of Platinum Group Metals Using Electroless Iron Deposition Pretreatment
NASA Astrophysics Data System (ADS)
Taninouchi, Yu-ki; Okabe, Toru H.
2017-12-01
In order to develop a new method for efficiently recovering platinum group metals (PGMs) from catalyst scraps, the authors investigated an efficient dissolution process where the material was pretreated by electroless Fe deposition. When Rh-loaded alumina powder was kept in aqua regia at 313 K (40 °C) for 30 to 60 minutes, the Rh hardly dissolved. Meanwhile, after electroless Fe plating using a bath containing sodium borohydride and potassium sodium tartrate as the reducing and complexing agents, respectively, approximately 60 pct of Rh was extracted by aqua regia at 313 K (40 °C) after 30 minutes. Furthermore, when heat treatment was performed at 1200 K (927 °C) for 60 minutes in vacuum after electroless plating, the extraction of Rh approached 100 pct for the same leaching conditions. The authors also confirmed that the Fe deposition pretreatment enhanced the dissolution of Pt and Pd. These results indicate that an effective and environmentally friendly process for the separation and extraction of PGMs from catalyst scraps can be developed utilizing this Fe deposition pretreatment.
Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell
Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian
2016-01-01
Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm−2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm−2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg−1, about 4.5 times higher than that of commercial Pt/C. PMID:27966629
40 CFR 413.71 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... deposition of conductive material from an autocatalytic plating solution without application of electrical current. (c) The term operation shall mean any step in the electroless plating process in which a metal is...
Method for regeneration of electroless nickel plating solution
Eisenmann, Erhard T.
1997-01-01
An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.
Method for regeneration of electroless nickel plating solution
Eisenmann, E.T.
1997-03-11
An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.
NASA Astrophysics Data System (ADS)
Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang
2017-05-01
High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH4 solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L9(3)4) for Cu-Co-P coating as follows: CoSO4·7H2O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper polyalloy possessed high adhesive strength and the lowest surface resistance (8.06 Ω/sq), while maintaining reliability even after over 1000 times of bending and mechanical stress. The results of scanning electron microscope (SEM) and atomic force microscope (AFM) measurements showed that Cu-Co-P layer formed on PET surface was imparted with fine uniformity and high compactness. Electrochemical test revealed the optimized Cu-Co-P coatings exhibited high corrosion resistance in NaCl, NaOH and HCl solutions, respectively. The excellent electromagnetic interference shielding effectiveness (EMI SE >99.999% at frequency ranging from 30 MHz to 1000 MHz) of copper polyalloy/PET composites was confirmed by the spectrum analyzer. Therefore, this copper polyalloy will have potential applications in microelectronics packaging and coatings for anti-corrosion and electromagnetic interference shielding.
Electroless plating apparatus for discrete microsized particles
Mayer, Anton
1978-01-01
Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur.
Method for conducting electroless metal-plating processes
Petit, George S.; Wright, Ralph R.
1978-01-01
This invention is an improved method for conducting electroless metal-plating processes in a metal tank which is exposed to the plating bath. The invention solves a problem commonly encountered in such processes: how to determine when it is advisable to shutdown the process in order to clean and/or re-passivate the tank. The new method comprises contacting the bath with a current-conducting, non-catalytic probe and, during plating operations, monitoring the gradually changing difference in electropotential between the probe and tank. It has been found that the value of this voltage is indicative of the extent to which nickel-bearing decomposition products accumulate on the tank. By utilizing the voltage to determine when shutdown for cleaning is advisable, the operator can avoid premature shutdown and at the same time avoid prolonging operations to the point that spontaneous decomposition occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.
1993-10-01
The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings.more » The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.« less
Scheen, Gilles; Bassu, Margherita; Douchamps, Antoine; Zhang, Chao; Debliquy, Marc; Francis, Laurent A
2014-01-01
We present an original two-step method for the deposition via precipitation of Pd nanoparticles into macroporous silicon. The method consists in immersing a macroporous silicon sample in a PdCl2/DMSO solution and then in annealing the sample at a high temperature. The impact of composition and concentration of the solution and annealing time on the nanoparticle characteristics is investigated. This method is compared to electroless plating, which is a standard method for the deposition of Pd nanoparticles. Scanning electron microscopy and computerized image processing are used to evaluate size, shape, surface density and deposition homogeneity of the Pd nanoparticles on the pore walls. Energy-dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the composition of the deposited nanoparticles. In contrast to electroless plating, the proposed method leads to homogeneously distributed Pd nanoparticles along the macropores depth with a surface density that increases proportionally with the PdCl2 concentration. Moreover EDX and XPS analysis showed that the nanoparticles are composed of Pd in its metallic state, while nanoparticles deposited by electroless plating are composed of both metallic Pd and PdOx. PMID:27877732
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Tapas; Satpati, Biswarup, E-mail: biswarup.satpati@saha.ac.in; Kabiraj, D.
We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.
Study on micro-hardness of electroless composite plating of Ni-P with SiC Nano-particles
NASA Astrophysics Data System (ADS)
Sun, Yong; Zhang, Zhaoguo; Li, Jiamin; Xu, Donghui
2007-07-01
In this paper, a Ni-P electroless composite coating containing nano SiC particles was produced. The wearability of the composite coating was studied. Temperature, PH of the plating liquid and the concentration of SiC nanoparticles in the plating liquid were taken as parameters and the experiment with three factors and five levels was designed through the method of quadratic orthogonal rotation combination. SiC nanoparticles were dispersed by ultrasonic. The influence of the testing parameters on the hardness of the coating was studied intensively. The optimal parameters were obtained when the temperature is 86+/-1°C, PH is 6+/-0.5 and the concentration of SiC nanoparticles is 6g/L. The maximal hardness of the coating is over 1700HV after heat treatment.
The Morphology of Silver Layers on SU8 polymers prepared by Electroless Deposition
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Yuan, Biao; Heinrich, Helge; Grabill, Chris; Williams, Henry; Kuebler, Stephen; Bhattacharya, Aniket
2010-03-01
Silver was deposited onto the functionalized surface of polymeric SU-8 where gold nanoparticles (Au-NPs) act as nucleation sites using electroless metallization chemistry. Here we report on the evolution of the nanoscale morphology of deposited Ag studied by Transmission Electron Microscopy (TEM). In TEM of sample cross sections correlations between the original gold and the silver nanoparticles were obtained while plan-view TEM results showed the distribution of nanoparticles on the surface. Scanning TEM with a high-angle annular dark field detector was used to obtain atomic number contrast. The morphology of the deposited Ag was controlled through the presence and absence of gum Arabic. The thickness and height fluctuations of the Ag layer were determined as a function of time and a statistical analysis of the growth process was conducted for the initial deposition periods.
NASA Astrophysics Data System (ADS)
Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.
2014-04-01
A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.
Process for electroless deposition of metals on zirconium materials
Donaghy, Robert E.
1978-01-01
A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.
Electroless deposition process for zirconium and zirconium alloys
Donaghy, R. E.; Sherman, A. H.
1981-08-18
A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.
Electroless deposition process for zirconium and zirconium alloys
Donaghy, Robert E.; Sherman, Anna H.
1981-01-01
A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.
Kim, Taegyu
2015-08-01
In the present study, nano-porous anodized aluminum oxide (AAO) was used as a support of the Pd membrane. The AAO fabrication process consists of an electrochemical polishing, first/second anodizing, barrier layer dissolving and pores widening. The Pd membrane was deposited on the AAO support using an electroless plating with ethylenediaminetetraacetic acid (EDTA) as a plating agent. The AAO had the regular pore structure with the maximum pore diameter of ~100 nm so it had a large opening area but a small free standing area. The 2 µm-thick Pd layer was obtained by the electroless plating for 3 hours. The Pd layer thickness increased with increasing the plating time. However, the thickness was limited to ~5 µm in maximum. The H2 permeation flux was 0.454 mol/m2-s when the pressure difference of 66.36 kPa0.5 was applied at the Pd membrane under 400 °C.
Gedvilas, Mindaugas; Ratautas, Karolis; Kacar, Elif; Stankevičienė, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Li Pira, Nello; Račiukaitis, Gediminas
2016-01-01
In this work a novel colour-difference measurement method for the quality evaluation of copper deposited on a polymer is proposed. Laser-induced selective activation (LISA) was performed onto the surface of the polycarbonate/acrylonitrile butadiene styrene (PC/ABS) polymer by using nanosecond laser irradiation. The laser activated PC/ABS polymer was copper plated by using the electroless copper plating (ECP) procedure. The sheet resistance measured by using a four-point probe technique was found to decrease by the power law with the colour-difference of the sample images after LISA and ECP procedures. The percolation theory of the electrical conductivity of the insulator conductor mixture has been adopted in order to explain the experimental results. The new proposed method was used to determine an optimal set of the laser processing parameters for best plating conditions. PMID:26960432
Electroless Plated Nanodiamond Coating for Stainless Steel Passivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Korinko, P.; Spencer, W.
Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivitymore » with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2, while H 2O off-gas rate was on the level of 10 -15 l mbar/s cm 2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and unmeasurable HD formation. ND and Cu were initially chosen to develop improved passivation technology, because Cu has a lower permeability of hydrogen, and diamond is more inert than other materials under a hydrogen atmosphere. However, our tests demonstrated that even after an 8-18 day vacuum extraction heat treatment, the electroless plated Cu and ND-Cu coated stainless steel CFVAs exhibited H 2 off-gassing rates that were just comparable to those for the untreated or electropolished stainless steel CFVA, and the HD formation was still observed. Thus, the Restek Electro-Polished (EP) bottle outperformed the electroless plated Cu and ND-Cu coated stainless steel CFVAs, and the electroless plated nanodiamond coating is not promising as a surface passivation technology. However, the ND-Cu coating may be beneficial to another application in which catalyzing the H 2-D 2 exchange reaction is desired.« less
NASA Technical Reports Server (NTRS)
Berkowitz, J. B.; Emerson, N. H.
1972-01-01
Results are presented of a comprehensive search of the literature available, much of which has been generated by the research centers of NASA and its contractors, on plating and coating methods and techniques. Methods covered included: (1) electroplating from aqueous solutions; (2) electroplating from nonaqueous solutions; (3) electroplating from fused-salt baths; (4) electroforming; (5) electroless plating, immersion plating, and mirroring; (6) electroplating from gaseous plasmas; and (7) anodized films and conversion coatings.
NASA Astrophysics Data System (ADS)
Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji
2014-03-01
A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket
2011-03-01
Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.
Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint
NASA Astrophysics Data System (ADS)
Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo
2011-09-01
Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.
Modification and Utilization of Nanoporous Gold for Loading and Release of Drugs
NASA Astrophysics Data System (ADS)
Al-badri, Ibtisam
Nanoporous gold (np-Au) is a sponge-like structure of gold, which can be created by removing the less noble element from the precursor alloy, most typically silver or copper, using different chemical or electrochemical methods. It consists of interconnected ligaments and gaps between the ligaments, whose width can range from a few nanometers to a few hundreds of nanometers, creating a high surface area-to-volume ratio. Due to its many important properties (e.g., conductivity, high surface area-to-volume ratio, plasmonic response, biocompatibility, chemically inertness, and physically robustness), np-Au is suitable for different types of applications, including as a transducer for biosensors, in catalysis, for biomolecule separation, as a substrate for enzyme immobilization, and in drug delivery. The widths of the ligaments and gaps of np-Au can be easily tuned by varying conditions during the pre- or post-production process, for example, time kept in an acid bath and post-annealing (e.g. thermal, chemical, and electrochemical), depending on the requirement of the study. Thermal annealing is a commonly used process for tuning the ligaments and pore size of np-Au. However, the effects of thermal annealing on modification of ligaments and gaps sizes are not completely understood and more research needs to be done. Herein, we have explored the effect of annealing time and thickness of the np-Au sample on modification of ligaments and gaps. Furthermore, we used the electroless plating method to cover the pores or gaps partially on the surface without modifying the interior of np-Au. As-prepared np-Au was then studied as a platform for molecular loading and releasing kinetics for the possible use in drug delivery. We have found that simply applying the electroless deposition for 1 to 5 min can drastically decrease the rate of release of the molecules, and flow cell-based loading is the preferred way to load the molecules inside np-Au compared to the static method. The structure of the np-Au monoliths before and after the modification was characterized using Energy-Dispersive X-ray Spectroscopy (EDS) and scanning electron microscopy (SEM), whereas the molecular loading and releasing studies were performed using UV-Vis spectrophotometer.
Backside contacted field effect transistor array for extracellular signal recording.
Ingebrandt, S; Yeung, C K; Staab, W; Zetterer, T; Offenhäusser, A
2003-04-01
A new approach to the design of field-effect transistor (FET) sensors and the use of these FETs in detecting extracellular electrophysiological recordings is reported. Backside contacts were engineered by deep reactive ion etching and a gas phase boron doping process of the holes using planar diffusion sources. The metal contacts were designed to fit on top of the bonding pads of a standard industrial 22-pin DIL (dual inline) chip carrier. To minimise contact resistance, the metal backside contacts of the chips were electroless plated with gold. The chips were mounted on top of the bonding pads using a standard flip-chip process and a fineplacer unit previously described. Rat embryonic myocytes were cultured on these new devices (effective growth area 6 x 6 mm(2)) in order to confirm their validity in electrophysiological recording. Copyright 2003 Elsevier Science B.V.
Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles
NASA Astrophysics Data System (ADS)
Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima; Kardynal, Beata; Malureanu, Radu; Mortensen, N. Asger; Lavrinenko, Andrei V.
2017-01-01
Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.
Many recent pilot tests have demonstrated the benefits and cost effectiveness of point-of-use treatment technologies as opposed to centralized wastewater treatment for all sizes of plating facilities. A 9-month case study at a small plating facility in Cincinnati, OH utilizing po...
A novel method of reducing agent contacting pattern for metal ceramic composite membrane fabrication
NASA Astrophysics Data System (ADS)
Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil
2014-11-01
Deliberating upon process modifications for surfactant induced electroless plating (SIEP), this article highlights the plating bath performance characteristics for two distinct reducing agent contacting modes (bulk and drop wise). Eventually, the effect of reducing agent concentration (50, 100, 200% excess) suitable for electroless plating bath for a nickel concentration of 0.08 mol/L was investigated. Finally, the compatibility of variation in nickel concentration (0.08-0.24 mol/L) with respect to variation in reducing agent concentration (50, 100, 200% excess) was investigated. LPSA, BET, FTIR, XRD, FESEM and nitrogen permeation experiments were used for surface and physical characterization. It was observed that for the bulk addition of reducing agent, the PPD values were 84.5% which increased to 89.3% for dropwise addition case. Thus the optimal combinations of SIEP process parameters were identified as 0.08 mol/L of nickel metal solution concentration with 100% excess drop-wise reducing agent. These conditions provided a plating rate of 5.5 × 10-5 mol/m2 s, PPD of 89.3% and a metal film thickness of 15.7 μm respectively after 12 h of sequential plating.
Ballantyne, Andrew D; Forrest, Gregory C H; Frisch, Gero; Hartley, Jennifer M; Ryder, Karl S
2015-11-11
In this study we compare the electrochemical and structural properties of three gold salts AuCl, AuCN and KAu(CN)2 in a Deep Eutectic Solvent (DES) electrolyte (Ethaline 200) in order to elucidate factors affecting the galvanic deposition of gold coatings on nickel substrates. A chemically reversible diffusion limited response was observed for AuCl, whereas AuCN and KAu(CN)2 showed much more complicated, kinetically limited responses. Galvanic exchange reactions were performed on nickel substrates from DES solutions of the three gold salts; the AuCN gave a bright gold coating, the KAu(CN)2 solution give a visibly thin coating, whilst the coating from AuCl was dull, friable and poorly adhesive. This behaviour was rationalised by the differing speciation for each of these compounds, as evidenced by EXAFS methods. Analysis of EXAFS data shows that AuCl forms the chlorido-complex [AuCl2](-), AuCN forms a mixed [AuCl(CN)](-) species, whereas KAu(CN)2 maintains its [Au(CN)2](-) structure. The more labile Cl(-) enables easier reduction of Au when compared to the tightly bound cyanide species, hence leading to slower kinetics of deposition and differing electrochemical behaviour. We conclude that metal speciation in DESs is a function of the initial metal salt and that this has a strong influence on the mechanism and rate of growth, as well as on the morphology of the metal deposit obtained. In addition, these coatings are also extremely promising from a technological perspective as Electroless Nickel Immersion Gold (ENIG) finishes in the printed circuit board (PCB) industry, where the elimination of acid in gold plating formulation could potentially lead to more reliable coatings. Consequently, these results are both significant and timely.
40 CFR 63.11505 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... electroplating; electroforming; electropolishing; electroless plating or other non-electrolytic metal coating... Chromium Electroplating and Chromium Anodizing Tanks). (2) Research and development process units, as...
Cho, Sang-Jin; Nguyen, Trieu; Boo, Jin-Hyo
2011-06-01
Microwave (MW) plasma was applied to the surface of polyimide (PI) films as a treatment to enhance the adhesion between copper deposition layer and PI surface for electroless plating. The influences of nitrogen MW plasma treatment on chemical composition of the PI surface were investigated by using X-Ray photoelectron spectroscopy (XPS). The wettability was also investigated by water contact angle measurement. The surface morphologies of PI films before and after treatment were characterized with atomic force microscopy (AFM). The contact angle results show that was dramatically decreased to 16.1 degrees at the optimal treatment condition from 72.1 degrees (untreated PI). However, the root mean square (RMS) roughness of treated PI film was almost unchanged. The AFM roughness was stayed from 1.0 to 1.2 with/without plasma treatment. XPS data show a nitrogen increase when PI films exposed to N2 MW plasma. Electroless copper depositions were carried out with the free-formaldehyde method using glyoxylic acid as the reducing reagent and mixture palladium chloride, tin chloride as activation solution. Adhesion property between polyimide surface and copper layer was investigated by tape test.
NASA Astrophysics Data System (ADS)
Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.
2014-01-01
The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.
Development of low cost contacts to silicon solar cells
NASA Technical Reports Server (NTRS)
Tanner, D. P.; Iles, P. A.
1980-01-01
A copper based contact system using plated Pd-Cr-Cu was developed. Good cells were made but cells degraded under low temperature (300 C) heat treatments. The degradation was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. An electroless nickel solution was substituted for the electroless chromium solution in the original process.
McCormick, James T.; Ferry, Paul B.; Hall, John C.
1981-10-06
There is disclosed a positive cathode electrode structure formed by brazing a thin porous membrane to a backing material by preselecting a predetermined area of the thin porous membrane and thereafter providing a braze flow barrier throughout the remainder of the membrane and electrolessly plating a nickel-phosphide alloy on the backing material, or in this case the honeycomb structure. The preselected area of the thin porous membrane is placed in intimate contact with the electrolessly plated portion of the backing material and heated to elevated temperatures in the absence of oxygen to form a brazed joint limited to a preselected area. If the braze flow barrier is provided by application of a liquid organic solvent, then the organic solvent is driven off by maintaining the thin porous membrane at elevated temperatures for an extended period of time prior to the brazing operation.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Ping; Dai, Hong-Bin; Wu, Lin-Song; Wang, Ping
2017-07-01
Hydrazine is a promising energy carrier for fuel cells owing to its combined advantages of high theoretical cell voltage, high-power density, and no greenhouse gas emission. By using an electroless plating process, we have prepared a robust Ni-B film grown on Ni foam that is highly effective for hydrazine electrooxidation in alkaline media. The effects of reaction temperature, concentrations of hydrous hydrazine and sodium hydroxide in the fuel solution on performance of hydrazine electrooxidation reaction are investigated. The mechanistic reason for the property advantage of as-prepared Ni-B/Ni foam catalyst over the relevant catalysts is discussed based on careful kinetics studies and characterization. The facile synthesis of Ni-based catalyst with high activity and good stability is of clear significance for the development of hydrous hydrazine as a viable energy carrier.
Silver nanoparticles-coated glass frits for silicon solar cells
NASA Astrophysics Data System (ADS)
Li, Yingfen; Gan, Weiping; Li, Biyuan
2016-04-01
Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.
NASA Astrophysics Data System (ADS)
Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing
2018-05-01
Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l-1, 30 g l-1, 60 g l-1, 90 g l-1) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l-1, the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l-1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.
Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing
2018-05-01
Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l -1 , 30 g l -1 , 60 g l -1 , 90 g l -1 ) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni 2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l -1 , the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l -1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.
NASA Astrophysics Data System (ADS)
Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng
2013-12-01
In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamartine, J T; Thurber, W C
1959-06-01
The feasibility of using electroless nickel, a chemical deposit containing about 10 wt.% phosphorous in nickel, as the brazing alloy for assembling tubular stainless steel fuel elements of the type specified in Core I of the N. S. Savannah was investigated. This material was selected primarily because of the ease of braze-metal preplacement by chemical deposition of the alloy on type 304 stainiess steel ferrule spacers, prior to fuelbundle assembly. Brazed joints produced by this method were generally characterized by a relatively ductile solid-solution region at the thinnest portions of the fillet. This ductile zone should minimize the possibility ofmore » complete propagation of hairline cracks, which form in the brittle, eutectic regions of fillet. The microstructural appearance of the electroless-nickel joints was not appreciably affected by variations in the brazing temperature from 1750 to 1900 deg F or the brazing time from 15 to 60 min. Several plating solutions were evaluated and all were found to be capable of producing deposits suitable for brazing applications. Corrosion tests conducted in static 525 deg F water indicated that no significant attack of joints brazed with electroless nickel had occurred after 300-hr exposure. A small fuel bundle was successfully assembled by brazing with electroless nickel. (auth)« less
Metallization of Self-Assembled DNA Templates for Electronic Circuit Fabrication
NASA Astrophysics Data System (ADS)
Uprety, Bibek
This work examines the deposition of metallic and semiconductor elements onto self-assembled DNA templates for the fabrication of nanodevices. Biological molecules like DNA self-assemble into a variety of 2- and 3-D architectures without the need for patterning tools. The templates can also be designed to controllably place functional nanomaterials with molecular precision. These characteristics make DNA an attractive template for fabricating electronic circuits. However, electrically conductive structures are needed for electronic applications. While metallized DNA nanostructures have been demonstrated, the ability to make thin, continuous wires that are electrically conductive still represents a formidable challenge. DNA-templated wires have generally been granular in appearance with a resistivity approximately two to three orders of magnitude higher than that of the bulk material. An improved method for the metallization of DNA origami is examined in this work that addresses these challenges of size, morphology and conductivity of the metallized structure. Specifically, we demonstrated a metallization process that uses gold nanorod seeds followed by anisotropic electroless (autocatalytic) plating to provide improved morphology and greater control of the final metallized width of conducting metal lines. Growth during electroless deposition occurs preferentially in the length direction at a rate that is approximately four times the growth rate in the width direction, which enables fabrication of narrow, continuous wires. The electrical properties of 49 nanowires with widths ranging from 13 nm to 29 nm were characterized, and resistivity values as low as 8.9 x 10-7 -m were measured, which represent some of the smallest nanowires and the lowest resistivity values reported in the literature. The metallization procedure developed on smaller templates was also successfully applied to metallize bigger DNA templates of tens of micrometers in length. In addition, a polymer-assisted annealing process was discovered to possibly improve the resistivity of DNA metal nanowires. Following metallization of bigger DNA origami structures, controlled placement of nanorods on a DNA breadboard to make rectangular, square and T-shaped metallic structures was also demonstrated. For site-specific placement, we modified the surface of the gold nanorods with single-stranded DNA. The rods were then attached to DNA templates via complementary base-pairing between the DNA on the nanorods and the attachment strands engineered into the DNA "breadboard" template. Gaps between the nanorods were then filled controllably via anisotropic plating to make 10 nm diameter continuous metallic structures. Finally, controlled placement of metal (gold) - semiconductor (tellurium) materials on a single DNA origami template was demonstrated. The combination of molecularly directed deposition of different nanomaterials and anisotropic metallization presented in this work represents important progress towards the creation of nanoelectronic devices from self-assembled biological templates.
NASA Astrophysics Data System (ADS)
Uttam, Vibha; Duchaniya, R. K.
2016-05-01
Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.
Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy
NASA Astrophysics Data System (ADS)
Probst, Camille
A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe size smaller than the size of the observed object (sample features) does not improve the spatial resolution. In addition, the effects of the accelerating voltage, the current intensity and the sample geometry and composition were analysed.
Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang
2017-11-30
Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.
Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.
Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang
2018-06-01
Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.
NASA Astrophysics Data System (ADS)
Huang, Ying; Peng, Xuanyi; Yang, Yiwen; Wu, Haiwei; Sun, Xu; Han, Xiaopeng
2018-03-01
Proper process and parameter were investigated to coat Cu or Ni on graphite flake (Gf) by electroless plating. Microstructural characterization indicated that the Cu/Ni was coated on the Gf uniformly and comprehensively. Then aluminum matrix composites reinforced with Si and graphite were fabricated by a unique vacuum gas pressure infiltration. The thermal conductivity and mechanical properties of the composites, both with and without Cu or Ni coating layers on the graphite surface, have been studied. The obtained results indicated that the mechanical property of the Cu or Ni coated Gf/Si/Al composites dramatically increased, as compared with the non-coated Gf/Si/Al composite. In the meantime, Cu or Ni coated Gf proved to have better wettability and interfacial bonding with the aluminum matrix, which were expected to be a highly sustainable and dispersible reinforcement for metal matrix composites.
NASA Astrophysics Data System (ADS)
Hong, Bo; Jiang, Liangxing; Hao, Ketao; Liu, Fangyang; Yu, Xiaoying; Xue, Haitao; Li, Jie; Liu, Yexiang
2014-06-01
In this paper, a lightweight Pb plated Al (Al/Pb) grid was prepared by molten salt electroless plating. The SEM and bonding strength test show that the lead coating is deposited with a smooth surface and firm combination. CV test shows that the electrochemical properties of Al/Pb electrodes are stable. 2.0 V single-cell flooded lead-acid batteries with Al/Pb grids as negative collectors are assembled and the performances including 20 h capacity, rate capacity, cycle life, internal resistance are investigated. The results show that the cycle life of Al/Pb-grid cells is about 475 cycles and can meet the requirement of lead-acid batteries. Al/Pb grids are conducive to the refinement of PbSO4 grain, and thereby reduce the internal resistance of battery and advance the utilization of active mass. Moreover, weight of Al/Pb grid is only 55.4% of the conventional-grid. In this way, mass specific capacity of Al/Pb-grid negatives is 17.8% higher and the utilization of active mass is 6.5% higher than conventional-grid negatives.
Jeong, Haksan; Myung, Woo-Ram; Sung, Yong-Gue; Kim, Kyung-Yeol; Jung, Seung-Boo
2018-09-01
Microstructures and mechanical property of Sn-3.0Ag-0.5Cu (SAC305) and epoxy Sn-3.0Ag-0.5Cu (epoxy SAC) solder joints were investigated with various surface finishes; organic solderability preservative (OSP), electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). Bending property of solder joints was evaluated by 3-point bend test method. Microstructure and chemical composition of solder joints was characterized by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively. Epoxy did not effect on intermetallic compound (IMC) morphology. Scalloped shaped Cu6Sn5 IMC was observed at OSP surface finish. Chunky-like shaped and needle-like shaped (Ni,Cu)6Sn5 IMC were observed at the solder/ENIG joint and solder/ENEPIG joint, respectively. The bending cycles of SAC305/OSP joint, SAC305/ENIG joints and SAC305/ENEPIG joints were 720, 440 and 481 cycle numbers. The bending cycles of epoxy SAC and three types surface finished solder joints were over 1000 bending cycles. Under OSP surface finish, bending cycles of epoxy SAC solder was approximately 1.5 times higher than those of SAC305 solder joint. Bending cycles of epoxy SAC solder was over twice times higher than those of SAC305 solder with ENIG and ENEPIG surface finishes. The bending property of epoxy solder joint was enhanced due to epoxy fillet held the solder joint.
Pre-treatment for molybdenum or molybdenum-rich alloy articles to be plated
Wright, Ralph R.
1980-01-01
This invention is a method for etching a molybdenum or molybdenum-rich alloy surface to promote the formation of an adherent bond with a subsequently deposited metallic plating. In a typical application, the method is used as a pre-treatment for surfaces to be electrolessly plated with nickel. The pre-treatment comprises exposing the crystal boundaries of the surface by (a) anodizing the surface in acidic solution to form a continuous film of gray molybdenum oxide thereon and (b) removing the film.
40 CFR 413.71 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 413.71 Section 413.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroless Plating Subcategory § 413.71 Specialized...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uttam, Vibha, E-mail: vibhauttam74@gmail.com; Duchaniya, R. K., E-mail: rkduchaniya.meta@mnit.ac.in
2016-05-06
Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO{sub 2} on mild steel are deposited by varying volume of TiO{sub 2} nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent,more » lactic acid as a complexing agents and TiO{sub 2} nano powder. Electroless Ni-P-TiO{sub 2} coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO{sub 2} nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy–dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coating.« less
Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas
2017-08-01
Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.
NASA Astrophysics Data System (ADS)
Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui
2018-04-01
Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.
Strong mechanical adhesion of gold electroless contacts on CdZnTe deposited by alcoholic solutions
NASA Astrophysics Data System (ADS)
Benassi, G.; Nasi, L.; Bettelli, M.; Zambelli, N.; Calestani, D.; Zappettini, A.
2017-02-01
CdZnTe crystals are nowadays employed as X-ray detectors for a number of applications, such as medical imaging, security, and environmental monitoring. One of the main difficulties connected with CdZnTe-based detector processing is the poor contact adhesion that affect bonding procedures and device long term stability. We have shown that it is possible to obtain mechanically stable contacts by common electroless deposition using alcoholic solutions instead of water solutions. The contacts show blocking current-voltage characteristic that is required for obtaining spectroscopic detectors. Nanoscale-resolved chemical analysis indicated that the improved mechanical adhesion is due to a better control of the stoichiometry of the CdZnTe layer below the contact.
CARBON BLACK DISPERSION PRE-PLATING TECHNOLOGY FOR PRINTED WIRE BOARD MANUFACTURING
This evaluation addresses the product quality, waste reduction, and economic issues involved in replacing electroless copper with a carbon black dispersion technology. McCurdy Circuits of Orange County, California, currently has both processes in operation. McCurdy has found that...
In-depth survey report of American Airlines plating facility
NASA Astrophysics Data System (ADS)
Mortimer, V. D., Jr.
1982-12-01
An in depth survey was conducted at the American Airlines Maintenance and Engineering Center as part of National Institute for Occupational Safety and Health (NIOSH) study evaluating measures to control occupational health hazards associated with the metal plating industry. This American Airlines plating facility, employing approximately 25 workers, is primarily engaged in plating hard chromium, nickel and cadmium on aircraft engine and landing gear parts. Six tanks were studied, including an electroless nickel tank. Area and personal samples for chromium, nickel, cadmium, and cyanide were collected. Ventilation airflow and tank dimensions were measured and data recorded on plating operations. The relationships between air contaminants emitted, local exhaust ventilation flow rate, tank size, and plating activity were evaluated.
Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane
NASA Astrophysics Data System (ADS)
Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.
2018-06-01
A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.
NASA Astrophysics Data System (ADS)
Bi, Siyi; Zhao, Hang; Hou, Lei; Lu, Yinxiang
2017-10-01
The primary objective of this research work was to develop high-performance conductive fabrics with desired electromagnetic interference (EMI) shielding effectiveness (SE), excellent durability and improved corrosion resistance. Such conductive fabrics were fabricated by combining an ultra-low-cost electroless plating method with an alkoxy silane self-assembly technology, which involved successive steps of modification, activation, Co-Ni-P coating deposition and 3-aminopropyltrimethoxysilane (APTMS) thin coatings assembling. Malic acid (MA) was selected to modify the pristine Tencel (TS) substrates, and the probably interaction mechanism was investigated by FT-IR measurement. Co0 and Ni0 nanoparticles (NPs) were used as the activators to initiate electroless plating, respectively, and thereby two categories of Co-Ni-P coatings with different Co/Ni atomic ratio were obtained. Both of them presented compact morphologies and preferential (1 1 1) crystal orientation, which were validated by FE-SEM and XRD measurements. Owing to the lower square resistance and higher magnetic properties, the Co-Ni-P coated fabric activated by Co0 activator showed a higher EMI SE (18.2-40.1 dB) at frequency of 30-1000 MHz. APTMS thin coatings were then assembled on the top of alloy coated fabrics to act as anti-corrosion barriers. Electrochemical polarization measurement in 3.5 wt.% NaCl solution showed that top-APTMS coated conductive fabric exhibited a higher corrosion resistance than the one in absence of APTMS assembly. Overall, the whole process of fabrication could be performed in several hours (or less) without any specialized equipment, which shows a great potential as EMI shielding fabrics in mass-production.
NASA Astrophysics Data System (ADS)
Bian, Juan; Lan, Fang; Wang, Yilong; Ren, Ke; Zhao, Suling; Li, Wei; Chen, Zhihong; Li, Jiangyu; Guan, Jianguo
2018-04-01
We have developed a novel seed-mediated growth method to fabricate nickel-coated graphite composite particles (GP@Ni-CPs) with controllable shell morphology by simply adjusting the concentration of sodium hydroxide ([NaOH]). The fabrication of two kinds of typical GP@Ni-CPs includes adsorption of Ni2+ via electrostatic attraction, sufficient heterogeneous nucleation of Ni atoms by an in situ reduction, and shell-controlled growth by regulating the kinetics of electroless Ni plating in turn. High [NaOH] results in fast kinetics of electroless plating, which causes heterogeneous nuclei to grow isotropically. After fast and uniform growth of Ni nuclei, GP@Ni-CPs with dense shells can be achieved. The first typical GP@Ni-CPs exhibit denser shells, smaller diameters and higher conductivities than the available commercial ones, indicating their important applications in the conducting of polymer-matrix composites. On the other hand, low [NaOH] favors slow kinetics. Thus, the reduction rate of Ni2+ slows down to a relatively low level so that electroless plating is dominated thermodynamically instead of kinetically, leading to an anisotropic crystalline growth of nuclei and finally to the formation of GP@Ni-CPs with nanoneedle-like shells. The second typical samples can effectively catalyze the reduction of p-nitrophenol into p-aminophenol with NaBH4 in comparison with commercial GP@Ni-CPs and RANEY® Ni, owing to the strong charge accumulation effect of needle-like Ni shells. This work proposes a model system for fundamental investigations and has important applications in the fields of electronic interconnection and catalysis.
Electroless metal plating of plastics
Krause, Lawrence J.
1986-01-01
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
Electroless metal plating of plastics
Krause, L.J.
1982-09-20
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
Electroless metal plating of plastics
Krause, Lawrence J.
1984-01-01
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
A Palladium free method to create a Nickel coated electrode for electrochemical application
NASA Astrophysics Data System (ADS)
Tran, Thien Khanh; Vu, Thanh, Vi; Vo, Minh Xuan
2018-04-01
For many generations, the coating of metals provides many applications in the industry: decoration, functional, electroforming. Electroless plating of Nickel with the supports of Palladium/Tin is famous for its properties and effects. In this study, we provide another catalysis solution for the electroless plating process of Nickel. With plastic Polyvinyl Chloride substrate controlled in thickness (2 mm) and scale (200x400 mm), the efficiency of the coating process was carried out under simple lab scale condition. The result of the process is a thin film layer of Nickel coated on the surface of the substrate with exceptional adhesion and strong physical properties also. The product sample then was tested by many methods such as SEM, XRD, EDS, and FTIR to clarify its properties. According to our observation and the result we obtained, we believe there is still more room for improvement to this method, and a further investigation on its application as well can be carried on in the future.
Park, Soo-Jin; Jang, Yu-Sin; Rhee, Kyong-Yop
2002-01-15
In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Huang, Yingqiu; Liu, Xiangyu; Yang, Lei; Shi, Changdong; Wu, Yucheng; Tang, Wenming
2018-03-01
Composites of 40Cu/Ag(Invar) were prepared via pressureless sintering and subsequent thermo-mechanical treatment from raw materials of electroless Ag-plated Invar alloy powder and electrolytic Cu powder. Microstructures and properties of the prepared composites were studied to evaluate the effect of the Ag layer on blocking Cu/Invar interfacial diffusion in the composites. The electroless-plated Ag layer was dense, uniform, continuous, and bonded tightly with the Invar alloy substrate. During sintering of the composites, the Ag layer effectively prevented Cu/Invar interfacial diffusion. During cold-rolling, the Ag layer was deformed uniformly with the Invar alloy particles. The composites exhibited bi-continuous network structure and considerably improved properties. After sintering at 775 °C and subsequent thermo-mechanical treatment, the 40Cu/Ag(Invar) composites showed satisfactory comprehensive properties: relative density of 99.0 pct, hardness of HV 253, thermal conductivity of 55.7 W/(m K), and coefficient of thermal expansion of 11.2 × 10-6/K.
NASA Astrophysics Data System (ADS)
Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.
2012-05-01
Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.
40 CFR 413.72-413.73 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 413.72-413.73 Section 413.72-413.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroless Plating Subcategory §§ 413.72-413.73 [Reserved] ...
Laboratory Demonstration of Low-Cost Method for Producing Thin Film on Nonconductors.
ERIC Educational Resources Information Center
Ebong, A. U.; And Others
1991-01-01
A low-cost procedure for metallizing a silicon p-n junction diode by electroless nickel plating is reported. The procedure demonstrates that expensive salts can be excluded without affecting the results. The experimental procedure, measurement, results, and discussion are included. (Author/KR)
NASA Astrophysics Data System (ADS)
Meenan, B. J.; Brown, N. M. D.; Wilson, J. W.
1994-03-01
A PdCl 2/SnCl 2 metallisation catalyst system, of the type used to activate non-conducting surfaces for electroless metal deposition, has been characterised by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The substrate is a barium titanate (BaTiO 3)-based electroactive ceramic of the type used in the fabrication of multilayer ceramic capacitors (MLCC). The treatment of the substrate surface with the PdCl 2/SnCl 2 "sensitiser" solution leads to the adsorption of catalytically inactive compounds of palladium and tin. Subsequent treatment of this surface with an "accelerator" solution removes excess oxides, hydroxides and salts of tin thereby leaving the active catalyst species, Pd xSn y, on the surface. Such sites, on exposure to the appropriete electroless plating bath, are then responsible for the metal deposition. In this study, the chemical state and relative quantities of the various surface species present after each of the processing stages have been determined by XPS. The surface roughness of the substrate results in less of the tin compounds present thereon being removed on washing the catalysed surface in the accelerator solution than normally reported for such systems, thereby affecting the measured Pd: Sn ratio. SEM studies show that the accelerator solution treatment generates crystalline areas, which may be a result of coagulation of the Pd xSn y particles present, in the otherwise amorphous catalyst coating.
NASA Astrophysics Data System (ADS)
Oda, Yukinori; Fukumuro, Naoki; Yae, Shinji
2018-04-01
Using an electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish with a thick palladium-phosphorus (Pd-P) layer of 1 μm, the intermetallic compound (IMC) growth between the ENEPIG surface finish and lead-free solders Sn-3.5Ag (SA) or Sn-3.0Ag-0.5Cu (SAC) after reflow soldering and during solid-state aging at 150°C was investigated. After reflow soldering, in the SA/ENEPIG and SAC/ENEPIG interfaces, thick PdSn4 layers of about 2 μm to 3 μm formed on the residual Pd-P layers ( 0.5 μm thick). On the SA/ENEPIG interface, Sn was detected on the upper side of the residual Pd-P layer. On the SAC/ENEPIG interface, no Sn was detected in the residual Pd-P layer, and Cu was detected in the interface between the Pd-P and PdSn4 layers. After 300 h of aging at 150°C, the residual Pd-P layers had diffused completely into the solders. In the SA/ENEPIG interface, an IMC layer consisting of Ni3Sn4 and Ni3SnP formed between the PdSn4 layer and the nickel-phosphorus (Ni-P) layer, and a (Pd,Ni)Sn4 layer formed on the lower side of the PdSn4 layer. On the SAC/ENEPIG interface, a much thinner (Pd,Ni)Sn4 layer was observed, and a (Cu,Ni)6Sn5 layer was observed between the PdSn4 and Ni-P layers. These results indicate that Ni diffusion from the Ni-P layer to the PdSn4 layer produced a thick (Pd,Ni)Sn4 layer in the SA solder case, but was prevented by formation of (Cu,Ni)6Sn5 in the SAC solder case. This causes the difference in solder joint reliability between SA/ENEPIG and SAC/ENEPIG interfaces in common, thin Pd-P layer cases.
NASA Astrophysics Data System (ADS)
Wu, Hong-Mao; Lin, Kuan-Ju; Yu, Yi-Hsiuan; Ho, Chan-Yuan; Wei, Ming-Hsiung; Lu, Fu-Hsing; Tseng, Wenjea J.
2014-01-01
Surface-selective deposition of gold (Au) on electroless plated poly(methyl methacrylate)-nickel (PMMA-Ni) beads was prepared chemically by a facile redox-transmetalation route in which the Ni atoms on the PMMA surface were reacted with Au precursors, i.e., chloroauric acid (HAuCl4), in water to form predominately core-shell PMMA-Au composite particles without the need of reducing agent. The Ni layer acted as a sacrificial template to facilitate the selective transmetalation deposition of a metallic Au film. When pH of the precursor solution was adjusted from 6 to 9, morphology of the Au film changed from a uniform particulate film consisting of assemblies of Au nanoparticles, to densely packed, continuous film with platelet Au crystals, and finally to isolated Au islands on the PMMA surface with a raspberry-like core-shell morphology. Uniformly dense Au coating with a thickness of about 200 nm was formed on the PMMA beads at pH of 7 to 8, which gave rise to an electrical resistivity as low as 3 × 10-2 Ω cm.
Detailed Analysis and Design Review of the MARK IX (Modified) Underwater Breathing Apparatus
1969-07-30
hard- chrome plated, and the purge-valve assembly and regulator piston . electroless-nickel plated. Manufacturing/Assembly Controls and Tests The control...high a flow through the orifice, peak pressures of 4500 psi have been applied repeatedly with- out failure or damage to any component. (7) Orifice...c) Proved In use. (d) "Functional" test by stpplkir. (5)J (e) Peak pressure of only 4500 jsi reached. (1) (f) Leak test at 1-1/2 •is. (g) Predive
Method of making a hydrogen transport membrane, and article
Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon
2015-07-21
The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.
Microchannel plate for high-efficiency field emission display
NASA Astrophysics Data System (ADS)
Yi, Whikun; Jin, Sunghwan; Jeong, Taewon; Lee, Jeonghee; Yu, SeGi; Choi, Yongsoo; Kim, J. M.
2000-09-01
The efficiency of a field emission display was improved significantly with a newly developed microchannel plate. The key features of this unit and its fabrication are summarized as follows: (a) bulk alumina is used as a substrate material, (b) channel location is defined by a programed-hole puncher, and (c) thin film deposition is conducted by electroless plating followed by a sol-gel process. With the microchannel plate between the cathode and the anode of a field emission display, the brightness of luminescent light increases three- to fourfold by electron multiplication through an array of pores in the device. In addition, the fabricated microchannel plate prevents spreading of electrons emitted from the cathode tips, thus improving both display resolution and picture quality.
NASA Astrophysics Data System (ADS)
Yan, Hong; Xu, Ning; Huang, Wen-Yi; Han, Huan-Mei; Xiao, Shou-Jun
2009-03-01
An improved DIOS (desorption ionization on porous silicon) method for laser desorption/ionization mass spectrometry (LDI MS) by electroless plating of silver nanoparticles (AgNPs) on porous silicon (PSi) was developed. By addition of 4-aminothiophenol (4-ATP) into the AgNO3 plating solution, the plating speed can be slowed down and simultaneously 4-ATP self-assembled monolayers (SAMs) on AgNPs (4-ATP/AgNPs) were formed. Both AgNPs and 4-ATP/AgNPs coated PSi substrates present much higher stability, sensitivity and reproducibility for LDI MS than the un-treated porous silicon ones. Their shelf life in air was tested for several weeks to a month and their mass spectra still displayed the same high quality and sensitivity as the freshly prepared ones. And more 4-ATP SAMs partly play a role of matrix to increase the ionization efficiency. A small organic molecule of tetrapyridinporphyrin (TPyP), oligomers of polyethylene glycol (PEG 400 and 2300), and a peptide of oxytocin were used as examples to demonstrate the feasibility of the silver-plated PSi as a matrix-free-like method for LDI MS. This approach can obtain limits of detection to femtomoles for TPyP, subpicomoles for oxytocin, and picomoles for PEG 400 and 2300, comparable to the traditional matrix method and much better than the DIOS method. It simplifies the sample preparation as a matrix-free-like method without addition of matrix molecules and homogenizes the sample spread over the spot for better and more even mass signals.
Electroless Nickel Deposition for Front Side Metallization of Silicon Solar Cells
Hsieh, Shu Huei; Hsieh, Jhong Min; Chen, Wen Jauh; Chuang, Chia Chih
2017-01-01
In this work, nickel thin films were deposited on texture silicon by electroless plated deposition. The electroless-deposited Ni layers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and sheet resistance measurement. The results indicate that the dominant phase was Ni2Si and NiSi in samples annealed at 300–800 °C. Sheet resistance values were found to correlate well with the surface morphology obtained by SEM and the results of XRD diffraction. The Cu/Ni contact system was used to fabricate solar cells by using two different activating baths. The open circuit voltage (Voc) of the Cu/Ni samples, before and after annealing, was measured under air mass (AM) 1.5 conditions to determine solar cell properties. The results show that open circuit voltage of a solar cell can be enhanced when the activation solution incorporated hydrofluoric acid (HF). This is mainly attributed to the native silicon oxide layer that can be decreased and/or removed by HF with the corresponding reduction of series resistance. PMID:28805724
Microchannel apparatus and methods of conducting catalyzed oxidative dehydrogenation
Tonkovich, Anna Lee [Dublin, OH; Yang, Bin [Columbus, OH; Perry, Steven T [Galloway, OH; Mazanec, Terry [Solon, OH; Arora, Ravi [New Albany, OH; Daly, Francis P [Delaware, OH; Long, Richard [New Albany, OH; Yuschak, Thomas D [Lewis Center, OH; Neagle, Paul W [Westerville, OH; Glass, Amanda [Galloway, OH
2011-08-16
Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.
NASA Astrophysics Data System (ADS)
Muench, Falk; Oezaslan, Mehtap; Svoboda, Ingrid; Ensinger, Wolfgang
2015-10-01
We present new electroless palladium plating reactions, which can be applied to complex-shaped substrates and lead to homogeneous, dense and conformal palladium films consisting of small nanoparticles. Notably, autocatalytic and surface-selective metal deposition could be achieved on a wide range of materials without sensitization and activation pretreatments. This provides a facile and competitive route to directly deposit well-defined palladium nanofilms on e.g. carbon, paper, polymers or glass substrates. The reactions proceed at mild conditions and are based on easily accessible chemicals (reducing agent: hydrazine; metal source: PdCl2; ligands: ethylenediaminetetraacetic acid (EDTA), acetylacetone). Additionally, the water-soluble capping agent 4-dimethylaminopyridine (DMAP) is employed to increase the bath stability, to ensure the formation of small particles and to improve the film conformity. The great potential of the outlined reactions for micro- and nanofabrication is demonstrated by coating an ion-track etched polycarbonate membrane with a uniform Pd film of approximately 20 nm thickness. The as-prepared membrane is then employed as a highly miniaturized flow reactor, using the reduction of 4-nitrophenol with NaBH4 as a model reaction.
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun
2016-02-01
Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.
Alique, David; Martinez-Diaz, David; Sanz, Raul
2018-01-01
In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in preparation of Pd-based alloys, and, finally; (v) some essential concluding remarks in addition to futures perspectives. PMID:29360777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roan, M.-L.; Chen, Y.-H.; Huang, C.-Y.
2008-08-28
In this study, a variety of concentrations of chelating agents were added to obtain the anchoring effect and chelating effect in the electroless plating bath. The mechanism of the Cu{sub x(x=1,2)}S growth and the electromagnetic interference shielding effectiveness (EMI SE) of the composite were studied. It was found that the vinyl acetate residued in PAN substrate would be purged due to the swelling effect by chelating agents solution. And then, the anchoring effect occurred due to the hydrogen bonding between the pits of PAN substrate and the chelating agent. Consequently, the copper sulfide layer deposited by the electroless plating reactionmore » with EDTA and TEA. The swelling degree (S{sub d}) was proposed and evaluated from the FT-IR spectra. The relationship between swelling degree of the PAN films and EDTA (C) is expressed as: S{sub d} = 0.13+0.90xe and (-15.15C). And TEA series is expressed as: S{sub d} = 0.07+1.00xe and (-15.15C). On the other hand, the FESEM micrograph showed that the average thickness of copper sulfide increased from 76 nm to 383 nm when the concentration of EDTA increased from 0.00M to 0.20M. Consequently, the EMI SE of the composites increased from 10{approx}12 dB to 25{approx}27 dB. The GIA-XRD analyze indicated that the deposited layer consisted of CuS and Cu{sub 2}S.« less
Electrochemical Assay of Gold-Plating Solutions
NASA Technical Reports Server (NTRS)
Chiodo, R.
1982-01-01
Gold content of plating solution is assayed by simple method that required only ordinary electrochemical laboratory equipment and materials. Technique involves electrodeposition of gold from solution onto electrode, the weight gain of which is measured. Suitable fast assay methods are economically and practically necessary in electronics and decorative-plating industries. If gold content in plating bath is too low, poor plating may result, with consequent economic loss to user.
A Flexible Alignment Fixture for the Fabrication of Replication Mandrels
NASA Technical Reports Server (NTRS)
Cuttino, James F.; Todd, Michael W.
1996-01-01
NASA uses precision diamond turning technology to fabricate replication mandrels for its X-ray Calibration Facility (XRCF) optics. The XRCF optics are tubular, and the internal surface contains a parabolic profile over the first section and a hyperbolic profile over the last. The optic is fabricated by depositing layers of gold and nickel on to the replication mandrel and then separating it from the mandrel. Since the mandrel serves as a replication form, it must contain the inverse image of the surface. The difficulty in aligning the mandrel comes from the fabrication steps which it undergoes. The mandrel is rough machined and heat treated prior to diamond turning. After diamond turning, silicon rubber separators which are undercut in radius by 3 mm (0.12 in.) are inserted between the two end caps of the mandrel to allow the plating to wrap around the ends (to prevent flaking). The mandrel is then plated with a nickel-phosphor alloy using an electroless nickel process. At this point, the separators are removed and the mandrel is reassembled for the final cut on the DTM. The mandrel is measured for profile and finish, and polished to achieve an acceptable surface finish. Wrapping the plating around the edges helps to prevent flaking, but it also destroys the alignment surfaces between the parts of the mandrel that insure that the axes of the parts are coincident. Several mandrels have been realigned by trial-and-error methods, consuming significant amounts of setup time. When the mandrel studied in this paper was reassembled, multiple efforts resulted in a minimum radial error motion of 100 microns. Since 50 microns of nickel plating was to be removed, and a minimum plating thickness of 25 microns was to remain on the part, the radial error motion had to be reduced to less than 25 microns. The mandrel was therefore not usable in its current state.
Seegmiller, R.
1957-08-01
An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.
Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors
Kawasaki, Shin-ichiro; Suzuki, Akira
2013-01-01
Summary The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid. PMID:23843908
Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong
2015-10-01
An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.
Fabrication of Porous Ag/TiO2/Au Coatings with Excellent Multipactor Suppression
Wu, Duoduo; Ma, Jianzhong; Bao, Yan; Cui, Wanzhao; Hu, Tiancun; Yang, Jing; Bai, Yuanrui
2017-01-01
Porous Ag/TiO2/Au coatings with excellent multipactor suppression were prepared by fabrication of porous Ag surface through two-step wet chemical etching, synthesis of TiO2 coatings by electroless-plating-like solution deposition and deposition of Au coatings via electroless plating. Porous structure of Ag surface, TiO2 coatings on porous Ag surface and Au coatings on porous Ag/TiO2 surface were verified by field-emission scanning electron microscopy, the composition and crystal type of TiO2 coatings was characterized by X-ray photoelectron spectroscopy and X-ray diffraction. Secondary electron yield (SEY) measurement was used to monitor the SEY coefficient of the porous Ag coatings and Ag/TiO2/Au coatings. The as-obtained porous Ag coatings were proved exhibiting low SEY below 1.2, and the process was highly reproducible. In addition, the porous Ag/TiO2/Au coatings showed excellent multipactor suppression with the SEY 1.23 and good environmental stability. It is worth mentioning that the whole preparation process is simple and feasible, which would provide a promising application in RF devices. PMID:28281546
NASA Astrophysics Data System (ADS)
Takaloo, Ashkan Vakilipour; Joo, Seung Ki; Es, Firat; Turan, Rasit; Lee, Doo Won
2018-03-01
Light-induced electroless plating (LIEP) is an easy and inexpensive method that has been widely used for seed layer deposition of Nickel/Copper (Ni/Cu)-based metallization in the solar cell. In this study, material characterization aspects of the Ni seed layer and Ni silicide formation at different bath conditions and annealing temperatures on the n-side of a silicon diode structure have been examined to achieve the optimum cell contacts. The effects of morphology and chemical composition of Ni film on its electrical conductivity were evaluated and described by a quantum mechanical model. It has been found that correlation exists between the theoretical and experimental conductivity of Ni film. Residual stress and phase transformation of Ni silicide as a function of annealing temperature were evaluated using Raman and XRD techniques. Finally, transmission line measurement (TLM) technique was employed to determine the contact resistance of Ni/Si stack after thermal treatment and to understand its correlation with the chemical-structural properties. Results indicated that low electrical resistive mono-silicide (NiSi) phase as low as 5 mΩ.cm2 was obtained.
NASA Astrophysics Data System (ADS)
Chahal, Premjeet
In this work, new approaches to achieving integral resistors and capacitors on large area substrates at low temperatures in a high density wiring (HDW) environment using non-vacuum deposition techniques are introduced. This includes the use of polymer-ceramic nanocomposites for integral capacitors and electroless plating for integral resistors. From the literature review it is believed that resistors in the range of 5--50 ohm/square and capacitors in the range of 1--20 nF/cm2 can satisfy most of the mixed-signal application needs. The proposed materials can satisfy this need as demonstrated in this work. Several test vehicles were fabricated and measured to characterize the material properties, and demonstrate conventional and novel circuits for mixed-signal applications. To begin with, several polymer-ceramic combinations were analyzed under varying conditions to gain a fundamental understanding of the material system. Experimental advances have been made to achieve high dielectric constant values for both epoxy-ceramic and polyimide-ceramic systems. These material systems in general can satisfy specific capacitances in the range of 1--22 nF/cm2. These materials were found to be stable into the GHz range and have low loss-tangent. For electroless resistors, several plating baths were studied and a combination of Ni-P/Ni-W-P was found to produce the best results. Uniform plating was achieved through better nucleation of PdCl2 catalyst through the use of organosilane surface treatment. The Ni-P/Ni-W-P films produced sheet resistance in the range of 5--50 ohm/square and TCR below 50 ppm/°C. The material is stable into the GHz range. Upon optimizing the electrical properties and processing of capacitors and resistors, several test vehicles were fabricated to demonstrate some conventional and novel passive structures for RF and mixed-signal applications (e.g., filters, delay lines, etc.). Some of the structures were modeled using MDS and PSPICE and a good correlation between measured and modeled results were obtained. Capacitors on large area PWB substrates using meniscus coating are also demonstrated with a typical capacitance of 10 nF/cm2. The yield of the capacitor structures is found to be affected by the surface roughness of the bottom copper electrode. Resistors have been demonstrated on 6″ x 6″ substrates using a simple set-up.
Laser Induced Electrodeposition on Polyimide and GaAs Substrates
1983-10-01
6 3.1 Laser Gold Plating on Undoped Ga As Substrate ........... 6 3.1.1 Deposit Formation...22 iv LIST OF ILLUSTRATIONS Figure Page 1. Experimental Set-Up . . . . . .................. 4 2. Laser Gold Pla’ting Undoped GaAs (100...9 3. Laser Gold Plating Undoped GaAs (100) Deposit Resistance Measurement ......................... .10 4. Laser Gold Plating on Polyimide
Characterization of Pulse Reverses Electroforming on Hard Gold Coating.
Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon
2018-03-01
Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.
Surface free energy of TiC layers deposited by electrophoretic deposition (EPD)
NASA Astrophysics Data System (ADS)
Gorji, Mohammad Reza; Sanjabi, Sohrab
2018-01-01
In this study porous structure coatings of bare TiC (i.e. 20 nm, 0.7 µm and 5/45 µm) and core-shell structures of TiC/NiP synthesized through electroless plating were deposited by EPD. Room temperature surface free energy (i.e. γs) of TiC and TiC/NiP coatings were determined via measuring contact angles of distilled water and diiodemethane liquids. The effect of Ni-P shell on spreading behavior of pure copper on porous EPD structures was also investigated by high temperature wetting experiments. According to the results existence of a Ni-P layer around the TiC particles has led to roughness (i.e. at least 0.1 µm), and porosity mean length (i.e. at least 1 µm) increase. This might be related to various sizes of TiC agglomerates formed during electroless plating. It has been observed that room temperature γs changed from 44.49 to 54.12 mJ.m-2 as a consequence of particle size enlargement for TiC. The highest and lowest (67.25 and 44.49 mJ.m-2) γs were measured for TiC nanoparticles which showed 1.5 times increase in surface free energy after being plated with Ni-P. It was also observed that plating Ni-P altered non-spreading (θs > 100 o) behavior of TiC to full-spreading ((θs 0o)) which can be useful for preparation of hard coatings by infiltration sintering phenomenon. Zeta potential of EPD suspensions, morphology, phase structure and topography of as-EPD layers were investigated through Zetasizer, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) instruments respectively.
Semenikhin, Nikolay S; Kadasala, Naveen Reddy; Moon, Robert J; Perry, Joseph W; Sandhage, Kenneth H
2018-04-17
Cellulose nanocrystals (CNCs) can be attractive templates for the generation of functional inorganic/organic nanoparticles, given their fine sizes, aspect ratios, and sustainable worldwide availability in abundant quantities. Here, we present for the first time a scalable, surfactant-free, tailorable wet chemical process for converting commercially available CNCs into individual aspected gold nanoshell-bearing particles with tunable surface plasmon resonance bands. Using a rational cellulose functionalization approach, stable suspensions of positively charged CNCs have been generated. Continuous, conductive, nanocrystalline gold coatings were then applied to the individual, electrostatically stabilized CNCs via decoration with 1-3 nm diameter gold particles followed by electroless gold deposition. Optical analyses indicated that these core-shell nanoparticles exhibited two surface plasmon absorbance bands, with one located in the visible range (near 550 nm) and the other at near infrared (NIR) wavelengths. The NIR band possessed a peak maximum wavelength that could be tuned over a wide range (1000-1300 nm) by adjusting the gold coating thickness. The bandwidth and wavelength of the peak maximum of the NIR band were also sensitive to the particle size distribution and could be further refined by fractionation using viscosity gradient centrifugation.
Characterization and application of selective all-wet metallization of silicon
NASA Astrophysics Data System (ADS)
Uncuer, Muhammet; Koser, Hur
2012-01-01
We demonstrate selective, two-level metallization of silicon using electroless deposition of copper and gold. In this process, adhesion between the copper and silicon is improved with the formation of intermediary copper-silicide, and the gold layer protects copper from oxidation. The resistivity and residual stress of Au/Cu is 450 Ω nm (220 Ω nm annealed) and 56 MPa (tensile), respectively. These Au/Cu films allow a truly conformal and selective coating of high-aspect-ratio Si structures with good adhesion. We demonstrate the potential of these films in microswitches/relays, accelerometers and sensors by conformally coating the sidewalls of long (up to 1 mm in length), slender microbeams (5 µm × 5 µm) without inducing curvature.
NASA Astrophysics Data System (ADS)
Hamada, A. S.; Sahu, P.; Porter, D. A.
2015-11-01
A multilayer coating using electroless nickel-phosphorus (Ni-P) was applied on a twinning-induced plasticity (TWIP) steel containing nominally 25 wt.% Mn and 3 wt.% Al to improve the indentation hardness and corrosion properties. Microindentation tests with two different indenters, namely, a three-sided pyramidal Berkovich indenter and a ball indenter were performed to study the mechanical response, the indentation hardness and elastic modulus of the coatings in conditions: as-plated, and post treated (PT) at 350 °C and 700 °C for 1 h. The deformation morphology underneath the indenters was examined using a scanning laser microscope. The results showed that Ni-P coatings could significantly enhance the surface hardness of the TWIP steel. Significant improvement in the corrosion resistance could be observed in a sulfuric acid solution for the Ni-P coated steel compared to the uncoated substrate TWIP steel.
New fabrication method for an ellipsoidal neutron focusing mirror with a metal substrate.
Guo, Jiang; Takeda, Shin; Morita, Shin-ya; Hino, Masahiro; Oda, Tatsuro; Kato, Jun-ichi; Yamagata, Yutaka; Furusaka, Michihiro
2014-10-06
We propose an ellipsoidal neutron focusing mirror using a metal substrate made with electroless nickel-phosphorus (NiP) plated material for the first time. Electroless NiP has great advantages for realizing an ellipsoidal neutron mirror because of its amorphous structure, good machinability and relatively large critical angle of total reflection for neutrons. We manufactured the mirror by combining ultrahigh precision cutting and fine polishing to generate high form accuracy and low surface roughness. The form accuracy of the mirror was estimated to be 5.3 μm P-V and 0.8 μm P-V for the minor-axis and major-axis direction respectively, while the surface roughness was reduced to 0.2 nm rms. The effect of form error on focusing spot size was evaluated by using a laser beam and the focusing performance of the mirror was verified by neutron experiments.
Nylon surface modification: 2. Nylon-supported composite films.
Herrera-Alonso, Margarita; McCarthy, Thomas J; Jia, Xinqiao
2006-02-14
We have developed techniques for the introduction of reactive functional groups to nylon surfaces via site-specific reactions targeting at the naturally abundant amide repeating units on the surface. In this report, we describe the fabrication of nylon-supported composite surfaces using the most efficient modification methods we have developed. N-Alkylation with (3-glycidoxypropyl)triethoxysilane (GPTES) in the presence of potassium tert-butoxide (t-BuOK) leads to surfaces with silica-like reactivity. Subsequent chemical vapor deposition using tetrachlorosilane (SiCl4) and water results in composite films with a thin layer of silica, which was made hydrophobic by reaction with a fluorinated silane reagent. Reduction of the amide groups with borane-THF (BH3-THF) complex leads to a 69% conversion of surface amides to the corresponding secondary amine groups. Alginate was chosen as the model polyelectrolyte for the introduction of a hydrated surface layer. Because of the strong electrostatic interaction between alginate and the amine-enriched nylon surfaces, the adsorption is fast and concentration-independent (within the concentration range studied). The polysaccharide coats the surface homogeneously, without the formation of large aggregates. The amine surfaces obtained by reduction with BH3-THF ((BH3-THF)nylon-NH) and by alkylation with 2-bromoethylamine hydrobromide (BEA-HBr, (EBA-HBr)nylon-NH2) were also used to study gold deposition through electroless plating. Immobilization of a negatively charged metal complex (AuCl4(-)) was achieved through electrostatic interaction. Gold particles disperse preferentially in the bulk of (EBA-HBr)nylon-NH2 films, while they remain confined to the outer surface layer of (BH3-THF)nylon-NH films.
Best Practices for Fuel System Contamination Detection and Remediation
2015-12-14
Valve Fyre Ring GR DBB Style Plug Valve Gasket SS graphite Spiral DBB Style Plug Valve O- rings & slip seals VI DBB Style Plug Valve Packing gland...Pumps Impeller Key SS Vertical Turbine Pumps Impeller Retaining Ring SS Vertical Turbine Pumps Impellers (Electroless Nickel Plating) DI Vertical... Turbine Pumps Line Shaft SS Vertical Turbine Pumps Lineshaft Bearing CA Vertical Turbine Pumps Mating Ring Si-C Vertical Turbine Pumps Mechanical
Best Practices for Fuel System Contamination Detection and Remediation
2016-01-15
Valve Fyre Ring GR DBB Style Plug Valve Gasket SS graphite Spiral DBB Style Plug Valve O- rings & slip seals VI DBB Style Plug Valve Packing gland...Pumps Impeller Key SS Vertical Turbine Pumps Impeller Retaining Ring SS Vertical Turbine Pumps Impellers (Electroless Nickel Plating) DI Vertical... Turbine Pumps Line Shaft SS Vertical Turbine Pumps Lineshaft Bearing CA Vertical Turbine Pumps Mating Ring Si-C Vertical Turbine Pumps Mechanical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jin; Li, Wenbin; Zhu, Mao
2014-03-15
The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates thatmore » self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH.« less
Materials with engineered mesoporosity for programmed mass transport
NASA Astrophysics Data System (ADS)
Gough, Dara V.
Transport in nanostructured materials is of great interest for scientists in various fields, including molecular sequestration, catalysis, artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular and ionic species in mesoporous materials (materials with pore sizes between 2 and 50 nm). Initially, discussion will focus on the synthesis of mesoporous ZnS nanorattles and the size selected mass transport of small molecules through the mesopores. Discussion will then shift of exploration of cation exchange and electroless plating of metals to alter the mesoporous hollow sphere (MHS) materials and properties. The focus of discussion will then shift to the transport of ions into and out of a hierarchically structured gold electrode. Finally, a model gamma-bactiophage was developed to study the electromigration of charged molecules into and out of a confined geometry. A catalytically active biomolecular species was encapsulated within the central cavity of ZnS MHS. Both the activity of the encapsulated enzyme and the size-selective transport through the wall of the MHS were verified through the use of a common fluorogen, hydrogen peroxide, and sodium azide. Additionally, the protection of the enzyme was shown through size-selected blocking of a protease. The mesoporous hollow sphere system introduces size-selectivity to catalyzed chemical reactions; future work may include variations in pore sizes, and pore wall chemical functionalization. The pore size in ZnS mesoporous hollow spheres is controlled between 2.5 and 4.1 nm through swelling of the lyotropic liquid crystal template. The incorporation of a swelling agent is shown to linearly vary the hexagonal lyotropic liquid crystalline phase, which templates the mesopores, while allowing the high fidelity synthesis of mesoporous hollow spheres. Fluorescnently labeled ssDNA was utilized as a probe to explore the change in mesopore permeability afforded by the swollen template relative to the unswollen template. Electroless plating and cation exchange were explored as methods to vary the shell material of MHS. Mesoporous Ni MHS were obtained by the reduction of Ni2+ with dimethylamine borane onto a CML latex core. However, the resultant MHS were damaged due to core swelling during etch. To successfully obtain undeformed MHS, a silica core must be utilized; one possible route to explore, in order to reach this goal, is the surface chemistry/ligand effects on Ni2+. Cation exchange was performed in order to obtain CuS MHS; however, it proved an unsuccessful route to PbS, S and HgS. CdS-ZnS, Bi2S3 and Ag2S MHS were obtained only with significant defects. A novel hierarchically structured material, porous opal, was prepared using a colloidal crystal template and the dealloying of silver from gold and possed porosity on length scales range from 10s of nanometers (due to the colloidal crystal template) down to ca. 10 nm (due to dealloying). The transport properties of the material were studied using cyclic voltammetry and electrochemical impedance spectroscopy. The porous opal was found to posses enhanced charge transport properties relative to a unimodal porous gold film and a higher surface area than a gold opal. An equivalent circuit model was presented to explain the enhanced charge transport properties. A biomimetic system for studying the translocation of polymers through a channel and into a spherical cavity was developed based on inspiration from the gamma-bacteriophage. The nanocavity system was synthesized using two template length scales: 250 nm and 1.2 mum. Fabrication challenges that arose when using 1.2 mum colloidal templates were addressed, and the system was optimized for confinement studies of plasmid dsDNA.
NASA Technical Reports Server (NTRS)
1981-01-01
The technical readiness of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of $.70 or less per Watt peak was demonstrated. The proposed process sequence was reviewed and laboratory verification experiments were conducted. The preliminary process includes the following features: semicrystalline silicon (10 cm by 10 cm) as the silicon input material; spray on dopant diffusion source; Al paste BSF formation; spray on AR coating; electroless Ni plate solder dip metallization; laser scribe edges; K & S tabbing and stringing machine; and laminated EVA modules.
Ion plated gold films: Properties, tribological behavior and performance
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1987-01-01
The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1986-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Tracing the 5000-year recorded history of inorganic thin films from ˜3000 BC to the early 1900s AD
NASA Astrophysics Data System (ADS)
Greene, J. E.
2014-12-01
Gold is very likely the first metal discovered by man, more than 11 000 years ago. However, unlike copper (˜9000 BC), bronze (˜3500 BC), and wrought iron (˜2500-3000 BC), gold is too soft for fabrication of tools and weapons. Instead, it was used for decoration, religious artifacts, and commerce. The earliest documented inorganic thin films were gold layers, some less than 3000 Å thick, produced chemi-mechanically by Egyptians approximately 5000 years ago. Examples, gilded on statues and artifacts (requiring interfacial adhesion layers), were found in early stone pyramids dating to ˜2650 BC in Saqqara, Egypt. Spectacular samples of embossed Au sheets date to at least 2600 BC. The Moche Indians of northern Peru developed electroless gold plating (an auto-catalytic reaction) in ˜100 BC and applied it to intricate Cu masks. The earliest published electroplating experiments were ˜1800 AD, immediately following the invention of the dc electrochemical battery by Volta. Chemical vapor deposition (CVD) of metal films was reported in 1649, atmospheric arc deposition of oxides (Priestley) in the mid-1760s, and atmospheric plasmas (Siemens) in 1857. Sols were produced in the mid-1850s (Faraday) and sol-gel films synthesized in 1885. Vapor phase film growth including sputter deposition (Grove, 1852), vacuum arc deposition ("deflagration," Faraday, 1857), plasma-enhanced CVD (Barthelot, 1869) and evaporation (Stefan, Hertz, and Knudsen, 1873-1915) all had to wait for the invention of vacuum pumps whose history ranges from ˜1650 for mechanical pumps, through ˜1865 for mercury pumps that produce ballistic pressures in small systems. The development of crystallography, beginning with Plato in 360 BC, Kepler in 1611, and leading to Miller indices (1839) for describing orientation and epitaxial relationships in modern thin film technology, was already well advanced by the 1780s (Haüy). The starting point for the development of heterogeneous thin film nucleation theory was provided by Young in 1805. While an historical timeline tracing the progress of thin film technology is interesting of itself, the stories behind these developments are even more fascinating and provide insight into the evolution of scientific reasoning.
A Novel Method for Electroplating Ultra-High-Strength Glassy Metals
NASA Technical Reports Server (NTRS)
Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)
2002-01-01
A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.
Development of Low Cost Contacts to Silicon Solar Cells
NASA Technical Reports Server (NTRS)
Iles, P. A.; Tanner, D. P.
1979-01-01
Different electroless plating systems were evaluated in conjunction with copper electroplating. All tests involved simultaneous deposition of front and back contacts using a standard cell materials. Cells with good adhesion and good curve fill factors were obtained using a palladium-chromium-copper metallization system. The final copper contact system was evaluated to determine if the copper would migrate at elevated temperatures. The copper migrated at elevated temperatures causing cell output degradation.
Polyfibroblast: A Self-Healing and Galvanic Protection Additive
2009-01-29
microencapsulated MCPU would have a limited shelf life. The shelf-life is expected to improve even further once the zinc outer shell is added and the microcapsules ...MEMBRANE 4 3.3 PREPARATION OF POLYURETHANE MICROCAPSULES 5 3.4 ELECTROLESS ZINC DEPOSITION 7 4 NEXT STEPS 4.1 ELECTROCHEMICAL ROUTE 7 4.2...Plating conditions must be adjusted to form thicker walls, however. We were also successful in microencapsulating uncured polyurethane resin in a hard
The Electrodeposition of Rhenium and Its Alloys
2015-09-18
of the coating . In order to improve the stability of such layers, thermal treatment is required. The observation of the H0.57ReO3 phase is...the range of 10–100 nm on conductive and non- conductive substrates, either as a stand-alone coating or as a seed DISTRIBUTION A: Distribution approved... coatings on carbons, carbon-carbon composites, semiconducting and non- conducting surfaces. Pure Re cannot be deposited from electroless plating
Two-Photon Luminescence and Second Harmonic Generation from Gold Micro-Plates
Wang, Xu; Shi, Hao; Wang, Naiyin; Cheng, Lianghui; Gao, Ying; Huang, Lu; Jiang, Yuqiang
2014-01-01
Micron-sized gold plates were prepared by reducing chloroauric acid with lemongrass extract. Their two-photon luminescence (TPL) and second harmonic generation (SHG) were investigated. The results show that the TPL and SHG intensity of gold plates is dependent on the wavelength and polarization of excitation laser. The TPL intensity of gold plates decreases with the increase of the excitation wavelength except for a small peak around 820–840 nm, while SHG intensity increases with the excitation wavelength redshift. In addition, it is found that the TPL intensity of the gold plate’s edge is related with the angle between the edge orientation and the polarization direction of the excitation light. The TPL intensity increases with the angle increase from 0° to 90°. PMID:25268923
Surface texturing of fluoropolymers
NASA Technical Reports Server (NTRS)
Banks, B. A.; Mirtich, M. J.; Sovey, J. S. (Inventor)
1982-01-01
A method is disclosed for improving surface texture for adhesive bonding, metal bonding, substrate plating, decal substrate preparation, and biomedical implant applications. The surface to be bonded is dusted in a controlled fashion to produce a disbursed layer of fine mesh particles which serve as masks. The surface texture is produced by impinging gas ions on the masked surface. The textured surface takes the form of pillars or cones. The bonding material, such as a liquid epoxy, flows between the pillars which results in a bond having increased strength. For bonding metals a thin film of metal is vapor or sputter deposited onto the textured surface. Electroplating or electroless plating is then used to increase the metal thickness in the desired amount.
Crack Growth of D6 Steel in Air and High Pressure Oxygen
NASA Technical Reports Server (NTRS)
Bixler, W. D.; Engstrom, W. L.
1971-01-01
Fracture and subcritical flaw growth characteristics were experimentally determined for electroless nickel plated D6 steel in dry air and high pressure oxygen environments as applicable to the Lunar Module/Environmental Control System (LM/ECS) descent gaseous oxygen (GOX) tank. The material tested included forgings, plate, and actual LM/ECS descent GOX tank material. Parent metal and TIG (tungsten inert gas) welds were tested. Tests indicate that proof testing the tanks at 4000 pounds per square inch or higher will insure safe operation at 3060 pounds per square inch. Although significant flaw growth can occur during proofing, subsequent growth of flaws during normal tank operation is negligible.
2010-01-01
examine the stability to oxidation of the silver nanoparticles , SERS measurements were carried out on a single dielectric ZnO nanowire core/silver...employed a simple and effective electroless (EL) plating approach to produce silver nanoparticles (NPs) on bare silicon, on dielectric ZnO nanowires (NWs...nature of silver, the Ag surface is easily oxidized in the air. Hence, it is important to understand the silver nanoparticle oxidation processes in
Effect of nucleation time on bending response of ionic polymer–metal composite actuators
Kim, Suran; Hong, Seungbum; Choi, Yoon-Young; ...
2013-07-02
We attempted an autocatalytic electro-less plating of nickel in order to replace an electroless impregnation-reduction (IR) method in ionic polymer–metal composite (IPMC) actuators to reduce cost and processing time. Because nucleation time of Pd–Sn colloids is the determining factor of overall processing time, we used the nucleation time as our control parameter. In order to optimize nucleation time and investigate its effect on the performance of IPMC actuators, we analyzed the relationship between the nucleation time, interface morphology and electrical properties. The optimized nucleation time was 10 h. Furthermore, the trends of the performance and electrical properties as a functionmore » of nucleation time were attributed to the fact that the Ni penetration depth was determined by the minimum diffusion length of either Pd–Sn colloids or reducing agent ions. The Ni-IPMC actuators can be fabricated less than 14 h processing time without deteriorating performance of the actuators, which is comparable to Pt-IPMC prepared by IR method.« less
Laser-induced surface modification of biopolymers – micro/nanostructuring and functionalization
NASA Astrophysics Data System (ADS)
Stankova, N. E.; Atanasov, P. A.; Nedyalkov, N. N.; Tatchev, Dr; Kolev, K. N.; Valova, E. I.; Armyanov, St. A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.
2018-03-01
The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters – wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers’ surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.
Lu, Longsheng; Liang, Linsheng; Teh, Kwok Siong; Xie, Yingxi; Wan, Zhenping; Tang, Yong
2017-01-01
Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF) monofilaments grafted with CNTs (simplified as CNTs/CFs) were fabricated in two key steps: (i) nickel electroless plating, followed by (ii) chemical vapor deposition (CVD). Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN)6), by using a cyclic voltammetry (CV) and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility. PMID:28358344
Solution-processed copper-nickel nanowire anodes for organic solar cells
NASA Astrophysics Data System (ADS)
Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.
2014-05-01
This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h
NASA Astrophysics Data System (ADS)
Wu, Xiaoyan; Tian, Yu; Zhang, Jun; Zuo, Wei; Kong, Xiaowei; Wang, Jinghui; Sun, Kening; Zhou, Xiaoliang
2016-01-01
In this paper, silver (Ag) particles are introduced into the conventional Ni/YSZ anode by utilizing electroless plating method to improve its carbon anti-coking ability in hydrocarbons. The experimental results show that electrochemical performances of the decorated cells in H2, CH4 and C2H6 are all increased as compared to the cell with unmodified Ni/YSZ anode, which are verified by impedance spectrums as well. The durability experiment is carried out for as long as 24 h at the current density of 0.33 A/cm2 where the modified anode is subjected to dry C2H6 indicating the anti-coking ability of the anode is greatly improved. Scanning electron microscope shows that the slight decreasing in the cell terminal voltage can be attributed to the minimized carbon deposition which maybe resulted from the aggregation of silver particles at high temperature. Energy-dispersive X-ray spectroscopy line scanning results after long-term stability operation of the anode suggest that the carbon deposition can be depressed effectively both inside the anode and on the surface of the anode. Therefore, the results show that silver is a promising candidate material for modifying the Ni/YSZ anode with regard to improving electrochemical performance and suppressing the carbon deposition when taking the hydrocarbons as fuels.
Failure analysis of blistered gold plating on spot welded electrical relays
NASA Technical Reports Server (NTRS)
Sokolowski, Witold; O'Donnell, Tim
1989-01-01
Gold-plated stainless-steel sideplates, part of a JPL Galileo spacecraft electronic-relay assembly, exhibited blistering after resistance spot welding. Unacceptable relays had heavy nonuniform gold electrodeposited layers with thicknesses 4.5-11.5 microns. SEM and metallographic investigations indicated much higher heat input generated during the resistance spot welding in unacceptable relays. The attributes of acceptable welded relays are contrasted with unacceptable relays; the possible mechanism of laminar formation of polymeric material in the gold plating is discussed; and some recommendations are provided to prevent similar problems.
NASA Astrophysics Data System (ADS)
Bell, S. J.; Baker, M. A.; Duarte, D. D.; Schneider, A.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.
2017-06-01
Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts.
Laser patterning of laminated structures for electroplating
Mayer, Steven T.; Evans, Leland B.
1993-01-01
A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale.
Laser patterning of laminated structures for electroplating
Mayer, S.T.; Evans, L.B.
1993-11-23
A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale. 9 figures.
1983-10-01
EMILY A. MCHUGH , RICHARD W. MATTON, MARK A. CLEAVES, DANIEL P. MACK, and NATHANIEL S. SCHNEIDER POLYMER RESEARCH DIVISION Octoer 1983 DT’C E’’ i 0...AUTHOR(e) S. CONTRACT OR GRANT NUMBER(O) Catherine A. Byrne, Emily A. McHugh , Richard W. Matton, Mark A. Cleaves, Daniel P. Mack,* and Nathaniel S...impregnated Poly-plating, Inc. see text electroless nickel 4610 Westover Rd. Westover Industrial Air Park Chicopee, MA 01022 Plasm-deposited Dr. N. Morosoff
Preparation and characterization of Ni-P/Ni3.1B composite alloy coatings
NASA Astrophysics Data System (ADS)
Wang, Yurong; He, Jiawei; Wang, Wenchang; Shi, Jianhua; Mitsuzaki, Naotoshi; Chen, Zhidong
2014-02-01
The preparation of Ni-P/Ni3.1B composite alloy coating on the surface of copper was achieved by co-deposition of Ni3.1B nanoparticles with Ni-P coating during electroless plating. Ni-P-B alloy coating was obtained by heat-treating the as-plated Ni-P/Ni3.1B composite coating. The effect of the concentration of sodium alginate, borax, thiourea, Ni3.1B, temperature, and pH value on the deposition rate and B content were investigated and determined to be: 30 g L-1, 10 g L-1, 2 mg L-1, 20 mg L-1, 70 °C and 9.0 , respectively. Sodium alginate and thiourea were played as surfactant for coating Ni3.1B nanoparticles and stabilizer for the plating bath, respectively. Ni-P/Ni3.1B composite coating had good performance such as corrosion resistance and solderability.
Array automated assembly task, phase 2. Low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Rhee, S. S.; Jones, G. T.; Allison, K. T.
1978-01-01
Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed.
Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandarkar, N.; Horwood, C.; Bunn, T.
For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percentmore » gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.« less
19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD ...
19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD AND SILVER WERE AMONG THE MATERIALS PLATED ONTO PARTS MADE OF COPPER, STAINLESS STEEL AND STEEL. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
NASA Astrophysics Data System (ADS)
Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo
2018-04-01
The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder joints between the ENIG and solder, and between ENEPIG surface finish and solders, respectively.
NASA Astrophysics Data System (ADS)
Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo
2018-07-01
The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder joints between the ENIG and solder, and between ENEPIG surface finish and solders, respectively.
Finding Platinum-Coating Gaps On Titanium Anodes
NASA Technical Reports Server (NTRS)
Bodemeijer, Ronnald; Flowers, Cecil E.
1990-01-01
Simple procedure makes gaps visible to eye. New gap-detection method consists of plating thin layer of non-silver-colored metal like copper or gold on anode. Contrast in color between plated metal and bare anode material makes gaps stand out. If anode passes inspection, copper or gold plate removable by reversal of test-plating current. Remains to be determined whether test plating and removal damages anode. New method simpler and more economical than previous attempts to identify gaps in platinum.
Electroless silver plating of the surface of organic semiconductors.
Campione, Marcello; Parravicini, Matteo; Moret, Massimo; Papagni, Antonio; Schröter, Bernd; Fritz, Torsten
2011-10-04
The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor. © 2011 American Chemical Society
Platinum Electrodeposition for Supported ALD Templated Foam Hohlraum Liners
Horwood, Corie; Stadermann, Michael; Biener, Monika; ...
2017-12-20
Two commercially available platinum plating solutions (Platanex III and Platanex Luna) were evaluated for the electrodeposition of platinum layers on gold hohlraums and cylindrically shaped silver-gold ingots. The successful deposition of thin Pt layers on gold hohlraums as well as thick Pt layers on silver-gold alloys will allow for the integration of atomic layer deposition templated foam inside a hohlraum. We found that when the manufacturer’s recommendations for the Pt plating solutions were used, the coatings obtained were unacceptable because of cracking, poor adhesion, or thin and powdery Pt deposits. Therefore, alternative plating parameters were investigated, and the conditions resultingmore » in acceptable coatings are reported here.« less
Platinum Electrodeposition for Supported ALD Templated Foam Hohlraum Liners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horwood, Corie; Stadermann, Michael; Biener, Monika
Two commercially available platinum plating solutions (Platanex III and Platanex Luna) were evaluated for the electrodeposition of platinum layers on gold hohlraums and cylindrically shaped silver-gold ingots. The successful deposition of thin Pt layers on gold hohlraums as well as thick Pt layers on silver-gold alloys will allow for the integration of atomic layer deposition templated foam inside a hohlraum. We found that when the manufacturer’s recommendations for the Pt plating solutions were used, the coatings obtained were unacceptable because of cracking, poor adhesion, or thin and powdery Pt deposits. Therefore, alternative plating parameters were investigated, and the conditions resultingmore » in acceptable coatings are reported here.« less
Forming electrical interconnections through semiconductor wafers
NASA Technical Reports Server (NTRS)
Anthony, T. R.
1981-01-01
An information processing system based on CMOS/SOS technology is being developed by NASA to process digital image data collected by satellites. An array of holes is laser drilled in a semiconductor wafer, and a conductor is formed in the holes to fabricate electrical interconnections through the wafers. Six techniques are used to form conductors in the silicon-on-sapphire (SOS) wafers, including capillary wetting, wedge extrusion, wire intersection, electroless plating, electroforming, double-sided sputtering and through-hole electroplating. The respective strengths and weaknesses of these techniques are discussed and compared, with double-sided sputtering and the through-hole plating method achieving best results. In addition, hollow conductors provided by the technique are available for solder refill, providing a natural way of forming an electrically connected stack of SOS wafers.
Phase 2 of the Array Automated Assembly Task for the Low Cost Solar Array Project
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Rai-Choundhury, P.; Seman, E. J.; Rohatgi, A.; Davis, J. R.; Ostroski, J. W.; Stapleton, R. E.
1979-01-01
Two process specifications supplied by contractors were tested. The aluminum silk screening process resulted in cells comparable to those from sputtered Al. The electroless plating of contacts specification could be used only with extensive modification. Several experiments suggest that there is some degradation of the front junction during the Al back surface field (BSF) fabrication. A revised process sequence was defined which incorporates Al BSF formation. A cost analysis of this process yielded a selling price of $0.75/watt peak in 1980.
Thermal conductance of gold plated metallic contacts at liquid helium temperatures
NASA Technical Reports Server (NTRS)
Kittel, Peter; Spivak, Alan L.; Salerno, Louis J.
1992-01-01
The thermal conductance of gold plated OFHC copper, 6061-T6 aluminum, free-machining brass, and 304 stainless steel contacts has been measured over the temperature range of 1.6 to 4.2 K, with applied forces from 22 N to 670 N. The contact surfaces were prepared with a 0.8 micron lapped finish prior to gold coating. It was found that for all materials, except stainless steel, the thermal conductance was significantly improved as the result of gold coating the contact surfaces.
Chemiresistive hydrogen gas sensors from gold-palladium nanopeapods
NASA Astrophysics Data System (ADS)
Moon, Chung Hee; Myung, Nosang V.; Haberer, Elaine D.
2014-12-01
Gold-palladium (Au-Pd) nanopeapod-based H2 chemiresistors were fabricated using a gold binding M13 viral template. Peptides displayed along the length of this biological template served as affinity binding sites to direct gold nanoparticle assembly under ambient conditions in an aqueous environment. In addition, the geometry of this filamentous biomolecule readily facilitated the formation of the highly anisotropic nanopeapod structure. Pd electroless deposition controlled peapod diameter, as well as electrical resistance. Sensor performance was determined by overall peapod morphology. Thicker nanopeapods (i.e., ˜15 nm Pd layer) with fully encapsulated Au nanoparticle seeds showed strong evidence of oxygen inclusion during or after Pd deposition, and a modest response (i.e., 0.04%-2.6%) at 2000 ppmv H2 after device conditioning through extended H2 exposure. Thinner nanopeapods (i.e., ˜5 nm Pd layer) with discontinuous Au nanoparticle coverage showed superior performance with a response of 117% at 2000 ppmv H2 in air, a 70% response time (t70%) within 1 min, and a low detection limit of 25 ppmv. The bio-directed formation of these unique thin-shelled, Au-Pd peapod nanostructures and the development of a highly sensitive H2 detector advance both the fields of nanoassembly and gas sensing.
Plasmonic nanostructures for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Jiang, Ruiqian
In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a AgCN based plating solution was used to replace Cu shell to form Au/Ag core-shell nanoparticles. These two plasmonic nanostructures were tested as substrates for Raman spectroscopy. It demonstrated that these plasmonic nanostructures could enhance Raman signal from the molecules on their surface. The results indicate that these plasmonic nanostructures could be utilized in many fields, such as such as biological and environmental sensors.
Active heat exchange system development for latent heat thermal energy storage
NASA Technical Reports Server (NTRS)
Lefrois, R. T.
1980-01-01
Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.
Active heat exchange system development for latent heat thermal energy storage
NASA Astrophysics Data System (ADS)
Lefrois, R. T.
1980-03-01
Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.
Azuma, Yasuo; Onuma, Yuto; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka
2016-02-28
Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and the Au core (R1 and C1, respectively), and those between the Au core and the drain electrode (R2 and C2, respectively), are evaluated as 4.5 MΩ, 1.4 aF, 4.8 MΩ, and 1.3 aF, respectively. This is determined by fitting the theoretical curve against the experimental Coulomb staircases. Two-methylene-group short octanedithiols (C8S2) in a C8S2/hexanethiol (C6S) mixed self-assembled monolayer is concluded to chemically anchor the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes even when the Au nanoparticle is protected by decanethiol (C10S). This is because the R1 value is identical to that of R2 and corresponds to the tunneling resistances of the octanedithiol chemically bonded with the Au core and the Au electrodes. The dependence of the Coulomb diamond shapes on the tunneling resistance ratio (R1/R2) is also discussed, especially in the case of the rhombic Coulomb diamonds. Rhombic Coulomb diamonds result from chemical anchoring of the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes.
NASA Astrophysics Data System (ADS)
Heeman-Ilieva, M. B.; Udalov, Yu. B.; Hoen, K.; Witteman, W. J.
1994-02-01
The small-signal gain and the laser output power have been measured in a cw sealed-off rf-excited CO2 waveguide laser for two different electrode materials, gold-plated copper and aluminum, at several excitation frequencies, gas pressures and mixture compositions. In the case of the gold-plated electrodes an enhancement of the gain up to a factor of 2 and the output power up to a factor of 1.4 with time at a frequency of 190 MHz and 60 Torr of 1:1:5+5% (CO2:N2:He+Xe) mixture is observed. This is believed to be the result of the gold catalytic activities which are favored by increased electrode temperatures and helium rich gas compositions.
Kajimoto, Shinji; Shirasawa, Daisuke; Horimoto, Noriko Nishizawa; Fukumura, Hiroshi
2013-05-14
Ultrafast phase separation of water and 2-butoxyethanol mixture was induced by nanosecond IR laser pulse irradiation. After a certain delay time, a UV laser pulse was introduced to induce photoreduction of aurate ions, which led to the formation of gold nanoparticles in dynamic phase-separating media. The structure and size of the nanoparticles varied depending on the delay time between the IR and UV pulses. For a delay time of 5 and 6 μs, gold square plates having edge lengths of 150 and 100 nm were selectively obtained, respectively. With a delay time of 3 μs, on the other hand, the size of the square plates varied widely from 100 nm to a few micrometers. The size of the gold square plates was also varied by varying the total irradiation time of the IR and UV pulses. The size distribution of the square plates obtained under different conditions suggests that the growth process of the square plates was affected by the size of the nanophases during phase separation. Electron diffraction patterns of the synthesized square plates showed that the square plates were highly crystalline with a Au(100) surface. These results showed that the nanophases formed during laser-induced phase separation can provide detergent-free reaction fields for size-controlled nanomaterial synthesis.
ERIC Educational Resources Information Center
Harris, Harold H.
1999-01-01
Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…
Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments
NASA Astrophysics Data System (ADS)
Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.
2012-03-01
Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.
Study of gold nanoparticle synthesis by synchrotron x-ray diffraction and fluorescence
NASA Astrophysics Data System (ADS)
Yan, Zhongying; Wang, Xiao; Yu, Le; Moeendarbari, Sina; Hao, Yaowu; Cai, Zhonghou; Cheng, Xuemei
Gold nanoparticles have a wide range of potential applications, including therapeutic agent delivery, catalysis, and electronics. Recently a new process of hollow nanoparticle synthesis was reported, the mechanism of which was hypothesized to involve electroless deposition around electrochemically evolved hydrogen bubbles. However, the growth mechanism still needs experimental evidence. We report investigation of this synthesis process using synchrotron x-ray diffraction and fluorescence measurements performed at beamline 2-ID-D of the Advanced Photon Source (APS). A series of gold nanoparticle samples with different synthesis time (50-1200 seconds) were deposited using a mixture electrolyte solution of Na3Au(SO3)2 and H4N2NiO6S2 on anodic aluminum oxide (AAO) membranes. The 2D mapping of fluorescence intensity and comparison of x-ray diffraction peaks of the samples have provided valuable information on the growth mechanism. Work at Bryn Mawr College and University of Texas at Arlington is supported by NSF Grants (1207085 and 1207377) and use of the APS at Argonne National Laboratory is supported by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357.
Enhancement of Sn-Bi-Ag Solder Joints with ENEPIG Surface Finish for Low-Temperature Interconnection
NASA Astrophysics Data System (ADS)
Pun, Kelvin P. L.; Islam, M. N.; Rotanson, Jason; Cheung, Chee-wah; Chan, Alan H. S.
2018-05-01
Low-temperature soldering constitutes a promising solution in interconnect technology with the increasing trend of heat-sensitive materials in integrated circuit packaging. Experimental work was carried out to investigate the effect of electroless Ni/electroless Pd/immersion gold (ENEPIG) layer thicknesses on Sn-Bi-Ag solder joint integrity during extended reflow at peak temperatures as low as 175°C. Optimizations are proposed to obtain reliable solder joints through analysis of interfacial microstructure with the resulting joint integrity under extended reflow time. A thin Ni(P) layer with thin Pd led to diffusion of Cu onto the interface resulting in Ni3Sn4 intermetallic compound (IMC) spalling with the formation of thin interfacial (Ni,Cu)3Sn4 IMCs which enhance the robustness of the solder after extended reflow, while thick Ni(P) with thin Pd resulted in weakened solder joints with reflow time due to thick interfacial Ni3Sn4 IMCs with the entrapped brittle Bi-phase. With a suitable thin Ni(P), the Pd thickness has to be optimized to prevent excessive Ni-P consumption and early Cu outward diffusion to enhance the solder joint during extended reflow. Based on these findings, suitable Ni(P) and Pd thicknesses of ENEPIG are recommended for the formation of robust low-temperature solder joints.
Geologic Map of the Gold Creek Gold District, Elko County, Nevada
Ketner, Keith B.
2007-01-01
The Gold Creek, Nev. area displays important stratigraphic and structural relationships between Paleozoic and early Tertiary sedimentary strata in an area dominated by large intrusive bodies of Mesozoic age and extensive volcanic fields of middle to late Tertiary age. An autochthonous sequence includes the Cambrian and Proterozoic(?) Prospect Mountain Quartzite and the overlying Cambrian and Ordovician Tennessee Mountain Formation. This autochthon is overlain by three allochthonous plates each composed of a distinctive sequence of strata and having a distinctive internal structure. The structurally lowest plate is composed of the Havallah sequence, locally of Mississippian and Pennsylvanian age, which is folded on north-south trending axes. The next higher plate is composed of somewhat younger Pennsylvanian and Permian strata cut by east-west trending low-angle faults. The highest plate is composed of early Tertiary non-marine sedimentary and igneous rocks folded on varied but mainly north-south trending axes. The question of whether the allochthonous plates were emplaced by contractional or extensional forces is indeterminate from the local evidence. Mineral deposits include gold placers of moderate size and small pockets of base metals, none of which is currently being exploited.
Fu, Yubin; Zhang, Lide; Zheng, Jiyong
2005-04-01
Halloysite template has a tubular microstructure; its wall has a multi-layer aluminosilicate structure. A new catalytic method is adopted here, through the in-situ reduction of Pd ions on the surface of tubular halloysite by methanol to initiate electroless plating; the detailed deposition features of Pd nanoparticles are investigated for the first time. The results indicate that an in-situ reduction and deposition of Pd occurs at room temperature, in which the halloysite template plays an important role. Impurities in halloysite (such as ferric oxide) influence the formation and distribution of the Pd nanoparticles. The Pd nanoparticles are of a non-spherical shape in most cases, which would be caused by the irregular appearance of halloysite. No intercalation of the nanoparticles occurs between the aluminosilicate layers in the halloysite. The diameter of Pd nanoparticles increases with time; the average diameter ranges from 1 nm to 4 nm. Pd nanoparticles on a halloysite template can catalyze electroless deposition of Ni to prepare a novel nano-sized cermet at low cost. This practicable catalytic method could also be used on other clay substrates for the initiation of metallization.
Application of electroless deposition for surface modification of the multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Kurkowska, M.; Awietjan, S.; Kozera, R.; Jezierska, E.; Boczkowska, A.
2018-06-01
The paper describes modification of carbon nanotubes surface by attaching the grains of Ni-P, Ni-B, Co-B and Fe-B. The modification was obtained by electroless metallization using sodium hypophosphite (NaH2PO2). We have investigated the parameters of electroless metallization process of CNTs. The uniformity of the coating on the carbon nanotubes was related to proper surface activation. While optimizing the electroless deposition, a range of catalyst concentrations from 0.1 to 1.0 gPd/l were tested. Deposition was used to improve the electrical properties of the later composite materials CNT-Ni-P/epoxy. The best results of electroless deposition were obtained for Ni-P and Ni-B coatings.
1980-08-01
been used in topical fluoride solutions applied to prevent caries . The use of SnF 2 . and similar chemical compounds, in the plating process appears to...Methods Tin fluoride solutions are prepared by dissolving SnF 2 in demineralized water at concentrations of 1, 5, 5.7, and 10%. The pH ranges from...saturated FeSO4 with or without 1 gpl thiourea a. .4 34 REFERENCES 1. P. Gron, "Chemistry of Topical Fluorides ", Caries Res. 11 (Suppl. 1): 172-204
NASA Astrophysics Data System (ADS)
Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti
Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.
Znati, Sami A.; Chedid, Nicholas; Miao, Houxun; Chen, Lei; Bennett, Eric E.; Wen, Han
2016-01-01
Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of x-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures. PMID:27042384
Hsu, Cheng-Teng; Hsiao, Hung-Chan; Fang, Mei-Yen; Zen, Jyh-Myng
2009-10-15
Disposable one shot usage blood glucose strips are routinely used in the diagnosis and management of diabetes mellitus and their performance can vary greatly. In this paper we critically evaluated the long-term stability of glucose strips made of barrel plating gold electrodes. Compared to other glucose biosensing platforms of vapor deposited palladium and screen printed carbon electrodes, the proposed glucose biosensor was found to show the best stability among the three biosensing platforms in thermal acceleration experiments at 40 degrees C for 6 months with an average bias of 3.4% at glucose concentrations of 5-20 mM. The precision test of this barrel plating gold glucose biosensor also showed the best performance (coefficients of variation in the range of 1.4-2.4%) in thermal acceleration experiments at 40 degrees C, 50 degrees C and 70 degrees C for 27 days. Error grid analysis revealed that all measurements fell in zone A and zone B. Regression analysis showed no significant difference between the proposed biosensor and the reference method at 99% confidence level. The amperometric glucose biosensor fabricated by inserting two barrel plating gold electrodes onto an injection-molding plastic base followed by immobilizing with a bio-reagent layer and membrane was very impressive with a long-term stability up to 2.5 years at 25 degrees C. Overall, these results indicated that the glucose oxidase/barrel plating gold biosensing platform is ideal for long-term accurate glycemic control.
NASA Astrophysics Data System (ADS)
Patki, Neil S.; Way, J. Douglas; Ricote, Sandrine
2017-10-01
The stability of copper at high temperatures in reducing and hydrocarbon-containing atmospheres makes it a good candidate for fabricating fuel electrodes on proton-conducting ceramics, such as BaZr0.9-xCexY0.1O3-δ (BZCY). In this work, the electrochemical performance of Cu-based electrodes fabricated by electroless plating (ELP) on BaZr0.8Ce0.1Y0.1O3-δ is studied with impedance spectroscopy. Three activation catalysts (Pd, Ru, and Cu) are investigated and ELP is compared to a commercial Cu paste (ESL 2312-G) for electrode fabrication. The area specific resistances (ASR) for Pd, Ru, and Cu activations at 700 °C in moist 5% H2 in Ar are 2.1, 3.2, and 13.4 Ω cm2, respectively. That is a 1-2 orders of magnitude improvement over the commercial Cu paste (192 Ω cm2). Furthermore, the ASR has contributions from electrode processes and charge transfer at the electrode/electrolyte interface. Additionally, the morphology of the as-fabricated electrode is unaffected by the activation catalyst. However, heat treatment at 750 °C in H2 for 24 h leads to sintering and large reorganization of the electrode fabricated with Cu activation (micron sized pores seen in the tested sample), while Pd and Ru activations are immune to such reorganization. Thus, Pd and Ru are identified as candidates for future work with improvements to charge transfer required for the former, and better electrode processes required for the latter.
The rejuvenation of spent electroless nickel baths by electrodialysis has received a considerable amount of attention over the past decade and the technique is being increasingly employed to extend electroless nickel bath life. However, thus far there has not been a detailed inve...
Craton destruction and related resources
NASA Astrophysics Data System (ADS)
Zhu, Rixiang; Zhang, Hongfu; Zhu, Guang; Meng, Qingren; Fan, Hongrui; Yang, Jinhui; Wu, Fuyuan; Zhang, Zhiyong; Zheng, Tianyu
2017-10-01
Craton destruction is a dynamic event that plays an important role in Earth's evolution. Based on comprehensive observations of many studies on the North China Craton (NCC) and correlations with the evolution histories of other cratons around the world, craton destruction has be defined as a geological process that results in the total loss of craton stability due to changes in the physical and chemical properties of the involved craton. The mechanisms responsible for craton destruction would be as the follows: (1) oceanic plate subduction; (2) rollback and retreat of a subducting oceanic plate; (3) stagnation and dehydration of a subducting plate in the mantle transition zone; (4) melting of the mantle above the mantle transition zone caused by dehydration of a stagnant slab; (5) non-steady flow in the upper mantle induced by melting, and/or (6) changes in the nature of the lithospheric mantle and consequent craton destruction caused by non-steady flow. Oceanic plate subduction itself does not result in craton destruction. For the NCC, it is documented that westward subduction of the paleo-Pacific plate should have initiated at the transition from the Middle-to-Late Jurassic, and resulted in the change of tectonic regime of eastern China. We propose that subduction, rollback and retreat of oceanic plates and dehydration of stagnant slabs are the main dynamic factors responsible for both craton destruction and concentration of mineral deposits, such as gold, in the overriding continental plate. Based on global distribution of gold deposits, we suggest that convergent plate margins are the most important setting for large gold concentrations. Therefore, decratonic gold deposits appear to occur preferentially in regions with oceanic subduction and overlying continental lithospheric destruction/modification/growth.
Close-up of 7/8' gold-plated liquid oxygen post plug
NASA Technical Reports Server (NTRS)
1999-01-01
Engineers are investigating the possibility that a 7/8' gold- plated liquid oxygen post plug became dislodged and created three small holes in the liquid hydrogen tubes inside the nozzle on main engine No. 3 on Space Shuttle Columbia. The holes caused a hydrogen leak during the STS-93 launch of Columbia on July 23.
Novel fabrication method of microchannel plates
NASA Astrophysics Data System (ADS)
Yi, Whikun; Jeong, Taewon; Jin, Sunghwan; Yu, SeGi; Lee, Jeonghee; Kim, J. M.
2000-11-01
We have developed a novel microchannel plate (MCP) by introducing new materials and process technologies. The key features of our MCP are summarized as follows: (i) bulk alumina as a substrate, (ii) the channel location defined by a programmed-hole puncher, (iii) thin film deposition by electroless plating and/or sol-gel process, and (iv) an easy fabrication process suitable for mass production and a large-sized MCP. The characteristics of the resulting MCP have been evaluated with a high input current source such as a continuous electron beam from an electron gun and Spindt-type field emitters to obtain information on electron multiplication. In the case of a 0.28 μA incident beam, the output current enhances ˜170 times, which is equal to 1% of the total bias current of the MCP at a given bias voltage of 2600 V. When we insert a MCP between the cathode and the anode of a field emission display panel, the brightness of luminescent light increases 3-4 times by multiplying the emitted electrons through pore arrays of a MCP.
Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K
2013-03-15
Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bulbul, Ferhat
2011-02-01
Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.
Electroless-plating technique for fabricating thin-wall convective heat-transfer models
NASA Technical Reports Server (NTRS)
Avery, D. E.; Ballard, G. K.; Wilson, M. L.
1984-01-01
A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell; Ramsey, Brian
2003-01-01
NASA and the University of Alabama in Huntsville have developed ecologically friendly, versatile nickel and nickel cobalt phosphorous electroplating processes. Solutions show excellent performance with high efficiency for vastly extended throughput. Properties include, clean, low temperature operation (40 - 60 C), high Faradaic efficiency, low stress and high hardness. A variety of alloy and plating speed options are easily achieved from the same chemistry using soluble anodes for metal replacement with only 25% of the phosphorous additions required for electroless nickel. Thick deposits are easily achieved unattended, for electroforming freestanding shapes without buildup of excess orthophosphate or stripping of equipment.
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell; Ramsey, Brian
2004-01-01
NASA and the University of Alabama in Huntsville have developed ecologically friendly, versatile nickel and nickel cobalt phosphorous electroplating processes. Solutions show excellent performance with high efficiency for vastly extended throughput. Properties include, clean, low temperature operation (40 - 60 C), high Faradaic efficiency, low stress and high hardness. A variety of alloy and plating speed options are easily achieved from the same chemistry using soluble anodes for metal replacement with only 25% of the phosphorous additions required for electroless nickel. Thick deposits are easily achieved unattended, for electroforming freestanding shapes without buildup of excess orthophosphate or stripping of equipment.
NASA Technical Reports Server (NTRS)
Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)
2014-01-01
Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.
Silicon solar cells with nickel/solder metallization
NASA Technical Reports Server (NTRS)
Petersen, R. C.; Muleo, A.
1981-01-01
The use of nickel plus solder is shown to be feasible for contact metallization for silicon solar cells by offering a relatively inexpensive method of making electrical contact with the cell surfaces. Nickel is plated on silicon solar cells using an electroless chemical deposition method to give contacts with good adhesion, and in some cases where adhesion is poor initially, sintering under relatively mild conditions will dramatically improve the quality of the bond without harming the p-n junction of the cell. The cells can survive terrestrial environment stresses, which is demonstrated by a 1000 hour test at 85 C and 85% relative humidity under constant forward bias of 0.45 volt.
Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug
2011-08-01
A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.
Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications
NASA Astrophysics Data System (ADS)
Daniel, Weston Lewis
This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA limit for this ion in drinking water. Finally, Chapter 6 describes the synthesis of high density lipoprotein biomimetic nanoparticles capable of binding cholesterol. These structures use a gold nanoparticle core to template the assembly of a mixed phospholipid layer and the adsorption of apolipoprotein A-I. These synthesized structures have the general size and surface composition of natural HDL and bind free cholesterol with a Kd of 4 nM.
A Kinetic Study of the Reaction of Ch3 02 with N02. Volume I,
1980-01-01
Ravishankara F.L. Eisele IP.H. Wine ABSTRACT The technique of pulsed laser photolysis-long path laser aborption is employed to study the kinetics of the...Inrad Corp.) which was housed in a gold plated copper block. This copper block was in snug contact with a gold plated pedestal which was backed by a
NASA Technical Reports Server (NTRS)
2002-01-01
Epner Technology, Inc., worked with Goddard Space Center to apply gold coating to the Vegetation Canopy Lidar (VCL) mirror. This partnership resulted in new commercial applications for Epner's LaserGold(R) process in the automotive industry. Previously, the company did not have equipment large enough to handle the plating of the stainless steel panels cost effectively. Seeing a chance to renew this effort, Epner Technology and Goddard entered into an agreement by which NASA would fund the facility needed to do the gold-plating, and Epner Technology would cover all other costs as part of their internal research and development. The VCL mirror project proceeded successfully, fulfilling Goddard's needs and leaving Epner Technology with a new facility to provide LaserGold for the automotive industry. The new capability means increased power savings and improvements in both quality and production time for BMW Manufacturing Corporation of Spartanburg, South Carolina, and Cadillac of Detroit, Michigan, as well as other manufacturers who have implemented Epner Technology's LaserGold process. LaserGold(R) is a registered trademark of Epner Technology, Inc.
Positive electrode current collector for liquid metal cells
Shimotake, Hiroshi; Bartholme, Louis G.
1984-01-01
A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.
NASA Technical Reports Server (NTRS)
Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.
2014-01-01
During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.
Ruíz-Gómez, M A; Figueroa-Torres, M Z; Alonso-Lemus, I L; Vega-Becerra, O E; González-López, J R; Zaldívar-Cadena, A A
2018-04-05
An electroless deposition process was used to synthesize with a controlled morphology, polycrystalline ZnO on glass substrates as antimicrobial coatings. The influence of deposition temperature (T dep ) on the physicochemical and antimicrobial properties of the ZnO films was analyzed. The results indicated that a change in deposition temperature greatly affected the morphology and the degree of crystallinity of the films. Scanning electron microscope images show that the film surface is porous at a deposition temperature of 40 and 50 °C, whereas hexagonal-plate shaped morphology predominated at 60 °C and finally at 70 and 80 °C the films consisted of rod-like particles. The films showed good transparency in the visible region. All ZnO films presented notable antimicrobial activity against the gram-negative bacteria Escherichia coli (E. coli) and the gram-positive Staphylococcus aureus (S. aureus). It was found that the antimicrobial efficiency is strongly dependent on morphology and structural properties. The best antimicrobial performance was recorded for the films consisting of rod-like morphology with a high degree of crystallinity. The procedure used in this investigation is strongly recommended for the development of functional surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ortega-Feliu, I.; Ager, F. J.; Roldán, C.; Ferretti, M.; Juanes, D.; Scrivano, S.; Respaldiza, M. A.; Ferrazza, L.; Traver, I.; Grilli, M. L.
2017-09-01
This work presents a detailed study of a series of silver plates gilded via electroplating techniques in which the characteristics of the coating gold layers are investigated as a function of the electroplating variables (voltage, time, anode surface and temperature). Some reference samples were coated by radio frequency sputtering in order to compare gold layer homogeneity and effective density. Surface analysis was performed by means of atomic and nuclear techniques (SEM-EDX, EDXRF, PIXE and RBS) to obtain information about thickness, homogeneity, effective density, profile concentration of the gold layers and Au-Ag diffusion profiles. The gold layer thickness obtained by PIXE and EDXRF is consistent with the thickness obtained by means of RBS depth profiling. Electroplated gold mass thickness increases with electroplating time, anode area and voltage. However, electrodeposited samples present rough interfaces and gold layer effective densities lower than the nominal density of Au (19.3 g/cm3), whereas sputtering produces uniform layers with nominal density. These analyses provide valuable information to historians and curators and can help the restoration process of gold-plated silver objects.
Close-up of 7/8' gold-plated liquid oxygen post plug copy form; photos beginning with 99PD are only
NASA Technical Reports Server (NTRS)
1999-01-01
Engineers are investigating the possibility that a 7/8' gold- plated liquid oxygen post plug became dislodged and created three small holes in the liquid hydrogen tubes inside the nozzle on main engine No. 3 on Space Shuttle Columbia. The holes caused a hydrogen leak during the STS-93 launch of Columbia on July 23.
Undercoat prevents blistering of silver plating at elevated temperatures
NASA Technical Reports Server (NTRS)
Kuster, C. A.
1967-01-01
Gold undercoat prevents blistering in the silver plating of Inconel 718 seals from steam at high temperatures. The undercoat is diffused into the surface of the parent metal by baking prior to silver plating.
Selection of Optical Cavity Surface Coatings for 1micron Laser Based Missions
NASA Technical Reports Server (NTRS)
Hedgeland, Randy J.; Straka, Sharon; Matsumura, Mark; Hammerbacher, Joseph
2004-01-01
The particulate surface cleanliness level on several coatings for aluminum and beryllium substrates were examined for use in the optical cavities of high pulse energy Nd:YAG Q-switched, diode-pumped lasers for space flight applications. Because of the high intensity of the lasers, any contaminants in the laser beam path could damage optical coatings and limit the instrument mission objectives at the operating wavelength of 1 micron (micrometer). Our goal was to achieve an EST-STD-CC1246D Level 100 particulate distribution or better to ensure particulate redistribution during launch would not adversely affect the performance objectives. Tapelifts were performed to quantify the amount of particles using in-house developed procedures. The primary candidate coatings included chromate conversion coating aluminum (Al), uncoated Al electroless Nickel (Ni) on Al, Ni-gold (Au) on Al, anodized Al, and gold (Au)/Ni on Beryllium (Be). The results indicate that there were advantages in Ni and Au coating applications for the two major substrates, Al and Be, when considering applications that need to meet launch environments.
The design and evaluation of superconducting connectors
NASA Technical Reports Server (NTRS)
Payne, J. E.
1982-01-01
The development of a superconducting connector for superconducting circuits on space flights is described. It is proposed that such connectors be used between the superconducting readout loop and the SQUID magnetometer in the Gravity Probe B experiment. Two types of connectors were developed. One type employs gold plated niobium wires making pressure connections to gold plated niobium pads. Lead-plated beryllium-copper spring contacts can replace the niobium wires. The other type is a rigid solder or weld connection between the niobium wires and the niobium pads. A description of the methods used to produce these connectors is given and their performance analyzed.
Friction and hardness of gold films deposited by ion plating and evaporation
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1983-01-01
Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.
Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.
Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo
2014-01-01
The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.
NASA Technical Reports Server (NTRS)
Wolf, M.; Goldman, H.
1981-01-01
The attributes of the various metallization processes were investigated. It is shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add on price in the range of $6. to 12. m squared, or 4 to $.8/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6. to 12/m squared range c.) The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost effective.
Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets
NASA Astrophysics Data System (ADS)
Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.
2013-01-01
The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.
NASA Astrophysics Data System (ADS)
Kim, Kwan-Woo; Han, Woong; Kim, Byoung-Suhk; Kim, Byung-Joo; An, Kay-Hyeok
2017-09-01
In order to develop the high quality electromagnetic interference shielding efficiency (EMI-SE) materials, Ni-plated carbon fiber fabrics (Ni-CFFs) were prepared by an electroless method. Effects of post heat-treatment conditions on EMI-SE and electrical conductivity of Ni-CFFs/epoxy composites were also investigated. The morphologies and structural properties of Ni-CFFs were measured by a SEM and a XRD. It was found that all the Ni peaks increased with increasing post-heat treatment temperature, indicating that some impurities were removed and nickel particle sharp crystalline peaks. Also, It was found that the EMI-SE of composites enhanced was increased after post heat-treatment. In the frequency range of electromagnetic wave occurred from appliances (3.0 × 107-6.0 × 108), EMI-SE of post-heat treatment Ni-CFs was increased. This result concludes that the EMI-SE of the composites can be enhanced according to the microstructure of Ni in the Ni-CFFs/epoxy composites.
NASA Technical Reports Server (NTRS)
Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.
1991-01-01
A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.
2005 5th Annual CMMI Technology Conference and User Group. Volume 3 - Wednesday
2005-11-17
Product-Related Mistakes 28. Requirements gold-plating 29. Feature creep 30. Developer gold-plating 31. Push me, pull me negotiation 32. Research...STATE UNIVERSITY 14 IV&V Layer – Select Criticality Levels for IV&V Techniques using pull -down menus PORTLAND STATE UNIVERSITY 15...of time • Develop a proposal describing how to accomplish the goal and identifying what resources would be required Look for better solutions! • Pull
NASA Astrophysics Data System (ADS)
Lyu, Xiao; Hu, Jingping; Foord, John S.; Wang, Qiang
2013-11-01
A novel electroless deposition method was demonstrated to prepare a platinum electrocatalyst on boron doped diamond (BDD) substrates without the need for pre-activation. This green method addresses the uniformity and particle size issues associated with electrodeposition and circumvents the pre-activation procedure which is necessary for conventional electroless deposition. The inert BDD substrate formed a galvanic couple with an iron wire, to overcome the activation barrier associated with conventional electroless deposition on diamond, leading to the formation of Pt nanoparticles on the electrode surface in a galvanic process coupled to a chemical process. When sodium hypophosphite was employed as the reducing agent to drive the electroless reaction Pt deposits which were contaminated with iron and phosphorus resulted. In contrast, the reducing agent ascorbic acid gave rise to high purity Pt nanoparticles. Optimal deposition conditions with respect to bath temperature, pH value and stabilizing additives are identified. Using this approach, high purity and uniformly distributed platinum nanoparticles are obtained on the diamond electrode surface, which demonstrate a high electrochemical activity towards methanol oxidation.
NASA Astrophysics Data System (ADS)
Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do
2017-03-01
As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.
NASA Astrophysics Data System (ADS)
Huang, M. L.; Zhao, N.
2015-10-01
Board-level drop tests of plastic ball grid array (PBGA) packages were performed in accordance with the Joint Electron Devices Engineering Council standard to investigate the effect of electromigration (EM) on the drop reliability of Sn-3.0Ag-0.5Cu solder joints with two substrate surface finishes, organic solderability preservative (OSP) and electroless nickel electroless palladium immersion gold (ENEPIG). In the as-soldered state, drop failures occurred at the substrate sides only, with cracks propagating within the interfacial intermetallic compound (IMC) layer for OSP solder joints and along the IMC/Ni-P interface for ENEPIG solder joints. The drop lifetime of OSP solder joints was approximately twice that of ENEPIG joints. EM had an important effect on crack formation and drop lifetime of the PBGA solder joints. ENEPIG solder joints performed better in drop reliability tests after EM, that is, the drop lifetime of ENEPIG joints decreased by 43% whereas that of OSP solder joints decreased by 91%, compared with the as-soldered cases. The more serious polarity effect, i.e., excessive growth of the interfacial IMC at the anode, was responsible for the sharper decrease in drop lifetime. The different types of drop failure of PBGA solder joints before and after EM, including the position of initiation and the propagation path of cracks, are discussed on the basis of the growth behavior of interfacial IMC.
The use of optical fiber bundles combined with electrochemistry for chemical imaging.
Szunerits, Sabine; Walt, David R
2003-02-17
The present Review describes the progress made in using imaging optical fiber bundles for fluorescence and electrochemical-initiated chemiluminescence imaging. A novel optoelectrochemical micro-ring array has been fabricated and demonstrated for concurrent electrochemical and optical measurements. The device comprises optical fibers coated with gold via electroless gold deposition and assembled in a random array format. The design yielded an array of approximately 200 micro-ring electrodes, where interdiffusional problems were minimized. The inner diameter of the ring electrode is fixed by the diameter of the individual optical fibers (25 microns), while the outer radius is determined by the thickness of the deposited gold. While all the fibers are optically addressable, they are not all electrochemically addressable. The resolution of this device is in the tens of micrometers range, determined by the diameter of the optical fiber (25 microns) and by the spacing between each electrically connected fiber. For the purpose of having well-behaved microelectrode characteristics, this spacing was designed to be larger than 60 microns. The array was characterized using ferrocyanide in aqueous solution as a model electroactive species to demonstrate that this microelectrode array format exhibits steady-state currents at short response times. This device has potential application to be used as an optoelectronic sensor, especially for the electrolytic generation and transmission of electrochemiluminescence, and was used to demonstrate that electrochemically generated luminescent products can be detected with the fiber assembly.
Electroless epitaxial etching for semiconductor applications
McCarthy, Anthony M.
2002-01-01
A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.
16 CFR 23.5 - Misuse of the word “vermeil.”
Code of Federal Regulations, 2011 CFR
2011-01-01
... with gold, or gold alloy of not less than 10 karat fineness, that is of substantial thickness 7 and a...,000ths of an inch) of fine gold. 7 See footnote 3. Note 1 to § 23.5: It is unfair or deceptive to use the... (such as nickel) plated with gold unless there is a disclosure that the sterling silver is covered with...
16 CFR 23.5 - Misuse of the word “vermeil.”
Code of Federal Regulations, 2014 CFR
2014-01-01
... with gold, or gold alloy of not less than 10 karat fineness, that is of substantial thickness 7 and a...,000ths of an inch) of fine gold. 7 See footnote 3. Note 1 to § 23.5: It is unfair or deceptive to use the... (such as nickel) plated with gold unless there is a disclosure that the sterling silver is covered with...
16 CFR 23.5 - Misuse of the word “vermeil.”
Code of Federal Regulations, 2013 CFR
2013-01-01
... with gold, or gold alloy of not less than 10 karat fineness, that is of substantial thickness 7 and a...,000ths of an inch) of fine gold. 7 See footnote 3. Note 1 to § 23.5: It is unfair or deceptive to use the... (such as nickel) plated with gold unless there is a disclosure that the sterling silver is covered with...
16 CFR 23.5 - Misuse of the word “vermeil.”
Code of Federal Regulations, 2012 CFR
2012-01-01
... with gold, or gold alloy of not less than 10 karat fineness, that is of substantial thickness 7 and a...,000ths of an inch) of fine gold. 7 See footnote 3. Note 1 to § 23.5: It is unfair or deceptive to use the... (such as nickel) plated with gold unless there is a disclosure that the sterling silver is covered with...
Removal of single point diamond-turning marks by abrasive jet polishing.
Li, Z Z; Wang, J M; Peng, X Q; Ho, L T; Yin, Z Q; Li, S Y; Cheung, C F
2011-06-01
Single point diamond turning (SPDT) is highly controllable and versatile in producing axially symmetric forms, non-axially-symmetric forms, microstructured surfaces, and free forms. However, the fine SPDT marks left in the surface limit its performance, and they are difficult to reduce or eliminate. It is unpractical for traditional methods to remove the fine marks without destroying their forms, especially for the aspheres and free forms. This paper introduces abrasive jet polishing (AJP) for the posttreatment of diamond-turned surfaces to remove the periodic microstructures. Samples of diamond-turned electroless nickel plated plano mirror were used in the experiments. One sample with an original surface roughness of more than 400 nm decreased to 4 nm after two iterations abrasive jet polishing; the surface roughness of another sample went from 3.7 nm to 1.4 nm after polishing. The periodic signatures on both of the samples were removed entirely after polishing. Contrastive experimental research was carried out on electroless nickel mirror with magnetorheological finishing, computer controlled optical surfacing, and AJP. The experimental results indicate that AJP is more appropriate in removing the periodic SPDT marks. Also, a figure maintaining experiment was carried out with the AJP process; the uniform polishing process shows that the AJP process can remove the periodic turning marks without destroying the original form.
Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers
NASA Astrophysics Data System (ADS)
Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing
2016-12-01
We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.
Metallic glass as a temperature sensor during ion plating
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1985-01-01
The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.
Metallic glass as a temperature sensor during ion plating
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.
Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire
NASA Astrophysics Data System (ADS)
Tseng, Yi-Wei; Hung, Fei-Yi; Lui, Truan-Sheng
2016-01-01
Traditional bath-plated gold contains a cyanide complex, which is an environmental hazard. In response, our study used a green plating process to produce cyanide-free gold-coated silver (cyanide-free ACA) bonding wire that has been proven to be a feasible alternative to gold bonding wire in semiconductor packaging. In this work, ACA wire annealed at 550°C was found to have stable microstructure and superior mechanical properties. Intermetallic compounds Ag2Al and AuAl2 grew from Ag-Au balls and Al pads after aging at 175°C for 500 h. After current testing, ACA wire was found to have improved electrical properties due to equiaxed grain growth. The gold nanolayer on the Ag surface increased the oxidation resistance. These results provide insights regarding the reliability of ACA wire in advanced bonding processes.
Haeussler, Peter J.; Bradley, Dwight C.; Goldfarb, Richard J.
2003-01-01
A spreading center was subducted diachronously along a 2200 km segment of what is now the Gulf of Alaska margin between 61 and 50 Ma, and left in its wake near-trench intrusions and high-T, low-P metamorphic rocks. Gold-quartz veins and dikes, linked to ridge subduction by geochronological and relative timing evidence, provide a record of brittle deformation during and after passage of the ridge. The gold-quartz veins are typically hosted by faults, and their regional extent indicates there was widespread deformation of the forearc above the slab window at the time of ridge subduction. Considerable variability in the strain pattern was associated with the slab window and the trailing plate. A diffuse network of dextral, sinistral, and normal faults hosted small lode-gold deposits (<50,000 oz) in south-central Alaska, whereas crustal-scale dextral faults in southeastern Alaska are spatially associated with large gold deposits (up to 800,000 oz).We interpret the gold-quartz veins as having formed above an eastward-migrating slab window, where the forearc crust responded to the diminishing influence of the forward subducting plate, the increasing influence of the trailing plate, and the thermal pulse and decreased basal friction from the slab window. In addition, extensional deformation of the forearc resulted from the diverging motions of the two oceanic plates at the margins of the slab window. Factors that complicate interpretations of fault kinematics and near-trench dike orientations include a change in plate motions at ca. 52 Ma, northward translation of the accretionary complex, oroclinal bending of the south-central Alaska margin, and subduction of transform segments. We find the pattern of syn-ridge subduction faulting in southern Alaska is remarkably similar to brittle faults near the Chile triple junction and to earthquake focal mechanisms in the Woodlark basin - the two modern sites of ridge subduction. Therefore, extensional and strike-slip deformation above slab windows may be a common occurrence.
NASA Astrophysics Data System (ADS)
Liu, Sisi; Xu, Zhimou; Sun, Tangyou; Zhao, Wenning; Wu, Xinghui; Ma, Zhichao; Xu, Haifeng; He, Jian; Chen, Cunhua
2014-06-01
We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core-shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10-12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.
Formation of small gold clusters in solution by laser excitation of interband transition
NASA Astrophysics Data System (ADS)
Mafuné, Fumitaka; Kondow, Tamotsu
2003-04-01
Gold nanoparticles with ˜10 nm in average diameter were prepared by laser ablation of a gold metal plate in an aqueous solution of sodium dodecyl sulfate (SDS) and were fragmented by excitation of an interband transition of gold nanoparticles under irradiation of an intense 355-nm pulsed laser. Fragmentation dynamics was investigated by comparing the fragmentation by excitation of a surface plasmon band of gold nanoparticles by a 532-nm laser. It is found that gold nanoparticles with 1.5-nm average diameter are produced together with small gold clusters by properly optimizing the surfactant concentration.
The graphene-gold interface and its implications for nanoelectronics.
Sundaram, Ravi S; Steiner, Mathias; Chiu, Hsin-Ying; Engel, Michael; Bol, Ageeth A; Krupke, Ralph; Burghard, Marko; Kern, Klaus; Avouris, Phaedon
2011-09-14
We combine optical microspectroscopy and electronic measurements to study how gold deposition affects the physical properties of graphene. We find that the electronic structure, the electron-phonon coupling, and the doping level in gold-plated graphene are largely preserved. The transfer lengths for electrons and holes at the graphene-gold contact have values as high as 1.6 μm. However, the interfacial coupling of graphene and gold causes local temperature drops of up to 500 K in operating electronic devices.
Electroless atomic layer deposition
Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.
2017-10-31
A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.
NASA Astrophysics Data System (ADS)
Mohaček-Grošev, Vlasta; Gebavi, Hrvoje; Bonifacio, Alois; Sergo, Valter; Daković, Marko; Bajuk-Bogdanović, Danica
2018-07-01
Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10-3, 10-4 and 10-5 M and adenine in 30 and 100 μM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106 cm-1 band is explained by involvement of the Csbnd S stretching deformation, and the appearance of the broad 300 cm-1 band attributed to Ssbnd Au stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736 cm-1. The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600 cm-1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule.
A Multipurpose CMOS Platform for Nanosensing
Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L.; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo
2016-01-01
This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μm × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW–229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus. PMID:27916911
A Multipurpose CMOS Platform for Nanosensing.
Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo
2016-11-30
This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μ m × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW-229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus.
Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habegger, L. J.; Fernandez, L. E.; Engle, M.
2008-06-30
Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles.more » The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts between the point of evaporation and the baffle plates. Second, the slots in the baffle plates create jets that force the mercury particles to impinge and adhere on downstream surfaces. The baffle plates should closely follow the designs developed for this system to be most effective.« less
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1983-01-01
For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.
Conductive Au nanowires regulated by silk fibroin nanofibers
NASA Astrophysics Data System (ADS)
Dong, Bo-Ju; Lu, Qiang
2014-03-01
Conductive Au-biopolymer composites have promising applications in tissue engineering such as nerve tissue regeneration. In this study, silk fibroin nanofibers were formed in aqueous solution by regulating silk self-assembly process and then used as template for Au nanowire fabrication. We performed the synthesis of Au seeds by repeating the seeding cycles for several times in order to increase the density of Au seeds on the nanofibers. After electroless plating, densely decorated Au seeds grew into irregularly shaped particles following silk nanofiber to fill the gaps between particles and finally form uniform continuous nanowires. The conductive property of the Au-silk fibroin nanowires was studied with current-voltage ( I-V) measurement. A typical ohmic behavior was observed, which highlighted their potential applications in nerve tissue regeneration.
Direct write of copper-graphene composite using micro-cold spray
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dardona, Sameh, E-mail: dardona@utrc.utc.com; She, Ying; Schmidt, Wayde R.
Direct write of a new class of composite materials containing copper and graphene in the powder phase is described. The composite was synthesized using batch electroless plating of copper for various times onto Nano Graphene Platelets (NGP) to control the amount of copper deposited within the loosely aggregated graphene powder. Copper deposition was confirmed by both Focused Ion Beam (FIB) and Auger electron spectroscopic analysis. A micro-cold spray technique was used to deposit traces that are ∼230 μm wide and ∼5 μm thick of the formulated copper/graphene powder onto a glass substrate. The deposited traces were found to have goodmore » adhesion to the substrate with ∼65x the copper bulk resistivity.« less
Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding
NASA Astrophysics Data System (ADS)
Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing
2018-04-01
A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1981-01-01
The purpose of this program is to demonstrate the technical readiness of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of $.70 or less per watt peak. Program efforts included: preliminary design review, preliminary cell fabrication using the proposed process sequence, verification of sandblasting back cleanup, study of resist parameters, evaluation of pull strength of the proposed metallization, measurement of contact resistance of Electroless Ni contacts, optimization of process parameter, design of the MEPSDU module, identification and testing of insulator tapes, development of a lamination process sequence, identification, discussions, demonstrations and visits with candidate equipment vendors, evaluation of proposals for tabbing and stringing machine.
Soft actuator based on Kraton with GO/Ag/Pani composite electrodes for robotic applications
NASA Astrophysics Data System (ADS)
Khan, Ajahar; Kant Jain, Ravi; Banerjee, Priyabrata; Inamuddin; Asiri, Abdullah M.
2017-11-01
In this work, electrochemically-driven Kraton/graphene oxide/Ag/polyaniline (Kraton/GO/Ag/Pani) polymer composite based ionic polymer metal composite (IPMC) was fabricated as a soft actuator. Silver nanopowder with polyaniline coating used as an electrode material is a novel approach in the fabrication of IPMC, which gives new opportunities for development of the electrode on ionic polymer actuator surfaces directly without electroless plating of Pt or Au metal. The Kraton/GO/Ag/Pani membrane showed much higher water-uptake (WU), ion exchange capacity (IEC), proton conductivity than those of several reported IPMC membranes. The enhanced actuation performance indicates that the Kraton/GO/Ag/Pani is a better alternative to the highly expensive commercialized IPMC actuator.
Minimizing the bimetallic bending for cryogenic metal optics based on electroless nickel
NASA Astrophysics Data System (ADS)
Kinast, Jan; Hilpert, Enrico; Lange, Nicolas; Gebhardt, Andreas; Rohloff, Ralf-Rainer; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas
2014-07-01
Ultra-precise metal optics are key components of sophisticated scientific instruments in astronomy and space applications. Especially for cryogenic applications, a detailed knowledge and the control of the coefficient of thermal expansion (CTE) of the used materials are essential. Reflective optical components in IR- and NIR-instruments primarily consist of the aluminum alloy Al6061. The achievable micro-roughness of diamond machined and directly polished Al6061 does not fulfill the requirements for applications in the visible spectral range. Electroless nickel enables the reduction of the mirror surface roughness to the sub-nm range by polishing. To minimize the associated disadvantageous bimetallic effect, a novel material combination for cryogenic mirrors based on electroless nickel and hypereutectic aluminum-silicon is investigated. An increasing silicon content of the aluminum material decreases the CTE in the temperature range to be considered. This paper shows the CTE for aluminum materials containing about 42 wt% silicon (AlSi42) and for electroless nickel with a phosphorous content ranging from 10.5 to 13 %. The CTE differ to about 0.5 × 10-6 K-1 in a temperature range from -185 °C (LN2) to 100 °C. Besides, the correlations between the chemical compositions of aluminum-silicon materials and electroless nickel are shown. A metrology setup for cryo-interferometry was developed to analyze the remaining and reversible shape deviation at cryogenic temperatures. Changes could be caused by different CTE, mounting forces and residual stress conditions. In the electroless nickel layer, the resulting shape deviation can be preshaped by deterministic correction processes such as magnetorheological finishing (MRF) at room temperature.
Performance of dead Azolla filiculoides biomass in Biosorption of Au from wastewater.
Umali, L J; Duncan, J R; Burgess, J E
2006-01-01
Dried milled biomass of Azolla filiculoides removed up to 98.2% of gold from wastewater from a gold plating factory containing 5 mg gold/l in solution in batch biosorption. The gold uptake capacity of the biomass was 98 mg/g. Whole dried biomass used in a continuous flow column removed up to 100% of gold from diluted wastewater. A similar column was linked to a sulphide precipitation process to provide a two-step system which was able to remove 98% of gold from undiluted wastewater containing 41 mg Au/l. The lifetime of the column was five days.
Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC
2008-05-27
A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.
Metal Alloy ICF Capsules Created by Electrodeposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.
Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less
Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Yoon, Wonseok; Huang, Xinyu; Fazzino, Paul; Reifsnider, Kenneth L.; Akkaoui, Michael A.
Metallic bipolar plates for polymer electrolyte membrane (PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance, good mechanical robustness, low material and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrates by electroplating and physical vapor deposition (PVD) methods. The coatings are screened with an electrochemical polarization test for corrosion resistance; then the contact resistance test was performed on selected coatings. The coating investigated include Gold with various thicknesses (2 nm, 10 nm, and 1 μm), Titanium, Zirconium, Zirconium Nitride (ZrN), Zirconium Niobium (ZrNb), and Zirconium Nitride with a Gold top layer (ZrNAu). The substrates include three types of stainless steel: 304, 310, and 316. The results show that Zr-coated samples satisfy the DOE target for corrosion resistance at both anode and cathode sides in typical PEM fuel cell environments in the short-term, but they do not meet the DOE contact resistance goal. Very thin gold coating (2 nm) can significantly decrease the electrical contact resistance, however a relatively thick gold coating (>10 nm) with our deposition method is necessary for adequate corrosion resistance, particularly for the cathode side of the bipolar plate.
Metal Alloy ICF Capsules Created by Electrodeposition
Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.
2017-12-04
Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less
Development of replicated optics for AXAF-1 XDA testing
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell; Wilson, Michele; Martin, Greg
1995-01-01
Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in terms of fine finish and surface figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicated optic is not better than the master or mandrel from which it is made. This task identifies methods and materials for forming these extremely low roughness optical components. The objectives of this contract were to (1) prepare replication samples of electroless nickel coated aluminum, and determine process requirements for plating XDA test optic; (2) prepare and assemble plating equipment required to process a demonstration optic; (3) characterize mandrels, replicas and test samples for residual stress, surface contamination and surface roughness and figure using equipment at MSFC and; (4) provide technical expertise in establishing the processes, procedures, supplies and equipment needed to process the XDA test optics.
Yang, Yong; Wang, Mei; Zhang, Peili; Wang, Weihan; Han, Hongxian; Sun, Licheng
2016-11-09
Modification of p-type Si surface by active and stable earth-abundant electrocatalysts is an effective strategy to improve the sluggish kinetics for the hydrogen evolution reaction (HER) at p-Si/electrolyte interface and to develop highly efficient and low-cost photocathodes for hydrogen production from water. To this end, Si nanowire (Si-NW) array has been loaded with highly efficient electrocatalysts, M-B (M = Ni, Co), by facile and quick electroless plating to build M-B catalyst-modified Si nanowire-array-textured photocathodes for water reduction to H 2 . Compared with the bare Si-NW array, composite Si-NWs/M-B arrays display evidently enhanced photoelectrochemical (PEC) performance. The onset potential (V phon ) of cathodic photocurrent is positively shifted by 530-540 mV to 0.44-0.45 V vs RHE, and the short-circuit current density (J sc ) is up to 19.5 mA cm -2 in neutral buffer solution under simulated 1 sun illumination. Impressively, the half-cell photopower conversion efficiencies (η hc ) of the optimized Si-NWs/Co-B (2.53%) and Si-NWs/Ni-B (2.45%) are comparable to that of Si-NWs/Pt (2.46%). In terms of the large J sc , V phon , and η hc values, as well as the high Faradaic efficiency, Si-NWs/M-B electrodes are among the top performing Si photocathodes which are modified with HER electrocatalysts but have no buried solid/solid junction.
Huang, Kang; Goddard, Julie M
2015-09-01
Application of nonfouling coatings on thermal processing equipment can improve operational efficiency. However, to enable effective commercial translation, a need exists for more comprehensive studies on the stability of nonfouling coatings after exposure to different sanitizers. In the current study, the influence of different commercial dairy equipment sanitizers on the nonfouling properties of stainless steel modified with electroless Ni-polytetrafluoroethylene (PTFE) coatings was determined. Surface properties, such as dynamic contact angle, surface energy, surface morphology, and elemental composition, were measured before and after the coupons were exposed to the sanitizers for 168 cleaning cycles. The fouling behavior of Ni-PTFE-modified stainless steel coupons after exposure was also evaluated by processing raw milk on a self-fabricated benchtop-scale plate heat exchanger. The results indicated that peroxide sanitizer had only minor effect on the Ni-PTFE-modified stainless steel surface, whereas chlorine- and iodine-based sanitizers influenced the surface properties drastically. The coupons after 168 cycles of exposure to peroxide sanitizer accumulated the least amount of fouling material (4.44±0.24mg/cm(2)) compared with the coupons exposed to the other 3 sanitizers. These observations indicated that the Ni-PTFE nonfouling coating retained antifouling properties after 168 cycles of exposure to peroxide-based sanitizer, supporting their potential application as nonfouling coatings for stainless steel dairy processing equipment. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Li, Zhilin; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029
Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesizedmore » through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.« less
Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil
2016-08-01
Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.
Lead zirconate titanate (PZT)-based thin film capacitors for embedded passive applications
NASA Astrophysics Data System (ADS)
Kim, Taeyun
Investigations on the key processing parameters and properties relationship for lead zirconate titanate (PZT, 52/48) based thin film capacitors for embedded passive capacitor application were performed using electroless Ni coated Cu foils as substrates. Undoped and Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil by chemical solution deposition. For PZT (52/48) thin film capacitors on electroless Ni coated Cu foil, voltage independent (zero tunability) capacitance behavior was observed. Dielectric constant reduced to more than half of the identical capacitor processed on Pt/SiO2/Si. Dielectric properties of the capacitors were mostly dependent on the crystallization temperature. Capacitance densities of almost 350 nF/cm2 and 0.02˜0.03 of loss tangent were routinely measured for capacitors crystallized at 575˜600°C. Leakage current showed dependence on film thickness and crystallization temperature. From a two-capacitor model, the existence of a low permittivity interface layer (permittivity ˜30) was suggested. For Ca-doped PZT (52/48) thin film capacitors prepared on Pt, typical ferroelectric and dielectric properties were measured up to 5 mol% Ca doping. When Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil, phase stability was influenced by Ca doping and phosphorous content. Dielectric properties showed dependence on the crystallization temperature and phosphorous content. Capacitance density of ˜400 nF/cm2 was achieved, which is an improvement by more than 30% compared to undoped composition. Ca doping also reduced the temperature coefficient of capacitance (TCC) less than 10%, all of them were consistent in satisfying the requirements of embedded passive capacitor. Leakage current density was not affected significantly by doping. To tailor the dielectric and reliability properties, ZrO2 was selected as buffer layer between PZT and electroless Ni. Only RF magnetron sputtering process could yield stable ZrO2 layers on electroless Ni coated Cu foil. Other processes resulted in secondary phase formation, which supports the reaction between PZT capacitor and electroless Ni might be dominated by phosphorous component. (Abstract shortened by UMI.)
Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem
2014-01-01
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.
2014-01-01
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554
NASA Astrophysics Data System (ADS)
Kao, Szu-Tsung; Duh, Jenq-Gong
2005-08-01
Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.
A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus.
Yuan, Jinglei; Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Chen, Jie; Ding, Zhansheng; Wang, Zhouping
2014-09-01
In this study, a gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus (S. aureus) using tyramine signal amplification (TSA) technology has been developed. First, the biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of the microtiter plate via biotin-avidin binding. Then, the target bacteria (S. aureus), biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and avidin-catalase were successively introduced into the wells of the microtiter plate. After that, the existing catalase consumed the hydrogen peroxide. Finally, the freshly prepared gold (III) chloride trihydrate was added, the color of the reaction production would be changed and the absorbance at 550 nm could be measured with a plate reader. Under optimized conditions, there was a linear relationship between the absorbance at 550 nm and the concentration of S. aureus over the range from 10 to 10(6) cfu mL(-1) (with an R² of 0.9947). The limit of the developed method was determined to be 9 cfu mL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
Cavity transport effects in generator-collector electrochemical analysis of nitrobenzene.
Lewis, Grace E M; Dale, Sara E C; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Barnes, Edward O; Compton, Richard G; Marken, Frank
2014-09-21
Two types of generator-collector electrode systems, (i) a gold-gold interdigitated microband array and (ii) a gold-gold dual-plate microtrench, are compared for nitrobenzene electroanalysis in aerated aqueous 0.1 M NaOH. The complexity of the nitrobenzene reduction in conjunction with the presence of ambient levels of oxygen in the analysis solution provide a challenging problem in which feedback-amplified generator-collector steady state currents provide the analytical signal. In contrast to the more openly accessible geometry of the interdigitated array electrode, where the voltammetric response for nitrobenzene is less well-defined and signals drift, the voltammetric response for the cavity-like microtrench electrode is stable and readily detectable at 1 μM level. Both types of electrode show oxygen-enhanced low concentration collector current responses due to additional feedback via reaction intermediates. The observations are rationalised in terms of a "cavity transport coefficient" which is beneficial in the dual-plate microtrench, where oxygen interference effects are suppressed and the analytical signal is amplified and stabilised.
Plated nickel wire mesh makes superior catalyst bed
NASA Technical Reports Server (NTRS)
Sill, M.
1965-01-01
Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.
Miao, Fengjuan; Tao, Bairui; Chu, Paul K
2012-04-28
A new silicon-based anode suitable for direct ethanol fuel cells (DEFCs) is described. Pd-Ni nanoparticles are coated on Si nanowires (SiNWs) by electroless co-plating to form the catalytic materials. The electrocatalytic properties of the SiNWs and ethanol oxidation on the Pd-Ni catalyst (Pd-Ni/SiNWs) are investigated electrochemically. The effects of temperature and working potential limit in the anodic direction on ethanol oxidation are studied by cyclic voltammetry. The Pd-Ni/SiNWs electrode exhibits higher electrocatalytic activity and better long-term stability in an alkaline solution. It also yields a larger current density and negative onset potential thus boding well for its application to fuel cells. This journal is © The Royal Society of Chemistry 2012
Simm, Andrew O; Banks, Craig E; Ward-Jones, Sarah; Davies, Trevor J; Lawrence, Nathan S; Jones, Timothy G J; Jiang, Li; Compton, Richard G
2005-09-01
A novel boron-doped diamond (BDD) microelectrode array is characterised with electrochemical and atomic force microscopic techniques. The array consists of 40 micron-diameter sized BDD discs which are separated by 250 microns from their nearest neighbour in a hexagonal arrangement. The conducting discs can be electroplated to produce arrays of copper, silver or gold for analytical purposes in addition to operating as an array of BDD-microelectrodes. Proof-of-concept is shown for four separate examples; a gold plated array for arsenic detection, a copper plated array for nitrate analysis, a silver plated array for hydrogen peroxide monitoring and last, cathodic stripping voltammetry for lead at the bare BDD-array.
Smith, A.E.
1963-11-26
An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)
Miksa, Beata J; Sochacki, Marek; Sroka-Bartnicka, Anna; Uznański, Paweł; Nosal, Andrzej; Potrzebowski, Marek J
2013-04-15
Synthetic polymers of molecular masses up to a few kDa can be analyzed without the use of any matrix by direct laser desorption/ionization mass spectrometry (LDI-MS). In this technique, the surface of the sample plate plays a crucial role, and many attempts have been made to understand the influence of the surface on the ease of desorption. Since this technique requires no tedious sample pretreatment, it is a promising method for the rapid characterization of various synthetic polymers. Parylene (poly(p-xylylenes), PPX) was tested as a surface support for studying the molecular masses of biocompatible polymers: poly(ethylene glycol) (PEG), poly(L-lactide) (PLLA), and poly(methyl methacrylate) (PMMA). The average molecular masses of the polymers were: PEG (600.0 Da and 3.5 kDa), PMMA (2.0 kDa), and PLLA (2.8 kDa). LDI mass spectra of polymers deposited on parylene were enhanced by a factor of two over those obtained directly from the gold target plate. Modification of the surface of the target plate by the addition of a PPX layer extended the functionality of LDI-TOF MS, especially for the analysis of low-mass compounds. The LDI analysis using the PPX-coated target plate provided details of polymers including: end-group, composition, monomer unit, and molecular mass distribution. The average molecular weights of four tested polymers on the gold target plate and the PPX support were unchanged, indicating that sample degradation was not occurring despite the high energy of the laser beam. The LDI investigations showed that the PPX support boosted ion yields by a factor of two compared with the gold target plate. Copyright © 2013 John Wiley & Sons, Ltd.
38 CFR 12.3 - Deceased veteran's cases.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., false teeth not containing gold, etc.), which are unserviceable by reason of wear or tear or insanitary... accomplishing such inventories, detailed description will be given of items of material value or importance, for...—Yellow metal (probably gold-plated or stamped 14-K., setting if any). Discharge certificate. Adjusted...
38 CFR 12.3 - Deceased veteran's cases.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., false teeth not containing gold, etc.), which are unserviceable by reason of wear or tear or insanitary... accomplishing such inventories, detailed description will be given of items of material value or importance, for...—Yellow metal (probably gold-plated or stamped 14-K., setting if any). Discharge certificate. Adjusted...
38 CFR 12.3 - Deceased veteran's cases.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., false teeth not containing gold, etc.), which are unserviceable by reason of wear or tear or insanitary... accomplishing such inventories, detailed description will be given of items of material value or importance, for...—Yellow metal (probably gold-plated or stamped 14-K., setting if any). Discharge certificate. Adjusted...
38 CFR 12.3 - Deceased veteran's cases.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., false teeth not containing gold, etc.), which are unserviceable by reason of wear or tear or insanitary... accomplishing such inventories, detailed description will be given of items of material value or importance, for...—Yellow metal (probably gold-plated or stamped 14-K., setting if any). Discharge certificate. Adjusted...
Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...
NASA Astrophysics Data System (ADS)
Bülbül, Ferhat; Altun, Hikmet; Küçük, Özkan; Ezirmik, Vefa
2012-08-01
This study aims to evaluate the tribological and corrosion properties of the electroless Ni-B coating deposited on AISI 304 stainless steels. The microstructure of the coating was characterized using x-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). XRD analysis revealed that the prepared coating possessed an amorphous character. SEM-EDS investigation also indicated that a non-stoichiometric Ni-B coating was deposited with a columnar growth mechanism on the stainless steel substrate and the morphology of the growth surface was blackberry-like. The hardness and tribological properties were characterized by microhardness and a pin-on-disc wear test. The electroless Ni-B coated sample had a higher degree of hardness, a lower friction coefficient and a lower wear rate than the uncoated substrate. The electrochemical potentiodynamic polarization method was used to evaluate the corrosion resistance of the coating. The electroless Ni-B coating offered cathodic protection on the substrate by acting as a sacrificial anode although it was electrochemically more reactive than the stainless steel substrate.
NASA Astrophysics Data System (ADS)
Bernasconi, R.; Molazemhosseini, A.; Cervati, M.; Armini, S.; Magagnin, L.
2016-10-01
All-wet electroless metallization of through-silicon vias (TSVs) with a width of 5 μm and a 1:10 aspect ratio was carried out. Immersion in a n-(2-aminoethyl) 3-aminopropyl-trimethoxysilane (AEAPTMS) self-assembled monolayer (SAM) was used to enhance the adhesion between the metal film and substrate. Contact angle variation and atomic force microscopy were used to verify the formation of a SAM layer. A PdCl2 solution was later used to activate the silanized substrates, exploiting the affinity of the -NH3 functional group of AEAPTMS to palladium. A nickel-phosphorus-boron electroless bath was employed to deposit the first barrier layer onto silicon. The NiPB growth rate was evaluated on flat silicon wafers, while the structure of the coating obtained was investigated via glow discharge optical emission spectroscopy. Cross-sectional scanning electron microscope observations were carried out on metallized TSVs to characterize the NiPB seed, the Cu seed layer deposited with a second electroless step, and the Cu superfilling obtained with a commercial solution. Complete filling of TSV was achieved.
Millimeter-wave surface resistance of laser-ablated YBa2Cu3O(7-delta) superconducting films
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Warner, J. D.
1990-01-01
The millimeter-wave surface resistance of YBa2Cu3O(7-delta) superconducting films was measured in a gold-plated copper host cavity at 58.6 GHz between 25 and 300 K. High-quality laser-ablated films of 1.2-micron thickness were deposited on SrTiO3 and LaGaO3 substrates. Their transition temperatures were 90.0 and 88.9 K, with a surface resistance at 70 K of 82 and 116 milliohms, respectively. These values are better than the values for the gold-plated cavity at the same temperature and frequency.
Development of fracture mechanics data for two hydrazine APU turbine wheel materials
NASA Technical Reports Server (NTRS)
Curbishley, G.
1975-01-01
The effects of high temperature, high pressure ammonia were measured on the fracture mechanics and fatigue properties of Astroloy and Rene' 41 turbine wheel materials. Also, the influence of protective coatings on these properties was investigated. Specimens of forged bar stock were subjected to LCF and HCF tests at 950 K (1250 F) and 3.4 MN/sq m (500 psig) pressure, in ammonia containing about 1.5 percent H2O. Aluminized samples (Chromizing Company's Al-870) and gold plated test bars were compared with uncoated specimens. Comparison tests were also run in air at 950 K (1250 F), but at ambient pressures. K sub IE and K sub TH were determined on surface flawed specimens in both the air and ammonia in both uncoated and gold plated conditions. Gold plated specimens exhibited better properties than uncoated samples, and aluminized test bars generally had lower properties. The fatigue properties of specimens tested in ammonia were higher than those tested in air, yet the K sub TH values of ammonia tested samples were lower than those tested in air. However, insufficient specimens were tested to develop significant design data.
NASA Technical Reports Server (NTRS)
Dellacorte, Christhopher; Steinetz, Bruce M.; Brindley, Pamela K.
1990-01-01
Tribological properties of Ti3Al-Nb intermetallic disks sliding against alumina-boria-silicate fabric were ascertained in air at temperatures from 25 to 700 C. These materials are candidates for sliding seal applications for the National AeroSpace Plane. The tests were done using a pin on disk tribometer. Sliding was unidirectional at 0.27 m/sec under a nominal contact stress of 340 kPa. Gold sputter or ion plating deposited films were used to reduce friction and wear. Rhodium and palladium films were used beneath the gold lubricating films to prevent diffusion of the substrate into the gold at high temperature. The friction and wear of the unlubricated specimens was unacceptable. Friction coefficients were generally greater than 1.0. The ion plated gold films, when used with a rhodium diffusion barrier reduced friction by almost a factor of 2. Wear was also substantially reduced. The sputter deposited films were not adherent unless the substrate was sputter cleaned immediately prior to film deposition. Palladium did not function as a diffusion barrier.
Miller, Lance D.; Goldfarb, Richard J.; Gehrels, George E.; Snee, Lawrence W.
1994-01-01
Gold-bearing quartz vein systems in the Juneau gold belt formed within a 160-km- long by 5- to 8-km-wide zone along the western margin of the Coast Mountains, Alaska. Vein systems are spatially associated with shear zones adjacent to terrane-bounding, mid-Cretaceous thrust faults. Analysis of vein orientations and sense of shear data define a stress configuration with greatest and least principal axes oriented subhorizontally with northeast-southwest trends and subverticaly, respectively. This local stress configuration is compatible with the far-field plate configuration during Eocene time. Isotopic ages of vein formation indicate that fluid cycling occurred between 56.5 and ≥52.8 Ma, and are consistent with a genetic link between veining and a change in plate motion in early Eocene time. Veining was also synchronous with the latter stages of rapid exhumation and voluminous plutonism immediately inboard of the gold belt. We propose a model in which interacting tectonic events facilitated fault-valve action and vein development along now-exhumed shear zones.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.; Brindley, Pamela K.
1989-01-01
Tribological properties of Ti3Al-Nb intermetallic disks sliding against alumina-boria-silicate fabric were ascertained in air at temperatures from 25 to 700 C. These materials are candidates for sliding seal applications for the National AeroSpace Plane. The tests were done using a pin on disk tribometer. Sliding was unidirectional at 0.27 m/sec under a nominal contact stress of 340 kPa. Gold sputter or ion plating deposited films were used to reduce friction and wear. Rhodium and palladium films were used beneath the gold lubricating films to prevent diffusion of the substrate into the gold at high temperature. The friction and wear of the unlubricated specimens was unacceptable. Friction coefficients were generally greater than 1.0. The ion plated gold films, when used with a rhodium diffusion barrier reduced friction by almost a factor of 2. Wear was also substantially reduced. The sputter deposited films were not adherent unless the substrate was sputter cleaned immediately prior to film deposition. Palladium did not function as a diffusion barrier.
NASA Technical Reports Server (NTRS)
Lamvermeyer, D. J.
1967-01-01
Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.
Anode Design Based on Microscale Porous Scaffolds for Advanced Lithium Ion Batteries
NASA Astrophysics Data System (ADS)
Park, Hyeji; Choi, Hyelim; Nam, Kyungju; Lee, Sukyung; Um, Ji Hyun; Kim, Kyungbae; Kim, Jae-Hun; Yoon, Won-Sub; Choe, Heeman
2017-06-01
Considering the increasing demands for advanced power sources, present-day lithium-ion batteries (LIBs) must provide a higher energy and power density and better cycling stability than conventional LIBs. This study suggests a promising electrode design solution to this problem using Cu, Co, and Ti scaffolds with a microscale porous structure synthesized via freeze-casting. Co3O4 and TiO2 layers are uniformly formed on the Co and Ti scaffolds, respectively, through a simple thermal heat-treatment process, and a SnO2 layer is formed on the Cu scaffold through electroless plating and thermal oxidation. This paper characterizes and evaluates the physical and electrochemical properties of the proposed electrodes using scanning electron microscopy, four-point probe and coin-cell tests to confirm the feasibility of their potential use in LIBs.
Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang
2014-12-15
Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. Copyright © 2014 Elsevier Inc. All rights reserved.
Gold recycling in the United States in 1998
Amey, Earle B.
2001-01-01
In 1998, 175 metric tons (t) of refined gold was recovered by U.S. refiners from old and new scrap. The overall recycling rate was 29 percent when scrap consumption was compared with apparent domestic supply. Sources of old scrap includes discarded jewelry, dental materials, plating solutions, and electronic equipment. A very high old scrap recycling efficiency of 96 percent was reached in 1998, the supply of old scrap peaked, gold prices were at an 18-year low, and substantial amounts of old scrap were exported. U.S. net exports of old scrap had a gold content of 28 t.
Reductive spectrophotometry of divalent tin sensitization on soda lime glass
NASA Astrophysics Data System (ADS)
Bejugam, Vinith; Wei, Xingfei; Roper, D. Keith
2016-07-01
Rapid and facile evaluation of tin (II) sensitization could lead to improved understanding of metal deposition in electroless (EL) plating. This report used a balanced redox reaction between 3,3‧,5,5‧-tetramethylbenzidine dihydrochloride (TMB-HCL) and N-bromosuccinimide (NBS) to evaluate effects of sensitization conditions (i.e., sensitization time, analyte concentration, aqueous immersion, and acid content) on the accumulated mass of surface-associated divalent tin ion. The accumulated mass of tin (II) increased as the sensitization time increased up to 30 s in proportion to aqueous tin (II) chloride concentrations between 2.6 and 26 mM at a trifluoroacetic acid (TFA) content of 68 mM. The average mass peaked at 7.3 nanomoles (nmol) per cm2 after a 5 s aqueous immersion post-sensitization, and then decreased with increasing aqueous immersion post-sensitization. The total average tin (II) + tin (IV) accumulated on soda lime glass measured by inductively coupled plasma optical emission spectrometry (ICP-OES) was 17% higher at 30 s sensitization, suggesting a fraction of the tin (II) present may have oxidized to tin (IV). These results indicated that in situ spectrophotometric evaluation of tin (II) could support development of EL plating for electronics, catalysis, and solar cells.
NASA Astrophysics Data System (ADS)
Tamilarasan, T. R.; Sanjith, U.; Rajendran, R.; Rajagopal, G.; Sudagar, J.
2018-03-01
Electroless composite coatings with various concentrations of reduced graphene oxide (rGO) particles were deposited onto mild steel substrate. The effects of adding rGO particles by varying their concentration from 0 to 100 mg/L on morphology, composition, microhardness, adhesion, wear and friction of the electroless composite coatings were investigated. Among the various parameters that influence the tribological behavior, sliding velocity was varied within a specific range for definite concentrations of rGO to obtain enhanced wear resistance in this study. The micrographs of the worn surfaces and indented spots were examined for the nature of wear mechanism and interfacial adhesion. The wear rate increased with increasing sliding velocity but was relatively stable for coatings with lower concentrations of rGO.
Aggregation effect on absorbance spectrum of laser ablated gold nanoparticles
NASA Astrophysics Data System (ADS)
Isnaeni; Irmaniar; Herbani, Y.
2017-04-01
Plasmon of gold nanoparticles is one of the hot topics nowadays due to various possible applications. The application is determined by plasmon peak in absorbance spectrum. We have fabricated gold nanoparticles using laser ablation technique and studied the influence of CTAB (Cetyl trimethylammonium bromide) effect on the optical characterization of fabricated gold nanoparticles. We ablated a gold plate using NdYAG pulsed laser at 1064 nm wavelength, 10 Hz pulse frequency at low energy density. We found there are two distinctive plasmon peaks, i.e., primary and secondary peaks, where the secondary peak is the main interests of this work. Our simulation results have revealed that the secondary plasmon peak is affected by random aggregation of gold nanoparticles. Our research leads to good techniques on fabrication of colloidal gold nanoparticles in aqueous solution using laser ablation technique.
Morphology of gold and copper ion-plated coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.
1978-01-01
Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.
Closed-Loop Treatment of Electrolytic and Electroless Nickel Rinse Water by Point-Of-Use Ion Exchange: A Case Study.
Dave Szlag1, Joe Leonhardt2, Albert Foster1, Mike Goss1 and Paul Bolger1.
1 U.S. EPA, National Risk Management Research Laboratory, 26 W. M. L. King D...
Baş, Salih Zeki; Gülce, Handan; Yıldız, Salih; Gülce, Ahmet
2011-12-15
In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H(2)O(2). Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl(4) and PtBr(2). Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10(-3) to 0.56 mM and 2.0 × 10(-3) to 0.66 mM, respectively. The detection limits were 7.5 × 10(-4)mM for XO/Au/PVF/Pt and 6.0 × 10(-4)mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated. Copyright © 2011 Elsevier B.V. All rights reserved.
Designing Hollow Nano Gold Golf Balls
2015-01-01
Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196
Geology of the Barite Hill gold-silver deposit in the southern Carolina slate belt
Clark, S.H.B.; Gray, K.J.; Back, J.M.
1999-01-01
Barite Hill is a stratiform gold-silver deposit associated with base metal sulfides and barite in greenschist facies rocks. The deposit, southernmost of four recently mined gold deposits in the Carolina slate belt, is located in the Lincolnton-McCormick district of Georgia and South Carolina, which includes several known gold-silver and base metal deposits in a Kuroko-type geological setting along with deposits of kyanite and manganese. Approximately 1,835,000 g of gold was produced mainly from oxidized ores in the Main and Rainsford pits from 1990 until their closing in 1994. Ore is hosted by sericitically altered felsic metavolcanic and metasedimentary rocks of the Late Proterozoic Persimmon Fork Formation. The deposit is stratigraphically below an overturned contact between upper and lower pyroclastic units, which overlie the Lincolnton metarhyolite, an intrusive unit. Gold-silver-rich zones in the Main pit are partly coincident with lenses of siliceous barite rock, but not confined to them, and occur more commonly in pyrite-quartz-altered fragmental rock. The Main pit ore is stratigraphically overlain by a zone of base metal and barite enrichment, which is, in turn, overlain by a talc-tremolite alteration zone locally. Siliceous barite zones are absent in the Rainsford pit, and gold-silver minerals are associated with silicified rocks and chert. The Barite Hill deposit is interpreted to be the result of Kuroko-type, volcanogenic, base metal sulfide mineralization, followed by gold-silver mineralization under epithermal conditions with the following stages of evolution: (1) massive sulfides, barite, and fine-grained siliceous exhalites were deposited during Late Proterozoic to Cambrian submarine volcanism, which was related to plate convergence and subduction in a microcontinental or island-arc setting distant from the North American continental plate; (2) Au-Ag-Te and base and precious metal Te-Se-Bi minerals were deposited either during waning stages of hydrothermal activity in a failed massive sulfide system or in a separate event; (3) sulfides and silica-barite rock recrystallized during regional deformation and greenschist facies metamorphism related to the Middle to Late Ordovician collision of the Carolina terrane with the North American continental plate; (4) quartz, barite, and gold were remobilized and formed veins that cut across cleavage; (5) orebodies were offset along high-angle faults; and (6) during weathering, base metal sulfides and barite dissolved and reprecipitated as supergene euhedral barite crystals that line ferric iron oxide-hydroxide gossans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achman, D.
1987-12-31
The company employs about forty people and operates for one or two eight hour shifts with an average of 315 racks of chrome plating per eight hour day. They plate a variety of metals including copper, nickel, gold, brass and chromium. Chromium is the major metal plated and is usually the last step in plating cycle. Most parts are copper plated and then nickel plated in preparation for chrome plating. The main difference between New Dimension Plating and other plating shops is the variety of parts plated. As New Dimension Plating is a job shop, a wide range of partsmore » such as motorcycle accessories, stove parts, and custom items are metal finished. The plating lines are manual, meaning employees dip the racks into the tanks by hand. This fact along with the fact that parts vary greatly in size and shape accounts for the significant drag-out on the chromium plating line.« less
Development of Aspherical Active Gratings at NSRRC
NASA Astrophysics Data System (ADS)
Tseng, Tse-Chuan; Wang, Duan Jen; Perng, Shen-Yaw; Chen, Chien-Te; Lin, Chia-Jui; Kuan, Chien-Kuang; Ho, His-Chou; Wang, Jeremy; Fung, H. S.; Chang, Shuo-Hung
2007-01-01
An active grating based on a novel optical concept with bendable polynomial surface profile to reduce the coma and defocus aberrations had been designed and proved by the prototype testing. Due to the low glass transition temperature of the glue and the difference of thermal expansion coefficient between the 17-4 steel bender and silicon, the prototype distorted from flat polished condition when thermally de-blocked the polishing pitch. To improve the thermal deformation of the active grating in the polishing process, a new invar bender and high curing temperature glue were adapted to glue a silicon substrate on the bender. After some tests and manufacturer polishing, it showed acceptable conditions. In this paper we will present the design and preliminary tests of the invar active grating. Meanwhile, the design and analysis of a new 17-4 PH steel bender to be electro-less nickel plating and mechanical ruling for a new beamline will also be discussed.
NASA Astrophysics Data System (ADS)
Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon
2017-09-01
To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.
The automated array assembly task of the low-cost silicon solar array project, phase 2
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.
1980-01-01
Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.
NASA Astrophysics Data System (ADS)
Zang, Faheng; Chu, Sangwook; Gerasopoulos, Konstantinos; Culver, James N.; Ghodssi, Reza
2017-06-01
This paper reports the implementation of temporal capillary microfluidic patterns and biological nanoscaffolds in autonomous microfabrication of nanostructured symmetric electrochemical supercapacitors. A photoresist layer was first patterned on the substrate, forming a capillary microfluidics layer with two separated interdigitated microchannels. Tobacco mosaic virus (TMV) macromolecules suspended in solution are autonomously delivered into the microfluidics, and form a dense bio-nanoscaffolds layer within an hour. This TMV layer is utilized in the electroless plating and thermal oxidation for creating nanostructured NiO supercapacitor. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures. The rapid creation of nanostructure-textured microdevices with only simple photolithography and bionanostructure self-assembly can completely eliminate the needs for sophisticated synthesis or deposition processes. This method will contribute to rapid prototyping of wide range of nano-/micro-devices with enhanced performance.
P(VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications.
Li, Xue; Lim, Yee-Fun; Yao, Kui; Tay, Francis Eng Hock; Seah, Kar Heng
2013-01-14
Poly(vinylidene-fluoride-co-trifluoroethylene) (P(VDF-TrFE)) ferroelectric nanotube arrays were fabricated using an anodized alumina membrane (AAM) as a template and silver electrodes were deposited on both the outer and inner sides of the nanotubes by an electroless plating method. The nanotubes have the unique structure of being sealed at one end and linked at the open end, thus preventing electrical shorting between the inner and outer electrodes. Compared with a P(VDF-TrFE) film with a similar overall thickness, the idealized nanotube array has a theoretical capacitance that is 763 times larger due to the greatly enlarged contact area between the electrodes and the polymer dielectric. A capacitance that is 95 times larger has been demonstrated experimentally, thus indicating that such nanotube arrays are promising for realizing high density capacitance and high power dielectric energy storage.
Glass frits coated with silver nanoparticles for silicon solar cells
NASA Astrophysics Data System (ADS)
Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan
2015-06-01
Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.
Method for producing highly reflective metal surfaces
Arnold, Jones B.; Steger, Philip J.; Wright, Ralph R.
1983-01-01
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes electrolessly depositing an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The electroplated nickel layer then is separated from the passivated surface. The mandrel then may be re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
Synthesis and improved explosion behaviors of aluminum powders coated with nano-sized nickel film
NASA Astrophysics Data System (ADS)
Kim, Kyung Tae; Kim, Dong Won; Kim, Soo Hyung; Kim, Chang Kee; Choi, Yoon Jeong
2017-09-01
Nickel (Ni) materials with a thickness of a few hundred nm were homogeneously coated on the surfaces of aluminum (Al) powders by an electroless plating process. The Ni-coated Al powders show characteristic interfacial structures mixed of Ni, Al and O instead of densely packed Al oxide at the surface. The explosion test of the Ni-coated Al powders utilizing flame ignition showed that the powders had a 3.6 times enhanced pressurization rate of 405 kPa/ms compared to 111 kPa/ms of uncoated Al powders. It was found that this is due to a feasible diffusion of oxygen atoms into the Al powders through the thin and rough interfacial layers present at the Ni/Al interface. These results clearly indicate that nano-sized Ni film introduced instead of surface oxide acts as a very profitable layer to achieve efficient combustion behaviors by a rapid oxidation of Al powders.
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1978-01-01
Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.
Palladium coated porous anodic alumina membranes for gas reforming processes
NASA Astrophysics Data System (ADS)
Wu, Jeremy P.; Brown, Ian W. M.; Bowden, Mark E.; Kemmitt, Timothy
2010-11-01
Nanostructured ceramic membranes with ultrathin coatings of palladium metal have been demonstrated to separate hydrogen gas from a gas mixture containing nitrogen with 10% carbon dioxide and 10% hydrogen at temperatures up to 550 °C. The mechanically robust and thermally durable membranes were fabricated using a combination of conventional and high-efficiency anodisation processes on high purity aluminium foils. A pH-neutral plating solution has also been developed to enable electroless deposition of palladium metal on templates which were normally prone to chemical corrosion in strong acid or base environment. Activation and thus seeding of palladium nuclei on the surface of the template were essential to ensure uniform and fast deposition, and the thickness of the metal film was controlled by time of deposition. The palladium coated membranes showed improved hydrogen selectivity with increased temperature as well as after prolonged exposure to hydrogen, demonstrating excellent potential for gas separation technologies.
Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid.
Inui, Norio; Goto, Kosuke
2013-11-01
We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position, where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers' escape theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example, we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir force at room temperature.
Annealing effects in plated-wire memory elements. I - Interdiffusion of copper and Permalloy.
NASA Technical Reports Server (NTRS)
Knudson, C. I.; Kench, J. R.
1971-01-01
Results of investigations using X-ray diffraction and electron-beam microprobe techniques have shown that copper and Permalloy platings interdiffuse at low temperatures when plated-wire memory elements are annealed for times as short as 50 hr. Measurable interdiffusion between Permalloy platings and gold substrates does not occur in similar conditions. Both magnetic and compositional changes during aging are found to occur by a thermally activated process with activation energies around 38 kcal/mol. It is shown, however, that copper-diffusion and magnetic-dispersion changes during aging are merely concurrent processes, neither being the other's cause.
1974-06-01
Detonator Output Characterize the detonator output by the following 2-3.1 Dent Output Test. Test detonators Into steel witness plate to compare dent...Kovar with gold plating . The Insulating seal Is glass. The jead pin Is 0.012 ± 0.001 Inch In diameter by 0.25 Inch long. 3.2.2 Bridge. Detonators... plated for solderablllty. The bottom thickness Is 0.004 ± 0.001 Inch. It would be desirable to have 0.002 to 0.003-lnch-thlck bottom so that the mass
Soleimani, Mansooreh; Kaghazchi, Tahereh
2008-09-01
In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.
"Electroless" E-Coating for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Song, Guang-Ling
By utilizing the unique electrochemistry of Mg, a thin organic film can rapidly be deposited on the surface of a Mg alloy by dipping the Mg alloy in a cathodic E-coating bath solution without applying a current or potential. The self-deposited coating is selectively formed on Mg alloy surfaces. Although the "electroless" E-coating pre-film is relatively thin, it can offer sufficient corrosion protection for Mg alloys in a chloride-containing environment. The stability of the film can be significantly improved after curing. The corrosion resistance of the substrate Mg alloy has an important effect on the corrosion protection performance of the coating. The coating is more protective on a corrosion resistant Mg alloy than on a non-corrosion resistant Mg substrate. The coating protection performance is also influenced by the substrate surface condition or pre-treatment process. Wet cleaning + heat-treatment may be a cost-effective surface preparation/treatment for the "electroless" E-coating in industrial applications.
Optical substrate materials for synchrotron radiation beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howells, M.R.; Paquin, R.A.
1997-06-01
The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering andmore » cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.« less
Development of high performance electroless Ni-P-HNT composite coatings
NASA Astrophysics Data System (ADS)
Ranganatha, S.; Venkatesha, T. V.; Vathsala, K.
2012-12-01
Halloysite nanotubes (HNTs) of the dimension 50 nm × 1-3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.
NASA Astrophysics Data System (ADS)
Shen, Guozhu; Fang, Xumin; Wu, Hongyan; Wei, Hongyu; Li, Jingfa; Li, Kaipeng; Mei, Buqing; Xu, Yewen
2017-04-01
A facile method has been developed to fabricate magnetic core/shell SiO2/C/Co sub-microspheres via the pyrolysis of SiO2/PANI (polyaniline) and electroless plating method. The electromagnetic parameters of these SiO2/C and SiO2/C/Co composites were measured and the microwave reflection loss properties were evaluated in the frequency range of 2-18 GHz. The results show that the dielectric loss of SiO2/C composite increases with the increase of carbonization temperature and the magnetic loss enhances due to the deposition of cobalt on the SiO2/C sub-microspheres. The reflection loss results exhibit that the microwave absorption properties of the SiO2/C/Co composites are more excellent than those of SiO2/C composites for each thickness. The maximum effective absorption bandwidth (reflection loss ≤ -10 dB) arrives at 5.0 GHz (13.0-18 GHz) for SiO2/C/Co composite with 1.5 mm of thickness and the minimum reflection loss value is -24.0 dB at 5.0 GHz with 4.0 mm of thickness. The microwave loss mechanism of the SiO2/C/Co composites was also discussed in this paper.
Cai, Jinguang; Lv, Chao; Watanabe, Akira
2018-01-10
Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.
2011-06-13
BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY
2011-06-13
BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY
2011-06-13
BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY
2011-06-13
BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY
2011-06-13
BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY
2011-06-13
BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY
2011-06-13
BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY
2011-06-13
BALL AEROSPACE ENGINEER DAVE CHANEY, (L), AND MARSHALL ENGINEER HARLAN HAIGHT, (R), GUIDE ARRAY OF SIX GOLD-PLATED JAMES WEBB SPACE TELESCOPE MIRRORS AFTER FINAL ACCEPTANCE TESTING AT MARSHALL'S X-RAY AND CRYOGENIC FACILITY
The music of gold: can gold counterfeited coins be detected by ear?
NASA Astrophysics Data System (ADS)
Manas, Arnaud
2015-07-01
In this paper I investigate whether it is true and to what extent counterfeit coins can be detected by their sound frequency. I describe the different types of counterfeit coins encountered and their respective characteristics. I then use the Kirchoff thin plate theory to model a coin, and confirm the validity of the theory by listening to the tone of genuine and counterfeit coins.
NASA Astrophysics Data System (ADS)
Philip, Anish; Ankudze, Bright; Pakkanen, Tuula T.
2018-06-01
Large-sized gold nanoparticles (AuNPs) were synthesized with a new polyethylenimine - assisted seed - mediated method for surface-enhanced Raman scattering (SERS) studies. The size and polydispersity of gold nanoparticles are controlled in the growth step with the amounts of polyethylenimine (PEI) and seeds. Influence of three silicon oxide supports having different surface morphologies, namely halloysite (Hal) nanotubes, glass plates and inverse opal films of SiO2, on the performance of gold nanoparticles in Raman scattering of a 4-aminothiophenol (4-ATP) analyte was investigated. Electrostatic interaction between positively charged polyethylenimine-capped AuNPs and negatively charged surfaces of silicon oxide supports was utilized in fabrication of the SERS substrates using deposition and infiltration methods. The Au-photonic crystal of the three SERS substrate groups is the most active one as it showed the highest analytical enhancement factor (AEF) and the lowest detection limit of 1x10-8 M for 4-ATP. Coupling of the optical properties of photonic crystals with the plasmonic properties of AuNPs provided Au-photonic crystals with the high SERS activity. The AuNPs clusters formed both in the photonic crystal and on the glass plate are capable of forming more hot spots as compared to sparsely distributed AuNPs on Hal nanotubes and thereby increasing the SERS enhancement.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1981-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.
Plating of patella fractures: techniques and outcomes.
Taylor, Benjamin C; Mehta, Sanjay; Castaneda, Joaquin; French, Bruce G; Blanchard, Chris
2014-09-01
Operative treatment of displaced patella fractures with tension band fixation remains the gold standard, but is associated with a significant rate of complications and symptomatic implants. Despite the evolution of tension band fixation to include cannulated screws, surprisingly little other development has been made to improve overall patient outcomes. In this article, we present the techniques and outcomes of patella plating for displaced patella fractures and patella nonunions.
Li, M.; Kim, D.-P.; Jeong, G.-Y.; Seo, D.-K.; Park, C.-P.
2012-01-01
Gold nanoparticles (Au NPs) were directly synthesized on the surface of polyvinylsilazane (PVSZ, -[(vinyl)SiH-NH2]-) without use of extra reductive additives. The reductive Si-H functional groups on the surface of cured PVSZ acted as surface bound reducing agents to form gold metal when contacted with an aqueous Au precursor (HAuCl4) solution, leading to formation of Au NPs adhered to silicate glass surface. The Au NPs-silicate platforms were preliminarily tested to detect Rhodamine B (1 μM) by surface enhanced Raman scattering. Furthermore, gold microelectrode obtained by post-chemical plating was used as an integrated amperometric detection element in the polydimethylsilane-glass hybrid microfluidic chip. PMID:24324531
Micrometeorite penetration effects in gold foil
NASA Technical Reports Server (NTRS)
Hallgren, D. S.; Radigan, W.; Hemenway, C. L.
1976-01-01
Penetration structures revealed by a Skylab experiment dealing with exposure of single and double layers of 500-800 A thick gold foil to micrometeorites are examined. Examination of all double-layered gold foils revealed that particles producing holes of any type greater than 5 microns in diameter in the first foil break up into many fragments which in turn produce many more holes in the second foil. Evidence of an original particle is not found on any stainless steel plate below the foils, except in one instance. A precise relationship between the size of the event and the mass of the particle producing it could not be determined due to the extreme morphological variety in penetration effects. Fluxes from gold foil and crater experiments are briefly discussed.
Metal-amplified Density Assays, (MADAs), including a Density-Linked Immunosorbent Assay (DeLISA).
Subramaniam, Anand Bala; Gonidec, Mathieu; Shapiro, Nathan D; Kresse, Kayleigh M; Whitesides, George M
2015-02-21
This paper reports the development of Metal-amplified Density Assays, or MADAs - a method of conducting quantitative or multiplexed assays, including immunoassays, by using Magnetic Levitation (MagLev) to measure metal-amplified changes in the density of beads labeled with biomolecules. The binding of target analytes (i.e. proteins, antibodies, antigens) to complementary ligands immobilized on the surface of the beads, followed by a chemical amplification of the binding in a form that results in a change in the density of the beads (achieved by using gold nanoparticle-labeled biomolecules, and electroless deposition of gold or silver), translates analyte binding events into changes in density measureable using MagLev. A minimal model based on diffusion-limited growth of hemispherical nuclei on a surface reproduces the dynamics of the assay. A MADA - when performed with antigens and antibodies - is called a Density-Linked Immunosorbent Assay, or DeLISA. Two immunoassays provided a proof of principle: a competitive quantification of the concentration of neomycin in whole milk, and a multiplexed detection of antibodies against Hepatitis C virus NS3 protein and syphilis T. pallidum p47 protein in serum. MADAs, including DeLISAs, require, besides the requisite biomolecules and amplification reagents, minimal specialized equipment (two permanent magnets, a ruler or a capillary with calibrated length markings) and no electrical power to obtain a quantitative readout of analyte concentration. With further development, the method may be useful in resource-limited or point-of-care settings.
Electroless silver coating of rod-like glass particles.
Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon
2008-09-01
An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.
2012-02-01
We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.
Broadband Respiratory Virus Surveillance
2011-10-01
Simplex Virus (HSV) and 19 Enterovirus 7 positive as well as 11 HSV negative specimens as determined by the TAMC Department of Pathology’s current gold...negative, and 19 Enterovirus positive samples were to serve as negative controls as the RVS plate did not have primers to assay for HSV or Enterovirus . As...expected, all of these specimens ( Enterovirus , HSV positive and negative virus samples) tested negative on the RVS plate. This demonstrated 100
Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy
Watanabe, Ikuya; Wallace, Cameron
2008-01-01
The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892
Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents
NASA Astrophysics Data System (ADS)
Huang, Chienwen
Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging). A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte. To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides a large surface area for the formation of hydrogen nanobubbles. By this approach, the electroless reaction can be easily separated from the electrodeposition process, and hollow gold nanoparticles can be easily collected. Synthesized hollow gold nanoparticles exhibit unique plasmonic properties; the surface plasmon resonance (SPR) lies in the near infrared region (NIR). This is very different from the solid spherical gold nanoparticles. Three-dimensional finite difference time domain (FDTD) simulation was employed to study the plasmonic properties of hollow gold nanoparticles. It has been found that the red-shifts of SPR peaks are mainly caused by their surface roughness, and the hollow nature of these particles only plays a minor role. The surface roughness of hollow gold nanoparticles can be tuned by adjusting the pH of the electrolyte (from 6.0 to 7.0) by adding sodium sulfite. Different surface roughness (from smooth to very rough) can be readily obtained, and correspondingly, surface plasmon resonance (SPR) peaks red-shift from ~600 nm to ~750 nm. Using hollow gold nanoparticles as multifunctional agents for biomedical applications have been explored. Two kinds of agents have been constructed. It has been demonstrated that pegylated Raman dye encoded hollow gold nanoparticles, terms as Raman nanotags, can serve as both diagnostic imaging agents and photothermal therapy agents. When illuminated by near infrared light, the enhanced Raman signal makes the hollow gold nanoparticles to become optically detectable for biomedical imaging, and absorbed light rapidly heat up the hollow gold nanoparticles which can be used to photothermal ablation therapy. The cytotoxicity evaluation using [3H] thymidine incorporation method has shown non-toxicity of the Raman nanotags. The photothermal effects of hollow gold nanoparticles have been examined by two methods: (1) by embedding hollow gold nanoparticles in tissue-like phantom environment; (2) by recording infrared images as temperature increase. The results show that hollow gold nanoparticles are capable to generate sufficiency heat for photothermal therapy. To fully take advantage of the unique hollow core space of hollow gold nanoparticles, a facile route has been develop to trap Fe3O4 nanoparticles into the hollow gold nanoparticles to form Fe3O4/Au core/shell nanoparticles. Fe3O4/Au core/shell nanoparticles possess the desirable magnetic and plasmonic properties that can be used as magnetic resonance contrast (MRI) agents and photothermal therapy agents.
Gates, Willard G.; Hale, Gerald J.
1980-01-01
The disclosure relates to an improved sputter target for use in the deposition of hard coatings. An exemplary target is given wherein titanium diboride is brazed to a tantalum backing plate using a gold-palladium-nickel braze alloy.
Investigation on micro-patterned gold-plated polymer substrate for a micro hydraulic actuator
NASA Astrophysics Data System (ADS)
Sundaresan, Vishnu Baba; Akle, Barbar; Leo, Donald J.
2006-03-01
Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of a bio-fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. This new class of actuators use protein transporters as functional units to move species and result in deformation [Leo et al 2005 (Proceedings of IMECE - 06)]. The ion transporters are hydrocarbons which are formed across the cellular membranes. The membranes that house the ion transporters are aggregates of phospholipids rigidized by cytoskeleton. Reconstituting these nano-machines on a harder matrix is quintessential to build a functional device. Artificial phospholipid membranes or Biliayer lipid membranes (BLM) have poor structural integrity and do not adhere to most surfaces. Patterned arrays of pores made on Poly-propylene glycol-diacrylate (PPG-DA) substrate, a photo curable polymer was made available to us for initial design iterations for an actuator. Hydrophobicity of PPG-DA posed initial problems to support a BLM. We modified the surface of micropatterned PPG-DA membrane by gold plating it. The surface of the porous PPG-DA membranes was plated with gold (Au). A 10nm seeding layer of Au was sputtered on the surface of the membrane. Further gold was reduced onto the sputtered gold surface [Supriya et al(Langmuir 2004, 20, 8870-8876)] by suspending the samples in a solution of hydroxylamine and Hydrogen tetrachloroaurate(III) trihydrate [HAuCl4.3H2O]. This reduction process increased the thickness of the gold, enhanced its adhesion to the PPG-DA substrate and improved the shapes of the pores. This surface modification of PPG-DA helped us form stable BLM with 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- [Phospho-L-Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero- 3-Phosphoethanolamine (POPE) lipids. The observed ionic resistance of the BLM remained stable and sustained 4 mm water column for the the four hours observation period. This article describes the procedure we adopted to modify the PPG-DA substrate, form a BLM and the procedure to quantify the stability of the BLM formed with -amine and -thiol head groups in the lipids.
An electrogenerative process for the recovery of gold from cyanide solutions.
Yap, C Y; Mohamed, N
2007-04-01
Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.
NASA Astrophysics Data System (ADS)
Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.
2005-09-01
Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.
Effect of Interfacial Microstructures on the Bonding Strength of Sn-3.0Ag-0.5Cu Pb-Free Solder Bump
NASA Astrophysics Data System (ADS)
Kim, Jae-Myeong; Jeong, Myeong-Hyeok; Yoo, Sehoon; Park, Young-Bae
2012-05-01
The effect of interfacial microstructures on the bonding strength of Sn-3.0Ag-0.5Cu Pb-free solder bumps with respect to the loading speed, annealing time, and surface finish was investigated. The shear strength increased and the ductility decreased with increasing shear speed, primarily because of the time-independent plastic hardening and time-dependent strain-rate sensitivity of the solder alloy. The shear strength and toughness decreased for all surface finishes under the high-speed shear test of 500 mm/s as a result of increasing intermetallic compound (IMC) growth and pad interface weakness associated with increased annealing time. The immersion Sn and organic solderability preservative (OSP) finishes showed lower shear strength compared to the electroless nickel immersion gold (ENIG) finish. With increasing annealing time, the ENIG finish exhibited the pad open fracture mode, whereas the immersion Sn and OSP finishes exhibited the brittle fracture mode. In addition, the shear strength of the solder joints was correlated with each fracture mode.
NASA Astrophysics Data System (ADS)
Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.
2014-01-01
A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.
Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold
Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.
2014-01-01
We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp
2015-10-07
We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less
Engineering hierarchical Diatom@CuO@MnO2 hybrid for high performance supercapacitor
NASA Astrophysics Data System (ADS)
Zhang, Yan; Guo, Wan Wan; Zheng, Tian Xu; Zhang, Yu Xin; Fan, Xing
2018-01-01
A rational and hierarchical Diatom@CuO@MnO2 hybrid was fabricated via a facile electroless copper plating technology, following by a one-pot hydrothermal reaction with KMnO4. Such unique architecture acts as a supercapacitor electrode, which exhibits a high specific capacitance (240 F g-1 at a current density of 0.5 A g-1), good rate capability (58.3% retention when the current density increases from 0.5 to 5 A g-1), and excellent electrochemical cycling stability (91.2% retention of the initial specific capacitance after 4000 cycles at a current density of 2 A g-1). The impressive electrochemical performance of this Diatom@CuO@MnO2 electrode ascribed to the synergistic effect between the CuO particles and MnO2 nanosheets. Therefore, it can be expected that this unique Diatom@CuO@MnO2 electrode may have great promise for the application in supercapacitors.
Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin
2017-12-06
Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.
Effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors
NASA Astrophysics Data System (ADS)
Palmre, Viljar; Pugal, David; Kim, Kwang
2014-03-01
This study investigates the effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors. A physics-based mechanoelectrical transduction model was developed that takes into account the electrode surface profile (shape) by describing the polymer-electrode interface as a Koch fractal structure. Based on the model, the electrode surface effects were experimentally investigated in case of IPMCs with Pd-Pt electrodes. IPMCs with different electrode surface structures were fabricated through electroless plating process by appropriately controlling the synthesis parameters and conditions. The changes in the electrode surface morphology and the corresponding effects on the IPMC mechanoelectrical transduction were examined. Our experimental results indicate that increasing the dispersion of Pd particles near the membrane surface, and thus the polymer-electrode interfacial area, leads to a higher peak mechanoelectrically induced voltage of IPMC. However, the overall effect of the electrode surface structure is relatively low compared to the electromechanical transduction, which is in good agreement with theoretical prediction.
Fabrication of a superhydrophobic and high-glossy copper coating on aluminum substrates
NASA Astrophysics Data System (ADS)
Yang, Hao; He, Yuantao; Wu, Zhongqiang; Miao, Jing; Yang, Fang; Lu, Zhong
2018-03-01
Superhydrophobic metal coatings have been extensively studied in recent years because of their significant potential applications. Unfortunately, most of them lost the original metallic luster due to the micro/nano binary structures. In this paper, a facile method was developed to prepare a superhydrophobic and high-glossy copper coating on aluminum substrates. The bionic lotus leaf surfaces were constructed by electroless plating method and further modified with octadecanethiol. The wettability and gloss could be tuned by the concentration of the precursor. With the increase of CuSO4 concentration, the surface roughness of the coating raised, thus resulting in increase of contact angle and decrease of glossiness. When the CuSO4 concentration was 30 mmol/L, the coating exhibited a sub-micro/nano binary structure, in which 20-30 nm protuberances were grown on 300-500 nm mastoids. Such special morphology endowed the coating with superhydrophobic and high-glossy properties, and the coating also showed ultra-low water adhesion and stable dynamic water repellence.
Microchannel contacting of crystalline silicon solar cells
Bullock, James; Ota, Hiroki; Wang, Hanchen; ...
2017-08-22
There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 μm) microchannels, with aspect-ratios up to 8, on the surface ofmore » solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.« less
Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2018-01-01
A voidless Cu/PET substrate is fabricated by producing a superhydrophilic PET surface comprised of nanostructures with large width and height and then by Cu electroless plating. Effect of PET surface nanostructure size on the failure mechanism of the Cu/PET substrate is studied. The fabricated Cu/PET substrate exhibits a maximum peel strength of 1300 N m-1 without using an interlayer, and virtually no increase in electrical resistivity under the extreme cyclic bending condition of 1 mm curvature radius after 300 k cycles. The authors find that there is an optimum nanostructure size for the highest Cu/PET adhesion strength, and the failure mechanism of the Cu/PET flexible substrate depends on the PET surface nanostructure size. Thus, this work presents the possibility to produce flexible metal/polymer electronic substrates that have excellent interfacial adhesion between the metal and polymer and high fatigue resistance against repeated bending. Such metal/polymer substrates provides new design opportunities for wearable electronic devices that can withstand harsh environments and have extended lifetimes.
Alternative technological development for RF hybridization
NASA Astrophysics Data System (ADS)
Antônio Finardi, Célio; da Fontoura Ponchet, André; Battesini Adamo, Cristina; Flacker, Alexander; Cotrin Teixeira, Ricardo; Panepucci, Roberto Ricardo
2017-03-01
The paper presents a technological solution for high frequency packaging platform evaluated up to 40 GHz. The main purpose of this development was to define an alternative hybrid technology that is more flexible and faster to prototype compared with thin film or multi chip module (MCM-D). The alternative technology also shows adequate performance for high bit rate solutions integrating optical and electronics blocks. This approach consists of a soft substrate (laminate material), plating processes (electroless Ni-P/Au, electrolytic Au) and lithography patterning. Ground coplanar waveguide was used for microwave structures with excellent ground planes connections due to easy via holes implementation. We present results of high frequency packaging of important RF blocks, such as integrated broadband bias-T, transimpedance amplifier ICs and silicon photonics optical modulators. The paper demonstrates a solution for high frequency hybridization that can be implemented with standard substrates, designed with any shape and with large numbers of metalized via holes and compatible with usual assembling techniques.
Microchannel contacting of crystalline silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, James; Ota, Hiroki; Wang, Hanchen
There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 μm) microchannels, with aspect-ratios up to 8, on the surface ofmore » solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Yoichiro; Yamamoto, Osamu; Matsuda, Hiromu
2000-07-01
Ti-V-Cr bcc-type solid solution alloys can absorb a large amount of hydrogen and be applied to active materials of the negative electrode in Ni-MH batteries. However, because of the insolubility of Ni into these alloys, the electrochemical characteristics like discharge capacity and cycle life were poor. In order to increase the discharge capacity of hydrogen absorbing alloy electrodes, Ti-V-Cr bcc-type alloy powders were sintered with Ni in order to form Ni contained surface layer on the alloy surface. As sintering temperature rose up, the surface composition changed from TiNi to Ti{sub 2}Ni. TiNi surface layer showed better electrochemical characteristics. Formore » the Ni adding method, Ni electroless plating was preferred because of good adhesion. As a result of optimized conditions, a discharge capacity of 570 mAh/g and an improvement of cycle life were achieved.« less
Characterization of SnO2/Ni/SiO2-MCP anode in three-dimensional lithium-ion battery
NASA Astrophysics Data System (ADS)
Lou, Xuefeng; Xu, Shaohui; Zhu, Yiping; Wang, Lianwei; Chu, Paul K.
2013-12-01
By combining a SnO2 thin film with silicon dioxide microchannel plate (SiO2-MCP), a three-dimensional (3D) structure with enough space to accommodate the volume change of SnO2 during charging-discharging is produced by MEMS and electroless deposition. Owing to the special structure of the MCP, the battery is able to deliver a reversible Li storage capacity of 408 mAhg-1 after 100 cycles. If the current density is reduced to 200 mAg-1 at a constant current during charging and discharging, the battery exhibits reversible capacities of 1575 and 996 mAhg-1 in the first discharging and charging cycle, respectively. However, a reversible Li-storage capacity of only 298 mAhg-1 is obtained after 50 cycles of deep charging at a current of 200 mAg-1. It is found that silicon is involved in the charging-discharging process at a low current.
Phase singularities in 3D plasmonic crystal metamaterials for ultra-sensitive biosensing
NASA Astrophysics Data System (ADS)
Danilov, Artem; Aristov, Andrey I.; Manousidaki, Maria; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.
2017-02-01
Plasmonic biosensors form the core label-free technology for studies of biomolecular interactions, but they still need a drastic improvement of sensitivity and novel nano-architectural implementations to match modern trends of nanobiotechnology. Here, we consider the generation of resonances in light reflected from 3D woodpile plasmonic crystal metamaterials fabricated by Direct Laser Writing by Multi-Photon Polymerization, followed by silver electroless plating. We show that the generation of these resonances is accompanied by the appearance of singularities of phase of reflected light and examine the response of phase characteristics to refractive index variations inside the metamaterial matrix. The recorded phase sensitivity (3*104 deg. of phase shift per RIU change) outperforms most plasmonic counterparts and is attributed to particular conditions of plasmon excitation in 3D plasmonic crystal geometry. Combined with a large surface for biomolecular immobilizations offered by the 3D woodpile matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology.
High-strength braze joints between copper and steel
NASA Technical Reports Server (NTRS)
Kuhn, R. F.
1967-01-01
High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.
Voyager Special Cargo: The Golden Record
2011-04-29
This image highlights the special cargo onboard NASA Voyager spacecraft: the Golden Record. Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth.
Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder
NASA Astrophysics Data System (ADS)
Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi
2017-05-01
Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.
Yigit, O.; Nelson, E.P.; Hitzman, M.W.; Hofstra, A.H.
2003-01-01
The Gold Bar district in the southern Roberts Mountains, 48 km northwest of Eureka, Nevada, contains one main deposit (Gold Bar), five satellite deposits, and other resources. Approximately 0.5 Moz of gold have been recovered from a resource of 1,639,000 oz of gold in Carlin-type gold deposits in lower plate, miogeoclinal carbonate rocks below the Roberts Mountains thrust. Host rocks are unit 2 of the Upper Member of the Devonian Denay Formation and the Bartine Member of the McColley Canyon Formation. Spatial and temporal relations between structures and gold mineralization indicate that both pre-Tertiary and Tertiary structures were important controls on gold mineralization. Gold mineralization occurs primarily along high-angle Tertiary normal faults, some of which are reactivated reverse faults of Paleozoic or Mesozoic age. Most deposits are localized at the intersection of northwest- and northeast-striking faults. Alteration includes decalcification, and to a lesser extent, silicification along high-angle faults. Jasperoid (pervasive silicification), which formed along most faults and in some strata-bound zones, accounts for a small portion of the ore in every deposit. In the Gold Canyon deposit, a high-grade jasperoid pipe formed along a Tertiary normal fault which was localized along a zone of overturned fault-propagation folds and thrust faults of Paleozoic or Mesozoic age.
The effect of chrome adhesion layer on quartz resonator aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessendorf, Kurt O.; Ohlhausen, James Anthony
2011-03-01
This SAND report documents a late start LDRD designed to determine the possible aging effects of a quartz resonator gold adhesion layer. Sandia uses quartz resonators for applications. These applications require a very stable frequency source with excellent aging (low drift) characteristics. These parts are manufactured by one of our qualified vendors outside Sandia Laboratories, Statek Corp. Over the years we, Sandia and the vendor, have seen aging variations that have not been completely explained by the typical mechanisms known in the industry. One theory was that the resonator metallization may be contributing to the resonator aging. This LDRD wouldmore » allow us to test and analyze a group of resonators with known differentiating metallization and via accelerated aging determine if a chrome adhesion layer used to accept the final gold plating may contribute to poor aging. We worked with our main vendor to design and manufacture a set of quartz resonators with a wide range of metallization thickness ratios between the chrome and gold that will allow us determine the cause of this aging and which plating thickness ratios provide the best aging performance while not degrading other key characteristics.« less
ICESat-2 laser Nd:YVO4 amplifier
NASA Astrophysics Data System (ADS)
Sawruk, Nicholas W.; Burns, Patrick M.; Edwards, Ryan E.; Litvinovitch, Viatcheslav; Martin, Nigel; Witt, Greg; Fakhoury, Elias; Iskander, John; Pronko, Mark S.; Troupaki, Elisavet; Bay, Michael M.; He, Charles C.; Wang, Liqin L.; Cavanaugh, John F.; Farrokh, Babak; Salem, Jonathan A.; Baker, Eric
2018-02-01
We report on the cause and corrective actions of three amplifier crystal fractures in the space-qualified laser systems used in NASA Goddard Space Flight Center's (GSFC) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The ICESat-2 lasers each contain three end-pumped Nd:YVOO4 amplifier stages. The crystals are clamped between two gold plated copper heat spreaders with an indium foil thermal interface material, and the crystal fractures occurred after multiple years of storage and over a year of operational run-time. The primary contributors are high compressive loading of the NdYVO4 crystals at the beginning of life, a time dependent crystal stress caused by an intermetallic reaction of the gold plating and indium, and slow crack growth resulting in a reduction in crystal strength over time. An updated crystal mounting scheme was designed, analyzed, fabricated and tested. Thee fracture slab failure analysis, finite-element modeling and corrective actions are presented.
Wear behavior of electroless Ni-P-W coating under lubricated condition - a Taguchi based approach
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta
2016-09-01
The present study aims to investigate the tribological behavior of electroless Ni-P-W coating under engine oil lubricated condition to ascertain its suitability in automotive applications. Coating is deposited onto mild steel specimens by the electroless method. The experiments are carried out on a pin - on - disc type tribo tester under lubrication. Three tribotesting parameters namely the applied normal load, sliding speed and sliding duration are varied at their three levels and their effects on the wear depth of the deposits are studied. The experiments are carried out based on the combinations available in Taguchi's L27 orthogonal array (OA). Optimization of the tribo-testing parameters is carried out using Taguchi's S/N ratio method to minimize the wear depth. Analysis of variance carried out at a confidence level of 99% indicates that the sliding speed is the most significant parameter in controlling the wear behavior of the deposits. Coating characterization is done using scanning electron microscope, energy dispersive X-ray analysis and X-ray diffraction techniques. It is seen that the wear mechanism under lubricated condition is abrasive in nature.
Ultraviolet imaging detectors for the GOLD mission
NASA Astrophysics Data System (ADS)
Siegmund, O. H. W.; McPhate, J.; Curtis, T.; Jelinsky, S.; Vallerga, J. V.; Hull, J.; Tedesco, J.
2016-07-01
The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate detectors operating in the 132 nm to 162 nm FUV bandpass with 2D imaging cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The detectors are "open face" with CsI photocathodes, providing 30% efficiency at 130.4 nm and 15% efficiency at 160.8 nm. These detectors with their position encoding electronics provide 600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the detectors and their performance are discussed.
NASA Astrophysics Data System (ADS)
Chen, Min; Cheng, Wushan; Zhao, Zuxin; Huang, Xiaobo
2013-01-01
The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, T.; Hu, M.; Guo, Q.
Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexiblemore » electronics manufacturing.« less
NASA Astrophysics Data System (ADS)
Abdalla, Ahmed M.; Majdi, Tahereh; Ghosh, Suvojit; Puri, Ishwar K.
2016-12-01
To utilize their superior properties, multiwall carbon nanotubes (MWNTs) must be manipulated and aligned end-to-end. We describe a nondestructive method to magnetize MWNTs and provide a means to remotely manipulate them through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Our experiments show that MWNTs can be plated with Ni for Ni:MWNT weight ratios of γ = 1, 7, 14 and 30, to control the material properties. The phase, atom-level, and morphological information from x-ray diffraction, energy dispersive x-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dark field STEM, and atomic force microscopy clarify the plating process and reveal the mechanical properties of the synthesized material. Ni metalizes at the surface of the Pd catalyst, forming a continuous wavy layer that encapsulates the MWNT surfaces. Subsequently, Ni acts as an autocatalyst, allowing the plating to continue even after the original Pd catalyst has been completely covered. Raising γ increases the coating layer thickness from 10 to 150 nm, which influences the NiCH magnetic properties and tunes its elastic modulus from 12.5 to 58.7 GPa. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ω m, illustrating the potential of this material for printing electronic circuits.
NASA Technical Reports Server (NTRS)
Malina, R. F.; Bowyer, S.; Finley, D.; Cash, W.
1979-01-01
The design, fabrication and performance of two Wolter-Schwarzschild grazing incidence optics are described. Both telescopes have been figured by single point diamond turning and have achieved better than 15-arcsec on-axis imaging. The telescope for the stellar spectrometer is an f/10 Type II system with an effective area of 225 sq cm at 250 A and 300 cm2 at 500 A. The primary has a maximum diameter of 38 cm and was fabricated in three elements. The copper-plated aluminum substrate was diamond turned; following nickel plating, the surface was polished and coated with evaporated gold. The performance during a sounding rocket flight is discussed. The prototype telescope for the Extreme Ultraviolet Explorer is an f/1.24 Type I system with an effective field of view of 5.0-deg diameter. The telescope has a maximum diameter of 40 cm and was fabricated as a single element. The aluminum substrate is to be diamond turned; the nickel plated surface will be polished and electroplated with gold. The design choice and defocusing optimization aimed at maximizing the field of view and number of image pixels is examined.
Gold nanoparticles on titanium and interaction with prototype protein.
Padmos, J Daniel; Duchesne, Paul; Dunbar, Michael; Zhang, Peng
2010-10-01
Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti-AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti-AuNPs. To study the interaction of Ti-AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HS--R--COOH)-functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro-BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 x 10(4), 2.3 x 10(4), and 5.7 x 10(4) microg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.
Fish scale artefact on an intraoral imaging receptor.
Buchanan, Allison; Morales, Carla; Looney, Stephen; Kalathingal, Sajitha
2017-12-01
To describe an artefact, termed the fish scale artefact, present on an intraoral imaging receptor. Thirty brand new DIGORA Optime photostimulable phosphor (PSP) plates (Soredex/Orion Corp., Helsinki, Finland) were imaged using the dental digital quality assurance radiographic phantom (Dental Imaging Consultants LLC, San Antonio, TX). All PSP plates were scanned at the same spatial resolution (dpi) using the high resolution mode. Two evaluators assessed all 30 plates. Each evaluator assessed the 30 PSP plates separately for purposes of establishing interrater reliability, and then together in order to obtain the gold standard result. The fish scale artefact was detected on 46.7% of the PSP plates. The kappa coefficient for interrater reliability was 0.86 [95% CI (0.69-1.00)], indicating excellent interrater reliability. For Evaluator 1, sensitivity was 0.85 [95% CI (0.55-0.98)]; specificity was 0.94 [CI (0.71-1.00)] and overall accuracy was 0.90 [95% CI (0.73-0.98)]. For Evaluator 2, sensitivity was 1.00 [95% CI (0.75-1.00)]; specificity was 0.94 [CI (0.71-1.00)] and overall accuracy was 0.97 [95% CI (0.83-1.00)]. These results indicate excellent agreement with the gold standard for both evaluators. Utilizing a comprehensive quality assurance protocol, we identified a fish scale artefact inherent to the image receptor. Additional research is needed to determine if the artefact remains static over time or if it increases over time. Likewise, research to determine the potential sources contributing to an increase in the artefact is needed.
Foodborne pathogen detection using hyperspectral imaging
USDA-ARS?s Scientific Manuscript database
Foodborne pathogens can cause various diseases and even death when humans consume foods contaminated with microbial pathogens. Traditional culture-based direct plating methods are still the “gold standard” for presumptive-positive pathogen screening. Although considerable research has been devoted t...
Acoustic vibrations of single suspended gold nanostructures
NASA Astrophysics Data System (ADS)
Major, Todd A.
The acoustic vibrations for single gold nanowires and gold plates were studied using time-resolved ultrafast transient absorption. The objective of this work was to remove the contribution of the supporting substrate from the damping of the acoustic vibrations of the metal nano-objects. This was achieved by suspending the nano-objects across trenches created by photolithography and reactive ion etching. Transient absorption measurements for single suspended gold nanowires were initially completed in air and water environments. The acoustic vibrations for gold nanowires over the trench in air last typically for several nanoseconds, whereas gold nanowires in water are damped more quickly. Continuum mechanics models suggest that the acoustic impedance mismatch between air and water dominates the damping rate. Later transient absorption studies on single suspended gold nanowires were completed in glycerol and ethylene glycol environments. However, our continuum mechanical model suggests nearly complete damping in glycerol due to its high viscosity, but similar damping rates are seen between the two liquids. The continuum mechanics model thus incorrectly addresses high viscosity effects on the lifetimes of the acoustic vibrations, and more complicated viscoelastic interactions occur for the higher viscosity liquids. (Abstract shortened by UMI.).
Measurement of the Casimir Force between Two Spheres
NASA Astrophysics Data System (ADS)
Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.
2018-01-01
Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.
Biological synthesis of triangular gold nanoprisms
NASA Astrophysics Data System (ADS)
Shankar, S. Shiv; Rai, Akhilesh; Ankamwar, Balaprasad; Singh, Amit; Ahmad, Absar; Sastry, Murali
2004-07-01
The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.
Study of Nickel Silicide as a Copper Diffusion Barrier in Monocrystalline Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kale, Abhijit; Beese, Emily; Saenz, Theresa
NiSi as a conductive diffusion barrier to silicon has been studied. We demonstrate that the NiSi films formed using the single step annealing process are as good as the two step process using XRD and Raman. Quality of NiSi films formed using e-beam Ni and electroless Ni process has been compared. Incomplete surface coverage and presence of constituents other than Ni are the main challenges with electroless Ni. We also demonstrate that Cu reduces the thermal stability of NiSi films. The detection of Cu has proven to be difficult due to temperature limitations.
An electrochemical study of hydrogen uptake and elimination by bare and gold-plated waspaloy
NASA Technical Reports Server (NTRS)
Danford, M. D.; Deramus, G. E., Jr.; Lowery, J. R.
1984-01-01
Two electrochemical methods for the determination of hydrogen concentrations in metals are discussed and evaluated. The take-up of hydrogen at a pressure of 5000 psi by Waspaloy metal was determined experimentally at 24 C. It was found that the metal becomes saturated with hydrogen after an exposure time of about 1 hr. For samples charged with hydrogen at high pressure, most of the hydrogen is contained in the interstitial solid solution of the metal. For electrolytically charged samples, most of the hydrogen is contained as surface and subsurface hydrides. Hydrogen elimination rates were determined for these two cases, with the rate for electrolytically charged samples being greater by over a factor of two. Theoretical effects of high temperature and pressure on hydrogen take-up and elimination by bare and gold plated Waspaloy metal was considered. The breakthrough point for hydrogen at 5000 psi, determined experimentally, lies between a gold thickness of 0.0127 mm (0.0005 in.) and 0.0254 mm (0.001 in.) at 24 C. Electropolishing was found to greatly reduce the uptake of hydrogen at high pressure by Waspaloy metal at 24 C. Possible implications of the results obtained, as they apply to the turbine disk of the space shuttle main engine, are discussed.
NASA Astrophysics Data System (ADS)
Park, Hwan-Pil; Seo, Gwancheol; Kim, Sungchul; Kim, Young-Ho
2018-01-01
The effects of solder volume and reaction time between molten solder and a metal pad at the peak temperature of reflow on the self-alignment effect have been investigated in flip chip bonding. A glass die with two different pad designs and a flame retardant-4 (FR-4) organic substrate were used. Sn-3.0Ag-0.5Cu and Sn-3.5Ag solders were formed on Cu-organic solderability preservation (Cu-OSP) and electroless nickel electroless palladium immersion gold (ENEPIG) pads on FR-4 substrates using the stencil printing method. To assess the effect of solder volume, the thickness and opening size of the stencil mask were controlled. Reflow experiments were performed at 250°C with wetting times of 40 s, 55 s, 65 s, and 75 s. After flip chip reflow soldering, the bonding areas were cross-sectioned to inspect the shape of the interconnected solder using scanning electron microscopy. The results revealed that using an insufficient solder volume on the pad was responsible for die shifts larger than 1 μm, while a sufficient solder volume on the pad and a stable solder joint shape could ensure misalignment less than 1 μm. The Sn-3.0Ag-0.5Cu solder showed a lower die shift value than the Sn-3.5Ag solder because the Sn-3.0Ag-0.5Cu solder has stronger surface tension than the Sn-3.5Ag solder. Using a longer wetting time between the solder and the pad at the peak temperature also improved the die shift value because the increased reaction time changed the interconnected solder shape between the die and substrate from concave to convex, moving the die to a more accurate position. Furthermore, the restoring forces on die self-alignment influenced the die shift value. A stronger solder surface tension and a larger volume of solder on the pad produced stronger restoring forces for die self-alignment, thereby improving the die shift value.
Modeling pore corrosion in normally open gold- plated copper connectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien
2008-09-01
The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less
He, Shengfa; Li, Xin; Wu, Yong; Wu, Shandong; Wu, Zhihua; Yang, Anshu; Tong, Ping; Yuan, Juanli; Gao, Jinyan; Chen, Hongbing
2018-06-01
Bovine milk is a recognized allergenic food source with β-lactoglobulin (BLG) as its major allergen. Reliable detection of BLG epitopes can, therefore, be a useful marker for the presence of milk in processed food products, and for potential allergenicity. At the present, enzyme-linked immunosorbent assays (ELISA) for the detection of BLG are time-consuming and generally not specific to BLG IgE epitopes. In this study, the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-activated anti-BLG IgE epitope monoclonal antibody (mAb 1G9) was covalently bound onto the KOH-treated microtiter plate surface. Using this mAb-bound plate in sandwich combination with biotinylated anti-BLG polyclonal antibody-labeled gold nanoparticles, a linear dynamic range between 31.25 and 64 × 10 3 ng mL -1 with a limit of detection for BLG of 0.49 ng mL -1 was obtained, which is 32 times wider and 16 times more sensitive than conventional sandwich ELISA (sELISA). Total recovery of BLG in spiked food samples was found, without matrix effects. Also in partially hydrolyzed infant formulas, the allergenic BLG residues were detected quantitatively. Compared with conventional and commercial BLG detection sELISAs, our sELISA is reliable, highly BLG epitope-specific, user-friendly, and time-saving and allows accurate detection of potentially allergenic residues in different types of processed foods. This improved sELISA protocol can be easily extended to detect other well-identified and characterized food allergens. Graphical abstract IgE epitope mAb-bound plate in sandwich combination with gold probe for sensitive and rapid detection of bovine β-lactoglobulin and its potentially allergenic residues.
Influence of polyurethane resin dies on the fit and adaptation of full veneer crowns.
Lillywhite, Graeme R R; Vohra, Fahim
2015-01-01
Polyurethane resin is a possible alternative to type IV dental stone for fabrication of indirect restorations however its dimensional accuracy is questionable. The aim was to investigate the dimensional accuracy of silica filled polyurethane resin die material by evaluating the marginal fit and adaptation of indirect gold castings. Experimental, in vitro study. Totally 40 copper plated replicas of a nickel chrome master die analogous to a veneer gold crown preparation were made and impressions recorded using polyvinylsiloxane material. Twenty impressions were poured in type IV dental stone (control group (Vel-mix, Kerr, UK) and the remaining (n = 20) in silica filled polyurethane die material (test group) (Alpha Die MF, CA, USA). Gold castings were fabricated for each die using standardized techniques. The castings were seated on their respective copper plated dies, embedded in resin and sectioned. The specimens were analyzed by measuring marginal opening and the area beneath the casting at a ×63 magnification and using image analysis software. Data were analyzed using a Student's t-test. No significant difference was observed between the experimental groups (P > 0.05). The mean marginal opening for type IV, dental stone and polyurethane resin, was 57 ± 22.6 μm and 63.47 ± 27.1 μm, respectively. Stone displayed a smaller area beneath the casting (31581 ± 16297 μm 2 ) as compared to polyurethane resin (35003 ± 23039 μm 2 ). The fit and adaptation of indirect gold castings made on polyurethane and type IV dental stone dies were comparable.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1980-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.
Cryogenic thermal emittance measurements on small-diameter stainless steel tubing
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.
2017-12-01
The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of ~2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing
NASA Technical Reports Server (NTRS)
Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.
2017-01-01
The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature
NASA Astrophysics Data System (ADS)
Bimonte, Giuseppe
2018-04-01
A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018), 10.1103/PhysRevLett.120.040401] measured for the first time the gradient of the Casimir force between two gold spheres at room temperature. The theoretical analysis of the data was carried out using the standard proximity force approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the Casimir force that we construct is valid for all separations, and can be easily used to interpret future experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct parametrization of the corrections to PFA for two spheres that should be used in data analysis.
Investigation of low cost, high reliability sealing techniques for hybrid microcircuits, phase 1
NASA Technical Reports Server (NTRS)
Perkins, K. L.; Licari, J. J.
1976-01-01
A preliminary investigation was made to determine the feasibility of using adhesive package sealing for hybrid microcircuits. Major effort consisted of: (1) surveying representative hybrid manufacturers to assess the current use of adhesives for package sealing; (2) making a cost comparison of metallurgical versus adhesive package sealing; (3) determining the seal integrity of gold plated flatpack type packages sealed with selected adhesives, thermal shock, temperature cycling, mechanical shock, and constant acceleration test environments; and (4) defining a more comprehensive study to continue the evaluation of adhesives for package sealing. Results showed that 1.27 cm square gold plated flatpack type packages sealed with the film adhesives and the paste adhesive retained their seal integrity after all tests, and that similarly prepared 2.54 cm square packages retained their seal integrity after all tests except the 10,000 g's constant acceleration test. It is concluded that these results are encouraging, but by no means sufficient to establish the suitability of adhesives for sealing high reliability hybrid microcircuits.
Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing
NASA Technical Reports Server (NTRS)
Jahromi, A. E.; Tuttle, J. G.; Canavan, E. R.
2017-01-01
The Mid Infrared Instrument aboard the James Webb Space Telescoep includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of approximately 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by a running a warm gas through the lines to sublimate the water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the abosprtance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 300 K. This value leads to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Some ideas on the choice of designs and materials for cooled mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howells, M.R.
1994-12-01
This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highestmore » performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.« less
NASA Astrophysics Data System (ADS)
Wong, Chiow San; Lem, Hon Pong; Goh, Boon Tong; Wong, Cin Wie
2009-03-01
This paper reports on the proof of concept work on the novel process of producing metalized polyimide (PI) film by coating a layer of copper (Cu) thin film on the surface of the PI film without using any adhesive. The method which is employed to produce a metalized PI film used in flexible printed circuit (FPC) is based on plasma graft polymerization of 1-vinlyimidazole (VIDz) on plasma pre-treated PI surface. The plasma grafted PI film (VIDz-g-PI) surfaces are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). AFM results show that the PI film surface has been successfully treated and grafted with VIDz. As post-thermal treatment is known to promote adhesion strength between the metallic film and the PI surface, the effects of post-thermal treatment environment and temperature on the adhesion property of Cu plated VIDz-g-PI (Cu/VIDz-g-PI) are evaluated. Post-thermal treatment in air shows better adhesion strength than in vacuum. The adhesion strength decreases as the post-thermal treatment temperature is increased. In the present development work, the adhesion strength obtained has met the initial market targeted 9-10 N/cm adhesion strength. Samples obtained at a pre-selected plasma power and time window are able to maintain their adhesion strength after being subjected to ageing at 100 °C for 168 h.
NASA Astrophysics Data System (ADS)
Kim, Jae-Myeong; Jeong, Myeong-Hyeok; Yoo, Sehoon; Park, Young-Bae
2012-04-01
The effects of surface finishes on the in situ interfacial reaction characteristics of ball grid array (BGA) Sn-3.0Ag-0.5Cu lead-free solder bumps were investigated under annealing and electromigration (EM) test conditions of 130°C to 175°C with 5.0 × 103 A/cm2. During reflow and annealing, (Cu,Ni)6Sn5 intermetallic compound (IMC) formed at the interface of electroless nickel immersion gold (ENIG) finish. In the case of both immersion Sn and organic solderability preservative (OSP) finishes, Cu6Sn5 and Cu3Sn IMCs formed. Overall, the IMC growth velocity of ENIG was much lower than that of the other finishes. The activation energies of total IMCs were found to be 0.52 eV for ENIG, 0.78 eV for immersion Sn, and 0.72 eV for OSP. The ENIG finish appeared to present an effective diffusion barrier between the Cu substrate and the solder, which leads to better EM reliability in comparison with Cu-based pad systems. The failure mechanisms were explored in detail via in situ EM tests.
[The Extended Deltoid-Split Approach for Plating Four-Part Proximal Humeral Fractures].
Schiffer, G; Sayar, A; Thelen, U
2016-08-01
The deltoideopectoral approach is established as the gold standard in the surgical treatment of proximal humeral fractures. As an alternative, we demonstrate the extended deltoid approach with an intraoperative video. A direct lateral incision is performed and the anterior parts of the axillary nerve are identified and preserved. In our experience, this approach allows improved visualisation of the greater tuberosity and easier positioning of locking plates. Clinically relevant neurological injuries cannot be seen in our patients or in the literature. Georg Thieme Verlag KG Stuttgart · New York.
Constrained Viscoelastic Layer Damping of Thick Aluminum Plates: Design Analysis, and Testing
1990-03-01
1’HO IrC I’= ICI/( 2 . #P1) C CUOiPAPISON OF r AND rCr IF (ABS(1.-FP/FCP).LE. 0.1) THEN GOlD 500 ELSE C-010 501 C COHlPUiE SYSIEMI LOSS FAC7OP 500...To,rRom, mRoT, II,ML , ETF ROLSLSH, CrRUL IC) C C COII ’LRI RESULTs FrRi 1H-I1l LAYER CALCULATIONI 10 TOTAL PLATE C E IA3 0. 0 UP r O II’ 1/ 2. (P I
Control of interfaces in Al-C fibre composites
NASA Technical Reports Server (NTRS)
Warrier, S. G.; Blue, C. A.; Lin, R. Y.
1993-01-01
The interface of Al-C fiber composite was modified by coating a silver layer on the surface of carbon fibres prior to making composites, in an attempt to improve the wettability between molten aluminum and carbon fibers during infiltration. An electroless plating technique was adopted and perfected to provide a homogeneous silver coating on the carbon fiber surface. Al-C fiber composites were prepared using a liquid infiltration technique in a vacuum. It was found that silver coating promoted the wetting between aluminum and carbon fibers, particularly with polyacrylonitrile-base carbon fibers. However, due to rapid dissolution of silver in molten aluminum, it was believed that the improved infiltration was not due to the wetting behavior between molten aluminum and silver. The cleaning of the fiber surface and the preservation of the cleaned carbon surface with silver coating was considered to be the prime reason for the improved wettability. Interfacial reactions between aluminum and carbon fibers were observed. Amorphous carbon was found to react more with aluminum than graphitic carbon. This is believed to be because of the inertness of the graphitic basal planes.
NASA Astrophysics Data System (ADS)
Kim, Jinu; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon
2017-09-01
To evaluate the heat elevation of FeCo hollow fibers filled in magnetic composite sheet, we synthesized the FeCo hollow fiber by using electroless plating method. The synthesized FeCo hollow fibers (50 wt.%) were mixed with thermoplastic polyurethane (TPU). FeCo hollow fiber in composite sheet exhibited the representative α-FeCo peak by XRD. The magnetization and coercivity of FeCo hollow fibers were 176.5 Am2/kg and 6.2 kA/m, respectively. In order to measure the heat elevation, the alternating magnetic field (AMF) was applied to magnetic composites sheets from 7.1 kA/m to 11.1 kA/m at 190 kHz and the frequency was applied from 190 kHz to 355 kHz at 8.3 kA/m, respectively. The elevated temperatures and the specific loss power (SLP) values exhibited about 76 °C from the initial temperature of 26 °C and about 25.3 W/g for the AMF of 8.3 kA/m and frequency of 355 kHz.
Development of a shear force measurement dummy for seat comfort.
Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung
2017-01-01
Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.
Sahasrabudhe, Atharva; Dixit, Harsha; Majee, Rahul; Bhattacharyya, Sayan
2018-05-22
Herein, we present an innovative approach for transforming commonly available cellulose paper into a flexible and catalytic current collector for overall water splitting. A solution processed soak-and-coat method of electroless plating was used to render a piece of paper conducting by conformably depositing metallic nickel nanoparticles, while still retaining the open macroporous framework. Proof-of-concept paper-electrodes are realized by modifying nickel-paper current collector with model electrocatalysts nickel-iron oxyhydroxide and nickel-molybdenum bimetallic alloy through electrodeposition route. The paper-electrodes demonstrate exceptional activities towards oxygen evolution reaction and hydrogen evolution reaction, requiring overpotentials of 240 and 32 mV at 50 and -10 mA cm -2 , respectively, even as they endure extreme mechanical stress. The generality of this approach is demonstrated by fabricating similar electrodes on cotton fabric, which also show high activity. Finally, a two-electrode paper-electrolyzer is constructed which can split water with an efficiency of 98.01%, and exhibits robust stability for more than 200 h.
Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.
Huang, Kang; McLandsborough, Lynne A; Goddard, Julie M
2016-01-01
Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm(-2). Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm(-2) of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.
Analysis of International Space Station Vehicle Materials on MISSE 6
NASA Technical Reports Server (NTRS)
Finckenor, Miria; Golden, Johnny; Kravchenko, Michael; O'Rourke, Mary Jane
2010-01-01
The International Space Station Materials and Processes team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. Results for the following MISSE 6 samples materials will be presented: deionized water sealed anodized aluminum; Hyzod(tm) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; Beta Cloth with Teflon(tm) reformulated without perfluorooctanoic acid (PFOA), and electroless nickel. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: more deionized water sealed anodized aluminum, including Photofoil(tm); indium tin oxide (ITO) over-coated Kapton(tm) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth (alpha/beta transformation); and beta cloth backed with a black coating rather than aluminization. MISSE 8 samples are: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, protective fiberglass tapes and sleeve materials, and optical witness samples to monitor contamination.
NASA Astrophysics Data System (ADS)
Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun
2015-09-01
Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain ɛD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.
Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun
2015-09-08
Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.
Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites.
Chen, Pingan; Zhang, Jian; Shen, Qiang; Luo, Guoqiang; Dai, Yang; Wang, Chuanbing; Li, Meijuan; Zhang, Lianmeng
2017-04-01
Microstructure and thermal conductivity (TC) of carbon nanotubes reinforced Cu (CNT-Cu) composites have been studied. When CNTs were coated with nano Cu by electroless plating, the TC of CNT-Cu composites showed a noticeable improvement and increased with CNT contents. When 1.0 vol% CNTs was added, the TC of CNT-Cu composites increased to 420.4 W/(m · K), 30% higher than that of monolithic Cu (323.1 W/(m · K)). According to the measured TC of CNT-Cu composites, the interfacial thermal resistance of CNT-Cu composites was calculated as 3.0 × 10⁻⁹ m² K/W which was lower than the reported values of CNTs reinforced polymer matrix composites and ceramic matrix composites. Microstructures showed that CNTs modified with nano Cu were homogeneously dispersed and embedded in the Cu matrix, indicating that there was strong bonding between CNTs and Cu. The homogeneously dispersed CNTs and reduction of interfacial thermal resistance resulted in the improvement of thermal conductivity of CNT-Cu composites. Therefore, the prepared CNT-Cu composites are promising materials for thermal management applications.
Apparatus for improving performance of electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2004-08-31
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Apparatus for improving performance of electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2002-01-01
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Method for improving performance of highly stressed electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2002-01-01
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone
NASA Astrophysics Data System (ADS)
Xiang, Feng; Gan, Weiping
2018-01-01
In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.
NASA Astrophysics Data System (ADS)
Ray, U.; Artaki, I.; Gordon, H. M.; Vianco, P. T.
1994-08-01
Substitution of lead-free solders in electronic assemblies requires changes in the conventional Sn:Pb finishes on substrates and component leads to prevent contamination of the candidate lead-free solder. Options for solderability preservative coatings on the printed wiring board include organic (azole or rosin/resin based) films and tin-based plated metallic coatings. This paper compares the solderability performance and corrosion protection effectiveness of electroless tin coatings vs organic azole films after exposure to a series of humidity and thermal cycling conditions. The solderability of immersion tin is directly related to the tin oxide growth on the surface and is not affected by the formation of SnCu intermetallic phases as long as the intermetallic phase is underneath a protective Sn layer. Thin azole films decompose upon heating in the presence of oxygen and lead to solderability degradation. Evaluations of lead-free solder pastes for surface mount assembly applications indicate that immersion tin significantly improves the spreading of Sn:Ag and Sn:Bi alloys as compared to azole surface finishes.
NASA Astrophysics Data System (ADS)
Bechelany, M.; Brodard, P.; Philippe, L.; Michler, J.
2009-11-01
The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (EF = 5.5 × 105) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.
Bechelany, M; Brodard, P; Philippe, L; Michler, J
2009-11-11
The possibility to synthesize large areas of silver grains organized in nanorings using a simple technique based on nanosphere lithography and electroless plating as a metal deposition method is described for the first time. In addition, we present a systematic SERS study of the obtained long-range ordered silver nanodots and nanorings. The possibility to precisely control the size, the interdistance and the morphology of these nanostructures allows us to systematically investigate the influence of these parameters on SERS. We show that the best possible SERS substrates should not only present optimal sizes, interdistances and shapes, but also a grain-like structure composed of sub-100 nm grains in order to maximize the number of hot-spots. In addition, we show that grains arranged in nanorings present higher enhancement factors (E(F) = 5.5 x 10(5)) as compared to similar arrays made of nanodots. A wide range of applications, including real-time monitoring of catalytic surface reactions, environmental and security monitoring as well as clinical and pharmaceutical screening, can be envisaged for these SERS substrates.
Tectonics and distribution of gold deposits in China - An overview
Zhou, T.; Goldfarb, R.J.; Phillips, G.N.
2002-01-01
Gold exploration in China has expanded rapidly during the last two decades since a modern approach to economic development has become a national priority. China currently produces 180 tonnes (t) of gold annually, which is still significantly less than South Africa, USA, and Australia. However, China is now recognized as possessing significant gold resources in a wide range of mineral deposit types. Present estimates of gold resources in China exceed 4,500 t, which comprise 60% in gold-only deposits, more than 25% in base metal-rich skarn, porphyry, and vein deposits, and more than 10% in placer accumulations. The major gold provinces in China formed during the main episodes of Phanerozoic tectonism. Such tectonism involved interaction of China's three major Precambrian cratons, North China, Tarim, and Yangtze (or South China when combined with Cathysia block), with the Angara (or Siberian), Kazakhstan-Kyrgyzstan, and Indian cratons. Resulting collisions included deformation of accreted oceanic sequences between the cratonic blocks. The most important ore-forming orogenies were (1) the late Paleozoic Variscan (405-270 Ma), which led to amalgamation of the Angara, North China and Yangtze cratons, (2) the Indosinian (270-208 Ma), which led to the collision of North China and South China cratons, (3) the Yanshanian (208-90 Ma), which was largely influenced by the subduction of the Izanagi-Pacific plates beneath eastern China, and (4) the Himalayan (<90 Ma) indentation of the Indian continent into Eurasia. No important Precambrian gold systems are recognized in China, mainly because of reworking of exposed Precambrian rocks by these younger orogenies, but there are a few Caledonian (600-405 Ma) gold-bearing system in northern Xinjiang. Most of China's orogenic, epithermal, and Carlinlike gold deposits are in the reworkerd margins of major cratonic blocks and in metasedimentary rock-dominated fold belts adjacent to these margins. Accordingly, the major gold provinces are present along the northern, southeastern and southern margins of the North China craton, along the southwestern and northwestern margins of the Yangtze craton, in the Tianshan and Altayshan orogenic belts in northern Xinjiang, and throughout the southeastern China fold belt. Gold-placer deposits derived from these primary deposits are concentrated in the northernmost part of northeastern China and along the northerwestern margin of the Yangtze craton. The major provinces with significant gold in porphyry-related copper systems and base metal skarns are present in the Yangtze River area along the northeastern and southeastern margin of the Yangtze craton, in the fold belt in southwestern China, and scattered through northern China. Three-quarters of the Chinese gold-only deposits occur within the North China craton margins. Half are located in the uplifted Precambrian metamorphie rocks and most of the remainder are hosted in the Phanerozoic granitoids that intruded the reworked Precambrian terranes. The abundance of granite-hosted gold contrasts the North China craton with other Precambrian cratons, such as those in Western Australia, central Canada, and Zimbabwe, where gold is mainly hosted in the Archean greenstone belts. This difference may be explained by the multiple episodes of Phanerozoic tectonism along the North China craton margins resulting from the collision of the Angara, North China, and South China cratons, and from subduction of the Izanagi-Pacific oceanic plates underneath the eastern China continent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd Zaheruddin, K., E-mail: zaheruddin@unimap.edu.my; Rahmat, A., E-mail: azmirahmat@unimap.edu.my; Shamsul, J. B., E-mail: sbaharin@unimap.edu.my
Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3more » % wt Co and gradually decreased at higher Co content.« less
NASA Astrophysics Data System (ADS)
Chen, Lai; Zeng, Diping; Liu, Zhiyi; Bai, Song; Li, Junlin
2018-02-01
The surface microhardness, as well as the fatigue crack propagation (FCP) resistance of 2524-T3 alloy, is improved by producing a 20-μm-thick amorphous electroless Ni-12% P coating on its surface. Compared to the substrate, this deposited EN coating possesses higher strength properties and exhibits a greater ability of accommodating the plastic deformation at the fatigue crack tip, thereby remarkably improving the FCP resistance in near-threshold and early Paris regimes. Regardless of the similar FCP rates in Paris regime (Δ K ≥ 16.2 MPa m0.5), the coated sample exhibits extended Paris regime and enhanced damage tolerance.
Enhanced ultraviolet photoconductivity in porous GaN prepared by metal-assisted electroless etching
NASA Astrophysics Data System (ADS)
Guo, X. Y.; Williamson, T. L.; Bohn, P. W.
2006-10-01
The ultraviolet photoconductivity of porous GaN (PGaN) produced by Pt-assisted electroless etching has been investigated. The photoresponse of PGaN prepared from highly doped GaN ( n>1018 cm) shows enhanced ( 15×) magnitude and faster decay of persistent photoconductivity relative to bulk crystalline (CGaN), suggesting advantages for PGaN in photodetector applications. A space charge model for changes in photoconductivity is used to explain these observations. Heightened defect density in the etched material plays an important role in the enhanced photoconductivity in PGaN. Flux-dependent optical quenching (OQ) behavior, linked to the presence of metastable states, is also observed in PGaN as in CGaN.
NASA Technical Reports Server (NTRS)
Carollo, S. F.; Davis, J. M.; Dance, W. E.
1973-01-01
Two types of sensor designs were investigated: (1)a polysulfone dielectric film with vapor-deposited aluminum and gold sensor plates, bonded to a relatively thick aluminum substrate, and (2) an aluminum oxide (A1203) dielectric layer prepared on an aluminum substrate by anodization, with a layer of vapor-deposited aluminum providing one sensor plate and the substrate serving as the other plate. In the first design, specimens were prepared which indicate the state of the art for application of this type of sensor for elements of a meteoroid detection system having an area as large as 10 sq M. Techniques were investigated for casting large-area polysulfone films on the surface of water and for transferring the films from the water. Methods of preparing sensors by layering of films, the deposition of capacitor plates, and sensor film-to-substrate bonding, as well as techniques for making electrical connections to the capacitor plates, were studied.
Preparation of cuxinygazsen precursor films and powders by electroless deposition
Bhattacharya, Raghu N.; Batchelor, Wendi Kay; Wiesner, Holm; Ramanathan, Kannan; Noufi, Rommel
1999-01-01
A method for electroless deposition of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) precursor films and powders onto a metallic substrate comprising: preparing an aqueous bath solution of compounds selected from the group consisting of: I) a copper compound, a selenium compound, an indium compound and gallium compound; II) a copper compound, a selenium compound and an indium compound; III) a selenium compound, and indium compound and a gallium compound; IV) a selenium compound and a indium compound; and V) a copper compound and selenium compound; each compound being present in sufficient quantity to react with each other to produce Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3); adjusting the pH of the aqueous bath solution to an acidic value by the addition of a dilute acid; and initiating an electroless reaction with an oxidizing counterelectrode for a sufficient time to cause a deposit of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) from the aqueous bath solution onto a metallic substrate.
Davis, Richard; Koelle, George B.
1967-01-01
By means of the gold-thiocholine (AuThCh) and gold-thiolacetic acid (AuThAc) methods, it has been demonstrated electron microscopically that acetylcholinesterase (AChE) is located at the prejunctional axoplasmic membrane and the postjunctional sarcoplasmic membrane, including the full lengths of its invaginations, at the motor end plate of mouse intercostal muscle. Nonspecific cholinesterase (ChE) is present in relatively low concentrations at the same sites, and in greater concentrations in the teloglial Schwann sheath cells. Significant amounts of reaction product appeared in the junctional cleft only after prolonged incubation with both methods. The identification of AChE and ChE was confirmed by the use of appropriate concentrations of several selective inhibitors. In confirmation of previous studies by light microscopy, the AuThCh method is more specific for AChE and ChE, whereas the AuThAc method allows greater accuracy of localization. PMID:6033530
Why Does College Cost So Much?
ERIC Educational Resources Information Center
Archibald, Robert B.; Feldman, David H.
2010-01-01
Much of what is written about colleges and universities ties rapidly rising tuition to dysfunctional behavior in the academy. Common targets of dysfunction include prestige games among universities, gold plated amenities, and bloated administration. This book offers a different view. To explain rising college cost, the authors place the higher…
40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... resulting from the process in which a ferrous or nonferrous basis material is plated with gold, silver... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY...
1999-07-30
Engineers are investigating the possibility that a 7/8" gold-plated liquid oxygen post plug became dislodged and created three small holes in the liquid hydrogen tubes inside the nozzle on main engine No. 3 on Space Shuttle Columbia. The holes caused a hydrogen leak during the STS-93 launch of Columbia on July 23
1999-07-30
Engineers are investigating the possibility that a 7/8" gold-plated liquid oxygen post plug became dislodged and created three small holes in the liquid hydrogen tubes inside the nozzle on main engine No. 3 on Space Shuttle Columbia. The holes caused a hydrogen leak during the STS-93 launch of Columbia on July 23
Hermetically sealable package for hybrid solid-state electronic devices and the like
NASA Technical Reports Server (NTRS)
Miller, Wilson N. (Inventor); Gray, Ormal E. (Inventor)
1988-01-01
A light-weight, inexpensively fabricated, hermetically sealable, repairable package for small electronic or electromechanical units, having multiple connections, is described. A molded ring frame of polyamide-imide plastic (Torlon) is attached along one edge to a base plate formed of a highly heat conducting material, such as aluminum or copper. Bores are placed through a base plate within the area of the edge surface of ring frame which result in an attachment of the ring frame to the base plate during molding. Electrical leads are molded into the ring frame. The leads are L-shaped gold-plated copper wires imbedded within widened portions of the side wall of the ring frame. Within the plastic ring frame wall the leads are bent (typically, though not necessarily at 90 deg) so that they project into the interior volume of the ring frame for connection to the solid state devices.
Quartz crystal fabrication facility
NASA Astrophysics Data System (ADS)
Ney, R. J.
1980-05-01
The report describes the design and operation of a five chamber, interconnected vacuum system, which is capable of cleaning, plating, and sealing precision quartz crystal units in ceramic flatpack enclosures continuously in a high vacuum environment. The production rate design goal was 200 units per eight hour day. A unique nozzle beam gold deposition source was developed to operate for extended periods of time without reloading. The source puts out a narrow beam of gold typically in the order of 2 1/2 deg included cone angle. Maximum deposition rates are in the order of 400 a/min at 5.5 in. 'throw' distance used. Entrance and exit air lock chambers expedite the material throughput, so that the processing chambers are at high vacuum for extended periods of time. A stainless steel conveyor belt, in conjunction with three vacuum manipulators, transport the resonator components to the various work stations. Individual chambers are normally separated from each other by gate valves. The crystal resonators, mounted in flatpack frames but unplated, are loaded into transport trays in a lid-frame-lid sequency for insertion into the system and exit as completed crystal units. The system utilizes molybdenum coated ball bearings at essentially all friction surfaces. The gold sources and plating mask heads are equipped with elevators and gate valves, so that they can be removed from the system for maintenance without exposing the chambers to atmosphere.
Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings
NASA Astrophysics Data System (ADS)
Biswas, A.; Das, S. K.; Sahoo, P.
2016-09-01
Electroless nickel coating occurs through an autocatalytic chemical reaction and without the aid of electricity. From tribological perspective, it is recommended due to its high hardness, wear resistance, lubricity and corrosion resistance properties. In this paper electroless Ni-P coatings with high phosphorous weight percentages are developed on mild steel (AISI 1040) substrates. The coatings are subjected to heat treatment at 300°C and 500°C for time durations up to 4 hours. The effect of heat treatment duration on the hardness as well as tribological properties is discussed in detail. Hardness is measured in a micro hardness tester while the tribological tests are carried out on a pin-on-disc tribotester. Wear is reported in the form of wear rates of the sample subjected to the test. As expected, heat treatment of electroless Ni-P coating results in enhancement in its hardness which in turn increases its wear resistance. The present study also finds that duration of heat treatment has quite an effect on the properties of the coating. Increase in heat treatment time in general results in increase in the hardness of the coating. Coefficient of friction is also found to be lesser for the samples heat treated for longer durations (4 hour). However, in case of wear, similar trend is not observed. Instead samples heat treated for 2 to 3 hour display better wear resistance compared to the same heat treated for 4 hour duration. The microstructure of the coating is also carried out to ensure about its proper development. From scanning electron microscopy (SEM), the coating is found to possess the conventional nodular structure while energy dispersive X-ray analysis (EDX) shows that the phosphorous content in the coating to be greater than 9%. This means that the current coating belongs to the high phosphorous category. From X-ray diffraction analysis (XRD), it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with heat treatment.
Kang, Hyunook; Yun, Hoyeol; Lee, Sang Wook; Yeo, Woon-Seok
2017-06-01
We report a method of small molecule analysis using a converted graphene-like monolayer (CGM) plate and laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) without organic matrices. The CGM plate was prepared from self-assembled monolayers of biphenyl-4-thiol on gold using electron beam irradiation followed by an annealing step. The above plate was utilized for the LDI-TOF MS analyses of various small molecules and their mixtures, e.g., amino acids, sugars, fatty acids, oligoethylene glycols, and flavonoids. The CGM plate afforded high signal-to-noise ratios, good limits of detection (1pmol to 10fmol), and reusability for up to 30 cycles. As a practical application, the enzymatic activity of the cytochrome P450 2A6 (CYP2A6) enzyme in human liver microsomes was assessed in the 7-hydroxylation of coumarin using the CGM plate without other purification steps. We believe that the prepared CGM plate can be practically used with the advantages of simplicity, sensitivity, and reusability for the matrix-free analysis of small biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Fabrication of biomimetic nanomaterials and their effect on cell behavior
NASA Astrophysics Data System (ADS)
Porri, Teresa Jane
Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with anisotropic nanoscale topography with dimensions that vary from the micron to the nanoscale. We show that integrin binding, syndecan binding, and topographic length scale each independently influence epithelial cell response to nanoscale features, lending a high degree of control over cell morphologic responses.
Improving the contact resistance at low force using gold coated carbon nanotube surfaces
NASA Astrophysics Data System (ADS)
McBride, J. W.; Yunus, E. M.; Spearing, S. M.
2010-04-01
Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.
Remote micro-encapsulation of curium-gold cermets
NASA Astrophysics Data System (ADS)
Coops, M. S.; Voegele, A. L.; Hayes, W. N.; Sisson, D. H.
1982-09-01
A technique has been developed to produce miniature, high-density capsules of curium-244 oxide contained in three concentric jackets of metallic gold or silver. The final capsules are right circular cylinders, 6.350 mm diameter by (3.18±0.05) mm long, with a minimum density of 11.0 g/cm 3. Each level of containment was soldered or brazed closed, with the outer surface free of detectable alpha contamination. Fabrication was performed in three separate small cells operated by standard master-slave manipulators. Production capsules have been stored for up to five years without indication of dimensional growth or leakage of radioactive contents. The dimensional stability of the capsules is attributed to the microporous structure of the plated-gold structure which permits helium gas resulting from alpha decay to diffuse through the capsule wall while retaining all radioactive materials.
Adhesion and friction behavior of group 4 elements germanium, silicon, tin, and lead
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1975-01-01
Adhesion and friction studies were conducted with thin films of the group IV elements silicon, germanium, tin, and lead ion plated on the nickel (011) substrate. The mating surface was gold (111). Contacts were made for the elements in the clean state and with oxygen present. Adhesion and friction experiments were conducted at very light loads of 1 to 10 g. Sliding was at a speed of 0.7 mm/min. Friction results indicate that the more covalently bonded elements silicon and germanium exhibit lower adhesion and friction than the more metallic bonded tin and lead. The adhesion of gold to germanium was observed, and recrystallization of the transferred gold occurred. Plastic flow of germanium was seen with sliding. Oxygen reduced, but did not eliminate, the adhesion observed with germanium and silicon.
Synthesis and Characterization of Silicon Nanowires by Electroless Etching
NASA Astrophysics Data System (ADS)
Bhujel, Rabina; Rizal, Umesh; Agarwal, Amit; Swain, Bhabani S.; Swain, Bibhu P.
2018-02-01
Silicon nanowires (SiNWs) were synthesized by two-step electroless etching of p-type Si (100) wafer and characterized by field emission scanning electron microscopy, UV-Vis spectroscopy, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The vibrational signature at 1108 and 2087 cm-1 confirmed SiNWs were passivated by both oxygen and hydrogen atoms. Raman peak at 517 cm-1 indicated crystalline SiNWs with tailing toward redshift due to Fano effect. The Si(2p) and Si(2s) core orbital spectra of SiNWs were found at 99.8 and 150.5 eV, respectively. Moreover, the reflection of SiNWs is minimized to 1 to 5% in the 650-nm wavelength.
Design and Fabrication of Quadrupole Ion Mass Spectrometer for Upper Atmosphere.
1981-09-30
34 diameter con-flat flange were T.I.G. welded to the end of each of three bowls. All bowls were then electro- polished, cleaned and sent out to have...plated surface was .0001" to .0002" thick. After gold plating, the hemispheres were mated and T.I.G. welded to form a sphere with a con-flat flange at...Valve Rotatable Conflat to fit k" Swage Lock Weld Adaptors. 5 2 3/4" Conflat Flanges machined to fit Swage Lock unions. 12 10-24 x 2 " Brass Screws necket
Advanced technology for extended endurance alkaline fuel cells
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Martin, R. A.
1987-01-01
Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.
1983-01-01
Amoebae of Dictyostelium discoideum produce tracks with two distinct morphologies on gold-coated coverslips. The wild-type strain and other strains that feed only by phagocytosis produced indistinct, fuzzy tracks, whereas mutants capable of axenic growth produced clear, sharp tracks. The sharp track morphology was found to be a recessive phenotype that segregates with axenicity and probably requires a previously unidentified axenic mutation. Axenic and nonaxenic strains also differed in their ability to pinocytose. When the two types of cells were shifted from bacterial growth plates to nutrient media, within 24 h the axenic strain established a rapid rate of pinocytosis, approximately 100-fold higher than the low rate detectable for the nonaxenic strain. However, track formation did not appear to be directly related to endocytosis. Electron microscopic examination of cells during track formation showed that both axenic and nonaxenic strains accumulated gold particles on their surfaces, but neither strain internalized the gold to any significant degree. Observation of living cells revealed that axenic strains collected all particles that they contacted, whereas wild-type strains left many particles undisturbed. The size of the gold particle clusters discarded by the cells also contributed to track morphology. PMID:6619183
1962-10-18
The Atlas-Agena B space Vehicle waits on the launch pad to launch the National Aeronautics and Space Administration’s Ranger V Spacecraft on a 66 – 62 hour journey to the moon. Ranger V is a 735-pound gold and chrome Plated payload designed to perform a series of complicated tasks, including taking television pictures of the lunar surface.
Athermal metal optics made of nickel plated AlSi40
NASA Astrophysics Data System (ADS)
Gebhardt, Andreas; Kinast, Jan; Rohloff, Ralf-Rainer; Seifert, Walter; Beier, Matthias; Scheiding, Sebastian; Peschel, Thomas
2017-11-01
Metal optics is an inherent part of space instrumentation for years. Diamond turned aluminum (Al6061) mirrors are widely used for application in the mid- and near-infrared (mid-IR and NIR, respectively) spectral range. Aluminum mirrors plated with electroless nickel (NiP) expand the field of application towards multispectral operating instruments down to the ultraviolet wavelengths. Due to the significant mismatch in the coefficient of thermal expansion (CTE) between aluminum and NiP, however, this advantage occurs at the cost of bimetallic bending. Challenging requirements can be met by using bare beryllium or aluminum beryllium composites (AlBeMet) as a CTE tailored substrate material and amorphous NiP as polishable layer. For health reasons, the use of beryllium causes complications in the process chain. Thus, the beryllium approach is subjected to specific applications only. Metal optics has proven to be advantageous in respect of using conventional CNC and ultra-precision fabrication methods to realize complex and light-weighted instrument structures. Moreover, the mirror designs can be effectively optimized for a deterministic system assembly and optimization. Limitations in terms of dimensional stability over temperature and time are mainly given by the inherent material properties (figures of merit) of the substrate material in interaction with the polishing layer. To find an optimal compromise, a thermal matched aluminum-silicon alloy (silicon contents ≍ 40 wt%) plated with NiP (AlSi40/NiP ) was investigated in a joined project of the Max Planck Institute for Astronomy MPIA and the Fraunhofer Institute for Applied Optics and Precision Engineering IOF. The main tasks of the project were the minimization of the bimetallic bending, the development of reliable stabilizing and aging procedures, and the establishment of a proven fabrication method. This paper describes fundamental results regarding the optimization of the athermal material combination. Furthermore, the developed production chain for high quality freeform mirrors made of AlSi40/NiP is pointed out.
Wear and friction characteristics of electroless Ni-B-W coatings at different operating temperatures
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta
2018-02-01
Sodium borohydride reduced electroless nickel alloy coatings have high wear resistance and low coefficient of friction. The present work investigates the deposition and tribological behavior of a ternary variant of the borohydride reduced coating i.e. Ni-B-W. Electroless Ni-B-W coatings were deposited on AISI 1040 steel substrates. In order to improve the mechanical properties of the deposits, they were heat treated at 350 °C for 1 h. The coatings in their as-deposited and heat treated conditions were characterized by scanning electron microscope, energy dispersive x-ray analysis and x-ray diffraction techniques. Ni-B-W coatings are amorphous in their as-deposited state while they become crystalline on heat treatment. In fact a high microhardness of Ni-B-W coatings is also observed in as-deposited condition. The microhardness further improves on heat treatment. Tribological behavior of the heat treated coatings with varying load (10-50 N), sliding speed (0.25-0.42 m s-1) and operating temperature (25 °C-500 °C) were evaluated on a pin-on-disc type test setup while the wear mechanisms were also studied. Tribological behavior of Ni-B-W coatings is enhanced at 500 °C operating temperature in comparison with 100 or 300 °C due to formation of protective oxide scales and microstructural changes due to in-situ heat treatment effect.
NASA Astrophysics Data System (ADS)
Garcia-Soto, Mariano de Jesus
The work reported in this dissertation describes the design and synthesis of different gold nanoshells with strong absorption coefficients at the near-infrared region (NIR) of the spectrum, and includes preliminary studies of their use for the photo-induced heating of pancreatic cancer cells and ex vivo tissues. As the emphasis was on gold nanoshells with maximum extinctions located at 800 nm, the methods explored for their synthesis led us to the preparation of silica-core and hollow gold nanoshells of improved stability, with maximum extinctions at or beyond the targeted within the near-infrared window. The synthesis of silica-core gold nanoshells was investigated first given its relevance as one of the pioneering methods to produce gold nanostructures with strong absorption and scattering coefficients in the visible and the near-infrared regions of the spectrum. By using a classical method of synthesis, we explored the aging of the precursor materials and the effect of using higher concentrations than the customary for the reduction of gold during the shell growth. We found that the aging for one week of the as-prepared or purified precursors, namely, the gold cluster suspensions, and the seeded silica particles, along with higher concentrations of gold in the plating solution, produced fully coated nanoshells of 120 nm in size with smooth surfaces and maximum extinctions around 800 nm. Additional work carried out to reduce the time and steps in the synthesis of silica-core gold nanoshells, led us to improve the seeding step by increasing the ionic strength of the cluster suspension, and also to explore the growth of gold on tin-seeded silica nanoparticles. The synthesis of hollow gold nanoshells (HGS) of with maximum extinctions at the NIR via the galvanic replacement of silver nanoparticles for gold in solution was explored next. A first method explored led us to obtain HGS with maximum extinctions between 650 and 800 nm and sizes between 30 and 80 nm from silver nanoparticles, which were grown by the addition of silver nitrate and a mild reducer. We developed a second method that led us to obtain HGS with maximum extinctions between 750 and 950 nm by adjusting the pH of the precursor solution of the silver particles without much effort or additional steps. The last part of this work consisted in demonstrating the photo-induced heating of two biological systems containing HGS. Photothermal therapy studies of immobilized PANC1 pancreas cancer cells in well-plates were carried out with functionalized HGS. We found that cells exposed to HGS remained viable after incubation. Moreover, the cells incubated with HGS modified with mercaptoundecanoic acid and folic acid turned non-viable after being irradiated with a laser at 800 nm. The other study consisted in the laser-induced heating between 750 and 1000 nm of ex vivo tissues of chicken and pork with nanoshells injected. In comparison with non-injected tissues, it was found that the temperature at the irradiated areas with HGS increased more than 10 °C. Moreover, the extent of the heated area was broader when the laser was used at wavelengths beyond 900 nm, suggesting that the heating was due to the radiation absorbed and transformed into heat primarily by the HGS and at a lesser extent by the water in the tissue.
Barreto, Rafael E; Narváez, Javier; Sepúlveda, Natalia A; Velásquez, Fabián C; Díaz, Sandra C; López, Myriam Consuelo; Reyes, Patricia; Moncada, Ligia I
2017-09-01
Public health programs for the control of soil-transmitted helminthiases require valid diagnostic tests for surveillance and parasitic control evaluation. However, there is currently no agreement about what test should be used as a gold standard for the diagnosis of hookworm infection. Still, in presence of concurrent data for multiple tests it is possible to use statistical models to estimate measures of test performance and prevalence. The aim of this study was to estimate the diagnostic accuracy of five parallel tests (direct microscopic examination, Kato-Katz, Harada-Mori, modified Ritchie-Frick, and culture in agar plate) to detect hookworm infections in a sample of school-aged children from a rural area in Colombia. We used both, a frequentist approach, and Bayesian latent class models to estimate the sensitivity and specificity of five tests for hookworm detection, and to estimate the prevalence of hookworm infection in absence of a Gold Standard. The Kato-Katz and agar plate methods had an overall agreement of 95% and kappa coefficient of 0.76. Different models estimated a sensitivity between 76% and 92% for the agar plate technique, and 52% to 87% for the Kato-Katz technique. The other tests had lower sensitivity. All tests had specificity between 95% and 98%. The prevalence estimated by the Kato-Katz and Agar plate methods for different subpopulations varied between 10% and 14%, and was consistent with the prevalence estimated from the combination of all tests. The Harada-Mori, Ritchie-Frick and direct examination techniques resulted in lower and disparate prevalence estimates. Bayesian approaches assuming imperfect specificity resulted in lower prevalence estimates than the frequentist approach. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.
2009-09-01
The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.
Yang, Minghui; Kostov, Yordan; Bruck, Hugh A; Rasooly, Avraham
2009-08-15
Staphylococcal enterotoxins (SEs) are major cause of foodborne diseases, so sensitive detection (<1 ng/ml) methods are needed for SE detection in food. The surface area, geometric and physical properties of gold nanoparticles make them well-suited for enhancing interactions with biological molecules in assays. To take advantage of the properties of gold nanoparticles for immunodetection, we have developed a gold nanoparticle-based enhanced chemiluminescence (ECL) immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Anti-SEB primary antibodies were immobilized onto a gold nanoparticle surface through physical adsorption and then the antibody-gold nanoparticle mixture was immobilized onto a polycarbonate surface. SEB was detected by a "sandwich-type" ELISA assay on the polycarbonate surface with a secondary antibody and ECL detection. The signal from ECL was read using a point-of-care detector based on a cooled charge-coupled device (CCD) sensor or a plate reader. The system was used to test for SEB in buffer and various foods (mushrooms, tomatoes, and baby food meat). The limit of detection was found to be approximately 0.01 ng/mL, which is approximately 10 times more sensitive than traditional ELISA. The gold nanoparticles were relatively easy to use for antibody immobilization because of their physical adsorption mechanism; no other reagents were required for immobilization. The use of our simple and inexpensive detector combined with the gold nanoparticle-based ECL method described here is adaptable to simplify and increase sensitivity of any immunological assay and for point-of-care diagnostics.
Yang, Minghui; Kostov, Yordan; Bruck, Hugh A.; Rasooly, Avraham
2010-01-01
Staphylococcal enterotoxins (SEs) are major cause of foodborne diseases, so sensitive detection (<1 ng/ml) methods are needed for SE detection in food. The surface area, geometric and physical properties of gold nanoparticles make them well-suited for enhancing interactions with biological molecules in assays. To take advantage of the properties of gold nanoparticles for immunodetection, we have developed a gold nanoparticle-based enhanced chemiluminescence (ECL) immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Anti-SEB primary antibodies were immobilized onto a gold nanoparticle surface through physical adsorption and then the antibody–gold nanoparticle mixture was immobilized onto a polycarbonate surface. SEB was detected by a “sandwich-type” ELISA assay on the polycarbonate surface with a secondary antibody and ECL detection. The signal from ECL was read using a point-of-care detector based on a cooled charge-coupled device (CCD) sensor or a plate reader. The system was used to test for SEB in buffer and various foods (mushrooms, tomatoes, and baby food meat). The limit of detection was found to be ~0.01 ng/mL, which is ~10 times more sensitive than traditional ELISA. The gold nanoparticles were relatively easy to use for antibody immobilization because of their physical adsorption mechanism; no other reagents were required for immobilization. The use of our simple and inexpensive detector combined with the gold nanoparticle-based ECL method described here is adaptable to simplify and increase sensitivity of any immunological assay and for point-of-care diagnostics. PMID:19540011
Nanoporous Silicon Carbide for Nanoelectromechanical Systems Applications
NASA Technical Reports Server (NTRS)
Hossain, T.; Khan, F.; Adesida, I.; Bohn, P.; Rittenhouse, T.; Lienhard, Michael (Technical Monitor)
2003-01-01
A major goal of this project is to produce porous silicon carbide (PSiC) via an electroless process for eventual utilization in nanoscale sensing platforms. Results in the literature have shown a variety of porous morphologies in SiC produced in anodic cells. Therefore, predictability and reproducibility of porous structures are initial concerns. This work has concentrated on producing morphologies of known porosity, with particular attention paid toward producing the extremely high surface areas required for a porous flow sensor. We have conducted a parametric study of electroless etching conditions and characteristics of the resulting physical nanostructure and also investigated the relationship between morphology and materials properties. Further, we have investigated bulk etching of SiC using both photo-electrochemical etching and inductively-coupled-plasma reactive ion etching techniques.
Carbon nanotube wires and cables: Near-term applications and future perspectives
NASA Astrophysics Data System (ADS)
Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian
2011-11-01
Wires and cables are essential to modern society, and opportunities exist to develop new materials with reduced resistance, mass, and/or susceptibility to fatigue. This article describes how carbon nanotubes (CNTs) offer opportunities for integration into wires and cables for both power and data transmission due to their unique physical and electronic properties. Macroscopic CNT wires and ribbons are presently shown as viable replacements for metallic conductors in lab-scale demonstrations of coaxial, USB, and Ethernet cables. In certain applications, such as the outer conductor of a coaxial cable, CNT materials may be positioned to displace metals to achieve substantial benefits (e.g. reduction in cable mass per unit length (mass/length) up to 50% in some cases). Bulk CNT materials possess several unique properties which may offer advantages over metallic conductors, such as flexure tolerance and environmental stability. Specifically, CNT wires were observed to withstand greater than 200,000 bending cycles without increasing resistivity. Additionally, CNT wires exhibit no increase in resistivity after 80 days in a corrosive environment (1 M HCl), and little change in resistivity with temperature (<1% from 170-330 K). This performance is superior to conventional metal wires and truly novel for a wiring material. However, for CNTs to serve as a full replacement for metals, the electrical conductivity of CNT materials must be improved. Recently, the conductivity of a CNT wire prepared through simultaneous densification and doping has exceeded 1.3 × 106 S/m. This level of conductivity brings CNTs closer to copper (5.8 × 107 S/m) and competitive with some metals (e.g. gold) on a mass-normalized basis. Developments in manipulation of CNT materials (e.g. type enrichment, doping, alignment, and densification) have shown progress towards this goal. In parallel with efforts to improve bulk conductivity, integration of CNT materials into cabling architectures will require development in electrical contacting. Several methods for contacting bulk CNT materials to metals are demonstrated, including mechanical crimping and ultrasonic bonding, along with a method for reducing contact resistance by tailoring the CNT-metal interface via electroless plating. Collectively, these results summarize recent progress in CNT wiring technologies and illustrate that nanoscale conductors may become a disruptive technology in cabling designs.
Carbon nanotube wires and cables: near-term applications and future perspectives.
Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian
2011-11-01
Wires and cables are essential to modern society, and opportunities exist to develop new materials with reduced resistance, mass, and/or susceptibility to fatigue. This article describes how carbon nanotubes (CNTs) offer opportunities for integration into wires and cables for both power and data transmission due to their unique physical and electronic properties. Macroscopic CNT wires and ribbons are presently shown as viable replacements for metallic conductors in lab-scale demonstrations of coaxial, USB, and Ethernet cables. In certain applications, such as the outer conductor of a coaxial cable, CNT materials may be positioned to displace metals to achieve substantial benefits (e.g. reduction in cable mass per unit length (mass/length) up to 50% in some cases). Bulk CNT materials possess several unique properties which may offer advantages over metallic conductors, such as flexure tolerance and environmental stability. Specifically, CNT wires were observed to withstand greater than 200,000 bending cycles without increasing resistivity. Additionally, CNT wires exhibit no increase in resistivity after 80 days in a corrosive environment (1 M HCl), and little change in resistivity with temperature (<1% from 170-330 K). This performance is superior to conventional metal wires and truly novel for a wiring material. However, for CNTs to serve as a full replacement for metals, the electrical conductivity of CNT materials must be improved. Recently, the conductivity of a CNT wire prepared through simultaneous densification and doping has exceeded 1.3 × 10(6) S/m. This level of conductivity brings CNTs closer to copper (5.8 × 10(7) S/m) and competitive with some metals (e.g. gold) on a mass-normalized basis. Developments in manipulation of CNT materials (e.g. type enrichment, doping, alignment, and densification) have shown progress towards this goal. In parallel with efforts to improve bulk conductivity, integration of CNT materials into cabling architectures will require development in electrical contacting. Several methods for contacting bulk CNT materials to metals are demonstrated, including mechanical crimping and ultrasonic bonding, along with a method for reducing contact resistance by tailoring the CNT-metal interface via electroless plating. Collectively, these results summarize recent progress in CNT wiring technologies and illustrate that nanoscale conductors may become a disruptive technology in cabling designs.
Platform technologies for hybrid optoelectronic integration and packaging
NASA Astrophysics Data System (ADS)
Datta, Madhumita
In order to bring fiber-optics closer to individual home and business services, the optical network components have to be inexpensive and reliable. Integration and packaging of optoelectronic devices holds the key to high-volume low-cost component manufacturing. The goal of this dissertation is to propose, study, and demonstrate various ways to integrate optoelectronic devices on a packaging platform to implement cost-effective, functional optical modules. Two types of hybrid integration techniques have been proposed: flip-chip solder bump bonding for high-density two-dimensional array packaging of surface-emitting devices, and solder preform bonding for fiber-coupled edge-emitting semiconductor devices. For flip-chip solder bump bonding, we developed a simple, inexpensive remetallization process called "electroless plating", which converts the aluminum bond pads of foundry-made complementary metal oxide semiconductor (CMOS) chips into solder-bondable and wire-bondable gold surfaces. We have applied for a patent on this remetallization technique. For fiber-pigtailed edge-emitting laser modules, we have studied the coupling characteristics of different types of lensed single-mode fibers including semispherically lensed fiber, cylindrically lensed fiber and conically lensed fiber. We have experimentally demonstrated 66% coupling efficiency with semispherically lensed fiber and 50% efficiency with conically lensed fibers. We have proposed and designed a packaging platform on which lensed fibers can be actively aligned to a laser and solder-attached reliably to the platform so that the alignment is retained. We have designed thin-film nichrome heaters on fused quartz platforms as local heat source to facilitate on-board solder alignment and attachment of fiber. The thermal performance of the heaters was simulated using finite element analysis tool ANSYS prior to fabrication. Using the heater's reworkability advantage, we have estimated the shift of the fiber due to solder shrinkage and introduced a pre-correction in the alignment process to restore optimum coupling efficiency close to 50% with conically lensed fibers. We have applied for a patent on this unique active alignment method through the University of Maryland's Technology Commercialization Office. Although we have mostly concentrated on active alignment platforms, we have proposed the idea of combining the passive alignment advantages of silicon optical benches to the on-board heater-assisted active alignment technique. This passive-active alignment process has the potential of cost-effective array packaging of edge-emitting devices.
An integrated optical CO2 sensor. Phase 0: Design and fabrication of critical elements
NASA Technical Reports Server (NTRS)
Murphy, Michael C.; Kelly, Kevin W.; Li, B. Q.; Ma, EN; Wang, Wanjun; Vladimirsky, Yuli; Vladimirsky, Olga
1994-01-01
Significant progress has been made toward all of the goals for the first phase of the project short of actual fabrication of a light path. Two alternative approaches to fabricating gold mirrors using the basic LIGA process were developed, one using electroplated solid gold mirrors and the second using gold plated over a nickel base. A new method of fabrication, the transfer mask process, was developed and demonstrated. Analysis of the projected surface roughness and beam divergence effects was completed. With gold surface with low surface roughness scattering losses are expected to be insignificant. Beam divergence due to diffraction will require a modification of the original design, but should be eliminated by fabricating mirrors 1000 mu m in height by 1000 mu m in width and using a source with an initial beam radius greater than 300 mu m. This may eliminate any need for focusing optics. Since the modified design does not affect the mask layout, ordering of the mask and fabrication of the test structures can begin immediately at the start of Phase 1.
Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M
2000-03-01
Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.
Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F.
1998-01-01
The so-called 'mesothermal' gold deposits are associated with reginally metamorphosed terranes of all ages. Ores were formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens. In both types of orogen, hydrated marine sedimentary and volcanic rocks have been added to continental margins during tens to some 100 million years of collision. Subduction-related thermal events, episodically raising geothermal gradients within the hydrated accretionary sequences, initiate and drive long-distance hydrothermal fluid migration. The resulting gold-bearing quartz veins are emplaced over a unique depth range for hydrothermal ore deposits, with gold deposition from 15-20 km to the near surface environment. On the basis of this broad depth range of formation, the term 'mesothermal' is not applicable to this deposit types as a whole. Instead, the unique temporal and spatial association of this deposit type with orogeny means that the vein systems are best termed orogenic gold deposits. Most ores are post-orogenic with respect to to tectonism of their immediate host rocks, but are simultaneously syn-orogenic with respect to ongoing deep-crustal, subduction-related thermal processes and the prefix orogenic satisfies both these conditions. On the basis of their depth of formation, the orogenic deposits are best subdivided into epizonal (12 km) classes.
NASA Astrophysics Data System (ADS)
Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang
2013-05-01
Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.
Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion
Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim
2016-01-01
Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. PMID:27216789
ERIC Educational Resources Information Center
Doud, Robert E.
This is a fictional dialogue intended to honor Jim Kingman and David Leary, both professors of history who retired after long careers at Pasadena City College in California (PCC). The dialogue hypothesizes the observations of both men as they look on the honorary gold plates of previous retirees that decorate the wall of a PCC public dining hall.…
Apparatus and method for removing mercury vapor from a gas stream
Ganesan, Kumar [Butte, MT
2008-01-01
A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.
Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2016-12-01
Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn-orogenic gold becomes diluted by abundant lithic debris in rivers and sedimentary basins except where localised concentration occurs, especially on beaches.
Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A
2017-03-01
Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.
Process for forming a nickel foil with controlled and predetermined permeability to hydrogen
Engelhaupt, Darell E.
1981-09-22
The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.
NASA Technical Reports Server (NTRS)
Witherow, William K. (Inventor)
1988-01-01
A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.
Laser-Launched Flyer Plates and Direct Laser Shocks for Dynamic Material Property Measurements
NASA Astrophysics Data System (ADS)
Paisley, D. L.; Swift, D. C.; Johnson, R. P.; Kopp, R. A.; Kyrala, G. A.
2002-07-01
The Trident laser at Los Alamos was used to impart known and controlled shocks in various materials by launching flyer plates or by irradiating the sample directly. Materials investigated include copper, gold, NiTi, SS316, and other metals and alloys. Tensile spall strength, elastic-plastic transition, phase boundaries, and equation of state can be determined with small samples. Using thin samples (0.1 - 1.0 mm thick) as targets, high pressure gradients can be generated with relatively low pressures, resulting in high tensile strain rates (105 to 108 s-1). Free surface and interface velocities are recorded with point- and line-imaging VISARs. The flexible spatial and temporal pulse profiles of Trident, coupled with the use of laser-launched flyer plates, provides capabilities which complement experiments conducted using gas guns and tensile bars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonemura, Takumi, E-mail: yonemura-takumi@sei.co.jp; Iihara, Junji; Uemura, Shigeaki
We have succeeded in measuring X-ray absorption fine structure (TEY-XAFS) spectra of insulating plate samples by total electron yield. The biggest problem is how to suppress the charge-up. We have attempted to deposit a gold stripe electrode on the surface and obtained a TEY-XAFS spectrum. This indicates that the metal stripe electrode is very useful in the TEY-XAFS measurement of the insulating plate samples. In the detailed analysis, we have found that the effective area for suppressing charge-up was approximately 120 μm from the edge of the electrode.
Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.
Zhang, Leicong; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Su, Haibo; Li, Gang; Gao, Jihua; Sun, Rong; Wong, Ching-Ping
2016-01-26
In this study, a flexible asymmetrical all-solid-state supercapacitor with high electrochemical performance was fabricated with Ni/MnO2-filter paper (FP) as the positive electrode and Ni/active carbon (AC)-filter paper as negative electrode, separated with poly(vinyl alcohol) (PVA)-Na2SO4 electrolyte. A simple procedure, such as electroless plating, was introduced to prepare the Ni/MnO2-FP electrode on the conventional laboratory FP, combined with the subsequent step of electrodeposition. Electrochemical results show that the as-prepared electrodes display outstanding areal specific capacitance (1900 mF/cm(2) at 5 mV/s) and excellent cycling performance (85.1% retention after 1000 cycles at 20 mA/cm(2)). Such a flexible supercapacitor assembled asymmetrically in the solid state exhibits a large volume energy density (0.78 mWh/cm(3)) and superior flexibility under different bending conditions. It has been demonstrated that the supercapacitors could be used as a power source to drive a 3 V light-emitting diode indicator. This study may provide an available method for designing and fabricating flexible supercapacitors with high performance in the application of wearable and portable electronics based on easily available materials.
Rozendal, René A; Hamelers, Hubertus V M; Molenkamp, Redmar J; Buisman, Cees J N
2007-05-01
In this paper hydrogen production through biocatalyzed electrolysis was studied for the first time in a single chamber configuration. Single chamber biocatalyzed electrolysis was tested in two configurations: (i) with a cation exchange membrane (CEM) and (ii) with an anion exchange membrane (AEM). Both configurations performed comparably and produced over 0.3 m3 H2/m3 reactor liquid volume/day at 1.0 V applied voltage (overall hydrogen efficiencies around 23%). Analysis of the water that permeated through the membrane revealed that a large part of potential losses in the system were associated with a pH gradient across the membrane (CEM DeltapH=6.4; AEM DeltapH=4.4). These pH gradient associated potential losses were lower in the AEM configuration (CEM 0.38 V; AEM 0.26 V) as a result of its alternative ion transport properties. This benefit of the AEM, however, was counteracted by the higher cathode overpotentials occurring in the AEM configuration (CEM 0.12 V at 2.39 A/m2; AEM 0.27 V at 2.15 A/m2) as a result of a less effective electroless plating method for the AEM membrane electrode assembly (MEA).
Excimer laser induced surface chemical modification of polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Révész, K.; Hopp, B.; Bor, Z.
1997-02-01
Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.
Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules
Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja
2014-01-01
Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367
Gyroid nickel nanostructures from diblock copolymer supramolecules.
Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja
2014-04-28
Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology.
Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan
2015-01-01
A novel nanostructured copper-based solid-phase microextraction fiber was developed and applied for determining the two most common types of phthalate environmental estrogens (dibutyl phthalate and diethylhexyl phthalate) in aqueous samples, coupled to gas chromatography with flame ionization detection. The copper film was coated onto a stainless-steel wire via an electroless plating process, which involved a surface activation process to improve the surface properties of the fiber. Several parameters affecting extraction efficiency such as extraction time, extraction temperature, ionic strength, desorption temperature, and desorption time were optimized by a factor-by-factor procedure to obtain the highest extraction efficiency. The as-established method showed wide linear ranges (0.05-250 μg/L). Precision of single fiber repeatability was <7.0%, and fiber-to-fiber repeatability was <10%. Limits of detection were 0.01 μg/L. The proposed method exhibited better or comparable extraction performance compared with commercial and other lab-made fibers, and excellent thermal stability and durability. The proposed method was applied successfully for the determination of model analytes in plastic soaking water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schreiber, S.; Zaeh, M. F.
2018-06-01
Reactive particles represent a promising alternative for effectively joining components with freeform surfaces and different material properties. While the primary application of reactive systems is combustion synthesis for the production of high-performance alloys, the highly exothermic reaction can also be used to firmly bond thermosensitive joining partners. Core-shell structures are of special interest, since they function as separate microreactors. In this paper, a method to synthesise reactive nickel-aluminium core-shell structures via a two-step plating process is described. Based on an electroless process, the natural oxide layer of the aluminium particles is removed and substituted with a thin layer of nickel. Subsequently, the pre-treated particles are electroplated with nickel. The high reactivity of aluminium and the oxide layer play a significant role in adjusting the process parameters of the Watts bath. Additionally, the developed experimental set-up is introduced and the importance of process control is shown. In order to achieve reproducible results, the electroplating process was automated. Ignition tests with electromagnetic waves demonstrated that the particles undergo an exothermic reaction. Therefore, they can be used as a heat source in thermal joining applications.
NASA Astrophysics Data System (ADS)
Sun, Wan-chang; Xu, Jia-Min; Wang, Yuan; Guo, Fang; Jia, Zong-Wei
2017-12-01
AZ91D magnesium alloy substrate was first pretreated in a phosphoric acid to obtain a phosphate coating, and then, the electroless ternary Ni-W-P coating was deposited using a sulfate nickel bath. The morphologies of the Ni-W-P coating were observed by using scanning electron microscope, the deposition rate of the coating was examined with the method of gravimetric analysis, and the phase analysis was identified by x-ray diffractometer. Electrochemical property was tested by means of an electrochemical analyzer. The results indicated that the addition of an optimum concentration of CeO2 (cerium oxide) particles could evidently improve the deposition rate and the stability of the plating bath. However, it acted as an inhibiting effect as the concentration of CeO2 particles exceeded to 8 mg/L in the sulfate nickel bath. The results also revealed that the morphology of Ni-W-P coating became more smooth, compact and uniform with the increase in the concentrations of CeO2 particles in the bath, but the corrosion resistance decreased due to the precipitation of crystal phases (Ni3P, Ni4W, etc.) after heat treatment.
NASA Astrophysics Data System (ADS)
Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash
2017-06-01
The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.
NASA Technical Reports Server (NTRS)
Ramsey, B. D.; Elsner, R. F.; Engelhaupt, D.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.
2004-01-01
We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently stable and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g/cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.
Searching for a new ionomer for 3D printable ionic polymer-metal composites: Aquivion as a candidate
NASA Astrophysics Data System (ADS)
Trabia, Sarah; Olsen, Zakai; Kim, Kwang J.
2017-11-01
The work presented in this paper introduces Aquivion as a potential candidate for additive manufacturing of ionomeric polymers for the application of IPMCs. First, Aquivion was characterized and compared with Nafion to show that it has the similar qualities, with the major difference being the ionic conductivity. Ionic polymer-metal composites (IPMCs) were fabricated using off-the-shelf membranes of Nafion and Aquivion. The actuation tests showed improved performance for an IPMC with Aquivion as the base compared to an IPMC with a Nafion base. With these results in mind, additive manufacturing of unique shapes using Aquivion filament was studied. A 3D printer was modified to work with Aquivion filament and the polymer was printed into various shapes. Using the printed membranes, IPMCs were fabricated using an electroless plating process. Nafion-based and printed Aquivion-based IPMCs were tested for their performance in back relaxation, frequency driven actuation, blocking force, and mechano-electric sensing. The printed Aquivion-based IPMCs performed comparably to Nafion-based IPMC in back relaxation and showed significantly improved performance in frequency driven actuation, blocking force generation, and mechano-electric sensing.
Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M
2015-09-29
Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.
Kim, Wan-Joong; Cho, Hyo Young; Jeong, Bongjin; Byun, Sangwon; Huh, JaeDoo; Kim, Young Jun
2017-01-01
Using gold nanoparticles (AuNPs) on “capillary enzyme-linked immunosorbent assay (ELISA)”, we produced highly sensitive and rapid assays, which are the major attributes for point-of-care applications. First, in order to understand the size effect of AuNPs, AuNPs of varying diameters (5 nm, 10 nm, 15 nm, 20 nm, 30 nm, and 50 nm) conjugated with Horseradish Peroxidase (HRP)-labeled anti-C reactive protein (antiCRP) (AuNP•antiCRP-HRP) were used for well-plate ELISA. AuNP of 10 nm produced the largest optical density, enabling detection of 0.1 ng/mL of CRP with only 30 s of incubation, in contrast to 10 ng/mL for the ELISA run in the absence of AuNP. Then, AuNP of 10 nm conjugated with antiCRP-HRP (AuNP•antiCRP-HRP) was used for “capillary ELISA” to detect as low as 0.1 ng/mL of CRP. Also, kinetic study on both 96-well plates and in a capillary tube using antiCRP-HRP or AuNP•antiCRP-HRP showed a synergistic effect between AuNP and the capillary system, in which the fastest assay was observed from the “AuNP capillary ELISA”, with its maximum absorbance reaching 2.5 min, while the slowest was the typical well-plate ELISA with its maximum absorbance reaching in 13.5 min. PMID:29278402
Sciutto, Giorgia; Prati, Silvia; Bonacini, Irene; Litti, Lucio; Meneghetti, Moreno; Mazzeo, Rocco
2017-10-23
The present research is focused on the setting up of an advanced analytical system for the detection of synthetic dyes. The system is based on the combination of an innovative thin layer chromatography (TLC) plate coupled with enhanced infrared (MU-ATR, metal underlayer attenuated total reflection) and Surface Enhanced Raman (SERS) spectroscopy. In particular, a TLC plate made of silver iodide (AgI) applied onto a gold coated glass slide (AgI@Au) is proposed as an efficient stationary phase for the separation of dyes mixtures. The separated dyes are then identified by means of both enhanced FTIR and SERS, performed directly on the same eluted spots. The use of a mid-IR transparent inorganic salt as stationary phase coupled with the underneath gold layer avoids spectral interferences, enhancing the signal obtained from ATR analyses. At the same time, SERS spectra can be recorded as the TLC plate may act as a SERS active substrate due to the photoreduction of AgI to metallic Ag caused by the exposure to the laser during the Raman analysis. Different mixtures of synthetic dyes of known composition, widely used in dyeing processes, have been tested and the method resulted to be effective in identifying trace amounts in the order of tens nanograms. Moreover, the method has been further evaluated on a real case study represented by dyes extracted from dyed wool. Copyright © 2017 Elsevier B.V. All rights reserved.
Rotund versus skinny orogens: Well-nourished or malnourished gold?
Goldfarb, R.J.; Groves, D.I.; Gardoll, S.
2001-01-01
Orogenic gold vein deposits require a particular conjunction of processes to form and be preserved, and their global distribution can be related to broad-scale, evolving tectonic processes throughout Earth history. A heterogeneous distribution of formation ages for these mineral deposits is marked by two major Precambrian peaks (2800-2555 Ma and 2100-1800 Ma), a singular lack of deposits for 1200 m.y. (1800-600 Ma), and relatively continuous formation since then (after 600 Ma). The older parts of the distribution relate to major episodes of continental growth, perhaps controlled by plume-influenced mantle overturn events, in the hotter early Earth (ca. 1800 Ma or earlier). This worldwide process allowed preservation of gold deposits in cratons, roughly equidimensional, large masses of buoyant continental crust. Evolution to a less episodic, more continuous, modern-style plate tectonic regime led to the accretion of volcano-sedimentary complexes as progressively younger linear orogenic belts sorrounding the margins of the more buoyant cratons. The susceptibility of these linear belts to uplift and erosion can explain the overall lack of orogenic gold deposits at 1800-600 Ma, their exposure in 600-50 Ma orogens, the increasing importance of placer deposits back through the Phanerozoic since ca. 100 Ma, and the absence of gold deposits in orogenic belts younger than ca. 50 Ma.
40 CFR 63.11504 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the processes listed in paragraphs (a)(1)(i) through (vi) of this section. (i) Electroplating other than chromium electroplating (i.e., non-chromium electroplating). (ii) Electroless or non-eletrolytic...
Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong
2014-01-13
Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.
NASA Astrophysics Data System (ADS)
Shen, Xuan; Xia, Xiaohong; Du, Yongling; Wang, Chunming
2017-09-01
An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PI/RGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PI/RGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mol/L, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples.
A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin
Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during themore » coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.« less
Coluccio, Maria Laura; Gentile, Francesco; Francardi, Marco; Perozziello, Gerardo; Malara, Natalia; Candeloro, Patrizio; Di Fabrizio, Enzo
2014-01-01
The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. PMID:24681672
Prospects of gold mineralization in the Gilgit-Baltistan Province of Pakistan
NASA Astrophysics Data System (ADS)
Shah, M. T.; Khan, S. D.; Tahirkheli, T.; Ahmad, L.; Miandad, S.; Rehman, A. U.; Ali, L.
2012-12-01
Gilgit-Baltistan province is the northern most province of Pakistan having its eastern, northern and western boarders with India, China and Afghanistan respectively. The geology of this province is unique as it has the spectacular tectonic entities of Asiatic plate (AP), Indian plate (IP) and the Kohistan-Ladakh arc (KLA). The Northern Suture Zone (NSZ) or Main Karakoram Thrust (MKT) separate the KLA from AP in the north while the Maim Mantle Thrust (MMT) separate the KLA from IP in the south. These different tectonic events have generated various types of igneous and metamorphic rocks in the form of gigantic mountain chains in the region. Considering the metallogenic provinces related to such types of tectonic environments world over, it can be suggested that the Gigit-Baltistan province may have the potential for the occurrence of economic mineral deposits. The present study is the follow-up of the previous studies for exploration of gold and base metals conducted by the Austrominerals and the Pakistan Mineral Development Corporation (PMDC) in the region. On the basis of PMDC extensive stream sediments geochemical survey of the province and delineated number of anomalous catchment areas for gold mineralization. In order to find the source bed-rock of gold, we have identified various alteration zones in these catchment areas by applying Remote sensing techniques by using both multispectral (LANDSAT, ASTER and Geoeye) and hyperspectral (Hyperion) data. Most of the alteration zones were found in steep high altitude inaccessible terrains. During this study, few of the accessible alteration zones in Golo Das, Bagrot valley, Shigri Bala, Machulu and Ranthak areas were selected for geological filed work and collection of proper samples from the alteration zones and host rocks for the identification of possible gold mineralization. In all these localities, the alteration zones are present along shear zones where the sulfide mineralization commonly occurs in the form of mainly pyrite and chalcopyrite with subordinate amount of bornite and tetrahedrite. Surface leaching of these phases to malachite, azurite and limonite is common. Quartz veining, silicification, carbonization and at places brecciation are the common features of these alteration zones. The concentrations of gold were found in the range of 3ppb to 112ppb, <5- 95ppb, 1ppb to 545ppb, 1ppb to 385 and 1ppb to 318ppb in the alteration zones of Golo Das, Bagrot valley, Shigri Bala, Machulu and Ranthak areas respectively. The barren rock samples have generally <5ppb gold. This is indicative of the multi-times enrichment of gold in the alteration zones. The sulfide mineralization along with gold in the alteration zones could be attributed to the hydrothermal/epithermal activity involving meteoric, igneous and or metamorphic fluid individually or mixture of these. The occurrence of dioritic intrusions (igneous fluid source) and the transitional dilated zones (metamorphic fluid source) on the major reactivated thrust fault (i.e., NSZ) in the vicinity of these alteration zones strengthen these observations. However, isotopic studies are underway to solve this problem. This study suggests that the alteration zones in the studied areas have the potential to be explored in detail for possible economical gold mineralization.
Nanobioprobe mediated DNA aptamers for explosive detection.
Priyanka; Shorie, Munish; Bhalla, Vijayender; Pathania, Preeti; Suri, C Raman
2014-02-04
Specific nucleic acid aptamers using the microtiter plate based modified SELEX method against explosive trinitrotoluene are reported. Efficient partitioning of dsDNA was carried out using streptavidin labeled gold nanoprobes for the selection of specific aptamers. The selected binders having an affinity of ~10(-7) M were used in the newly developed electrochemical aptasensor, exhibiting a detection limit of around 1 ppb for trinitrotoluene.