Science.gov

Sample records for electroluminescence efficiency degradation

  1. Electroluminescence efficiencies of erbium in silicon-based hosts

    SciTech Connect

    Cueff, Sébastien E-mail: christophe.labbe@ensicaen.fr; Manel Ramírez, Joan; Berencén, Yonder; Garrido, Blas; Kurvits, Jonathan A.; Zia, Rashid; Rizk, Richard; Labbé, Christophe E-mail: christophe.labbe@ensicaen.fr

    2013-11-04

    We report on room-temperature 1.5 μm electroluminescence from trivalent erbium (Er{sup 3+}) ions embedded in three different CMOS-compatible silicon-based hosts: SiO{sub 2}, Si{sub 3}N{sub 4}, and SiN{sub x}. We show that although the insertion of either nitrogen or excess silicon helps enhance electrical conduction and reduce the onset voltage for electroluminescence, it drastically decreases the external quantum efficiency of Er{sup 3+} ions from 2% in SiO{sub 2} to 0.001% and 0.0004% in SiN{sub x} and Si{sub 3}N{sub 4}, respectively. Furthermore, we present strong evidence that hot carrier injection is significantly more efficient than defect-assisted conduction for the electrical excitation of Er{sup 3+} ions. These results suggest strategies to optimize the engineering of on-chip electrically excited silicon-based nanophotonic light sources.

  2. Organic electroluminescent devices and method for improving energy efficiency and optical stability thereof

    DOEpatents

    Heller, Christian Maria

    2004-04-27

    An organic electroluminescent device ("OELD") has a controllable brightness, an improved energy efficiency, and stable optical output at low brightness. The OELD is activated with a series of voltage pulses, each of which has a maximum voltage value that corresponds to the maximum power efficiency when the OELD is activated. The frequency of the pulses, or the duty cycle, or both are chosen to provide the desired average brightness.

  3. Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements

    PubMed Central

    Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-01-01

    World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484

  4. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  5. Electroluminescent devices with function of electro-optic shutter.

    PubMed

    Song, Seongkyu; Jeong, Jaewook; Chung, Seok Hwan; Jeong, Soon Moon; Choi, Byeongdae

    2012-09-10

    The polymer-dispersed liquid crystal (PDLC) was used as a dielectric layer of electroluminescent (EL) device to provide multi-function of electroluminescence and electro-optic shutter. A 50 μm-thick PDLC layer was formed between a transparent electrode and a ZnS:Cu phosphor layer. The electro-optic properties of the EL device were not distorted by the introduction of the PDLC layer. The extraction efficiency of luminescence was improved by more than 14% by PDLC layer. The transmittance of the PDLC was also founded not to be degraded significantly by excitation frequency. Therefore, the electroluminescence of the device was ignited by excitation frequency at a given voltage for full transparency of the PDLC. This device has great potential for applications in transparent displays with the function of a privacy window. PMID:23037230

  6. Organic electroluminescent structures for new generation of display systems

    NASA Astrophysics Data System (ADS)

    Ermakov, Oleg N.; Kaplunov, Michail G.; Efimov, Oleg N.; Stakharny, Sergey A.

    2007-05-01

    Brief history, modern state and development trends of organic electroluminescent structures technology (so-called OLED technology) are reviewed including research activities in this field in Russia. It's noted that OLED technology is one of the most promising newly emerging display technologies. Due to advantages of these devices (low power consumption, potential flexibility, wide color range) it is particularly well suited for small area display applications (micro displays) such as cell phones, virtual imaging systems, portable electronics. Experimental results for homemade blue light emitting OLED structures and hermetically sealed numeric displays are presented including photoluminescence (PL) and electroluminescence (EL ) current-voltage and brightness characteristics. It is noted that visible electroluminescence is observed at ultra low current level of nearly 1 μA, luminous efficiency exceeding 1 lm/W thus being nearly the same as for super bright inorganic inGaN/IGaN LEDs. Special attention is paid for destabilizing factors (temperature and degradation phenomena) influence on device characteristics.

  7. Electroluminescence imaging of Morgan Solar Inc.'s 4th generation CPV technology for in-line quality control and optical efficiency estimation

    NASA Astrophysics Data System (ADS)

    Sinclair, Michael; Dufour, Pascal; Drew, Kristine; Myrskog, Stefan; Morgan, John Paul

    2014-10-01

    An electroluminescence test for a Concentrated PV system is presented with the objective of capturing high resolution pseudo-efficiency maps that highlight optical defects in the concentrator system. Key parameters of the experimental setup and imaging system are presented. Image processing is discussed, including comparison of experimental to nominal results and the quantitative estimation of optical efficiency. Efficiency estimates are validated using measurements under a collimated solar simulator and ray-tracing software. Further validation is performed by comparison of the electroluminescence technique to direct mapping of the optical efficiency. Initial results indicate the mean estimation error for Isc is -2.4% with a standard deviation is 6.9% and a combined measurement and analysis time of less than 5 seconds per optic. An extension of this approach to in-line quality control is discussed.

  8. Improved efficiency for green and red emitting electroluminescent devices using the same cohost composed of 9,10-di(2-naphthyl) anthracene and tris-(8-hydroxyquinolinato) aluminum

    NASA Astrophysics Data System (ADS)

    Zhu, Jianzhuo; Li, Wenlian; Chu, Bei; Yang, Dongfang; Zhang, Guang; Liu, Huihui; Chen, Yiren; Su, Zisheng; Wang, Junbo; Wu, Shuanghong

    2009-12-01

    We demonstrate highly efficient green and red fluorescence dyes-doped electroluminescent devices using cohost strategy. The cohost system is composed of tris-(8-hydroxyquinolinato) aluminum (Alq) and 9,10-di(2-naphthyl) anthracene (ADN). The maximum current efficiencies are increased by 54% and 104% for green and red devices by optimizing the ratio between ADN and Alq in the cohost compared to the conventional Alq single-host devices, respectively. We attribute the improvement of efficiencies to balanced hole and electron injection into the emitting layer, the enlarged width of recombination region and the multiple emission processes.

  9. Highly efficient electroluminescence from a solution-processable thermally activated delayed fluorescence emitter

    SciTech Connect

    Wada, Yoshimasa; Kubo, Shosei; Suzuki, Katsuaki; Kaji, Hironori; Shizu, Katsuyuki; Tanaka, Hiroyuki; Adachi, Chihaya

    2015-11-02

    We developed a thermally activated delayed fluorescence (TADF) emitter, 2,4,6-tris(4-(9,9-dimethylacridan-10-yl)phenyl)-1,3,5-triazine (3ACR-TRZ), suitable for use in solution-processed organic light-emitting diodes (OLEDs). When doped into 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host at 16 wt. %, 3ACR-TRZ showed a high photoluminescence quantum yield of 98%. Transient photoluminescence decay measurements of the 16 wt. % 3ACR-TRZ:CBP film confirmed that 3ACR-TRZ exhibits efficient TADF with a triplet-to-light conversion efficiency of 96%. This high conversion efficiency makes 3ACR-TRZ attractive as an emitting dopant in OLEDs. Using 3ACR-TRZ as an emitter, we fabricated a solution-processed OLED exhibiting a maximum external quantum efficiency of 18.6%.

  10. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Cho, Himchan; Jeong, Su-Hun; Park, Min-Ho; Kim, Young-Hoon; Wolf, Christoph; Lee, Chang-Lyoul; Heo, Jin Hyuck; Sadhanala, Aditya; Myoung, NoSoung; Yoo, Seunghyup; Im, Sang Hyuk; Friend, Richard H.; Lee, Tae-Woo

    2015-12-01

    Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

  11. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    PubMed

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%. PMID:27607953

  12. Performance evaluation of multi-junction solar cells by spatially resolved electroluminescence microscopy

    NASA Astrophysics Data System (ADS)

    Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong

    2015-02-01

    An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.

  13. Performance evaluation of multi-junction solar cells by spatially resolved electroluminescence microscopy.

    PubMed

    Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong

    2015-01-01

    An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.

  14. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling

    NASA Astrophysics Data System (ADS)

    David, Aurelien; Hurni, Christophe A.; Young, Nathan G.; Craven, Michael D.

    2016-08-01

    The current-voltage characteristic and ideality factor of III-Nitride quantum well light-emitting diodes (LEDs) grown on bulk GaN substrates are investigated. At operating temperature, these electrical properties exhibit a simple behavior. A model in which only active-region recombinations have a contribution to the LED current is found to account for experimental results. The limit of LED electrical efficiency is discussed based on the model and on thermodynamic arguments, and implications for electroluminescent cooling are examined.

  15. Enhancement of Trap-Assisted Green Electroluminescence Efficiency in ZnO/SiO2/Si Nanowire Light-Emitting Diodes on Bendable Substrates by Piezophototronic Effect.

    PubMed

    Kim, Kwangeun; Jeon, Youngin; Cho, Kyoungah; Kim, Sangsig

    2016-02-01

    The trap-assisted green electroluminescence (EL) efficiency of a light-emitting diode (LED) consisting of a ZnO nanowire (NW), a SiO2 layer, and a Si NW on a bendable substrate is enhanced by piezophototronic effect. The green EL originates from radiative recombination through deep-level defects such as interstitial zinc, interstitial oxygen, oxygen antisite, and zinc vacancy in the component ZnO NW. The efficiency of the trap-assisted green EL is enhanced by a piezophototronic factor of 2.79 under a strain of 0.006%. The piezoelectric field built up inside the component ZnO NW improves the recombination rate of the electron-hole pairs thereby enhancing the efficiency of the trap-assisted green EL.

  16. Carrier dynamics analysis for efficiency droop in GaN-based light-emitting diodes with different defect densities using time-resolved electroluminescence

    NASA Astrophysics Data System (ADS)

    Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon

    2016-03-01

    We developed a direct experimental approach for investigating the correlation between efficiency droop and recombination rate variation under current injection conditions by using time-resolved electroluminescence (EL) technique. We applied this approach to understand the droop phenomenon of GaN-based light-emitting diodes grown on patterned sapphire substrates (LED-on-PAT) and planar sapphire substrates (LED-on-PLA). Because of lower dislocation density and current leakage in LED-on-PAT compared to LED-on-PLA, it was found that the effective carrier density injected into quantum wells (QWs) in LED-on-PAT was higher than that of the LED-on-PLA under the same current injection conditions, based on the analysis of spectral broadening of EL spectra with varying current injection and photoluminescence experiments under resonant and non-resonant excitation conditions. The efficiency droop in LED-on-PAT was found to be much more severe than that of LED-on-PLA, despite the higher overall quantum efficiency of LED-on-PAT. From the time-resolved EL analysis, we could separate radiative and non-radiative recombination contributions and directly observe (i) the decrease and saturation of radiative recombination time and (ii) the increase and following decrease in behavior of non-radiative recombination time with increasing current injection level, showing a strong correlation between efficiency droop and recombination rate variation.

  17. Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer.

    PubMed

    Lee, Ki-Heon; Han, Chang-Yeol; Kang, Hee-Don; Ko, Heejoo; Lee, Changho; Lee, Jonghyuk; Myoung, NoSoung; Yim, Sang-Youp; Yang, Heesun

    2015-11-24

    Over the past few years the performance of colloidal quantum dot-light-emitting diode (QLED) has been progressively improved. However, most of QLED work has been fulfilled in the form of monochromatic device, while full-color-enabling white QLED still remains nearly unexplored. Using red, green, and blue quantum dots (QDs), herein, we fabricate bichromatic and trichromatic QLEDs through sequential solution-processed deposition of poly(9-vinlycarbazole) (PVK) hole transport layer, two or three types of QDs-mixed multilayer, and ZnO nanoparticle electron transport layer. The relative electroluminescent (EL) spectral ratios of constituent QDs in the above multicolored devices are found to inevitably vary with applied bias, leading to the common observation of an increasing contribution of a higher-band gap QD EL over low-band gap one at a higher voltage. The white EL from a trichromatic device is resolved into its primary colors through combining with color filters, producing an exceptional color gamut of 126% relative to National Television Systems Committee (NTSC) color space that a state-of-the-art full-color organic LED counterpart cannot attain. Our trichromatic white QLED also displays the record-high EL performance such as the peak values of 23,352 cd/m(2) in luminance, 21.8 cd/A in current efficiency, and 10.9% in external quantum efficiency. PMID:26435403

  18. 2-(2-Hydroxyphenyl)benzimidazole-based four-coordinate boron-containing materials with highly efficient deep-blue photoluminescence and electroluminescence.

    PubMed

    Zhang, Zhenyu; Zhang, Houyu; Jiao, Chuanjun; Ye, Kaiqi; Zhang, Hongyu; Zhang, Jingying; Wang, Yue

    2015-03-16

    Two novel four-coordinate boron-containing emitters 1 and 2 with deep-blue emissions were synthesized by refluxing a 2-(2-hydroxyphenyl)benzimidazole ligand with triphenylborane or bromodibenzoborole. The boron chelation produced a new π-conjugated skeleton, which rendered the synthesized boron materials with intense fluorescence, good thermal stability, and high carrier mobility. Both compounds displayed deep-blue emissions in solutions with very high fluorescence quantum yields (over 0.70). More importantly, the samples showed identical fluorescence in the solution and solid states, and the efficiency was maintained at a high level (approximately 0.50) because of the bulky substituents between the boron atom and the benzimidazole unit, which can effectively separate the flat luminescent units. In addition, neat thin films composed of 1 or 2 exhibited high electron and hole mobility in the same order of magnitude 10(-4), as determined by time-of-flight. The fabricated electroluminescent devices that employed 1 or 2 as emitting materials showed high-performance deep-blue emissions with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.15, Y = 0.09) and (X = 0.16, Y = 0.08), respectively. Thus, the synthesized boron-containing materials are ideal candidates for fabricating high-performance deep-blue organic light-emitting diodes.

  19. Efficient red electroluminescent devices with sterically hindered phosphorescent platinum(II) Schiff base complexes and iridium complex codopant.

    PubMed

    Zhou, Liang; Kwong, Chun-Lam; Kwok, Chi-Chung; Cheng, Gang; Zhang, Hongjie; Che, Chi-Ming

    2014-10-01

    Sterically hindered platinum(II) Schiff base complexes were prepared. Complex 4, which displays red emission with a quantum yield of 0.29 in a thin film and a self-quenching rate constant of 1×10(-7) dm(3) mol(-1)  s(-1), was used to fabricate organic light-emitting diodes with single or double emissive layers (EMLs). An iridium(III) complex with a wide band gap was codoped into the electron-dominant EML to act as a deep electron trapper, and red-light-emitting devices with the highest current, power, and external quantum efficiencies of 20.43 cd A(-1) 18.33 Lm W(-1), and 11.7%, respectively, were fabricated. A high current efficiency and EQE of up to 14.69 cd A(-1) and 8.3%, respectively, were achieved at a high brightness of 1000 cd m(-2). The significant delay of efficiency roll-off is attributed to the bulky 3D structure of the norbornene moiety at the periphery of the Schiff base ligand of 4 and to the new device design strategy. The fabricated device had a projected lifetime (LT50) of 18,000 h.

  20. Electrodeposited, Transverse Nanowire Electroluminescent Junctions.

    PubMed

    Qiao, Shaopeng; Xu, Qiang; Dutta, Rajen K; Le Thai, Mya; Li, Xiaowei; Penner, Reginald M

    2016-09-27

    The preparation by electrodeposition of transverse nanowire electroluminescent junctions (tn-ELJs) is described, and the electroluminescence (EL) properties of these devices are characterized. The lithographically patterned nanowire electrodeposition process is first used to prepare long (millimeters), linear, nanocrystalline CdSe nanowires on glass. The thickness of these nanowires along the emission axis is 60 nm, and the width, wCdSe, along the electrical axis is adjustable from 100 to 450 nm. Ten pairs of nickel-gold electrical contacts are then positioned along the axis of this nanowire using lithographically directed electrodeposition. The resulting linear array of nickel-CdSe-gold junctions produces EL with an external quantum efficiency, EQE, and threshold voltage, Vth, that depend sensitively on wCdSe. EQE increases with increasing electric field and also with increasing wCdSe, and Vth also increases with wCdSe and, therefore, the electrical resistance of the tn-ELJs. Vth down to 1.8(±0.2) V (for wCdSe ≈ 100 nm) and EQE of 5.5(±0.5) × 10(-5) (for wCdSe ≈ 450 nm) are obtained. tn-ELJs produce a broad EL emission envelope, spanning the wavelength range from 600 to 960 nm.

  1. Hybrid electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  2. Mechanically flexible organic electroluminescent device with directional light emission

    DOEpatents

    Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc

    2005-05-10

    A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.

  3. Zinc oxide tetrapods as efficient photocatalysts for organic pollutant degradation

    NASA Astrophysics Data System (ADS)

    Liu, Fangzhou; Leung, Yu Hang; Djurisić, Aleksandra B.; Liao, Changzhong; Shih, Kaimin

    2014-03-01

    Bisphenol A (BPA) and other organic pollutants from industrial wastewater have drawn increasing concern in the past decades regarding their environmental and biological risks, and hence developing strategies of effective degradation of BPA and other organic pollutants is imperative. Metal oxide nanostructures, in particular titanium oxide (TiO2) and zinc oxide (ZnO), have been demonstrated to exhibit efficient photodegradation of various common organic dyes. ZnO tetrapods are of special interest due to their low density of native defects which consequently lead to lower recombination losses and higher photocatalytic efficiency. Tetrapods can be obtained by relatively simple and low-cost vapor phase deposition in large quantity; the micron-scale size would also be advantageous for catalyst recovery. In this study, the photodegradation of BPA with ZnO tetrapods and TiO2 nanostructures under UV illumination were compared. The concentration of BPA dissolved in DI water was analyzed by high-performance liquid chromatography (HPLC) at specified time intervals. It was observed that the photocatalytic efficiency of ZnO tetrapods eventually surpassed Degussa P25 in free-standing form, and more than 80% of BPA was degraded after 60 min. Photodegradation of other organic dye pollutants by tetrapods and P25 were also examined. The superior photocatalytic efficiency of ZnO tetrapods for degradation of BPA and other organic dye pollutants and its correlation with the material properties were discussed.

  4. Efficient Plant Biomass Degradation by Thermophilic Fungus Myceliophthora heterothallica

    PubMed Central

    van den Brink, Joost; van Muiswinkel, Gonny C. J.; Theelen, Bart; Hinz, Sandra W. A.

    2013-01-01

    Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70°C) use shorter reaction times for the complete saccharification of plant polysaccharides compared to hydrolytic enzymes of mesophilic fungi such as Trichoderma and Aspergillus species. The genus Myceliophthora contains four thermophilic fungi producing industrially relevant thermostable enzymes. Within this genus, isolates belonging to M. heterothallica were recently separated from the well-described species M. thermophila. We evaluate here the potential of M. heterothallica isolates to produce efficient enzyme mixtures for biomass degradation. Compared to the other thermophilic Myceliophthora species, isolates belonging to M. heterothallica and M. thermophila grew faster on pretreated spruce, wheat straw, and giant reed. According to their protein profiles and in vitro assays after growth on wheat straw, (hemi-)cellulolytic activities differed strongly between M. thermophila and M. heterothallica isolates. Compared to M. thermophila, M. heterothallica isolates were better in releasing sugars from mildly pretreated wheat straw (with 5% HCl) with a high content of xylan. The high levels of residual xylobiose revealed that enzyme mixtures of Myceliophthora species lack sufficient β-xylosidase activity. Sexual crossing of two M. heterothallica showed that progenies had a large genetic and physiological diversity. In the future, this will allow further improvement of the plant biomass-degrading enzyme mixtures of M. heterothallica. PMID:23241981

  5. Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE

    NASA Astrophysics Data System (ADS)

    Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.

    2015-08-01

    High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.

  6. White organic electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Tsou, Chuan-Cheng; Lu, Huei-Tzong; Yokoyama, Meiso

    2006-04-01

    This study investigates energy transfer between N, N'-bis-(1-naphthyl)- N, N'-diphenyl-1,1-biphenyl-4-4'-diamine (NPB) host material and 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5 H-benzo[ ij]quinolizin-8-yl) vinyl]-4 H-pyran (DCM2) fluorescent dye in organic electroluminescent (OEL) devices to produce white-color emission. Bathocuproine (BCP) was applied as a hole-blocking layer (HBL) due to its significantly large HOMO, while tris-(8-hydroxy-quinoline) aluminum (Alq 3) was employed in the electron transport layer (ETL). Two OEL device structures were investigated, ITO/NPB:DCM2 ( x%)/Alq 3/Al, and ITO/NPB:DCM2 ( y%)/BCP/Alq 3/Al. In this study, doping DCM2 into the NPB host material could not yield red emission in the case of ITO/NPB:DCM2 ( x%)/Alq 3/Al structure device, even when the DCM2 doping concentration was increased from x=1% to 10%. However, when BCP was inserted between the NPB:DCM2 layer and the Alq 3 layer, the color turned when the concentration of DCM2 doped into NPB was changed. Consequently, the white OEL device with CIE coordinates (0.34,0.34) was observed for the device containing 1% DCM2 doping into NPB host material.

  7. Photocatalytic efficiency of iron oxides: Degradation of 4-chlorophenol

    NASA Astrophysics Data System (ADS)

    Bakardjieva, Snejana; Stengl, Vaclav; Subrt, Jan; Houskova, Vendula; Kalenda, Petr

    2007-05-01

    The photocatalytic activity of ferrihydrite Fe5O7(OH)×4H2O synthesized by homogeneous precipitation with urea and products obtained by calcinations of as-precipitated ferrihydrite at different temperatures (200 1000 °C) was studied. The microstructure and surface properties of raw precipitate and all heated samples were characterized by means of HRTEM, SEM, BET/BJH and RTG analyses. Kinetics of disappearance of 4-chlorophenol (4-CP) in aqueous solution was used as a test reaction. We have found that hematite Fe2O3 obtained at 1000 °C exhibited satisfied photocatalytic efficiency on the degradation of 4-CP.

  8. ELECTROLUMINESCENT MATERIAL FOR FLAT PANEL DISPLAY

    SciTech Connect

    Smith, D.B.

    2000-11-13

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop a new-generation electroluminescent (EL) material for flat panel displays and related applications by using unique and complementary research capabilities at Oak Ridge National Laboratory and OSRAM Sylvania, Inc. The goal was to produce an EL material with a luminance 10 times greater than conventional EL phosphors. An EL material with this increased luminance would have immediate applications for flat panel display devices (e.g., backlighting for liquid-crystal diodes) and for EL lamp technology. OSRAM Sylvania proposed that increased EL phosphor luminance could be obtained by creating composite EL materials capable of alignment under an applied electric field and capable of concentrating the applied electric field. Oak Ridge National Laboratory used pulsed laser deposition as a method for making these composite EL materials. The materials were evaluated for electroluminescence at laboratory facilities at OSRAM Sylvania, Inc. Many composite structures were thus made and evaluated, and it was observed that a composite structure based on alternating layers of a ferroelectric and a phosphor yielded electroluminescence. An enabling step that was not initially proposed but was conceived during the cooperative effort was found to be crucial to the success of the composite structure. The CRADA period expired before we were able to make quantitative measurements of the luminance and efficiency of the composite EL material. Future cooperative work, outside the scope of the CRADA, will focus on making these measurements and will result in the production of a prototype composite EL device.

  9. Efficient implementation techniques for gracefully degradable multiprocessor systems

    SciTech Connect

    Liu, J.C.; Shin, K.G.

    1995-04-01

    We propose the dynamic reconfiguration network (DRN) and a monitoring-at-transmission (MAT) bus to support dynamic reconfiguration of an N-modular redundancy (NMR) multiprocessor system. In the reconfiguration process, a maximal number of processor triads are guaranteed to be formed on each processor cluster, thus supporting gracefully degradable operations. This is made possible by dynamically routing the control and clock signals of processors on the DRN so as to synchronize fault-free processors. The MAT bus is an efficient way to implement a triple modular redundant (TMR) pipeline voter (PV), which is a special case of the voting network proposed previously. Extensive experimental results have shown to support our design concept, and the performance of different cache memory organizations is evaluated through an analytic model. 22 refs.

  10. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Yi; Huang, Chih-Hsiung; Huang, Shih-Hsien; Chang, Chih-Chiang; Liu, C. W.; Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping

    2016-08-01

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al2O3/SiO2 passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al2O3/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al2O3 and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  11. Electroluminescence of Carbon-Implanted Silicon

    NASA Astrophysics Data System (ADS)

    Risch, Marcel; Bradley, Michael

    2007-11-01

    Silicon, being the staple semiconductor of integrated circuits and microchips, features an indirect band gap which limits its application in photonic devices. However, there is a large demand for an interface between electric circuits and optical circuits and therefore light-emitting silicon-compatible devices. A possible approach to enhance the room-temperature light properties of silicon is carbon ion implantation. We compute the absolute number of implanted ions using the Lieberman model for the ion current. Subsequently, SRIM calculations yield the concentration distribution, which has great influence on the emission spectrum. We produced Schottky diodes from the processed samples and found the most stable and efficient operation at a current density of about 2.5 A/cm^2. The observed electroluminescence, caused by compositional and structural disorder, appears orange-white to the eye. The discussed method has limitations for the quantum efficiency but shows some potential for cost-effective on-chip light emitting diodes (LED).

  12. Exciton-dominant electroluminescence from a diode of monolayer MoS{sub 2}

    SciTech Connect

    Ye, Yu; Ye, Ziliang; Gharghi, Majid; Zhu, Hanyu; Wang, Yuan; Zhao, Mervin; Yin, Xiaobo; Zhang, Xiang

    2014-05-12

    In two-dimensional monolayer MoS{sub 2}, excitons dominate the absorption and emission properties. However, the low electroluminescent efficiency and signal-to-noise ratio limit our understanding of the excitonic behavior of electroluminescence. Here, we study the microscopic origin of the electroluminescence from a diode of monolayer MoS{sub 2} fabricated on a heavily p-type doped silicon substrate. Direct and bound-exciton related recombination processes are identified from the electroluminescence. At a high electron-hole pair injection rate, Auger recombination of the exciton-exciton annihilation of the bound exciton emission is observed at room temperature. Moreover, the efficient electrical injection demonstrated here allows for the observation of a higher energy exciton peak of 2.255 eV in the monolayer MoS{sub 2} diode, attributed to the excited exciton state of a direct-exciton transition.

  13. Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease.

    PubMed

    Rey, Martial; Yang, Menglin; Lee, Linda; Zhang, Ye; Sheff, Joey G; Sensen, Christoph W; Mrazek, Hynek; Halada, Petr; Man, Petr; McCarville, Justin L; Verdu, Elena F; Schriemer, David C

    2016-08-02

    Celiac disease is triggered by partially digested gluten proteins. Enzyme therapies that complete protein digestion in vivo could support a gluten-free diet, but the barrier to completeness is high. Current options require enzyme amounts on the same order as the protein meal itself. In this study, we evaluated proteolytic components of the carnivorous pitcher plant (Nepenthes spp.) for use in this context. Remarkably low doses enhance gliadin solubilization rates, and degrade gliadin slurries within the pH and temporal constraints of human gastric digestion. Potencies in excess of 1200:1 (substrate-to-enzyme) are achieved. Digestion generates small peptides through nepenthesin and neprosin, the latter a novel enzyme defining a previously-unknown class of prolyl endoprotease. The digests also exhibit reduced TG2 conversion rates in the immunogenic regions of gliadin, providing a twin mechanism for evading T-cell recognition. When sensitized and dosed with enzyme-treated gliadin, NOD/DQ8 mice did not show intestinal inflammation, when compared to mice challenged with only pepsin-treated gliadin. The low enzyme load needed for effective digestion suggests that gluten detoxification can be achieved in a meal setting, using metered dosing based on meal size. We demonstrate this by showing efficient antigen processing at total substrate-to-enzyme ratios exceeding 12,000:1.

  14. Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease.

    PubMed

    Rey, Martial; Yang, Menglin; Lee, Linda; Zhang, Ye; Sheff, Joey G; Sensen, Christoph W; Mrazek, Hynek; Halada, Petr; Man, Petr; McCarville, Justin L; Verdu, Elena F; Schriemer, David C

    2016-01-01

    Celiac disease is triggered by partially digested gluten proteins. Enzyme therapies that complete protein digestion in vivo could support a gluten-free diet, but the barrier to completeness is high. Current options require enzyme amounts on the same order as the protein meal itself. In this study, we evaluated proteolytic components of the carnivorous pitcher plant (Nepenthes spp.) for use in this context. Remarkably low doses enhance gliadin solubilization rates, and degrade gliadin slurries within the pH and temporal constraints of human gastric digestion. Potencies in excess of 1200:1 (substrate-to-enzyme) are achieved. Digestion generates small peptides through nepenthesin and neprosin, the latter a novel enzyme defining a previously-unknown class of prolyl endoprotease. The digests also exhibit reduced TG2 conversion rates in the immunogenic regions of gliadin, providing a twin mechanism for evading T-cell recognition. When sensitized and dosed with enzyme-treated gliadin, NOD/DQ8 mice did not show intestinal inflammation, when compared to mice challenged with only pepsin-treated gliadin. The low enzyme load needed for effective digestion suggests that gluten detoxification can be achieved in a meal setting, using metered dosing based on meal size. We demonstrate this by showing efficient antigen processing at total substrate-to-enzyme ratios exceeding 12,000:1. PMID:27481162

  15. Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease

    PubMed Central

    Rey, Martial; Yang, Menglin; Lee, Linda; Zhang, Ye; Sheff, Joey G.; Sensen, Christoph W.; Mrazek, Hynek; Halada, Petr; Man, Petr; McCarville, Justin L; Verdu, Elena F.; Schriemer, David C.

    2016-01-01

    Celiac disease is triggered by partially digested gluten proteins. Enzyme therapies that complete protein digestion in vivo could support a gluten-free diet, but the barrier to completeness is high. Current options require enzyme amounts on the same order as the protein meal itself. In this study, we evaluated proteolytic components of the carnivorous pitcher plant (Nepenthes spp.) for use in this context. Remarkably low doses enhance gliadin solubilization rates, and degrade gliadin slurries within the pH and temporal constraints of human gastric digestion. Potencies in excess of 1200:1 (substrate-to-enzyme) are achieved. Digestion generates small peptides through nepenthesin and neprosin, the latter a novel enzyme defining a previously-unknown class of prolyl endoprotease. The digests also exhibit reduced TG2 conversion rates in the immunogenic regions of gliadin, providing a twin mechanism for evading T-cell recognition. When sensitized and dosed with enzyme-treated gliadin, NOD/DQ8 mice did not show intestinal inflammation, when compared to mice challenged with only pepsin-treated gliadin. The low enzyme load needed for effective digestion suggests that gluten detoxification can be achieved in a meal setting, using metered dosing based on meal size. We demonstrate this by showing efficient antigen processing at total substrate-to-enzyme ratios exceeding 12,000:1. PMID:27481162

  16. FIrpic: archetypal blue phosphorescent emitter for electroluminescence.

    PubMed

    Baranoff, Etienne; Curchod, Basile F E

    2015-05-14

    FIrpic is the most investigated bis-cyclometallated iridium complex in particular in the context of organic light emitting diodes (OLEDs) because of its attractive sky-blue emission, high emission efficiency, and suitable energy levels. In this Perspective we review the synthesis, structural characterisations, and key properties of this emitter. We also survey the theoretical studies and summarise a series of selected monochromatic electroluminescent devices using FIrpic as the emitting dopant. Finally we highlight important shortcomings of FIrpic as an emitter for OLEDs. Despite the large body of work dedicated to this material, it is manifest that the understanding of photophysical and electrochemical processes are only broadly understood mainly because of the different environment in which these properties are measured, i.e., isolated molecules in solvent vs. device. PMID:25388935

  17. Theoretical and material studies on thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A highly efficient DC electroluminescent display is presented. A variably spaced superlattice structure is used to produce high energy injection of electrons into a ZnSe:Mn active layer in which impact excitation of the Mn centers can occur. The device is predicted to operate at an applied external bias on order of magnitude less than the best DC electroluminescent device to date. The device is predicted to have comparable brightness, since it operates in the saturation regime. The improved efficiency stems from avoiding significant energy loss to phonons. The electrons sequentially tunnel through a multilayer ZnSe/CaSrF2 stack under bias and emerge into the active layer at an energy equal to the conduction band bending. The injection energy is chosen to coincide with the impact excitation energy of the Mn centers. Different device designs are presented and their performance is predicted.

  18. Organic electroluminescent devices

    SciTech Connect

    Sheats, J.R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A.

    1996-08-16

    Electroluminscene from organic materials has the potential to enable low-cost, full-color flat-panel displays, as well as other emissive products. Some materials have now demonstrated adequate efficiencies (1 to 15 lumens/watt) and lifetimes (>5000 hours) for practical use; however, the factors that govern lifetime remain poorly understood. This article provides a brief review of device principles and applications requirements and focuses on the understanding of reliability issues. 59 refs., 7 figs.

  19. [Efficient oxidative degradation of tetrabromobisphenol A by silver bismuth oxide].

    PubMed

    Chen, Man-tang; Song, Zhou; Wang, Nan; Ding, Yao-bin; Liao, Hai-xing; Zhu, Li-hua

    2015-01-01

    Silver bismuth oxide(BSO) was prepared by a simple ion exchange-coprecipitation method with AgNO3 and NaBiO, .2H2O as raw materials, and then used to oxidatively degrade tetrabromobisphenol A(TBBPA). Effects of the molar ratio of Ag/Bi during BSO preparation and the BSO dosage on the degradation of TBBPA were investigated. The results showed that under the optimized conditions (i.e., the Ag/Bi molar ratio of 1:1, BSO dosage of 1 g x L(-1), 40 mg x L(-1) of TBBPA was completely degraded and the removal of total organic carbon achieved more than 80% within 7 min. The degradation intermediates of TBBPA were identified by ion chromatography, gas chromatograph-mass spectrometer and X-ray photoelectron spectroscopy. The degradation pathway of TBBPA included the debromination, the cleavage of tert-butyl group and the open epoxidation of benzene ring. Based on a quenching study of NaN3, singlet oxygen was proved to play a dominant role in the TBBPA degradation. PMID:25898666

  20. Polymer matrix electroluminescent materials and devices

    DOEpatents

    Marrocco, III, Matthew L.; Motamedi, Farshad J.; Abdelrazzaq, Feras Bashir; Abdelrazzaq, legal representative, Bashir Twfiq

    2012-06-26

    Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.

  1. Distribution of electrical energy consumption for the efficient degradation control of THMs mixture in sonophotolytic process.

    PubMed

    Park, Beomguk; Cho, Eunju; Son, Younggyu; Khim, Jeehyeong

    2014-11-01

    Sonophotolytic degradation of THMs mixture with different electrical energy ratio was carried out for efficient design of process. The total consumed electrical energy was fixed around 50W, and five different energy conditions were applied. The maximum degradation rate showed in conditions of US:UV=1:3 and US:UV=0:4. This is because the photolytic degradation of bromate compounds is dominant degradation mechanism for THMs removal. However, the fastest degradation of total organic carbon was observed in a condition of US:UV=1:3. Because hydrogen peroxide generated by sonication was effectively dissociated to hydroxyl radicals by ultraviolet, the concentration of hydroxyl radical was maintained high. This mechanism provided additional degradation of organics. This result was supported by comparison between the concentration of hydrogen peroxide sole and combined process. Consequently, the optimal energy ratio was US:UV=1:3 for degradation of THMs in sonophotolytic process.

  2. Organic solution-processible electroluminescent molecular glasses for non-doped standard red OLEDs with electrically stable chromaticity

    SciTech Connect

    Bi, Xiaoman; Zuo, Weiwei; Liu, Yingliang Zhang, Zhenru; Zeng, Cen; Xu, Shengang; Cao, Shaokui

    2015-10-15

    Highlights: • The D–A–D electroluminescent molecular glasses are synthesized. • Non-doped red electroluminescent film is fabricated by spin-coating. • Red OLED shows stable wavelength, luminous efficiency and chromaticity. • CIE1931 coordinate is in accord with standard red light in PAL system. - Abstract: Organic light-emitting molecular glasses (OEMGs) are synthesized through the introduction of nonplanar donor and branched aliphatic chain into electroluminescent emitters. The target OEMGs are characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV–vis and fluorescent spectra as well as elemental analysis, TG and DSC. The results indicated that the optical, electrochemical and electroluminescent properties of OEMGs are adjusted successfully by the replacement of electron-donating group. The non-doped OLED device with a standard red electroluminescent emission is achieved by spin-coating the THF solution of OEMG with a triphenylamine moiety. This non-doped red OLED device takes on an electrically stable electroluminescent performance, including the stable maximum electroluminescent wavelength of 640 nm, the stable luminous efficiency of 2.4 cd/A and the stable CIE1931 coordinate of (x, y) = (0.64, 0.35), which is basically in accord with the CIE1931 coordinate (x, y) = (0.64, 0.33) of standard red light in PAL system.

  3. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    PubMed Central

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  4. Field-effect electroluminescence in silicon nanocrystals.

    PubMed

    Walters, Robert J; Bourianoff, George I; Atwater, Harry A

    2005-02-01

    There is currently worldwide interest in developing silicon-based active optical components in order to leverage the infrastructure of silicon microelectronics technology for the fabrication of optoelectronic devices. Light emission in bulk silicon-based devices is constrained in wavelength to infrared emission, and in efficiency by the indirect bandgap of silicon. One promising strategy for overcoming these challenges is to make use of quantum-confined excitonic emission in silicon nanocrystals. A critical challenge for silicon nanocrystal devices based on nanocrystals embedded in silicon dioxide has been the development of a method for efficient electrical carrier injection. We report here a scheme for electrically pumping dense silicon nanocrystal arrays by a field-effect electroluminescence mechanism. In this excitation process, electrons and holes are both injected from the same semiconductor channel across a tunnelling barrier in a sequential programming process, in contrast to simultaneous carrier injection in conventional pn-junction light-emitting-diode structures. Light emission is strongly correlated with the injection of a second carrier into a nanocrystal that has been previously programmed with a charge of the opposite sign.

  5. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    SciTech Connect

    Lijuan Zou

    2003-08-05

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.

  6. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide

    PubMed Central

    Li, Dehui; Cheng, Rui; Zhou, Hailong; Wang, Chen; Yin, Anxiang; Chen, Yu; Weiss, Nathan O.; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    The layered transition metal dichalcogenides have attracted considerable interest for their unique electronic and optical properties. While the monolayer MoS2 exhibits a direct bandgap, the multilayer MoS2 is an indirect bandgap semiconductor and generally optically inactive. Here we report electric-field-induced strong electroluminescence in multilayer MoS2. We show that GaN–Al2O3–MoS2 and GaN–Al2O3–MoS2–Al2O3-graphene vertical heterojunctions can be created with excellent rectification behaviour. Electroluminescence studies demonstrate prominent direct bandgap excitonic emission in multilayer MoS2 over the entire vertical junction area. Importantly, the electroluminescence efficiency observed in multilayer MoS2 is comparable to or higher than that in monolayers. This strong electroluminescence can be attributed to electric-field-induced carrier redistribution from the lowest energy points (indirect bandgap) to higher energy points (direct bandgap) in k-space. The electric-field-induced electroluminescence is general for other layered materials including WSe2 and can open up a new pathway towards transition metal dichalcogenide-based optoelectronic devices. PMID:26130491

  7. Evaluation of fuel cell system efficiency and degradation at development and during commercialization

    NASA Astrophysics Data System (ADS)

    Gemmen, R. S.; Johnson, C. D.

    Two primary parameters stand out for characterizing fuel cell system performance. The first and most important parameter is system efficiency. This parameter is relatively easy to define, and protocols for its assessment are already available. Another important parameter yet to be fully considered is system degradation. Degradation is important because customers desire to know how long their purchased fuel cell unit will last. The measure of degradation describes this performance factor by quantifying, for example, how the efficiency of the unit degrades over time. While both efficiency and degradation concepts are readily understood, the coupling between these two parameters must also be understood so that proper testing and evaluation of fuel cell systems is achieved. Tests not properly performed, and results not properly understood, may result in improper use of the evaluation data, producing improper R&D planning decisions and financial investments. This paper presents an analysis of system degradation, recommends an approach to its measurement, and shows how these two parameters are related and how one can be "traded-off" for the other.

  8. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders

    PubMed Central

    Xie, Shenghui; Huang, Ping; Kruzic, Jamie J.; Zeng, Xierong; Qian, Haixia

    2016-01-01

    A new Fe-based metallic glass with composition Fe76B12Si9Y3 (at. %) is found to have extraordinary degradation efficiency towards methyl orange (MO, C14H14N3SO3) in strong acidic and near neutral environments compared to crystalline zero-valent iron (ZVI) powders and other Fe-based metallic glasses. The influence of temperature (294–328 K) on the degradation reaction rate was measured using ball-milled metallic glass powders revealing a low thermal activation energy barrier of 22.6 kJ/mol. The excellent properties are mainly attributed to the heterogeneous structure consisting of local Fe-rich and Fe-poor atomic clusters, rather than the large specific surface and strong residual stress in the powders. The metallic glass powders can sustain almost unchanged degradation efficiency after 13 cycles at room temperature, while a drop in degradation efficiency with further cycles is attributed to visible surface oxidation. Triple quadrupole mass spectrometry analysis conducted during the reaction was used to elucidate the underlying degradation mechanism. The present findings may provide a new, highly efficient and low cost commercial method for azo dye wastewater treatment. PMID:26902824

  9. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders

    NASA Astrophysics Data System (ADS)

    Xie, Shenghui; Huang, Ping; Kruzic, Jamie J.; Zeng, Xierong; Qian, Haixia

    2016-02-01

    A new Fe-based metallic glass with composition Fe76B12Si9Y3 (at. %) is found to have extraordinary degradation efficiency towards methyl orange (MO, C14H14N3SO3) in strong acidic and near neutral environments compared to crystalline zero-valent iron (ZVI) powders and other Fe-based metallic glasses. The influence of temperature (294–328 K) on the degradation reaction rate was measured using ball-milled metallic glass powders revealing a low thermal activation energy barrier of 22.6 kJ/mol. The excellent properties are mainly attributed to the heterogeneous structure consisting of local Fe-rich and Fe-poor atomic clusters, rather than the large specific surface and strong residual stress in the powders. The metallic glass powders can sustain almost unchanged degradation efficiency after 13 cycles at room temperature, while a drop in degradation efficiency with further cycles is attributed to visible surface oxidation. Triple quadrupole mass spectrometry analysis conducted during the reaction was used to elucidate the underlying degradation mechanism. The present findings may provide a new, highly efficient and low cost commercial method for azo dye wastewater treatment.

  10. Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction

    SciTech Connect

    Shi, Zhifeng; Zhang, Yuantao Cui, Xijun; Wu, Bin; Zhuang, Shiwei; Yang, Fan; Zhang, Baolin; Du, Guotong; Yang, Xiaotian

    2014-03-31

    Heterojunction light-emitting diodes based on n-ZnO nanowires/ZnO single-crystalline films/p-GaN structure have been demonstrated for an improved electroluminescence performance. A highly efficient ultraviolet emission was observed under forward bias. Compared with conventional n-ZnO/p-GaN structure, high internal quantum efficiency and light extraction efficiency were simultaneously considered in the proposed diode. In addition, the diode can work continuously for ∼10 h with only a slight degradation in harsh environments, indicating its good reliability and application prospect in the future. This route opens possibilities for the development of advanced nanoscale devices in which the advantages of ZnO single-crystalline films and nanostructures can be integrated together.

  11. Phonon-assisted transient electroluminescence in Si

    SciTech Connect

    Cheng, Tzu-Huan; Chu-Su, Yu; Liu, Chien-Sheng; Lin, Chii-Wann

    2014-06-30

    The phonon-replica infrared emission is observed at room temperature from indirect band gap Si light-emitting diode under forward bias. With increasing injection current density, the broadened electroluminescence spectrum and band gap reduction are observed due to joule heating. The spectral-resolved temporal response of electroluminescence reveals the competitiveness between single (TO) and dual (TO + TA) phonon-assisted indirect band gap transitions. As compared to infrared emission with TO phonon-replica, the retarder of radiative recombination at long wavelength region (∼1.2 μm) indicates lower transition probability of dual phonon-replica before thermal equivalent.

  12. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.

    PubMed

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Liu, Weili; Liu, Yulei

    2016-03-01

    In this work, the degradation of atrazine by the combination of UV and chlorine (UV/chlorine) due to the formation of radicals during chlorine photolysis was systematically investigated in terms of efficiency, factors that influence the degradation kinetics, as well as oxidation products. It was found that the degradation efficiency of atrazine was enhanced by UV/chlorine compared to UV or chlorine alone. The degradation efficiency of atrazine was favorable at a lower pH, but was inhibited in the presence of natural organic matters. Meanwhile, the initial chlorine dosage, alkalinity, and chloride barely influenced the degradation efficiency under neutral pH conditions. The degradation of atrazine by UV/chlorine was inhibited in real waters (i.e., surface water and ground water) compared to in deionized water but was still more effective than UV alone. The oxidation products of atrazine resulting from de-alkylation, dechlorination-hydroxylation, alkylic-hydroxylation, alkylic-oxidation, alkylic-hydroxylation-dehydration, deamination-hydroxylation, and dechlorination-hydrogenation in UV/chlorine process were detected, which were slightly different from those formed in UV/H2O2 (commonly used UV-based advanced oxidation process). Particularly, the yields of three primary transformation products (desethyl-atrazine (DEA), desisopropyl-atrazine (DIA), and desethyl-desisopropyl-atrazine (DEIA)) were comparatively quantified in these two processes. The different trend of them formed in UV/chlorine system (DEA:DIA≈4) compared to that formed in UV/H2O2 system (DEA:DIA≈1) could be ascribed to the different reaction reactivities and mechanisms between HO• and Cl• with atrazine.

  13. Determinants of Efficient Degradation of APOBEC3 Restriction Factors by HIV-1 Vif

    PubMed Central

    Baig, Tayyba T.; Feng, Yuqing

    2014-01-01

    ABSTRACT The APOBEC3 deoxycytidine deaminases can restrict the replication of HIV-1 in cell culture to differing degrees. The effects of APOBEC3 enzymes are largely suppressed by HIV-1 Vif that interacts with host proteins to form a Cullin5-Ring E3 ubiquitin ligase that induces 48K-linked polyubiquitination (poly-Ub) and proteasomal degradation of APOBEC3 enzymes. Vif variants have differing abilities to induce degradation of APOBEC3 enzymes and the underlying biochemical mechanisms for these differences is not fully understood. We hypothesized that by characterizing the interaction of multiple APOBEC3 enzymes and Vif variants we could identify common features that resulted in Vif-mediated degradation and further define the determinants required for efficient Vif-mediated degradation of APOBEC3 enzymes. We used Vifs from HIV-1 NL4-3 (IIIB) and HXB2 to characterize their induced degradation of and interaction with APOBEC3G, APOBEC3G D128K, APOBEC3H, and APOBEC3B in 293T cells. We quantified the APOBEC3G-Vif and APOBEC3H-Vif interaction strengths in vitro using rotational anisotropy. Our biochemical and cellular analyses of the interactions support a model in which the degradation efficiency of VifIIIB and VifHXB2 correlated with both the binding strength of the APOBEC3-Vif interaction and the APOBEC3-Vif interface, which differs for APOBEC3G and APOBEC3H. Notably, Vif bound to APOBEC3H and APOBEC3B in the natural absence of Vif-induced degradation and the interaction resulted in 63K-linked poly-Ub of APOBEC3H and APOBEC3B, demonstrating additional functionality of the APOBEC3-Vif interaction apart from induction of proteasomal degradation. IMPORTANCE APOBEC3 enzymes can potently restrict the replication of HIV-1 in the absence of HIV-1 Vif. Vif suppresses APOBEC3 action by inducing their degradation through a direct interaction with APOBEC3 enzymes and other host proteins. Vif variants from different HIV-1 strains have different effects on APOBEC3 enzymes. We used

  14. Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform.

    PubMed

    Song, Guosheng; Hao, Jiali; Liang, Chao; Liu, Teng; Gao, Min; Cheng, Liang; Hu, Junqing; Liu, Zhuang

    2016-02-01

    Molybdenum oxide (MoOx) nanosheets with high near-infrared (NIR) absorbance and pH-dependent oxidative degradation properties were synthesized, functionalized with polyethylene glycol (PEG), and then used as a degradable photothermal agent and drug carrier. The nanosheets, which are relatively stable under acidic pH, could be degraded at physiological pH. Therefore, MoOx-PEG distributed in organs upon intravenous injection would be rapidly degraded and excreted without apparent in vivo toxicity. MoOx-PEG shows efficient accumulation in tumors, the acidic pH of which then leads to longer tumor retention of those nanosheets. Along with the capability of acting as a photothermal agent for effective tumor ablation, MoOx-PEG can load therapeutic molecules with high efficiencies. This concept of inorganic theranostic nanoagent should be relatively stable in tumors to allow imaging and treatment, while being readily degradable in normal organs to enable rapid excretion and avoid long-term retention/toxicity.

  15. Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform.

    PubMed

    Song, Guosheng; Hao, Jiali; Liang, Chao; Liu, Teng; Gao, Min; Cheng, Liang; Hu, Junqing; Liu, Zhuang

    2016-02-01

    Molybdenum oxide (MoOx) nanosheets with high near-infrared (NIR) absorbance and pH-dependent oxidative degradation properties were synthesized, functionalized with polyethylene glycol (PEG), and then used as a degradable photothermal agent and drug carrier. The nanosheets, which are relatively stable under acidic pH, could be degraded at physiological pH. Therefore, MoOx-PEG distributed in organs upon intravenous injection would be rapidly degraded and excreted without apparent in vivo toxicity. MoOx-PEG shows efficient accumulation in tumors, the acidic pH of which then leads to longer tumor retention of those nanosheets. Along with the capability of acting as a photothermal agent for effective tumor ablation, MoOx-PEG can load therapeutic molecules with high efficiencies. This concept of inorganic theranostic nanoagent should be relatively stable in tumors to allow imaging and treatment, while being readily degradable in normal organs to enable rapid excretion and avoid long-term retention/toxicity. PMID:26710169

  16. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions

    NASA Astrophysics Data System (ADS)

    Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P.

    2016-09-01

    In addition to its scientific importance, the degradation of azo dyes is of practical significance from the perspective of environmental protection. Although encouraging progress has been made on developing degradation approaches and materials, it is still challenging to fully resolve this long-standing problem. Herein, we report that high entropy alloys, which have been emerging as a new class of metallic materials in the last decade, have excellent performance in degradation of azo dyes. In particular, the newly developed AlCoCrTiZn high-entropy alloy synthesized by mechanical alloying exhibits a prominent efficiency in degradation of the azo dye (Direct Blue 6: DB6), as high as that of the best metallic glass reported so far. The newly developed AlCoCrTiZn HEA powder has low activation energy barrier, i.e., 30 kJ/mol, for the degrading reaction and thus make the occurrence of reaction easier as compared with other materials such as the glassy Fe-based powders. The excellent capability of our high-entropy alloys in degrading azo dye is attributed to their unique atomic structure with severe lattice distortion, chemical composition effect, residual stress and high specific surface area. Our findings have important implications in developing novel high-entropy alloys for functional applications as catalyst materials.

  17. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions

    PubMed Central

    Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P.

    2016-01-01

    In addition to its scientific importance, the degradation of azo dyes is of practical significance from the perspective of environmental protection. Although encouraging progress has been made on developing degradation approaches and materials, it is still challenging to fully resolve this long-standing problem. Herein, we report that high entropy alloys, which have been emerging as a new class of metallic materials in the last decade, have excellent performance in degradation of azo dyes. In particular, the newly developed AlCoCrTiZn high-entropy alloy synthesized by mechanical alloying exhibits a prominent efficiency in degradation of the azo dye (Direct Blue 6: DB6), as high as that of the best metallic glass reported so far. The newly developed AlCoCrTiZn HEA powder has low activation energy barrier, i.e., 30 kJ/mol, for the degrading reaction and thus make the occurrence of reaction easier as compared with other materials such as the glassy Fe-based powders. The excellent capability of our high-entropy alloys in degrading azo dye is attributed to their unique atomic structure with severe lattice distortion, chemical composition effect, residual stress and high specific surface area. Our findings have important implications in developing novel high-entropy alloys for functional applications as catalyst materials. PMID:27677462

  18. Electroluminescent Displays Made With Alternative Dopants

    NASA Technical Reports Server (NTRS)

    Robertson, James B.

    1993-01-01

    Metals and metal fluorides deposited in ZnS to form color phosphors. Single-layer, thin-film electroluminescent display device contains ZnS host layer doped to form green, red, and blue phosphors. Luminescence in chosen colors at chosen intersections between rows and columns produced by application of voltages to appropriate row-and-column pairs of conductors.

  19. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  20. Organic electroluminescent devices having improved light extraction

    DOEpatents

    Shiang, Joseph John

    2007-07-17

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  1. Contactless Electroluminescence Imaging for Cell and Module Characterization

    SciTech Connect

    Johnston, Steve

    2015-06-14

    Module performance can be characterized by imaging using baseline and periodic images to track defects and degradation. Both thermal images, which can be acquired during sunny operating conditions, and photoluminescence images, which could be acquired at night, can be collected without electrical connection. Electroluminescence (EL) images, which are useful to detect many types of defects such as cracks, interconnect and solder faults, and resistances, have typically required electrical connection to drive current in the cells and modules. Here, a contactless EL imaging technique is proposed, which provides an EL image without the need for electrical connection to drive current through the module. Such EL imaging has the capability to be collected at night without disruption to daytime power generation.

  2. Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells.

    PubMed

    Handa, Taketo; Tex, David M; Shimazaki, Ai; Aharen, Tomoko; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-05-16

    We investigate the performance degradation mechanism of CH3NH3PbI3 perovskite solar cells under bias voltage in air and nitrogen atmospheres using photoluminescence and electroluminescence techniques. When applying forward bias, the power conversion efficiency of the solar cells decreased significantly in air, but showed no degradation in nitrogen atmosphere. Time-resolved photoluminescence measurements on these devices revealed that the application of forward bias in air accelerates the generation of non-radiative recombination centers in the perovskite layer buried in the device. We found a negative correlation between the electroluminescence intensity and the injected current intensity in air. The irreversible change of the perovskite grain surface in air initiates the degradation of the perovskite solar cells. PMID:27409964

  3. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions

    PubMed Central

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-01-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559

  4. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions.

    PubMed

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-06-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment.

  5. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions.

    PubMed

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-06-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559

  6. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water.

    PubMed

    Mohamed, Alaa; El-Sayed, Ramy; Osman, T A; Toprak, M S; Muhammed, M; Uheida, A

    2016-02-01

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO2 nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles. PMID:26615225

  7. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water.

    PubMed

    Mohamed, Alaa; El-Sayed, Ramy; Osman, T A; Toprak, M S; Muhammed, M; Uheida, A

    2016-02-01

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO2 nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles.

  8. Mechanochemical transformation of an organic ligand on mineral surfaces: the efficiency of birnessite in catechol degradation.

    PubMed

    Di Leo, Paola; Pizzigallo, Maria Donata Rosa; Ancona, Valeria; Di Benedetto, Francesco; Mesto, Ernesto; Schingaro, Emanuela; Ventruti, Gennaro

    2012-01-30

    The aim of this work is to investigate the efficiency of the phyllomanganate birnessite in degrading catechol after mechanochemical treatments. A synthesized birnessite and the organic molecule were grounded together in a high energy mill and the xenobiotic-mineral surface reactions induced by the grinding treatment have been investigated by means of X-ray powder diffraction, X-ray fluorescence, thermal analysis and spectroscopic techniques as well as high-performance liquid chromatography and voltammetric techniques. If compared to the simple contact between the birnessite and the organic molecule, mechanochemical treatments have revealed to be highly efficient in degrading catechol molecules, in terms both of time and extent. Due to the two phenolic groups of catechol and the small steric hindrance of the molecule, the extent of the mechanochemically induced degradation of catechol onto birnessite surfaces is quite high. The degradation mechanism mainly occurs via a redox reaction. It implies the formation of a surface bidentate inner-sphere complex between the phenolic group of the organic molecules and the Mn(IV) from the birnessite structure. Structural changes occur on the MnO(6) layers of birnessite as due to the mechanically induced surface reactions: reduction of Mn(IV), consequent formation of Mn(III) and new vacancies, and free Mn(2+) ions production.

  9. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation.

    PubMed

    Audin, Maxime J C; Wurm, Jan Philip; Cvetkovic, Milos A; Sprangers, Remco

    2016-04-01

    The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3' end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events. PMID:26837575

  10. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation

    PubMed Central

    Audin, Maxime J. C.; Wurm, Jan Philip; Cvetkovic, Milos A.; Sprangers, Remco

    2016-01-01

    The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3′ end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events. PMID:26837575

  11. Theoretical and material studies of thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.

    1989-01-01

    Thin-film electroluminescent (TFEL) devices are studied for a possible means of achieving a high resolution, light weight, compact video display panel for computer terminals or television screens. The performance of TFEL devices depends upon the probability of an electron impact exciting a luminescent center which in turn depends upon the density of centers present in the semiconductor layer, the possibility of an electron achieving the impact excitation threshold energy, and the collision cross section itself. Efficiency of such a device is presently very poor. It can best be improved by increasing the number of hot electrons capable of impact exciting a center. Hot electron distributions and a method for increasing the efficiency and brightness of TFEL devices (with the additional advantage of low voltage direct current operation) are investigated.

  12. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  13. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water. PMID:26162447

  14. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms.

    PubMed

    Zhang, Chao-Zhi; Li, Ting; Yuan, Yang; Xu, Jianqiang

    2016-06-01

    Graphene and graphene oxide (GO) have already existed in air, water and soil due to their popular application in functional materials. However, degradation of graphene and GO in wastewater has not been reported. Degradation of GO plays a key role in the elimination of graphene and GO in wastewater due to graphene being easily oxidized to GO. In this paper, GO was completely degraded to give CO2 by Photo-Fenton. The degradation intermediates were determined by UV-vis absorption spectra, elemental analysis (EA), fourier transform infrared (FT-IR) and liquid chromatography-mass spectrometry (LC-MS). Experimental results showed that graphene oxide was completely degraded to give CO2 after 28 days. Based on UV, FT-IR, LC-MS spectra and EA data of these degradation intermediates, the degradation mechanisms of GO were supposed. This paper suggests an efficient and environment-friendly method to degrade GO and graphene.

  15. Organic electroluminescent sensor for pressure measurement.

    PubMed

    Matsuda, Yu; Ueno, Kaori; Yamaguchi, Hiroki; Egami, Yasuhiro; Niimi, Tomohide

    2012-10-16

    We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS) based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED) with phosphorescent dyes whose phosphorescence can be quenched by oxygenmolecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II) octaethylporphine (PtOEP) doped into poly(vinylcarbazole) (PVK) as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate) (PEDOT:PSS) as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP), which is an optical pressure sensor based on photoluminescence.

  16. Organic Electroluminescent Sensor for Pressure Measurement

    PubMed Central

    Matsuda, Yu; Ueno, Kaori; Yamaguchi, Hiroki; Egami, Yasuhiro; Niimi, Tomohide

    2012-01-01

    We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS) based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED) with phosphorescent dyes whose phosphorescence can be quenched by oxygen molecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II) octaethylporphine (PtOEP) doped into poly(vinylcarbazole) (PVK) as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate) (PEDOT:PSS) as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP), which is an optical pressure sensor based on photoluminescence. PMID:23202027

  17. [Electroluminescence character of novel unsymmetry substituted phthalocyanines].

    PubMed

    Xia, Dao-cheng; Li, Wan-cheng; Han, Shuang; Cheng, Chuan-hui; Li, Quan-quan; Wang, Jin; Zhang, Wei; Li, Zhu

    2010-09-01

    The authors for the first time fabricated OLEDs employing novel phthalocynines: 2(3)-(p-tert-butylphenoxy) copper phthalocyanine(1), 2(3),16(17)-di(p-tert-butyl-phenoxy) copper phthalocyanine(2) and 2(3), 9(10), 16(17)-tri (p-tert-butylphenoxy) copper phthalocyanine(3) as light emitting layer, and their electroluminescence character was studied. The final structures of three-layer OLEDs based on copper 2(3)-(p-tert-butylphenoxy) copper phthalocyanine (1) and 2(3), 9(10), 16(17)-tri (p-tert-butylphenoxy) copper phthalocyanine(3) were ITO/NPB(40 nm)/Pc(30 nm)/AlQ(43.5 nm)/LiF (0.5 nm)/Al(120 nm). The structure of three-layer OLED based on 2(3), 9(10), 16(17)-tri (p-tert-butylphenoxy) copper phthalocyanine (3) was ITO/NPB(30 nm)/Pc(30 nm) /BCP(20 nm)/A1Q(30 nm)/LiF (0. 5 nm)/Al(120 nm). Room-temperature electroluminescence was observed at about 869 nmand 1 062 nm for 2(3)-(p-tert-butylphenoxy) copper phthalocyanine(1); room-temperature electroluminescence of 2(3),16(17) -di(p-tert-butyl-phenoxy) copper phthalocyanine(2) was found at about 1050 nm and 1110 nm; and room-temperature electroluminescence of 2(3), 9(10), 16( 17)-tri (p-tert-butylphenoxy) copper phthalocyanine(3) was studied at about 1095 and 1204 nm. The emission wavelengths and the half bandwidths were quite different for the phthalocyanine, which may be due to the differences in the number of substituted and the molecular aggregations in vacuum sublimed films. The difference in Stokes shift relaxation was also induced by the molecular aggregations.

  18. Natural Magnetite: an efficient catalyst for the degradation of organic contaminant

    PubMed Central

    HE, Hongping; ZHONG, Yuanhong; LIANG, Xiaoliang; TAN, Wei; ZHU, Jianxi; Yan WANG, Christina

    2015-01-01

    Iron (hydr)oxides are ubiquitous earth materials that have high adsorption capacities for toxic elements and degradation ability towards organic contaminants. Many studies have investigated the reactivity of synthetic magnetite, while little is known about natural magnetite. Here, we first report the reactivity of natural magnetites with a variety of elemental impurities for catalyzing the decomposition of H2O2 to produce hydroxyl free radicals (•OH) and the consequent degradation of p-nitrophenol (p-NP). We observed that these natural magnetites show higher catalytic performance than that of the synthetic pure magnetite. The catalytic ability of natural magnetite with high phase purity depends on the surface site density while that for the magnetites with exsolutions relies on the mineralogical nature of the exsolved phases. The pleonaste exsolution can promote the generation of •OH and the consequent degradation of p-NP; the ilmenite exsolution has little effect on the decomposition of H2O2, but can increase the adsorption of p-NP on magnetite. Our results imply that natural magnetite is an efficient catalyst for the degradation of organic contaminants in nature. PMID:25958854

  19. Natural Magnetite: an efficient catalyst for the degradation of organic contaminant.

    PubMed

    He, Hongping; Zhong, Yuanhong; Liang, Xiaoliang; Tan, Wei; Zhu, Jianxi; Wang, Christina Yan

    2015-01-01

    Iron (hydr)oxides are ubiquitous earth materials that have high adsorption capacities for toxic elements and degradation ability towards organic contaminants. Many studies have investigated the reactivity of synthetic magnetite, while little is known about natural magnetite. Here, we first report the reactivity of natural magnetites with a variety of elemental impurities for catalyzing the decomposition of H2O2 to produce hydroxyl free radicals (•OH) and the consequent degradation of p-nitrophenol (p-NP). We observed that these natural magnetites show higher catalytic performance than that of the synthetic pure magnetite. The catalytic ability of natural magnetite with high phase purity depends on the surface site density while that for the magnetites with exsolutions relies on the mineralogical nature of the exsolved phases. The pleonaste exsolution can promote the generation of •OH and the consequent degradation of p-NP; the ilmenite exsolution has little effect on the decomposition of H2O2, but can increase the adsorption of p-NP on magnetite. Our results imply that natural magnetite is an efficient catalyst for the degradation of organic contaminants in nature.

  20. Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes

    PubMed Central

    Li, Tian-Yi; Jing, Yi-Ming; Liu, Xuan; Zhao, Yue; Shi, Lin; Tang, Zhiyong; Zheng, You-Xuan; Zuo, Jing-Lin

    2015-01-01

    Nearly all the neutral iridium complexes widely used as dopants in PhOLEDs are racemic mixtures; however, this study observed that these complexes can be separated into stable optically active Λ and ∆ isomers and that their chirality is an intrinsic property. The circularly polarised phosphorescent photoluminescence (CPPPL) signals of Λ/Δ isomers are perfect mirror images with opposite polarisation and equal intensity exhibiting a “handedness” for the polarisation. For the first time, we applied the Λ/Δ iridium isomers as emitters in OLEDs, and the circularly polarised phosphorescent electroluminescence (CPPEL) spectra reveal completely positive or negative broad peaks consistent with the CPPPL spectra. The results demonstrate that the Λ/Δ isomers have potential application for 3D OLEDs because they can exhibit high efficiency and luminance, and 3D display technology based on circularly polarised light is the most comfortable for the eyes. PMID:26446521

  1. Assessment of solar driven TiO2-assisted photocatalysis efficiency on amoxicillin degradation.

    PubMed

    Pereira, João H O S; Reis, Ana C; Nunes, Olga C; Borges, Maria T; Vilar, Vítor J P; Boaventura, Rui A R

    2014-01-01

    The objective of this work was to evaluate the efficiency of a solar TiO2-assisted photocatalytic process on amoxicillin (AMX) degradation, an antibiotic widely used in human and veterinary medicine. Firstly, solar photolysis of AMX was compared with solar photocatalysis in a compound parabolic collectors pilot scale photoreactor to assess the amount of accumulated UV energy in the system (Q UV) necessary to remove 20 mg L(-1) AMX from aqueous solution and mineralize the intermediary by-products. Another experiment was also carried out to accurately follow the antibacterial activity against Escherichia coli DSM 1103 and Staphylococcus aureus DSM 1104 and mineralization of AMX by tracing the contents of dissolved organic carbon (DOC), low molecular weight carboxylate anions, and inorganic anions. Finally, the influence of individual inorganic ions on AMX photocatalytic degradation efficiency and the involvement of some reactive oxygen species were also assessed. Photolysis was shown to be completely ineffective, while only 3.1 kJUV L(-1) was sufficient to fully degrade 20 mg L(-1) AMX and remove 61% of initial DOC content in the presence of the photocatalyst and sunlight. In the experiment with an initial AMX concentration of 40 mg L(-1), antibacterial activity of the solution was considerably reduced after elimination of AMX to levels below the respective detection limit. After 11.7 kJUV L(-1), DOC decreased by 71%; 30% of the AMX nitrogen was converted into ammonium and all sulfur compounds were converted into sulfate. A large percentage of the remaining DOC was in the form of low molecular weight carboxylic acids. Presence of phosphate ions promoted the removal of AMX from solution, while no sizeable effects on the kinetics were found for other inorganic ions. Although the AMX degradation was mainly attributed to hydroxyl radicals, singlet oxygen also plays an important role in AMX self-photosensitization under UV/visible solar light.

  2. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    DOE PAGESBeta

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; Lopez, Javier Garicia; Jaksic, Milko; Raisanen, Jyrki; Siegele, Rainer; Simon, Aliz; Vizkelethy, Gyorgy

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less

  3. Green synthesis of copper nanoparticles for the efficient removal (degradation) of dye from aqueous phase.

    PubMed

    Sinha, Tanur; Ahmaruzzaman, M

    2015-12-01

    The present work reports the utilization of a common household waste material (fish scales of Labeo rohita) for the synthesis of copper nanoparticles. The method so developed was found to be green, environment-friendly, and economic. The fish scale extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates, and solvents. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of nanoparticles have also been presented. The synthesized copper nanoparticles formed were predominantly spherical in nature with an average size of nanoparticles in the range of 25-37 nm. The copper nanoparticles showed characteristic Bragg's reflection planes of fcc which was supported by both selected area electron diffraction and X-ray diffraction pattern and showed surface plasmon resonance at 580 nm. Moreover, the energy dispersive spectroscopy pattern also revealed the presence of only elemental copper in the copper nanoparticles. The prepared nanoparticles were used for the remediation of a carcinogenic and noxious textile dye, Methylene blue, from aqueous solution. Approximately, 96 % degradation of Methylene blue dye was observed within 135 min using copper nanoparticles. The probable mechanism for the degradation of the dye has been presented, and the degraded intermediates have been identified using the liquid chromatography-mass spectroscopy technique. The high efficiency of nanoparticles as photocatalysts has opened a promising application for the removal of hazardous dye from industrial effluents contributing indirectly to environmental cleanup process.

  4. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Pastuovic, Z.; Breese, M. B. H.; Garcia Lopez, J.; Jaksic, M.; Raisanen, J.; Siegele, R.; Simon, A.; Vizkelethy, G.

    2016-04-01

    This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  5. Two-Layer, Full-Color Electroluminescent Display

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.

    1987-01-01

    Full-color, matrix-addressed electroluminescent display uses three different color phosphors located in two separate, superimposed layers to provide higher brightness, better contrast ratio, and higher resolution. Design used for such transparent, flat-panel display media as thin-film electroluminescent phosphors, liquid crystals, or light-emitting diodes.

  6. ZnO and cobalt phthalocyanine hybridized graphene: efficient photocatalysts for degradation of rhodamine B

    PubMed Central

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2014-01-01

    A novel method has been developed to synthesize graphene-ZnO composite as a highly efficient catalyst by reduction of graphite oxide and in-situ deposition of ZnO nanoparticles by chemical reduction reaction. The graphene-ZnO catalyst is capable of complete degradation of rhodamine B under exposure to natural sunlight. Further, the catalytic efficiency of graphene-ZnO catalyst was enhanced by sensitizing with cobalt phthalocyanine. The formation of graphene-ZnO pcatalyst and its further sensitization with cobalt phthalocyanine was characterized using UV-vis, ATR-IR and Raman spectroscopy, powder XRD and thermogravimetric analysis. The morphology of both graphene-ZnO and graphene-ZnO-CoPC catalysts was analyzed using scanning and transmission electron microscopes. PMID:24972296

  7. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: efficiency, product and mechanism.

    PubMed

    Xu, Bingbing; Chen, Zhonglin; Qi, Fei; Ma, Jun; Wu, Fengchang

    2010-07-15

    N-nitrosodiethylamine (NDEA) is a member of nitrosamines, which is strong carcinogenic. In order to explore an effective treatment method for NDEA removal from water, sole UV irradiation and UV/O(3) were carried out in this study. The removal efficiency, degradation products and pathways were compared between those two processes. Results showed that NDEA removal efficiency achieved 99% within 15 min by both UV and UV/O(3). Degradation reaction well followed pseudo-first-order kinetics. Water pH had different effect on NDEA degradation in those two processes. Acidic and neutral conditions were good for NDEA degradation by sole UV irradiation. However, NDEA underwent rapid degradation under various pH conditions in the UV/O(3) process. Though the ozone introduction in the UV/O(3) process had little effect on NDEA degradation efficiency, it had significant effect on its degradation products and pathways. Methylamine, dimethylamine, ethylamine and diethylamine were observed as aliphatic amine products of NDEA degradation in both two processes. They were assumed to arise due to N-N bond fission under UV irradiation, or due to the reaction of NDEA and hydroxyl radicals in the UV/O(3) process.

  8. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    PubMed

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. PMID:24779765

  9. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    PubMed

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.

  10. Degradation of Rural and Urban Great Tit Song: Testing Transmission Efficiency

    PubMed Central

    Mockford, Emily J.; Marshall, Rupert C.; Dabelsteen, Torben

    2011-01-01

    Acoustic signals play a fundamental role in avian territory defence and mate attraction. Several studies have now shown that spectral properties of bird song differ between urban and rural environments. Previously this has been attributed to competition for acoustic space as a result of low-frequency noise present in cities. However, the physical structure of urban areas may have a contributory effect. Here we investigate the sound degradation properties of woodland and city environments using both urban and rural great tit song. We show that although urban surroundings caused significantly less degradation to both songs, the transmission efficiency of rural song compared to urban song was significantly lower in the city. While differences between the two songs in woodland were generally minimal, some measures of the transmission efficiency of rural song were significantly lower than those of urban song, suggesting additional benefits to singing rural songs in this setting. In an attempt to create artificial urban song, we mimicked the increase in minimum frequency found several times previously in urban song. However, this did not replicate the same transmission properties as true urban song, suggesting changes in other song characteristics, such as temporal adjustments, are needed to further increase transmission of an avian signal in the city. We suggest that the structure of the acoustic environment, in addition to the background noise, plays an important role in signal adaptation. PMID:22174781

  11. Highly Efficient Photocatalysts and Continuous-Flow Photocatalytic Reactors for Degradation of Organic Pollutants in Wastewater.

    PubMed

    Chang, Sujie; Yang, Xiaoqiu; Sang, Yuanhua; Liu, Hong

    2016-09-01

    One of the most important applications for photocatalysis is engineered water treatment that photodegrades organic pollutants in wastewater at low cost. To overcome the low efficiency of batch degradation methods, continuous-flow photocatalytic reactors have been proposed and have become the most promising method for mass water treatment. However, most commercial semiconductor photocatalysts are granular nanoparticles with low activity and a narrow active light wavelength band; this creates difficulties for direct use in continuous-flow photocatalytic reactors. Therefore, a high-performance photodegradation photocatalyst with proper morphology or structure is key for continuous photocatalytic degradation. Moreover, a well-designed photocatalytic device is another important component for continuous-flow photocatalysis and determines the efficiency of photocatalysis in practical water treatment. This review describes the basic design principles and synthesis of photocatalysts with excellent performance and special morphologies suitable for a filtering photocatalysis process. Certain promising continuous photodegradation reactors are also categorized and summarized. Additionally, selected scientific and technical problems that must be urgently solved are suggested. PMID:27389817

  12. Electroluminescent and photosensitive films prepared by DTC-CVD method

    NASA Astrophysics Data System (ADS)

    Zavyalova, Ludmila V.; Svechnikov, George S.

    1997-08-01

    The original chemical vapor deposition (CVD) method used in fabrication A2B6 films, photodetectors and electro- luminescent emitters based on these films have been reported. The basic idea behind this method is thermal decomposition of dithiocarbamates (DTC). The proposed method does not require expensive materials and vacuum equipment. Moreover, the DTC-CVD method differs from the known CVD methods in source material delivery method, a low deposition temperature and a non-sealed reactor geometry. Both CdS and CdS1-xSex were obtained at temperature of 240- 280 degrees C and were activated directly in the grown process by Cu and In, or by annealing in mixture CdS: Cu, Cl. Photodetectors with absorption maxima at 500-750 nm have dark conductivity (sigma) D EQ 10-9 divided by 10-8 (Omega) -1 cm-1 and photoconductivity (sigma) ph equals 10-2 divided by 10-1 (Omega) -1 cm-1 at 200 lux. CdS films with thickness of 6 divided by 12 micrometers have been used as sandwich-type photoconductor detectors. Electroluminescence ZnS:Mn films prepared by DTC-CVD method at the substrate temperature of 200 DIV 300 degrees C without additional annealing have high luminance and luminous efficiency. Deposition at a law temperature makes it possible to use flexible polymer films or low cost glasses as substrates. Because the technique is rather simple and can be applied to obtain all types of thin film electroluminescence structure layers, we expect a low price of light sources based on these films.

  13. Highly efficient degradation of dye pollutants by Ce-doped MoO₃ catalyst at room temperature.

    PubMed

    Jin, Yujian; Li, Na; Liu, Haiqiu; Hua, Xia; Zhang, Qiuying; Chen, Mindong; Teng, Fei

    2014-09-14

    In order to efficiently degrade organic pollutants via an easily operated method, Ce-doped MoO3 (Ce(x)/MoO3) samples are synthesized by a simple impregnation method. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), nitrogen sorption isotherms and UV-vis diffused reflectance spectra (UV-DRS), total organic carbon (TOC), infrared spectroscopy (IR) and mass spectrometry (MS) analyses. Furthermore, we have mainly investigated the degradation of different dye pollutants by the Ce(x)/MoO3 samples, including cationic methylene blue (MB), anionic methyl orange (MO), neutral phenol, and a MB-MO mixture dye. For the single-component MB and MO dyes, the highest degradation efficiencies are achieved by Ce(5)/MoO3 and Ce(10)/MoO3 samples. For the MB-MO mixture dyes, the highest degradation efficiency for MB is achieved by a Ce(10)/MoO3 sample. It is surprising that the degradation efficiency of MB in the MB-MO mixture dye solution is higher than that in the single-component MB dye solution, which has been mainly ascribed to the promoting effect of MO. Moreover, a plausible degradation mechanism of the dyes has been proposed and discussed. It should be noted that the degradation reaction is carried out at room temperature and normal atmospheric pressure, and without light irradiation. As a result, this degradation reaction is obviously different from the conventional thermally activated heterogeneous catalysis (or photocatalysis), in which thermal energy (or light irradiation) is indispensable; also different from a sorption technology, in which the pollutants cannot be degraded, but only transformed from one phase to another one. Thus, the reported degradation reaction is a quite promising environmental cleaning technology, which could be widely practically applied.

  14. Electroluminescent ZnS:Mn films prepared by an MOCVD method based on dithiocarbamate precursors

    NASA Astrophysics Data System (ADS)

    Zavyalova, L. V.; Beletski, A. I.; Svechnikov, G. S.

    1999-05-01

    It is shown that electroluminescent ZnS:Mn films with luminance more than 0268-1242/14/5/013/img6 and luminous efficiency 0268-1242/14/5/013/img7 can be obtained by low-temperature deposition from Mn and Zn dithiocarbamates; subsequent thermal treatment of these films is not necessary. Starting materials were deposited on the substrate heated to a temperature of 220-0268-1242/14/5/013/img8C by spraying organic solution in air at atmospheric pressure. As a result homogeneous polycrystalline layers of ZnS:Mn with a growth rate of 60-0268-1242/14/5/013/img9 have been obtained. The electroluminescent characteristics of the thin films and structures based on various preparation and excitation conditions are presented. The possibility of application of these films as a planar light source is discussed.

  15. Method for producing high energy electroluminescent devices

    DOEpatents

    Meyerson, Bernard S.; Scott, Bruce A.; Wolford, Jr., Donald J.

    1992-09-29

    A method is described for fabricating electroluminescent devices exhibiting visible electroluminescence at room temperature, where the devices include at least one doped layer of amorphous hydrogenated silicon (a-Si:H). The a-Si:H layer is deposited on a substrate by homogeneous chemical vapor deposition (H-CVD) in which the substrate is held at a temperature lower than about 200.degree. C. and the a-Si:H layer is doped in-situ during deposition, the amount of hydrogen incorporated in the deposited layer being 12-50 atomic percent. The bandgap of the a-Si:H layer is between 1.6 and 2.6 eV, and in preferrable embodiments is between 2.0 and 2.6 eV. The conductivity of the a-Si:H layer is chosen in accordance with device requirements, and can be 10.sup.16 -10.sup.19 carriers/cm.sup.2. The bandgap of the a-Si:H layer depends at least in part on the temperature of the substrate on which the layer is deposited, and can be "tuned" by changing the substrate temperature.

  16. Efficient cytosolic delivery mediated by polymersomes facilely prepared from a degradable, amphiphilic, and amphoteric copolymer

    NASA Astrophysics Data System (ADS)

    Huang, Zhonghui; Teng, Wei; Liu, Longshan; Wang, Lichun; Wang, Qinmei; Dong, Yugang

    2013-07-01

    To solve problems in polymersome preparation caused by liposolubility of copolymers and to improve the cytosolic delivery efficiency of polymersomes to drugs, a lipopolysaccharide-amine (LPSA) copolymer with amphotericity and amphiphilicity is developed. LPSA contains two hydrophilic oppositely charged blocks (anionic oxidized alginate (OA), cationic polyethyleneimine (PEI 1.8k)) and one hydrophobic block (cholesteryl), where OA is the backbone and cholesteryl-grafted PEI is the side chain. The two hydrophilic blocks first guarantee that LPSA will dissolve in water, and then help polymersome formation via electrostatic interactions to generate water insoluble interpolyelectrolyte complexes, which supplement the hydrophobic part to reach the right hydrophilicity/hydrophobicity ratio, and thus realize a one-step self-assembly of polymersomes in water. Our results show LPSA nanopolymersomes (LNPs) have low cytotoxicity and degradability, and an excellent ability to enter cells. TEM observation demonstrates that LNPs are entrapped in endosomes after endocytosis, and are then released to cytosols because of their strong endosomal escape capacity. As an example of cytosolic delivery to bioactive molecules, pDNA is delivered in mesenchymal stem cells, and more than 95% of cells express a large target protein, indicating that LNPs have high cytosolic delivery efficiency. Our study provides a novel, easy, and universal method to design copolymers for the preparation of polymersomes as efficient cytosolic delivery nanocarriers.

  17. Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria.

    PubMed

    Moreira-Gasparin, Fabiana G; de Souza, Cristina G Marques; Costa, Andréa M; Alexandrino, Ana Maria; Bracht, Cissa K; Boer, Cinthia G; Peralta, Rosane M

    2009-09-01

    The purpose of this work was to characterize an alkaline protease from the filamentous fungus Myrothecium verrucaria and to explore its capability to degrade native poultry feathers. The enzyme was purified to homogeneity using a single chromatographic step. Recovery was high, 62%, with a specific activity of 12,851.8 U/mg protein. The enzyme is a small monomeric protein with a molecular mass of 22 +/- 1.5 kDa. It presented pH optimum of 8.3 and was stable over a broad pH range (5.0-12.0). The temperature optimum was 37 degrees C, with thermal stability at temperatures up to 45 degrees C. The enzyme presented an efficiency of 80.3% in the degradation of poultry feather meal, releasing amino acids and soluble peptides. It was able to hydrolyze beta-keratin without necessity of chemical or enzymatic reduction of the disulphide bonds. Considering that, everyday, poultry-processing plants produce feathers as a waste products, this protease can be useful in biotechnological processes aiming to improve the transformation of poultry feathers through solubilization of beta-keratin into usable peptides. Furthermore, it can also be useful in processes aiming to reduce the environmental pollution caused by the accumulation of feathers.

  18. [Efficiency of atrazine degradation by O3/H2O2].

    PubMed

    Li, Shao-Feng; Liang, Yuan; Zhang, Rong-Quan; Ye, Fei

    2009-05-15

    The endocrine disrupter Atrazine was oxidized by O3/H2O2 system and the products were analyzed to assess the degradation efficiency of Atrazine. When it's initial content was 2 mg/L and O3 dosage was 7.5 mg/L, Atrazine was removed about 27.2% after 5 minutes. Under the same condition, H2O2/O3 molar ratio was 0.75, Atrazine maximum removal rate reached 96.5%, which suggested that Atrazine could be degraded by O3/H2O2 system effectively. Ion Chromatography (IC) analysis showed that concentrations of chloride and nitrate ions were increasing along with the Atrazine content decreasing. Gas Chromatography-Mass spectrometry (GC-MS) and Liquid Chromatography-Mass spectrometry chromatograms (LC-MS) analyzing illuminated the existence of de-ethyl-atrazine, de-isopropyl-atrazine and de-chloro-atrazine, which indicated the Atrazine could not be destroyed completely by O3/H2O2 system. Consequently, it should be combined with GAC (Granular Activated Carbon) or other techniques while used as primary treatment unit or emergency measure.

  19. Highest Efficiency Two-Photon Degradable Copolymer for Remote Controlled Release

    PubMed Central

    Olejniczak, Jason; Sankaranarayanan, Jagadis; Viger, Mathieu L.; Almutairi, Adah

    2013-01-01

    To address the scarcity of polymers that degrade upon absorption of near infrared (NIR) light, we introduce a new polymer containing moieties in its backbone capable of highly efficient NIR-triggered photocleavage. The polymer rapidly undergoes backbone scission in response to both UV-Vis and near infrared light via two-photon absorption, as revealed by gel permeation chromatography. Cleavage of photosensitive groups from the backbone is confirmed by 1H NMR. These polymers were successfully formulated into particles encapsulating a dye that was released upon irradiation with UV-Vis and NIR light, as indicated by changes in fluorescence characteristic of increased solvent interaction with cargo. Thus, this new polymer is readily photocleaved by UV-Vis and NIR light, giving it a variety of potential applications in photopatterning and on-demand release. PMID:24044102

  20. Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method.

    PubMed

    Yin, Cheng; Cai, Jinjun; Gao, Lingfei; Yin, Jingya; Zhou, Jicheng

    2016-03-15

    A new microwave catalytic oxidation process based on two kinds of catalysts, the commercially available activated carbon (AC) and Mn2O3 nanoparticle modified AC (Mn2O3/AC), was reported for the degradation of 4-nitrophenol (4-NP) without adding any oxidant. Effects of microwave power, catalyst dosage, irradiation time, and initial concentration for the degradation efficiency were studied. Results indicated that catalyst of Mn2O3/AC showed much higher catalytic activity than pure AC and Mn2O3 particles. Significantly, 4-NP degradation efficiency reached 99.6%, corresponding to 93.5% TOC removal under optimal conditions with microwave power of 400W, Mn2O3/AC dosage of 2g, reaction time of 5min, and initial concentration of 100mg/L. Hydroxyl radicals (OH) generated during catalytic reaction is the main oxidant, and O2 can not effectively improve removal rate. We proposed the microwave 'photoelectric effect' to interpret the generation of OH in view that microwave irradiation can directly excite the catalyst to produce electron-hole pairs and then transform H2O into OH on the surface of catalyst in solution. The obtained kinetic equation for microwave catalytic oxidation degradation of 4-NP was in line with pseudo-first-order kinetic model, that is, apparent rate constant increased as microwave power density increase.

  1. Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method.

    PubMed

    Yin, Cheng; Cai, Jinjun; Gao, Lingfei; Yin, Jingya; Zhou, Jicheng

    2016-03-15

    A new microwave catalytic oxidation process based on two kinds of catalysts, the commercially available activated carbon (AC) and Mn2O3 nanoparticle modified AC (Mn2O3/AC), was reported for the degradation of 4-nitrophenol (4-NP) without adding any oxidant. Effects of microwave power, catalyst dosage, irradiation time, and initial concentration for the degradation efficiency were studied. Results indicated that catalyst of Mn2O3/AC showed much higher catalytic activity than pure AC and Mn2O3 particles. Significantly, 4-NP degradation efficiency reached 99.6%, corresponding to 93.5% TOC removal under optimal conditions with microwave power of 400W, Mn2O3/AC dosage of 2g, reaction time of 5min, and initial concentration of 100mg/L. Hydroxyl radicals (OH) generated during catalytic reaction is the main oxidant, and O2 can not effectively improve removal rate. We proposed the microwave 'photoelectric effect' to interpret the generation of OH in view that microwave irradiation can directly excite the catalyst to produce electron-hole pairs and then transform H2O into OH on the surface of catalyst in solution. The obtained kinetic equation for microwave catalytic oxidation degradation of 4-NP was in line with pseudo-first-order kinetic model, that is, apparent rate constant increased as microwave power density increase. PMID:26642442

  2. Rumen degradable protein supply affects microbial efficiency in continuous culture and growth in steers.

    PubMed

    Brooks, M A; Harvey, R M; Johnson, N F; Kerley, M S

    2012-12-01

    We hypothesized that microbial efficiency and output from fermentation in the rumen would be optimized when peptide supply was balanced with peptide requirement of ruminal microflora. This study was conducted to measure response of varying rumen degradable peptide (RDPep) supply on ruminal fermentation characteristics and steer growth. A continuous culture experiment was conducted with diets formulated to achieve a predicted RDPep balance (RDPep supplied above RDPep required) of -0.30 to 1.45% CP with rumen degradable N (RDN) balance (RDN supplied above RDN required) above dietary ammonia-N requirement of microbes. Two additional treatments had RDPep balances of -0.30 and 0.78% CP with insufficient ammonia-N supply to meet microbial requirements. Single-flow fermenters (N = 24; n = 6) were inoculated with rumen fluid and maintained anaerobically at 39°C with a 0.06 h(-1) dilution rate. Inadequate RDN decreased OM digestion and microbial N flow, and increased rumen undegradable N (P < 0.01). Microbial efficiency decreased in RDN-deficient diets and was greatest when RDPep balance did not excessively exceed microbial requirement of RDPep predicted (P < 0.01). A growth study was conducted with 49 yearling, crossbred, Angus steers (initial BW 370 ± 34 kg). Animals were assigned to 1 of 4 treatment groups by BW and further divided into 3 pens with 4 steers per pen to achieve similar initial pen weights. Treatments consisted of 4 isonitrogenous diets balanced for RDN but varying in predicted RDPep balance (0.55%, -0.02%, -0.25%, and -0.65% CP). Animals were maintained on treatment for 70 d with individual BW taken on d 0, 1, 21, 42, 70, and 71. Final BW decreased linearly with decreasing RDPep (P = 0.05). Average daily gain and G:F displayed a quadratic effect with greater ADG and G:F at greater and lesser RDPep levels (P = 0.02). We concluded that balancing RDPep supply to predicted requirement improved fermentation efficiency and microbial output, which in turn

  3. Metal complex polymers for electroluminescent applications

    SciTech Connect

    Tao, X.T.; Suzuki, H.; Zhang, Y.D.; Watanabe, T.; Miyata, S.; Wada, T.; Sasabe, H.

    1998-07-01

    The authors report the synthesis and characterization of a soluble metal complex polymer for electroluminescent (EL) applications. The polymer was prepared by the reaction of a zinc Schiff base with 4,4{prime}-diphenylmethane-diisocyanate. The polymer is amorphous and with glass transition temperature of 156 C and is soluble in common organic solvents such as chloroform, tetrahydrofuran (THF), and N-methylpyrrolidinone (NMP). The zinc Schiff base, and the polyurethane (PU) shows strong photoluminescence under a UV-lamp illumination. Single and double layer EL devices consisting ITO/hole transfer layer (HTL)/PU/AL have been fabricated and characterized. The results indicated that the complex polymer could act as both electron transport and emissive layers for EL devices.

  4. GHz Electroluminescence Modulation in Nanoscale Subwavelength Emitters.

    PubMed

    Rossella, Francesco; Piazza, Vincenzo; Rocci, Mirko; Ercolani, Daniele; Sorba, Lucia; Beltram, Fabio; Roddaro, Stefano

    2016-09-14

    We investigate light emission from nanoscale point-sources obtained in hybrid metal-GaAs nanowires embedding two sharp axial Schottky barriers. Devices are obtained via the formation of Ni-rich metallic alloy regions in the nanostructure body thanks to a technique of controlled thermal annealing of Ni/Au electrodes. In agreement with recent findings, visible-light electroluminescence can be observed upon suitable voltage biasing of the junctions. We investigate the time-resolved emission properties of our devices and demonstrate an electrical modulation of light generation up to 1 GHz. We explore different drive configurations and discuss the intrinsic bottlenecks of the present device architecture. Our results demonstrate a novel technique for the realization of fast subwavelength light sources with possible applications in sensing and microscopy beyond the diffraction limit. PMID:27532324

  5. White light-emitting organic electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  6. Solid state carbon nanotube device for controllable trion electroluminescence emission

    NASA Astrophysics Data System (ADS)

    Liang, Shuang; Ma, Ze; Wei, Nan; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-03-01

    Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields.Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for

  7. Microstructure and electroluminescent performance of chemical vapor deposited zinc sulfide doped with manganese films for integration in thin film electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Topol, Anna Wanda

    Zinc sulfide (ZnS) doped with manganese (Mn), ZnS:Mn, is widely recognized as the brightest and most effective electroluminescent (EL) phosphor used in current thin film electroluminescent (TFEL) devices. ZnS acts as a host lattice for the luminescent activator, Mn, leading to a highly efficient yellow-orange EL emission, and resulting in a wide array of applications in monochrome, multi-color and full color displays. Although this wide band dap (3.7 eV) material can be prepared by several deposition techniques, the chemical vapor deposition (CVD) is the most promising for TFEL applications in terms of viable deposition rates, high thickness and composition uniformity, and excellent yield over large area panels. This study describes the development and optimization of a CVD ZnS:Mn process using diethylzinc [(C2H5)2Zn, DEZ], di-pi-cyclopentadienylmanganese [(C5H5)2Mn, CPMn], and hydrogen sulfide [H2S] as the chemical sources for, respectively, Zn, Mn, and S. The effects of key deposition parameters on resulting Film microstructure and performance are discussed, primarily in the context of identifying an optimized process window for best electroluminescence behavior. In particular, substrate temperature was observed to play a key role in the formation of high quality crystalline ZnS:Mn films leading to improved brightness and EL efficiency. Further investigations of the influence of temperature treatment on the structural characteristics and EL performance of the CVD ZnS:Mn film were carried out. In this study, the influence of post-deposition annealing both in-situ and ex-situ annealing processes, on chemical, structural, and electroluminescent characteristics of the phosphor layer are described. The material properties of the employed dielectric are among the key factors determining the performance, stability and reliability of the TFEL display and therefore, the choice of dielectric material for use in ACTFEL displays is crucial. In addition, the luminous

  8. Controlled electroluminescence from films composed of mixed bio-composites and nanotubes.

    PubMed

    Hendler, Netta; Mentovich, Elad D; Belgorodsky, Bogdan; Rimmerman, Dolev; Richter, Shachar

    2013-12-16

    Good things come in threes: A new type of light emitting bio-composites allowing for the nanometric separation of the active components is demonstrated. A protein with large host-guest capacities is used for the encapsulation of a water-soluble composite dye in a nano-sized shell, which efficiently reduces Förster resonance energy transfer and related mechanisms. Blending of this bio-composite with multi-walled nanotubes increases the charge injection efficiency, in the electro-luminescent device.

  9. A P450 gene associated with robust resistance to DDT in ciliated protozoan, Tetrahymena thermophila by efficient degradation.

    PubMed

    Feng, Lifang; Fu, Chengjie; Yuan, Dongxia; Miao, Wei

    2014-04-01

    Analysis of metabolic mechanisms of dichlorodiphenyltrichloroethane (DDT) accumulation and degradation in microorganisms, which could be used to reduce its hazard to higher organisms at the higher in the food chain, have not been investigated. Robust resistance to DDT (grows well in 256 mg/L DDT) and a surprising ability to degrade DDT (more than 70% DDT within 4h) were found in the ciliated protozoan Tetrahymena thermophila. A P450 gene (CYP5013C2) was found to respond specifically to DDT treatment. In the presence of 256 mg/L DDT, cells with overexpressing CYP5013C2 (p450-OE) grew faster and degraded DDT more efficiently than wild-type (WT) cells, while cells with CYP5013C2 partially knocked down (p450-KD) grew slower and exhibited reduced ability to degrade DDT compared to WT cells. Both dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) were detected in cells after exposure to DDT, and the concentration of DDD in the p450-OE strain gradually decreased from 0.5 to 4h. Thus, we argue that this P450 gene (CYP5013C2), by efficiently degrading DDT to DDD, is associated with robust resistance to DDT in Tetrahymena, and that a strain overexpressing this gene has the potential to serve as bioreactor that degrades environmental DDT.

  10. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  11. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  12. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.

    PubMed

    Gar Alalm, Mohamed; Ookawara, Shinichi; Fukushi, Daisuke; Sato, Akira; Tawfik, Ahmed

    2016-01-25

    The photocatalytic degradation of carbofuran (pesticide) and ampicillin (pharmaceutical) using synthesized WO3/ZrO2 nanoparticles under simulated solar light was investigated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra analyses were used to characterize the prepared catalysts. The optimum ratio of WO3 to ZrO2 was determined to be 1:1 for the degradation of both contaminants. The degradation of carbofuran and ampicillin by WO3/ZrO2 after 240 min of irradiation was 100% and 96%, respectively. Ruthenium (Ru) was employed as an additive to WO3/ZrO2 to enhance the photocatalytic degradation rate. Ru/WO3/ZrO2 exhibited faster degradation rates than WO3/ZrO2. Furthermore, 100% and 97% degradation of carbofuran and ampicillin, respectively, was achieved using Ru/WO3/ZrO2 after 180 min of irradiation. The durability of the catalyst was investigated by reusing the same suspended catalyst, which achieved 92% of its initial efficiency. The photocatalytic degradation of ampicillin and carbofuran followed pseudo-first order kinetics according to the Langmuir-Hinshelwood model.

  13. Bio-silica coated with amorphous manganese oxide as an efficient catalyst for rapid degradation of organic pollutant.

    PubMed

    Dang, T D; Banerjee, A N; Cheney, M A; Qian, S; Joo, S W; Min, B K

    2013-06-01

    A novel rapid green one-step method is developed for the preparation of bio-silica coated with amorphous MnO2 nanoparticles by treating bio-silica with an acidic permanganate solution. The method developed has the advantage of selectively coating the surface of either one or both sides of the porous silica structure with a thin catalytic active amorphous MnO2 layer in a controlled way. The uncoated and MnO2 coated bio-silica are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The catalytic activity of amorphous MnO2-coated bio-silica is examined by degrading organic dye at ambient condition. The as-synthesized samples show highly efficient and rapid degradation of Rhodamine B. The simplicity and cost-effectiveness of the materials and method can be very useful for highly efficient degradation of organic pollutants for environmental remediation. PMID:23434705

  14. The efficiency of turn-over processes in degraded peat as investigated under continuous flow conditions

    NASA Astrophysics Data System (ADS)

    Kleimeier, Christian; Karsten, Ulf; Janssen, Manon; Lennartz, Bernd

    2013-04-01

    Nitrate removal from run-off from agricultural land is in general required to reach a "good chemical status" of surface and groundwater bodies according to the European Water Framework Directive. Removing nitrates via heterotrophic denitrification is highly effective but requires stable anoxic environmental conditions as well as available organic carbon as an electron donator. Constructed wetlands, established on peat soils, through which the nitrate-loaded water is routed, may provide denitrification favorable conditions. A long-term flow experiment (mesocosm) was conducted employing a laboratory container set-up filled with decomposed peat aiming at quantifying the nitrate removal efficiency at various nitrate influx rates. The redox potential was measured at different depths to determine the spatial distribution of denitrificating zones. This new methodological approach allows the observation of biological nitrate turn over without interrupting the adjusted flow rate. We investigated the hydraulic properties and derived transport parameters for the mesocosm by analyzing experimental data from tracer tests. The obtained bromide breakthrough curves (BTC) were subjected to model analysis using the CXTFIT routine of the STANMOD software package. It could be demonstrated that the degraded peat has a dual porosity structure with roughly 40% of the pore water not participating in convective flow and transport processes. Further, the first flushing of mineralized nitrate upon rewetting and onset of flux may compromise any positive clean-up and nitrate removal effects occurring during long-term operation of peat wetlands. The development of the spatial sequence of bacterial cultures is characterized by the redox potential. It is dominated by the available substrates that serve as electron acceptors in bacterial respiration and occurs in a thermodynamically determined top-down order. The zonal development of the nitrate-consuming bacteria was observed and used to describe

  15. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency

    PubMed Central

    Jolmes, Fabian; Welke, Robert-William; Klipp, Edda; Herrmann, Andreas; Flöttmann, Max

    2016-01-01

    After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA) triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus. PMID:27780209

  16. Efficient function and characterization of GH10 xylanase (Xyl10g) from Gloeophyllum trabeum in lignocellulose degradation.

    PubMed

    Kim, Ho Myeong; Lee, Kwang Ho; Kim, Kyoung Hyoun; Lee, Dae-Seok; Nguyen, Quynh Anh; Bae, Hyeun-Jong

    2014-02-20

    The xylanase gene from Gloeophyllum trabeum was cloned and expressed in Pichia pastoris GS115. Xyl10g has a molecular weight of approximately 50kDa, and exhibits maximum specific activity at 70°C and a broad range of pH 4.0-7.0. Purified recombinant Xyl10g efficiently degraded popping-pretreated corn stover and newspaper waste at 50°C and pH 4.0 after 24h, and showed synergistic effects with Cel5B (endoglucanase) and BglB (β-glucosidase) to increase reduced sugar levels by about 1.71- to 1.88-fold and 2.26- to 2.48-fold, respectively. Although Xyl10g has low specific activity for beechwood xylan, as compared to XynA, Xyl10g more efficiently degraded corn stover than did XynA. According to immunogold labeling analysis, Xyl10g can attack highly substituted, unsubstituted, and low-substituted xylans, whereas XynA cannot efficiently attack highly substituted xylans, which is important for lignocellulose degradation. These results suggest that GH10 Xyl10g can be used for lignocellulose degradation. PMID:24380820

  17. Uncover the electroluminescence in wide band gap polymers

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Teyssedre, G.; Laurent, C.

    2015-10-01

    Due to the rapidly increasing demand of electric power, insulating materials used in electrical components are pushed up to their limits, where their electronic properties are of fundamental importance. Electroluminescence provides an elegant way to investigate electronic properties, high field effects and electrical ageing of polymers although the emission spectrum is still poorly understood. Unlike in organic semi-conductors, electroluminescence spectra of large band gap polymers exhibit specific spectral features that cannot be interpreted on the basis of the photo-physical properties of the material. By irradiating polypropylene thin films with electrons up to a few keV and by analyzing the emitted light, we were able to isolate the elementary components of the emission and to reconstruct the electroluminescence spectrum. For the first time, a comprehensive study of electroluminescence in polymers is provided and the underlying mechanisms of the emission are discussed. The results herein provide an univocal demonstration that the electroluminescence from wide band gap polymers results in part from chemical reactions, opening the way to the diagnosis and prognosis of polymeric materials under electrical stress.

  18. Hump-shaped internal collection efficiency of degraded a-Si:H {ital p-i-n} solar cells

    SciTech Connect

    Smole, F.; Topic, M.; Furlan, J.; Kusian, W.

    1997-07-01

    Measured internal collection efficiency (ICE) characteristics of annealed and degraded a-Si:H p-i-n solar cells were used for an analysis of their internal behavior. Using the numerical simulator ASPIN, simulations were performed in order to fit and explain pronounced hump-shaped voltage-dependent ICE characteristics of degraded structures under weak short-wavelength illumination. Agreement with measured ICE characteristics for a degraded cell was obtained only if in addition to the introduction of light-induced dangling bond defect states, their capture cross sections were also increased, in particular the capture cross section for the charged defect states were increased. This caused a change in the occupancy of defect states at the p-i interface and front part of the i layer under forward biases. Consequently, the electric field in the front part of the cell was sustained under higher forward biases, resulting in recovery of the ICE. {copyright} {ital 1997 American Institute of Physics.}

  19. Catalytic ozonation of oxalate with a cerium supported palladium oxide: an efficient degradation not relying on hydroxyl radical oxidation.

    PubMed

    Zhang, Tao; Li, Weiwei; Croué, Jean-Philippe

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO(2)) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO(2) during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO(2) of the catalyst forming surface complexes, and 2) O(3) was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O(2)), and O(2) gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO(2) in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter.

  20. Efficient degradation of crystal violet in magnetic CuFe2O4 aqueous solution coupled with microwave radiation.

    PubMed

    Chen, Hongzhe; Yang, Shaogui; Chang, Jiao; Yu, Kai; Li, Dongfang; Sun, Cheng; Li, Aimin

    2012-09-01

    Nanoscale copper ferrite was prepared by co-precipitation method, while citrate acid assisted method was used as reference. Microwave-induced degradation of crystal violet was performed with synthesized copper ferrite, and the behavior of copper ferrite in this process was studied by X-ray photoelectron spectroscopy, SEM/EDS and vector network analyzer. Microwave radiation could greatly enhance the activity of copper ferrite in organic oxidation. The variant of copper and iron on the surface and in the inner core of copper ferrite was studied here. Copper ferrite presents relatively low dielectric loss. Meanwhile, microwave radiation makes a faster degradation than conventional heating process, indicating an indispensable non-thermal effect of microwave with copper ferrite in the process. Microwave induced holes could be responsible for the efficient degradation. The effect of annealing on crystallization and degradation process was considered here, and the intermediates and products were studied by GC-MS and LC-MS to provide a comprehensively evaluation of degradation.

  1. Electroluminescence of double-doped diamond thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Shi; Wang, Xiao-Ping; Wang, Li-Jun; Zhu, Yu-Zhuan; Mei, Cui-Yu; Liu, Xin-Xin; Li, Huai-Hui; Gu, Ying-Zhan

    2010-09-01

    A new electroluminescence device is fabricated by microwave plasma chemical vapour deposition system and electron beam vapour deposition system. It is comprised of highly doped silicon/diamond/boron/nitrogen-doped diamond/indium tin oxide thin films. Effects of process parameters on morphologies and structures of the thin films are detected and analysed by scanning electron microscopy, Raman spectrometer and x-ray photoelectron spectrometer. A direct-current (DC) power supply is used to drive the electroluminescence device. The blue light emission with a luminance of 1.2 cd-m-2 is observed from this double-doped diamond thin film electroluminescence device at an applied voltage of 105 V.

  2. Nanosecond transient electroluminescence from polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Braun, D.; Moses, D.; Zhang, C.; Heeger, A. J.

    1992-12-01

    The transient electroluminescence from polymer light-emitting diodes is reported. When the devices are mounted on a microstrip transmission line, the temporal response is limited by the electrode geometry, with rise and fall times below 50 ns. With low duty-cycle pulses (0.5%) the electroluminescence intensity remains proportional to the current at values up to 10 A/cm2, two orders of magnitude greater than possible under direct current operation. Since the spectral blue-shift observed at high current levels (with power dissipation above 1 W/cm2) indicates significant sample heating, still higher levels should be possible with proper thermal management.

  3. Marine bacterium strain screening and pyrethroid insecticide-degrading efficiency analysis

    NASA Astrophysics Data System (ADS)

    Sun, Aili; Liu, Jinghua; Shi, Xizhi; Li, Dexiang; Chen, Jiong; Tang, Daojun

    2014-09-01

    A pyrethroid insecticide-degrading bacterium, strain HS-24, was isolated from an offshore seawater environment. The strain, which can degrade cypermethrin (CYP) and deltamethrin (DEL), was identified as Methylophaga sp. The optimal culture and degradation conditions for CYP and DEL by strain HS-24 is pH 7 at 28°C. Under optimum culture conditions, strain HS-24 exhibited a broad degradation concentration range of 100, 200, 400, 600, and 800 mg/L for CYP and DEL. The metabolic intermediates were analyzed by NMR, which provided strong evidence that CYP and DEL removal occurred mainly because of a biological process. The toxicity of the degradation products of strain HS-24 was studied simultaneously by measuring the light output of the luminescence bacterium. This demonstrated that the biodegradation ability of strain HS-24 significantly decreased the toxicity of CYP- and DEL-contaminated aquaculture seawater. Finally, the findings of this paper indicate that strain HS-24 is thus revealed as a biological agent for the remediation of marine aquatic environments.

  4. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals.

    PubMed

    Guan, Ying-Hong; Ma, Jun; Ren, Yue-Ming; Liu, Yu-Lei; Xiao, Jia-Yue; Lin, Ling-qiang; Zhang, Chen

    2013-09-15

    Magnetic porous copper ferrite (CuFe2O4) showed a notable catalytic activity to peroxymonosulfate (PMS). More than 98% of atrazine was degraded within 15 min at 1 mM PMS and 0.1 g/L CuFe2O4. In contrast, CuFe2O4 exhibited no obvious catalytic activity to peroxodisulfate or H2O2. Several factors affecting the catalytic performance of PMS/CuFe2O4 were investigated. Results showed that the catalytic degradation efficiency of atrazine increased with PMS and CuFe2O4 doses, but decreased with the increase of natural organic matters concentration. The catalytic oxidation also showed a dependence on initial pH. The presence of bicarbonate stimulated atrazine degradation by PMS/CuFe2O4 at low concentrations but inhibited the degradation at high concentrations. Furthermore, the reactive species for atrazine degradation in PMS/CuFe2O4 system were identified as hydroxyl radical (HO) and sulfate radical (SO4(·-)) through competition reactions of atrazine and nitrobenzene, instead of commonly used alcohol scavenging, which was not a reliable method in metal oxide catalyzed oxidation. Surface hydroxyl groups of CuFe2O4 were a critical part in radical generation and the copper on CuFe2O4 surface was an active site to catalyze PMS. The catalytic degradation of atrazine by PMS/CuFe2O4 was also effective under the background of actual waters.

  5. Xylose induces the phyllosphere yeast Pseudozyma antarctica to produce a cutinase-like enzyme which efficiently degrades biodegradable plastics.

    PubMed

    Watanabe, Takashi; Shinozaki, Yukiko; Yoshida, Shigenobu; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Fujii, Takeshi; Fukuoka, Tokuma; Kitamoto, Hiroko Kuze

    2014-03-01

    There is a need to speed up the degradation of used agricultural mulch films that are made of biodegradable plastics (BPs) in the field. Treating them with BP-degrading enzymes could be a solution to this problem. A cutinase-like enzyme of yeast Pseudozyma antarctica (PaE) has wide specificity of BPs degradation, but needs to be produced efficiently. Here we report that the production of PaE by P. antarctica can be increased by using xylose as carbon source. BP-degradation activity was analyzed using a polybutylene succinate-co-adipate (PBSA) emulsion as the substrate. Strain P. antarctica GB-4(1)W was found to be the best PaE producer among the tested strains. Using a 5-L jar fermentor with xylose fed-batch cultivation, high PaE productivity could be maintained and about 21 U/ml of PaE was obtained in 120 h. This amount was 100 times higher than the amount that we obtained previously (0.21 U/ml by flask cultivation using glycerol as carbon source). Under repeated xylose fed-batch cultivation with 24 h intervals, the maximum PaE production rate (0.34 U/ml/h) was maintained and the highest PaE productivity (28,000 U/2 L/d) was repeatedly obtained for 7 intervals. The activity of filtered jar-culture (crude PaE) was stable over 12 weeks at 4°C. Commercially available BP mulch films (20 μm thickness, cut into 1-cm-squares) were completely degraded by submerging them in crude PaE (2 U/ml) at 30°C in 24 h. These results indicated that concentrated PaE can rapidly degrade the strength of BP mulch films in the field so that they do not interfere with plowing.

  6. Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature

    NASA Astrophysics Data System (ADS)

    Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong

    2015-11-01

    In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.

  7. Draft Genome of Cladophialophora immunda, a Black Yeast and Efficient Degrader of Polyaromatic Hydrocarbons.

    PubMed

    Sterflinger, Katja; Lopandic, Ksenija; Blasi, Barbara; Poynter, Caroline; de Hoog, Sybren; Tafer, Hakim

    2015-01-01

    The fungal genus Cladophialophora comprises many species which cause severe and even fatal infections in humans as well as environmental strains able to degrade polyaromatic hydrocarbons. The draft genome of Cladophialophora immunda presented here is the first whole-genome sequence within this important genus. PMID:25635024

  8. Degradation of alachlor using an enhanced sono-Fenton process with efficient Fenton's reagent dosages.

    PubMed

    Wang, Chikang; Liu, Zonghan

    2015-01-01

    In this study, an enhanced sono-Fenton process for the degradation of alachlor is presented. At high ultrasonic power, low pH, and in the presence of adequate Fenton's reagent dosages, alachlor degradation can reach nearly 100%. The toxicity of treated alachlor wastewater, which was measured by changes in cell viability, slightly decreased after the Fenton or ultrasound/H2O2 process and significantly decreased after the enhanced sono-Fenton process. A satisfactory relationship was observed between the total organic carbon removal and cell viability increment, indicating that alachlor mineralization is a key step in reducing the toxicity of the solution. The formation of alachlor degradation byproducts was observed during the oxidation process, in which the first step was the substitution of a chloride by a hydroxyl group. In conclusion, the enhanced sono-Fenton process was effective in the degradation and detoxification of alachlor within a short reaction time. Thus, the treated wastewater can then be passed through a biological treatment unit for further treatment.

  9. Layered double hydroxides as efficient photocatalysts for visible-light degradation of Rhodamine B.

    PubMed

    Xia, Sheng-Jie; Liu, Feng-Xian; Ni, Zhe-Ming; Xue, Ji-Long; Qian, Ping-Ping

    2013-09-01

    A series of Zn/M-NO3-LDHs (M=Al, Fe, Ti, and Fe/Ti) have been synthesized by two different methods, and their activities for visible-light photocatalytic degradation on Rhodamine B (RB) were tested. Solids were analyzed by XRD, FT-IR, and ICP characterization, confirming the formation of pure LDH phase with good crystal structure. It was observed that the band gap of these nitrate LDH materials was following this order: Zn/Fe-NO3-LDHs (2.55 eV)>Zn/Fe/Ti-NO3-LDHs (2.88 eV)>Zn/Ti-NO3-LDHs (3.0 3eV)>Zn/Al-NO3-LDHs (3.23 eV); however, the degradation performance of RB by four materials followed the order: Zn/Ti-NO3-LDHs (98%)>Zn/Al-NO3-LDHs (96%)>Zn/Fe/Ti-NO3-LDHs (88%)>Zn/Fe-NO3-LDHs (72%). In addition, a possible mechanism for photocatalytic degradation on RB has also been presumed. Moreover, after three regeneration cycles, the percentage of RB degradation rate was still close to 90%.

  10. Draft Genome of Cladophialophora immunda, a Black Yeast and Efficient Degrader of Polyaromatic Hydrocarbons

    PubMed Central

    Lopandic, Ksenija; Blasi, Barbara; Poynter, Caroline; de Hoog, Sybren; Tafer, Hakim

    2015-01-01

    The fungal genus Cladophialophora comprises many species which cause severe and even fatal infections in humans as well as environmental strains able to degrade polyaromatic hydrocarbons. The draft genome of Cladophialophora immunda presented here is the first whole-genome sequence within this important genus. PMID:25635024

  11. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process.

    PubMed

    Wang, Xianfei; Pan, Ye; Zhu, Zirun; Wu, Jili

    2014-12-01

    An efficient heterogeneous catalyst, Fe-based metallic glass (Fe–Si–B amorphous ribbon), was successfully prepared for Fenton-like degradation of rhodamine B (RhB) by a melt-spinning method. The catalyst was characterized using XRD and SEM. The effects of various reaction parameters such as H2O2 dosage, temperature, initial pH value, Fe–Si–B dosage and initial RhB concentration on the degradation of RhB were studied. Almost complete degradation of RhB (20 mg L−1) was achieved within only 10 min by 0.5 g L−1 Fe–Si–B catalyst and 1.6 mM H2O2 at pH 3.0 at 295 K. Kinetic analyses showed that the degradation process could be described by a pseudo-first-order kinetic model. The catalytic stability was also investigated and it was found that the Fe–Si–B catalyst exhibited good structural stability and no loss of performance even after three cycles. It was concluded that the Fe–Si–B amorphous ribbon was a potential heterogeneous Fenton-like catalyst for industrial wastewater treatment.

  12. Bandgap-tailored NiO nanospheres: an efficient photocatalyst for the degradation of crystal violet dye solution

    NASA Astrophysics Data System (ADS)

    Vahini, Raja; Kumar, Puvaneswaran Senthil; Karuthapandian, Swaminathan

    2016-08-01

    Bandgap-tailored NiO nanospheres were successfully synthesized by facile precipitation method for the first time and characterized by XRD, EDX, SEM, TEM, FTIR, UV and PL. Interestingly, the modification of the band gap was observed using UV-Vis (DRS) spectroscopy, and the observed band gap is 3.31 eV. The morphology of the materials was analysed by SEM and TEM which show the sphere like structures of NiO with the particle size of ~20 nm. The efficiency of the materials was examined by the degradation of crystal violet dye under UV light illumination. The complete degradation was achieved within 60 min, and the mechanism of the degradation were also been proposed. In addition, the degradation of rhodamine B (RhB) and methylene blue dye solution was also carried out to extend the practical applications of NiO nanospheres. The involvement of reactive oxidative species (ROS) was found out by trapping experiment, and the ROS is superoxide radical anion.

  13. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate.

    PubMed

    Ding, Yaobin; Tang, Hebin; Zhang, Shenghua; Wang, Songbo; Tang, Heqing

    2016-11-01

    Microscaled CuFeO2 particles (micro-CuFeO2) were rapidly prepared via a microwave-assisted hydrothermal method and characterized by scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. It was found that the micro-CuFeO2 was of pure phase and a rhombohedral structure with size in the range of 2.8±0.6μm. The micro-CuFeO2 efficiently catalyzed the activation of peroxymonosulfate (PMS) to generate sulfate radicals (SO4-), causing the fast degradation of carbamazepine (CBZ). The catalytic activity of micro-CuFeO2 was observed to be 6.9 and 25.3 times that of micro-Cu2O and micro-Fe2O3, respectively. The enhanced activity of micro-CuFeO2 for the activation of PMS was confirmed to be attributed to synergistic effect of surface bonded Cu(I) and Fe(III). Sulfate radical was the primary radical species responsible for the CBZ degradation. As a microscaled catalyst, micro-CuFeO2 can be easily recovered by gravity settlement and exhibited improved catalytic stability compared with micro-Cu2O during five successive degradation cycles. Oxidative degradation of CBZ by the couple of PMS/CuFeO2 was effective in the studied actual aqueous environmental systems.

  14. Strategies to alleviate poverty and grassland degradation in Inner Mongolia: intensification vs production efficiency of livestock systems.

    PubMed

    Briske, David D; Zhao, Mengli; Han, Guodong; Xiu, Changbai; Kemp, David R; Willms, Walter; Havstad, Kris; Kang, Le; Wang, Zhongwu; Wu, Jianguo; Han, Xingguo; Bai, Yongfei

    2015-04-01

    Semi-nomadic pastoralism was replaced by sedentary pastoralism in Inner Mongolia during the 1960's in response to changes in land use policy and increasing human population. Large increases in numbers of livestock and pastoralist households (11- and 9-fold, respectively) during the past 60 yrs have variously degraded the majority of grasslands in Inner Mongolia (78 M ha) and jeopardize the livelihoods of 24 M human inhabitants. A prevailing strategy for alleviating poverty and grassland degradation emphasizes intensification of livestock production systems to maintain both pastoral livelihoods and large livestock numbers. We consider this strategy unsustainable because maximization of livestock revenue incurs high supplemental feed costs, marginalizes net household income, and promotes larger flock sizes to create a positive feedback loop driving grassland degradation. We offer an alternative strategy that increases both livestock production efficiency and net pastoral income by marketing high quality animal products to an increasing affluent Chinese economy while simultaneously reducing livestock impacts on grasslands. We further caution that this strategy be designed and assessed within a social-ecological framework capable of coordinating market expansion for livestock products, sustainable livestock carrying capacities, modified pastoral perceptions of success, and incentives for ecosystem services to interrupt the positive feedback loop that exists between subsistence pastoralism and grassland degradation in Inner Mongolia.

  15. An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices.

    PubMed

    Covino, Stefano; Cvancarová, Monika; Muzikár, Milan; Svobodová, Katerina; D'annibale, Alessandro; Petruccioli, Maurizio; Federici, Federico; Kresinová, Zdena; Cajthaml, Tomás

    2010-11-15

    This study comparatively investigated the PAH degradation ability of Lentinus tigrinus and Irpex lacteus in a historically polluted soil and creosote-impregnated shavings. With this regard, the effect of type of inoculum carrier (i.e., wheat straw, corn cobs and commercial pellets) and contaminant bioavailability was thoroughly determined. Although degradation performances of L. tigrinus were not significantly affected by the type of the support, they were invariably better than those of I. lacteus on both the polluted soil and the creosote-impregnated shavings. Although degradation efficiencies of all fungal microcosms were highly and significantly correlated with bioavailability, certain PAHs, such as chrysene and benzo[a]pyrene, were removed by L. tigrinus from the polluted soil at amounts that exceeded about 2.3-fold their respective bioavailabilities. Degradation of PAHs was negatively correlated with their organic carbon sorption coefficients (K(oc)) and hydrophobicity (logP). The strength of linear association with the latter parameter, however, was not affected by the type of contaminated matrix in L. tigrinus-based microcosms while it was significantly larger in the historically polluted soil than in the creosote-impregnated shavings in I. lacteus ones. PMID:20728989

  16. Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer

    SciTech Connect

    Scurlock, R.D.; Wang, B.; Ogilby, P.R.; Sheats, J.R.; Clough, R.L.

    1995-10-18

    Singlet molecular oxygen (a{sup 1}{Delta}{sub g}) is shown to be a reactive intermediate in the photoinduced oxidative decomposition of the electroluminescent material poly(2,5-bis(5,6-dihydrocholestanoxy)-1,4-phenylenevinylene) [BCHA-PPV] in both liquid solutions and solid films. Upon irradiation of this polymer in CS{sub 2}, singlet oxygen is produced by energy transfer from the BCHA-PPV triplet state to ground state oxygen with a quantum yield of nearly 0.025. Singlet oxygen reacts with BCHA-PPV, resulting in extensive chain scission of the macromolecule. The reaction with singlet oxygen is unique to the polymer; the monomeric analog of this system, stilbene, does not appreciably react with singlet oxygen. Polymer degradation is proposed to proceed via addition of singlet oxygen in a{sub {pi}} 2+{sub {pi}}2 cycloaddition reaction to the double bond that connects phenylene groups in the macromolecule. 60 refs., 6 figs.

  17. Efficient photocatalytic degradation of gaseous formaldehyde by the TiO{sub 2}/tourmaline composites

    SciTech Connect

    Zhang, Gaoke Qin, Xi

    2013-10-15

    Graphical abstract: - Highlights: • The TiO{sub 2}/tourmaline composites were prepared by a sol–gel method. • The composites exhibited excellent photocatalytic activity and good stability. • The physicochemical property of tourmaline may be favor for the degradation of HCHO. • The mixed-phase of anatase and rutile TiO{sub 2} may be favor for the degradation of HCHO. - Abstract: The TiO{sub 2} supported tourmaline composites were prepared by a sol–gel method and used as a photocatalyst for the degradation of formaldehyde (HCHO). The composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), N{sub 2} adsorption–desorption, Fourier transform infrared (FT-IR) spectroscopy and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). The results indicate that the mixed-phase of anatase and rutile exists in the TiO{sub 2}/tourmaline composites. The specific surface area of the TiO{sub 2}/tourmaline composites is much higher than that of the pure TiO{sub 2}. The TiO{sub 2}/tourmaline composites exhibited excellent photocatalytic activity for the degradation of HCHO, which was 6 times higher than that of the pure TiO{sub 2}. Moreover, the excellent photocatalytic activity of the composites was fully maintained after five photocatalytic cycles, which may be attributed to the physicochemical property of tourmaline and the mixed-phase of anatase and rutile in the TiO{sub 2}/tourmaline composites.

  18. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  19. Screening for a new Streptomyces strain capable of efficient keratin degradation.

    PubMed

    Chao, Ya-Peng; Xie, Fu-Hong; Yang, Jing; Lu, Jing-Hua; Qian, Shi-Jun

    2007-01-01

    Keratinous wastes could be degraded by some microorganisms in nature. Native human foot skin (NHFS) was used as sole nitrogen source to screen microorganisms with keratin-degrading capability. From approximately 200 strains, a strain of Streptomyces sp. strain No.16 was found to possess the strongest keratinolytic activity, and the total activity in the culture was 110 KU/ml with specific activity of 2870 KU/mg protein (KU: keratinase unit). Substrate specificity test indicated that the crude keratinase could degrade keratin azure, human hair, cock feathers and collagen. The optimal pH of the crude keratinase ranged from 7.5 to 10 and the temperature ranged from 40 degrees C to 55 degrees C. Metal chelating agent ethylenediamine tetraacetic acid obviously stimulated the keratinolytic activity but suppressed the proteolytic activity. To our knowledge, this is the first report on specific induction of keratinases by NHFS from an actinomycete. Moreover, excellent characteristics of its crude keratinase may lead to the potential application in waste treatment and recovery, poultry and leather industry, medicine, and cosmetic development.

  20. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity.

    PubMed

    Xu, Bingbing; Qi, Fei; Sun, Dezhi; Chen, Zhonglin; Robert, Didier

    2016-03-01

    In this study, the performance of bezafibrate (BZF) degradation and detoxification in the aqueous phase using cerium-modified red mud (RM) catalysts prepared using different cerium sources and synthesis methods were evaluated. Experimental results showed that the surface cerium modification was responsible for the development of the catalytic activity of RM and this was influenced by the cerium source and the synthesis method. Catalyst prepared from cerium (IV) by precipitation was found to show the best catalytic activity in BZF degradation and detoxification. Reactive oxygen species including peroxides, hydroxyl radicals, and super oxide ions were identified in all reactions and we proposed the corresponding catalytic reaction mechanism for each catalyst that prepared from different cerium source and method. This was supported by the intermediates profiles that were generated upon BZF degradation. The surface and the structural properties of cerium-modified RM were characterized in detail by several analytical methods. Two interesting findings were made: (1) the surface texture (specific surface area and mesoporous volume) influenced the catalytic reaction pathway; and (2) Ce(III) species and oxygen vacancies were generated on the surface of the catalyst after cerium modification. This plays an important role in the development of the catalytic activity. PMID:26706928

  1. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    PubMed Central

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  2. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Cherry, Joel R; Harris, Paul; Meyer, Anne S

    2006-01-01

    This study examined the cellulytic effects on steam-pretreated barley straw of cellulose-degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a beta-glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5-6.5) and temperature (35-65 degrees C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam-pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.

  3. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation.

    PubMed

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-11-15

    Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO3 nanoplates using a photo-reduction method to generate WO3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO3 and WO3/Ag composites was conducted under visible light irradiation. The results show that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% in 5h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2h under visible light irradiation for all three WO3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process. PMID:27450332

  4. Efficiency of enteral nitrogen support in surgical patients: small peptides v non-degraded proteins.

    PubMed Central

    Ziegler, F; Ollivier, J M; Cynober, L; Masini, J P; Coudray-Lucas, C; Levy, E; Giboudeau, J

    1990-01-01

    In a prospective study, 12 intensive care patients, after abdominal surgery, received three alternate six-day courses of two enteral diets with identical nitrogen (0.3 g N/kg per day) and energy (60 kcal/kg per day) supply. The protein hydrolysate (PH) diet contained enzyme-hydrolysed casein and lactoserum (60% small peptides), while the non-degraded protein (NDP) diet contained a nitrogen source of similar amino acid composition, but in the form of non-degraded proteins. The patients were randomised to receive either PH-NDP-PH or NDP-PH-NDP. Parameters reflecting protein metabolism were assessed in the plasma, urine, and stomal effluent on days 1, 6, 12, and 18, three hours after stopping the nutrition (t0), and one hour after restarting it (t1). Comparisons of t1 and t0 values showed that 13 amino acids (including the eight essential amino acids) increased significantly with the protein hydrolysate diet, but only two increased with the non-degraded protein diet. Similarly, with protein hydrolysate, insulin-aemia at t1 was significantly higher than at t0 and correlated with plasma leucine, phenylalanine, alanine, and lysine concentrations. In addition, significant improvements in plasma albumin, transferrin, and retinol binding protein concentrations were seen with protein hydrolysate, together with a significant decrease in the plasma phenylalanine/tyrosine ratio and urinary 3-methylhistidine excretion. We conclude that in patients in intensive care after abdominal surgery enteral support containing small peptides is more effective than an equivalent diet containing whole proteins in restoring plasma amino acid and protein levels. PMID:2123819

  5. Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite.

    PubMed

    Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash

    2016-07-01

    The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. PMID:27101017

  6. Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Stuckelberger, M.; Despeisse, M.; Bugnon, G.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.

    2013-10-01

    Several amorphous silicon (a-Si:H) deposition conditions have been reported to produce films that degrade least under light soaking when incorporated into a-Si:H solar cells. However, a systematic comparison of these a-Si:H materials has never been presented. In the present study, different plasma-enhanced chemical vapor deposition conditions, yielding standard low-pressure VHF a-Si:H, protocrystalline, polymorphous, and high-pressure RF a-Si:H materials, are compared with respect to their optical properties and their behavior when incorporated into single-junction solar cells. A wide deposition parameter space has been explored in the same deposition system varying hydrogen dilution, deposition pressure, temperature, frequency, and power. From the physics of layer growth, to layer properties, to solar cell performance and light-induced degradation, a consistent picture of a-Si:H materials that are currently used for a-Si:H solar cells emerges. The applications of these materials in single-junction, tandem, and triple-junction solar cells are discussed, as well as their deposition compatibility with rough substrates, taking into account aspects of voltage, current, and charge collection. In sum, this contributes to answering the question, "Which material is best for which type of solar cell?"

  7. Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Bora, Tanujjal; Dutta, Joydeep

    2016-05-01

    Photodegradation of phenol in the presence of tin dioxide (SnO2) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO2. In this study antimony (Sb) doped tin dioxide (SnO2) nanoparticles were prepared at a low temperature (80 °C) by a sol-gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO2:Sb was found to be a maximum for 0.6 wt.% Sb doped SnO2 nanoparticles with 10 mg L-1 phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  8. An efficient fermentation method for the degradation of cyanogenic glycosides in flaxseed.

    PubMed

    Wu, C-F; Xu, X-M; Huang, S-H; Deng, M-C; Feng, A-J; Peng, J; Yuan, J-P; Wang, J-H

    2012-01-01

    Recently, flaxseed has become increasingly popular in the health food market because it contains a considerable amount of specific beneficial nutrients such as lignans and omega-3 fatty acids. However, the presence of cyanogenic glycosides (CGs) in flaxseed severely limits the exploitation of its health benefits and nutritive value. We, therefore, developed an effective fermentation method, optimised by response surface methodology (RSM), for degrading CGs with an enzymatic preparation that includes 12.5% β-glucosidase and 8.9% cyanide hydratase. These optimised conditions resulted in a maximum CG degradation level of 99.3%, reducing the concentration of cyanide in the flaxseed power from 1.156 to 0.015 mg g(-1) after 48 h of fermentation. The avoidance of steam heat to evaporate hydrocyanic acid (HCN) results in lower energy consumption and no environmental pollution. In addition, the detoxified flaxseed retained the beneficial nutrients, lignans and fatty acids at the same level as untreated flaxseed, and this method could provide a new means of removing CGs from other edible plants, such as cassava, almond and sorghum by simultaneously expressing cyanide hydratase and β-glucosidase. PMID:22530603

  9. An efficient fermentation method for the degradation of cyanogenic glycosides in flaxseed.

    PubMed

    Wu, C-F; Xu, X-M; Huang, S-H; Deng, M-C; Feng, A-J; Peng, J; Yuan, J-P; Wang, J-H

    2012-01-01

    Recently, flaxseed has become increasingly popular in the health food market because it contains a considerable amount of specific beneficial nutrients such as lignans and omega-3 fatty acids. However, the presence of cyanogenic glycosides (CGs) in flaxseed severely limits the exploitation of its health benefits and nutritive value. We, therefore, developed an effective fermentation method, optimised by response surface methodology (RSM), for degrading CGs with an enzymatic preparation that includes 12.5% β-glucosidase and 8.9% cyanide hydratase. These optimised conditions resulted in a maximum CG degradation level of 99.3%, reducing the concentration of cyanide in the flaxseed power from 1.156 to 0.015 mg g(-1) after 48 h of fermentation. The avoidance of steam heat to evaporate hydrocyanic acid (HCN) results in lower energy consumption and no environmental pollution. In addition, the detoxified flaxseed retained the beneficial nutrients, lignans and fatty acids at the same level as untreated flaxseed, and this method could provide a new means of removing CGs from other edible plants, such as cassava, almond and sorghum by simultaneously expressing cyanide hydratase and β-glucosidase.

  10. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. PMID:26891355

  11. Efficient visible-light photocatalytic degradation of sulfadiazine sodium with hierarchical Bi₇O₉I₃under solar irradiation.

    PubMed

    Xu, MengMeng; Zhao, YaLei; Yan, QiShe

    2015-01-01

    Bi₇O₉I₃, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi₇O₉I₃. The result of SEM observation shows that the as-synthesized Bi₇O₉I₃ consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi₇O₉I₃ at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO(3)(-) and SO(4)(2-) of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi₇O₉I₃. The as-synthesized Bi₇O₉I₃exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction. PMID:26675999

  12. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis

    SciTech Connect

    Gijzen, H.J.; Zwart, K.B.; Verhagen, F.J.M.; Vogels, G.D.

    1988-04-05

    A novel two-stage anaerobic process for the microbial conversion of cellulose into biogas has been developed. In the first phase, a mixed population of rumen bacteria and ciliates was used in the hydrolysis and fermentation of cellulose. The volatile fatty acids (VFA) produced in this acidogenic reactor were subsequently converted into biogas in a UASB-type methanogenic reactor. A stepwise increase of the loading rate from 11.9 to 25.8 g volatile solids/L reactor volume/day (g VS/L/day) did not affect the degradation efficiency in the acidogenic reactor, whereas the methanogenic reactor appeared to be overloaded at the highest loading rate. Cellulose digestion was almost complete at all loading rates applied. The two-stage anaerobic process was also tested with a closed fluid circuit. In this instance total methane production was 0.438 L CH/sub 4//g VS added, which is equivalent to 98% of the theoretical value. The application of rumen microorganisms in combination with a high-rate methane reactor is proposed as a means of efficient anaerobic degradation of cellulosic residues to methane. Because this newly developed two-phase system is based on processes and microorganisms from the ruminant, it will be referred to as Rumen Derived Anaerobic Digestion (RUDAD)-process.

  13. Degradation in the efficiency of glass Resistive Plate Chambers operated without external gas supply

    NASA Astrophysics Data System (ADS)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.; Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.

    2015-06-01

    Resistive plate chambers (RPC) are particle detectors commonly used by the high energy physics community. Their normal operation requires a constant flow of gas mixture to prevent self-poisoning which reduces the chamber's capability to detect particles. We studied how quickly the efficiency of two RPCs drops when operated in sealed mode, i.e. without refreshing the gas mixture. The test aim is to determine how RPCs could be used as particle detectors in non-laboratory applications, such as those exploiting muon tomography for geological imaging or homeland security. The two sealed RPCs were operated in proportional mode for a period of more than three months, and their efficiencies were recorded continuously and analysed in 8-hours intervals. The results show that the efficiency drops on average by 0.79 ± 0.01 % every 24 hours of operation and returns close to the initial value after purging the old gas mixture and flushing the chambers with fresh gas.

  14. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    SciTech Connect

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso; Glick, Stephen; Kerekes, Tamas; Teodorescu, Remus

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation. Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.

  15. Direct observation of bubble-assisted electroluminescence in liquid xenon

    NASA Astrophysics Data System (ADS)

    Erdal, E.; Arazi, L.; Chepel, V.; Rappaport, M. L.; Vartsky, D.; Breskin, A.

    2015-11-01

    Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electroluminescence signals induced by ionization electrons from alpha-particle tracks. This confirms recent indirect evidence that the observed photons are due to electroluminescence within a xenon vapor layer trapped under the electrode. The bubbles seem to emerge spontaneously due to heat flow from 300 K into the liquid, or in a controlled manner by locally boiling the liquid with resistive wires. Controlled bubble formation resulted in energy resolution of σ/E ≈ 7.5% for ~ 6000 ionization electrons. The phenomenon could pave ways towards the conception of large-volume `local dual-phase' noble-liquid TPCs.

  16. Multilayer white light-emitting organic electroluminescent device.

    PubMed

    Kido, J; Kimura, M; Nagai, K

    1995-03-01

    Organic electroluminescent devices are light-emitting diodes in which the active materials consist entirely of organic materials. Here, the fabrication of a white light-emitting organic electroluminescent device made from vacuum-deposited organic thin films is reported. In this device, three emitter layers with different carrier transport properties, each emitting blue, green, or red light, are used to generate white light. Bright white light, over 2000 candelas per square meter, nearly as bright as a fluorescent lamp, was successfully obtained at low drive voltages such as 15 to 16 volts. The applications of such a device include paper-thin light sources, which are particularly useful for places that require lightweight illumination devices, such as in aircraft and space shuttles. Other uses are a backlight for liquid crystal display as well as full color displays, achieved by combining the emitters with micropatterned color filters.

  17. White electroluminescence of n-ZnO:Al/p-diamond heterostructure devices

    NASA Astrophysics Data System (ADS)

    Yang, Can; Wang, Xiao-Ping; Wang, Li-Jun; Pan, Xiu-Fang; Li, Song-Kun; Jing, Long-Wei

    2013-08-01

    An n-ZnO:Al/p-boron-doped diamond heterostructure electroluminescent device is produced, and a rectifying behavior can be observed. The electroluminescence spectrum at room temperature exhibits two visible bands centred at 450 nm-485 nm (blue emission) and 570 nm-640 nm (yellow emission). Light emission with a luminance of 15 cd/m2 is observed from the electroluminescent device at a forward applied voltage of 85 V, which is distinguished from white light by the naked eye.

  18. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  19. Theoretical and material studies on thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    Electroluminescent materials and device technology were assessed. The evaluation strongly suggests the need for a comprehensive theoretical and experimental study of both materials and device structures, particularly in the following areas: carrier generation and multiplication; radiative and nonradiative processes of luminescent centers; device modeling; new device concepts; and single crystal materials growth and characterization. Modeling of transport properties of hot electrons in ZnSe and the generation of device concepts were initiated.

  20. Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover.

    PubMed

    Nakashima, Kazunori; Ebi, Yuuki; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2016-03-01

    Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US-SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US-SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US-SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US-SP pretreated biomass without the formation of microbial inhibitor furfural. PMID:26547502

  1. Photocatalytic degradation of water organic pollutants. Kinetic modeling and energy efficiency

    SciTech Connect

    Serrano, B.; Lasa, H. de

    1997-11-01

    Photocatalytic conversion of a model pollutant (methylene blue) is studied in a novel Photo-CREC reactor unit. The experiments developed allow one to investigate the suitability of an heterogeneous reaction model which accounts for the concentrations of the model pollutant both in the bulk and on the mesh--TiO{sub 2}. In additional, a photochemical-thermodynamic efficiency factor (PTEF) is further examined, with the help of the enthalpy of {sup {sm_bullet}}OH formation from water and oxygen and based on the analysis in the light energy absorbed by the mesh. The resulting PTEF is a dimensionless parameter and has to be calculated at high enough model pollutant concentrations, that is, at conditions where zero-order reactions prevail. The PTEF values found in the Photo-CREC unit with the incorporated recent technical improvements are in the 0.0182 level, and this represents quantum yields of 6.31% of the so-called ideal efficiency.

  2. Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover.

    PubMed

    Nakashima, Kazunori; Ebi, Yuuki; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2016-03-01

    Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US-SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US-SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US-SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US-SP pretreated biomass without the formation of microbial inhibitor furfural.

  3. Immobilization of degradative bacteria in polyurethane-based foams: embedding efficiency and effect on bacterial activity

    SciTech Connect

    Wilde, E.W.; Radway, J.C.; Hazen, T.C.; Hermann, P.

    1996-09-03

    The immobilization of TCE-degrading bacterium Burkholderia cepacia was evaluated using hydrophilic polyurethane foam. The influence of several foam formulation parameters upon cell retention was examined. Surfactant type was a major determinant of retention, with a lecithin- based compound retaining more cells than pluronic or silicone based surfactants. Excessive amounts of surfactant led to increased washout of bacteria. Increasing the biomass concentration from 4.8% to 10.5% caused fewer cells to be washed out. Embedding at reduced temperature did not significantly affect retention, while the use of a silane binding agent gave inconsistent results. The optimal formulation retained all but 0.2% of total embedded cells during passage of 2 liters of water through columns containing 2 g of foam. All foam formulations tested reduced the culturability of embedded cells by several orders of magnitude. However, O{sub 2} and CO{sub 2} evolution rates of embedded cells were never less than 50% of unembedded cells. Nutrient amendments stimulated an increase in cell volume and ribosomal activity as indicated by hybridization studies using fluorescently labeled ribosomal probes. these results indicated that, although immobilized cells were nonculturable, they were metabolically active and thus could be used for biodegradation of toxic compounds.

  4. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures.

    PubMed

    Kuriakose, Sini; Satpati, Biswarup; Mohapatra, Satyabrata

    2015-10-14

    Copper doped ZnO nanostructures have been synthesized by a facile wet chemical method. Structural properties of as-synthesized nanomaterials have been studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, while UV-visible absorption spectroscopy and Raman spectroscopy have been used to study their optical properties. Sunlight driven photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dyes in water was used to evaluate the photocatalytic activities of Cu doped ZnO nanostructures using UV-visible absorption spectroscopy. The results showed that there is an optimum Cu doping level which leads to the highly enhanced photocatalytic activity of Cu doped ZnO nanostructures, as compared to pure ZnO nanostructures. A mechanism for the enhanced photocatalytic activity of Cu-ZnO nanostructures is tentatively proposed. The enhanced photocatalytic activity of Cu-ZnO nanostructures is attributed to the combined effects of improved separation of photogenerated charge carriers due to optimal Cu doping in ZnO nanostructures and the formation of ZnO-CuO nanoheterojunctions.

  5. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye.

    PubMed

    Stambolova, Irina; Shipochka, Capital Em Cyrillicaria; Blaskov, Vladimir; Loukanov, Alexandrе; Vassilev, Sasho

    2012-12-01

    Spray pyrolysis procedure for preparation of nanostructured TiO(2) films with higher photocatalytic effectiveness and longer exploitation life is presented in this study. Thin films of active nanocrystalline TiO(2) were obtained from titanium isopropoxide, stabilized with acetyl acetone and characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The activity of sprayed nanostructured TiO(2) is tested for photocatalytic degradation of Reactive Black 5 dye with concentrations up to 80 ppm. Interesting result of the work is the reduction of toxicity after photocatalytic treatment of RB5 with TiO(2), which was confirmed by the lower percentage of mortality of Artemia salina. It was proved that the film thickness, conditions of post deposition treatment and the type of the substrate affected significantly the photocatalytic reaction. Taking into account that the parameters are interdependent, it is necessary to optimize the preparation conditions in order to synthesize photocatalytic active films.

  6. Efficient inhibition of ovarian cancer by degradable nanoparticle-delivered survivin T34A gene

    PubMed Central

    Luo, Li; Du, Ting; Zhang, Jiumeng; Zhao, Wei; Cheng, Hao; Yang, Yuping; Wu, Yujiao; Wang, Chunmei; Men, Ke; Gou, Maling

    2016-01-01

    Gene therapy has promising applications in ovarian cancer therapy. Blocking the function of the survivin protein could lead to the growth inhibition of cancer cells. Herein, we used degradable heparin–polyethyleneimine (HPEI) nanoparticles to deliver a dominant-negative human survivin T34A (hs-T34A) gene to treat ovarian cancer. HPEI nanoparticles were characterized and were found to have a dynamic diameter of 66±4.5 nm and a zeta potential of 27.1±1.87 mV. The constructed hs-T34A gene expression plasmid could be effectively delivered into SKOV3 ovarian carcinoma cells by HPEI nanoparticles with low cytotoxicity. Intraperitoneal administration of HPEI/hs-T34A complexes could markedly inhibit tumor growth in a mouse xenograft model of SKOV3 human ovarian cancer. Moreover, according to our results, apparent apoptosis of cancer cells was observed both in vitro and in vivo. Taken together, the prepared HPEI/hs-T34A formulation showed potential applications in ovarian cancer gene therapy. PMID:26893558

  7. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Kushwaha, H. S.; Vaish, Rahul

    2016-03-01

    This study investigates BaTiO3 decorated reduced graphene oxide sheets as a potential visible light active catalyst for dye degradation (Rhodamine B). The composites were prepared through conventional hydrothermal synthesis technique using hydrazine as a reducing agent. A number of techniques have been employed to affirm the morphology, composition and photocatalytic properties of the composites; these include UV-visible spectrophotoscopy that assisted in quantifying the concentration difference of Rhodamine B. The phase homogeneity of the composites was examined through x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) was employed to confirm the orientation of the BaTiO3 particles over the reduced graphene oxide sheets. Photoluminescence (PL) emission spectra assisted in determining the surface structure and excited state of the catalyst. Fourier transformed-infrared (FTIR) spectra investigated the vibrations and adsorption peak of the composites, thereby ascertaining the formation of reduced graphene oxide. In addition, diffuse reflectance spectroscopy (DRS) demonstrated an enhanced absorption in the visible region. The experimental investigations revealed that graphene oxide acted as charge collector and simultaneously facilitated surface adsorption and photo-sensitization. It could be deduced that BaTiO3-reduced graphene oxide composites are of significant interest the field of water purification through solar photocatalysis. [Figure not available: see fulltext.

  8. Efficient inhibition of ovarian cancer by degradable nanoparticle-delivered survivin T34A gene.

    PubMed

    Luo, Li; Du, Ting; Zhang, Jiumeng; Zhao, Wei; Cheng, Hao; Yang, Yuping; Wu, Yujiao; Wang, Chunmei; Men, Ke; Gou, Maling

    2016-01-01

    Gene therapy has promising applications in ovarian cancer therapy. Blocking the function of the survivin protein could lead to the growth inhibition of cancer cells. Herein, we used degradable heparin-polyethyleneimine (HPEI) nanoparticles to deliver a dominant-negative human survivin T34A (hs-T34A) gene to treat ovarian cancer. HPEI nanoparticles were characterized and were found to have a dynamic diameter of 66±4.5 nm and a zeta potential of 27.1±1.87 mV. The constructed hs-T34A gene expression plasmid could be effectively delivered into SKOV3 ovarian carcinoma cells by HPEI nanoparticles with low cytotoxicity. Intraperitoneal administration of HPEI/hs-T34A complexes could markedly inhibit tumor growth in a mouse xenograft model of SKOV3 human ovarian cancer. Moreover, according to our results, apparent apoptosis of cancer cells was observed both in vitro and in vivo. Taken together, the prepared HPEI/hs-T34A formulation showed potential applications in ovarian cancer gene therapy. PMID:26893558

  9. Alkali metal ion induced cube shaped mesoporous hematite particles for improved magnetic properties and efficient degradation of water pollutants.

    PubMed

    Roy, Mouni; Naskar, Milan Kanti

    2016-07-27

    Mesoporous cube shaped hematite (α-Fe2O3) particles were prepared using FeCl3 as an Fe(3+) precursor and 1-butyl-3-methylimidazolium bromide (ionic liquid) as a soft template in the presence of different alkali metal (lithium, sodium and potassium) acetates, under hydrothermal conditions at 150 °C/4 h followed by calcination at 350 °C. The formation of the α-Fe2O3 phase in the synthesized samples was confirmed by XRD, FTIR and Raman spectroscopy. Unlike K(+) ions, intercalation of Li(+) and Na(+) ions occurred in α-Fe2O3 crystal layers as evidenced by XRD and Raman spectroscopy. Electron microscopy (FESEM and TEM) images showed the formation of cube-like particles of different sizes in the presence of Li(+), Na(+) and K(+) ions. The mesoporosity of the products was confirmed by N2 adsorption-desorption studies, while their optical properties were analyzed by UV-DRS. Na(+) ion intercalated α-Fe2O3 microcubes showed improved coercivity (5.7 kOe) due to increased strain in crystals, and shape and magnetocrystalline anisotropy. Temperature dependent magnetization of the samples confirmed the existence of Morin temperature in the range of 199-260 K. Catalytic degradation of methylene blue (MB), a toxic water pollutant, was studied using the synthesized products via a heterogeneous photo-Fenton process. The degradation products were traced by electrospray ionization-mass spectrometry (ESI-MS). The α-Fe2O3 microcubes obtained in the presence of Na(+) ions exhibited a more efficient degradation of MB to non-toxic open chain products. PMID:27406648

  10. Efficiency degradation due to tracking errors for point focusing solar collectors

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1978-01-01

    An important parameter in the design of point focusing solar collectors is the intercept factor which is a measure of efficiency and of energy available for use in the receiver. Using statistical methods, an expression of the expected value of the intercept factor is derived for various configurations and control law implementations. The analysis assumes that a radially symmetric flux distribution (not necessarily Gaussian) is generated at the focal plane due to the sun's finite image and various reflector errors. The time-varying tracking errors are assumed to be uniformly distributed within the threshold limits and allows the expected value calculation.

  11. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites.

    PubMed

    Xu, Chengqun; Wu, Honghai; Gu, Feng Long

    2014-06-30

    BiOBr/Na-montmorillonite composites (BiOBr-Mt) were prepared under laboratory ambient conditions by using the surfactant cetyltrimethylammonium bromide (CTAB) as the Br source and template, and the as-synthesized samples were characterized by XRD, FT-IR, FESEM, TEM equipped with EDS, BET and UV-vis DRS techniques. Interestingly, the particle size of BiOBr can be controlled by CTAB modified Na-montmorillonite. The photocatalytic activity of the as-prepared was further evaluated by decomposition of Rhodamine B (RhB) under visible light irradiation; the obtained results revealed that the BiOBr-Mt sample had strong photoabsorption in the visible light region. It has higher photocatalytic activity than pure BiOBr alone. There exists an efficient adsorption for RhB onto BiOBr-Mt contrast to that onto the pure BiOBr. The adsorption processes can be well described by pseudo-second-order kinetic model; meanwhile, the adsorption behaviors can be described by both Freundlich and Langmuir equations but the former was better. Additionally, the relevant adsorption and degradation mechanisms were explored and the possible mechanisms were presented. The photocatalytic activity has high effect both in acidic and basic conditions on the degradation reaction but in acidic condition is more favorable. After three recycles, BiOBr-Mt did not exhibit any significant loss of photocatalytic activity, confirming the photocatalyst was essentially stable.

  12. Humic acid degradation by the synthesized flower-like Ag/ZnO nanostructure as an efficient photocatalyst.

    PubMed

    Ghaneian, Mohammad Taghi; Morovati, Pouran; Ehrampoush, Mohammad Hassan; Tabatabaee, Masoumeh

    2014-01-01

    Nano-sized flower-like Ag/ZnO was synthesized by a simple method using zinc acetate and silver acetate under hydrothermal condition. Powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the synthesized powder. Nano flower-like Ag/ZnO was used as a photocatalyst for degradation of humic acid in aqueous solution. The disappearance of HA was analyzed by measuring the absorbance of sample at special wavelength (254 nm). The effects of various parameters such as amount of photocatalyst, pH, initial humic acid concentration and irradiation time on degradation rate were systematically investigated. Photodegradation efficiency was small when the photolysis was carried out in the absence of Ag/ZnO and it was also negligible in the absence of light. Approximately 70% of humic acid (50 mg/L) has been eliminated after 40 minutes in the presences of catalyst (catalyst dose o.6 g/L and pH =7) and UVA irradiation. While, 100% of humic acid has been eliminated with solar irradiation. PMID:25520850

  13. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film.

    PubMed

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs. PMID:26631223

  14. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    NASA Astrophysics Data System (ADS)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  15. Ultraviolet Electroluminescence and Blue-Green Phosphorescence using an Organic Diphosphine Oxide Charge Transporting Layer.

    SciTech Connect

    Burrows, Paul E.; Padmaperuma, Asanga B.; Sapochak, Linda S.; Djurovich, Peter I.; Thompson, Mark E.

    2006-05-01

    We report electroluminescence with a peak wavelength at 338 nm from a simple bilayer organic light emitting device (OLED) made using 4,4’-bis(diphenylphosphine oxide) biphenyl (PO1). In an OLED geometry, the material is preferentially electron transporting. Doping the PO1 layer with iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N, C2’)picolinate (FIrpic) gives rise to electrophosphorescence with a peak external quantum efficiency of 7.8% at 0.09 mA/cm2 and 5.8% at 13 mA/cm2. The latter current density is obtained at 6.3 V applied forward bias. This represents a new class of wide-bandgap charge transporting organic materials which may prove useful as host materials for blue electrophosphoresent OLEDs.

  16. CdS-sensitized TiO2 in phenazopyridine photo-degradation: catalyst efficiency, stability and feasibility assessment.

    PubMed

    Zyoud, Ahed H; Zaatar, Nidal; Saadeddin, Iyad; Ali, Cheknane; Park, DaeHoon; Campet, Guy; Hilal, Hikmat S

    2010-01-15

    Mineralization of phenazopyridine, 1, in water, under solar-simulator radiation was efficiently achieved using nanoparticle CdS-sensitized rutile TiO(2), TiO(2)/CdS, 2, as photo-catalysts. Despite that, 2 showed two main drawbacks. Firstly, the system was difficult to recover by simple filtration, and demanded centrifugation. Secondly, the sensitizer CdS showed relatively high tendency to leach out hazardous Cd(2+) ions under photo-degradation reaction conditions. In an attempt to solve out such difficulties, 2 was supported onto sand surface. The sand/TiO(2)/CdS system, 3, was easier to recover but showed slightly lower catalytic activity compared to 2. On the other hand, the support failed to prevent leaching of Cd(2+). This indicates limited future applicability of CdS-sensitized TiO(2) photo-catalyst systems, in solar-based water purification strategies, unless leaching out tendency is completely prevented.

  17. Correlation between excitation of Alfven modes and degradation of ICRF heating efficiency in TFTR

    SciTech Connect

    Bernabei, S.; Chang, Z.; Darrow, D.

    1997-05-01

    Alfven modes are excited by energetic ions in TFTR during intense minority ICRF heating. There is a clear threshold in rf power above which the modes are destabilized. The net effect of these modes is the increase of the fast ion losses, with an associated saturation of the ion tail energy and of the efficiency of the heating. Typically, several modes are excited with progressive n-numbers, with frequencies in the neighborhood of 200 kHz. Results suggest that Energetic Particle Modes (EPM), mostly unseen by the Mirnov coils, are generated near the center and are responsible for the ion losses. Stronger global TAE modes, which are destabilized by the stream of displaced fast ions, appear responsible only for minor losses.

  18. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide.

    PubMed

    Yang, Shiying; Wang, Ping; Yang, Xin; Shan, Liang; Zhang, Wenyi; Shao, Xueting; Niu, Rui

    2010-07-15

    In this paper, the degradation of azo dye Acid Orange 7 (AO7) by three common peroxides (persulfate (PS), peroxymonosulfate (PMS) or hydrogen peroxide (H(2)O(2))) under various activation conditions, i.e., heat (25-80 degrees C), UV light (254 nm), or anions (SO(4)(2-), NO(3)(-), CO(3)(2-), HCO(3)(-), HPO(4)(2-), and Cl(-)), was investigated. The order of AO7 degradation efficiencies by heat activation is PS>PMS>H(2)O(2). PS oxidation activated by heat (>50 degrees C) is an effective degradation technology, while PMS and H(2)O(2) are hardly activated. When assisted by UV, peroxides could all be activated and degrade AO7 quickly. The order is PS>H(2)O(2)>PMS. We activated peroxides, for the first time, by using some anions and compared the subsequently degradation efficiencies of AO7. It was found that PMS could be activated by some anions, but PS and H(2)O(2) cannot. The activation efficiencies of PMS by SO(4)(2-) and NO(3)(-) are negligible, whereas remarkable by HCO(3)(-), HPO(4)(2-), Cl(-) and CO(3)(2-). For HCO(3)(-), HPO(4)(2-) and Cl(-), the activation efficiencies become higher with the increase of anion concentration. For CO(3)(2-), however, the activation efficiency is higher at lower concentration.

  19. Bistable electroluminescence in p-i-n light-emitting tunnel-diodes enhanced by aperiodic-superlattice injectors

    NASA Astrophysics Data System (ADS)

    Cao, S. M.; Willander, M.; Toropov, A. A.; Shubina, T. V.; Mel'tser, B. Ya.; Kop'ev, P. S.; Lundström, T.; Holtz, P. O.; Bergman, J. P.; Monemar, B.

    1998-01-01

    A p-i-n resonant tunnel diode is designed and investigated using photoluminescence (PL) spectroscopy. The device is based on an Al0.4Ga0.6As/GaAs graded-index waveguide heterostructure enhanced by aperiodic-superlattice injectors for simultaneous resonant injection of electrons and heavy holes. The bias-dependent study of photocurrent, electroluminescence (EL) and PL show strong resonance behavior in the optical intensity confirming the field-dependent resonant injection of the excited states in the emission layers. Pronounced voltage-current bistability due to injection efficiency leads to multiple-wavelength EL and lasing action.

  20. Kinetic analysis and energy efficiency of phenol degradation in a plasma-photocatalysis system.

    PubMed

    Wang, Hui-juan; Chen, Xiao-yang

    2011-02-28

    Combination of two kinds of advanced oxidation processes (AOPs) is an effective approach to control wastewater pollution. In this research, a pulsed discharge plasma system with multi-point-to-plate electrode and an immobilized TiO(2) photocatalysis system is coupled to oxidize target pollutant in aqueous solution. Kinetic analysis (pseudo-first order kinetic constant, k) and energy efficiency (energy yield value at 50% phenol conversion, G(50)) of phenol oxidation in different reaction systems (plasma alone and plasma-photocatalysis) are reviewed to account for the synergistic mechanism of plasma and photocatalysis. The experimental results show that higher k and G(50) of phenol oxidation can be obtained in the plasma-photocatalysis system under the conditions of different gas bubbling varieties, initial solution pH and radical scavenger addition. Moreover, the investigation tested hydroxyl radical (OH) is the most important species for phenol removal in the synergistic system of plasma-photocatalysis as well as in the plasma alone system.

  1. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    PubMed

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  2. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    PubMed

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater. PMID:22395910

  3. Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1-xGex/Si substrate

    NASA Astrophysics Data System (ADS)

    Tanoto, H.; Yoon, S. F.; Lew, K. L.; Loke, W. K.; Dohrman, C.; Fitzgerald, E. A.; Tang, L. J.

    2009-10-01

    We studied the electroluminescence and structural characteristics of five-layer stacked self-assembled InAs/In0.1Ga0.9As quantum dot (QD) structures grown on graded Si1-xGex/Si substrate. The QD was found to take on a lens shaped structure with aspect ratio of 0.23±0.05. Room-temperature electroluminescence at 1.29 μm was observed from the QD structures. The external quantum efficiency as function of injected current was investigated and the dominant carrier recombination processes were identified from analysis of the current-optical power relationship.

  4. Room-temperature electroluminescence from germanium in an Al(0.3)Ga(0.7)As/Ge heterojunction light-emitting diode by Γ-valley transport.

    PubMed

    Cho, Seongjae; Park, Byung-Gook; Yang, Changjae; Cheung, Stanley; Yoon, Euijoon; Kamins, Theodore I; Yoo, S J Ben; Harris, James S

    2012-07-01

    Group-IV materials for monolithic integration with silicon optoelectronic systems are being extensively studied. As a part of efforts, light emission from germanium has been pursued with the objective of evolving germanium into an efficient light source for optical communication systems. In this study, we demonstrate room-temperature electroluminescence from germanium in an Al(0.3)Ga(0.7)As/Ge heterojunction light-emitting diode without any complicated manipulation for alternating material properties of germanium. Electroluminescence peaks were observed near 1550 nm and the energy around this wavelength corresponds to that emitted from direct recombination at the Γ-valley of germanium.

  5. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    NASA Astrophysics Data System (ADS)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug

  6. Electroluminescence from completely horizontally oriented dye molecules

    NASA Astrophysics Data System (ADS)

    Komino, Takeshi; Sagara, Yuta; Tanaka, Hiroyuki; Oki, Yuji; Nakamura, Nozomi; Fujimoto, Hiroshi; Adachi, Chihaya

    2016-06-01

    A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d'] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimate orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (Tg) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above Tg.

  7. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Teyssedre, G.; Laurent, C.

    2016-01-01

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.

  8. Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi₂WO₆ under near ultraviolet light.

    PubMed

    Chen, Peng; Zhu, Lingyan; Fang, Shuhong; Wang, Chunying; Shan, Guoqiang

    2012-02-21

    Microcystin-RR (MC-RR) is one of the most common cyanotoxin microcystins in fresh water and is of great concern due to its potential hepatotoxicity. In the present study, Bi(2)WO(6) was synthesized with a hydrothermal method by varying the pH of the reaction solution in the range of 1-11. The surface area of the catalysts decreased, but the crystallinity and crystal size increased with the pH. The adsorption and degradation capacities of the catalysts decreased with increasing the preparation solution pH. The Bi(2)WO(6) prepared at pH 1 (Bi(2)WO(6)-pH1) displayed the highest adsorption and degradation capacity to MC-RR even though it consisted of randomly aggregated particles. Nearly 100% of MC-RR at 10 mg L(-1) was removed after 30 min of irradiation of near-ultraviolet light (300-400 nm) in a solution with Bi(2)WO(6) concentration of 0.2 g L(-1). The photodegradation efficiency of Bi(2)WO(6)-pH1 was greater in acid medium than in basic solutions. Several intermediate products were observed and identified by liquid chromatography/mass spectrometry/mass spectrometry, and a unique photodegradation pathway was proposed. It was assumed that a photo-Kolbe process happened at the site carboxyl acid group of the d-Glu residue by the photogenerated holes, producing a hydroperoxyl product at m/z 513.8. This intermediate could be further decomposed to an alcohol product at m/z 505.8 and a ketone product at m/z 504.8. The aromatic ring and diene bond of the Adda chain could also be attacked by the holes and form phenol and diol products. PMID:22250846

  9. Efficient degradation of lignocellulosic plant biomass without pretreatment by the 9 thermophilic anaerobe, Anaerocellum thermophilum DSM 6725

    SciTech Connect

    Yang, Sung-Jae; Kataeva, Irina; Hamilton-Brehm, Scott; Engle, Nancy L; Tschaplinski, Timothy J; Doeppke, Crissa; Davis, Dr. Mark F.; Westpheling, Janet; Adams, Michael W. W.

    2009-01-01

    Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that 'Anaerocellum thermophilum' DSM 6725, an anaerobic bacterium that grows optimally at 75 C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.

  10. Blue-red electroluminescence from hybrid Eu:phosphors/ZnO-nanowires/p-GaN LED

    NASA Astrophysics Data System (ADS)

    Viana, B.; Pauporte, T.; Lupan, O.; Devis, L.; Gacoin, T.

    2014-03-01

    Nanowire (NW) based light emitting diodes (LEDs) have drawn great research interest due to many advantages compared to thin film based devices. Marked improved performances are expected from nanostructured active layers for light emission. Semiconducting oxide nanowires can act as direct waveguides and favor emitted light extraction without use of lens and reflectors in LEDs. Moreover, the use of ZnO wires avoids the presence of grain boundaries and then the emission efficiency is boosted by the absence of non-radiative recombinations at the joint defects. In this context, europium (Eu):Chelate/ZnO:Mg-nanowires/p-GaN light-emitting-diode (LED) structures have been fabricated showing near-UV/violet electroluminescence and red emission from trivalent europium. Fabricated LED structures exhibit UV-blue light at about 380 nm coming from the n-(ZnO:Mg)/p-GaN and a sharp red emission at ˜611 nm related to the intra-4f transition of Eu ions. It is found that in the case of the ZnO:Mg, the emission wavelength is slightly shifted to smaller wavelength to be well adapted to the trivalent europium excitation band. Radiative energy transfer is achieved through strong overlap between the emission wavelength from n-(ZnO:Mg)/p- GaN heterojunction and chelate ligand intensive absorption band. Indeed the Eu:chelate/(ZnO:Mg)-nanowires/p-GaN structure appears well adapted to UV/blue and red dual emission. Our results shows that the design of LEDs based on the chelate ligands are important issue to enhance the performance of electroluminescence devices based on ZnO nanowire arrays/p-GaN heterojunction and rare-earth metal complexes.

  11. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    NASA Astrophysics Data System (ADS)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  12. Mechanosynthesis of a phenylenedivinylidenebisquinoline. Optical, morphological and electroluminescence properties

    NASA Astrophysics Data System (ADS)

    Gutiérrez, A. R.; Vázquez, R. A.; Moggio, I.; Arias, E.; Coreño, O.; Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, O.; Jiménez-Barrera, R. M.

    2015-04-01

    A phenylenedivinylidenebisquinoline oligomer was obtained by reacting quinaldine with 2,5-bis(octyloxy)terephtalaldehyde via the Knoevenagel reaction by mechanosynthesis. The product was characterized by 1H Homo-J-Resolved NMR, 13C NMR, FT-IR, Fluorescence, UV-Vis spectroscopy and by FAB+ mass spectrometry. X-ray diffraction studies indicate that the molecule is semicrystalline, while laser scanning confocal microscopy shows that the emission comes from the crystals. As a consequence, the morphology and accordingly the PL values in spun films can be changed by varying the spinning conditions. Intrinsic electroluminescent properties are reported using the ITO/M1AMec/Al single layer configuration.

  13. Photo- and Electroluminescence of Substituted Divinyl Dibenzothiophene Sulfone

    NASA Astrophysics Data System (ADS)

    Samsonova, L. G.; Degtyarenko, K. M.; Kopylova, T. N.; Palatova, A. V.; Kukhta, A. V.

    2016-08-01

    The spectral properties of two substituted divinyl dibenzothiophene sulfone in solutions of tetrahydrofuran, polyvinylcarbazole films, and films obtained by thermal vacuum deposition are investigated. The ability of these compounds in thin-layer ITO/PEDOT:PSS/NPD/L/Ca/Al and ITO/PEDOT:PSS/PVK+L/Ca/Al structures (L denotes the examined luminophore) to emit radiation at applied voltage is investigated. It is shown that the spectra of photo- and electroluminescence in the film have a strong red shift of ~100 nm compared to the photoluminescence in solutions. It is suggested that radiation belongs to excimers.

  14. Low degradable protein supply to increase nitrogen efficiency in lactating dairy cows and reduce environmental impacts at barn level.

    PubMed

    Edouard, N; Hassouna, M; Robin, P; Faverdin, P

    2016-02-01

    Generally, <30% of dairy cattle's nitrogen intake is retained in milk. Large amounts of nitrogen are excreted in manure, especially in urine, with damaging impacts on the environment. This study explores the effect of lowering dietary degradable nitrogen supplies--while maintaining metabolisable protein--on dairy cows' performance, nitrogen use efficiency and gas emissions (NH3, N2O, CH4) at barn level with tied animals. Two dietary N concentrations (CP: 12% DM for LowN; 18% DM for HighN) were offered to two groups of three lactating dairy cows in a split-plot design over four periods of 2 weeks. Diets were formulated to provide similar metabolisable protein supply, with degradable N either in deficit or in excess (PDIN of 84 and 114 g/kg DM for LowN and HighN, respectively). Cows ingested 0.8 kg DM/day less on the LowN diet, which was also 2.5% less digestible. Milk yield and composition were not significantly affected. N exported in milk was 5% lower (LowN: 129 g N/day; HighN: 136 g N/day; P<0.001) but milk protein yield was not significantly affected (LowN: 801 g/day; HighN: 823 g/day; P=0.10). Cows logically ingested less nitrogen on the LowN diet (LowN: 415 g N/day; HighN: 626 g N/day; P<0.001) resulting in a higher N use efficiency (N milk/N intake; LowN: 0.31; HighN: 0.22; P<0.001). N excreted in urine was almost four times lower on the LowN diet (LowN: 65 g N/day; HighN: 243 g N/day; P<0.001) while urinary urea N concentration was eightfold lower (LowN: 4.6 g/l; HighN: 22.9 g/l; P<0.001). Ammonia emission (expressed in g/h in order to remove periods of the day with potential interferences with volatile molecules from feed) was also lower on the LowN diet (LowN: 1.03 g/h per cow; HighN: 1.25 g/h per cow; P<0.05). Greenhouse gas emissions (N2O and CH4) at barn level were not significantly affected by the amount of dietary N. Offering low amounts of degradable protein with suitable metabolisable protein amounts to cattle improved nitrogen use efficiency and

  15. Low degradable protein supply to increase nitrogen efficiency in lactating dairy cows and reduce environmental impacts at barn level.

    PubMed

    Edouard, N; Hassouna, M; Robin, P; Faverdin, P

    2016-02-01

    Generally, <30% of dairy cattle's nitrogen intake is retained in milk. Large amounts of nitrogen are excreted in manure, especially in urine, with damaging impacts on the environment. This study explores the effect of lowering dietary degradable nitrogen supplies--while maintaining metabolisable protein--on dairy cows' performance, nitrogen use efficiency and gas emissions (NH3, N2O, CH4) at barn level with tied animals. Two dietary N concentrations (CP: 12% DM for LowN; 18% DM for HighN) were offered to two groups of three lactating dairy cows in a split-plot design over four periods of 2 weeks. Diets were formulated to provide similar metabolisable protein supply, with degradable N either in deficit or in excess (PDIN of 84 and 114 g/kg DM for LowN and HighN, respectively). Cows ingested 0.8 kg DM/day less on the LowN diet, which was also 2.5% less digestible. Milk yield and composition were not significantly affected. N exported in milk was 5% lower (LowN: 129 g N/day; HighN: 136 g N/day; P<0.001) but milk protein yield was not significantly affected (LowN: 801 g/day; HighN: 823 g/day; P=0.10). Cows logically ingested less nitrogen on the LowN diet (LowN: 415 g N/day; HighN: 626 g N/day; P<0.001) resulting in a higher N use efficiency (N milk/N intake; LowN: 0.31; HighN: 0.22; P<0.001). N excreted in urine was almost four times lower on the LowN diet (LowN: 65 g N/day; HighN: 243 g N/day; P<0.001) while urinary urea N concentration was eightfold lower (LowN: 4.6 g/l; HighN: 22.9 g/l; P<0.001). Ammonia emission (expressed in g/h in order to remove periods of the day with potential interferences with volatile molecules from feed) was also lower on the LowN diet (LowN: 1.03 g/h per cow; HighN: 1.25 g/h per cow; P<0.05). Greenhouse gas emissions (N2O and CH4) at barn level were not significantly affected by the amount of dietary N. Offering low amounts of degradable protein with suitable metabolisable protein amounts to cattle improved nitrogen use efficiency and

  16. Mn/Ti-doped carbon xerogel for efficient catalysis of microcystin-LR degradation in the water surface discharge plasma reactor.

    PubMed

    Xin, Qing; Zhang, Yi; Li, Zhongjian; Lei, Lecheng; Yang, Bin

    2015-11-01

    The novel catalysts of Mn/Ti-doped carbon xerogel (CX) were synthesized for efficient degradation of microcystin-LR (MC-LR) in the water surface discharge plasma reactor. The degradation efficiency of 79.7% was obtained in 6 min with 0.5 wt% Ti impregnation of CX, and it would be increased with higher amount of Ti. In particular, Mn-doped CX resulted in larger mesoporous particle diameter and higher porosity in the matrix, and thereby, the highest efficiency of 88.6% was achieved for CX-Ti-Mn. The possible degradation pathway of MC-LR was elucidated on the basis of the LC-MS analysis. It demonstrated that Adda chain was cleaved from the MC-LR cyclic peptide by OH radical attack after plasma discharge in the presence of catalysts, and the generated nontoxic products can be further easily degraded in the biological treatment. Therefore, Mn/Ti-doped carbon xerogel is promising as the catalyst for the improvement of MC-LR degradation in the water surface discharge plasma reactor. PMID:26139411

  17. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.

    PubMed

    El-Temsah, Yehia S; Sevcu, Alena; Bobcikova, Katerina; Cernik, Miroslav; Joner, Erik J

    2016-02-01

    Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg(-1) DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil.

  18. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.

    PubMed

    El-Temsah, Yehia S; Sevcu, Alena; Bobcikova, Katerina; Cernik, Miroslav; Joner, Erik J

    2016-02-01

    Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg(-1) DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil. PMID:26598990

  19. A study of the efficiency of edible oils degraded in alkaline conditions by Pseudomonas aeruginosa SS-219 and Acinetobacter sp. SS-192 bacteria isolated from Japanese soil.

    PubMed

    Sugimori, Daisuke; Utsue, Tomohiro

    2012-03-01

    High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8-9 and 25-40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200-4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH. PMID:22805803

  20. Synthesis and electroluminescent properties of anthracene derivatives containing electron-withdrawing oxide moieties

    SciTech Connect

    Yoon, Jhin-yeong; Na, Eun Jae; Park, Soo Na; Lee, Seok Jae; Kim, Young Kwan; Yoon, Seung Soo

    2014-10-15

    Highlights: • Blue fluorescent material is important for application in full-color displays. • We have synthesized emitters based on anthracene connected with oxide moieties. • 1C shows a highly efficient blue EL emission due to electron-injection property. - Abstract: A series of new blue-emitting materials: (4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)(phenyl)methanone (1); 9-(naphthalen-2-yl)-10-(4-((diphenyl)phosphine oxide)phenyl)anthracene (2); 9-(naphthalen-2-yl)-10-(4-(phenylsulfonyl)phenyl)anthracene (3) were designed and synthesized via Suzuki cross-coupling reaction. Multilayer OLEDs were fabricated in the following sequence: ITO (180 nm)/NPB (50 nm)/blue materials 1–3 (30 nm)/TPBi (15 nm)/Liq (2 nm)/Al (100 nm). All devices showed the efficient blue EL emissions. In particular, the device using 1 as an emitter exhibited efficient blue electroluminescent properties with a maximum luminous, power, external quantum efficiency and CIE coordinates of 0.36 cd/A, 0.90 lm/W, 0.55% at 20 mA/cm{sup 2} and (x = 0.16, y = 0.20) at 10.0 V, respectively.

  1. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes

    PubMed Central

    Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca

    2016-01-01

    Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy. PMID:27677240

  2. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process.

    PubMed

    Wang, Huijiao; Bakheet, Belal; Yuan, Shi; Li, Xiang; Yu, Gang; Murayama, Seiichi; Wang, Yujue

    2015-08-30

    Degradation of 1,4-dioxane by ozonation, electrolysis, and their combined electro-peroxone (E-peroxone) process was investigated. The E-peroxone process used a carbon-polytetrafluorethylene cathode to electrocatalytically convert O2 in the sparged ozone generator effluent (O2 and O3 gas mixture) to H2O2. The electro-generated H2O2 then react with sparged O3 to yield aqueous OH, which can in turn oxidize pollutants rapidly in the bulk solution. Using p-chlorobenzoic acid as OH probe, the pseudo-steady concentration of OH was determined to be ∼0.744×10(-9)mM in the E-peroxone process, which is approximately 10 and 186 times of that in ozonation and electrolysis using a Pt anode. Thanks to its higher OH concentration, the E-peroxone process eliminated 96.6% total organic carbon (TOC) from a 1,4-dioxane solution after 2h treatment with a specific energy consumption (SEC) of 0.376kWhg(-1) TOCremoved. In comparison, ozonation and electrolysis using a boron-doped diamond anode removed only ∼6.1% and 26.9% TOC with SEC of 2.43 and 0.558kWhg(-1) TOCremoved, respectively. The results indicate that the E-peroxone process can significantly improve the kinetics and energy efficiency for 1,4-dioxane mineralization as compared to the two individual processes. The E-peroxone process may thus offer a highly effective and energy-efficient alternative to treat 1,4-dioxane wastewater.

  3. High-sensitivity strain visualization using electroluminescence technologies

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  4. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode.

    PubMed

    Yang, Bo; Jiang, Chaojin; Yu, Gang; Zhuo, Qiongfang; Deng, Shubo; Wu, Jinhua; Zhang, Hong

    2015-12-15

    The novel F-doped Ti/SnO2 electrode prepared by SnF4 as the single-source precursor was used for electrochemical degradation of aqueous perfluorooctanoic acid (PFOA). Higher oxidation reactivity and significantly longer service life were achieved for Ti/SnO2-F electrode than Ti/SnO2-X (X=Cl, Br, I, or Sb) electrode, which could decomposed over 99% of PFOA (50 mL of 100 mg L(-1)) within 30-min electrolysis. The property of Ti/SnO2-F electrode and its electrooxidation mechanism were investigated by XRD, SEM-EDX, EIS, LSV, and interfacial resistance measurements. We propose that the similar ionic radii of F and O as well as strong electronegativity of F caused its electrochemical stability with high oxygen evolution potential (OEP) and smooth surface to generate weakly adsorbed OH. The preparation conditions of electrode were also optimized including F doping amount, calcination temperature, and dip coating times, which revealed the formation process of electrode. Additionally, the major mineralization product, F(-), and low concentration of shorter chain perfluorocarboxylic acids (PFCAs) were detected in solution. So the reaction pathway of PFOA electrooxidation was proposed by intermediate analysis. These results demonstrate that Ti/SnO2-F electrode is promising for highly efficient treatment of PFOA in wastewater. PMID:26183235

  5. Sol-Gel Synthesis and Characterizations of CoMoO4 Nanoparticles: An Efficient Photocatalytic Degradation of 4-Chlorophenol.

    PubMed

    Umapathy, V; Neeraja, P

    2016-03-01

    Cobalt molybdate CoMoO4 nanoparticles (NPs) were successfully synthesized using cobalt nitrate, ammonium molybdate, citric acid and ethyl cellulose by a simple sol-gel method. Structural, morphological, optical and magnetic properties of the obtained powder were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, high resolution scanning electron microscope (HR-SEM), energy dispersive X-ray (EDX), UV-Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results indicated that the resultant powder was pure single phase crystalline with monoclinic structure. FT-IR spectra indicate the type of bonds between metals and oxygen. HR-SEM images shows that the morphology of the powder consist with well defined nanoparticles (NPs) structure. VSM results showed antiferromagnetic behavior. Photo-catalytic activity of CoMoO4 nanoparticles (NPs) was performed. The addition of TiO2 catalyst enhanced the photo-catalytic activity of CoMoO4 nanoparticles (NPs). The catalysts CoMoO4, Ti02 and mixed oxide catalyst CoMoO4-TiO2 nano- composites (NCs) were tested for the photo-catalytic degradation (PCD) of 4-chlorophenol (4-CP). It was found that the PCD efficiency of CoMoO4-TiO2 NCs was higher (97.5%) than that of pure CoMoO4 (88.0%) and TiO2 (94.0%) catalysts. PMID:27455742

  6. Efficient immobilization of mushroom tyrosinase utilizing whole cells from Agaricus bisporus and its application for degradation of bisphenol A.

    PubMed

    Kampmann, Markus; Boll, Stefan; Kossuch, Jan; Bielecki, Julia; Uhl, Stefan; Kleiner, Beatrice; Wichmann, Rolf

    2014-06-15

    A simple and efficient procedure for preparation and immobilization of tyrosinase enzyme was developed utilizing whole cells from the edible mushroom Agaricus bisporus, without the need for enzyme purification. Tyrosinase activity in the cell preparation remained constant during storage at 21 °C for at least six months. The cells were entrapped in chitosan and alginate matrix capsules and characterized with respect to their resulting tyrosinase activity. A modification of the alginate with colloidal silica enhanced the activity due to retention of both cells and tyrosinase from fractured cells, which otherwise leached from matrix capsules. The observed activity was similar to the activity that was obtained with immobilized isolated tyrosinase in the same material. Mushroom cells in water were susceptible to rapid inactivation, whereas the immobilized cells maintained 73% of their initial activity after 30 days of storage in water. Application in repeated batch experiments resulted in almost 100% conversion of endocrine disrupting bisphenol A (BPA) for 11 days, under stirring conditions, and 50-60% conversion after 20 days, without stirring under continuous usage. The results represent the longest yet reported application of immobilized tyrosinase for degradation of BPA in environmental water samples.

  7. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode.

    PubMed

    Yang, Bo; Jiang, Chaojin; Yu, Gang; Zhuo, Qiongfang; Deng, Shubo; Wu, Jinhua; Zhang, Hong

    2015-12-15

    The novel F-doped Ti/SnO2 electrode prepared by SnF4 as the single-source precursor was used for electrochemical degradation of aqueous perfluorooctanoic acid (PFOA). Higher oxidation reactivity and significantly longer service life were achieved for Ti/SnO2-F electrode than Ti/SnO2-X (X=Cl, Br, I, or Sb) electrode, which could decomposed over 99% of PFOA (50 mL of 100 mg L(-1)) within 30-min electrolysis. The property of Ti/SnO2-F electrode and its electrooxidation mechanism were investigated by XRD, SEM-EDX, EIS, LSV, and interfacial resistance measurements. We propose that the similar ionic radii of F and O as well as strong electronegativity of F caused its electrochemical stability with high oxygen evolution potential (OEP) and smooth surface to generate weakly adsorbed OH. The preparation conditions of electrode were also optimized including F doping amount, calcination temperature, and dip coating times, which revealed the formation process of electrode. Additionally, the major mineralization product, F(-), and low concentration of shorter chain perfluorocarboxylic acids (PFCAs) were detected in solution. So the reaction pathway of PFOA electrooxidation was proposed by intermediate analysis. These results demonstrate that Ti/SnO2-F electrode is promising for highly efficient treatment of PFOA in wastewater.

  8. Positive role of incorporating P-25 TiO2 to mesoporous-assembled TiO2 thin films for improving photocatalytic dye degradation efficiency.

    PubMed

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2014-09-15

    In this work, a simple and effective strategy to improve the photocatalytic dye degradation efficiency of the mesoporous-assembled TiO2 nanoparticle thin films by incorporating small contents of commercial P-25 TiO2 during the thin film preparation was developed. The mesoporous-assembled TiO2 nanoparticles were synthesized by a sol-gel method with the aid of a mesopore-directing surfactant, followed by homogeneously mixing with P-25 TiO2 prior to the thin film coating on glass substrate. The mesoporous-assembled TiO2 film with 5 wt.% P-25 TiO2 incorporation and calcined at 400°C provided an improved photocatalytic Acid Black (AB) dye degradation efficiency. The increase in number of coated layers to the optimum four layers of the aforementioned film was found to further improve the degradation efficiency. The recyclability test of this 5 wt.% P-25 TiO2-incorporated mesoporous-assembled TiO2 film with four coated layers revealed that it can be reused for multiple cycles without a requirement of post-treatment while the degradation efficiency was retained.

  9. Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation

    SciTech Connect

    Brazzini, Tommaso Sun, Huarui; Uren, Michael J.; Kuball, Martin; Casbon, Michael A.; Lees, Jonathan; Tasker, Paul J.; Jung, Helmut; Blanck, Hervé

    2015-05-25

    Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency (RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The measured EL intensity is decreased under RF operation compared to DC at the same average current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity over the measured load line used in RF measurements, giving reasonable agreement. In addition, the hot electron temperature is lower by up to 15% under RF compared to DC, again at least partially explainable by the weighted averaging along the specific load line. However, peak electron temperature under RF occurs at high V{sub DS} and low I{sub DS} where EL is insignificant suggesting that any wear-out differences between RF and DC stress of the devices will depend on the balance between hot-carrier and field driven degradation mechanisms.

  10. Construction of a Rapid Feather-Degrading Bacterium by Overexpression of a Highly Efficient Alkaline Keratinase in Its Parent Strain Bacillus amyloliquefaciens K11.

    PubMed

    Yang, Lian; Wang, Hui; Lv, Yi; Bai, Yingguo; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Yao, Bin

    2016-01-13

    Keratinase is essential to degrade the main feather component, keratin, and is of importance for wide industrial applications. In this study, Bacillus amyloliquefaciens strain K11 was found to have significant feather-degrading capacity (completely degraded whole feathers within 24 h). The keratinase encoding gene, kerK, was expressed in Bacillus subtilis SCK6. The purified recombinant KerK showed optimal activity at 50 °C and pH 11.0 and degraded whole feathers within 0.5 h in the presence of DTT. The recombinant plasmids harboring kerK were extracted from B. subtilis SCK6 and transformed into B. amyloliquefaciens K11. As a result, the recombinant B. amyloliquefaciens K11 exhibited enhanced feather-degrading capacity with shortened reaction time within 12 h and increased keratinolytic activity (1500 U/mL) by 6-fold. This efficient and rapid feather-degrading character makes the recombinant strain of B. amyloliquefaciens K11 have potential for applications in feather meal preparation and waste feather disposal.

  11. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

    2015-02-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

  12. Origin of Sub-Bandgap Electroluminescence in Organic Light-Emitting Diodes.

    PubMed

    Xiang, Chaoyu; Peng, Cheng; Chen, Ying; So, Franky

    2015-10-28

    Sub-bandgap electroluminescence in organic light emitting diodes is a phenomenon in which the electroluminescence turn-on voltage is lower than the bandgap voltage of the emitter. Based on the results of transient electroluminescence (EL) and photoluminescence and electroabsorption spectroscopy measurements, it is concluded that in rubrene/C60 devices, charge transfer excitons are generated at the rubrene/C60 interface under sub-bandgap driving conditions, leading to the formation of triplet excitons, and sub-bandgap EL is the result of the subsequent triplet-triplet annihilation process. PMID:26312783

  13. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Degradable plastic made from potato peels

    SciTech Connect

    Not Available

    1992-07-01

    Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

  14. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India.

    PubMed

    Skariyachan, Sinosh; Megha, M; Kini, Meghna Niranjan; Mukund, Kamath Manali; Rizvi, Alya; Vasist, Kiran

    2015-01-01

    Industrialization and urbanization have led to massive accumulation of plastic garbage all over India. The persistence of plastic in soil and aquatic environment has become ecological threat to the metropolitan city such as Bangalore, India. Present study investigates an ecofriendly, efficient and cost-effective approach for plastic waste management by the screening of novel microbial consortia which are capable of degrading plastic polymers. Plastic-contaminated soil and water samples were collected from six hot spots of urban and rural areas of Bangalore. The plastic-degrading bacteria were enriched, and degradation ability was determined by zone of clearance method. The percentage of polymer degradation was initially monitored by weight loss method, and the main isolates were characterized by standard microbiology protocols. These isolates were used to form microbial consortia, and the degradation efficiency of the consortia was compared with individual isolate and known strains obtained from the Microbial Type Culture Collection (MTCC) and Gene Bank, India. One of the main enzymes responsible for polymer degradation was identified, and the biodegradation mechanism was hypothesized by bioinformatics studies. From this study, it is evident that the bacteria utilized the plastic polymer as a sole source of carbon and showed 20-50% weight reduction over a period of 120 days. The two main bacteria responsible for the degradation were microbiologically characterized to be Pseudomonas spp. These bacteria could grow optimally at 37 °C in pH 9.0 and showed 35-40% of plastic weight reduction over 120 days. These isolates were showed better degradation ability than known strains from MTCC. The current study further revealed that the microbial consortia formulated by combining Psuedomonas spp. showed 40 plastic weight reduction over a period of 90 days. Further, extracellular lipase, one of the main enzymes responsible for polymer degradation, was identified. The

  15. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India.

    PubMed

    Skariyachan, Sinosh; Megha, M; Kini, Meghna Niranjan; Mukund, Kamath Manali; Rizvi, Alya; Vasist, Kiran

    2015-01-01

    Industrialization and urbanization have led to massive accumulation of plastic garbage all over India. The persistence of plastic in soil and aquatic environment has become ecological threat to the metropolitan city such as Bangalore, India. Present study investigates an ecofriendly, efficient and cost-effective approach for plastic waste management by the screening of novel microbial consortia which are capable of degrading plastic polymers. Plastic-contaminated soil and water samples were collected from six hot spots of urban and rural areas of Bangalore. The plastic-degrading bacteria were enriched, and degradation ability was determined by zone of clearance method. The percentage of polymer degradation was initially monitored by weight loss method, and the main isolates were characterized by standard microbiology protocols. These isolates were used to form microbial consortia, and the degradation efficiency of the consortia was compared with individual isolate and known strains obtained from the Microbial Type Culture Collection (MTCC) and Gene Bank, India. One of the main enzymes responsible for polymer degradation was identified, and the biodegradation mechanism was hypothesized by bioinformatics studies. From this study, it is evident that the bacteria utilized the plastic polymer as a sole source of carbon and showed 20-50% weight reduction over a period of 120 days. The two main bacteria responsible for the degradation were microbiologically characterized to be Pseudomonas spp. These bacteria could grow optimally at 37 °C in pH 9.0 and showed 35-40% of plastic weight reduction over 120 days. These isolates were showed better degradation ability than known strains from MTCC. The current study further revealed that the microbial consortia formulated by combining Psuedomonas spp. showed 40 plastic weight reduction over a period of 90 days. Further, extracellular lipase, one of the main enzymes responsible for polymer degradation, was identified. The

  16. Highly stretchable electroluminescent skin for optical signaling and tactile sensing.

    PubMed

    Larson, C; Peele, B; Li, S; Robinson, S; Totaro, M; Beccai, L; Mazzolai, B; Shepherd, R

    2016-03-01

    Cephalopods such as octopuses have a combination of a stretchable skin and color-tuning organs to control both posture and color for visual communication and disguise. We present an electroluminescent material that is capable of large uniaxial stretching and surface area changes while actively emitting light. Layers of transparent hydrogel electrodes sandwich a ZnS phosphor-doped dielectric elastomer layer, creating thin rubber sheets that change illuminance and capacitance under deformation. Arrays of individually controllable pixels in thin rubber sheets were fabricated using replica molding and were subjected to stretching, folding, and rolling to demonstrate their use as stretchable displays. These sheets were then integrated into the skin of a soft robot, providing it with dynamic coloration and sensory feedback from external and internal stimuli.

  17. Optical properties of inorganic electroluminescent devices with nanostripe electrodes

    NASA Astrophysics Data System (ADS)

    Nonaka, Toshihiro; Yamamoto, Shin-ichi

    2016-03-01

    In this paper, we report on the luminescence (emission) characteristics of a laminated dispersion-type inorganic electroluminescent (EL) device with a nanostripe electrode made of thin Al film, instead of a conventional indium-tin oxide (ITO) transparent electrode, on the emission side of the device. The transmittance of the Al nanostripe electrode, with 60-nm line-and-space widths, was 45%. We compared an inorganic EL device positioned between two thin films of Al and the inorganic EL device with the Al nanostripe electrode using electric field simulations and actual experiments. We were able to apply the same electric field intensity to the phosphor layer in the conventional structure and to the new structure. Therefore, with an Al nanostripe electrode on one side of the EL device, it is possible to fabricate an ITO-free display.

  18. Development of electroluminescence based pressure-sensitive paint system.

    PubMed

    Iijima, Yoshimi; Sakaue, Hirotaka

    2011-01-01

    We introduce a pressure-sensitive paint (PSP) measurement system based on an electroluminescence (EL) as a surface illumination. This consists of an inorganic EL as the illumination, a short-pass filter, and a platinum-porphyrin based PSP. The short-pass filter, which passes below 500 nm, was used to separate an overlay of the EL illumination and the PSP emission. The EL shows an opposite temperature dependency to that of the PSP. It gives a uniform illumination compared to that of a point illumination source such as a xenon lamp. Under atmospheric conditions, the resultant EL-PSP system reduces the temperature dependency by 54% compared to that of a conventional PSP system. An application of the EL-PSP system to a sonic jet impingement shows that the system demonstrated its reduction of the temperature dependency by 75% in a pressure measurement and reduces an image misalignment error.

  19. Development of electroluminescence based pressure-sensitive paint system

    NASA Astrophysics Data System (ADS)

    Iijima, Yoshimi; Sakaue, Hirotaka

    2011-01-01

    We introduce a pressure-sensitive paint (PSP) measurement system based on an electroluminescence (EL) as a surface illumination. This consists of an inorganic EL as the illumination, a short-pass filter, and a platinum-porphyrin based PSP. The short-pass filter, which passes below 500 nm, was used to separate an overlay of the EL illumination and the PSP emission. The EL shows an opposite temperature dependency to that of the PSP. It gives a uniform illumination compared to that of a point illumination source such as a xenon lamp. Under atmospheric conditions, the resultant EL-PSP system reduces the temperature dependency by 54% compared to that of a conventional PSP system. An application of the EL-PSP system to a sonic jet impingement shows that the system demonstrated its reduction of the temperature dependency by 75% in a pressure measurement and reduces an image misalignment error.

  20. Highly stretchable electroluminescent skin for optical signaling and tactile sensing.

    PubMed

    Larson, C; Peele, B; Li, S; Robinson, S; Totaro, M; Beccai, L; Mazzolai, B; Shepherd, R

    2016-03-01

    Cephalopods such as octopuses have a combination of a stretchable skin and color-tuning organs to control both posture and color for visual communication and disguise. We present an electroluminescent material that is capable of large uniaxial stretching and surface area changes while actively emitting light. Layers of transparent hydrogel electrodes sandwich a ZnS phosphor-doped dielectric elastomer layer, creating thin rubber sheets that change illuminance and capacitance under deformation. Arrays of individually controllable pixels in thin rubber sheets were fabricated using replica molding and were subjected to stretching, folding, and rolling to demonstrate their use as stretchable displays. These sheets were then integrated into the skin of a soft robot, providing it with dynamic coloration and sensory feedback from external and internal stimuli. PMID:26941316

  1. Pyrene based conjugated materials: synthesis, characterization and electroluminescent properties.

    PubMed

    Salunke, Jagadish K; Sonar, Prashant; Wong, F L; Roy, V A L; Lee, C S; Wadgaonkar, Prakash P

    2014-11-14

    In this work, three novel pyrene cored small conjugated molecules, namely 1,3,6,8-tetrakis(6-(octyloxy)naphthalene-2-yl)pyrene (PY-1), 1,3,6,8-tetrakis((E)-2-(6-(n-octyloxy)naphthalene-2-yl)vinyl)pyrene (PY-2) and 1,3,6,8-tetrakis((6-(n-octyloxy)naphthalene-2-yl)ethynyl)pyrene (PY-3) have been synthesized by Suzuki, heck and Sonogashira organometallic coupling reactions, respectively. The effects of single, double and triple bonds on their optical, electrochemical, and thermal properties are studied in detail. These are all materials fluorescent and they have been used in organic light-emitting diodes (OLEDs) and their electroluminescent properties have been studied.

  2. Improving the diversity of manufacturing electroluminescent flat panel displays

    SciTech Connect

    Moss, T.S.; Samuels, J.A.; Smith, D.C.

    1995-09-01

    Crystalline calcium thiogallate with a cerium dopant has been deposited by metal-organic chemical vapor deposition (MOCVD) at temperatures below 600{degrees}C on a low cost glass substrate. An EL luminance of 1.05 fL was observed 40 volts above threshold at 60 Hz. This is more than an order of magnitude improvement over earlier crystalline-as-deposited thiogallate materials. These results pave the way for the use of MOCVD as a potential method for processing full color thin-film electroluminescent (TFEL) flat panel displays. The formation of the CaGa{sub 2}S{sub 4}:Ce phosphor requires precise control over a number of deposition parameters including flow rates, substrate temperature, and reactor pressure. The influence of these parameters will be discussed in terms of structure, uniformity, and TFEL device performance.

  3. Structural, morphological and electroluminescence studies of Zno:Co nanophosphor

    NASA Astrophysics Data System (ADS)

    Singh, Anju; Vishwakarma, H. L.

    2016-09-01

    The nanoparticles of zinc oxide (ZnO) doped with various concentrations of cobalt (Co) were synthesized by chemical precipitation method in the presence of capping agent polyvinylpyrrolidone (PVP). The effect of doping concentration on structural and morphological properties has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). Cell volume, bond length, texture coefficient, lattice constants and dislocation density are also studied. Here, we also compared the interplaner spacing and relative peak intensities from their standard values with different angles. Crystallite sizes have been calculated by Debye-Scherrer's formula whose values are decreasing with increase in cobalt content up to 3 %. It has been seen that the growth orientation of the prepared ZnO nanorods was (101). The XRD analysis also ensures that ZnO has a hexagonal (wurtzite) crystal structure. The electroluminescence (EL) cells were prepared by placing pure and cobalt-doped ZnO nanoparticles between ITO-coated conducting glass plate and aluminium foil. Alternating voltage of various frequencies was applied, and EL brightness at different voltages was measured and corresponding current was also recorded. The voltage dependence of electroluminescence (EL) brightness of the ZnO:Co shows exponential increase. The linear voltage-current characteristic indicates ohmic nature. The EL brightness at a particular voltage is found to increase by increasing Co doping, but for higher percentage of Co the EL brightness is reduced. It is also seen that Co does not influence the threshold voltage. The brightness is also affected by increasing the frequency of AC signal.

  4. Self-Assembly of Rod-Coil Block Copolymers and Their Application in Electroluminescent Devices

    SciTech Connect

    Tao, Yuefei; Ma, Biwu; Segalman, Rachel A.

    2008-11-18

    The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod-coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rod-shaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces.

  5. Self-Assembly of Rod-Coil Block Copolymers And Their Application in Electroluminescent Devices

    SciTech Connect

    Tao, Y.; Ma, B.; Segalman, R.A.

    2009-05-26

    The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod-coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rod-shaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces.

  6. Strong visible electroluminescence from silicon nanocrystals embedded in a silicon carbide film

    SciTech Connect

    Huh, Chul Kim, Tae-Youb; Ahn, Chang-Geun; Kim, Bong Kyu

    2015-05-25

    We report the strong visible light emission from silicon (Si) nanocrystals (NCs) embedded in a Si carbide (SiC) film. Compared to Si NC light-emitting diode (LED) by employing the Si nitride (SiN{sub x}) film as a surrounding matrix, the turn-on voltage of the Si NC LED with the SiC film was significantly decreased by 4 V. This was attributed to a smaller barrier height for injecting the electrons into the Si NCs due to a smaller band gap of SiC film than a SiN{sub x} film. The electroluminescence spectra increases with increasing forward voltage, indicating that the electrons are efficiently injected into the Si NCs in the SiC film. The light output power shows a linear increase with increasing forward voltage. The light emission originated from the Si NCs in a SiC film was quite uniform. The power efficiency of the Si NC LED with the SiC film was 1.56 times larger than that of the Si NC LED with the SiN{sub x} film. The Si NCs in a SiC film show unique advantages and are a promising candidate for application in optical devices.

  7. Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Bhargava, Parag; Srivastava, Ritu; Tyagi, Priyanka

    2015-06-01

    A new electroluminescent material tris-[5-choloro-8-hydroxyquinoline] aluminum has been synthesized and characterized. Solution of this material Al(5-Clq)3 in toluene showed absorption maxima at 385 nm which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(5-Clq)3 in toluene solution showed a peak at 522 nm. This material shows thermal stability up to 400 °C. The structure of the device is ITO/0.4 wt%F4-TCNQ doped α-NPD (35 nm) / Al(5-Clq)3 (30 nm) / BCP (6 nm) / Alq3 (30 nm) / LiF (1 nm) / Al (150 nm). This device exhibited a luminescence peak at 585 nm (CIE coordinates, x = 0.39, y = 0.50). The maximum luminescence of the device was 920 Cd/m2 at 25 V. The maximum current efficiency of OLED was 0.27 Cd/A at 20 V and maximum power efficiency was 0.04 lm/W at 18 V.

  8. Strong visible electroluminescence from silicon nanocrystals embedded in a silicon carbide film

    NASA Astrophysics Data System (ADS)

    Huh, Chul; Kim, Tae-Youb; Ahn, Chang-Geun; Kim, Bong Kyu

    2015-05-01

    We report the strong visible light emission from silicon (Si) nanocrystals (NCs) embedded in a Si carbide (SiC) film. Compared to Si NC light-emitting diode (LED) by employing the Si nitride (SiNx) film as a surrounding matrix, the turn-on voltage of the Si NC LED with the SiC film was significantly decreased by 4 V. This was attributed to a smaller barrier height for injecting the electrons into the Si NCs due to a smaller band gap of SiC film than a SiNx film. The electroluminescence spectra increases with increasing forward voltage, indicating that the electrons are efficiently injected into the Si NCs in the SiC film. The light output power shows a linear increase with increasing forward voltage. The light emission originated from the Si NCs in a SiC film was quite uniform. The power efficiency of the Si NC LED with the SiC film was 1.56 times larger than that of the Si NC LED with the SiNx film. The Si NCs in a SiC film show unique advantages and are a promising candidate for application in optical devices.

  9. Efficient on-site degradation of high concentration of spent deicing fluids: A laboratory study. Final report

    SciTech Connect

    Strong, J.M.; Waltz, M.

    1997-10-01

    The on-site treatment of antifreeze compounds and aircraft deicing fluids (ethylene glycol and propylene glycol) will reduce disposal costs, decrease environmental impact, minimize the potential for additional spills/contamination and meet the goals of pollution prevention by reducing the amount of hazardous materials generated. The authors have identified bacteria that can degrade 1-10% glycol waste at room temperatures of ca. 23C. A second subculture was isolated that could degrade glycol waste at ca. 4C.

  10. Physical limitations of the electroluminescence mechanism in terbium-based light emitters: matrix and layer thickness dependence

    NASA Astrophysics Data System (ADS)

    Rebohle, L.; Lehmann, J.; Prucnal, S.; Sun, J. M.; Helm, M.; Skorupa, W.

    2010-02-01

    The physical limits of downscaling the SiO2 thickness of rare earth implanted metal-oxynitride-oxide-semiconductor-based light emitters are explored by investigating the drop down of the electroluminescence power efficiency with decreasing SiO2 thickness of Tb-implanted devices. It will be experimentally shown that there is a dark zone with an extension of about 20 nm behind the injecting interface in which the hot electrons have not yet gained enough kinetic energy in order to excite the Tb3+ luminescence centers. In addition, replacing the host matrix SiO2 by SiON results in a decrease of power efficiency by two orders of magnitude what is consistent with the experimental data about the hot energy distribution in these media.

  11. An efficient TiO2 coated immobilized system for the degradation studies of herbicide isoproturon: durability studies.

    PubMed

    Verma, A; Prakash, N T; Toor, A P

    2014-08-01

    The investigation presents the observations on the use of cement beads for the immobilization of TiO2 for the degradation of herbicide isoproturon. The immobilized system was effective in degrading and mineralizing the herbicide for continuous thirty cycles without losing its durability. Catalyst was characterized by SEM-EDAX for checking the durability of the catalyst. The degradation rate followed first order kinetics as measured by change in absorption intensity in UV range as well as HPLC analysis. Two rounds of TiO2 coating on inert cement beads with average diameter 1.5cm at UV Intensity 25Wm(-2) calcined at 400°C were the optimized conditions for the degradation of herbicide isoproturon. More than 90% TOC and COD reduction along with ammonium ions generation (80%) confirmed the mineralization of isoproturon. Fixed bed baffled reactor studies under solar irradiations using the TiO2 immobilized beads confirmed 85% degradation after 6h. LC-MS studies confirmed the intermediates formation and their subsequent degradation using immobilized system.

  12. High-efficiency sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays

    NASA Astrophysics Data System (ADS)

    Guo, Xiao; Fu, Yongming; Hong, Deyi; Yu, Binwei; He, Haoxuan; Wang, Qiang; Xing, Lili; Xue, Xinyu

    2016-09-01

    Highly-efficient sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays was achieved. A steel screen was used as the substrate for supporting FeS/ZnO nanoarrays, and the nanoarrays were vertically and uniformly grown on the substrate via a wet-chemical route. Under ultrasonic and solar irradiation, FeS/ZnO nanoarrays have high sono-photocatalytic activity for degrading methylene blue in water. The photogenerated carriers can be separated by a piezoelectric field and a built-in electric field, resulting in a low recombination rate and high photocatalytic efficiency. The piezophototronic and photocatalytic effects were coupled together. The experimental/theoretical data indicate that this novel wastewater treatment can co-use mechanical and solar energy in nature, and so is a promising technology for environment improvement.

  13. Electroluminescent layers based on ZnS:Cu deposited into matrices of porous anodic Al2O3

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Petukhov, D. I.; Chukavin, A. I.; Bel'tyukov, A. N.

    2016-02-01

    It is suggested to use a new nanocomposite material—nanostructures of copper-doped zinc sulfide in a matrix of porous aluminum oxide—as a light-emitting layer of electroluminescent sources of light. The material was deposited by thermal evaporation in a vacuum. The microstructure of the layers, impurity distribution in the electroluminescent-phosphor layer, and electroluminescence spectra at various copper concentrations in ZnS:Cu were studied.

  14. [Screening of a Highly Efficient Quinoline-degrading Strain and Its Enhanced Biotreatment on Coking Waste Water].

    PubMed

    Li, Jing; Li, Wen-ying

    2015-04-01

    A bacterial strain, which could utilize quinoline as the sole carbon, nitrogen and energy source, was isolated from the activated sludge in a coking wastewater treatment plant. According to the 16S rRNA gene sequence analysis, the strain was identified as Acidovorax sp. Taken into consideration of both the growth and the quinoline degradation of the strain, the optimized degradation conditions were acquired as following: 10% inoculum, pH value of 8.0-10.0, 35 degrees C and 150 r x min(-1). The process of its growth was simulated by Haldane kinetic model under different initial quinoline concentrations, the fitted curve had a good correlation with test measured values. Furthermore, coking wastewater was bioaugmented by the mixed strains of DQS-01 and D2 with enhanced process in a moving bed biofilm reactor, and the COD degradation rate was 87.4% within 72 h.

  15. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    PubMed

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis.

  16. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    PubMed

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  17. Near-infrared electroluminescence at room temperature from neodymium-doped gallium nitride thin films

    SciTech Connect

    Kim, Joo Han; Holloway, Paul H.

    2004-09-06

    Strong near-infrared (NIR) electroluminescence (EL) at room temperature from neodymium (Nd)-doped gallium nitride (GaN) thin films is reported. The Nd-doped GaN films were grown by radio-frequency planar magnetron cosputtering of separate GaN and metallic Nd targets in a pure nitrogen ambient. X-ray diffraction data did not identify the presence of any secondary phases and revealed that the Nd-doped GaN films had a highly textured wurtzite crystal structure with the c-axis normal to the surface of the film. The EL devices were fabricated with a thin-film multilayered structure of Al/Nd-doped GaN/Al{sub 2}O{sub 3}-TiO{sub 2}/indium-tin oxide and tested at room temperate. Three distinct NIR EL emission peaks were observed from the devices at 905, 1082, and 1364 nm, arising from the radiative relaxation of the {sup 4}F{sub 3sol2} excited-state energy level to the {sup 4}I{sub 9sol2}, {sup 4}I{sub 11sol2}, and {sup 4}I{sub 13sol2} levels of the Nd{sup 3+} ion, respectively. The threshold voltage for all the three emission peaks was {approx}150 V. The external power efficiency of the fabricated EL devices was {approx}1x10{sup -5} measured at 40 V above the threshold voltage.

  18. Designing Organic Phosphine Oxide Host Materials Using Heteroaromatic Building Blocks: Inductive Effects on Electroluminescence

    SciTech Connect

    Sapochak, Linda S.; Padmaperuma, Asanga B.; Vecchi, Paul A.; Cai, Xiuyu; Burrows, Paul E.

    2007-11-19

    Phosphine oxide substitution of small molecules with high triplet exciton energies allows development of vacuum sublimable, electron transporting host materials for blue OLEDs. Heteroaromatic building blocks (carbazole, dibenzofuran and dibenzothiophene) with ET ~ 3 eV were incorporated into phosphine oxide (PO) structures. External quantum efficiencies (EQEs) at lighting brightness (i.e., 800 cd/m2) reached as high as 9.8% at 5.2V for OLEDs using the heteroaromatic PO hosts doped with the sky blue phosphor, iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2’) picolinate (FIrpic). Comparing device properties at a similar current density (i.e., J = 13 mA/cm2) showed the dibenzothiophene-bridged PO compound exhibits the highest EQEs and lowest operating voltages at all phosphor dopant levels. These results are explained with respect to the effects of the inductive phosphine oxide substituents on electrochemical, photophysical and electroluminescence properties of the substituted heteroaromatic building blocks.

  19. Colloidal electroluminescence: Novel routes to controlled emission of organic light emitting diode devices

    NASA Astrophysics Data System (ADS)

    Huebner, Christopher Fletcher

    In recent years the importance of the organic light emitting diode (OLED) has grown immensely, and the past two decades have seen ongoing and exhaustive research in organic routes to solid state lighting, wherein electricity is directly converted into emitted light through an excited state relaxation mechanism. The benefits of incorporating polymeric and small molecule materials into solid state lighting devices include high efficiences, low production costs, amenability to large-scale production and devices, reduced environmental impact and low energy consumption. Herein are presented novel routes to materials engineering and preparation, device fabrication and emission tailoring through the abilility to form a variety of polymeric and small molecule materials into aqueously dispersed semiconductive electroluminescent (EL) colloids. Compartmentalization of the emissive and semiconductive species into colloidal particles affords the ability to systematically control energy transfer processes that occur in light emitting devices. Energy transfer can occur through a Coulombic (Forster) or an electronic (Dexter) process, each needing several conditions to be met for the transfer to occur, however common to both are spectral and proximal characteristics. In this work, energy transfer will be simultaneously exploited and inhibited through the creation of EL colloidal particles which can be combined in a dispersion or thin layer in order to tailor the light emission for a variety of applications.

  20. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12.

    PubMed

    Jin, Decai; Kong, Xiao; Liu, Huijun; Wang, Xinxin; Deng, Ye; Jia, Minghong; Yu, Xiangyang

    2016-01-01

    A bacterial strain QH-12 isolated from activated sludge was identified as Gordonia sp. based on analysis of 16S rRNA gene sequence and was found to be capable of utilizing dibutyl phthalate (DBP) and other common phthalate esters (PAEs) as the sole carbon and energy source. The degradation kinetics of DBP under different concentrations by the strain QH-12 fit well with the modified Gompertz model (R² > 0.98). However, strain QH-12 could not utilize the major intermediate product phthalate (phthalic acid; PA) as the sole carbon and energy source, and only a little amount of PA was detected. The QH-12 genome analysis revealed the presence of putative hydrolase/esterase genes involved in PAEs-degradation but no phthalic acid catabolic gene cluster was found, suggesting that a novel degradation pathway of PAEs was present in Gordonia sp. QH-12. This information will be valuable for obtaining a more holistic understanding on diverse genetic mechanisms of PAEs-degrading Gordonia sp. strains. PMID:27347943

  1. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12

    PubMed Central

    Jin, Decai; Kong, Xiao; Liu, Huijun; Wang, Xinxin; Deng, Ye; Jia, Minghong; Yu, Xiangyang

    2016-01-01

    A bacterial strain QH-12 isolated from activated sludge was identified as Gordonia sp. based on analysis of 16S rRNA gene sequence and was found to be capable of utilizing dibutyl phthalate (DBP) and other common phthalate esters (PAEs) as the sole carbon and energy source. The degradation kinetics of DBP under different concentrations by the strain QH-12 fit well with the modified Gompertz model (R2 > 0.98). However, strain QH-12 could not utilize the major intermediate product phthalate (phthalic acid; PA) as the sole carbon and energy source, and only a little amount of PA was detected. The QH-12 genome analysis revealed the presence of putative hydrolase/esterase genes involved in PAEs-degradation but no phthalic acid catabolic gene cluster was found, suggesting that a novel degradation pathway of PAEs was present in Gordonia sp. QH-12. This information will be valuable for obtaining a more holistic understanding on diverse genetic mechanisms of PAEs-degrading Gordonia sp. strains. PMID:27347943

  2. The efficient photocatalytic degradation of methyl tert-butyl ether under Pd/ZnO and visible light irradiation.

    PubMed

    Seddigi, Zaki S; Ahmed, Saleh A; Bumajdad, Ali; Danish, Ekram Y; Shawky, Ahmed M; Gondal, Mohammed A; Soylak, Mustafa

    2015-01-01

    Methyl tert-butyl ether is a commonly used fuel oxygenate that is present in gasoline. It was introduced to eliminate the use of leaded gasoline and to improve the octane quality because it aids in the complete combustion of fuel by supplying oxygen during the combustion process. Over the past decade, the use of MTBE has increased tremendously worldwide. For obvious reasons relating to accidental spillage, MTBE started to appear as an environmental and human health threat because of its nonbiodegradable nature and carcinogenic potential, respectively. In this work, MTBE was degraded with the help of an advanced oxidation process through the use of zinc oxide as a photocatalyst in the presence of visible light. A mixture of 200 mg of zinc oxide in 350 mL of 50 ppm MTBE aqueous solution was irradiated with visible light for a given time. The complete degradation of MTBE was recorded, and approximately 99% photocatalytic degradation of 100 ppm MTBE solution was observed. Additionally, the photoactivity of 1% Pd-doped ZnO was tested under similar conditions to understand the effect of Pd doping on ZnO. Our results obtained under visible light irradiation are very promising, and they could be further explored for the degradation of several nondegradable environmental pollutants.

  3. Tentative anatomy of ZnS-type electroluminescence

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    1994-05-01

    The paper reviews the electrical and optical mechanisms at work in sulfide-based thin-film electroluminescence display devices within the framework of general semiconductor physics. The electrical problem is twofold: (i) charge carriers are sourced at high electric field in a nominally insulating material, the carrier density increasing by almost eight orders of magnitude; (ii) the carriers are transported at high field, with an average energy largely exceeding the thermal one. (i) Carrier sourcing is best understood from direct-current-driven ZnS films, and is ascribed to partly filled deep donors transferring electrons to the conduction band by Fowler-Nordheim tunneling. The deep donors also act as carrier sinkers, and evidence for space charge is afforded by small-signal impedance analysis disclosing a markedly inductive behavior. The conduction picture obtained from dc-driven films is then used to clarify the operation of alternating-current electroluminescence structures where the sulfide is sandwiched between two blocking oxide layers. The electrostatics of the ac structure is investigated in detail including space charge and field nonuniformity, and external observables are related to internal quantities. The simple model of interfacial carrier sourcing and sinking is examined. (ii) High-field electronic transport is controlled by the electron-phonon interaction, and the modeling resorts to numerical simulations or the lucky-drift concept. At low electron energies the interaction with phonons is predominantly polar, while at optical energies it proceeds via deformation potential scattering. In spite of the uncertainties in transport models in that range, it is likely that ˜50% of the electrons overtake 2 eV at the usual operating fields in ZnS. Light emission is associated with impurity luminescence centers embedded in the sulfide host. They are excited while current is flowing, and the ensuing relaxation is partly radiative. We describe the two ways in

  4. A novel method developed for estimating mineralization efficiencies and its application in PC and PEC degradations of large molecule biological compounds with unknown chemical formula.

    PubMed

    Li, Guiying; Liu, Xiaolu; An, Taicheng; Wong, Po Keung; Zhao, Huijun

    2016-05-15

    A new method to estimate the photocatalytic (PC) and photoelectrocatalytic (PEC) mineralization efficiencies of large molecule biological compounds with unknown chemical formula in water was firstly developed and experimentally validated. The method employed chemical oxidation under the standard dichromate chemical oxygen demand (COD) conditions to obtain QCOD values of model compounds with unknown chemical formula. The measured QCOD values were used as the reference to replace QCOD values of model compounds for calculation of the mineralization efficiencies (in %) by assuming the obtained QCOD values are the measure of the theoretical charge required for the complete mineralization of organic pollutants. Total organic carbon (TOC) was also employed as a reference to confirm the mineralization capacity of dichromate chemical oxidation. The developed method was applied to determine the degradation extent of model compounds, such as bovine serum albumin (BSA), lecithin and bacterial DNA, by PC and PEC. Incomplete PC mineralization of all large molecule biological compounds was observed, especially for BSA. But the introduction of electrochemical technique into a PC oxidation process could profoundly improve the mineralization efficiencies of model compounds. PEC mineralization efficiencies of bacterial DNA was the highest, while that of lecithin was the lowest. Overall, PEC degradation method was found to be much effective than PC method for all large molecule biological compounds investigated, with PEC/PC mineralization ratios followed an order of BSA > lecithin > DNA.

  5. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a-fdh).

    PubMed

    Dong, Hong-Wei; Fan, Li-Qiang; Luo, Zichen; Zhong, Jian-Jiang; Ryu, Dewey D Y; Bao, Jie

    2013-09-01

    Toxic compounds, such as formic acid, furfural, and hydroxymethylfurfural (HMF) generated during pretreatment of corn stover (CS) at high temperature and low pH, inhibit growth of Zymomonas mobilis and lower the conversion efficiency of CS to biofuel and other products. The inhibition of toxic compounds is considered as one of the major technical barriers in the lignocellulose bioconversion. In order to detoxify and/or degrade these toxic compounds by the model ethanologenic strain Z. mobilis itself in situ the fermentation medium, we constructed a recombinant Z. mobilis ZM4 (pHW20a-fdh) strain that is capable of degrading toxic inhibitor, formate. This is accomplished by cloning heterologous formate dehydrogenase gene (fdh) from Saccharomyces cerevisiae and by coupling this reaction of NADH regeneration reaction system with furfural and HMF degradation in the recombinant Z. mobilis strain. The NADH regeneration reaction also improved both the energy efficiency and cell physiological activity of the recombinant organism, which were definitely confirmed by the improved cell growth, ethanol yield, and ethanol productivity during fermentation with CS hydrolysate.

  6. A multilayered approach of Si/SiO to promote carrier transport in electroluminescence of Si nanocrystals

    PubMed Central

    2012-01-01

    The electroluminescence (EL) and photoluminescence of Si nanocrystals (Si-nc) from multilayered samples of Si/SiO are investigated. Si-nc are formed within Si and SiO layers after furnace annealing. It is found that the presence of Si interlayers creates extra carrier paths for EL emission. A comparative study is further performed on a multilayered Si/SiO sample and a single-layered one with Si and SiO homogeneously mixed. Both samples have the same ratio of Si to O and the same contents of Si and O. The multilayered sample is found to have higher EL intensity, less turn-on voltage, lower resistance, and higher current efficiency than the single-layered one. The results indicate that Si interlayers in Si/SiO may act as carrier channels, which promote carrier transport and enhance the EL emission of Si-nc. PMID:22448989

  7. Low-frequency noise, microplasma, and electroluminescence measurements as faster tools to investigate quality of monocrystalline-silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chobola, Zdenek; Lunak, Miroslav; Vanek, Jiri; Barinka, Radim

    2013-05-01

    Two sets of c-Si solar cells varying in front side phosphorus doped emitters were produced by standard screen printing techniques. The first group of samples, 3121, was prepared by a combination of standard washing and a bath with a highly dilute HF before diffusion of n+-emitter. The second group of samples, 3122, was treated only with standard washing. A comparison of solar cell conversion efficiency and results from a noise spectroscopy, microplasma, and electroluminescence presence are presented. As was already shown in previous publications noise spectral density reflects the quality of solar cells, and thus represents an alternative advanced cell diagnostic tool. Our results confirm this relationship and moreover bring clear evidence for the maximum spectral noise voltage density being related to the emitter structure. The best results were reached for the group of solar cells in sample 3122, which was treated only with standard washing.

  8. Remarkable improvement in electroluminescence benefited from appropriate electron injection and transporting in ultraviolet organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    You, Fengjiao; Mo, Bingjie; Liu, Liming; Wang, Honghang; Bin Wei; Xu, Jiwen; Zhang, Xiaowen

    2016-08-01

    Suitable thickness of LiF and 4,7-diphenyl-1, 10-phenanthroline with slightly weakened electron injection and transporting is proposed to match the intractable hole injection capacity in ultraviolet organic light-emitting diode (UV OLED). By using this strategy, the device performance is remarkably improved. With 4,4‧-bis(carbazol-9-yl)biphenyl (CBP) and 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole (TAZ) as emitters, the UV OLED shows maximum radiance of 5.8 mW/cm2 and external quantum efficiency of 2.1% with emission peak of ~380 nm predominantly from TAZ and noticeable shoulder emission of ~410 nm from CBP. The retarded electron injection and transporting contribute to optimizing hole-electron recombination zone and balance within the emitting layers, which accounts for the improved electroluminescent intensity. The detailed mechanism is further clarified with impedance spectroscopy.

  9. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    SciTech Connect

    Wang, Dong Maekura, Takayuki; Kamezawa, Sho; Yamamoto, Keisuke; Nakashima, Hiroshi

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  10. Performance of Electroluminescent Flats for Precision Light Curve Photometry

    NASA Astrophysics Data System (ADS)

    Avril, Ryan L.; Oberst, T. E.

    2014-01-01

    We measure of the quality of flat field frames (flats) taken using an electroluminescent (EL) panel versus both dome and sky flats for purposes of calibrating visual CCD images. Classic dome and sky flats can both suffer from overall gradients and local irregularities. EL panel flats have recently grown in popularity as a third alternative, based partly on their potential to be free of such defects. We assess the flats based on their contributions to the RMS noise of long-duration light curves constructed via differential aperture photometry. The noise levels explored range from ~ 1 - few mmag, as needed for the ground-based detection of transiting planets. The target and reference stars are deliberately permitted to drift across the CCD in order to probe pixel-to-pixel variations. Both the filter and focus are varied during the tests - the former to probe color variation in the flats, and the latter because defocusing tends to average out pixel-to-pixel variations that the flats are intended to remove. All tests were performed at the Westminster College Observatory (WCO), which belongs to the Kilodegree Extremely Little Telescope (KELT)-North follow-up network.

  11. Dual-color electroluminescence from dot-in-bulk nanocrystals.

    PubMed

    Brovelli, Sergio; Bae, Wan Ki; Galland, Christophe; Giovanella, Umberto; Meinardi, Francesco; Klimov, Victor I

    2014-02-12

    The emission color from colloidal semiconductor nanocrystals (NCs) is usually tuned through control of particle size, while multicolor emission is obtained by mixing NCs of different sizes within an emissive layer. Here, we demonstrate that recently introduced "dot-in-bulk" (DiB) nanocrystals can emit two-color light under both optical excitation and electrical injection. We show that the effective emission color can be controlled by adjusting the relative amplitudes of the core and shell emission bands via the intensity of optical excitation or applied bias in the cases of photoluminescence (PL) and electroluminescence (EL), respectively. To investigate the role of nonradiative carrier losses due to trapping at intragap states, we incorporate DiB NCs into functional light-emitting diodes and study their PL as a function of applied bias below the EL excitation threshold. We show that voltage-dependent changes in core and shell emissions are not due to the applied electric field but rather arise from the transfer of charges between the anode and the NC intragap trap sites. The changes in the occupancy of trap states can be described in terms of the raising (lowering) of the Fermi level for reverse (direct) bias. We find that the applied voltage affects the overall PL intensity primarily via the electron-trapping channel while bias-induced changes in hole-trapping play a less significant role, limited to a weak effect on core emission. PMID:24328946

  12. Hugely enhanced electroluminescence from mesoporous ZnO particles

    NASA Astrophysics Data System (ADS)

    Ning, Guang-hui; Zhao, Xiao-peng; Li, Jia; Zhang, Chang-qing

    2006-03-01

    Using octadecylamine (ODA) and dodecylamine (DDA) as template, nanostructured porous ZnO particles were synthesized by sol-gel method. The results of experiments show that the density of ZnO processed with ODA, DDA and without template is 5.31, 5.37 and 5.42 cm2/g respectively. The surface analysis proves that the ZnO particles processed with ODA and DDA hold porous structure. Hugely enhanced electroluminescence (EL) was observed from the porous ZnO particles under direct current electric field from 2-4.66 V/μm. Comparing with the low emission intensity of the ZnO without porous structure, the emission intensity of the ZnO sample processed with DDA and DDA were enhanced 12 times and 20 times respectively at the voltage of 4.66 V/μm. The EL spectrum shows mainly broad peak emission feature with a peak at 556 nm. The threshold voltage is just 2 V/μm. The results indicate that the porous structure in ZnO particles can enhance EL intensity.

  13. Nanoscale dynamic inhomogeneities in electroluminescence of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hatano, Tatsuhiko; Nozue, Shuho; Habuchi, Satoshi; Vacha, Martin

    2011-09-01

    We report the observation and characterization of dynamic spatial heterogeneities in the electroluminescence (EL) of conjugated polymer organic light-emitting diodes via high-sensitivity fluorescence microscopy. The active layers of the single-layer devices are polymers of the poly(phenylene vinylene) family, i.e., poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] and a commercially available copolymer, Super Yellow. The devices are prepared directly on a microscope coverslip, making it possible to use high numerical aperture oil-immersion objective lenses with a diffraction-limited resolution of a few hundred nanometers for microscopic EL imaging. Detection via high-sensitivity CCD camera allows the measurement of EL dynamics with millisecond time resolution for a wide range of applied voltages. We found spatial heterogeneities in the form of high EL intensity sites in all devices studied. The EL from these sites is strongly fluctuating in time, and the dynamics is bias voltage dependent. At the same time, there is no difference in the local microscopic EL spectra between the high- and low-intensity sites. The results are interpreted in terms of a changing charge balance and local structural changes in the active film layer.

  14. Dual-color electroluminescence from dot-in-bulk nanocrystals.

    PubMed

    Brovelli, Sergio; Bae, Wan Ki; Galland, Christophe; Giovanella, Umberto; Meinardi, Francesco; Klimov, Victor I

    2014-02-12

    The emission color from colloidal semiconductor nanocrystals (NCs) is usually tuned through control of particle size, while multicolor emission is obtained by mixing NCs of different sizes within an emissive layer. Here, we demonstrate that recently introduced "dot-in-bulk" (DiB) nanocrystals can emit two-color light under both optical excitation and electrical injection. We show that the effective emission color can be controlled by adjusting the relative amplitudes of the core and shell emission bands via the intensity of optical excitation or applied bias in the cases of photoluminescence (PL) and electroluminescence (EL), respectively. To investigate the role of nonradiative carrier losses due to trapping at intragap states, we incorporate DiB NCs into functional light-emitting diodes and study their PL as a function of applied bias below the EL excitation threshold. We show that voltage-dependent changes in core and shell emissions are not due to the applied electric field but rather arise from the transfer of charges between the anode and the NC intragap trap sites. The changes in the occupancy of trap states can be described in terms of the raising (lowering) of the Fermi level for reverse (direct) bias. We find that the applied voltage affects the overall PL intensity primarily via the electron-trapping channel while bias-induced changes in hole-trapping play a less significant role, limited to a weak effect on core emission.

  15. Localized and guided electroluminescence from roll printed organic nanofibres

    NASA Astrophysics Data System (ADS)

    Tavares, L.; Kjelstrup-Hansen, J.; Rubahn, H.-G.

    2012-10-01

    Here, we report localized, polarized and waveguided electroluminescence (EL) from well aligned organic nanofibres integrated via roll printing on transistor platforms. The localized emission is due to the application of an alternating current voltage to the transistor gate electrodes, which causes sequential injection of holes and electrons into the organic material with subsequent charge carrier recombination and light emission from a small area near the metal-nanofibre interface. The polarization results from the mutually parallel ordering of the molecular constituents, in which the emitting dipole is oriented along the long molecular axis. Furthermore, their morphology enables the nanofibres to operate as optical waveguides and part of the generated light is therefore guided along the nanofibre and radiated at the nanofibre end. In addition to the ‘standard’ hexaphenylene nanofibres, we also demonstrate that this scheme can facilitate EL from a nanofibre made from a different type of molecule with altered spectral characteristics. The realization of an electrically biased organic nanoscale light-emitter demonstrates the ability to fabricate on-chip light sources with a tunable emission spectrum via synthesis of appropriate molecular building blocks.

  16. Tailoring the nano-channel of ZrO 2/SBA-15 mesoporous materials for efficiently trapping and degradation volatile nitrosamines

    NASA Astrophysics Data System (ADS)

    Shi, Liying; Chu, Sheng; Kong, Fei; Luo, Leilei; Wang, Ying; Zou, Zhigang

    2011-12-01

    This article reports a bifunctionalized mesoporous ZrO 2/SBA-15 materials prepared through a simplified one-pot synthesis, in which the aged sample was evaporated with mother solution under the self-adjusted pH condition. The results of low-angle XRD, HRTEM, nitrogen adsorption-desorption, in-situ 1H NMR and NH 3-TPD tests confirmed the well-ordered hexagonal structure and large pore size of these composites along with the newly formed acidity and basicity. Temperature programmed surface reaction (TPSR) was employed to assess the catalytic function of ZrO 2/SBA-15 composites on the degradation of carcinogenic volatile nitrosamines such as N-nitrosopyrrolidine (NPYR). Due to the special interaction between the N-NO group of nitrosamines and the acidic site of mesoporous composite, NPYR could be efficiently trapped and then catalytic degraded at lower temperature, which enables this functional composite to be a new candidate for environment protection.

  17. Hydrothermal Synthesis of FeS2 as a High-Efficiency Fenton Reagent to Degrade Alachlor via Superoxide-Mediated Fe(II)/Fe(III) Cycle.

    PubMed

    Liu, Wei; Wang, Yueyao; Ai, Zhihui; Zhang, Lizhi

    2015-12-30

    In this study, we demonstrate that hydrothermally synthesized FeS2 (syn-FeS2) is highly efficient at catalyzing the H2O2 decomposition for alachlor degradation at a wide range of initial pH (3.2-9.2). The alachlor degradation rate of syn-FeS2 heterogeneous Fenton system was almost 55 times that of its commercial pyrite (com-FeS2) counterpart at an initial pH of 6.2. Experimental results revealed that the alachlor oxidation enhancement in the syn-FeS2 Fenton system was attributed to the molecular oxygen activation induced by more surface-bound ferrous ions on syn-FeS2. The molecular oxygen activation process could generate superoxide anions to accelerate the Fe(II)/Fe(III) cycle on the syn-FeS2 surface, which favored the H2O2 decomposition to generate more hydroxyl radicals for the alachlor oxidation. It was found that the hydroxyl radicals generation rate constant of syn-FeS2 Fenton system was 71 times that of its com-FeS2 counterpart, and even 1-3 orders of magnitude larger than those of commonly used Fe-bearing heterogeneous catalysts. We detected the alachlor degradation intermediates with gas chromatography-mass spectrometry to propose tentatively a possible alachlor degradation pathway. These interesting findings could provide some new insights on the molecular oxygen activation induced by FeS2 minerals and the subsequent heterogeneous Fenton degradation of organic pollutants in the environment. PMID:26646468

  18. Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages

    PubMed Central

    Min, Mingwei; Mevissen, Tycho E. T.; De Luca, Maria; Komander, David; Lindon, Catherine

    2015-01-01

    The ubiquitin proteasome system (UPS) directs programmed destruction of key cellular regulators via posttranslational modification of its targets with polyubiquitin chains. These commonly contain Lys-48 (K48)–directed ubiquitin linkages, but chains containing atypical Lys-11 (K11) linkages also target substrates to the proteasome—for example, to regulate cell cycle progression. The ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C) controls mitotic exit. In higher eukaryotes, the APC/C works with the E2 enzyme UBE2S to assemble K11 linkages in cells released from mitotic arrest, and these are proposed to constitute an improved proteolytic signal during exit from mitosis. We tested this idea by correlating quantitative measures of in vivo K11-specific ubiquitination of individual substrates, including Aurora kinases, with their degradation kinetics tracked at the single-cell level. All anaphase substrates tested by this methodology are stabilized by depletion of K11 linkages via UBE2S knockdown, even if the same substrates are significantly modified with K48-linked polyubiquitin. Specific examination of substrates depending on the APC/C coactivator Cdh1 for their degradation revealed Cdh1-dependent enrichment of K11 chains on these substrates, whereas other ubiquitin linkages on the same substrates added during mitotic exit were Cdh1-independent. Therefore we show that K11 linkages provide the APC/C with a means to regulate the rate of substrate degradation in a coactivator-specified manner. PMID:26446837

  19. Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vickie

    1996-01-01

    An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.

  20. A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation.

    PubMed

    Das, Dipika; Dutta, Raj Kumar

    2015-11-01

    A facile one pot method has been developed for synthesis of stable (ξ=-37.5 mV), orthorhombic structured SnS nanorods capped with mercaptoacetic acid by precipitation method. The SnS nanorods were measured to be about 45 nm long with a diameter of 20 nm, as studied by transmission electron microscopy (TEM). The band gap of the MAA capped SnS nanorods was 1.81 eV, measured by diffused reflectance spectroscopy and was larger than the bulk SnS. The relative positions of highest valence band and lowest conduction band were determined from theoretical band structure calculation as 1.58 eV and -0.23 eV, respectively. The UV-Visible-NIR fluorescence emission spectrum of the SnS nanorods revealed intense emission peak at 1000 nm (1.239 eV) and weaker peaks at 935 nm, 1080 nm, 1160 nm which is likely to be due to Sn(2+) vacancies. The as-synthesized SnS nanorods exhibited more than 95% sunlight induced photocatalytic degradation of trypan blue in 4 h, following first order kinetics with high rate of degradation (k) (0.0124 min(-1)). The observed dye degradation is attributable to generation of reactive oxygen species (ROS), confirmed from terephthalic acid assay. The ROS generation has been explained on the basis of interaction between photoexcited electrons from conduction band with molecular oxygen adhered to the surface of nanorods owing to favourable redox potentials of O2/O2(-) (-0.20 eV) in normal hydrogen electrode (NHE) scale.

  1. A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation.

    PubMed

    Das, Dipika; Dutta, Raj Kumar

    2015-11-01

    A facile one pot method has been developed for synthesis of stable (ξ=-37.5 mV), orthorhombic structured SnS nanorods capped with mercaptoacetic acid by precipitation method. The SnS nanorods were measured to be about 45 nm long with a diameter of 20 nm, as studied by transmission electron microscopy (TEM). The band gap of the MAA capped SnS nanorods was 1.81 eV, measured by diffused reflectance spectroscopy and was larger than the bulk SnS. The relative positions of highest valence band and lowest conduction band were determined from theoretical band structure calculation as 1.58 eV and -0.23 eV, respectively. The UV-Visible-NIR fluorescence emission spectrum of the SnS nanorods revealed intense emission peak at 1000 nm (1.239 eV) and weaker peaks at 935 nm, 1080 nm, 1160 nm which is likely to be due to Sn(2+) vacancies. The as-synthesized SnS nanorods exhibited more than 95% sunlight induced photocatalytic degradation of trypan blue in 4 h, following first order kinetics with high rate of degradation (k) (0.0124 min(-1)). The observed dye degradation is attributable to generation of reactive oxygen species (ROS), confirmed from terephthalic acid assay. The ROS generation has been explained on the basis of interaction between photoexcited electrons from conduction band with molecular oxygen adhered to the surface of nanorods owing to favourable redox potentials of O2/O2(-) (-0.20 eV) in normal hydrogen electrode (NHE) scale. PMID:26196717

  2. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  3. Synthesis and characterization of zinc doped nano TiO{sub 2} for efficient photocatalytic degradation of Eriochrome Black T

    SciTech Connect

    Singla, Pooja; Singh, Kulvir; Pandey, O. P.; Sharma, Manoj

    2013-06-03

    Sol-gel method was used to synthesize undoped and zinc doped TiO{sub 2} with varied dopant concentrations using titanium tetraisopropoxide and zinc acetate as precursors. The synthesized catalyst samples were characterized by various techniques such as X-ray powder diffraction (XRD), UV-vis diffuse reflectance (DRS). The photocatalytic activity was determined by means of degradation of azo dye Eriochrome Black T. The results revealed that Zn doped TiO{sub 2} nanoparticles exhibited better results as compared to undoped TiO{sub 2} nanoparticles. Zn doped TiO{sub 2} (0.7mol %) nanoparticles exhibited the highest photocatalytic activity.

  4. Electroluminescence dependence of the simplified green light organic light emitting diodes on in situ thermal treatment

    NASA Astrophysics Data System (ADS)

    Mu, Haichuan; Rao, Lu; Li, Weiling; Wei, Bin; Wang, Keke; Xie, Haifen

    2015-12-01

    Simplified multilayer green light phosphorescent organic light emitting diodes (PHOLED) with the structure of ITO/MoO3(1 nm)/CBP(20 nm)/CBP:Ir(ppy)3 (1 wt%) (15 nm)/TPBi(60 nm)/LiF(0.5 nm)/Al were fabricated via thermal evaporation and in situ thermal treatment (heating the OLED substrates to certain temperatures during the thermal evaporation of the organic materials) was performed. The effect of the in situ thermal treatment on the electroluminescence (EL) performance of the PHOLED was investigated. It was found that the OLED exhibited strong EL dependence on the thermal treatment temperatures, and their current efficiency was improved with the increasing temperature from room temperature (RT) to 69 °C and deteriorated with the further increasing temperature to 105 °C. At the brightness of 1000 cd/m2, over 80% improvement of the current efficiency at the optimal thermal treatment temperature of 69 °C (64 cd/A) was demonstrated compared to that at RT (35 cd/A). Meanwhile, the tremendous influences of the in situ thermal treatment on the morphology of the multilayer CBP/CBP:Ir(ppy)3/TPBi were also observed. At the optimal thermal treatment temperature of 69 °C, the improvement of the EL performance could be ascribed to the enhancement of the electron and hole transporting in the CBP:Ir(ppy)3 emitting layer, which suppressed the triplets self-quenching interactions and promoted the charge balance and excitons formation. The working mechanism responsible for such EL dependence was discussed in detail.

  5. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light.

    PubMed

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-10-01

    In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation.

  6. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    SciTech Connect

    Meng, Qiushi; Zhang, Chao; Zhang, Yang E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao E-mail: zcdong@ustc.edu.cn

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  7. Newly isolated Penicillium oxalicum A592-4B secretes enzymes that degrade milled rice straw with high efficiency.

    PubMed

    Aoyama, Akihisa; Kurane, Ryuichiro; Matsuura, Akira; Nagai, Kazuo

    2015-01-01

    An enzyme producing micro-organism, which can directly saccharify rice straw that has only been crushed without undergoing the current acid or alkaline pretreatment, was found. From the homology with the ITS, 28S rDNA sequence, the strain named A592-4B was identified as Penicillium oxalicum. Activities of the A592-4B enzymes and commercial enzyme preparations were compared by Novozymes Cellic CTec2 and Genencore GC220. In the present experimental condition, activity of A592-4B enzymes was 2.6 times higher than that of CTec2 for degrading milled rice straw. Furthermore, even when a quarter amount of A592-4B enzyme was applied to the rice straw, the conversion rate was still higher than that by CTec2. By utilizing A592-4B enzymes, improved lignocellulose degradation yields can be achieved without pre-treatment of the substrates; thus, contributing to cost reduction as well as reducing environmental burden.

  8. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery.

    PubMed

    Sharma, Varsha; Anandhakumar, Sundaramurthy; Sasidharan, Manickam

    2015-11-01

    In this study, we have examined the encapsulation and release of hydrophilic and hydrophobic drugs in self-degrading niosomes as a unique method for anticancer therapy. Niosomes were prepared by amphiphilic self-assembly of Tween 80 and cholesterol through film hydration method. Encapsulation studies with two active molecules curcumin and doxorubicin hydrochloride (Dox) showed that curcumin is supposed to accumulate in the shell whereas Dox accumulates in the inner aqueous core of the niosome. Confocal studies indicated that nile red adsorbs preferentially to the head group of the Tween 80 and forms two separate layers in the shell. It was also seen that the niosomes undergo self-degradation in PBS through a sequential process, forming interconnected pores followed by complete collapse after 1week. The release profile shows two phases: i) initial Dox release in the first two days, followed by ii) curcumin release over 7days. Enhanced (synergistic) cytotoxicity was observed for dual-drug loaded niosomes against HeLa cell lines. Thus these niosomes are shown to offer a promising delivery system for hydrophobic and hydrophilic drugs collectively.

  9. Preparation and characterization of Cu{sub 2}O-TiO{sub 2}: Efficient photocatalytic degradation of methylene blue

    SciTech Connect

    Xu Yuehua Liang Dahui; Liu Manle; Liu Dingzhong

    2008-12-01

    A series of copper-deposited titania were prepared by photoreduction method under irradiation with a 125-W high-pressure mercury lamp. From XPS and AES results, the deposited-copper formed Ti-O-Cu bond on the surface of TiO{sub 2}, and the Cu species on the surface of copper-deposited TiO{sub 2} can be identified as Cu(I). The photocatalytic degradation activity of methylene blue for the Cu{sub 2}O-TiO{sub 2} series increased with increasing Cu{sub 2}O-deposited content, and then decreased. The highest photocatalytic degradation activity of methylene blue was obtained for 0.16% Cu{sub 2}O-TiO{sub 2}. When copper-deposited content reached to 0.32%, the photocatalytic activity was lower than that of pure TiO{sub 2}. It is shown that Cu{sub 2}O on the surface of TiO{sub 2} can trap electrons from the TiO{sub 2} conduction band, and the electrons trapped on the Cu{sub 2}O-TiO{sub 2} site are subsequently transferred to the surrounding adsorbed O{sub 2}, thereby avoiding electron-hole recombination, and enhancing the photocatalytic activity. Excess copper loading may screen the photocatalyst from the UV source, so the photocatalytic activity diminishes with increasing Cu{sub 2}O.

  10. Highly ordered Ti-SBA-15: Efficient H{sub 2} adsorbent and photocatalyst for eco-toxic dye degradation

    SciTech Connect

    Das, Swapan K.; Bhunia, Manas K.; Bhaumik, Asim

    2010-06-15

    Highly ordered 2D-hexagonal mesoporous titanium silicate Ti-SBA-15 materials (space group p6mm) have been synthesized hydrothermally in acidic medium employing amphiphilic tri-block copolymer, Pluronic F127 as structure directing agent. Samples are characterized by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, FT IR spectroscopy, UV-visible diffuse reflectance measurements, N{sub 2} adsorption/desorption and TG-DTA analysis. XRD and TEM results suggested the presence of highly ordered mesophase with hexagonal pore arrangements. BET surface area for Ti-SBA-15 (924 m{sup 2} g{sup -1}) is considerably higher than the pure silica SBA-15 (611 m{sup 2} g{sup -1}) prepared following the same synthetic route. UV-visible and FT-IR studies suggested the incorporation of mostly tetrahedral titanium (IV) species, along with some six-coordinated sites in the silicate network. This material shows very good H{sub 2} adsorption capacity at higher pressure and excellent catalytic activity in the photocatalytic degradation of ecologically abundant dye methylene blue. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous Ti-SBA-15 materials are synthesized hydrothermally, which show high H{sub 2} adsorption capacity and excellent activity in the photocatalytic degradation of ecologically abundant dye methylene blue.

  11. Ce-Fe-reduced graphene oxide nanocomposite as an efficient catalyst for sulfamethazine degradation in aqueous solution.

    PubMed

    Wan, Zhong; Wang, Jianlong

    2016-09-01

    A heterogeneous Fenton catalyst Ce(0)-Fe(0)-reduced graphene oxide (Ce-Fe-RGO) was synthesized with chemical reduction methods and used for degradation of sulfamethazine. The introduction of Ce and graphene increased the dispersibility of iron particles which was confirmed by SEM and TEM. The results of VSM analysis showed good magnetism of Ce-Fe-RGO. The catalyst performance was compared with other kinds of catalysts (Fe(0) and Ce(0)-Fe(0)) for degradation of sulfamethazine. The results showed that Ce(0)-Fe-RGO had good catalytic performance and adsorption. X-ray diffraction showed the change of iron oxide on catalyst surface after use. The total sulfur (TS), total nitrogen (TN), total organic carbon (TOC), and intermediates, such as small organic molecular and anion ions, were analyzed by IC under different pH conditions. Finally, the possible catalytic mechanism was tentatively proposed based on inhibitor experimental results and XPS characterization. The main active species was hydroxyl radical on catalyst surface and the transition between Ce(3+) and Ce(4+) which enhanced the reduction from Fe(3+) to Fe(2+) and formation of ·OH and ·O2 (-). PMID:27294699

  12. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells

    PubMed Central

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-01-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A−1 and 40.6 cd A−1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A−1 and 25.4 cd A−1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays. PMID:27278527

  13. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-06-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A‑1 and 40.6 cd A‑1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A‑1 and 25.4 cd A‑1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays.

  14. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells.

    PubMed

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-01-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A(-1) and 40.6 cd A(-1), respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A(-1) and 25.4 cd A(-1) for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays. PMID:27278527

  15. Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm.

    PubMed

    Mishra, Sanjeet; Sarma, Priyangshu M; Lal, Banwari

    2004-06-15

    A hydrocarbon degrading Acinetobacter baumannii S30 strain, isolated from crude oil-contaminated soil, was inserted with the lux gene from the luciferase gene cassette luxCDABE. Soil microcosms were designed to study the degradation efficacy for total petroleum hydrocarbon (TPH) of crude oil by lux-tagged A. baumannii S30 pJES. Bioaugmentation of a TPH-contaminated microcosm with A baumannii S30 pJES showed that TPH levels were reduced from 89.3 to 53.9 g/kg soil in 90 days. Biodegradation of TPH by A baumannii S30 pJES was also monitored in shake flask conditions, which showed a reduction of initial TPH levels by over 50% at the end of 120 h. A lux-PCR-based approach along with the standard dilution plating with selective antibiotics was successfully utilized to monitor the survivability of the lux-tagged strain A. baumannii S30 pJES in soil microcosms and stability of the lux insert in the host strain A. baumannii S30. The selective plating technique indicated the population of A. baumannii S30 pJES to be 6.5+/-0.13 x 10(8) CFU/g at day zero (just after bioaugmentation) and 2.09+/-0.08 x 10(8) CFU/g of soil after 90 days of incubation. lux-PCR confirmed the stability of the insert in all the randomly selected colonies of A. baumannii strains from the antibiotic plates. The lux insert was stable after 50 generations in Luria Bertini broth and storage at -70 degrees C as glycerol stocks for over a year. These results revealed that the lux insert was stable and lux-tagged A. baumannii S30 strain could survive in a TPH-contaminated soil microcosm and could degrade TPH in the soil microcosm conditions. It can be used as an effective marker to monitor the survival of augmented strains at a bioremediation site. PMID:15183881

  16. Alternating current driven electroluminescence from ZnSe/ZnS:Mn/ZnS nanocrystals.

    PubMed

    Wood, Vanessa; Halpert, Jonathan E; Panzer, Matthew J; Bawendi, Moungi G; Bulović, Vladimir

    2009-06-01

    We present a novel technique for room temperature, solution-based fabrication of alternating current thin-film electroluminescent (AC-TFEL) devices using phosphor-doped nanocrystals. Synthesis for stable ZnSe/ZnS:Mn/ZnS nanocrystals that exhibit a quantum yield of 65 +/- 5% is outlined, and their electroluminescence is demonstrated in structures consisting of only wide band gap ceramic layers. Both the nanocrystal and the ceramic films have minimal absorption across the visible light spectrum, enabling us to demonstrate transparent AC-TFEL devices.

  17. Delayed electroluminescence of doped fluorescent aingle layer organic light-emitting devices.

    PubMed

    Zhang, Yanfei; Zhao, Suling; Xu, Zheng; Kong, Chao

    2014-05-01

    Doped single-layer polymer OLEDs consisting of PVK: (TPB, C545T, Rubrene or DCJTB) were prepared. By applying high-frequency electric pulse of 0.5 micros pulse width to each device, we observed various delayed electroluminescence after withdrawing the forward bias. The order of magnitude of fitting life time ranges from hundreds of nanoseconds to several milliseconds. Current density-voltage and brightness-voltage characteristics reveals charge trapped on guest sites initially before released. Subsequently, the recombination of these trapped charges is strongly involved in the origin of delayed electroluminescence. PMID:24734573

  18. Terminal PEGylated DNA–Gold Nanoparticle Conjugates Offering High Resistance to Nuclease Degradation and Efficient Intracellular Delivery of DNA Binding Agents

    PubMed Central

    2015-01-01

    Over the past 10 years, polyvalent DNA–gold nanoparticle (DNA–GNP) conjugate has been demonstrated as an efficient, universal nanocarrier for drug and gene delivery with high uptake by over 50 different types of primary and cancer cell lines. A barrier limiting its in vivo effectiveness is limited resistance to nuclease degradation and nonspecific interaction with blood serum contents. Herein we show that terminal PEGylation of the complementary DNA strand hybridized to a polyvalent DNA–GNP conjugate can eliminate nonspecific adsorption of serum proteins and greatly increases its resistance against DNase I-based degradation. The PEGylated DNA–GNP conjugate still retains a high cell uptake property, making it an attractive intracellular delivery nanocarrier for DNA binding reagents. We show that it can be used for successful intracellular delivery of doxorubicin, a widely used clinical cancer chemotherapeutic drug. Moreover, it can be used for efficient delivery of some cell-membrane-impermeable reagents such as propidium iodide (a DNA intercalating fluorescent dye currently limited to the use of staining dead cells only) and a diruthenium complex (a DNA groove binder), for successful staining of live cells. PMID:26237203

  19. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons.

    PubMed

    Lei, Zhen-Dong; Wang, Jia-Jun; Wang, Liang; Yang, Xiong-Yu; Xu, Gang; Tang, Liang

    2016-07-15

    Single crystalline, non-toxicity, and long-term stability graphene quantum dots (GQDs) were modified onto the AgVO3 nanoribbons by a facile hydrothermal and sintering technique which constructs a unique heterojunction photocatalyst. Characterization results indicate that GQDs are well dispersed on the surface of AgVO3 nanoribbons and GQD/AgVO3 heterojunctions are formed, which can greatly promote the separation efficiency of photogenerated electron-hole pairs under visible light irradiation. By taking advantage of this feature, the GQD/AgVO3 heterojunctions exhibit considerable improvement on the photocatalytic activities for the degradation of ibuprofen (IBP) under visible light irradiation as compared to pure AgVO3. The photocatalytic activity of GQD/AgVO3 heterojunctions is relevant with GQD ratio and the optimal activity is obtained at 3wt% with the highest separation efficiency of photogenerated electron-hole pairs. Integrating the physicochemical and photocatalytic properties, the factors controlling the photocatalytic activity of GQD/AgVO3 heterojunctions are discussed in detail. Moreover, potential photocatalytic degradation mechanisms of IBP via GQD/AgVO3 heterojunctions under visible light are proposed. PMID:27046507

  20. High-efficiency sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays.

    PubMed

    Guo, Xiao; Fu, Yongming; Hong, Deyi; Yu, Binwei; He, Haoxuan; Wang, Qiang; Xing, Lili; Xue, Xinyu

    2016-09-16

    Highly-efficient sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays was achieved. A steel screen was used as the substrate for supporting FeS/ZnO nanoarrays, and the nanoarrays were vertically and uniformly grown on the substrate via a wet-chemical route. Under ultrasonic and solar irradiation, FeS/ZnO nanoarrays have high sono-photocatalytic activity for degrading methylene blue in water. The photogenerated carriers can be separated by a piezoelectric field and a built-in electric field, resulting in a low recombination rate and high photocatalytic efficiency. The piezophototronic and photocatalytic effects were coupled together. The experimental/theoretical data indicate that this novel wastewater treatment can co-use mechanical and solar energy in nature, and so is a promising technology for environment improvement.

  1. Terminal PEGylated DNA-Gold Nanoparticle Conjugates Offering High Resistance to Nuclease Degradation and Efficient Intracellular Delivery of DNA Binding Agents.

    PubMed

    Song, Lei; Guo, Yuan; Roebuck, Deborah; Chen, Chun; Yang, Min; Yang, Zhongqiang; Sreedharan, Sreejesh; Glover, Caroline; Thomas, Jim A; Liu, Dongsheng; Guo, Shengrong; Chen, Rongjun; Zhou, Dejian

    2015-08-26

    Over the past 10 years, polyvalent DNA-gold nanoparticle (DNA-GNP) conjugate has been demonstrated as an efficient, universal nanocarrier for drug and gene delivery with high uptake by over 50 different types of primary and cancer cell lines. A barrier limiting its in vivo effectiveness is limited resistance to nuclease degradation and nonspecific interaction with blood serum contents. Herein we show that terminal PEGylation of the complementary DNA strand hybridized to a polyvalent DNA-GNP conjugate can eliminate nonspecific adsorption of serum proteins and greatly increases its resistance against DNase I-based degradation. The PEGylated DNA-GNP conjugate still retains a high cell uptake property, making it an attractive intracellular delivery nanocarrier for DNA binding reagents. We show that it can be used for successful intracellular delivery of doxorubicin, a widely used clinical cancer chemotherapeutic drug. Moreover, it can be used for efficient delivery of some cell-membrane-impermeable reagents such as propidium iodide (a DNA intercalating fluorescent dye currently limited to the use of staining dead cells only) and a diruthenium complex (a DNA groove binder), for successful staining of live cells.

  2. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye.

    PubMed

    Hong, Deyi; Zang, Weili; Guo, Xiao; Fu, Yongming; He, Haoxuan; Sun, Jing; Xing, Lili; Liu, Baodan; Xue, Xinyu

    2016-08-24

    High piezo-photocatalytic efficiency of degrading organic pollutants has been realized from CuS/ZnO nanowires using both solar and mechanical energy. CuS/ZnO heterostructured nanowire arrays are compactly/vertically aligned on stainless steel mesh by a simple two-step wet-chemical method. The mesh-supported nanocomposites can facilitate an efficient light harvesting due to the large surface area and can also be easily removed from the treated solution. Under both solar and ultrasonic irradiation, CuS/ZnO nanowires can rapidly degrade methylene blue (MB) in aqueous solution, and the recyclability is investigated. In this process, the ultrasonic assistance can greatly enhance the photocatalytic activity. Such a performance can be attributed to the coupling of the built-in electric field of heterostructures and the piezoelectric field of ZnO nanowires. The built-in electric field of the heterostructure can effectively separate the photogenerated electrons/holes and facilitate the carrier transportation. The CuS component can improve the visible light utilization. The piezoelectric field created by ZnO nanowires can further separate the photogenerated electrons/holes through driving them to migrate along opposite directions. The present results demonstrate a new water-pollution solution in green technologies for the environmental remediation at the industrial level.

  3. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye.

    PubMed

    Hong, Deyi; Zang, Weili; Guo, Xiao; Fu, Yongming; He, Haoxuan; Sun, Jing; Xing, Lili; Liu, Baodan; Xue, Xinyu

    2016-08-24

    High piezo-photocatalytic efficiency of degrading organic pollutants has been realized from CuS/ZnO nanowires using both solar and mechanical energy. CuS/ZnO heterostructured nanowire arrays are compactly/vertically aligned on stainless steel mesh by a simple two-step wet-chemical method. The mesh-supported nanocomposites can facilitate an efficient light harvesting due to the large surface area and can also be easily removed from the treated solution. Under both solar and ultrasonic irradiation, CuS/ZnO nanowires can rapidly degrade methylene blue (MB) in aqueous solution, and the recyclability is investigated. In this process, the ultrasonic assistance can greatly enhance the photocatalytic activity. Such a performance can be attributed to the coupling of the built-in electric field of heterostructures and the piezoelectric field of ZnO nanowires. The built-in electric field of the heterostructure can effectively separate the photogenerated electrons/holes and facilitate the carrier transportation. The CuS component can improve the visible light utilization. The piezoelectric field created by ZnO nanowires can further separate the photogenerated electrons/holes through driving them to migrate along opposite directions. The present results demonstrate a new water-pollution solution in green technologies for the environmental remediation at the industrial level. PMID:27494426

  4. High-efficiency sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays.

    PubMed

    Guo, Xiao; Fu, Yongming; Hong, Deyi; Yu, Binwei; He, Haoxuan; Wang, Qiang; Xing, Lili; Xue, Xinyu

    2016-09-16

    Highly-efficient sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays was achieved. A steel screen was used as the substrate for supporting FeS/ZnO nanoarrays, and the nanoarrays were vertically and uniformly grown on the substrate via a wet-chemical route. Under ultrasonic and solar irradiation, FeS/ZnO nanoarrays have high sono-photocatalytic activity for degrading methylene blue in water. The photogenerated carriers can be separated by a piezoelectric field and a built-in electric field, resulting in a low recombination rate and high photocatalytic efficiency. The piezophototronic and photocatalytic effects were coupled together. The experimental/theoretical data indicate that this novel wastewater treatment can co-use mechanical and solar energy in nature, and so is a promising technology for environment improvement. PMID:27502445

  5. Efficient photocatalytic degradation of acid orange 7 on metal oxide p-n junction composites under visible light

    NASA Astrophysics Data System (ADS)

    Suk Jang, Jum; Gyu Kim, Hyun; Lee, Se-Hee

    2012-11-01

    MO(=CuO, Co3O4, NiO)/BiVO4 p-n junction composites were synthesized by urea-precipitation and wet impregnation method. The physicochemical and optical properties of the as-prepared materials were investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-visible diffuse reflectance spectra. The photocatalytic performance of the as-prepared materials was investigated for decomposition of azo dye, acid orange 7. The CuO/BiVO4 and Co3O4/BiVO4 p-n junction composite photocatalysts exhibited the higher photocatalytic degradation of acid orange 7 than those of BiVO4 and NiO/BiVO4 as-prepared samples under visible light irradiation. We also discussed the mechanism of enhanced photocatalytic activity of p-n junctioned composites based on their energy band structures.

  6. Design of binary SnO2-CuO nanocomposite for efficient photocatalytic degradation of malachite green dye

    NASA Astrophysics Data System (ADS)

    Kumar, Aniket; Rout, Lipeeka; Achary, L. Satish Kumar; Mohanty, Anurag; Marpally, Jyoshna; Chand, Pradyumna Kumar; Dash, Priyabrat

    2016-04-01

    Semiconductor mediated photocatalysis has got enormous consideration as it has shown immense potential in addressing the overall energy and environmental issues. To overcome the earlier drawbacks concerning quick charge recombination and limited visible-light absorption of semiconductor photocatalysts, numerous methods have been produced in the past couple of decades and the most broadly utilized one is to develop the photocatalytic heterojunctions. In our work, a series of SnO2-CuO nanocomposites of different compositions were synthesized by a combustion method and have been investigated in detail by various characterization techniques, such as wide angle X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The results revealed that the crystal structure and optical properties of the nanocomposites were almost same for all the compositions. FE-SEM images showed that the shape of SnO2-CuO was spherical in nature and the 1: 1 Sn/Cu sample had a well-proportioned morphology. The malachite green dye was used for the photocatalytic studies in a photoreactor and monitored with a UV-visible spectrometer for different composition ratio of metal (Sn: Cu) such as 1:1, 1:2, 2:1, 1:0.5 and 0.5:1. The 1:1 ratio nanocomposite showed excellent photocatalytic degradation of 96 % compared to pure SnO2 and CuO. The mechanism of degradation and charge separation ability of the nanocomposite are also explored using photocurrent measurement study.

  7. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase).

  8. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase). PMID:25624137

  9. Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 dichlorophenol (DCP).

    PubMed

    Sponza, Delia Teresa; Cigal, Canan

    2008-04-01

    To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and

  10. Ag{sub 3}PO{sub 4}/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    SciTech Connect

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-15

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag{sub 3}PO{sub 4}/ZnO system. The accumulated electrons in the CB of Ag{sub 3}PO{sub 4} can be transferred to O{sub 2} adsorbed on the surface of the composite semiconductors and H{sub 2}O{sub 2} yields. H{sub 2}O{sub 2} reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites were successfully prepared. ► Effect of Ag{sub 3}PO{sub 4} content on the catalytic activity of Ag{sub 3}PO{sub 4}/ZnO is studied in detail. ► Rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of Ag{sub 3}PO{sub 4}. ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag{sub 3}PO{sub 4}/ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites with various weight percents of Ag{sub 3}PO{sub 4} were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag{sub 3}PO{sub 4}/ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag{sub 3}PO{sub 4} and ZnO. The rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of single-phase Ag{sub 3}PO{sub 4}. The optimal percentage of Ag{sub 3}PO{sub 4} in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of

  11. Genome Sequence of an Efficient Indole-Degrading Bacterium, Cupriavidus sp. Strain IDO, with Potential Polyhydroxyalkanoate Production Applications

    PubMed Central

    Ma, Qiao; Zhang, Zhaojing; Li, Pengpeng

    2015-01-01

    Cupriavidus sp. strain IDO has been shown to efficiently transform indole, and the genus of Cupriavidus has been described as a promising cell factory for polyhydroxyalkanoate synthesis from low-cost wastes. Here, we report the draft genome sequence of strain IDO, which may provide useful genetic information on indole metabolism and polyhydroxyalkanoate production. PMID:25767238

  12. Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties.

    PubMed

    Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung

    2015-11-11

    A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors. PMID:26458215

  13. Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties.

    PubMed

    Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung

    2015-11-11

    A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors.

  14. Self-assembly of ultrathin Cu2MoS4 nanobelts for highly efficient visible light-driven degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Chen, Wenxing; Lin, Yunxiang; Chen, Haiping; Haleem, Yasir A.; Wu, Chuanqiang; Ye, Fei; Wang, Tianxing; Song, Li

    2015-10-01

    We demonstrate ultrathin self-assembled Cu2MoS4 nanobelts synthesized by using Cu2O as the starting sacrificial template via a hydrothermal method. The nanobelts exhibit strong light absorption over a broad wavelength spectrum, suggesting their potential application as photocatalysts. The photocatalytic activity of nanobelts is evaluated by the degradation of Methyl Orange (MO) dye under visible light irradiation. Notably, the nanobelts can completely degrade 100 mL of 15 mg mL-1 MO in 20 minutes with excellent recycling and structural stability, suggesting their excellent photocatalytic performance. In comparison with a sheet-like sample, the high efficiency of the self-assembled Cu2MoS4 nanobelts is attributed to a high surface area and a unique band gap, agreeing with the nitrogen adsorption analysis and photoluminescence spectra. This study offers a self-assembled synthetic route to create new multifunctional nanoarchitectures composed of atomic layers, and thus may open a window for greatly extending potential applications in water pollution treatment, photocatalytic water-splitting, solar cells and other related fields.We demonstrate ultrathin self-assembled Cu2MoS4 nanobelts synthesized by using Cu2O as the starting sacrificial template via a hydrothermal method. The nanobelts exhibit strong light absorption over a broad wavelength spectrum, suggesting their potential application as photocatalysts. The photocatalytic activity of nanobelts is evaluated by the degradation of Methyl Orange (MO) dye under visible light irradiation. Notably, the nanobelts can completely degrade 100 mL of 15 mg mL-1 MO in 20 minutes with excellent recycling and structural stability, suggesting their excellent photocatalytic performance. In comparison with a sheet-like sample, the high efficiency of the self-assembled Cu2MoS4 nanobelts is attributed to a high surface area and a unique band gap, agreeing with the nitrogen adsorption analysis and photoluminescence spectra. This study

  15. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide.

    PubMed

    Feng, Yong; Liao, Changzhong; Shih, Kaimin

    2016-07-01

    To evaluate the heterogeneous degradation of sulfanilamide by external energy-free Fenton-like reactions, magnetic CuFe2O4 spinel nanoparticles (NPs) were synthesized and used as catalysts for activation of hydrogen peroxide (H2O2). The physicochemical properties of the CuFe2O4 NPs were characterized with several techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and magnetometry. In the catalytic experiments, CuFe2O4 NPs/H2O2 oxidation showed the best degradation performance in the circumneutral conditions that resulted from the presence of Cu(II) on the surface of the CuFe2O4 NPs. The surface area-normalized pseudo-first-order rate constants were calculated as 2.60 × 10(-2) L m(-1) min(-1), 2.58 × 10(-3) L m(-1) min(-1), 1.92 × 10(-3) L m(-1) min(-1), and 7.30 × 10(-4) L m(-1) min(-1) for CuO, CuFe2O4 NPs, Fe3O4, and α-Fe2O3 catalysts, respectively. Thus, solid state Cu(II) was more reactive and efficient than Fe(III) in the circumneutral activation of H2O2; this finding was further supported by the results regarding the stoichiometric efficiency of H2O2. The effects of experimental parameters such as the oxidant dosage and catalyst loading were investigated. The mechanism for H2O2 activation on the spinel surface was explored and could be explained by the solid redox cycles of Fe(II)/Fe(III) and Cu(II)/Cu(I). Based on the products detected, a degradation pathway via the CS bond cleavage is proposed for the degradation of sulfanilamide. The findings of this study suggest that copper can be used as a doping metal to improve the reactivity and expand the effective pH range of iron oxides.

  16. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide.

    PubMed

    Feng, Yong; Liao, Changzhong; Shih, Kaimin

    2016-07-01

    To evaluate the heterogeneous degradation of sulfanilamide by external energy-free Fenton-like reactions, magnetic CuFe2O4 spinel nanoparticles (NPs) were synthesized and used as catalysts for activation of hydrogen peroxide (H2O2). The physicochemical properties of the CuFe2O4 NPs were characterized with several techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and magnetometry. In the catalytic experiments, CuFe2O4 NPs/H2O2 oxidation showed the best degradation performance in the circumneutral conditions that resulted from the presence of Cu(II) on the surface of the CuFe2O4 NPs. The surface area-normalized pseudo-first-order rate constants were calculated as 2.60 × 10(-2) L m(-1) min(-1), 2.58 × 10(-3) L m(-1) min(-1), 1.92 × 10(-3) L m(-1) min(-1), and 7.30 × 10(-4) L m(-1) min(-1) for CuO, CuFe2O4 NPs, Fe3O4, and α-Fe2O3 catalysts, respectively. Thus, solid state Cu(II) was more reactive and efficient than Fe(III) in the circumneutral activation of H2O2; this finding was further supported by the results regarding the stoichiometric efficiency of H2O2. The effects of experimental parameters such as the oxidant dosage and catalyst loading were investigated. The mechanism for H2O2 activation on the spinel surface was explored and could be explained by the solid redox cycles of Fe(II)/Fe(III) and Cu(II)/Cu(I). Based on the products detected, a degradation pathway via the CS bond cleavage is proposed for the degradation of sulfanilamide. The findings of this study suggest that copper can be used as a doping metal to improve the reactivity and expand the effective pH range of iron oxides. PMID:27085318

  17. Nano-Titania Photocatalyst Loaded on W-MCM-41 Support and Its Highly Efficient Degradation of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Shankar, H.; Saravanan, R.; Narayanan, V.; Stephen, A.

    2011-07-01

    Most of the azo dyes produced in textile, printing, paper manufacturing, pulp processing and pharmaceutical industries contain different organic contaminants. These dyes can enter the body through ingestion and the high content in living systems can prove to be carcinogenic. Therefore photocatalytic degradation of such toxic organic compounds in water, in the presence of semiconductor powders has received much attention over the last two decades. Nanocrystalline titanium dioxide, TiO2, is a well studied and commonly used material for photocatalytic applications. However, the control of particle size, monodispersity, large catalytic surface for sufficient adsorption of organic pollutants, recovery and recycle of TiO2 nanoparticles are challenging tasks. Hence in the present study, titania was introduced into the nanopores (2-10 nm size) of MCM-41 to produce stable nanoparticles of uniform size and shape. Further, in order to lengthen the life time of the excited electrons/holes during photoreaction, tungsten atoms were incorporated in to the MCM-41 silica matrix in addition to titania loading.

  18. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

    PubMed

    Tavares, Eveline Q P; De Souza, Amanda P; Buckeridge, Marcos S

    2015-07-01

    Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass.

  19. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs).

    PubMed

    Yang, Yi; Pignatello, Joseph J; Ma, Jun; Mitch, William A

    2014-02-18

    The effect of halides on organic contaminant destruction efficiency was compared for UV/H2O2 and UV/S2O8(2-) AOP treatments of saline waters; benzoic acid, 3-cyclohexene-1-carboxylic acid, and cyclohexanecarboxylic acid were used as models for aromatic, alkene, and alkane constituents of naphthenic acids in oil-field waters. In model freshwater, contaminant degradation was higher by UV/S2O8(2-) because of the higher quantum efficiency for S2O8(2-) than H2O2 photolysis. The conversion of (•)OH and SO4(•-) radicals to less reactive halogen radicals in the presence of seawater halides reduced the degradation efficiency of benzoic acid and cyclohexanecarboxylic acid. The UV/S2O8(2-) AOP was more affected by Cl(-) than the UV/H2O2 AOP because oxidation of Cl(-) is more favorable by SO4(•-) than (•)OH at pH 7. Degradation of 3-cyclohexene-1-carboxylic acid, was not affected by halides, likely because of the high reactivity of halogen radicals with alkenes. Despite its relatively low concentration in saline waters compared to Cl(-), Br(-) was particularly important. Br(-) promoted halogen radical formation for both AOPs resulting in ClBr(•-), Br2(•-), and CO3(•-) concentrations orders of magnitude higher than (•)OH and SO4(•-) concentrations and reducing differences in halide impacts between the two AOPs. Kinetic modeling of the UV/H2O2 AOP indicated a synergism between Br(-) and Cl(-), with Br(-) scavenging of (•)OH leading to BrOH(•-), and further reactions of Cl(-) with this and other brominated radicals promoting halogen radical concentrations. In contaminant mixtures, the conversion of (•)OH and SO4(•-) radicals to more selective CO3(•-) and halogen radicals favored attack on highly reactive reaction centers represented by the alkene group of 3-cyclohexene-1-carboxylic acid and the aromatic group of the model compound, 2,4-dihydroxybenzoic acid, at the expense of less reactive reaction centers such as aromatic rings and alkane groups

  20. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse.

  1. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse. PMID:26206125

  2. An observation of direct-gap electroluminescence in GaAs structures with Ge quantum wells

    SciTech Connect

    Aleshkin, V. Ya.; Dikareva, N. V.; Dubinov, A. A.; Zvonkov, B. N.; Kudryavtsev, K. E.; Nekorkin, S. M.

    2015-02-15

    A light-emitting diode structure based on GaAs with eight narrow Ge quantum wells is grown by laser sputtering. An electroluminescence line polarized predominately in the plane parallel to the constituent layers of the structure is revealed. The line corresponds to the direct optical transitions in momentum space in the Ge quantum wells.

  3. A Patatin-Like Protein Associated with the Polyhydroxyalkanoate (PHA) Granules of Haloferax mediterranei Acts as an Efficient Depolymerase in the Degradation of Native PHA

    PubMed Central

    Liu, Guiming; Hou, Jing; Cai, Shuangfeng; Zhao, Dahe; Cai, Lei; Han, Jing; Zhou, Jian

    2015-01-01

    The key enzymes and pathways involved in polyhydroxyalkanoate (PHA) biosynthesis in haloarchaea have been identified in recent years, but the haloarchaeal enzymes for PHA degradation remain unknown. In this study, a patatin-like PHA depolymerase, PhaZh1, was determined to be located on the PHA granules in the haloarchaeon Haloferax mediterranei. PhaZh1 hydrolyzed the native PHA (nPHA) [including native polyhydroxybutyrate (nPHB) and native poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (nPHBV) in this study] granules in vitro with 3-hydroxybutyrate (3HB) monomer as the primary product. The site-directed mutagenesis of PhaZh1 indicated that Gly16, Ser47 (in a classical lipase box, G-X-S47-X-G), and Asp195 of this depolymerase were essential for its activity in nPHA granule hydrolysis. Notably, phaZh1 and bdhA (encoding putative 3HB dehydrogenase) form a gene cluster (HFX_6463 to _6464) in H. mediterranei. The 3HB monomer generated from nPHA degradation by PhaZh1 could be further converted into acetoacetate by BdhA, indicating that PhaZh1-BdhA may constitute the first part of a PHA degradation pathway in vivo. Interestingly, although PhaZh1 showed efficient activity and was most likely the key enzyme in nPHA granule hydrolysis in vitro, the knockout of phaZh1 had no significant effect on the intracellular PHA mobilization, implying the existence of an alternative PHA mobilization pathway(s) that functions effectively within the cells of H. mediterranei. Therefore, identification of this patatin-like depolymerase of haloarchaea may provide a new strategy for producing the high-value-added chiral compound (R)-3HB and may also shed light on the PHA mobilization in haloarchaea. PMID:25710370

  4. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol.

    PubMed

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-10-01

    This study investigated a novel approach for the synthesis of an integrated ternary nanocomposite which could act as a good photo-catalyst under visible light irradiation for the removal of organic pollutants from aqueous environments. The photo-catalyst included nickel oxide (NiO) as a dopant, and reduced graphene oxide (RGO) as a good carbon basal support for enhancement of the photo-catalytic activity of TiO2. Under irradiation with visible light, the ternary nanocomposite (TiO2/NiO-RGO) system generates e(-)/h(+) pairs, and then reacts with H2O and O2(-) molecules to produce oxy-radicals which can be used for the mineralization of o-chlorophenol from aqueous solution. The characteristic of all photo-catalysts were investigated by UV-Vis analysis, with surface area and pore size measurements by Brunauer-Emmett-Teller (BET), crystallinity by X-ray diffraction (XRD), elemental composition by X-ray photoelectron spectroscopy (XPS), and morphology by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The functional groups were measured by Fourier transform infrared (FT-IR) spectroscopy before and after o-chlorophenol degradation. TiO2/NiO-RGO was capable of achieving 88.4% photo-degradation of 100 mg/L o-chlorophenol (100 mL) within 8 h with addition of 0.01% H2O2 under visible light irradiation at pH 6.5. The photo-degradation followed a pseudo-first-order reaction. The TiO2/NiO-RGO nanocomposite retained its high removal efficiency, even after four photo-catalytic cycles.

  5. A patatin-like protein associated with the polyhydroxyalkanoate (PHA) granules of Haloferax mediterranei acts as an efficient depolymerase in the degradation of native PHA.

    PubMed

    Liu, Guiming; Hou, Jing; Cai, Shuangfeng; Zhao, Dahe; Cai, Lei; Han, Jing; Zhou, Jian; Xiang, Hua

    2015-05-01

    The key enzymes and pathways involved in polyhydroxyalkanoate (PHA) biosynthesis in haloarchaea have been identified in recent years, but the haloarchaeal enzymes for PHA degradation remain unknown. In this study, a patatin-like PHA depolymerase, PhaZh1, was determined to be located on the PHA granules in the haloarchaeon Haloferax mediterranei. PhaZh1 hydrolyzed the native PHA (nPHA) [including native polyhydroxybutyrate (nPHB) and native poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (nPHBV) in this study] granules in vitro with 3-hydroxybutyrate (3HB) monomer as the primary product. The site-directed mutagenesis of PhaZh1 indicated that Gly16, Ser47 (in a classical lipase box, G-X-S47-X-G), and Asp195 of this depolymerase were essential for its activity in nPHA granule hydrolysis. Notably, phaZh1 and bdhA (encoding putative 3HB dehydrogenase) form a gene cluster (HFX_6463 to _6464) in H. mediterranei. The 3HB monomer generated from nPHA degradation by PhaZh1 could be further converted into acetoacetate by BdhA, indicating that PhaZh1-BdhA may constitute the first part of a PHA degradation pathway in vivo. Interestingly, although PhaZh1 showed efficient activity and was most likely the key enzyme in nPHA granule hydrolysis in vitro, the knockout of phaZh1 had no significant effect on the intracellular PHA mobilization, implying the existence of an alternative PHA mobilization pathway(s) that functions effectively within the cells of H. mediterranei. Therefore, identification of this patatin-like depolymerase of haloarchaea may provide a new strategy for producing the high-value-added chiral compound (R)-3HB and may also shed light on the PHA mobilization in haloarchaea. PMID:25710370

  6. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol.

    PubMed

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-10-01

    This study investigated a novel approach for the synthesis of an integrated ternary nanocomposite which could act as a good photo-catalyst under visible light irradiation for the removal of organic pollutants from aqueous environments. The photo-catalyst included nickel oxide (NiO) as a dopant, and reduced graphene oxide (RGO) as a good carbon basal support for enhancement of the photo-catalytic activity of TiO2. Under irradiation with visible light, the ternary nanocomposite (TiO2/NiO-RGO) system generates e(-)/h(+) pairs, and then reacts with H2O and O2(-) molecules to produce oxy-radicals which can be used for the mineralization of o-chlorophenol from aqueous solution. The characteristic of all photo-catalysts were investigated by UV-Vis analysis, with surface area and pore size measurements by Brunauer-Emmett-Teller (BET), crystallinity by X-ray diffraction (XRD), elemental composition by X-ray photoelectron spectroscopy (XPS), and morphology by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The functional groups were measured by Fourier transform infrared (FT-IR) spectroscopy before and after o-chlorophenol degradation. TiO2/NiO-RGO was capable of achieving 88.4% photo-degradation of 100 mg/L o-chlorophenol (100 mL) within 8 h with addition of 0.01% H2O2 under visible light irradiation at pH 6.5. The photo-degradation followed a pseudo-first-order reaction. The TiO2/NiO-RGO nanocomposite retained its high removal efficiency, even after four photo-catalytic cycles. PMID:27423769

  7. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  8. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min.

  9. Design of a novel Cu₂O/TiO₂/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol.

    PubMed

    Wang, Yabo; Zhang, Ya-Nan; Zhao, Guohua; Tian, Hongyi; Shi, Huijie; Zhou, Tianchen

    2012-08-01

    Cu(2)O/TiO(2) heterojunction photocatalyst is built on carbon aerogel (CA) substrate with good adsorption properties by sol impregnation and seed-mediated synthesis approach. The Cu(2)O/TiO(2)/CA electrode has excellent electrosorptive and high efficient photocatalytic properties. Its morphology and surface chemical composition are characterized with SEM, TEM, X-ray diffraction (XRD) and Raman spectra. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Cu(2)O/TiO(2)/CA appears at 636 nm. Under visible-light (λ > 420 nm) irradiation, the photocurrent density increment on Cu(2)O/TiO(2)/CA is 60 times of that on Cu(2)O/TiO(2)/FTO. The electrochemical characteristic is investigated with electrochemical impedance spectrum (EIS). The Cu(2)O/TiO(2)/CA electrode is further applied in the electrosorptive photodegradation of the 2,4,6-trichlorophenol (2,4,6-TCP) wastewater. The result shows that the removal ratio of 2,4,6-TCP in 5.5 h on Cu(2)O/TiO(2)/CA is 96.3% and the TOC removal is 91.3%. The intermediates generated in the degradation process are analyzed by GC-MS and HPLC. The possible mechanism of visible light photocatalytic degradation of 2,4,6-TCP on Cu(2)O/TiO(2)/CA is also studied. PMID:22780307

  10. Different types of degradable vectors from low-molecular-weight polycation-functionalized poly(aspartic acid) for efficient gene delivery.

    PubMed

    Dou, X B; Hu, Y; Zhao, N N; Xu, F J

    2014-03-01

    Poly(aspartic acid) (PAsp) has been employed as the potential backbone for the preparation of efficient gene carriers, due to its low cytotoxicity, good biodegradability and excellent biocompatibility. In this work, the degradable linear or star-shaped PBLA was first prepared via ring-opining polymerization of β-benzyl-L-aspartate N-carboxy anhydride (BLA-NCA) initiated by ethylenediamine (ED) or ED-functionalized cyclodextrin cores. Then, PBLA was functionalized via aminolysis reaction with low-molecular-weight poly(2-(dimethylamino)ethyl methacrylate) with one terminal primary amine group (PDMAEMA-NH2), followed by addition of excess ED or ethanolamine (EA) to complete the aminolysis process. The obtained different types of cationic PAsp-based vectors including linear or star PAsp-PDM-NH2 and PAsp-PDM-OH exhibited good condensation capability and degradability, benefiting gene delivery process. In comparison with gold standard polyethylenimine (PEI, ∼ 25 kDa), the cationic PAsp-based vectors, particularly star-shaped ones, exhibited much better transfection performances.

  11. A novel p-n heterostructured photocatalyst for the efficient photocatalytic degradation of different kinds of organic compounds under irradiation of both ultraviolet and visible light.

    PubMed

    Ao, Yanhui; Bao, Jiaqiu; Wang, Peifang; Wang, Chao; Hou, Jun

    2016-09-21

    In this study, BiOBr-titanium phosphate (BiOBr/TP) plate-on-plate composites with p-n heterojunctions were synthesized using a simple, feasible two-step method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and UV-vis diffuse reflectance spectrometry (DRS) were used to evaluate the structure, morphology and optical properties of the composites. Rhodamine B (RhB) and ciprofloxacin (CIP) were chosen as model pollutants to evaluate the photocatalytic activity of the synthesized samples under irradiation of both ultraviolet and visible light. The BiOBr/TP composites exhibited much higher photocatalytic activity for the degradation of both pollutants than pure TP. The enhanced photocatalytic performance can be ascribed to the formed p-n heterojunctions between p-type BiOBr and n-type TP, which efficiently reduced the recombination rate of photo-excited electrons and holes. Moreover, a possible photocatalytic mechanism of organic pollutant degradation by the obtained samples was presented in detail.

  12. A novel p-n heterostructured photocatalyst for the efficient photocatalytic degradation of different kinds of organic compounds under irradiation of both ultraviolet and visible light.

    PubMed

    Ao, Yanhui; Bao, Jiaqiu; Wang, Peifang; Wang, Chao; Hou, Jun

    2016-09-21

    In this study, BiOBr-titanium phosphate (BiOBr/TP) plate-on-plate composites with p-n heterojunctions were synthesized using a simple, feasible two-step method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and UV-vis diffuse reflectance spectrometry (DRS) were used to evaluate the structure, morphology and optical properties of the composites. Rhodamine B (RhB) and ciprofloxacin (CIP) were chosen as model pollutants to evaluate the photocatalytic activity of the synthesized samples under irradiation of both ultraviolet and visible light. The BiOBr/TP composites exhibited much higher photocatalytic activity for the degradation of both pollutants than pure TP. The enhanced photocatalytic performance can be ascribed to the formed p-n heterojunctions between p-type BiOBr and n-type TP, which efficiently reduced the recombination rate of photo-excited electrons and holes. Moreover, a possible photocatalytic mechanism of organic pollutant degradation by the obtained samples was presented in detail. PMID:27523034

  13. Self-assembly of ultrathin Cu2MoS4 nanobelts for highly efficient visible light-driven degradation of methyl orange.

    PubMed

    Zhang, Ke; Chen, Wenxing; Lin, Yunxiang; Chen, Haiping; Haleem, Yasir A; Wu, Chuanqiang; Ye, Fei; Wang, Tianxing; Song, Li

    2015-11-21

    We demonstrate ultrathin self-assembled Cu2MoS4 nanobelts synthesized by using Cu2O as the starting sacrificial template via a hydrothermal method. The nanobelts exhibit strong light absorption over a broad wavelength spectrum, suggesting their potential application as photocatalysts. The photocatalytic activity of nanobelts is evaluated by the degradation of Methyl Orange (MO) dye under visible light irradiation. Notably, the nanobelts can completely degrade 100 mL of 15 mg mL(-1) MO in 20 minutes with excellent recycling and structural stability, suggesting their excellent photocatalytic performance. In comparison with a sheet-like sample, the high efficiency of the self-assembled Cu2MoS4 nanobelts is attributed to a high surface area and a unique band gap, agreeing with the nitrogen adsorption analysis and photoluminescence spectra. This study offers a self-assembled synthetic route to create new multifunctional nanoarchitectures composed of atomic layers, and thus may open a window for greatly extending potential applications in water pollution treatment, photocatalytic water-splitting, solar cells and other related fields. PMID:26371057

  14. Different types of degradable vectors from low-molecular-weight polycation-functionalized poly(aspartic acid) for efficient gene delivery.

    PubMed

    Dou, X B; Hu, Y; Zhao, N N; Xu, F J

    2014-03-01

    Poly(aspartic acid) (PAsp) has been employed as the potential backbone for the preparation of efficient gene carriers, due to its low cytotoxicity, good biodegradability and excellent biocompatibility. In this work, the degradable linear or star-shaped PBLA was first prepared via ring-opining polymerization of β-benzyl-L-aspartate N-carboxy anhydride (BLA-NCA) initiated by ethylenediamine (ED) or ED-functionalized cyclodextrin cores. Then, PBLA was functionalized via aminolysis reaction with low-molecular-weight poly(2-(dimethylamino)ethyl methacrylate) with one terminal primary amine group (PDMAEMA-NH2), followed by addition of excess ED or ethanolamine (EA) to complete the aminolysis process. The obtained different types of cationic PAsp-based vectors including linear or star PAsp-PDM-NH2 and PAsp-PDM-OH exhibited good condensation capability and degradability, benefiting gene delivery process. In comparison with gold standard polyethylenimine (PEI, ∼ 25 kDa), the cationic PAsp-based vectors, particularly star-shaped ones, exhibited much better transfection performances. PMID:24388816

  15. Ultrasonic-assisted one-pot preparation of ZnO/Ag3VO4 nanocomposites for efficiently degradation of organic pollutants under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Kiantazh, Fariba; Habibi-Yangjeh, Aziz

    2015-11-01

    We report a facile ultrasonic-assisted one-pot method for preparation of ZnO/Ag3VO4 nanocomposites with different mole fractions of silver vanadate. The preparation method has considerable merits such as short preparation time, large-scale, and one-pot strategy. The resultant samples were fairly characterized by means of XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, and PL techniques. Visible-light activity of the resultant samples was investigated by degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO). Among the prepared nanocomposites, the ZnO/Ag3VO4 nanocomposite with 0.073 mole fraction of Ag3VO4 exhibited the best activity and excessive amount of Ag3VO4 resulted in decrease of the activity. Photocatalytic activity of this nanocomposite under visible-light irradiation is about 21, 56, and 2.8-fold higher than that of the ZnO sample in degradation of RhB, MB, and MO, respectively. The highly enhanced activity of the nanocomposite was attributed to greater generation of electron-hole pairs, due to photosensitizing role of Ag3VO4 under visible-light irradiation, and efficiently separation of the photogenerated electron-hole pairs, due to formation of n-n heterojunction between the counterparts. Furthermore, it was revealed that the photocatalytic activity largely depends on ultrasonic irradiation time, calcination temperature, and scavengers of the reactive species.

  16. The energy transfer mechanism of a photoexcited and electroluminescent organic hybrid thin film of blue, green, and red laser dyes.

    PubMed

    Li, Weiling; Zhang, Jing; Zheng, Yanqiong; Chen, Guo; Cai, Miao; Wei, Bin

    2015-01-01

    Though optically pumped lasing has been realized for years, electrically pumped lasing has not yet been achieved in organic semiconductor devices. In order to make a better understanding of the laser mechanisms of the organic materials, we prepared organic thin films consisting of three efficient laser dyes of a blue emitter, 4″,4″'-N,N-diphenylamine-4,4'-diphenyl-1,1'-binaphthyl (BN), a green emitter, 1,4-bis[2-[4-[N,N-di(p-tolyl)amino] phenyl]vinyl]benzene (DSB), and a red emitter, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidy-l-9-enyl)-4H-pyran (DCJTB) with different doping concentrations for the first time to investigate the cascade energy transfer process. The energy transfer schemes in the co-doped thin films in photoluminescence and electroluminescence have been investigated. The results indicated that the DSB molecules acted as a bridge to deliver energy more effectively from the host (BN) to the guest (DCJTB). Meanwhile, the maximum current efficiency (C E) and power efficiency (P E) of the organic light-emitting devices (OLEDs) with the emitting layer of lower doping concentration were 13.5 cd/A and 14.1 lm/W, respectively.

  17. The peroxisomal Acyl-CoA thioesterase Pte1p from Saccharomyces cerevisiae is required for efficient degradation of short straight chain and branched chain fatty acids.

    PubMed

    Maeda, Isamu; Delessert, Syndie; Hasegawa, Seiko; Seto, Yoshiaki; Zuber, Sophie; Poirier, Yves

    2006-04-28

    The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.

  18. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Coehoorn, Reinder; van Eersel, Harm; Bobbert, Peter A.; Janssen, Rene A. J.

    2015-10-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an integral manner. The method employs a physically transparent mechanistic approach, and is based on measurable parameters. All processes can be followed with molecular-scale spatial resolution and with sub-nanosecond time resolution, for any layer structure and any mixture of materials. In the talk, applications to the efficiency roll-off, emission color and lifetime of white and monochrome phosphorescent OLEDs [1,2] are demonstrated, and a comparison with experimental results is given. The simulations show to which extent the triplet-polaron quenching (TPQ) and triplet-triplet-annihilation (TTA) contribute to the roll-off, and how the microscopic parameters describing these processes can be deduced properly from dedicated experiments. Degradation is treated as a result of the (accelerated) conversion of emitter molecules to non-emissive sites upon a triplet-polaron quenching (TPQ) process. The degradation rate, and hence the device lifetime, is shown to depend on the emitter concentration and on the precise type of TPQ process. Results for both single-doped and co-doped OLEDs are presented, revealing that the kMC simulations enable efficient simulation-assisted layer stack development. [1] H. van Eersel et al., Appl. Phys. Lett. 105, 143303 (2014). [2] R. Coehoorn et al., Adv. Funct. Mater. (2015), publ. online (DOI: 10.1002/adfm.201402532)

  19. Mn(2+)-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions.

    PubMed

    Li, Yifan; Sun, Jianhui; Sun, Sheng-Peng

    2016-08-01

    In this work, we report a novel Mn(2+)-mediated Fenton-like process based on Fe(III)-NTA complex that is super-efficient at circumneutral pH range. Kinetics experiments showed that the presence of Mn(2+) significantly enhanced the effectiveness of Fe(III)-NTA complex catalyzed Fenton-like reaction. The degradation rate constant of crotamiton (CRMT), a model compound, by the Fe(III)- NTA_Mn(2+) Fenton-like process was at least 1.6 orders of magnitude larger than that in the absence of Mn(2+). Other metal ions such as Ca(2+), Mg(2+), Co(2+) and Cu(2+) had no impacts or little inhibitory effect on the Fe(III)-NTA complex catalyzed Fenton-like reaction. The generation of hydroxyl radical (HO) and superoxide radical anion (O2(-)) in the Fe(III)-NTA_Mn(2+) Fenton-like process were suggested by radicals scavenging experiments. The degradation efficiency of CRMT was inhibited significantly (approximately 92%) by the addition of HO scavenger 2-propanol, while the addition of O2(-) scavenger chloroform resulted in 68% inhibition. Moreover, the results showed that other chelating agents such as EDTA- and s,s-EDDS-Fe(III) catalyzed Fenton-like reactions were also enhanced significantly by the presence of Mn(2+). The mechanism involves an enhanced generation of O2(-) from the reactions of Mn(2+)-chelates with H2O2, indirectly promoting the generation of HO by accelerating the reduction rate of Fe(III)-chelates to Fe(II)- chelates.

  20. Construction and Characterization of Vitreoscilla Hemoglobin (VHb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye.

    PubMed

    Zhang, Zidong; Li, Wei; Li, Haichao; Zhang, Jing; Zhang, Yuebin; Cao, Yufeng; Ma, Jianzhang; Li, Zhengqiang

    2015-09-01

    Pollution resulting from the discharge of textile dyes into water systems has become a major global concern. Because peroxidases are known for their ability to decolorize and detoxify textile dyes, the peroxidase activity of Vitreoscilla hemoglobin (VHb) has recently been studied. It is found that VHb and variants of this enzyme show great promise for enzymatic decolorization of dyes and may play a role in achieving their successful removal from industrial wastewater. The level of VHb peroxidase activity correlates with two amino acid residues present within the conserved distal pocket, at positions 53 and 54. In this work, sitedirected mutagenesis of these residues was performed and resulted in improved VHb peroxidase activity. The double mutant, Q53H/P54C, shows the highest dye decolorization and removal efficiency, with 70% removal efficiency within 5 min. UV spectral studies of Q53H/P54C reveals a more compact structure and an altered porphyrin environment (λSoret = 413 nm) relative to that of wild-type VHb (λSoret = 406), and differential scanning calorimetry data indicate that the VHb variant protein structure is more stable. In addition, circular dichroism spectroscopic studies indicate that this variant's increased protein structural stability is due to an increase in helical structure, as deduced from the melting temperature, which is higher than 90°C. Therefore, the VHb variant Q53H/P54C shows promise as an excellent peroxidase, with excellent dye decolorization activity and a more stable structure than wild-type VHb under high-temperature conditions.

  1. Electrical and electroluminescent characterization of nanometric multilayers of SiOX/SiOY obtained by LPCVD including non-normal emission

    NASA Astrophysics Data System (ADS)

    Alarcón-Salazar, J.; Zaldívar-Huerta, I. E.; Aceves-Mijares, M.

    2016-06-01

    This work describes the analysis and fabrication by Low Pressure Chemical Vapor Deposition of two light-emitting capacitors (LECs) constituted by nanometric multilayers of silicon-rich oxide. For both structures, seven layers were used: three light emitting layers with 6% silicon excess and four conductive layers with 12% silicon excess for one LEC and the other with 14% silicon excess. Both LECs were annealed at 1100 °C. Both multilayers demonstrate a substantially improved photoluminescent response compared to single emitting layers. A dielectric constant of 4.1 and a trap density of 1016 cm-3 were obtained from capacitance-voltage curves. Analysis of current-voltage and electroluminescence-voltage (EL-V) characteristics indicates that EL initiates under the space-charge-limited current mechanism, and the required voltage to turn on the emission is 38 V which is the trap-free limit voltage. However, EL increases exponentially under the impact ionization and trap-assisted tunneling conduction mechanisms. The electroluminescence spectra for both multilayers show two emission peaks centered in 450 and 700 nm attributed to oxygen defects. Also, the LEC non-normal emission was measured and it behaves like a Lambertian optical source. Both multilayers obtain the values of efficiency in the order of 10-6 which is in good agreement with the values reported in the literature.

  2. Photo- and electroluminescent properties of bithiophene disubstituted 1,3,4-thiadiazoles and their application as active components in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Grykien, Remigiusz; Luszczynska, Beata; Glowacki, Ireneusz; Kurach, Ewa; Rybakiewicz, Renata; Kotwica, Kamil; Zagorska, Malgorzata; Pron, Adam; Tassini, Paolo; Maglione, Maria Grazia; Mauro, Anna De Girolamo Del; Fasolino, Tommaso; Rega, Romina; Pandolfi, Giuseppe; Minarini, Carla; Aprano, Salvatore

    2014-11-01

    Photo- and electroluminescence of five bithiophene disubstituted 1,3,4-thiadiazoles, constituting a new class of solution processable materials for organic opto-electronics, were studied. It was found that the introduction of alkyl solubilizing substituents bathochromically shifted the photo- and electroluminescence bands. The most pronounced effect was observed for the substitution at the Cα position which changed the emitting light color from bluish to green. All five derivatives were tested in host/guest type organic light emitting diodes (OLEDs) with either poly(N-vinylcarbazole) (PVK) or poly(N-vinylcarbazole) + 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PVK + PBD) matrices. The latter matrix turned out especially well suited for these guest molecules yielding devices of varying color coordinates. The best luminance (750 cd/m2) was measured for 2,5-bis(5‧-octyl-2,2‧-bithiophene-5-yl)-1,3,4-thiadiazole with the luminous efficiency exceeding 0.4 cd/A.

  3. A single bivalent efficiently inhibits cyclin B1 degradation and polar body extrusion in mouse oocytes indicating robust SAC during female meiosis I.

    PubMed

    Hoffmann, Steffen; Maro, Bernard; Kubiak, Jacek Z; Polanski, Zbigniew

    2011-01-01

    The Spindle Assembly Checkpoint (SAC) inhibits anaphase until microtubule-to-kinetochore attachments are formed, thus securing correct chromosome separation and preventing aneuploidy. Whereas in mitosis even a single unattached chromosome keeps the SAC active, the high incidence of aneuploidy related to maternal meiotic errors raises a concern about the lower efficiency of SAC in oocytes. Recently it was suggested that in mouse oocytes, contrary to somatic cells, not a single chromosome but a critical mass of chromosomes triggers efficient SAC pointing to the necessity of evaluating the robustness of SAC in oocytes. Two types of errors in chromosome segregation upon meiosis I related to SAC were envisaged: (1) SAC escape, when kinetochores emit SAC-activating signal unable to stop anaphase I; and (2) SAC deceive, when kinetochores do not emit the signal. Using micromanipulations and live imaging of the first polar body extrusion, as well as the dynamics of cyclin B1 degradation, here we show that in mouse oocytes a single bivalent keeps the SAC active. This is the first direct evaluation of SAC efficiency in mouse oocytes, which provides strong evidence that the robustness of SAC in mammalian oocytes is comparable to other cell types. Our data do not contradict the hypothesis of the critical mass of chromosomes necessary for SAC activation, but suggest that the same rule may govern SAC activity also in other cell types. We postulate that the innate susceptibility of oocytes to errors in chromosome segregation during the first meiotic division may not be caused by lower efficiency of SAC itself, but could be linked to high critical chromosome mass necessary to keep SAC active in oocyte of large size.

  4. Self-assembling process of Oxalamide compounds and their nucleation efficiency in bio-degradable Poly(hydroxyalkanoate)s

    NASA Astrophysics Data System (ADS)

    Ma, Piming; Deshmukh, Yogesh S.; Wilsens, Carolus H. R. M.; Ryan Hansen, Michael; Graf, Robert; Rastogi, Sanjay

    2015-08-01

    One of the key requirements in semi-crystalline polyesters, synthetic or bio-based, is the control on crystallization rate and crystallinity. One of the limiting factors in the commercialization of the bio-based polyesters, for example polyhydroxyalkanoates synthesized by bacteria for energy storage purposes, is the slow crystallization rate. In this study, we show that by tailoring the molecular structure of oxalamide compounds, it is possible to dissolve these compounds in molten poly(hydroxybutyrate) (PHB), having a hydroxyvalerate co-monomer content of less than 2 mol%. Upon cooling the polymer melt, the homogeneously dispersed oxalamide compound crystallizes just below the melting temperature of the polymer. The phase-separated compound reduces the nucleation barrier of the polymer, thus enhancing the crystallization rate, nucleation density and crystallinity. The findings reported in this study provide a generic route for the molecular design of oxalamide-based compounds that can be used for enhancing nucleation efficiency of semi-crystalline bio-based polyesters.

  5. Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite.

    PubMed

    Jun, Areum; Kim, Junyoung; Shin, Jeeyoung; Kim, Guntae

    2016-09-26

    Recently, there have been efforts to use clean and renewable energy because of finite fossil fuels and environmental problems. Owing to the site-specific and weather-dependent characteristics of the renewable energy supply, solid oxide electrolysis cells (SOECs) have received considerable attention to store energy as hydrogen. Conventional SOECs use Ni-YSZ (yttria-stabilized zirconia) and LSM (strontium-doped lanthanum manganites)-YSZ as electrodes. These electrodes, however, suffer from redox-instability and coarsening of the Ni electrode along with delamination of the LSM electrode during steam electrolysis. In this study, we successfully design and fabricate highly efficient SOECs using layered perovskites, PrBaMn2 O5+δ (PBM) and PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ (PBSCF50), as both electrodes for the first time. The SOEC with layered perovskites as both-side electrodes shows outstanding performance, reversible cycling, and remarkable stability over 600 hours. PMID:27604172

  6. Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite.

    PubMed

    Jun, Areum; Kim, Junyoung; Shin, Jeeyoung; Kim, Guntae

    2016-09-26

    Recently, there have been efforts to use clean and renewable energy because of finite fossil fuels and environmental problems. Owing to the site-specific and weather-dependent characteristics of the renewable energy supply, solid oxide electrolysis cells (SOECs) have received considerable attention to store energy as hydrogen. Conventional SOECs use Ni-YSZ (yttria-stabilized zirconia) and LSM (strontium-doped lanthanum manganites)-YSZ as electrodes. These electrodes, however, suffer from redox-instability and coarsening of the Ni electrode along with delamination of the LSM electrode during steam electrolysis. In this study, we successfully design and fabricate highly efficient SOECs using layered perovskites, PrBaMn2 O5+δ (PBM) and PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ (PBSCF50), as both electrodes for the first time. The SOEC with layered perovskites as both-side electrodes shows outstanding performance, reversible cycling, and remarkable stability over 600 hours.

  7. Efficient photocatalytic degradation of acid fuchsin in aqueous solution using separate porous tetragonal-CuFe2O4 nanotubes.

    PubMed

    Jing, Panpan; Li, Jianan; Pan, Lining; Wang, Jianbo; Sun, Xiaojun; Liu, Qingfang

    2015-03-01

    To develop a new promising magnetic photocatalyst, homogeneous tetragonal-CuFe2O4 (t-CuFe2O4) nanotubes were successfully synthesized via the electrospinning technique followed by heating treatment. The detailed investigation of chemical phase and microstructure reveals that the obtained samples are inversely spinel CuFe2O4 nanotubes with an average diameter of about 272±2nm, which are assembled by numerous CuFe2O4 single crystal nanoparticles with regular polyhedron structure and possess a very outstanding porous feature. Furthermore, element mapping, UV-vis adsorption spectrum, N2 adsorption-desorption isotherm, and magnetic hysteresis loop indicate that these t-CuFe2O4 nanotubes have uniform component distribution, strong light response in the range of 200 nm-800 nm, considerable specific surface area of 12.8 m(2)/g and porosity of 15.5 nm, and enough magnetization of about 18 emu/g. Therefore, the t-CuFe2O4 nanotubes show an excellent catalytic activity and durability for the photodecomposition of acid fuchsin dye in aqueous solution under a simulated sunlight source. Furthermore, these CuFe2O4 nanotubes could be acted as an eco-friendly and recyclable photocatalyst because they can be efficiently separated from the residual solution. Finally, a mechanism is presented for the significant photocatalytic performance of the porous CuFe2O4 nanotubes.

  8. Isolation and evaluation of native cellulose degrading microorganisms for efficient bioconversion of weed biomass and rice straw.

    PubMed

    Mahanta, K; Jha, D K; Rajkhowa, D J; Kumar, Manoj

    2014-07-01

    Cellulose decomposing microorganisms (CDMs) are important for efficient bioconversion of plant biomasses. To this end, we isolated seven fungal isolates (Aspergillus wentii, Fusarium solani, Mucor sp., Penicillum sp., Trichoderma harzaianum, Trichoderma sp.1 and Trichoderma sp.2) and three bacterial isolates (bacterial isolate I, II and III) from partially decomposed farm yard manure, rice straw and vermicompost, and evaluated them for decomposition of rice straw (Oryza sativa), Ipomoea camea and Eichhornia crassipes biomass. CDMs inoculation, in general, reduced the composting period by 14-28 days in rice straw, 14-34 days in Eichhornia and 10-28 days in Ipomoea biomass over control. Of the 10 CDMs tested, Mucor sp. was found to be the most effective as Mucor-inoculated biomass required minimum time, i.e. 84, 68 and 80 days respectively for composting of rice straw, Eichhornia and Ipomoea biomass as against 112, 102 and 108 days required under their respective control. CDMs inoculation also narrowed down the C:N ratio of the composts which ranged from 19.1-22.7, 12.9-14.7 and 10.5-13.1 in rice straw, Eichhornia and Ipomoea biomass respectively as against 24.1, 17.1 and 16.2 in the corresponding control treatments. Aspergillus wentii, Fusarium solani, Mucor sp., and Penicillum sp. were found most effective (statistically at par) in reducing C:N ratio and causing maximum loss of carbon and dry matter in composted materials. These benefits of CDMs inoculation were also accompanied by significant increase in NPK contents in the composted materials. PMID:25004759

  9. Alternating-current thin-film electroluminescent device fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Baukol, Beau Alexander

    The goals of this thesis are to provide an improved understanding of luminescent materials, and to exploit their properties to achieve bright, efficient, and manufacturable red, green, and blue (RGB) phosphors for use in full-color flat-panel displays. A high-luminance, high-efficiency, full-color alternating-current thin-film electroluminescent (ACTFEL) phosphor system, capable of being processed at temperatures below the glass substrate melting temperature, has been developed through the use of source layer diffusion doping (SLDD) of atomic layer epitaxy (ALE) deposited SrS thin-films. The development of ACTFEL phosphors has also been advanced through the exploration of alternate phosphor materials, such as SrxCa 1-xS:Eu,Cu and (Ba.Zn)S:Mn. This thesis offers new insight into the nature of ACTFEL device operation, especially SrS:Cu ACTFEL devices. A comparison of "EL" thermal quenching trends for evaporated ZnS:Mn, ALE ZnS:Mn, ALE SrS:Ce, sputtered SrS:Cu,Ag, and sputtered multi-layer SrS:Cu,Ag/SrS:Ce ACTFEL devices is presented. ZnS:Mn ACTFEL devices exhibit the least amount of EL thermal quenching, which is attributed to non-radiative recombination. SrS:Cu and SrS:Cu,Ag ACTFEL devices possess the greatest amount of thermal quenching, which is primarily EL thermal quenching. The extent of EL thermal quenching is significantly reduced in a multi-layer SrS:Cu,Ag/SrS:Ce ACTFEL device, compared to that of a single-layer SrS:Cu or SrS:Cu,Ag ACTFEL device. The operation of SrS:Cu is examined as a function of temperature; the space charge density is found to increase with temperature up to ˜250 K with an activation energy of 0.02 eV. The space charge density in SrS:Cu ACTFEL devices is estimated as ˜1.8 x 1016, which yields estimates of the cathode phosphor field and the interfacial trap depth of ˜1.3 MV/cm and ˜0.73 eV, respectively.

  10. Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation

    NASA Astrophysics Data System (ADS)

    Li, Chao; Sun, Jun-Jie; Chen, Duo; Han, Guang-Bing; Yu, Shu-Yun; Kang, Shi-Shou; Mei, Liang-Mo

    2016-08-01

    A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites. This method involves coating Fe2O3 nanorods with a uniform silica layer, reduction in 10% H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4, and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods. The fabricated nanocomposites are further characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectroscopy. The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B (RhB) at room temperature, and maintain superior catalytic activity even after six cycles. In addition, these samples could be easily separated from the catalytic system by an external magnet and reused, which shows great potential applications in treating waste water. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11174183), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  11. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    PubMed

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. PMID:27403873

  12. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    PubMed

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk.

  13. Sharp green electroluminescence from 1H-pyrazolo[3,4-b]quinoline-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P.

    2000-09-01

    A multilayer organic light-emitting diode was fabricated using a fluorescent compound {6-N,N-diethylamino-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline} (PAQ-NEt2) doped into the hole-transporting layer of NPB {4,4'-bis[N-(1-naphthyl-1-)-N-phenyl-amino]-biphenyl}, with the TPBI {2,2',2″-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole]} as an electrontransporting material. At 16% PAQ-NEt2 doping concentration, the device gave a sharp, bright, and efficient green electroluminescence (EL) peaked at around 530 nm. The full width at half maximum of the EL is 60 nm, which is 60% of the green emission from typical NPB/AlQ [where AlQ=tris(8-hydroxyquinoline) aluminum] device. For the same concentration, a maximum luminance of 37 000 cd/m2 was obtained at 10.0 V and the maximum power, luminescence, and external quantum efficiencies were obtained 4.2 lm/W, 6.0 cd/A, and 1.6%, respectively, at 5.0 V.

  14. Near-Infrared Photoluminescence and Electroluminescence of Neodymium(III), Erbium(III), and Ytterbium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Kawamura, Yuichiro; Wada, Yuji; Yanagida, Shozo

    2001-01-01

    Tris(dibenzoylmethanato)(monobathophenanthroline)lanthanide(III) complex [Ln(DBM)3 bath (Ln: Nd, Er and Yb)] both in solutions and thin films at room temperature showed narrow band photoluminescence (PL) due to the f-f transitions in the near-IR region: 890, 1070 and 1350 nm for Nd(III), 980 and 1540 nm for Er(III), and 985 nm for Yb(III). The PL efficiencies in solution were determined [φPL=3.3× 10-3 for Nd(III), 7.0× 10-5 for Er(III), and 1.4× 10-2 for Yb(III)]. Organic electroluminescent (EL) devices having the structure of glass substrate/indium-tin oxide/N,N\\prime-diphenyl-N,N\\prime-di(m-tolyl)benzidine{\\slash}Ln(DBM)3bath(Ln: Nd, Er and Yb)/bathocuproine/Mg:Ag/Ag were fabricated, giving the EL bands around 900-1600 nm at room temperature. The external near-IR EL efficiencies at low current density were estimated by comparing with that of the Eu(III) device having the same structure. The saturation of near-IR EL intensity observed at the high current density suggested that the near-IR EL should suffer the T-T annihilation.

  15. A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation.

    PubMed

    Xu, Zhe; Gao, Guandao; Pan, Bingcai; Zhang, Weiming; Lv, Lu

    2015-12-15

    Efficient removal of heavy metals complexed with organic ligands from water is still an important but challenging task now. Herein, a novel combined process, i.e., Fe(III)-displacement/UV degradation/alkaline precipitation (abbreviated as Fe(III)/UV/OH) was developed to remove copper-organic complexes from synthetic solution and real electroplating effluent, and other processes including alkaline precipitation, Fe(III)/OH, UV/OH were employed for comparison. By using the Fe(III)/UV/OH process, some typical Cu(II) complexes, such as Cu(II)-ethylenediaminetetraacetic acid (EDTA), Cu(II)-nitrilotriacetic acid (NTA), Cu(II)-citrate, Cu(II)-tartrate, and Cu(II)-sorbate, each at 19.2 mg Cu/L initially, were efficiently removed from synthetic solution with the residual Cu below 1 mg/L. Simultaneously, 30-48% of total organic carbon was eliminated with exception of Cu(II)-sorbate. Comparatively, the efficiency of other processes was much lower than the Fe(III)/UV/OH process. With Cu(II)-citrate as the model complex, the optimal conditions for the combined process were obtained as: initial pH for Fe(III) displacement, 1.8-5.4; molar ratio of [Fe]/[Cu], 4:1; UV irradiation, 10 min; precipitation pH, 6.6-13. The mechanism responsible for the process involved the liberation of Cu(II) ions from organic complexes as a result of Fe(III) displacement, decarboxylation of Fe(III)-ligand complexes subjected to UV irradiation, and final coprecipitation of Cu(II) and Fe(II)/Fe(III) ions. Up to 338.1 mg/L of Cu(II) in the electroplating effluent could be efficiently removed by the process with the residual Cu(II) below 1 mg/L and the removal efficiency of ∼99.8%, whereas direct precipitation by using NaOH could only result in total Cu(II) removal of ∼8.6%. In addition, sunlight could take the place of UV to achieve similar removal efficiency with longer irradiation time (90 min).

  16. Ag/AgBr/g-C{sub 3}N{sub 4}: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light

    SciTech Connect

    Cao, Jing; Zhao, Yijie; Lin, Haili; Xu, Benyan; Chen, Shifu

    2013-10-15

    Graphical abstract: Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed excellent photocatalytic activities on the degradation of methyl orange (MO) under visible light. The improved photocatalytic performance and stability of Ag/AgBr/g-C{sub 3}N{sub 4} originated from the synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. ·O{sub 2}−, one of the reactive species, was responsible for the photodegradation of MO compared to H+ and ·OH. - Highlights: • Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalyst was reported. • Ag/AgBr/g-C{sub 3}N{sub 4} had novel energy band combination between AgBr and g-C{sub 3}N{sub 4}. • Synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. • Electron trapping role of metallic Ag dominated the stability of Ag/AgBr/g-C{sub 3}N{sub 4}. - Abstract: Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts were constructed via deposition–precipitation method and extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (λ > 420 nm), Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed much higher photocatalytic activities than those of Ag/AgBr and g-C{sub 3}N{sub 4} for degradation of methyl orange (MO). 50% Ag/AgBr/g-C{sub 3}N{sub 4} presented the best photocatalytic performance, which was mainly attributed to the synergistic effects of AgBr/g-C{sub 3}N{sub 4} interface and the in situ metallic Ag nanoparticles for efficiently separating electron–hole pairs. Furthermore, Ag/AgBr/g-C{sub 3}N{sub 4} remained good photocatalytic activity through 5 times of cycle experiments. Additionally, the radical scavengers experiment indicated that ·O{sub 2}{sup −} was the main reactive species for the MO degradation under visible light.

  17. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode

    NASA Astrophysics Data System (ADS)

    Fujiki, A.; Uemura, T.; Zettsu, N.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y.

    2010-01-01

    A significant increase in electroluminescence was achieved through coupling with localized surface plasmons in a single layer of Au nanoparticles. We fabricated a thin-film organic electroluminescence diode, which consists of an indium tin oxide (ITO) anode, a Au nanoparticle array, a Cu phthalocyanine hole transport layer, a tris(8-hydroxylquinolianato) aluminum (III) electron transport layer, a LiF electron injection layer, and an Al cathode. The device structure, with size-controlled Au particles embedded on ITO, can be used to realize the optimum distance for exciton-plasmon interactions by simply adjusting the thickness of the hole transport layer. We observed a 20-fold increase in the molecular fluorescence compared with that of a conventional diode structure.

  18. Temperature dependence of silicon carbide drift step recovery diodes injection electroluminescence

    NASA Astrophysics Data System (ADS)

    Afanasyev, A. V.; Ivanov, B. V.; Ilyin, V. A.; Luchinin, V. V.; Serguschichev, K. A.; Smirnov, A. A.; Kardo-Sysoev, A. F.

    2016-08-01

    The experimental results of silicon carbide (SiC) drift step recovery diodes (DSRDs) temperature dependence of injection electroluminescence (IEL) spectra were presented. It was shown that in the forward current range If = 0,1...1 A the DSRD-dies temperature was raised from 327 K to 546 K correspondingly. While the short-wavelength maximum of IEL spectra - λmax1 shifts from 392.4 to 402.1 nm and possesses dependence close to linear. On the basis of obtained calibration curves it is possible the non-contact temperature measuring of SiC-DSRDs by electroluminescence spectra at their operation in the generator of high voltage pulses.

  19. Mechanism of hot electron electroluminescence in GaN-based transistors

    NASA Astrophysics Data System (ADS)

    Brazzini, Tommaso; Sun, Huarui; Sarti, Francesco; Pomeroy, James W.; Hodges, Chris; Gurioli, Massimo; Vinattieri, Anna; Uren, Michael J.; Kuball, Martin

    2016-11-01

    The nature of hot electron electroluminescence (EL) in AlGaN/GaN high electron mobility transistors is studied and attributed to Bremsstrahlung. The spectral distribution has been corrected, for the first time, for interference effects due to the multilayered device structure, and this was shown to be crucial for the correct interpretation of the data, avoiding artefacts in the spectrum and misinterpretation of the results. An analytical expression for the spectral distribution of emitted light is derived assuming Bremsstrahlung as the only origin and compared to the simplified exponential model for the high energy tail commonly used for electron temperature extraction: the electron temperature obtained results about 20% lower compared to the approximated exponential model. Comparison of EL intensity for devices from different wafers illustrated the dependence of EL intensity on the material quality. The polarization of electroluminescence also confirms Bremsstrahlung as the dominant origin of the light emitted, ruling out other possible main mechanisms.

  20. Spatially resolved determination of the dark saturation current of silicon solar cells from electroluminescence images

    NASA Astrophysics Data System (ADS)

    Glatthaar, Markus; Giesecke, Johannes; Kasemann, Martin; Haunschild, Jonas; The, Manuel; Warta, Wilhem; Rein, Stefan

    2009-06-01

    We present a novel method to determine spatially resolved the dark saturation current of standard silicon solar cells. For this two electroluminescence images are taken at two different voltages. From these two images, first the spatial voltage distribution can be calculated. Second by applying the Laplacian to the voltage image from Ohm's law and the continuity equation, the current through the device at a certain position can be determined. Knowing the local current through the device, the local voltage, and the emitter sheet resistance allows to determine the local dark saturation current. The clue of this method is to cope with the noise by using an appropriate noise reduction algorithm. By simulating electroluminescence images with realistic noise and known dark saturation current we demonstrate the applicability of the method with our noise reduction algorithm. Experimentally we compare our method with spectral response light beam induced current on multicrystalline solar cell.

  1. Interface-Free Area-Scalable Self-Powered Electroluminescent System Driven by Triboelectric Generator

    PubMed Central

    Yan Wei, Xiao; Kuang, Shuang Yang; Yang Li, Hua; Pan, Caofeng; Zhu, Guang; Wang, Zhong Lin

    2015-01-01

    Self-powered system that is interface-free is greatly desired for area-scalable application. Here we report a self-powered electroluminescent system that consists of a triboelectric generator (TEG) and a thin-film electroluminescent (TFEL) lamp. The TEG provides high-voltage alternating electric output, which fits in well with the needs of the TFEL lamp. Induced charges pumped onto the lamp by the TEG generate an electric field that is sufficient to excite luminescence without an electrical interface circuit. Through rational serial connection of multiple TFEL lamps, effective and area-scalable luminescence is realized. It is demonstrated that multiple types of TEGs are applicable to the self-powered system, indicating that the system can make use of diverse mechanical sources and thus has potentially broad applications in illumination, display, entertainment, indication, surveillance and many others. PMID:26338365

  2. Electroluminescence in Tb-doped Gd2O2S phosphor

    NASA Astrophysics Data System (ADS)

    Shanker, V.; Chatterjee, S.; Ghosh, P. K.

    1992-12-01

    We report a strong ac green electroluminescence (EL) in powder layers of terbium doped gadolinium oxysulfide (Gd2O2S:Tb) with methyl methacrylate as binder. An intensity of the order of 30 nits (Cd/sq m) has been achieved. The EL emission spectra shows line emissions corresponding to 5D3 and 5D4 fluorescing levels of Tb(3+) ions. A very sharply rising B-V curve normally related to insulator-phosphor interface properties of a thin film electroluminescent device has been observed in these cells. This indicates the possibilities of barrier formation due to the localized space charge region in the absence of any prominent interfaces leading to impact excitation of Tb(3+) ions. This has further been confirmed by the excitation spectrum of Gd2O2S:Tb phosphor, which reveals Tb(3+) impurity absorption bands related to 4f8 shell transitions.

  3. The electro-optical behavior of SrS:Ce electroluminescent devices under photonic excitation

    NASA Astrophysics Data System (ADS)

    Benoit, J.; Barthou, C.; Benalloul, P.; Polamo, K.

    2000-01-01

    The electro-optical behavior of the SrS:Ce electroluminescent devices under pulsed photonic excitation in the lower energy absorption band of Ce3+ was analyzed below the electroluminescence threshold voltage for a rectangular electric pulse. The photoluminescence quenching due to the ionization of the Ce3+ ions under the electrical field increases with the applied voltage (40% at the threshold). Delocalization of involved electrons is responsible for emissions at the trailing edge of the electric pulse and for emissions during the following pulse. These emissions do not restore the level of the photoluminescence without applied voltage. These different emissions allow detailed study of energy trap levels for each insulator/SrS interface. An interpretation of the photoluminescence quenching is proposed

  4. Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.

    PubMed

    Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi

    2016-04-01

    The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer. PMID:27451634

  5. Epitaxial growth of III-V compounds for electroluminescent light sources

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Smeltzer, R. K.

    1973-01-01

    The epitaxial growth techniques used in the fabrication of III-V compound electroluminescent devices are reviewed. Both vapor and liquid phase epitaxial techniques are discussed, including the applications of these techniques to well established materials as well as newer materials. The state of the art of light-emitting devices fabricated from members of the III-V compounds and their solid solutions is also reviewed.

  6. Electroluminescence of cubic boron nitride single crystal flakes with color-zoning

    NASA Astrophysics Data System (ADS)

    Liu, Xiuhuan; Wang, Shuang; Chen, Zhanguo; Jia, Gang; Bian, Tianliang; Hou, Lixin; Wang, Qi; Liu, Nian

    2015-04-01

    The current-voltage (I-V) characteristics and phenomena of electroluminescence of cubic boron nitride (cBN) single crystal flakes with color-zoning under extremely non-uniform electric fields (ENUEFs) induced by needle-plate electrodes were observed. When a cBN flake with sizes of 0.3×0.3×0.1 mm3 was tightly fixed between the tungsten needle and brass plate electrodes in the atmosphere, the I-V relationship exhibited nonlinearity, and peculiar phenomena of electroluminescence with bright blue-violet light appeared at the bias voltage in a range of 700-1200 V. The current-controlled differential negative resistance was synchronously observed. The electroluminescent phenomena were somewhat different for cases of the needle electrode respectively contacting to the amber and transparent zones. The electroluminescent radiations of cBN flakes biased at voltages with a range of 600-1550 V were also investigated in vacuum. In a vacuum chamber, the green emitting phosphor spread around the cBN flake might be excited by the vacuum ultraviolet (VUV) emission from the cBN crystal, and the green fluorescence was observed by naked eyes. The VUV radiation spectrum with a peak wavelength of 149 nm was measured. In the atmosphere, the blue-violet light emission may be the gas discharge resulted from the air ionization induced by the VUV emission from the cBN crystal under the ENUEF, and the ENUEF subsequently keeps the air discharging. The VUV emission from the cBN crystal under the ENUEF can be caused by the original interband transition and the subsequent intraband transfer for electrons, and the final electron-hole direct recombination.

  7. Electroluminescence from a diamond device with ion-beam-micromachined buried graphitic electrodes

    NASA Astrophysics Data System (ADS)

    Forneris, J.; Battiato, A.; Gatto Monticone, D.; Picollo, F.; Amato, G.; Boarino, L.; Brida, G.; Degiovanni, I. P.; Enrico, E.; Genovese, M.; Moreva, E.; Traina, P.; Verona, C.; Verona Rinati, G.; Olivero, P.

    2015-04-01

    Focused MeV ion microbeams are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as demonstrated in previous works with the fabrication of multi-electrode ionizing radiation detectors and cellular biosensors. In this work we investigate the suitability of the fabrication method for the electrical excitation of color centers in diamond. Differently from photoluminescence, electroluminescence requires an electrical current flowing through the diamond sub-gap states for the excitation of the color centers. With this purpose, buried graphitic electrodes with a spacing of 10 μm were fabricated in the bulk of a detector-grade CVD single-crystal diamond sample using a scanning 1.8 MeV He+ micro-beam. The current flowing in the gap region between the electrodes upon the application of a 450 V bias voltage was exploited as the excitation pump for the electroluminescence of different types of color centers localized in the above-mentioned gap. The bright light emission was spatially mapped using a confocal optical microscopy setup. The spectral analysis of electroluminescence revealed the emission from neutrally-charged nitrogen-vacancy centers (NV0, λZPL = 575 nm), as well as from cluster crystal dislocations (A-band, λ = 400-500 nm). Moreover, an electroluminescence signal with appealing spectral features (sharp emission at room temperature, low phonon sidebands) from He-related defects was detected (λZPL = 536.3 nm, λZPL = 560.5 nm); a low and broad peak around λ = 740 nm was also observed and tentatively ascribed to Si-V or GR1 centers. These results pose interesting future perspectives for the fabrication of electrically-stimulated single-photon emitters in diamond for applications in quantum optics and quantum cryptography.

  8. Synthesis, Crystal Analyses, Physical Properties, and Electroluminescent Behavior of Unsymmetrical Heterotwistacenes.

    PubMed

    Lv, Bo; Xiao, Jinchong; Zhou, Jian; Zhang, Xi; Duan, Jingdan; Su, Wenming; Zhao, Jianwen

    2016-07-27

    Four novel unsymmetrical heteroacenes containing five-membered heterocycles (OPyN, TPyN, TPyC, TPyO) have been synthesized and characterized. The formed molecules exhibited twisted structures, determined by crystal analysis and showed blue/green fluorescence in dichloromethane and in thin film. Compounds OPyN and TPyN were selectively used as active ingredients, and the fabricated devices displayed promising electroluminescent performance. PMID:27383556

  9. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    NASA Astrophysics Data System (ADS)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  10. Charge transport and electroluminescence of silicon nanocrystals/SiO2 superlattices

    NASA Astrophysics Data System (ADS)

    López-Vidrier, J.; Berencén, Y.; Hernández, S.; Blázquez, O.; Gutsch, S.; Laube, J.; Hiller, D.; Löper, P.; Schnabel, M.; Janz, S.; Zacharias, M.; Garrido, B.

    2013-10-01

    Charge transport and electroluminescence mechanisms in Si-rich Si oxynitride/silicon oxide (SRON/SiO2) superlattices deposited on p-type Si substrate are reported. The superlattice structures were deposited by plasma-enhanced chemical-vapor deposition and subsequently annealed at 1150 °C to precipitate and crystallize the Si excess into Si nanocrystals. The dependence of the electrical conduction on the applied voltage and temperature was found to be well described by a Poole-Frenkel transport mechanism over a wide voltage range. On the other hand, the observed dependence of the electroluminescence on the SRON layer thickness is a clear proof of quantum confinement and was attributed to an excitonic radiative recombination taking place in the confined states within the Si quantum dots. A model is proposed based on thermal hopping of electrons between the quantum dots acting as trap states (Poole-Frenkel). A correlation between carrier transport and electroluminescence has been established considering impact ionization of high-kinetic energy electrons on the Si quantum dots.

  11. The β-Glucanase ZgLamA from Zobellia galactanivorans Evolved a Bent Active Site Adapted for Efficient Degradation of Algal Laminarin*

    PubMed Central

    Labourel, Aurore; Jam, Murielle; Jeudy, Alexandra; Hehemann, Jan-Hendrik; Czjzek, Mirjam; Michel, Gurvan

    2014-01-01

    Laminarinase is commonly used to describe β-1,3-glucanases widespread throughout Archaea, bacteria, and several eukaryotic lineages. Some β-1,3-glucanases have already been structurally and biochemically characterized, but very few from organisms that are in contact with genuine laminarin, the storage polysaccharide of brown algae. Here we report the heterologous expression and subsequent biochemical and structural characterization of ZgLamAGH16 from Zobellia galactanivorans, the first GH16 laminarinase from a marine bacterium associated with seaweeds. ZgLamAGH16 contains a unique additional loop, compared with other GH16 laminarinases, which is composed of 17 amino acids and gives a bent shape to the active site cleft of the enzyme. This particular topology is perfectly adapted to the U-shaped conformation of laminarin chains in solution and thus explains the predominant specificity of ZgLamAGH16 for this substrate. The three-dimensional structure of the enzyme and two enzyme-substrate complexes, one with laminaritetraose and the other with a trisaccharide of 1,3–1,4-β-d-glucan, have been determined at 1.5, 1.35, and 1.13 Å resolution, respectively. The structural comparison of substrate recognition pattern between these complexes allows the proposition that ZgLamAGH16 likely diverged from an ancestral broad specificity GH16 β-glucanase and evolved toward a bent active site topology adapted to efficient degradation of algal laminarin. PMID:24337571

  12. Synthesis of 24-nor-5 beta-cholan-23-oic acid derivatives: a convenient and efficient one-carbon degradation of the side chain of natural bile acids.

    PubMed

    Schteingart, C D; Hofmann, A F

    1988-10-01

    An efficient procedure for obtaining nor-bile acids from natural (C24) bile acids is described. Treatment of formylated bile acids with sodium nitrite in a mixture of trifluoroacetic anhydride with trifluoroacetic acid gives, through a "second order" Beckmann rearrangement, 24-nor-23-nitriles. These compounds, on alkaline hydrolysis, afford the corresponding nor-bile acids in high yields. The sequence was successfully applied to the synthesis of 3 alpha-hydroxy-24-nor-5 beta-cholan-23-oic (norlithocholic) acid, 3 alpha,6 alpha- (norhyodeoxycholic), 3 alpha,7 alpha- (norchenodeoxycholic), 3 alpha,7 beta- (norursodeoxycholic), and 3 alpha,12 alpha-dihydroxy-24-nor-5 beta-cholan-23-oic (nordeoxycholic) acids, as well as 3 alpha,7 alpha,12 alpha-trihydroxy-24-nor-5 beta-cholan-23-oic (norcholic) acid. 13C-NMR spectra of their methyl esters are reported. The procedure provides a more rapid alternative to the Barbier-Wieland degradation for shortening by one methylene group the side chain of natural (C24) bile acids.

  13. Efficient fabrication of ZrO2-doped TiO2 hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation.

    PubMed

    Sun, Chuanzhi; Liu, Lichen; Qi, Lei; Li, Hao; Zhang, Hongliang; Li, Changshun; Gao, Fei; Dong, Lin

    2011-12-15

    ZrO(2)-doped TiO(2) hollow nanospheres with anatase phase are efficiently fabricated via functionalized negatively charged polystyrene (PS) spheres without any surfactant or polyelectrolyte. The resulting Ti(1-)(x)Zr(x)O(2) (hereafter denoted as TZ) hollow nanospheres are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Laser Raman spectroscopy (LRS), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectroscopy (XRF), nitrogen sorption, and UV-vis diffuse reflectance spectroscopy (UV-vis). The Zr(4+) incorporation decreases the anatase crystallite size, increases the specific surface area, and changes the pore size distribution. Furthermore, it induces enrichment of electron charge density around Ti(4+) ions and blueshift of absorption edges. The TZ hollow nanospheres doped with moderate ZrO(2) (molar ratio, Ti:Zr=10:1) exhibit better photocatalytic activity than the other samples for the degradation of rhodamine B in aqueous solution, which is correlated with the effect of Zr(4+) doping on the physicochemical properties in terms of surface structures, phase structures, and the electronic structures.

  14. Light induced degradation and structure of high efficiency a-Si:H, a-SiGe:H and a-SiC:H solar cells

    SciTech Connect

    Fortmann, C.M.; O'Dowd, J.; Newton, J.; Fischer, J.

    1987-06-25

    The electrical and optical properties of a-Si:H, a-SiGe:H and a-SiC:H films prepared by d.c. glow discharge method have been characterized. High performance p-i-n devices have also been prepared. The relative stability as well as initial properties of these materials was examined as a function of growth rate. Notable solar cells include efficiencies of 9.36% for a-Si:H deposited at 10Asec, 8.6% for a-SiGe:H and 7% for a-SiC:H. Cells employing I-layers of a-Si:H grown at rates greater than 10Asec were significantly less stable than standard material. Cells using I-layers of either a-SiGe:H or a-SiC:H were stable (compared to standard a-Si:H) when they were prepared at growth rates of less than 1.0Asec. An increase in the infrared absorption at 845 cm/sup -1/ was associated with an increase in the rate of light induced degradation. Absorption at 845 cm/sup -1/, is usually associated with the bending modes of (SiH/sub 2/)/sub n/ polymeric chains

  15. Novel Na2Mo4O13/α-MoO3 hybrid material as highly efficient CWAO catalyst for dye degradation at ambient conditions

    PubMed Central

    Zhang, Zhang; Yang, Ruoyan; Gao, Yanshan; Zhao, Yufei; Wang, Junyang; Huang, Liang; Guo, Jiang; Zhou, Tuantuan; Lu, Peng; Guo, Zhanhu; Wang, Qiang

    2014-01-01

    We report a novel hybrid material Na2Mo4O13/α-MoO3 as highly efficient catalytic wet air oxidation (CWAO) catalyst, which showed the highest ever activity at room temperature and atmosphere pressure for the degradation of cationic red GTL. SEM and TEM analyses indicated that this hybrid catalyst has bamboo-shaped nanofiber morphology. In view of practical applications, the influence of some key parameters including operation temperature, catalyst calcination temperature, and the volume of dye wastewater have been optimized. The mechanism for the superior catalytic performance was investigated. XRD, XPS, and ESR suggested the Na2Mo4O13/α-MoO3 hybrid catalyst possesses more O2− ions in the oxygen deficient regions than neat α-MoO3, promoting the formation of active ·OH radicals and resulting in a higher activity. Considering the facile preparation and its superior activity, this novel catalyst is promising for practical dye wastewater treatment. PMID:25348943

  16. Ultraviolet Electroluminescence from ZnS@ZnO Core-Shell Nanowires/p-GaN Introduced by Exciton Localization.

    PubMed

    Fang, Xuan; Wei, Zhipeng; Yang, Yahui; Chen, Rui; Li, Yongfeng; Tang, Jilong; Fang, Dan; Jia, Huimin; Wang, Dengkui; Fan, Jie; Ma, Xiaohui; Yao, Bin; Wang, Xiaohua

    2016-01-27

    We investigate the electroluminescence (EL) from light emitting diodes (LEDs) of ZnO nanowires/p-GaN structure and ZnS@ZnO core-shell nanowires/p-GaN structure. With the increase of forward bias, the emission peak of ZnO nanowires/p-GaN structure heterojunction shows a blue-shift, while the ZnS@ZnO core-shell nanowires/p-GaN structure demonstrates a changing EL emission; the ultraviolet (UV) emission at 378 nm can be observed. This discrepancy is related to the localized states introduced by ZnS particles, which results in a different carrier recombination process near the interfaces of the heterojunction. The localized states capture the carriers in ZnO nanowires and convert them to localized excitons under high forward bias. A strong UV emission due to localized excitons can be observed. Our results indicated that utilizing localized excitons should be a new route toward ZnO-based ultraviolet LEDs with high efficiency. PMID:26710654

  17. Ultraviolet Electroluminescence from ZnS@ZnO Core-Shell Nanowires/p-GaN Introduced by Exciton Localization.

    PubMed

    Fang, Xuan; Wei, Zhipeng; Yang, Yahui; Chen, Rui; Li, Yongfeng; Tang, Jilong; Fang, Dan; Jia, Huimin; Wang, Dengkui; Fan, Jie; Ma, Xiaohui; Yao, Bin; Wang, Xiaohua

    2016-01-27

    We investigate the electroluminescence (EL) from light emitting diodes (LEDs) of ZnO nanowires/p-GaN structure and ZnS@ZnO core-shell nanowires/p-GaN structure. With the increase of forward bias, the emission peak of ZnO nanowires/p-GaN structure heterojunction shows a blue-shift, while the ZnS@ZnO core-shell nanowires/p-GaN structure demonstrates a changing EL emission; the ultraviolet (UV) emission at 378 nm can be observed. This discrepancy is related to the localized states introduced by ZnS particles, which results in a different carrier recombination process near the interfaces of the heterojunction. The localized states capture the carriers in ZnO nanowires and convert them to localized excitons under high forward bias. A strong UV emission due to localized excitons can be observed. Our results indicated that utilizing localized excitons should be a new route toward ZnO-based ultraviolet LEDs with high efficiency.

  18. First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment

    DOE PAGESBeta

    Ferrario, P.

    2016-01-19

    The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure 136Xe gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of 22Na 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the 228Th decay chain were used tomore » represent the background and the signal in a double beta decay. Furthermore, these data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 ± 1.4 (stat.)%, while maintaining an efficiency of 66.7 ± 1% for signal events.« less

  19. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes

    PubMed Central

    2015-01-01

    The p–n diodes represent the most fundamental device building blocks for diverse optoelectronic functions, but are difficult to achieve in atomically thin transition metal dichalcogenides (TMDs) due to the challenges in selectively doping them into p- or n-type semiconductors. Here, we demonstrate that an atomically thin and sharp heterojunction p–n diode can be created by vertically stacking p-type monolayer tungsten diselenide (WSe2) and n-type few-layer molybdenum disulfide (MoS2). Electrical measurements of the vertically staked WSe2/MoS2 heterojunctions reveal excellent current rectification behavior with an ideality factor of 1.2. Photocurrent mapping shows rapid photoresponse over the entire overlapping region with a highest external quantum efficiency up to 12%. Electroluminescence studies show prominent band edge excitonic emission and strikingly enhanced hot-electron luminescence. A systematic investigation shows distinct layer-number dependent emission characteristics and reveals important insight about the origin of hot-electron luminescence and the nature of electron–orbital interaction in TMDs. We believe that these atomically thin heterojunction p–n diodes represent an interesting system for probing the fundamental electro-optical properties in TMDs and can open up a new pathway to novel optoelectronic devices such as atomically thin photodetectors, photovoltaics, as well as spin- and valley-polarized light emitting diodes, on-chip lasers. PMID:25157588

  20. Reduction of molecular aggregation and its application to the high-performance blue perylene-doped organic electroluminescent device

    NASA Astrophysics Data System (ADS)

    Mi, B. X.; Gao, Z. Q.; Lee, C. S.; Lee, S. T.; Kwong, H. L.; Wong, N. B.

    1999-12-01

    A nonplanar derivative of perylene, 2,5,8,11-tetra-tertbutylperylene (TBPe), was synthesized via the Friedel-Crafts alkylation reaction. Electroluminescent (EL) devices were made using TBPe or perylene as a dopant in bis(2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(III) and their EL performance was compared. Similar to the device doped with the parent perylene molecule, the device doped with TBPe also emitted strongly in the blue. As the concentration of TBPe increased from 1% to 5%, the color coordinates in CIE 1931 chromaticity of the TBPe-doped device changed only slightly from (0.168,0.273) to (0.175,0.273), whereas the perylene-doped device exhibited a much larger shift from (0.165,0.196) to (0.178,0.252). The constancy of EL color and efficiency with respect to TBPe dopant concentration is attributable to diminishing molecular aggregation in the nonplanar perylene derivative, TBPe, due to the steric hindrance of the tert-butyl groups.

  1. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Nishide, Jun-ichi; Nakanotani, Hajime; Hiraga, Yasuhide; Adachi, Chihaya

    2014-06-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  2. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions.

    PubMed

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N

    2012-03-20

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H(2) and O(2) is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H(2)O(2) up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radicals are detected due to decomposition of H(2)O(2), slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na(2)SO(4), NaCl, NaNO(3), NaHCO(3), K(2)SO(4), CaSO(4), and MgSO(4) does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppress degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation.

  3. Solution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices.

    PubMed

    Zysman-Colman, Eli; Ghosh, Sanjay S; Xie, Guohua; Varghese, Shinto; Chowdhury, Mithun; Sharma, Nidhi; Cordes, David B; Slawin, Alexandra M Z; Samuel, Ifor D W

    2016-04-13

    Phthalocyanines and their main group and metal complexes are important classes of organic semiconductor materials but are usually highly insoluble and so frequently need to be processed by vacuum deposition in devices. We report two highly soluble silicon phthalocyanine (SiPc) diester compounds and demonstrate their potential as organic semiconductor materials. Near-infrared (λ(EL) = 698-709 nm) solution-processed organic light-emitting diodes (OLEDs) were fabricated and exhibited external quantum efficiencies (EQEs) of up to 1.4%. Binary bulk heterojunction solar cells employing P3HT or PTB7 as the donor and the SiPc as the acceptor provided power conversion efficiencies (PCE) of up to 2.7% under simulated solar illumination. Our results show that soluble SiPcs are promising materials for organic electronics.

  4. Solution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices

    PubMed Central

    2016-01-01

    Phthalocyanines and their main group and metal complexes are important classes of organic semiconductor materials but are usually highly insoluble and so frequently need to be processed by vacuum deposition in devices. We report two highly soluble silicon phthalocyanine (SiPc) diester compounds and demonstrate their potential as organic semiconductor materials. Near-infrared (λEL = 698–709 nm) solution-processed organic light-emitting diodes (OLEDs) were fabricated and exhibited external quantum efficiencies (EQEs) of up to 1.4%. Binary bulk heterojunction solar cells employing P3HT or PTB7 as the donor and the SiPc as the acceptor provided power conversion efficiencies (PCE) of up to 2.7% under simulated solar illumination. Our results show that soluble SiPcs are promising materials for organic electronics. PMID:26990151

  5. Electroluminescence of thin-film CdTe solar cells and modules

    NASA Astrophysics Data System (ADS)

    Raguse, John Michael

    Thin-film photovoltaics has the potential to be a major source of world electricity. Mitigation of non-uniformities in thin-film solar cells and modules may help improve photovoltaic conversion efficiencies. In this manuscript, a measurement technique is discussed in detail which has the capability of detecting such non-uniformities in a form useful for analysis. Thin-film solar cells emit radiation while operating at forward electrical bias, analogous to an LED, a phenomena known as electroluminescence (EL). This process relatively is inefficient for polycrystalline CdTe devices, on the order of 10-4%, as most of the energy is converted into heat, but still strong enough for many valuable measurements. A EL system was built at the Colorado State University Photovoltaics Laboratory to measure EL from CdTe cells and modules. EL intensity normalized to exposure time and injection current density has been found to correlate very well with the difference between ideal and measured open-circuit voltage from devices that include a GaAs cell, an AlGaAs LED, and several CdTe cells with variations in manufacturing. Furthermore, these data points were found to be in good agreement when overlaid with calibrated data from two additional sources. The magnitude of the inverse slope of the fit is in agreement with the thermal voltage and the intercept was found to have a value near unity, in agreement with theory. The expanded data set consists of devices made from one of seven different band gaps and spans eight decades of EQELED efficiencies. As expected, cells which exhibit major failure of light-dark J-V superposition did not follow trend of well-behaved cells. EL images of selected defects from CdTe cells and modules are discussed and images are shown to be highly sensitive to defects in devices, since the intensity depends exponentially on the cells' voltages. The EL technique has proven to be a useful high-throughput tool for screening of cells. In addition to EL images

  6. Si:Er/Si diode structures for observing room-temperature electroluminescence at a wavelength of 1.54 {mu}m

    SciTech Connect

    Kuznetsov, V. P. Kuznetsov, M. V.; Krasil'nik, Z. F.

    2010-03-15

    Si:Er/Si diode structures for observing room-temperature electroluminescence at a wavelength of 1.5 {mu}m are analyzed. The structures were grown by sublimation molecular-beam epitaxy. Some ways to increase the electroluminescence intensity are discussed.

  7. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    PubMed

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-01

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  8. Synthesis, Characterization, and Electroluminescence Properties of Poly(fluorenevinylene benzobisthiazoles)

    SciTech Connect

    Intemann, Jeremy J.; Mike, Jared F.; Cai, Min; Barnes, Charles A.; Xiao, Teng; Roggers, Robert A.; Shinar, Joseph; Shinar, Ruth; Jeffries-EL, Malika

    2012-11-26

    A series of vinylene-linked copolymers based on electron-deficient benzobisthiazole and electron-rich fluorene moieties were synthesized via Horner–Wadsworth–Emmons polymerization. Three different polymers P1, P2, and P3, were prepared bearing octyl, 3,7-dimethyloctyl, and 2-(2-ethoxy)ethoxyethyl side chains, respectively. The polymers all possessed moderate molecular weights, good solubility in aprotic organic solvents, and high fluorescence quantum efficiencies in dilute solutions. P2, which bore branched 3,7-dimethyloctyl side chains, exhibited better solubility than the other polymers, but also exhibited the lowest thermal decomposition temperature of all polymers. Overall, the impact of the side chains on the polymers optical properties in solution was negligible as all three polymers gave similar absorption and emission spectra in both solution and film. Guest-host light-emitting diodes using dilute blends of the polymers in a poly(N-vinylcarbazole) host gave blue-green emission with P2 exhibiting the highest luminous efficiency, 0.61 Cd/A at ~500 nm. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013

  9. Spirobifluorene and biphenylaminophenyl fluorene with dimesitylboron as multifunctional electroluminescent materials

    NASA Astrophysics Data System (ADS)

    Zhang, Wenguan; He, Zhiqun; Pang, Hui; Wang, Yongsheng; Zhao, Shengmin

    2015-12-01

    By introducing triarylamino and dimesitylboron groups into fluorene derivatives, two symmetric compounds 2,7-bis(dimesitylboryl)-9,9-spirobifluorene (SFMB) and 2,7-bis(dimesitylboryl)-9,9-bis(4-diphenylaminophenyl)fluorene (PAFMB) were prepared. SFMB and PAFMB exhibited solvatochromism in the different polarities of solvents. Devices A1, A2, A3 and A4 based on SFMB displayed emissions at 444, 448, 528, and 444 nm with current efficiencies of 1.06, 1.41, 0.84, and 1.52 cd/A, respectively. The blue light was close to the National Television Standards Committee standard blue color (x = 0.14, y = 0.08). Devices B1, B2, B3 and B4 based on PAFMB emitted lights centered at 484, 472, 513 and 472 nm, their current efficiencies were 1.80, 0.1, 1.23 and 1.93 cd/A, respectively. The results demonstrated that SFMB and PAFMB were multifunctional materials acted as emitters, and hole- and electron-transporting materials.

  10. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

    NASA Astrophysics Data System (ADS)

    Darabdhara, Gitashree; Boruah, Purna K.; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R.; Ahamad, Tansir; Alshehri, Saad M.; Malgras, Victor; Wu, Kevin C.-W.; Yamauchi, Yusuke

    2016-04-01

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst

  11. Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint

    SciTech Connect

    Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

    2011-07-01

    It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

  12. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode

    SciTech Connect

    Xin, Yunzi; Nishio, Kazuyuki; Saitow, Ken-ichi

    2015-05-18

    A silicon (Si) quantum dot (QD)-based hybrid inorganic/organic light-emitting diode (LED) was fabricated via solution processing. This device exhibited white-blue electroluminescence at a low applied voltage of 6 V, with 78% of the effective emission obtained from the Si QDs. This hybrid LED produced current and optical power densities 280 and 350 times greater than those previously reported for such device. The superior performance of this hybrid device was obtained by both the prepared Si QDs and the optimized layer structure and thereby improving carrier migration through the hybrid LED and carrier recombination in the homogeneous Si QD layer.

  13. Electroluminescence and multiphoton effects in a resonator driven by a tunnel junction

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Marthaler, Michael; Schön, Gerd

    2015-02-01

    We study a transmission line resonator which is driven by electrons tunneling through a voltage-biased tunnel junction. Using the Born-Markovian quantum master equation in the polaron basis we investigate the nonequilibrium photon state and emission spectrum of the resonator as well as properties of the transport current across the tunnel junction and its noise spectrum. The electroluminescence is optimized, with maximum peak height and narrow linewidth, when the back-action of the tunnel junction on the resonator and the damping of the resonator are similar in strength. For strong coupling between the resonator and tunnel junction, multiphoton effects create signatures in the transport current and current noise spectrum.

  14. Degradation of InGaN/GaN laser diodes analyzed by microphotoluminescence and microelectroluminescence mappings

    SciTech Connect

    Rossetti, M.; Smeeton, T. M.; Tan, W.-S.; Kauer, M.; Hooper, S. E.; Heffernan, J.; Xiu, H.; Humphreys, C. J.

    2008-04-14

    The degradation of InGaN/GaN laser diodes grown by molecular beam epitaxy is analyzed by using surface mapping of the photoluminescence emission on a micrometric scale, which allows the identification of failure regions. This, combined with the mapping of the electroluminescence, suggests two different mechanisms for laser degradation. Increased nonradiative recombination at specific sites along the crystal directions associated with the presence of dislocations lying in the basal plane near the active region is one of these. We also observe an increase in current injection nonuniformities with increasing aging time.

  15. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    NASA Astrophysics Data System (ADS)

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-05-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT) however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices.

  16. Preparation, characterization and electroluminescence studies of ZnO nanorods for optoelectronic device applications

    SciTech Connect

    Singh, Anju; Vishwakarma, H. L.

    2015-07-31

    In this work, ZnO nanorods were achieved by a simple chemical precipitation method in the presence of capping agent Poly Vinyl Pyrrolidone (PVP) at room temperature. X-Ray Diffraction (XRD) result indicates that the synthesized undoped ZnO nanorods have wurtzite hexagonal structure without any impurities. It has been seen that the growth orientation of the prepared ZnO nanorods were (101). XRD analysis revealed that the nanorods having the crystallite size 49 nm. The Scanning Electron Microscopy (SEM) image confirmed the size and shape of these nanorods. The diameter of nanorods has been found that 1.52 µm to 1.61 µm and the length of about 4.89 µm. It has also been found that at room temperature Ultra Violet Visible (UV-VIS) absorption band is around 355 nm (blue shifted as compared to bulk). Electroluminescence (EL) studies show that emission of light is possible at very small threshold voltage and increases rapidly with increasing applied voltage. It is seen that smaller ZnO nanoparticles give higher electroluminescence brightness starting at lower threshold voltage. The brightness is also affected by increasing the frequency of AC signal.

  17. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    PubMed Central

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  18. Correlated Color Temperature Tunable White Electroluminescence from Cadmium-Free ZnS Quantum Dots.

    PubMed

    Zhang, Xiaosong; Li, Lan; Ji, Ting; Xuan, RongWei; Xu, JianPing; Liu, Xiaojuan

    2016-04-01

    We propose correlated color temperature tunable white light-emitting from different sizes cadmium-free quantum dots (QDs) without organic ligand-modulation. A size series of free-standing ZnS QDs were prepared by coprecipitation method. Experimental results show that the broad electroluminescences (EL) spectra from all samples cover almost the entire visible region and the electroluminescence peak is significantly redshifted from 489 to 580 nm with ZnS QDs sizes increasing from 1.1 to 4 nm. Moreover, the chromaticity coordinates calculated from EL spectra are (0.27, 0.36), (0.36, 0.42) and (0.42, 0.46) for QDs with average sizes 1.1, 2 and 4 nm drived at 15 V respectively, correspondingly, white EL spectra with a continuously tunable color changes from bluish white (CCT = 12400 K) to yellowish white (CCT = 3700 K). The differences between the photoluminescence (PL) and EL spectra were observed. Furthermore, the comparison between EL and PL spectra and active defect-levels of ZnS QDs with various sizes are discussed to understand the mechanism of the tunable spectra. The results offer that a convenience method to obtain tunable EL spectra in white color from ZnS QDs defects by controlling the size of the QDs. PMID:27451697

  19. Investigation of thioglycerol stabilized ZnS quantum dots in electroluminescent device performance

    NASA Astrophysics Data System (ADS)

    Ethiraj, Anita Sagadevan; Rhen, Dani; Lee, D. H.; Kang, Dae Joon; Kulkarni, S. K.

    2016-05-01

    The present work is focused on the investigation of thioglycerol (TG) stabilized Zinc Sulfide Quantum dots (ZnS QDs) in the hybrid electroluminescence (EL) device. Optical absorption spectroscopy clearly indicates the formation of narrow size distributed ZnS in the quantum confinement regime. X-ray Diffraction (XRD), Photoluminescence (PL), Energy Dispersive X-ray Spectroscopy (EDS) data supports the same. The hybrid EL device with structure of ITO (indium tin oxide)//PEDOT:PSS ((poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)//HTL (α NPD- N,N'-diphenyl-N,N'-bis(1-naphthyl)-(1,1'-phenyl)-4,4'-diamine// PVK:ZnS QDs//ETL(PBD- 2-tert-butylphenyl- 5-biphenyl-1,3,4-oxadiazole)//LiF:Al (Device 1) was fabricated. Reference device without the ZnS QDs were also prepared (Device 2). The results show that the ZnS QDs based device exhibited bright electroluminescence emission of 24 cd/m2 at a driving voltage of 16 Volts under the forward bias conditions as compared to the reference device without the ZnS QDs, which showed 6 cd/m2 at ˜22 Volts.

  20. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices.

    PubMed

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  1. Photo-, cathodo-, and electroluminescence studies of sputter deposited AlN:Er thin films

    NASA Astrophysics Data System (ADS)

    Dimitrova, V. I.; Van Patten, P. G.; Richardson, H.; Kordesch, M. E.

    2001-05-01

    Green cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) have been obtained from Er-doped amorphous AlN thin films, 200 nm thick, prepared by rf magnetron sputtering. All films were activated by annealing at 750°C for 10 min in a nitrogen atmosphere. Three sharp bands at about 479, 538 and 559 nm corresponding to the 4F7/2→ 4I15/2, 2H11/2→ 4I15/2 and 4S3/2→ 4I15/2 transitions are observed. Fine structure is seen on the major transitions that does not change with temperature indicating that this structure is related to different local environments of the Er 3+ ion. The PL spectrum revealed sharp peaks from Er 3+ ions and a broad spectral profile that might be from defect states in the amorphous AlN. The results from EL measurements show that Er-doped amorphous AlN films can be used as a phosphor layer in alternating-current thin-film electroluminescent (ACTFEL) devices.

  2. Magnetic recoverable MnFe₂O₄ and MnFe₂O₄-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants.

    PubMed

    Yao, Yunjin; Cai, Yunmu; Lu, Fang; Wei, Fengyu; Wang, Xiaoyao; Wang, Shaobin

    2014-04-15

    Magnetic iron based materials are generally effective for many catalytic reactions and can be magnetically recovered after application, showing advantages than other metal oxides. In the present work, magnetic MnFe2O4 nanoparticle and MnFe2O4-reduced graphene oxide (rGO) hybrid were prepared and used as catalysts to activate peroxymonosulfate (PMS) to oxidatively degrade various organic pollutants in water. From a process of chemical deposition and reduction, MnFe2O4-rGO hybrids were produced with nanosized MnFe2O4 particles (ca. 13.2 nm). It was found that MnFe2O4 or MnFe2O4-rGO presented high activity in activating PMS to produce sulfate radicals for degradation of organic dyes (Methyl violet, Methyl orange, Methylene blue, Orange II and Rhodamine B) and could be separated with a magnet without any loss. The reaction kinetics, effect of different ion species CL(-),HCO3(-),CH3COO(-)and NO3(-) and Cl(-) strength, reaction temperature (25-65°C), catalytic stability, as well as degradation mechanism were comprehensively studied. The lower activation energy on MnFe2O4-rGO (25.7 kJ/mol) justify the higher chemical performance than that of MnFe2O4 (31.7 kJ/mol), suggesting that graphene plays a significant role in the enhanced degradation of dyes. More importantly, the as-prepared MnFe2O4 and MnFe2O4-rGO hybrid exhibited stable performance to remove the organic pollutants in wastewater with easy recycling and good stability by successive degradation experiments. PMID:24548886

  3. Magnetic recoverable MnFe₂O₄ and MnFe₂O₄-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants.

    PubMed

    Yao, Yunjin; Cai, Yunmu; Lu, Fang; Wei, Fengyu; Wang, Xiaoyao; Wang, Shaobin

    2014-04-15

    Magnetic iron based materials are generally effective for many catalytic reactions and can be magnetically recovered after application, showing advantages than other metal oxides. In the present work, magnetic MnFe2O4 nanoparticle and MnFe2O4-reduced graphene oxide (rGO) hybrid were prepared and used as catalysts to activate peroxymonosulfate (PMS) to oxidatively degrade various organic pollutants in water. From a process of chemical deposition and reduction, MnFe2O4-rGO hybrids were produced with nanosized MnFe2O4 particles (ca. 13.2 nm). It was found that MnFe2O4 or MnFe2O4-rGO presented high activity in activating PMS to produce sulfate radicals for degradation of organic dyes (Methyl violet, Methyl orange, Methylene blue, Orange II and Rhodamine B) and could be separated with a magnet without any loss. The reaction kinetics, effect of different ion species CL(-),HCO3(-),CH3COO(-)and NO3(-) and Cl(-) strength, reaction temperature (25-65°C), catalytic stability, as well as degradation mechanism were comprehensively studied. The lower activation energy on MnFe2O4-rGO (25.7 kJ/mol) justify the higher chemical performance than that of MnFe2O4 (31.7 kJ/mol), suggesting that graphene plays a significant role in the enhanced degradation of dyes. More importantly, the as-prepared MnFe2O4 and MnFe2O4-rGO hybrid exhibited stable performance to remove the organic pollutants in wastewater with easy recycling and good stability by successive degradation experiments.

  4. High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives.

    PubMed

    Lee, Sae Youn; Adachi, Chihaya; Yasuda, Takuma

    2016-06-01

    High-efficiency blue thermally activated delayed fluorescence (TADF) molecules, consisting of phenoxaphosphine oxide and phenoxathiin dioxide as acceptor units and 9,9-dimethylacridan as a donor unit, are reported. Maximum external electroluminescence quantum efficiencies of up to 20.5% are achieved in blue organic light-emitting diodes (OLEDs) by employing these materials as TADF emitters.

  5. Size-Controlled TiO2 nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p-Phenylenediamine for efficient photocatalytic degradation of fulvic acids.

    PubMed

    Yan, Wen-Yuan; Zhou, Qi; Chen, Xing; Yang, Yong; Zhang, Yong; Huang, Xing-Jiu; Wu, Yu-Cheng

    2016-08-15

    Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO2/graphene nanocomposites (N-RGO/TiO2) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO2 nanocrystals and graphene, but also the nitrogen dopant for TiO2 nanocrystals and graphene. During the hydrothermal process, facets of TiO2 nanocrystals were modulated with addition of HF, and sizes of TiO2 nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH2). The obtained N-RGO/TiO2 nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO2 samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO2 catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO2-N/F (61%) in 3h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance. PMID:27107234

  6. Size-Controlled TiO2 nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p-Phenylenediamine for efficient photocatalytic degradation of fulvic acids.

    PubMed

    Yan, Wen-Yuan; Zhou, Qi; Chen, Xing; Yang, Yong; Zhang, Yong; Huang, Xing-Jiu; Wu, Yu-Cheng

    2016-08-15

    Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO2/graphene nanocomposites (N-RGO/TiO2) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO2 nanocrystals and graphene, but also the nitrogen dopant for TiO2 nanocrystals and graphene. During the hydrothermal process, facets of TiO2 nanocrystals were modulated with addition of HF, and sizes of TiO2 nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH2). The obtained N-RGO/TiO2 nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO2 samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO2 catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO2-N/F (61%) in 3h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance.

  7. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    SciTech Connect

    Calciati, Marco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Goano, Michele Bertazzi, Francesco; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin

    2014-06-15

    Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10{sup −30} cm{sup 6}/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary

  8. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    NASA Astrophysics Data System (ADS)

    Calciati, Marco; Goano, Michele; Bertazzi, Francesco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Bellotti, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin

    2014-06-01

    Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10-30 cm6/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at

  9. Development of efficiency improved polymer-modified TiO2 for the photocatalytic degradation of an organic dye from wastewater environment

    NASA Astrophysics Data System (ADS)

    Sangareswari, Murugan; Meenakshi Sundaram, Mariappan

    2015-10-01

    In this study, the photocatalytic activity of polypyrrole-TiO2 nanocomposite was studied experimentally for the degradation of methylene blue (MB) dye under simulating solar light irradiation. To improve the photocatalytic activity of TiO2 under sunlight irradiation, conducting polymers such as polypyrrole (PPy) and its derivatives are generally used as photosensitizers. The PPy-TiO2 nanocomposite was prepared by the chemical oxidative polymerization method. The prepared nanocomposite showed better photocatalytic activity than bare TiO2 under sunlight irradiation for the degradation of MB dye. The prepared nanocomposite was subjected to characterization techniques such as SEM-EDAX, FT-IR, UV-DRS, XRD, TGA and PL spectral analysis. Different influencing operating parameters like initial concentration of dye, irradiation time, pH and amount of PPy-TiO2 nanocomposite used have also been studied. The optical density of the dye degradation was measured by UV-Visible spectrophotometer. The repeatability of photocatalytic activity was also tested. A plausible mechanism was proposed and discussed on the basis of experimental results.

  10. Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2015-10-01

    In this work, we successfully prepared a series of novel magnetically separable ZnO/Ag3VO4/Fe3O4 nanocomposites by a facile refluxing method using Fe3O4, zinc nitrate, silver nitrate, ammonium metavanadate, and sodium hydroxide as starting materials without using any post preparation treatments. The microstructure, purity, morphology, spectroscopic, and magnetic properties of the prepared samples were studied using XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques. The ZnO/Ag3VO4/Fe3O4 nanocomposite with 8:1 weight ratio of ZnO/Ag3VO4 to Fe3O4 has the superior activity in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite is about 11.5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The results showed that the preparation time and calcination temperature significantly affect on the photocatalytic activity. The trapping experiments revealed that superoxide ions and holes have major influence on the degradation reaction. Furthermore, the enhanced activity of the nanocomposite for degradation of two more dye pollutants was confirmed. Finally, the nanocomposite was magnetically separated from the treated solution after four successive cycles.

  11. Electroluminescence yield for {lambda} > 165 nm in neon-xenon mixtures: Experimental results

    SciTech Connect

    Borges, F.I.G.M.; Santos, J.M.F. dos; Conde, C.A.N.; Kubota, S.

    1996-12-31

    The electroluminescence yield for {lambda} > 165 am in different neon-xenon mixtures is studied as a function of the reduced electric field. These studies were performed using a uniform-field gas proportional scintillation counter. The experimental values obtained for the scintillation and ionization thresholds decrease from approximately 1 and 6 Vcm{sup -1} torr{sup -1} for 100% xenon, to about 0.5 and 3.8 Vcm{sup -1} torr{sup -1} for 20% xenon, to 0.4 and 2.8 Vcm{sup -1} torr{sup -1} for 10% xenon and to 0.3 and 2.2 Vcm{sup -1} torr{sup -1} for 5% xenon. Detector energy resolutions for the Al K line (1.5 keV) are 15% for 20% xenon, 19% for 10% xenon and 22% for 5% xenon.

  12. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nam Hai, Pham; Maruo, Daiki; Tanaka, Masaaki

    2014-03-01

    We observed visible-light electroluminescence (EL) due to d-d transitions in light-emitting diodes with Mn-doped GaAs layers (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show two peaks at 1.89 eV and 2.16 eV, which are exactly the same as 4A2(4F) → 4T1(4G) and 4T1(4G) → 6A1(6S) transitions of Mn atoms doped in ZnS. The temperature dependence and the current-density dependence are consistent with the characteristics of d-d transitions. We explain the observed EL spectra by the p-d hybridized orbitals of the Mn d electrons in GaAs.

  13. White light organic electroluminescent device using a naphthalimide derivative as the emitter layer

    NASA Astrophysics Data System (ADS)

    Chu, Guoqiang; Liu, Xingyuan; Liu, Yun; Wu, Dongjiang; Wang, Lijun

    2000-11-01

    The electroluminescent (EL) device was fabricated using a naphthalimide derivative, N-Propyl-4-acetylamino-1,8- naphthalimide (PAAN), as the emitter layer, N,N'-diphenyl- N,N'-bis(3-methyl-phenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) as the hole transport layer, ITO and Al as the anode and cathode, respectively. The EL emission of the device showed a white light. There are two peaks located at 491 nm and 669 nm in the EL spectrum. The emission peak at 491 nm comes from PAAN, while the emission peak at 669 nm results from neither the emission of PAAN molecule nor that of TPD molecule. It showed that the showing up of the new emission peak in the EL spectrum of the device is due to the exciplex formation at the PAAN and TPD bilayer interface.

  14. Biological fabrication of nanostructured silicon-germanium photonic crystals possessing unique photoluminescent and electroluminescent properties

    NASA Astrophysics Data System (ADS)

    Rorrer, Gregory L.; Jeffryes, Clayton; Chang, Chih-hung; Lee, Doo-Hyoung; Gutu, Timothy; Jiao, Jun; Solanki, Raj

    2007-09-01

    Diatoms are single-celled algae which possess silica shells called "frustules" that contain periodic submicron scale features. A diatom cell culture process was used to fabricate a two-dimensional photonic crystal slab of Ge-doped biosilica that possessed 120 nm holes, 330 nm lattice constant, and dielectric constant of 8.5. This material was integrated into an electroluminescent (EL) device by spin coating of the frustules onto indium tin oxide, followed by atomic layer deposition of 400 nm hafnium silicate. No photonic band gap was predicted. However, the EL spectrum possessed resonant UV line emissions that were consistent with photonic band calculations. An EL band gap between 500-640 nm was also observed between blue and red EL line emissions. These EL characteristics have not been observed previously, and are unique to the diatom photonic crystal. This study represents a first step towards the realization of optoelectronic devices which utilize nanoscale components fabricated through cell culture.

  15. Development of Novel System Combining Scanning Tunneling Microscope-Based Cathodoluminescence and Electroluminescence Nanospectroscopies

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Nakamura, Yoshiaki; Kuboya, Shigeyuki; Katayama, Ryuji; Onabe, Kentaro; Ichikawa, Masakazu

    2011-08-01

    Novel system equipped with conductive optical fiber probe scanning tunneling microscope (STM) and bipolar sample holder is a powerful tool to characterize light-emitting devices by several STM-based techniques at the same sample position, which can realize photoluminescence (PL), cathodoluminescence (CL), electroluminescence (EL), and electron beam induced current (EBIC) measurements with higher spatial resolutions than conventional techniques. In this study, we developed a STM-CL/EL system which combines STM-CL technique for high CL excitation power and high spatial resolution and STM-EL technique for local EL collection. We demonstrated spatially resolved STM-CL/EL spectroscopy of GaAs/AlGaAs heterostructure (110) cross-sections.

  16. Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces

    SciTech Connect

    Tregnago, G.; Fléchon, C.; Cacialli, F. E-mail: f.cacialli@ucl.ac.uk; Choudhary, S.; Gozalvez, C.

    2014-10-06

    Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ∼1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ∼1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.

  17. Democratizing an electroluminescence imaging apparatus and analytics project for widespread data acquisition in photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Fada, Justin S.; Wheeler, Nicholas R.; Zabiyaka, Davis; Goel, Nikhil; Peshek, Timothy J.; French, Roger H.

    2016-08-01

    We present a description of an electroluminescence (EL) apparatus, easily sourced from commercially available components, with a quantitative image processing platform that demonstrates feasibility for the widespread utility of EL imaging as a characterization tool. We validated our system using a Gage R&R analysis to find a variance contribution by the measurement system of 80.56%, which is typically unacceptable, but through quantitative image processing and development of correction factors a variance contribution by the measurement system of 2.41% was obtained. We further validated the system by quantifying the signal-to-noise ratio (SNR) and found values consistent with other systems published in the literature, at SNR values of 10-100, albeit at exposure times of greater than 1 s compared to 10 ms for other systems. This SNR value range is acceptable for image feature recognition, providing the opportunity for widespread data acquisition and large scale data analytics of photovoltaics.

  18. Democratizing an electroluminescence imaging apparatus and analytics project for widespread data acquisition in photovoltaic materials.

    PubMed

    Fada, Justin S; Wheeler, Nicholas R; Zabiyaka, Davis; Goel, Nikhil; Peshek, Timothy J; French, Roger H

    2016-08-01

    We present a description of an electroluminescence (EL) apparatus, easily sourced from commercially available components, with a quantitative image processing platform that demonstrates feasibility for the widespread utility of EL imaging as a characterization tool. We validated our system using a Gage R&R analysis to find a variance contribution by the measurement system of 80.56%, which is typically unacceptable, but through quantitative image processing and development of correction factors a variance contribution by the measurement system of 2.41% was obtained. We further validated the system by quantifying the signal-to-noise ratio (SNR) and found values consistent with other systems published in the literature, at SNR values of 10-100, albeit at exposure times of greater than 1 s compared to 10 ms for other systems. This SNR value range is acceptable for image feature recognition, providing the opportunity for widespread data acquisition and large scale data analytics of photovoltaics. PMID:27587162

  19. Transient electroluminescence dynamics in small molecular organic light-emitting diodes

    SciTech Connect

    Gan, Z; Liu, R; Shinar, R; Shinar, J

    2010-09-14

    Intriguing electroluminescence (EL) spikes, following a voltage pulse applied to small molecular OLEDs, are discussed, elucidating carrier and exciton quenching dynamics and their relation to device structure. At low temperatures, all devices exhibit spikes at {approx} 70-300 ns and {mu}s-long tails. At 295 K only those with a hole injection barrier, carrier-trapping guest-host emitting layer, and no strong hole-blocking layer exhibit the spikes. They narrow and appear earlier under post-pulse reverse bias. The spikes and tails are in agreement with a revised model of recombination of correlated charge pairs (CCPs) and initially unpaired charges. Decreased post-pulse field-induced dissociative quenching of singlet excitons and CCPs, and possibly increased post-pulse current of holes that 'turn back' toward the recombination zone after having drifted beyond it are suspected to cause the spikes amplitude, which exceeds the dc EL.

  20. Electro-Luminescence based Pressure-Sensitive Paint System for Unsteady Flow Field Measurements

    NASA Astrophysics Data System (ADS)

    Iijima, Yoshimi; Sakaue, Hirotaka

    2011-11-01

    Electro-luminescence (EL) based pressure-sensitive paint (PSP) system is developed for capturing unsteady flow fields. It has advantages in uniform distribution in the illumination without remotely apply the illumination source from the testing object. The resultant system can be applied directly onto a testing object surface. It consists of an inorganic EL and a PSP. The EL emits blue illumination uniformly applied onto the PSP layer. Because of a sheet illumination, the EL gives uniform distribution, while a point illumination gives a spot in illumination. The PSP is developed to provide a fast response to a change in pressure. It uses a porous particle and a polymer to create porous-polymer PSP. The response time characterization of the developed system is included in the presentation. The developed system is applied to an unsteady flow field, such as a sound field in a resonance tube.

  1. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOEpatents

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  2. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  3. A diaminomaleonitrile derivative as a new dopant for red-light-emitting electroluminescent device

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Sakuratani, Yuhki; Sone, Hiroyuki; Tanaka, Kuniaki; Miyata, Seizo; Usui, Hiroaki

    2003-08-01

    We have synthesized a novel dye material of N,N'-bis[4-(N,N'-diphenylamino)-benzalidene] diaminomaleonitrile (BAP), as a dopant for red-light-emitting electroluminescent (EL) device. We fabricated several types of EL devices by doping BAP into tris(8-quinoline) aluminium (Alq3) as the light-emitting layer, and investigated their EL properties. BAP has symmetric conjugated structure and could give sharp and intense photoluminescence in the red region. When BAP was doped into Alq3, the device gave bright red EL with the maximum intensity of about 6700 cd m-2 together with the contribution of Alq3 emission. By introducing rubrene as an assist-dopant, the maximum EL intensity increased to 15 700 cd m-2 when the bias voltage was 14.5 V. However, complete energy transfer to BAP has not been achieved.

  4. Recent advances in electroluminescent displays applicable to future crew-station interfaces

    NASA Technical Reports Server (NTRS)

    Miller, M. R.; Schlam, E.; Robertson, J. B.; Hatfield, J. J.

    1984-01-01

    The operative principles and progress to date on producing thin-film electroluminescent displays (TFEL) are discussed. TFEL displays consist of conductive, insulating and phosphor film layers deposited on a glass substrate. Applying a 200 V potential between the rows and columns in a multiplexed mode causes light to be emitted. Varying the voltage varies the grey level. The panels provide adequate contrast in full sunlight, and have demanded only 4-6 W for 15 sq in. displays. Alphanumeric, graphics, and video images have been generated with a 51 line by 80 character display. The upper limit on the panel size has not yet been defined. Efforts are under way to produce multicolor displays using red and blue phosphors. Trial units are being studied for avionics displays for, e.g., navigation, multipurpose displays, and attitude/direction indicators.

  5. Photo and electroluminescence of ZnSe: Sn and ZnSe:(Sn, Pr) phosphors

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2016-09-01

    We have prepared ZnSe (luminescent grade) phosphor doped with Sn and (Sn,Pr) with varying concentration in an inert atmosphere in a silica tubular furnace at temperature of (780 ± 20) °C for 1 hr to obtain ZnSe:Sn and ZnSe: (Sn,Pr) phosphors. The photo luminescence (PL) and electroluminescence (EL) spectra of these phosphors have been studied at room temperature and results were discussed in the light of existing models. Dependence of EL emission on the voltage frequency has also been carried out. It is found that the plot between the integrated light intensity versus 1/√Vrms is a straight line suggesting the existence of Mott-Schottky type barrier on the metal semiconductor interface.

  6. Polarization dependences of electroluminescence and absorption of vertically correlated InAs/GaAs QDs

    SciTech Connect

    Sobolev, M. M. Gadzhiyev, I. M.; Bakshaev, I. O.; Nevedomskiy, V. N.; Buyalo, M. S.; Zadiranov, Yu. M.; Zolotareva, R. V.; Portnoi, E. L.

    2012-01-15

    The results of experimental studies concerning the optical polarization anisotropy of electroluminescence and absorption spectra of systems with a varied number of tunnel-coupled vertically correlated In(Ga)As/GaAs quantum dots (QDs), built into a double-section laser with equal-length sections, are presented. One such system is a QD superlattice exhibiting the Wannier-Stark effect. The involvement of heavyhole ground states in optical transitions for light polarized both in the plane perpendicular to the growth axis (X-Y) and along the growth direction Z of the structure was observed. The degree of polarization anisotropy depends on the height of vertically correlated QDs and the QD superlattice: the total thickness of all In(Ga)As QD layers and GaAs spacers between the QDs, which is related to the Z component of the wave function of heavy-hole ground states for vertically correlated QDs and for the QD superlattice.

  7. GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength.

    PubMed

    Wang, Cheng-Yin; Chen, Liang-Yi; Chen, Cheng-Pin; Cheng, Yun-Wei; Ke, Min-Yung; Hsieh, Min-Yann; Wu, Han-Ming; Peng, Lung-Han; Huang, JianJang

    2008-07-01

    A practical process to fabricate InGaN/GaN multiple quantum well light emitting diodes (LEDs) with a self-organized nanorod structure is demonstrated. The nanorod array is realized by using nature lithography of surface patterned silica spheres followed by dry etching. A layer of spin-on-glass (SOG), which intervening the rod spacing, serves the purpose of electric isolation to each of the parallel nanorod LED units. The electroluminescence peak wavelengths of the nanorod LEDs nearly remain as constant for an injection current level between 25mA and 100mA, which indicates that the quantum confined stark effect is suppressed in the nanorod devices. Furthermore, from the Raman light scattering analysis we identify a strain relaxation mechanism for lattice mismatch layers in the nanostructure. PMID:18607469

  8. Democratizing an electroluminescence imaging apparatus and analytics project for widespread data acquisition in photovoltaic materials.

    PubMed

    Fada, Justin S; Wheeler, Nicholas R; Zabiyaka, Davis; Goel, Nikhil; Peshek, Timothy J; French, Roger H

    2016-08-01

    We present a description of an electroluminescence (EL) apparatus, easily sourced from commercially available components, with a quantitative image processing platform that demonstrates feasibility for the widespread utility of EL imaging as a characterization tool. We validated our system using a Gage R&R analysis to find a variance contribution by the measurement system of 80.56%, which is typically unacceptable, but through quantitative image processing and development of correction factors a variance contribution by the measurement system of 2.41% was obtained. We further validated the system by quantifying the signal-to-noise ratio (SNR) and found values consistent with other systems published in the literature, at SNR values of 10-100, albeit at exposure times of greater than 1 s compared to 10 ms for other systems. This SNR value range is acceptable for image feature recognition, providing the opportunity for widespread data acquisition and large scale data analytics of photovoltaics.

  9. Electroluminescence from individual air-suspended carbon nanotubes within split-gate structures

    NASA Astrophysics Data System (ADS)

    Higashide, N.; Uda, T.; Yoshida, M.; Ishii, A.; Kato, Y. K.

    Electrically induced light emission from chirality-identified single-walled carbon nanotubes are investigated by utilizing split-gate field-effect devices fabricated on silicon-on-insulator substrates. We begin by etching trenches through the top silicon layer into the buried oxide, and the silicon layer is thermally oxidized for use as local gates. We partially remove the oxide and form gate electrodes, then contacts for nanotubes are deposited on both sides of the trench. Catalyst particles are placed on the contacts, and nanotubes are grown over the trench by chemical vapor deposition. We use photoluminescence microscopy to locate the nanotubes and perform excitation spectroscopy to identify their chirality. Gate-induced photoluminescence quenching is used to confirm carrier doping, and electroluminescence intensity is investigated as a function of the split-gate and bias voltages. Work supported by JSPS (KAKENHI 24340066, 26610080), MEXT (Photon Frontier Network Program, Nanotechnology Platform), Canon Foundation, and Asahi Glass Foundation.

  10. COUGAR: a liquid nitrogen cooled InGaAs camera for astronomy and electro-luminescence

    NASA Astrophysics Data System (ADS)

    Van Bogget, Urbain; Vervenne, Vincent; Vinella, Rosa Maria; van der Zanden, Koen; Merken, Patrick; Vermeiren, Jan

    2014-06-01

    A SWIR FPA was designed and manufactured with 640*512 pixels, 20 μm pitch and InGaAs detectors for electroluminescence characterization and astronomical applications in the [0.9 - 1.55 μm] range. The FPA is mounted in a liquid nitrogen dewar and is operated by a low noise frontend electronics. One of the biggest problem in designing sensors and cameras for electro-luminescence measurements is the autoillumination of the detectors by the readout circuit. Besides of proper shielding of the detectors, the ROIC shall be optimized for minimal electrical activity during the integration time of the very-weak signals coming from the circuit under test. For this reason a SFD (or Source Follower per Detector) architecture (like in the Hawaii sensor) was selected, resulting in a background limited performance of the detector. The pixel has a (somewhat arbitrary) full well capacity of 400 000 e- and a sensitivity of 2.17 μV/e-. The dark signal is app. 1 e-/pixel/sec and with the appropriate Fowler sampling the dark noise lowers below 5 e-rms. The power consumption of the circuit is limited 2 mW, allowing more than 24 hours of operation on less than 1 l of liquid nitrogen. The FPA is equipped with 4 outputs (optional readout on one single channel) and is capable of achieving 3 frames per second. Due to the non-destructive readout it is possible to determine in a dynamic way the optimal integration time for each observation. The Cougar camera is equipped with ultra-low noise power supply and bias lines; the electronics contain also a 24 bit AD converter to fully exploit the sensitivity of the FPA and the camera.

  11. Photoluminescence and electroluminescence characteristics of CaSiN2:Eu phosphor

    NASA Astrophysics Data System (ADS)

    Lee, Soon S.; Lim, Sungkyoo; Sun, Sey-Shing; Wager, John F.

    1997-11-01

    Photoluminescenc eand electroluminescence of CaSiN2:Eu materials were investigted to develop a new phosphor for thin film electroluminescence (TFEL) device applications. Ca3N2 and Si3N4 powders were mixed to form CaSiN2 hostmaterials and Eu was added as the luminescent center. The mixed powermatrials were cold pressed under the pressure of 1 Kg/cm2 to make pellets, and fired at 1400 degrees Celsius for 2 hours under N2H2 envrionemtn. Th ex-ry diffraction(CRD) patterns of synthesizd materals wer well matched with CaSiN2 of joint committee for powder diffraction standards (JCPDS) csrad. When illuminated by ultravilet rays, th enew phosphors emitted very bright red ligh of peak wav lenegth centered at 620 nm. Th TFEL devices with CaSiN2:Eu phosphor layser swre grown by sputter depositonof CaSiN2:Eu target. Red light emission was observed when the peak amplitude of the applied voltge exceeded 116 V.l The luminance was shown to increase sharply withth increase of the applied voltage. The maximum luminance was 1.62 Cd/m2 at the applied peak voltage of 276 V. The red emission from CaSiN2:Eu TFEL device seems to result from electronic transition of Eu3+ ions.The emission spectra of TFEl devices matchwell withth ephotoluminescence spectra of CaSiN2:Ey powders. The new devices structure and fabrication processes for the iimprovement of emission intenityof CaSiN2:Eu TFEl devices ar under investigation.

  12. The electroluminescence mechanism of Er³⁺ in different silicon oxide and silicon nitride environments

    SciTech Connect

    Rebohle, L. Wutzler, R.; Braun, M.; Helm, M.; Skorupa, W.; Berencén, Y.; Ramírez, J. M.; Garrido, B.; Hiller, D.

    2014-09-28

    Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO₂ and an Er-implanted layer made of SiO₂, Si-rich SiO₂, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540 nm with EL power efficiencies in the order of 2 × 10⁻³ (for SiO₂:Er) or 2 × 10⁻⁴(all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5 × 10⁻¹⁵cm⁻². Whereas the fraction of potentially excitable Er ions in SiO₂ can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO₂ or Si nitride compared to SiO₂ as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er³⁺. For all investigated devices, EL quenching cross sections in the 10⁻²⁰ cm² range and charge-to-breakdown values in the range of 1–10 C cm⁻² were measured. For the present design with a SiO₂ acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.

  13. In situ investigation of energy transfer in hybrid organic/colloidal quantum dot light-emitting diodes via magneto-electroluminescence.

    PubMed

    Chen, Lixiang; Chen, Qiusong; Lei, Yanlian; Jia, Weiyao; Yuan, De; Xiong, Zuhong

    2016-08-10

    Energy transfer (ET) and charge injection (CI) in the hybrid organic/colloidal quantum dot light-emitting diodes (QD-LEDs) have been investigated by using magneto-electroluminescence (MEL) as an in situ tool. The feasibility and availability of MEL as an in situ tool were systematically demonstrated in the typical QD-LEDs based on CdSe-ZnS core-shell QDs. Our results suggest that the ET and CI processes can be well discerned by MEL measurements since these two processes exhibit distinct responses to the applied magnetic field. Through measurement of the MEL and current efficiency, we indicated that ET would be the main mechanism for light emission in the present hybrid QD-LEDs. This study strongly suggests that MEL could be a highly sensitive fingerprint for ET, which provides a facile and efficient method for the in situ investigation of fundamental processes in hybrid organic/colloidal QD-LEDs and other organic/inorganic composites. PMID:27461412

  14. Synthesis and electroluminescence characterization of a new aluminum complex, [8-hydroxyquinoline] bis [2, 2'bipyridine] aluminum Al(Bpy)2q

    NASA Astrophysics Data System (ADS)

    Rahul, Kumar; Ritu, Srivastava; Punita, Singh

    2016-01-01

    We have synthesized and characterized a new electroluminescent material, [8-hydroxyquinoline] bis [2,2'bipyridine] aluminum. A solution of this material Al(Bpy)2q in toluene showed absorption maxima at 380 nm, which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(Bpy)2q in the toluene solution showed a peak at 518 nm. This material shows thermal stability up to 300 °C. The structure of the device is ITO/F4-TCNQ (1 nm)/α-NPD (35 nm)/Al(Bpy)2q (35 nm)/ BCP (6 nm)/Alq3 (28 nm)/LiF (1 nm)/Al (150 nm). This device exhibited a luminescence peak at 515 nm (CIE coordinates, x = 0.32, y = 0.49). The maximum luminescence of the device was 214 cd/m2 at 21 V. The maximum current efficiency of OLED was 0.12 cd/A at 13 V and the maximum power efficiency was 0.03 lm/W at 10 V.

  15. A novel iron-containing polyoxometalate heterogeneous photocatalyst for efficient 4-chlorophennol degradation by H2O2 at neutral pH

    NASA Astrophysics Data System (ADS)

    Zhai, Qian; Zhang, Lizhong; Zhao, Xiufeng; Chen, Han; Yin, Dongju; Li, Jianhui

    2016-07-01

    An iron-containing polyoxometalate (FeШLysSiW) was synthesized from ferric chloride (FeIII), lysine (Lys) and silicotungstic acid (SiW), and characterized using ICP-AES, TG, FT-IR, UV-vis DRS, XRD and SEM. The chemical formula of FeШLysSiW was determined as [Fe(H2O)5(C6H14N2O2)]HSiW12O40·8H2O, with Keggin-structured SiW12O404- heteropolyanion and lysine moiety. As a heterogeneous catalyst, the as prepared FeШLysSiW showed good performance in the degradation of 4-chlorophenol by H2O2 in both the dark and irradiated systems. Under the conditions of 4-chlorophenol 100 mg/L, FeШLysSiW 1.0 g/L, H2O2 20 mmol/L and pH 6.5, 4-chlorophenol could be completely degraded in ca. 40 min in the dark and ca. 15 min upon irradiation. Prolonging the reaction time to 3 h, the TOC removal reached to ca. 71.3% in the dark and ca. 98.8% under irradiation. The catalytic activity of FeШLysSiW stems from synergetic effect of ferric iron and SiW12O404- in the catalyst, corresponding to Fenton-like catalysis and photocatalysis, respectively. The enhanced degradation of 4-CP under irradiation is due to the simultaneous oxidation of 4-CP through the Fenton-like and photocatalytic processes. The high catalytic activity of FeШLysSiW is also strongly related to the chemisorption of H2O2 on FeШLysSiW surface by hydrogen bonding, which promotes both the Fenton-like and photocatalytic processes.

  16. Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO{sub 4} composite under visible-light irradiation

    SciTech Connect

    Jiang Haiqing Endo, Hiromitsu; Natori, Hirotaka; Nagai, Masayuki; Kobayashi, Koichi

    2009-03-05

    CuO/BiVO{sub 4} composite photocatalysts were prepared by solution combustion synthesis method and impregnation technique. X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scan electron microscopy and UV-vis diffusion reflectance spectra were used to identify the physical properties and photophysical properties of CuO/BiVO{sub 4} composite photocatalysts. The photocatalysts exhibit the enhanced photocatalytic properties for degradation of methylene blue under visible-light ({lambda} > 420 nm). The mechanism of improved photocatalytic activity is also discussed.

  17. Photovoltaic Degradation Risk: Preprint

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  18. Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Soufiani, Arman Mahboubi; Tayebjee, Murad J. Y.; Meyer, Steffen; Ho-Baillie, Anita; Sung Yun, Jae; MacQueen, Rowan W.; Spiccia, Leone; Green, Martin A.; Hameiri, Ziv

    2016-07-01

    In this study, we provide insights into planar structure methylammonium lead triiodide (MAPbI3) perovskite solar cells (PSCs) using electroluminescence and photoluminescence imaging techniques. We demonstrate the strength of these techniques in screening relatively large area PSCs, correlating the solar cell electrical parameters to the images and visualizing the features which contribute to the variation of the parameters extracted from current density-voltage characterizations. It is further used to investigate one of the major concerns about perovskite solar cells, their long term stability and aging. Upon storage under dark in dry glovebox condition for more than two months, the major parameter found to have deteriorated in electrical performance measurements was the fill factor; this was elucidated via electroluminescence image comparisons which revealed that the contacts' quality degrades. Interestingly, by deploying electroluminescence imaging, the significance of having a pin-hole free active layer is demonstrated. Pin-holes can grow over time and can cause degradation of the active layer surrounding them.

  19. An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants.

    PubMed

    Luo, Mingsen; Yuan, Songhu; Tong, Man; Liao, Peng; Xie, Wenjing; Xu, Xiaofeng

    2014-01-01

    A novel electro-Fenton process based on Pd-catalytic production of H2O2 from H2 and O2 has been proposed recently for transforming organic contaminants in wastewaters and groundwater. However, addition of Fe(II) complicates the operation, and it is difficult to recycle Pd catalyst after treatment. This study attempts to synthesize an integrated catalyst by loading Pd onto magnetic Fe3O4 nanoparticles (Pd/MNPs) so that H2O2 and Fe(2+) can be produced simultaneously in the electrolytic system. In an undivided electrolytic cell, phenol, a probe organic contaminant, is degraded by 98% within 60 min under conditions of 50 mA, 1 g/L Pd/MNPs (5 wt% Pd), pH 3 and 20 mg/L initial concentration. The degradation rate peaks at pH 3, increases with increasing Pd loading and electric current and decreases with increasing initial concentration. A distinct mechanism, reductive dissolution of solid Fe(III) in Fe3O4 by atomic H chemisorbed on Pd surface, is responsible for Fe(2+) production from Pd/MNPs. The efficiency of phenol degradation can be sustained at the same level for ten times of repeated treatment using the Pd/MNPs catalyst. The variations of main crystal structure and magnetic property of catalysts are minimal after treatment, but low concentrations of Pd leached, which needs further evaluation.

  20. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this

    PubMed Central

    Ruiz‐Dueñas, Francisco J.; Martínez, Ángel T.

    2009-01-01

    Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts. PMID:21261911

  1. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst.

    PubMed

    Yang, Lixia; Luo, Shenglian; Li, Yue; Xiao, Yan; Kang, Qing; Cai, Qingyun

    2010-10-01

    p-Nitrophenol (PNP) is a difficultly decomposed organic pollutant under solar light in the absence of strong oxidants. This study shows that under artificial solar light PNP can be effectively degraded by a Cu(2)O/TiO(2) p-n junction network which is fabricated by anodizing Cu(0) particles-loaded TiO(2) nanotubes (NTs). The network is composed of p-type Cu(2)O nanowires on the top surface and Cu(2)O nanoparticles on the inner walls of the n-type TiO(2) NT arrays. The Cu(2)O/TiO(2) network shows much higher degradation rate (1.97 μg/min cm(2)) than the unmodified TiO(2) NTs (0.85 μg/min cm(2)). The enhanced photocatalytic acitivity can be attributed to the extended absorption in the visible resulting from the Cu(2)O nanowire networks and the effective separation of photogenerated carriers driven by the photoinduced potential difference generated at the Cu(2)O/TiO(2) p-n junction interface. PMID:20831154

  2. A Stability-Indicating HPLC-DAD Method for Determination of Ferulic Acid into Microparticles: Development, Validation, Forced Degradation, and Encapsulation Efficiency.

    PubMed

    Nadal, Jessica Mendes; Toledo, Maria da Graça; Pupo, Yasmine Mendes; Padilha de Paula, Josiane; Farago, Paulo Vitor; Zanin, Sandra Maria Warumby

    2015-01-01

    A simple stability-indicating HPLC-DAD method was validated for the determination of ferulic acid (FA) in polymeric microparticles. Chromatographic conditions consisted of a RP C18 column (250 mm × 4.60 mm, 5 μm, 110 Å) using a mixture of methanol and water pH 3.0 (48 : 52 v/v) as mobile phase at a flow rate of 1.0 mL/min with UV detection at 320 nm. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of quantification, limit of detection, accuracy, precision, and robustness provided suitable results regarding all parameters investigated. The calibration curve was linear in the concentration range of 10.0-70.0 μg/mL with a correlation coefficient >0.999. Precision (intraday and interday) was demonstrated by a relative standard deviation lower than 2.0%. Accuracy was assessed by the recovery test of FA from polymeric microparticles (99.02% to 100.73%). Specificity showed no interference from the components of polymeric microparticles or from the degradation products derived from acidic, basic, and photolytic conditions. In conclusion, the method is suitable to be applied to assay FA as bulk drug and into polymeric microparticles and can be used for studying its stability and degradation kinetics. PMID:26075139

  3. Efficiency of Cu2O/BiVO4 particles prepared with a new soft procedure on the degradation of dyes under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Aguilera-Ruiz, Eduardo; García-Pérez, Ulises M.; de la Garza-Galván, María; Zambrano-Robledo, Patricia; Bermúdez-Reyes, Bárbara; Peral, José

    2015-02-01

    Cu2O/BiVO4 composites with different concentrations of Cu2O were synthesized by a simple impregnation method at 200 °C under N2 atmosphere for 4 h. The as-synthesized samples were characterized by X-ray powder diffraction, scanning electron microscopy, UV-vis diffuse reflection absorption and vis photoluminescence. The morphology of the as-synthesized composites with different weight ratios of Cu2O is composed by quasi-spherical and dendrite-like particles. The photocatalytic performance of the Cu2O/BiVO4 composites was evaluated by degradation of methyl orange solutions under visible-LED irradiation. The results obtained show that the photocatalytic behavior of the p-n heterojunction Cu2O/BiVO4 composites was better than pure Cu2O and BiVO4. The variation of the reaction parameters, such as solution pH and presence of O2, improved the photocatalytic performance of Cu2O/BiVO4 composite. Meanwhile, a possible mechanism for methyl orange photocatalytic degradation over Cu2O/BiVO4 photocatalysts was proposed. The chemical stability and reusability of Cu2O/BiVO4 powders were also investigated.

  4. Specific features of electroluminescence in heterostructures with InSb quantum dots in an InAs matrix

    SciTech Connect

    Parkhomenko, Ya. A.; Ivanov, E. V.; Moiseev, K. D.

    2013-11-15

    The electrical and electroluminescence properties of a single narrow-gap heterostructure based on a p-n junction in indium arsenide, containing a single layer of InSb quantum dots in the InAs matrix, are studied. The presence of quantum dots has a significant effect on the shape of the reverse branch of the current-voltage characteristic of the heterostructure. Under reverse bias, the room-temperature electroluminescence spectra of the heterostructure with quantum dots, in addition to a negative-luminescence band with a maximum at the wavelength {lambda} = 3.5 {mu}m, contained a positive-luminescence emission band at 3.8 {mu}m, caused by radiative transitions involving localized states of quantum dots at the type-II InSb/InAs heterointerface.

  5. Visible emission from electroluminescent devices using an amorphous AlN:Er3+ thin-film phosphor

    NASA Astrophysics Data System (ADS)

    Dimitrova, V. I.; Van Patten, P. G.; Richardson, H. H.; Kordesch, M. E.

    2000-07-01

    Electroluminescence (EL) studies of AlN:Er alternating-current thin-film electroluminescent (ACTFEL) devices were performed at 300 K. Thin films of Er-doped AlN, ˜200 nm thick, were grown on indium-tin-oxide/aluminum-titanium-oxide/glass substrates using rf magnetron sputtering in a nitrogen atmosphere. The turn-on voltage was found to be around 70-80 and 100 V for ACTFEL devices without and with a top insulator layer. Sharp emission lines in the visible region were observed which correspond to known transitions of the Er3+ ion. Temperature-dependent cathodoluminescence studies corroborate the EL results, and show that optimum device performance is attained near 300 K.

  6. Features of the electroluminescence spectra of quantum-confined silicon p{sup +}-n heterojunctions in the infrared spectral region

    SciTech Connect

    Bagraev, N. T.; Klyachkin, L. E.; Kuzmin, R. V. Malyarenko, A. M.; Mashkov, V. A.

    2013-11-15

    The results of studying the characteristics of optical emission in various regions of quantum-confined silicon p{sup +}-n heterojunctions heavily doped with boron are analyzed. The results obtained allow one to conclude that near-infrared electroluminescence arises near the heterointerface between the nanostructured wide-gap silicon p{sup +}-barrier heavily doped with boron and n-type silicon (100), the formation of which included the active involvement of boron dipole centers.

  7. Stability and degradation of organic photovoltaics fabricated, aged, and characterized by the ISOS 3 inter-laboratory collaboration

    NASA Astrophysics Data System (ADS)

    Tanenbaum, David M.; Hermenau, Martin; Voroshazi, Eszter; Lloyd, Matthew T.; Galagan, Yulia; Zimmermann, Birger; Hösel, Markus; Dam, Henrik F.; Jørgensen, Mikkel; Gevorgyan, Suren; Kudret, Suleyman; Maes, Wouter; Lutsen, Laurence; Vanderzande, Dirk; Würfel, Uli; Andriessen, Ronn; Rösch, Roland; Hoppe, Harald; Lira-Cantu, Monica; Teran-Escobar, Gerardo; Dupuis, Aurélie; Bussière, Pierre-Olivier; Rivaton, Agnès.; Uzunoglu, Gülsah Y.; Germack, David; Andreasen, Birgitta; Madsen, Morten V.; Norrman, Kion; Bundgaard, Eva; Krebs, Frederik C.

    2012-09-01

    Seven distinct sets (n >= 12) of state of the art organic photovoltaic devices were prepared by leading research laboratories in a collaboration planned at the Third International Summit on Organic Photovoltaic Stability (ISOS-3). All devices were shipped to DTU and characterized simultaneously up to 1830 h in accordance with established ISOS-3 protocols under three distinct illumination conditions: accelerated full sun simulation; low level indoor fluorescent lighting; and dark storage with daily measurement under full sun simulation. Three nominally identical devices were used in each experiment both to provide an assessment of the homogeneity of the samples and to distribute samples for a variety of post soaking analytical measurements at six distinct laboratories enabling comparison at various stages in the degradation of the devices. Characterization includes current-voltage curves, light beam induced current (LBIC) imaging, dark lock-in thermography (DLIT), photoluminescence (PL), electroluminescence (EL), in situ incident photon-to-electron conversion efficiency (IPCE), time of flight secondary ion mass spectrometry (TOF-SIMS), cross sectional electron microscopy (SEM), UV visible spectroscopy, fluorescence microscopy, and atomic force microscopy (AFM). Over 100 devices with more than 300 cells were used in the study. We present here design of the device sets, results both on individual devices and uniformity of device sets from the wide range of characterization methods applied at different stages of aging under the three illumination conditions. We will discuss how these data can help elucidate the degradation mechanisms as well as the benefits and challenges associated with the unprecedented size of the collaboration.

  8. Strong room temperature electroluminescence from lateral p-SiGe/i-Ge/n-SiGe heterojunction diodes on silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Lin, Guangyang; Yi, Xiaohui; Li, Cheng; Chen, Ningli; Zhang, Lu; Chen, Songyan; Huang, Wei; Wang, Jianyuan; Xiong, Xihuan; Sun, Jiaming

    2016-10-01

    A lateral p-Si0.05Ge0.95/i-Ge/n-Si0.05Ge0.95 heterojunction light emitting diode on a silicon-on-insulator (SOI) substrate was proposed, which is profitable to achieve higher luminous extraction compared to vertical junctions. Due to the high carrier injection ratio of heterostructures and optical reflection at the SiO2/Si interface of the SOI, strong room temperature electroluminescence (EL) at around 1600 nm from the direct bandgap of i-Ge with 0.30% tensile strain was observed. The EL peak intensity of the lateral heterojunction is enhanced by ˜4 folds with a larger peak energy than that of the vertical Ge p-i-n homojunction, suggesting that the light emitting efficiency of the lateral heterojunction is effectively improved. The EL peak intensity of the lateral heterojunction, which increases quadratically with injection current density, becomes stronger for diodes with a wider i-Ge region. The CMOS compatible fabrication process of the lateral heterojunctions paves the way for the integration of the light source with the Ge metal-oxide-semiconductor field-effect-transistor.

  9. A Highly Crystalline and Wide-Bandgap Polydiarylfluorene with β-Phase Conformation toward Stable Electroluminescence and Dual Amplified Spontaneous Emission.

    PubMed

    Liu, Bin; Lin, Jinyi; Liu, Feng; Yu, Mengna; Zhang, Xinwen; Xia, Ruidong; Yang, Tao; Fang, Yueting; Xie, Linghai; Huang, Wei

    2016-08-24

    Bulky conjugated polymers with high crystallinity is the prerequisite for the overall improvement of performance in wide-bandgap semiconductors, including charge transport, photoluminescence quantum yield, processing reliability, and stability. Herein, we report a stable β-phase film of bulky polydiarylfluorene (PODPF) preparing by thermal annealing at ∼220 °C. The β-phase conformation and regular molecular packing are confirmed by UV-vis, photoluminescence (PL), Raman spectra, and grazing incidence X-ray diffraction (GIXD), respectively. Polymer light-emitting diodes (PLEDs) with crystalline and β-phase film serving as the active layer exhibit higher current efficiency of 1.8 cd/A (6.0 V) and more stable electroluminescence over the amorphous one. Surprisingly, mixed conformations in PODPF film produce dually tunable amplified spontaneous emission (ASE) at 463 and 482 nm. Polydiarylfluorenes with quasi-planar conformation will be a promising candidate for the next-generation gain medium toward a broadly tunable lasing and dual-wavelength laser. PMID:27480142

  10. About the electronic and photophysical properties of iridium(III)-pyrazino[2,3-f][1,10]-phenanthroline based complexes for use in electroluminescent devices.

    PubMed

    Cortés-Arriagada, Diego; Sanhueza, Luis; González, Iván; Dreyse, Paulina; Toro-Labbé, Alejandro

    2016-01-14

    A family of cyclometalated Ir(III) complexes was studied through quantum chemistry calculations to get insights into their applicability in light electrochemical cells (LECs). The complexes are described as [Ir(R-C^N)2(ppl)](+), where ppl is the pyrazino[2,3-f][1,10]-phenanthroline ancillary ligand. The modification of the HOMO energy in all the complexes was achieved by means of different R-C^N cyclometalating ligands, with R-ppy (phenylpyridine), R-pyz (1-phenylpyrazole) or R-pypy (2,3'-bipyridine); in addition, inductive effects were taken into account by substitution with the R groups (R = H, F or CF3). Then, compounds with HOMO-LUMO energy gaps from 2.76 to 3.54 eV were obtained, in addition to emission energies in the range of 438 to 597 nm. The emission deactivation pathways confirm the presence of metal-to-ligand transitions in all the complexes, which allow the strong spin-orbit coupling effects, and then improving the luminescence performance. However, the coupling with ligand and metal centered excited states was observed for the blue-shifted emitters, which could result in a decrease of the luminescence efficiencies. Furthermore, ionization potentials, electron affinities and reorganization energies (for holes and electrons) were obtained to account for the injection and transport properties of all the complexes in electroluminescent devices. PMID:26449274

  11. Nanowire-based hierarchical tin oxide/zinc stannate hollow microspheres: Enhanced solar energy utilization efficiency for dye-sensitized solar cells and photocatalytic degradation of dyes

    NASA Astrophysics Data System (ADS)

    Li, Zhengdao; Zhou, Yong; Mao, Wutao; Zou, Zhigang

    2015-01-01

    Nanowire-based SnO2/Zn2SnO4 hollow microspheres are synthesized using a facile one-pot method for solar energy conversion and environment cleaning. The micrometer-sized hollow spheres possess a hierarchical structure with the shell consisting of nanowires. With the hybrid SnO2/Zn2SnO4 microspheres as photoanodes, the dye-sensitized solar cells (DSSCs) with an overall 4.72% photoconversion efficiency is obtained, nearly 240% improvement over the DSSCs that uses nanorod-based hierarchical SnO2 microspheres. The hybrid microspheres are also determined to be high-performance photocatalyst with a better recyclability for the photodegradation of dyes under simulated sunlight irradiation. These improvements of solar energy utilization are ascribed to the formation of the heterojunctions between SnO2 and Zn2SnO4 to enhance electron transport and charge-separation efficiencies.

  12. Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization

    PubMed Central

    Kothari, Ankita; Charrier, Marimikel; Wu, Yu-Wei; Malfatti, Stephanie; Zhou, Carol E.; Singer, Steven W.; Dugan, Larry; Mukhopadhyay, Aindrila

    2016-01-01

    The hydrocarbonoclastic bacterium Acinetobacter venetianus RAG-1 has attracted substantial attention due to its powerful oil-degrading capabilities and its potential to play an important ecological role in the cleanup of alkanes. In this study, we compare the transcriptome of the strain RAG-1 grown in dodecane, the corresponding alkanol (dodecanol), and sodium acetate for the characterization of genes involved in dodecane uptake and utilization. Comparison of the transcriptional responses of RAG-1 grown on dodecane led to the identification of 1074 genes that were differentially expressed relative to sodium acetate. Of these, 622 genes were upregulated when grown in dodecane. The highly upregulated genes were involved in alkane catabolism, along with stress response. Our data suggest AlkMb to be primarily involved in dodecane oxidation. Transcriptional response of RAG-1 grown on dodecane relative to dodecanol also led to the identification of permease, outer membrane protein and thin fimbriae coding genes potentially involved in dodecane uptake. This study provides the first model for key genes involved in alkane uptake and metabolism in A. venetianus RAG-1. PMID:27664055

  13. Porous FeOx/BiVO4-deltaS0.08: highly efficient photocatalysts for the degradation of methylene blue under visible-light illumination.

    PubMed

    Zhao, Zhenxuan; Dai, Hongxing; Deng, Jiguang; Liu, Yuxi; Wang, Yuan; Li, Xinwei; Bai, Guangmei; Gao, Baozu; Au, Chak Tong

    2013-10-01

    Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-deltaS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-deltaS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi5+, Bi3+, V5+, V3+, Fe3+, and Fe2+ species in y wt.% FeOx/BiVO4-deltaS0.08. The 1.40 wt.% FeOx/BiVO4-deltaS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-deltaS0.08. PMID:24494502

  14. Efficient photocatalytic degradation of organics present in gas and liquid phases using Pt-TiO2/Zeolite (H-ZSM).

    PubMed

    Neppolian, B; Mine, Shinya; Horiuchi, Yu; Bianchi, C L; Matsuoka, M; Dionysiou, D D; Anpo, M

    2016-06-01

    TiO2-encapsulated H-ZSM photocatalysts were prepared by physical mixing of TiO2 and zeolites. Pt was immobilized on the surface of the TiO2-encapsulated zeolite (H-ZSM) catalysts by a simple photochemical reduction method. Different weight ratios of both TiO2 and Pt were hybridized with H-ZSM and the catalytic performance of the prepared catalysts was investigated for 2-propanol oxidation in liquid phase and acetaldehyde in gas phase reaction. Around 5-10 wt% TiO2-encapsulated H-ZSM catalysts was found to be optimal amount for the effective oxidation of the organics. Prior to light irradiation, Pt-TiO2-H-ZSM showed considerable amount of catalytic degradation of 2-propanol in the dark, forming acetone as an intermediate. In this study, Pt has played a major and important role on the total oxidation of 2-propanol as well as acetaldehyde. As a result, no residual organics were present in the pores of the zeolites. The catalysts could be reused more than three times without losing their catalytic activity in both phases. The Pt-TiO2-H-ZSM photocatalysts could overcome the problem of strong adsorption of organics in the zeolite pores (after the reaction). Thus, Pt-TiO2-H-ZSM can be used as a potential catalyst for both liquid and gas phase oxidation of organic pollutants.

  15. Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol

    SciTech Connect

    Li, Tingting; Luo, Shenglian; Yang, Lixia

    2013-10-15

    Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area, strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O{sub 2}·{sup −}, Br{sup 0} and photogenerated h{sup +} play key roles in the photocatalytic degradation process.

  16. Green synthesis of the reduced graphene oxide-CuI quasi-shell-core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water

    NASA Astrophysics Data System (ADS)

    Choi, Jiha; Reddy, D. Amaranatha; Islam, M. Jahurul; Seo, Bora; Joo, Sang Hoon; Kim, Tae Kyu

    2015-12-01

    Surfactant-free, reduced graphene oxide (RGO)-CuI quasi-shell-core nanocomposites were successfully synthesized using ultra-sonication assisted chemical method at room temperature. The morphologies, structures and optical properties of the CuI and CuI-RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), UV-visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. Morphological and structural analyses indicated that the CuI-RGO core-shell nanocomposites comprise single-crystalline face-centered cubic phase CuI nanostructures, coated with a thin RGO quasi-shell. Photocatalysis experiments revealed that the as-synthesized CuI-RGO nanocomposites exhibit remarkably enhanced photocatalytic activities and stabilities for photo degradation of Rhodamine-B (RhB) organic dye under simulated solar light irradiation. The photo degradation ability is strongly affected by the concentration of RGO in the nanocomposites; the highest photodegradation rate was obtained at a graphene loading content of 2 mg mL-1 nanocomposite. The remarkable photocatalytic performance of the CuI-RGO nanocomposites mainly originates from their unique adsorption and electron-accepting and electron-transporting properties of RGO. The present work provides a novel green synthetic route to producing CuI-RGO nanocomposites without toxic solvents or reducing agents, thereby providing highly efficient and stable solar light-induced RGO-CuI quasi-shell-core nanocomposites for organic dye photo degradation in water.

  17. Analysis of electroluminescence images in small-area circular CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Bokalič, Matevž; Raguse, John; Sites, James R.; Topič, Marko

    2013-09-01

    The electroluminescence (EL) imaging process of small area solar cells is investigated in detail to expose optical and electrical effects that influence image acquisition and corrupt the acquired image. An approach to correct the measured EL images and to extract the exact EL radiation as emitted from the photovoltaic device is presented. EL images of circular cadmium telluride (CdTe) solar cells are obtained under different conditions. The power-law relationship between forward injection current and EL emission and a negative temperature coefficient of EL radiation are observed. The distributed Simulation Program with Integrated Circuit Emphasis (SPICE®) model of the circular CdTe solar cell is used to simulate the dark J-V curve and current distribution under the conditions used during EL measurements. Simulation results are presented as circularly averaged EL intensity profiles, which clearly show that the ratio between resistive parameters determines the current distribution in thin-film solar cells. The exact resistance values for front and back contact layers and for CdTe bulk layer are determined at different temperatures, and a negative temperature coefficient for the CdTe bulk resistance is observed.

  18. Investigations on electroluminescent tapes and foils in relation to their applications in automotive

    NASA Astrophysics Data System (ADS)

    Plotog, Ioan

    2015-02-01

    The electroluminescent (EL) tapes or foils having barrier films for an additional level of protection against the toughest environments conditions, offer a large area of applications. The EL lights, due to their characteristics, began to be used not only in the entertainment industry, but also for automotive and aerospace applications. In the paper, the investigations regarding EL foils technical performances in relation to their applications as light sources in automotive ambient light were presented. The experiments were designed based on the results of EL foils electrical properties previous investigations done in laboratory conditions, taking into account the range of automotive ambient temperatures for sinusoidal alternative supply voltage. The measurements for different temperatures were done by keeping the EL foils into electronic controlled oven that ensures the dark enclosure offering conditions to use a lux-meter in order to measure and maintain under control light emission intensity. The experiments results define the EL foils characteristics as load in automotive ambient temperatures condition, assuring so the data for optimal design of a dedicated inverter.

  19. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Maruo, Daiki; Hai, Pham Nam; Tanaka, Masaaki

    2015-03-01

    We demonstrate visible-light electroluminescence (EL) due to d- d transitions in GaAs:Mn based LEDs. We design p+-n junctions with a p+ GaAs:Mn layer, in which at a reverse bias voltage (-3 to -6 V), an intense electric field builds up in the depletion layers of the p+-n junctions. Holes are injected to the depletion layer by Zener tunneling from the conduction band or by diffusion of minority holes from the valence band of the n-type layer. These holes are accelerated by the intense electric field in the depletion layer, and excite the d electrons of Mn in the p+ GaAs:Mn layer by impact excitations. We observe visible-light emission at E1 = 1.89 eV and E2 = 2.16 eV, which are exactly the same as the 4T1-->6A1 and 4A2-->4T1 transition energy of Mn. The threshold voltage for observation of visible-light EL is -4 V, corresponding to -(E1 +E2) / e. This indicates that the impact excitation is most effective for the one step excitation from the ground state 6A1 to the highest excited state 4A2 .

  20. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    SciTech Connect

    Lu, Y. F.; Cao, X. A.

    2014-11-17

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions.

  1. Three-Colour Single-Mode Electroluminescence from Alq3 Tuned by Microcavities

    NASA Astrophysics Data System (ADS)

    Zhao, Jia-Min; Ma, Feng-Ying; Liu, Xing-Yuan; Liu, Yun; Chu, Guo-Qiang; Ning, Yong-Qiang; Wang, Li-Jun

    2002-10-01

    Organic metal microcavities were fabricated by using full-reflectivity aluminium film and semi-transparent silver film as cavity mirrors. Unlike conventional organic microcavities, such as the typical structure of glass/DBR/ITO/organic layers/metal mirror, a microcavity with a shorter cavity length was obtained by using two metal mirrors, where DBR is the distributed Bragg reflector consisting of alternate quarter-wave layers of high and low refractive index materials. It is realized that red, green and blue single-mode electroluminescence (EL) from the microcavities with the structure, glass/Ag/TPD/Alq3/Al, are electrically-driven when the thickness of the Alq3 layer changes. Compared to a non-cavity reference sample whose EL spectrum peak is located at 520 nm with a full width at half maximum (FWHM) of 93 nm, the microcavity devices show apparent cavity effects. The EL spectra of red, green and blue microcavities are peaked at 604 nm, 540 nm and 491 nm, with FWHM of 43 nm, 38 nm and 47 nm, respectively.

  2. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, Nosoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  3. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V.

  4. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V. PMID:26367556

  5. Excitation and deexcitation of ac-driven thin-film ZnS electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Hamakawa, Y.

    1992-09-01

    Theoretical formulas accounting for the excitation and deexcitation processes of the alternating current-driven thin-film electroluminescent devices have been obtained, which include both the impact excitation and the energy-transfer mechanisms. The empirical equations for the conduction current duration time and the luminescent decay time related to the tunneling emission of electrons at the interface, the capture of holes in traps, and the light emission of luminescent centers lead to the analytical formulas for the transferred charge ΔQ, the luminance L, and other quantities of physical interest as a function of the electric field. The estimates for ΔQ and L in ZnS:Mn and ZnS:TbF3 devices have been made on the basis of Wolff's distribution function and found to be in good agreement with the experimental data. From the estimated results, it is found that the energy-transfer mechanism depends on various material parameters and drive conditions, and that it plays a role in improvement of the luminance in the low-electric-field region. In the high-electric-field region of interest, the energy transfer from Cu-related sensitizers to luminescent centers in ZnS:Mn and ZnS:TbF3 devices yields an increase of luminance by a factor of about 1.5 and 3, respectively.

  6. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array

    NASA Astrophysics Data System (ADS)

    Pan, Caofeng; Dong, Lin; Zhu, Guang; Niu, Simiao; Yu, Ruomeng; Yang, Qing; Liu, Ying; Wang, Zhong Lin

    2013-09-01

    Emulation of the sensation of touch through high-resolution electronic means could become important in future generations of robotics and human-machine interfaces. Here, we demonstrate that a nanowire light-emitting diode-based pressure sensor array can map two-dimensional distributions of strain with an unprecedented spatial resolution of 2.7 µm, corresponding to a pixel density of 6,350 dpi. Each pixel is composed of a single n-ZnO nanowire/p-GaN light-emitting diode, the emission intensity of which depends on the local strain owing to the piezo-phototronic effect. A pressure map can be created by reading out, in parallel, the electroluminescent signal from all of the pixels with a time resolution of 90 ms. The device may represent a major step towards the digital imaging of mechanical signals by optical means, with potential applications in artificial skin, touchpad technology, personalized signatures, bio-imaging and optical microelectromechanical systems.

  7. Electroluminescence from GeSn heterostructure pin diodes at the indirect to direct transition

    SciTech Connect

    Gallagher, J. D.; Menéndez, J.; Senaratne, C. L.; Sims, P.; Kouvetakis, J.; Aoki, T.

    2015-03-02

    The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge{sub 1−y}Sn{sub y} i-layers spanning a broad compositional range below and above the crossover Sn concentration y{sub c} where the Ge{sub 1−y}Sn{sub y} alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

  8. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence.

    PubMed

    Sarwar, A T M Golam; May, Brelon J; Chisholm, Matthew F; Duscher, Gerd J; Myers, Roberto C

    2016-04-21

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaN insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. The shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.

  9. New bithiophene-containing electroluminescent polymer: Synthesis, characterization, optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Jaballah, Nejmeddine; Chemli, Mejed; Fave, Jean-Louis; Majdoub, Mustapha

    2015-12-01

    A semi-conducting polymer, P-DSBT, based on distyryl-bithiophene π-conjugated sequences has been synthesized and characterized. The macromolecular material was soluble in volatile solvents and showed a good film quality; it exhibited an amorphous morphology with relatively high glass transition temperature. The absorption and photoluminescence properties of the polymer were studied in solution and as thin solid film, which showed an optical gap of 2.6 eV. The HOMO/LUMO energy levels were evaluated by cyclic voltammetry measurements and indicate a p-type semi-conducting material. The electrical properties of P-DSBT were investigated by the current-tension characteristic and modeled by the current space-charge-limited (SCLC) mechanism; charge carrier mobility higher than 10-6 cm2 V-1 s-1 was evaluated. A yellow-green electroluminescence was evidenced in a multilayer organic light-emitting diode with an [ITO/PEDOT:PPS/P-DSBT/BCP/Al] configuration.

  10. Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites.

    PubMed

    Zhou, Yang; Yong, Zi-Jun; Zhang, Kai-Cheng; Liu, Bo-Mei; Wang, Zhao-Wei; Hou, Jing-Shan; Fang, Yong-Zheng; Zhou, Yi; Sun, Hong-Tao; Song, Bo

    2016-07-21

    Doping of semiconductors by introducing foreign atoms enables their widespread applications in microelectronics and optoelectronics. We show that this strategy can be applied to direct bandgap lead-halide perovskites, leading to the realization of ultrawide photoluminescence (PL) at new wavelengths enabled by doping bismuth (Bi) into lead-halide perovskites. Structural and photophysical characterization reveals that the PL stems from one class of Bi doping-induced optically active center, which is attributed to distorted [PbI6] units coupled with spatially localized bipolarons. Additionally, we find that compositional engineering of these semiconductors can be employed as an additional way to rationally tune the PL properties of doped perovskites. Finally, we accomplished the electroluminescence at cryogenic temperatures by using this system as an emissive layer, marking the first electrically driven devices using Bi-doped photonic materials. Our results suggest that low-cost, earth-abundant, solution-processable Bi-doped perovskite semiconductors could be promising candidate materials for developing optical sources operating at new wavelengths. PMID:27377481

  11. Influence of hole transporter doping on electroluminescent property of novel fluorene molecular material

    NASA Astrophysics Data System (ADS)

    Qian, Jincheng; Yu, Junsheng; Lou, Shuangling; Jiang, Yadong; Zhang, Qing

    2009-05-01

    The luminescent characteristics of a novel small molecule fluorene material, 6,6'-(9H-fluoren-9,9-diyl)bis(2,3-bis(9,9-dihexyl-9H-fluoren-2-yl)quinoxaline) (BFLBBFLYQ) for organic light-emitting diode are systemically investigated, especially focusing on the effect of hole transporter doping concentration. Double-layer devices with a structure of indium tin oxide (ITO)/emissive layer (EML)/2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline (BCP)/Mg:Ag are fabricated by spin-coating method, where EML is BFLBBFLYQ and blend of BFLBBFLYQ: N,N'-biphenyl-N,N'-bis-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD), respectively. The results show that the performance of the device is improved two magnitudes by doping BFLBBFLYQ with TPD. In the electroluminescent (EL) spectra, the BFLBBFLYQ device show a blue light emission peaking at 485 nm, and the blend device exhibits a broad banded emission with 45 nm red-shifted peaking at 530 nm in green light area. The photoluminescent (PL) spectra of BFLBBFLYQ, TPD and BFLBBFLYQ: TPD blend in xylene solution and spin-coated film is also studied, yielding an evidence that exciplex maybe plays the role for low energy emission.

  12. Electroluminescence from ZnO/Si heterojunctions fabricated by PLD with bias voltage application

    SciTech Connect

    Seno, Yuuki; Konno, Daisuke; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi

    2014-02-21

    Electroluminescence (EL) for ZnO films has been investigated by fabricating n-ZnO/p-Si heterojunctions and changing the VI/II (O/Zn) ratio of the films. In the photoluminescence (PL) spectra, both the near band edge (NBE) emission and the defect-related emission were observed, while in the EL spectra only defect-related emission was observed. The EL spectra were divided into three components: green (550 nm), yellow (618 nm) and red (700 nm) bands; and their intensities were compared. As the VI/II (O/Zn) ratio was increased, the red band emission intensity decreased and the green band emission intensity increased. This implies that the oxygen and the zinc vacancies are related to the red and the green band emissions, respectively. Electron transitions from the conduction band minimum (Ec) to the deep energy levels of these vacancies are suggested to cause the red and the green luminescences while the energy levels of the Zn interstitials are close to the Ec in the band gap and no NBE emission is observed.

  13. Room temperature green to red electroluminescence from (Al,Ga)As/GaP QDs and QWs

    NASA Astrophysics Data System (ADS)

    Golz, Christian; Dadgostar, Shabnam; Masselink, W. Ted; Hatami, Fariba

    2016-03-01

    We present the growth, fabrication, and characterization of light-emitting diodes based on (Al,Ga)As quantum wells and dots embedded in a p-n GaP structure. Samples were grown on Sulphur-doped GaP (001) substrate using gas-source molecular beam epitaxy. The structures include either GaAs quantum structures with nominal coverage between 1.2 and 3.6 monolayers or Al0.3Ga0.7As quantum wells. For structures with GaAs layer thicker than 1.5 monolayers the 3.6% lattice mismatch in the materials system results in formation of quantum dots via Stranski-Krastanow growth mode with areal density of about 8×1010 cm-2. The atomic-force and transmission-electron microscopy show that with increasing coverage of GaAs from 1.8 to 3.6 monolayers the average lateral size and height of dots change in the range of 17-34 nm and 0.9-2 nm, respectively. The diode structures emit light from the red to the green spectral range up to room temperature. The GaAs/GaP QDs show electroluminescence between 1.8 eV and 2 eV, whereas the Al0.3Ga0.7As quantum wells emit light between 2 eV and 2.2 eV.

  14. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence

    DOE PAGESBeta

    Chisholm, Matthew F.; Golam Sarwar, A. T. M.; Myers, Roberto C.; Mays, Brelon J.; Duscher, Gerd J.

    2016-03-18

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaNmore » insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. As a result, the shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.« less

  15. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    PubMed Central

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, NoSoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-01-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. PMID:26067060

  16. Rectification and electroluminescence of nanostructured GaN/Si heterojunction based on silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Bo; Li, Yong; Yan, Ling-Ling; Li, Xin-Jian

    2015-10-01

    A GaN/Si nanoheterojunction is prepared through growing GaN nanocrystallites (nc-GaN) on a silicon nanoporous pillar array (Si-NPA) by a chemical vapor deposition (CVD) technique at a relatively low temperature. The average size of nc-GaN is determined to be ˜10 nm. The spectral measurements disclose that the photoluminescence (PL) from GaN/Si-NPA is composed of an ultraviolet (UV) band and a broad band spanned from UV to red region, with the feature that the latter band is similar to that of electroluminescence (EL). The electron transition from the energy levels of conduction band and, or, shallow donors to that of deep acceptors of GaN is indicated to be responsible for both the broad-band PL and the EL luminescence. A study of the I-V characteristic shows that at a low forward bias, the current across the heterojunction is contact-limited while at a high forward bias it is bulk-limited, which follows the thermionic emission model and space-charge-limited current (SCLC) model, respectively. The bandgap offset analysis indicates that the carrier transport is dominated by electron injection from n-GaN into the p-Si-NPA, and the EL starts to appear only when holes begin to be injected from Si-NPA into GaN with biases higher than a threshold voltage. Project supported by the National Natural Science Foundation of China (Grant No. 61176044).

  17. Electroluminescence from GeSn heterostructure pin diodes at the indirect to direct transition

    NASA Astrophysics Data System (ADS)

    Gallagher, J. D.; Senaratne, C. L.; Sims, P.; Aoki, T.; Menéndez, J.; Kouvetakis, J.

    2015-03-01

    The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400-600 nm) Ge1-ySny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-ySny alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

  18. A high-efficient batch-recirculated photoreactor packed with immobilized TiO2-P25 nanoparticles onto glass beads for photocatalytic degradation of phenazopyridine as a pharmaceutical contaminant: artificial neural network modeling.

    PubMed

    Shargh, Mahdie; Behnajady, Mohammad A

    2016-01-01

    In this study, removal efficiency of phenazopyridine (PhP) as a model pharmaceutical contaminant was investigated in a batch-recirculated photoreactor packed with immobilized TiO2-P25 nanoparticles on glass beads. Influence of various operational parameters such as irradiation time, initial concentration of PhP, volume of solution, volumetric flow rate, pH and power of light source was investigated. Results indicated that removal percentage increases with the rise of irradiation time, volumetric flow rate and power of light source but decreases with the rise of initial concentration of PhP and volume of solution. Highest removal percentage was obtained in the natural pH of PhP solution (pH = 5.9). Results of mineralization studies also showed a decreasing trend of total organic carbon (TOC) and producing mineralization products such as NO3(-), NO2(-) and NH4(+). Modeling of the process using artificial neural network showed that the most effective parameters in the degradation of PhP were volume of solution and power of light source. The packed bed photoreactor with TiO2-P25 nanoparticles coated onto glass beads in consecutive repeats have the proper ability for PhP degradation. Therefore, this system can be a promising alternative for the removal of recalcitrant organic pollutants such as PhP from aqueous solutions.

  19. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.

    PubMed

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.

  20. A high-efficient batch-recirculated photoreactor packed with immobilized TiO2-P25 nanoparticles onto glass beads for photocatalytic degradation of phenazopyridine as a pharmaceutical contaminant: artificial neural network modeling.

    PubMed

    Shargh, Mahdie; Behnajady, Mohammad A

    2016-01-01

    In this study, removal efficiency of phenazopyridine (PhP) as a model pharmaceutical contaminant was investigated in a batch-recirculated photoreactor packed with immobilized TiO2-P25 nanoparticles on glass beads. Influence of various operational parameters such as irradiation time, initial concentration of PhP, volume of solution, volumetric flow rate, pH and power of light source was investigated. Results indicated that removal percentage increases with the rise of irradiation time, volumetric flow rate and power of light source but decreases with the rise of initial concentration of PhP and volume of solution. Highest removal percentage was obtained in the natural pH of PhP solution (pH = 5.9). Results of mineralization studies also showed a decreasing trend of total organic carbon (TOC) and producing mineralization products such as NO3(-), NO2(-) and NH4(+). Modeling of the process using artificial neural network showed that the most effective parameters in the degradation of PhP were volume of solution and power of light source. The packed bed photoreactor with TiO2-P25 nanoparticles coated onto glass beads in consecutive repeats have the proper ability for PhP degradation. Therefore, this system can be a promising alternative for the removal of recalcitrant organic pollutants such as PhP from aqueous solutions. PMID:27232418

  1. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B.

    PubMed

    Bhargava, Arpit; Jain, Navin; Khan, Mohd Azeem; Pareek, Vikram; Dilip, R Venkataramana; Panwar, Jitendra

    2016-12-01

    In recent years, the surging demand of nanomaterials has boosted unprecedented expansion of research for the development of high yielding and sustainable synthesis methods which can deliver nanomaterials with desired characteristics. Unlike the well-established physico-chemical methods which have various limitations, biological methods inspired by mimicking natural biomineralization processes have great potential for nanoparticle synthesis. An eco-friendly and sustainable biological method that deliver particles with well-defined shape, size and compositions can be developed by selecting a proficient organism followed by fine tuning of various process parameter. The present study revealed high metal tolerance ability of a soil fungus Cladosporium oxysporum AJP03 and its potential for extracellular synthesis of gold nanoparticles. The morphology, composition and crystallinity of nanoparticles were confirmed using standard techniques. The synthesized particles were quasi-spherical in shape with fcc packing and an average particle size of 72.32 ± 21.80 nm. A series of experiments were conducted to study the effect of different process parameters on particle size and yield. Biomass: water ratio of 1:5 and 1 mM precursor salt concentration at physiological pH (7.0) favoured the synthesis of well-defined gold nanoparticles with maximum yield. The as-synthesized nanoparticles showed excellent catalytic efficiency towards sodium borohydride mediated reduction of rhodamine B (2.5 × 10(-5) M) within 7 min of reaction time under experimental conditions. Presence of proteins as capping material on the nanoparticle surface was found to be responsible for this remarkable catalytic efficiency. The present approach can be extrapolated to develop controlled and up-scalable process for mycosynthesis of nanoparticles for diverse applications. PMID:27567934

  2. Galactose-decorated reduction-sensitive degradable chimaeric polymersomes as a multifunctional nanocarrier to efficiently chaperone apoptotic proteins into hepatoma cells.

    PubMed

    Wang, Xiaoyan; Sun, Huanli; Meng, Fenghua; Cheng, Ru; Deng, Chao; Zhong, Zhiyuan

    2013-08-12

    Hepatoma-targeting reduction-sensitive chimaeric biodegradable polymersomes were designed and developed based on galactose-poly(ethylene glycol)-poly(ε-caprolactone) (Gal-PEG-PCL), PEG-PCL-poly(2-(diethylamino)ethyl methacrylate) (PEG-PCL-PDEA, asymmetric), and PEG-SS-PCL for facile loading and triggered intracellular delivery of proteins. The chimaeric polymersomes formed from PEG-PCL-PDEA and PEG-SS-PCL had a monodisperse distribution with average sizes ranging from 95.5 to 199.2 nm depending on PEG-SS-PCL contents. Notably, these polymersomes displayed decent loading of bovine serum albumin (BSA), ovalbumin (OVA), and cytochrome C (CC) proteins likely due to presence of electrostatic and hydrogen bonding interactions between proteins and PDEA block located in the interior of polymersomes. The in vitro release studies showed that protein release was largely accelerated under a reductive condition containing 10 mM dithiothreitol (DTT). For example, ca. 77.2 and 22.1% of FITC-BSA were released from CP(SS50) (chimaeric polymersomes containing 50 wt % PEG-SS-PCL) at 37 °C in 12 h in the presence and absence of 10 mM DTT, respectively. Confocal microscopy showed that FITC-CC-loaded Gal-decorated CP(SS40) could efficiently deliver and release FITC-CC into HepG2 cells following 24 h treatment, in contrast to little or negligible fluorescence detected in HepG2 cells treated with FITC-CC-loaded nontargeting polymersomes or free CC. MTT assays revealed that CC-loaded Gal-decorated CP(SS40) exhibited apparent targetability and pronounced antitumor activity to HepG2 cells, in which cell viabilities decreased from 81.9, 60.6, 49.5, 42.2 to 31.5% with increasing Gal-PEG-PCL contents from 0, 10, 20, 30 to 40 wt %. Most remarkably, granzyme B-loaded Gal-decorated chimaeric polymersomes effectively caused apoptosis of HepG2 cells with a markedly low half-maximal inhibitory concentration (IC(50)) of 2.7 nM. These reduction-responsive chimaeric biodegradable polymersomes offer a

  3. Luminescence of Degraded Si-SiO2 Structures

    NASA Astrophysics Data System (ADS)

    Baraban, A. P.; Dmitriev, V. A.; Gadzhala, A. A.

    2014-09-01

    Possibilities of using electroluminescence (EL) and cathodoluminescence (CL) in the spectral range 250-800 nm to investigate physical-chemical processes taking place in Si-SiO2 structures as a result of extreme external actions (strong electric fields or γ-radiation) are considered. It is found that degradation processes along with changes in the electrophysical characteristics of Si-SiO2 structures are revealed in changes in the luminescence spectra, especially in the red region. The similarity of the changes in the CL and EL spectra of Si-SiO2 structures exposed to field and radiation points to a similarity in the processes taking place during degradation, which is confirmed by the qualitative similarity of the changes in the charge characteristics. The near-invariance of the spectral composition of the luminescence is an indication that the processes taking place during degradation do not lead to the formation of new luminescence centers, but modify the concentration of already existing biographical defects. This is evidence of the existence of a direct link between resistance to degradation and the technology of formation of the oxide layer on the silicon surface.

  4. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  5. Thermally Activated Delayed Fluorescence Polymers for Efficient Solution-Processed Organic Light-Emitting Diodes.

    PubMed

    Lee, Sae Youn; Yasuda, Takuma; Komiyama, Hideaki; Lee, Jiyoung; Adachi, Chihaya

    2016-06-01

    Thermally activated delayed fluorescence (TADF) π-conjugated polymers are developed for solution-processed TADF-OLEDs. Benzophenone-based alternating donor-acceptor structures contribute to the small ∆EST , enabling efficient exciton-harvesting through TADF. Solution-processed OLEDs using the TADF polymers as emitters can achieve high maximum external electroluminescence efficiencies of up to 9.3%. PMID:27001891

  6. Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Changle

    2014-11-01

    N-doped ZnO micropolyhedrons were fabricated by calcining the mixture of commercial ZnO (analytical grade) and NH4NO3 at 600 °C for 1.5 h, in which NH4NO3 was utilized as the nitrogen source. The structure, composition, BET specific surface area and optical properties of N-doped ZnO sample were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, wavelength dispersive X-ray fluorescence spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, N2 adsorption-desorption isotherms, and UV-vis diffuse reflectance spectroscopy. The photocatalytic results demonstrated that the as-synthesized N-doped ZnO microcrystals possessed much higher photocatalytic activity than N-doped TiO2 (which was synthesized by calcining the mixture of P25 TiO2 and NH4NO3 at 600 °C for 1.5 h) and commercial pure ZnO in the decomposition of formaldehyde under visible-light (λ > 420 nm) irradiation. The present work suggests that NH4NO3 is a promising nitrogen source for one-step calcination synthesis of microcrystalline N-doped ZnO, which can be applied as a visible-light-activated photocatalyst in efficient utilization of solar energy for treating formaldehyde wastewater.

  7. Using microorganisms to aid in hydrocarbon degradation

    SciTech Connect

    Black, W.; Zamora, J. )

    1993-04-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO[sub 2] evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans.

  8. Photo- and electroluminescent properties of zinc(II) complexes with tetradentate Schiff bases, derivatives of salicylic aldehyde

    NASA Astrophysics Data System (ADS)

    Vashchenko, A. A.; Lepnev, L. S.; Vitukhnovskii, A. G.; Kotova, O. V.; Eliseeva, S. V.; Kuz'mina, N. P.

    2010-03-01

    It is studied how the introduction of various substituents into the composition of organic ligands affects the photoluminescence spectra of new zinc(II) complexes with tetradentate Schiff bases H2L (derivatives of salicylic aldehyde (H2SAL1, H2SAL2) and o-vanillin (H2MO1, H2MO2) with ethylenediamine and o-phenylenediamine) in the form of bulk solids and thin films. It is demonstrated that the emission spectra of bulk solid complexes without o-phenylenediamine bridges (ZnSAL1 and ZnMO1) contain additional long-wavelength bands compared to the spectra of corresponding thin films. In the case of films obtained from [ZnSAL1]2 dimer complexes, the long-wavelength band is dominant. At the same time, the photoluminescence spectra of ZnSAL2 and ZnMO2 complexes with o-phenylenediamine bridges are similar in the case of solid samples and thin films. The electroluminescent properties of organic light-emitting diodes (OLEDs) with the ITO/α-NPD/ZnL/Ca:Al structure are studied. The bathochromic shift of the electroluminescence peaks of OLEDs with respect to the photoluminescence spectra of bulk solid samples and thin films is probably related to the formation of exciplexes at the α-NPD/ZnL interface. The electroluminescence spectra of OLEDs based on [ZnSAL1]2 show a hypsochromic shift of the emission maximum, which can be caused by a shift of the recombination region into the α-NPD layer.

  9. Electroluminescent properties of a device based on terbium-doped ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Jing-hua, Niu; Rui-nian, Hua; Wen-lian, Li; Ming-tao, Li; Tian-zhi, Yu

    2006-06-01

    Rare earth terbium (Tb)-doped zinc sulfide (ZnS) nanocrystals (NCs) sized between 3 and 4 nm were synthesized via a co-precipitation reaction of precursors, zinc acetate (Zn(CH3COO)2), terbium chloride (TbCl3 · 6H2O), lithium fluoride (LiF) and thiocarbamide in a methacrylic acid/citric acid/methanol mixing solution. The NCs were characterized by means of x-ray powder diffraction, a transmission electron microscope and a fluorescence spectrophotometer. Electroluminescent (EL) properties of the device having a hybrid organic/inorganic multilayer structure with ITO/(poly(3, 4-ethylene dioxythiophene):poly(styrene sulfonate (PEDOT-PSS)(70 nm)/poly(vinylcobarzale)(PVK)(100 nm)/ZnS:Tb NCs(120 nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP)(30 nm)/LiF(1 nm)/Al(100 nm) were studied. Injecting electrons and holes were recombined to form excitons which were confined within the ZnS:Tb NC host and then the exciton energy was transferred to the Tb3+ centre, and finally the green emission of the Tb3+ ion was observed. The four emissions which peaked at 430, 491, 546 and 577 nm were attributed to the electronic transitions of the ZnS host and the 5D4 - 7F6, 5D4 - 7F5 and 5D4 - 7F4 of the Tb3+ centre, respectively, when the EL device was driven at 10 V. The maximum luminance of the ZnS:Tb NCs-based device is about 15 cd m-2 at 25 V driving voltage.

  10. Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots.

    PubMed

    Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun

    2015-03-12

    Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices. PMID:25721494

  11. Zinc Cadmium Selenide Cladded Quantum Dot Based Electroluminescent and Nonvolatile Memory Devices

    NASA Astrophysics Data System (ADS)

    Al-Amody, Fuad H.

    This dissertation presents electroluminescent (EL) and nonvolatile memory devices fabricated using pseudomorphic ZnCdSe-based cladded quantum dots (QDs). These dots were grown using our own in-school built novel reactor. The EL device was fabricated on a substrate of ITO (indium tin oxide) coated glass with the quantum dots sandwiched between anode and cathode contacts with a small barrier layer on top of the QDs. The importance of these cladded dots is to increase the quantum yield of device. This device is unique as they utilize quantum dots that are pseudomorphic (nearly lattice-matched core and the shell of the dot). In the case of floating quantum dot gate nonvolatile memory, cladded ZnCdSe quantum dots are deposited on single crystalline gate insulator (ZnMgS/ZnMgSe), which is grown using metal-organic chemical vapor deposition (MOCVD). The control gate dielectric layer of the nonvolatile memory is Si3N4 or SiO2 and is grown using plasma enhanced chemical vapor deposition (PECVD). The cladded dots are grown using an improved methodology of photo-assisted microwave plasma metal-organic chemical vapor deposition (PMP-MOCVD) enhanced reactor. The cladding composition of the core and shell of the dots was engineered by the help of ultraviolet light which changed the incorporation of zinc (and hence composition of ZnCdSe). This makes ZnxCd1--xSe-ZnyCd1--y Se QDs to have a low composition of zinc in the core than the cladding (x

  12. [The electroluminescence spectra of InGan/GaN blue LEDs during aging time].

    PubMed

    Dai, Shuang; Yu, Tong-Jun; Li, Xing-Bin; Yuan, Gang-Cheng; Lu, Hui-Min

    2014-02-01

    The luminescence spectra of InGaN/GaN multiple quantum wells light-emitting diodes under low level injection current (<4 mA) during aging process was investigated for the first time. Comparing the electroluminescence (EL) spectra of LEDs before and after aging time it was found that the peak wavelength and the full width at half maximum (FWHM) decreased with stress time and the changes of EL spectrum had two different stages-drastic decrease at the early stress stage and slow decrease later showing the same trend with the output optical power of LEDs, which indicates that the effective polarization electric field of LEDs becomes weak during the aging process and the change has a clear correlation with the increase of the defects in the multiple quantum wells of LEDs. Electrical measurement revealed that junction capacitance (C(j)) under the same junction voltage (V(j) = 1.8 V) and the junction voltage (V(j)) with the same injection current 1 mA calculated by ac small-signal IV method increased along with aging time, which explicates that the carrier density under the same low injection increases as the aging time increases. Analyses indicate that the polarization field in the quantum well is more seriously screened by the increased carriers captured by defects activated during stress time, the weaker effective polarization electric field makes the tilt of the energy band smaller, the energy radiated through the band edge and the density of energy states of the band edge increase which leads to the behaviors of peak wavelength and the FWHM of InGaN/GaN multiple quantum wells LEDs under low level injection current. PMID:24822394

  13. Spectral and electroluminescent properties of coordination compounds of terbium (III) with ibuprofen (in solid form, chloroform solutions, and polyvinylcarbazole films)

    NASA Astrophysics Data System (ADS)

    Samsonova, L. G.; Kopylova, T. N.; Degtyarenko, K. M.; Ponarin, N. V.; Meshkova, S. B.; Zheltvai, I. I.

    2015-08-01

    Spectral properties of terbium (III) complexes with composition of TbL3DL, where L is an anion of d,l-2-(4-isobutylphenyl)propanoic acid (ibuprofen) and DL is 2,2'-dipyridyl (Dipy), 1,10-phenanthroline (Phen), or triphenylphosphine oxide (TPPO), have been studied in a solid form, chloroform solutions, and polyvinylcarbazole (PVC) films. It has been demonstrated that, in PVC films, occupation of the emitting level of terbium (III) involves the participation of polymer. The emission decay lifetimes of terbium in the chloroform solutions and PVC films have been measured. The possibility of the appearance of electroluminescence of complexes in PVC films has been studied.

  14. Thermo-optical properties of 1H[3,4-b] quinoline films used in electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Jaglarz, Janusz; Kępińska, Mirosława; Sanetra, Jerzy

    2014-06-01

    Electroluminescence cells with H[3,4-b] quinoline layers are promising devices for a blue light emitting EL diode. This work measured the optical reflectance as a function of temperature in copolymers PAQ layers deposited on Si crystalline substrate. Using the extended Cauchy dispersion model of the film refractive index we determined the thermo-optical coefficients for quinoline layers in the temperature range of 76-333 K from combined ellipsometric and spectrofotometric studies. The obtained values of thermo-optical coefficients of thin PAQ film, were negative and ranged in 5-10 × 10-4 [1/K].

  15. Mineralization of monodispersed CdS nanoparticles on polyelectrolyte superstructure forming an electroluminescent "necklace-of-beads".

    PubMed

    Maheshwari, Vivek; Saraf, Ravi F

    2006-10-10

    We report a nonmicellar method to synthesize monodisperse semiconducting nanoparticles templated on polymer chains dissolved in solution at high yield. The monodispersity is achieved due to the beaded necklace morphology of the polyelectrolyte chains in solution where the beads are nanometer-scale nodules in the polymer chain. The resultant structure is a nanoparticles studded necklace where the particles are imbedded in the beads. Multiple cycles of synthesis on the polymer template yield nanoparticles of identical size, resulting in a nanocomposite with high particle fraction. The resultant nanocomposite has beaded-fibrilar morphology with imbedded nanoparticles and can be solution-casted to make electroluminescent thin film device. PMID:17014094

  16. Influence of Band Tailing on Photo- and Electroluminescence Polarization of m-Plane InGaN/GaN Quantum Well Heterostructures

    NASA Astrophysics Data System (ADS)

    Lutsenko, E. V.; Rzheutski, M. V.; Pavlovskii, V. N.; Alyamani, A.; Aljohenii, M.; Aljerwii, A.; Mauder, C.; Reuters, B.; Kalisch, H.; Heuken, M.; Vescan, A.

    2016-01-01

    Nonpolar m-plane InGaN/GaN light emitting diode structures with quantum well (QW) were grown on LiAlO2 (100) substrates. Their photoluminescence and electroluminescence were investigated at different excitation levels. It was shown that in QW of InGaN with the pronounced InGaN band tailing, the populating of both the first and the second valence subbands of InGaN takes place due to tunneling of charge carriers and, therefore, a lower degree of polarization of the electroluminescence was observed in comparison with photoluminescence. The differences in luminescence properties under optical and electrical excitation are discussed.

  17. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics

    NASA Astrophysics Data System (ADS)

    Pandey, Ajay K.

    2015-01-01

    Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs.

  18. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics.

    PubMed

    Pandey, Ajay K

    2015-01-01

    Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (V(OC)) in OPVs. PMID:25585937

  19. Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics

    PubMed Central

    Pandey, Ajay K.

    2015-01-01

    Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs. PMID:25585937

  20. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Ikeda, Masao; Zhou, Kun; Liu, Zongshun; Liu, Jianping; Zhang, Shuming; Yang, Hui

    2015-07-01

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  1. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    SciTech Connect

    Zhang, Feng; Ikeda, Masao Liu, Jianping; Zhang, Shuming; Zhou, Kun; Yang, Hui; Liu, Zongshun

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  2. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  3. Novel red phosphorescent polymers bearing both ambipolar and functionalized Ir(III) phosphorescent moieties for highly efficient organic light-emitting diodes.

    PubMed

    Zhao, Jiang; Lian, Meng; Yu, Yue; Yan, Xiaogang; Xu, Xianbin; Yang, Xiaolong; Zhou, Guijiang; Wu, Zhaoxin

    2015-01-01

    A series of novel red phosphorescent polymers is successfully developed through Suzuki cross-coupling among ambipolar units, functionalized Ir(III) phosphorescent blocks, and fluorene-based silane moieties. The photophysical and electrochemical investigations indicate not only highly efficient energy-transfer from the organic segments to the phosphorescent units in the polymer backbone but also the ambipolar character of the copolymers. Benefiting from all these merits, the phosphorescent polymers can furnish organic light-emitting diodes (OLEDs) with exceptional high electroluminescent (EL) efficiencies with a current efficiency (η L ) of 8.31 cd A(-1) , external quantum efficiency (η ext ) of 16.07%, and power efficiency (η P ) of 2.95 lm W(-1) , representing the state-of-the-art electroluminescent performances ever achieved by red phosphorescent polymers. This work here might represent a new pathway to design and synthesize highly efficient phosphorescent polymers.

  4. Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater.

    PubMed

    Somensi, Cleder A; Simionatto, Edésio L; Bertoli, Sávio L; Wisniewski, Alberto; Radetski, Claudemir M

    2010-03-15

    In this study, ozonation of raw textile wastewater was conducted in a pilot-scale plant and the efficiency of this treatment was evaluated based on the parameters color removal and soluble organic matter measured as chemical oxygen demand (COD), at two pH values (9.1 and 3.0). Identification of intermediate and final degradation products of ozone pre-treatment, as well as the evaluation of the final ecotoxicity (Lumistox test) of pre-treated wastewater, was also carried out. After 4h of ozone treatment with wastewater recirculation (flow rate of 0.45 m(3)h(-1)) the average efficiencies for color removal were 67.5% (pH 9.1) and 40.6% (pH 3.0), while COD reduction was 25.5% (pH 9.1) and 18.7% (pH 3.0) for an ozone production capacity of 20 g h(-1). Furthermore, ozonation enhances the biodegradability of textile wastewater (BOD(5)/COD ratios) by a factor of up to 6.8-fold. A GC-MS analysis of pre-treated textile wastewater showed that some products were present at the end of the pre-treatment time. In spite of this fact, the bacterial luminescence inhibition test (Lumistox test) showed a significant toxicity reduction on comparing the raw and treated textile wastewater. In conclusion, pre-ozonation of textile wastewater is an important step in terms of improving wastewater biodegradability, as well as reducing acute ecotoxicity, which should be removed completely through sequential biological treatment.

  5. Electroluminescence at a wavelength of 1.5 {mu}m in Si:Er/Si diode structures doped with Al, Ga, and B acceptors

    SciTech Connect

    Kuznetsov, V. P.; Shmagin, V. B.; Marychev, M. O.; Kudryavtsev, K. E.; Kuznetsov, M. V.; Andreev, B. A.; Kornaukhov, A. V.; Gorshkov, O. N.; Krasilnik, Z. F.

    2010-12-15

    Si:Er layers in diode structures were doped with Al, Ga, or B during growth by sublimation molecular-beam epitaxy. As a result, a sharp increase in the electroluminescence intensity at a wavelength of 1.5 {mu}m was observed in diodes with thick bases (as large as 0.8 {mu}m).

  6. Electroluminescence at a wavelength of 1.54 {mu}m in Si:Er/Si structures consisting of a number of p-n junctions

    SciTech Connect

    Kuznetsov, V. P.; Stepihova, M. V.; Shmagin, V. B.; Marychev, M. O.; Alyabina, N. A.; Kuznetsov, M. V.; Andreev, B. A.; Kornaukhov, A. V.; Gorshkov, O. N.; Krasilnik, Z. F.

    2011-11-15

    A method of connecting several p{sup +}-n junctions in the same Si:Er/Si structure is demonstrated; this method makes it possible to increase the electroluminescence intensity at a wavelength of 1.54 {mu}m. The structures have been grown by sublimation molecular-beam epitaxy.

  7. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    NASA Astrophysics Data System (ADS)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  8. Cover Picture: Slow mode degradation mechanism of ZnSe based white LEDs

    NASA Astrophysics Data System (ADS)

    Adachi, Masahiro; Ando, Koshi; Abe, Tomoki; Tsutsumi, Shigeyuki; Inoue, Noboru; Kasada, Hirofumi; Katayama, Koji; Nakamura, Takao

    2004-02-01

    The cover picture is a photograph showing a row of ZnSe based white LEDs. In this issue's Editor's Choice [1], the point defect induced degradation in these high quality diodes is investigated by electroluminescence, deep level transient spectroscopy, and isothermal capacitance transient spectroscopy investigations.The first author, Masahiro Adachi, is member of the Optoelectronics Laboratory at Tattori University, where he is working on microscopic defects in ZnSe based devices, defect induced degradation, and defect behaviour.The paper is an invited presentation from the II-VI '03 Conference held in Niagara Falls, New York, USA, 22-26 September 2003.The full Proceedings of the Eleventh International Conference on II-VI Compounds are published in physica status solidi (c) - conferences and critical reviews 1, No. 4 (March 2004) (ISBN 3-527-40510-0).

  9. Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun

    2015-03-01

    Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu

  10. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid.

    PubMed

    Lin, Ting-An; Chatterjee, Tanmay; Tsai, Wei-Lung; Lee, Wei-Kai; Wu, Meng-Jung; Jiao, Min; Pan, Kuan-Chung; Yi, Chih-Lung; Chung, Chin-Lung; Wong, Ken-Tsung; Wu, Chung-Chih

    2016-08-01

    Extremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure, using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid and simultaneously possessing nearly unitary (100%) photoluminescence quantum yield, excellent thermal stability, and strongly horizontally oriented emitting dipoles (with a horizontal dipole ratio of 83%). PMID:27271917

  11. Strong electroluminescence from SiO{sub 2}-Tb{sub 2}O{sub 3}-Al{sub 2}O{sub 3} mixed layers fabricated by atomic layer deposition

    SciTech Connect

    Rebohle, L. Braun, M.; Wutzler, R.; Helm, M.; Skorupa, W.; Liu, B.; Sun, J. M.

    2014-06-23

    We report on the bright green electroluminescence (EL) with power efficiencies up to 0.15% of SiO{sub 2}-Tb{sub 2}O{sub 3}-mixed layers fabricated by atomic layer deposition and partly co-doped with Al{sub 2}O{sub 3}. The electrical, EL, and breakdown behavior is investigated as a function of the Tb and the Al concentration. Special attention has been paid to the beneficial role of Al{sub 2}O{sub 3} co-doping which improves important device parameters. In detail, it increases the maximum EL power efficiency and EL decay time, it nearly doubles the fraction of excitable Tb{sup 3+} ions, it shifts the region of high EL power efficiencies to higher injection currents, and it reduces the EL quenching over the device lifetime by an approximate factor of two. It is assumed that the presence of Al{sub 2}O{sub 3} interferes the formation of Tb clusters and related defects. Therefore, the system SiO{sub 2}-Tb{sub 2}O{sub 3}-Al{sub 2}O{sub 3} represents a promising alternative for integrated, Si-based light emitters.

  12. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method.

    PubMed

    Li, Guangru; Rivarola, Florencia Wisnivesky Rocca; Davis, Nathaniel J L K; Bai, Sai; Jellicoe, Tom C; de la Peña, Francisco; Hou, Shaocong; Ducati, Caterina; Gao, Feng; Friend, Richard H; Greenham, Neil C; Tan, Zhi-Kuang

    2016-05-01

    The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%.

  13. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method.

    PubMed

    Li, Guangru; Rivarola, Florencia Wisnivesky Rocca; Davis, Nathaniel J L K; Bai, Sai; Jellicoe, Tom C; de la Peña, Francisco; Hou, Shaocong; Ducati, Caterina; Gao, Feng; Friend, Richard H; Greenham, Neil C; Tan, Zhi-Kuang

    2016-05-01

    The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%. PMID:26990965

  14. Enhanced out-coupling efficiency of organic light-emitting diodes using an nanostructure imprinted by an alumina nanohole array

    SciTech Connect

    Endo, Kuniaki; Adachi, Chihaya

    2014-03-24

    We demonstrate organic light-emitting diodes (OLEDs) with enhanced out-coupling efficiency containing nanostructures imprinted by an alumina nanohole array template that can be applied to large-emitting-area and flexible devices using a roll-to-roll process. The nanostructures are imprinted on a glass substrate by an ultraviolet nanoimprint process using an alumina nanohole array mold and then an OLED is fabricated on the nanostructures. The enhancement of out-coupling efficiency is proportional to the root-mean-square roughness of the nanostructures, and a maximum improvement of external electroluminescence quantum efficiency of 17% is achieved. The electroluminescence spectra of the OLEDs indicate that this improvement is caused by enhancement of the out-coupling of surface plasmon polaritons.

  15. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix.

    PubMed

    Li, Guangru; Tan, Zhi-Kuang; Di, Dawei; Lai, May Ling; Jiang, Lang; Lim, Jonathan Hua-Wei; Friend, Richard H; Greenham, Neil C

    2015-04-01

    Electroluminescence in light-emitting devices relies on the encounter and radiative recombination of electrons and holes in the emissive layer. In organometal halide perovskite light-emitting diodes, poor film formation creates electrical shunting paths, where injected charge carriers bypass the perovskite emitter, leading to a loss in electroluminescence yield. Here, we report a solution-processing method to block electrical shunts and thereby enhance electroluminescence quantum efficiency in perovskite devices. In this method, a blend of perovskite and a polyimide precursor dielectric (PIP) is solution-deposited to form perovskite nanocrystals in a thin-film matrix of PIP. The PIP forms a pinhole-free charge-blocking layer, while still allowing the embedded perovskite crystals to form electrical contact with the electron- and hole-injection layers. This modified structure reduces nonradiative current losses and improves quantum efficiency by 2 orders of magnitude, giving an external quantum efficiency of 1.2%. This simple technique provides an alternative route to circumvent film formation problems in perovskite optoelectronics and offers the possibility of flexible and high-performance light-emitting displays.

  16. Sonoelectrochemical degradation of triclosan in water.

    PubMed

    Ren, Yan-Ze; Franke, Marcus; Anschuetz, Franziska; Ondruschka, Bernd; Ignaszak, Anna; Braeutigam, Patrick

    2014-11-01

    The sonoelectrochemical degradation of triclosan in aqueous solutions with high-frequency ultrasound (850kHz) and various electrodes was investigated. Diamond coated niobium electrode showed the best results and was used as standard electrode, leading to effective degradation and positive synergistic effect. The influence of different parameters on the degradation degree and energy efficiency were evaluated and favorable reaction conditions were found. It could be shown that 92% of triclosan (1mgL(-1) aqueous solution) was degraded within 15min, following pseudo-first order kinetics.

  17. Novel extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Streptomyces exfoliatus K10 DSMZ 41693: a promising biocatalyst for the efficient degradation of natural and functionalized mcl-PHAs.

    PubMed

    Martínez, Virginia; de Santos, Patricia Gómez; García-Hidalgo, Javier; Hormigo, Daniel; Prieto, M Auxiliadora; Arroyo, Miguel; de la Mata, Isabel

    2015-11-01

    Cloning and biochemical characterization of a novel extracellular medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase from Streptomyces exfoliatus K10 DSMZ 41693 are described. The primary structure of the depolymerase (PhaZSex2) includes the lipase consensus sequence (serine-histidine-aspartic acid) which is known for serine hydrolases. Secondary structure analysis shows 7.9 % α-helix, 43.9 % β-sheet, 19.4 % β-turns, and 31.2 % random coil, suggesting that this enzyme belongs to the α/β hydrolase fold family, in agreement with other PHA depolymerases and lipases. The enzyme was efficiently produced as an extracellular active form in Rhodococcus and purified by two consecutive hydrophobic chromatographic steps. Matrix-assisted laser desorption-time-of-flight (MALDI-TOF) analysis of the purified enzyme revealed a monomer of 27.6 kDa with a midpoint transition temperature of 44.2 °C. Remarkably, the activity is significantly enhanced by low concentrations of nonionic and anionic detergents and thermal stability is improved by the presence of 10 % glycerol. PhaZSex2 is an endo-exohydrolase that cleaves both large and small PHA molecules, producing (R)-3-hydroxyoctanoic acid monomers as the main reaction product. Markedly, PhaZSex2 is able to degrade functionalized polymers containing thioester groups in the side chain (PHACOS), releasing functional thioester-based monomers and oligomers demonstrating the potentiality of this novel biocatalyst for the industrial production of enantiopure (R)-3-hydroxyalkanoic acids. PMID:26156240

  18. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  19. Green electroluminescence from Tb4O7 films on silicon: Impact excitation of Tb3+ ions by hot carriers

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lv, Chunyan; Jiang, Miaomiao; Zhou, Junwei; Li, Dongsheng; Ma, Xiangyang; Yang, Deren

    2016-02-01

    We report on green electroluminescence (EL) due to the intra-4f transitions of the trivalent terbium (Tb3+) ions inherent in a Tb4O7 film that is sandwiched between the ITO film and heavily phosphorous- or boron-doped silicon (n+-Si or p+-Si) substrate, thus forming the so-called metal-oxide-semiconductor (MOS) device. The onset voltage of such EL is below 10 V. From the current-voltage characteristic and voltage-dependent EL spectra of the aforementioned MOS device, it is derived that the Tb-related green EL results from the impact excitation of Tb3+ ions by the hot electrons (holes), which stem from the electric-field acceleration of the electrons (holes) injected from the n+-Si (p+-Si) substrate via the trap-assisted tunneling mechanism.

  20. Direct-bandgap electroluminescence from a horizontal Ge p-i-n ridge waveguide on Si(001) substrate

    SciTech Connect

    Liu, Zhi; Li, Yaming; He, Chao; Li, Chuanbo; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen Wang, Qiming

    2014-05-12

    Horizontal injection Ge p-i-n ridge waveguide light emitting diodes (LEDs) were fabricated on n{sup −}-Si(001) substrates by ultrahigh vacuum chemical vapor deposition. The direct-bandgap electroluminescence (EL) of Ge waveguide LEDs under a continuous/pulse electrical pump was studied. The heating effect from a continuous electrical pump was found to significantly enhance the emission of devices. The top surface EL intensity of the Ge waveguide LEDs significantly depended on the position. Most direct-bandgap radiative recombination of Ge p-i-n waveguide LEDs occurred near the N{sup +} region of the junction. This interesting phenomenon could be explained by the carrier distribution in the junction and the pseudo-direct bandgap of Ge.