Science.gov

Sample records for electrolyte li doped

  1. Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Lawson, John W.

    2016-01-01

    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation.

  2. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI

    NASA Astrophysics Data System (ADS)

    Shukur, M. F.; Ibrahim, F. M.; Majid, N. A.; Ithnin, R.; Kadir, M. F. Z.

    2013-08-01

    In this work, polymer electrolytes have been prepared by doping starch with lithium iodide (LiI). The incorporation of 30 wt% LiI optimizes the room temperature conductivity of the electrolyte at (1.83 ± 0.47) × 10-4 S cm-1. Further conductivity enhancement to (9.56 ± 1.19) × 10-4 S cm-1 is obtained with the addition of 30 wt% glycerol. X-ray diffraction analysis indicates that the conductivity enhancement is due to the increase in amorphous content. The activation energy, Ea, of 70 wt% starch-30 wt% LiI electrolyte is 0.26 eV, while 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte exhibits an Ea of 0.16 eV. Dielectric studies show that all the electrolytes obey non-Debye behavior. The power law exponent s is obtained from the variation of dielectric loss, ɛi, with frequency at different temperatures. The conduction mechanism of 70 wt% starch-30 wt% LiI electrolyte can be explained by the correlated barrier hopping model, while the conduction mechanism for 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte can be represented by the quantum mechanical tunneling model.

  3. Application of a boron doped diamond (BDD) electrode as an anode for the electrolytic reduction of UO2 in Li2O-LiCl-KCl molten salt

    NASA Astrophysics Data System (ADS)

    Park, Wooshin; Kim, Jong-Kook; Hur, Jin-Mok; Choi, Eun-Young; Im, Hun Suk; Hong, Sun-Seok

    2013-01-01

    A boron doped diamond thin film electrode was employed as an inert anode to replace a platinum electrode in a conventional electrolytic reduction process for UO2 reduction in Li2O-LiCl molten salt at 650 °C. The molten salt was changed into Li2O-LiCl-KCl to decrease the operation temperature to 550 °C at which the boron doped diamond was chemically stable. The potential for oxygen evolution on the boron doped diamond electrode was determined to be approximately 2.2 V vs. a Li-Pb reference electrode whereas that for Li deposition was around -0.58 V. The density of the anodic current was low compared to that of the cathodic current. Thus the potential of the cathode might not reach the potential for Li deposition if the surface area of the cathode is too wide compared to that of the anode. Therefore, the ratio of the surface areas of the cathode and anode should be precisely controlled. Because the reduction of UO2 is dependent on the reaction with Li, the deposition of Li is a prerequisite in the reduction process. In a consecutive reduction run, it was proved that the boron doped diamond could be employed as an inert anode.

  4. Li(+)- and Eu(³+)-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices.

    PubMed

    Fernandes, M; Nobre, S S; Rodrigues, L C; Gonçalves, A; Rego, R; Oliveira, M C; Ferreira, R A S; Fortunato, E; Silva, M M; Carlos, L D; Bermudez, V de Zea

    2011-08-01

    The sol-gel process has been successfully combined with the "mixed cation" effect to produce novel luminescent and ion conducting biohybrids composed of a diurethane cross-linked poly(ε-caprolactone) (PCL530)/siloxane hybrid network (PCL stands for the poly(ε-caprolactone) biopolymer and 530 is the average molecular weight in gmol(-1)) doped with a wide range of concentrations of lithium and europium triflates (LiCF(3)SO(3) and Eu(CF(3)SO(3))(3), respectively) (molar ratio of ca. 50:50). The hybrid samples are all semicrystalline: whereas at n = 52.6 and 27.0 (n, composition, corresponds to the number of (C(═O)(CH(2))(5)O) repeat units of PCL(530) per mixture of Li(+) and Eu(3+) ions) a minor proportion of crystalline PCL(530) chains is present, at n = 6.1, a new crystalline phase emerges. The latter electrolyte is thermally stable up to 220 °C and exhibits the highest conductivity over the entire range of temperatures studied (3.7 × 10(-7) and 1.71 × 10(-4) S cm(-1) at 20 and 102 °C, respectively). According to infrared spectroscopic data, major modifications occur in terms of hydrogen bonding interactions at this composition. The electrochemical stability domain of the biohybrid sample with n = 27 spans more than 7 V versus Li/Li(+). This sample is a room temperature white light emitter. Its emission color can be easily tuned across the Commission Internationale d'Éclairage (CIE) chromaticity diagram upon simply changing the excitation wavelength. Preliminary tests performed with a prototype electrochromic device (ECD) comprising the sample with n = 6.1 as electrolyte and WO(3) as cathodically coloring layer are extremely encouraging. The device exhibits switching time around 50 s, an optical density change of 0.15, good open circuit memory under atmospheric conditions (ca. 1 month) and high coloration efficiency (577 cm(2) C(-1) in the second cycle).

  5. Optical and dielectric properties of TiO2 doped PVA-CN/LiClO4 composite electrolyte

    NASA Astrophysics Data System (ADS)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.

    2013-02-01

    Solid polymer electrolyte (SPE) composite films of PVA-CN-HOBt-LiClO4 doped with TiO2 were prepared by solution casting method. The films were characterized using FT-IR, UV-Vis, DSC and Dielectric studies at room temperature. The FTIR results show the interaction of TiO2 nanoparticles with PVA-CN-HOBt-LiClO4 composite. The optical absorbance of the composite films increases from 250nm to 400nm with increase in doping and optical band gap (Eg) decreases from 3.2eV to 3.1eV. The glass transition temperature increases with increase in doping level. The dielectric properties of the composites show that these composite films can be used for SPE nanocomposites.

  6. Synthesis of pure and 4-Nitroaniline doped (PVDF-HFP/LiI/I2) polymer electrolyte for dye sensitized solar cell (DSSC) applications

    NASA Astrophysics Data System (ADS)

    Kannadhasan, S.; Pandian, Muthu Senthil; Ramasamy, P.

    2017-05-01

    The pure (PVDF-HFP/LiI/I2) and 4-nitroaniline doped (4-nitroaniline/PVDF-HFP/LiI/I2) poly(vinylidene fluoride-co-hexafluoropropylene) based polymer electrolytes were prepared using N,N-dimethylformamide (DMF) as a solvent by solution casting method. From the AC-impedance analysis the conductivity of polymer electrolytes was measured. The amorphous nature of the polymer electrolytes has been confirmed by powder X-ray diffraction (PXRD) analysis. Ionic conductivity studies revealed that the 4-nitroaniline doped polymer electrolyte has the higher ionic conductivity (3.18 × 10-6 S/cm) compared to pure (1.88 × 10-7 S/cm) polymer electrolyte. The conversion efficiency of pure and 4-nitroaniline doped polymer electrolytes based dye sensitized solar cells (DSSCs) are 1.3% and 1.5% respectively.

  7. Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI], [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W., Jr.; Lawson, John W.

    2014-01-01

    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li (-) salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing xLi, the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).

  8. Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI] and [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Hernandez-Lugo, Dione M.; Wu, James; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).

  9. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte

    NASA Astrophysics Data System (ADS)

    Kang, Joonhee; Chung, Habin; Doh, Chilhoon; Kang, Byoungwoo; Han, Byungchan

    2015-10-01

    Understanding of the fundamental mechanisms causing significant enhancement of Li-ionic conductivity by Al3+ doping to a solid LiGe2(PO4)3 (LGP) electrolyte is pursued using first principles density functional theory (DFT) calculations combined with experimental measurements. Our results indicate that partial substitution Al3+ for Ge4+ in LiGe2(PO4)3 (LGP) with aliovalent (Li1+xAlxGe2-x(PO4)3, LAGP) improves the Li-ionic conductivity about four-orders of the magnitude. To unveil the atomic origin we calculate plausible diffusion paths of Li in LGP and LAGP materials using DFT calculations and a nudged elastic band method, and discover that LAGP had additional transport paths for Li with activation barriers as low as only 34% of the LGP. Notably, these new atomic channels manifest subtle electrostatic environments facilitating cooperative motions of at least two Li atoms. Ab-initio molecular dynamics predict Li-ionic conductivity for the LAGP system, which is amazingly agreed experimental measurement on in-house made samples. Consequently, we suggest that the excess amounts of Li caused by the aliovalent Al3+ doping to LGP lead to not only enhancing Li concentration but also opening new conducting paths with substantially decreases activation energies and thus high ionic conductivity of LAGP solid-state electrolyte.

  10. Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped Oligoether, polyether, and carbonate-based electrolytes.

    PubMed

    Borodin, Oleg; Smith, Grant D

    2006-03-30

    A quantum chemistry study of Li(+) interactions with ethers, carbonates, alkanes, and a trifluoromethanesulfonylimide anion (TFSI(-)) was performed at the MP2, B3LYP, and HF levels using the aug-cc-pvDz basis set for solvents and TFSI(-) anion, and [8s4p3d/5s3p2d]-type basis set for Li. A classical many-polarizable force field was developed for the LiTFSI salt interacting with ethylene carbonate (EC), gamma-butyrolactone (GBL), dimethyl carbonate (DMC), acetone, oligoethers, n-alkanes, and perfluoroalkanes. Molecular dynamics (MD) simulations were performed for EC/LiTFSI, PC/LiTFSI, GBL/LiTFSI, DMC/LiTFSI, 1,2-dimethoxyethane/LiTFSI, pentaglyme/LiTFSI, and poly(ethylene oxide) (MW = 2380)/LiTFSI electrolytes at temperatures from 298 to 423 K and salt concentrations from 0.3 to 5 M. The ion and solvent self-diffusion coefficients, electrolyte conductivity, electrolyte density, LiTFSI apparent molar volumes, and structure of the Li(+) cation environment predicted by MD simulations were found in good agreement with experimental data.

  11. Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Tamilselvi, P.; Hema, M.

    2014-03-01

    Different composition of lithium ion conducting PVA: PVdF: Lithium triflate (LiCF3SO3) polymer electrolytes have been prepared by solution casting technique. Dielectric and conductivity studies have been carried out for the prepared samples. The addition of salt into the polymer matrix increases the ionic conductivity of blend polymer electrolytes. The conductivity analysis reveals 80PVA: 20PVdF: 15LiCF3SO3 polymer electrolyte exhibits the maximum ionic conductivity of 2.7×10-3 S cm-1 at 303 K. The temperature dependence of ionic conductivity for all the composition of PVA: PVdF: LiCF3SO3 polymer films obey Arrhenius relation. Low activation energy has been obtained for highest conducting sample. The dielectric spectra show absolute β-relaxation peak.

  12. Enhancement of lithium ion conductivity by doping Li3BO3 in Li2S-P2S5 glass-ceramics electrolytes for all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Eom, Minyong; Choi, Sunho; Son, Seunghyeon; Choi, Lakyoung; Park, Chanhwi; Shin, Dongwook

    2016-11-01

    (100-x) (0.78Li2S·0.22P2S5)·xLi3BO3 (0 ≤ x ≤ 5) solid electrolytes are prepared via mechanical milling and a post heat-treatment process, and the resulting electrochemical properties are investigated in conjunction with structural analysis. Adding of Li3BO3 into the (100-x) (0.78Li2S·0.22P2S5)·xLi3BO3 solid electrolyte is expected to enhance the conductivity and lower the activation energy as a consequence of changing the structural unit in the glass network. It turned out that the doping of Li3BO3 enhances the conductivity by enlarging the glass forming region and promoting precipitation of high lithium ion conductive thio-LISICON II analog. 97 (0.78Li2S·0.22P2S5)·3Li3BO3 (x = 3) glass-ceramics exhibits the highest conductivity (1.03 × 10-3 S cm-1). Structural analysis shows that the samples with Li3BO3 added to the electrolyte are composed of the main structural unit of PS43- with partially-modified structural unit of PO43-, which are believed to effectively enhance the conductivity and decrease the activation energy. In glass-ceramics produced from these materials, the thio-LISICON II phase with higher ionic conductivity tends to be stabilized by the addition of Li3BO3. Additionally, the formation of space-charge layer is relaxed by Li3BO3 doping. As a result, the all-solid-state cell shows high initial discharge capacity of 156 mAh g-1, and the capacity is retained to be 149 mAh g-1 for 40 cycles.

  13. Enhanced ionic conductivity in Gd-doped ceria and (Li/Na)2SO4 composite electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yao, Chuangang; Meng, Junling; Liu, Xiaojuan; Zhang, Xiong; Liu, Xiliang; Meng, Fanzhi; Wu, Xiaojie; Meng, Jian

    2015-11-01

    A series of novel composite electrolytes based on 20 mol% Gd doped CeO2 with varying amounts of (Li/Na)2SO4 have been synthesized. X-ray diffraction, thermogravimetry and differential scanning calorimetry, scanning electron microscope and transmission electron microscope were applied to characterize the phase components and microstructures of the composite electrolytes. Their ionic conductivities were determined by AC impedance spectroscopy. It has been found that the optimum sintering temperature and sulphate content for the composite electrolyte is 870 °C and 20 wt% (Li/Na)2SO4, respectively. Above 550 °C, a sharp increase in conductivity occurred, which can be interpreted as superionic phase transitions in the interface phases between GDC and sulphates. Both the high ionic conductivities above the transition temperature, 0.191, 0.298 and 0.372 S cm-1 at 550, 650 and 750 °C respectively, and low activation energy (0.303 eV) highlight composite GDC-20 wt% (Li/Na)2SO4 a promising electrolyte candidate for application in intermediate temperature solid oxide fuel cells.

  14. Al-doped spinel LiAl 0.1Mn 1.9O 4 with improved high-rate cyclability in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Yuan, Anbao; Tian, Lei; Xu, Wanmei; Wang, Yuqin

    To improve the cyclability of spinel LiMn 2O 4 in aqueous electrolyte, Al-doped LiAl xMn 2- xO 4 (x = 0.05, 0.1, 0.15) materials are prepared using a room-temperature solid-state grinding reaction followed by calcination at different temperatures for different durations, respectively. Their phase structures and morphologies are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Electrochemical performances of the materials are investigated by cyclic voltammetry and galvanostatic charge/discharge methods. XRD results reveal that the crystallinity of the LiAl 0.1Mn 1.9O 4 increases with increasing calcination temperature and calcination time. However, when the calcination temperature is increased to 800 °C, a small amount of Mn 3O 4 impurity phase is detected in the product calcined for 12 h, due to the decomposition of LiAl 0.1Mn 1.9O 4, while the product calcined for a shorter time of 3 or 6 h is found to be LiAl 0.1Mn 1.9O 4 single phase. TEM results confirm that the grain size of the materials increases with increasing calcination temperature. Electrochemical experiments demonstrate that the charge/discharge cyclability of the LiAl 0.1Mn 1.9O 4 increases with increase in calcination temperature and calcination time. Compared with the pristine LiMn 2O 4, the Al-doped LiAl xMn 1- xO 4 show the obviously improved cyclability, especially for the LiAl 0.1Mn 1.9O 4 calcined at an elevated temperature for 12 h.

  15. A New Sealed Lithium-Peroxide Battery with a Co-Doped Li2O Cathode in a Superconcentrated Lithium Bis(fluorosulfonyl)amide Electrolyte

    NASA Astrophysics Data System (ADS)

    Okuoka, Shin-Ichi; Ogasawara, Yoshiyuki; Suga, Yosuke; Hibino, Mitsuhiro; Kudo, Tetsuichi; Ono, Hironobu; Yonehara, Koji; Sumida, Yasutaka; Yamada, Yuki; Yamada, Atsuo; Oshima, Masaharu; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi; Mizuno, Noritaka

    2014-07-01

    We propose a new sealed battery operating on a redox reaction between an oxide (O2-) and a peroxide (O22-) with its theoretical specific energy of 2570 Wh kg-1 (897 mAh g-1, 2.87 V) and demonstrate that a Co-doped Li2O cathode exhibits a reversible capacity over 190 mAh g-1, a high rate capability, and a good cyclability with a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte in acetonitrile. The reversible capacity is largely dominated by the O2-/O22- redox reaction between oxide and peroxide with some contribution of the Co2+/Co3+ redox reaction.

  16. Samarium doped ceria-(Li/Na) 2CO 3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Di, Jing; Chen, Mingming; Wang, Chengyang; Zheng, Jiaming; Fan, Liangdong; Zhu, Bin

    A composite of samarium doped ceria (SDC) and a binary carbonate eutectic (52 mol% Li 2CO 3/48 mol% Na 2CO 3) is investigated with respect to its morphology, conductivity and fuel cell performances. The morphology study shows the composition could prevent SDC particles from agglomeration. The conductivity is measured under air, argon and hydrogen, respectively. A sharp increase in conductivity occurs under all the atmospheres, which relates to the superionic phase transition in the interface phases between SDC and carbonates. Single cells with the composite electrolyte are fabricated by a uniaxial die-press method using NiO/electrolyte as anode and lithiated NiO/electrolyte as cathode. The cell shows a maximum power density of 590 mW cm -2 at 600 °C, using hydrogen as the fuel and air as the oxidant. Unlike that of cells based on pure oxygen ionic conductor or pure protonic conductor, the open circuit voltage of the SDC-carbonate based fuel cell decreases with an increase in water content of either anodic or cathodic inlet gas, indicating the electrolyte is a co-ionic (H +/O 2-) conductor. The results also exhibit that oxygen ionic conductivity contributes to the major part of the whole conductivity under fuel cell circumstances.

  17. A New Sealed Lithium-Peroxide Battery with a Co-Doped Li2O Cathode in a Superconcentrated Lithium Bis(fluorosulfonyl)amide Electrolyte

    PubMed Central

    Okuoka, Shin-ichi; Ogasawara, Yoshiyuki; Suga, Yosuke; Hibino, Mitsuhiro; Kudo, Tetsuichi; Ono, Hironobu; Yonehara, Koji; Sumida, Yasutaka; Yamada, Yuki; Yamada, Atsuo; Oshima, Masaharu; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi; Mizuno, Noritaka

    2014-01-01

    We propose a new sealed battery operating on a redox reaction between an oxide (O2−) and a peroxide (O22−) with its theoretical specific energy of 2570 Wh kg−1 (897 mAh g−1, 2.87 V) and demonstrate that a Co-doped Li2O cathode exhibits a reversible capacity over 190 mAh g−1, a high rate capability, and a good cyclability with a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte in acetonitrile. The reversible capacity is largely dominated by the O2−/O22− redox reaction between oxide and peroxide with some contribution of the Co2+/Co3+ redox reaction. PMID:25023009

  18. A new sealed lithium-peroxide battery with a co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte.

    PubMed

    Okuoka, Shin-ichi; Ogasawara, Yoshiyuki; Suga, Yosuke; Hibino, Mitsuhiro; Kudo, Tetsuichi; Ono, Hironobu; Yonehara, Koji; Sumida, Yasutaka; Yamada, Yuki; Yamada, Atsuo; Oshima, Masaharu; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi; Mizuno, Noritaka

    2014-07-14

    We propose a new sealed battery operating on a redox reaction between an oxide (O(2-)) and a peroxide (O2(2-)) with its theoretical specific energy of 2570 Wh kg(-1) (897 mAh g(-1), 2.87 V) and demonstrate that a Co-doped Li2O cathode exhibits a reversible capacity over 190 mAh g(-1), a high rate capability, and a good cyclability with a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte in acetonitrile. The reversible capacity is largely dominated by the O(2-)/O2(2-) redox reaction between oxide and peroxide with some contribution of the Co(2+)/Co(3+) redox reaction.

  19. Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology.

    PubMed

    Yang, Ting; Zheng, Jin; Cheng, Qian; Hu, Yan-Yan; Chan, Candace K

    2017-07-05

    Composite polymer solid electrolytes (CPEs) containing ceramic fillers embedded inside a polymer-salt matrix show great improvements in Li(+) ionic conductivity compared to the polymer electrolyte alone. Lithium lanthanum zirconate (Li7La3Zr2O12, LLZO) with a garnet-type crystal structure is a promising solid Li(+) conductor. We show that by incorporating only 5 wt % of the ceramic filler comprising undoped, cubic-phase LLZO nanowires prepared by electrospinning, the room temperature ionic conductivity of a polyacrylonitrile-LiClO4-based composite is increased 3 orders of magnitude to 1.31 × 10(-4) S/cm. Al-doped and Ta-doped LLZO nanowires are also synthesized and utilized as fillers, but the conductivity enhancement is similar as for the undoped LLZO nanowires. Solid-state nuclear magnetic resonance (NMR) studies show that LLZO NWs partially modify the PAN polymer matrix and create preferential pathways for Li(+) conduction through the modified polymer regions. CPEs with LLZO nanoparticles and Al2O3 nanowire fillers are also studied to elucidate the role of filler type (active vs passive), LLZO composition (undoped vs doped), and morphology (nanowire vs nanoparticle) on the CPE conductivity. It is demonstrated that both intrinsic Li(+) conductivity and nanowire morphology are needed for optimal performance when using 5 wt % of the ceramic filler in the CPE.

  20. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction.

    PubMed

    Shin, Dong Ok; Oh, Kyungbae; Kim, Kwang Man; Park, Kyu-Young; Lee, Byungju; Lee, Young-Gi; Kang, Kisuk

    2015-12-15

    Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al(3+) plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10(-4) S cm(-1) than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition.

  1. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction

    NASA Astrophysics Data System (ADS)

    Shin, Dong Ok; Oh, Kyungbae; Kim, Kwang Man; Park, Kyu-Young; Lee, Byungju; Lee, Young-Gi; Kang, Kisuk

    2015-12-01

    Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al3+ plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10-4 S cm-1 than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition.

  2. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction

    PubMed Central

    Shin, Dong Ok; Oh, Kyungbae; Kim, Kwang Man; Park, Kyu-Young; Lee, Byungju; Lee, Young-Gi; Kang, Kisuk

    2015-01-01

    Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al3+ plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10−4 S cm−1 than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition. PMID:26666197

  3. Computational and Experimental Investigation of Li-doped Ionic Liquid Electrolytes: [pyr14][tfsi], [pyr13][fsi], and [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N -methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 xLi+ 0.33) and temperature (298 K T 393 K). Structurally, Li+ is shown to be solvated by three anion neigh- bors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi+ we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi+, the contribution of Li+ to ionic conductivity increases until reach- ing a saturation doping level of xLi+ 0.10. Comparatively, the Li+ conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. Our transport results also demonstrate the necessity of long MD simulation runs ( 200 ns) required to converge transport properties at room T. The differences in Li+ transport are reflected in the residence times of Li+ with the anions (Li), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li+ transport in each liquid, we find that while the net motion of Li+ with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of

  4. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    SciTech Connect

    Li, Yutao; Zhou, Weidong; Xin, Sen; Li, Shuai; Zhu, Jinlong; Lu, Xujie; Cui, Zhiming; Jia, Quanxi; Zhou, Jianshi; Zhao, Yusheng; Goodenough, John B.

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li+/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li2OHCl. As a result, an all-solid-state Li/LiFePO4 with F-dope Li2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  5. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    DOE PAGES

    Li, Yutao; Zhou, Weidong; Xin, Sen; ...

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li+/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li2OHCl. As a result, an all-solid-state Li/LiFePO4 with F-dope Li2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  6. Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Li, Yutao; Zhou, Weidong; Xin, Sen; Li, Shuai; Zhu, Jinlong; Lü, Xujie; Cui, Zhiming; Jia, Quanxi; Zhou, Jianshi; Zhao, Yusheng; Goodenough, John B

    2016-08-16

    A fluorine-doped antiperovskite Li-ion conductor Li2 (OH)X (X=Cl, Br) is shown to be a promising candidate for a solid electrolyte in an all-solid-state Li-ion rechargeable battery. Substitution of F(-) for OH(-) transforms orthorhombic Li2 OHCl to a room-temperature cubic phase, which shows electrochemical stability to 9 V versus Li(+) /Li and two orders of magnitude higher Li-ion conductivity than that of orthorhombic Li2 OHCl. An all-solid-state Li/LiFePO4 with F-doped Li2 OHCl as the solid electrolyte showed good cyclability and a high coulombic efficiency over 40 charge/discharge cycles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt.

    PubMed

    Liew, Chiam-Wen; Durairaj, R; Ramesh, S

    2014-01-01

    In this research, two systems are studied. In the first system, the ratio of poly (methyl methacrylate) (PMMA) and poly (vinyl chloride) (PVC) is varied, whereas in the second system, the composition of PMMA-PVC polymer blends is varied with dopant salt, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) with a fixed ratio of 70 wt% of PMMA to 30 wt% of PVC. Oscillation tests such as amplitude sweep and frequency sweep are discussed in order to study the viscoelastic properties of samples. Elastic properties are much higher than viscous properties within the range in the amplitude sweep and oscillatory shear sweep studies. The crossover of G' and G'' is absent. Linear viscoelastic (LVE) range was further determined in order to perform the frequency sweep. However, the absence of viscous behavior in the frequency sweep indicates the solid-like characteristic within the frequency regime. The viscosity of all samples is found to decrease as shear rate increases.

  8. Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt

    PubMed Central

    Liew, Chiam–Wen; Durairaj, R.; Ramesh, S.

    2014-01-01

    In this research, two systems are studied. In the first system, the ratio of poly (methyl methacrylate) (PMMA) and poly (vinyl chloride) (PVC) is varied, whereas in the second system, the composition of PMMA–PVC polymer blends is varied with dopant salt, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) with a fixed ratio of 70 wt% of PMMA to 30 wt% of PVC. Oscillation tests such as amplitude sweep and frequency sweep are discussed in order to study the viscoelastic properties of samples. Elastic properties are much higher than viscous properties within the range in the amplitude sweep and oscillatory shear sweep studies. The crossover of and is absent. Linear viscoelastic (LVE) range was further determined in order to perform the frequency sweep. However, the absence of viscous behavior in the frequency sweep indicates the solid-like characteristic within the frequency regime. The viscosity of all samples is found to decrease as shear rate increases. PMID:25051241

  9. Raising the conductivity of crystalline polymer electrolytes by aliovalent doping.

    PubMed

    Zhang, Chuhong; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2005-12-28

    Polymer electrolytes, salts dissolved in solid polymers, hold the key to realizing all solid-state devices such as rechargeable lithium batteries, electrochromic displays, or SMART windows. For 25 years conductivity was believed to be confined to amorphous polymer electrolytes, all crystalline polymer electrolytes were thought to be insulators. However, recent results have demonstrated conductivity in crystalline polymer electrolytes, although the levels at room temperature are too low for application. Here we show, for the first time, that it is possible to raise significantly the level of ionic conductivity by aliovalent doping. The conductivity may be raised by 1.5 orders of magnitude if the SbF6- ion in the crystalline conductor poly(ethylene oxide)6:LiSbF6 is replaced by less than 5 mol % SiF6(2-), thus introducing additional, mobile, Li+ ions into the structure to maintain electroneutrality.

  10. Solubility of Li/sub 2/S in LiF-LiCl-LiBr electrolyte: measurements and calculations

    SciTech Connect

    Tomczuk, Z.; Vissers, D.R.; Saboungi, M.L.

    1983-01-01

    High performance lithium-alloy/iron sulfide cells are currently being developed at Argonne National Laboratory and at several industrial firms for electric vehicle propulsion. These cells operate at high temperatures and utilize Li-Al or Li-Si negative electrodes, FeS positive electrodes, and a molten salt electrolyte. In the early work, the molten salt was the LiCl-KCl eutectic (58.2 mol % LiCl-41.8 mol % KCl), but in recent work various electrolyte compositions have been used, i.e., LiCl-rich LiCl--KCl (typically 67 mole % LiCl), LiF-LiCl-KCl, or LiF-LiCl-LiBr (1). The use of these electrolytes requires cell operating temperatures in the range of 703-773 K. As these cells are cycled, it has been shown that, when LiCl-KCl electrolytes were used, local electrolyte compositional changes occurred because of ion transport processes and chemical reactions in the cells. However, despite the temperature or the nature of the electrolyte, iron and lithium sulfide are the final discharge products. Thus, a systematic investigation of the solubility of Li/sub 2/S in a variety of electrolytes containing LiCl as a function of temperature is of technological importance in the development of these cells. We report new solubility measurements of Li/sub 2/S in the LiF-LiCl--LiBr eutectic solution (22 mol %-31 mol %-47 mol %) at 739 and 773 K. The observed increase of Li/sub 2/S solubility as the solvent is changed from LiCl-KCl to LiF-LiCl-LiBr and then to LiF-LiCl is explained in terms of known molten salt theories.

  11. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  12. Composite Solid Electrolyte for Li Battery Applications

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Attia, A. I.; Halpert, G.; Peled, E.

    1993-01-01

    The electrochemical, bulk and interfacial properties of the polyethylene oxide (PEO) based composite solid electrolyte (CSE) comprising LiI, PEO, and Al2O3 have been evaluated for Li battery applications. The bulk interfacial and transport properties of the CSEs seem to strongly depend on the alumina particle size. For the CSE films with 0.05 micron alumina while the bulk conductivity is around 10(exp -4) (mho/cm) at 103 C, the Li ion transport number seems to be close to unity at the same temperature. Compared to the PEO electrolyte this polymer composite electrolyte seems to exhibit robust mechanical and interfacial properties. We have studied three different films with three different alumina sizes in the range 0.01-0.3 micron. Effects of Al2O3 particle size on the electrochemical performance of polymer composite electrolyte is discussed. With TiS2 as cathode a 10 mAh small capacity cell was charged and discharged at C/40 and C/20 rates respectively.

  13. Composite Solid Electrolyte for Li Battery Applications

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Attia, A. I.; Halpert, G.; Peled, E.

    1993-01-01

    The electrochemical, bulk and interfacial properties of the polyethylene oxide (PEO) based composite solid electrolyte (CSE) comprising LiI, PEO, and Al2O3 have been evaluated for Li battery applications. The bulk interfacial and transport properties of the CSEs seem to strongly depend on the alumina particle size. For the CSE films with 0.05 micron alumina while the bulk conductivity is around 10(exp -4) (mho/cm) at 103 C, the Li ion transport number seems to be close to unity at the same temperature. Compared to the PEO electrolyte this polymer composite electrolyte seems to exhibit robust mechanical and interfacial properties. We have studied three different films with three different alumina sizes in the range 0.01-0.3 micron. Effects of Al2O3 particle size on the electrochemical performance of polymer composite electrolyte is discussed. With TiS2 as cathode a 10 mAh small capacity cell was charged and discharged at C/40 and C/20 rates respectively.

  14. Effect of co-doping nano-silica filler and N-methyl- N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF 3SO 2) 2N/Li

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wang, H.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Yang, J.

    Lithium metal dendrite growth in Li/poly (ethylene oxide)-lithium bis (trifluoromethanesulfonyl) imide (PEO 18LiTFSI), nano-silica, and N-methyl- N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) composite solid polymer electrolyte/Li was investigated by direct in situ observation. The dendrite onset time decreased with increasing current density and deviated from Sand's law in the current density range of 0.1-0.5 mA cm -2 at 60 °C. Lithium dendrite formation was not observed until 46 h of polarization at 0.5 mA cm -2 and 60 °C, which is a significant improvement compared to that observed in Li/(PEO 18LiTFSI)/Li, where the dendrite formation was observed after 15 h polarization at 0.5 mA cm -2 and 60 °C. The suppression of dendrite formation could be explained by the electrical conductivity enhancement and decrease of the interface resistance between Li and the polymer electrolyte by the introduction of both nano-SiO 2 and PP13TFSI into PEO 18LiTFSI. The electrical conductivity of 4.96 × 10 -4 S cm -1 at 60 °C was enhanced to 7.6 × 10 -4 S cm -1, and the interface resistance of Li/PEO 18LiTFSI/Li of 248 Ω cm 2 was decreased to 74 Ω cm 2 by the addition of both nano-SiO 2 and PP13TFSI into PEO 18LiTFSI.

  15. Endurance testing with Li/Na electrolyte

    SciTech Connect

    Ong, E.T.; Remick, R.J.; Sishtla, C.I.

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  16. High performance MCFC using Li/Na electrolyte

    SciTech Connect

    Donado, R.A.; Ong, E.T.; Sishtla, C.I.

    1995-08-01

    The substitution of a lithium/ sodium carbonate (Li/Na) mixture for the lithium/potassium carbonate (Li/K) electrolyte used in MCFCs holds the promise of higher ionic conductivity, higher exchange current density at both electrodes, lower vapor pressure, and lower cathode dissolution rates. However, when the substitution is made in cells optimized for use with the Li/K electrolyte, the promised increase in performance is not realized. As a consequence the literature contains conflicting data with regard to the performance, compositional stability, and chemical reactivity of the Li/Na electrolyte. Experiments conducted at the Institute of Gas Technology (IGT) concluded that the source of the problem is the different wetting characteristics of the two electrolytes. Electrode pore structures optimized for use with Li/K do not work well with Li/Na. Using proprietary methods and materials, IGT was able to optimize a set of electrodes for the Li/Na electrolyte. Experiments conducted in bench-scale cells have confirmed the superior performance of the Li/Na electrolyte compared to the Li/K electrolyte. The Li/Na cells exhibited a 5 to 8 percent improvement in overall performance, a substantial decrease in the rate of cathode dissolution, and a decreased decay rate. The longest running cell has logged over 13,000 hours of operation with a decay rate of less than 2 mV/1000 hours.

  17. Li2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE PAGES

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; ...

    2016-01-22

    In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solidmore » electrolytes where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.« less

  18. Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)

    SciTech Connect

    Yu, Seungho; Schmidt, Robert D.; Garcia-mendez, Regina; Herbert, Erik G.; Dudney, Nancy J.; Wolfenstine, Jeff; Sakamoto, Jeff; Seigel, Donald

    2015-12-16

    The oxide known as LLZO, with nominal composition Li7La3Zr2O12, is a promising solid electrolyte for Li-based batteries due to its high Li-ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical barrier that suppresses dendrite initiation and propagation during cycling. Prior linear elasticity models of the Li electrode/solid electrolyte interface suggest that the stability of this interface is highly dependent on the elastic properties of the solid separator. For example, dendritic suppression is predicted to be enhanced as the electrolyte s shear modulus increases. In the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for highconductivity LLZO compositions based on Al and Ta doping. The calculated and measured isotropic shear moduli are in good agreement and fall within the range of 56-61 GPa. These values are an order of magnitude larger than that for Li metal and far exceed the minimum value ( 8.5 GPa) believed to be necessary to suppress dendrite initiation. These data suggest that LLZO exhibits sufficient stiffness to warrant additional development as a solid electrolyte for Li batteries.

  19. Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)

    DOE PAGES

    Yu, Seungho; Schmidt, Robert D.; Garcia-mendez, Regina; ...

    2015-12-16

    The oxide known as LLZO, with nominal composition Li7La3Zr2O12, is a promising solid electrolyte for Li-based batteries due to its high Li-ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical barrier that suppresses dendrite initiation and propagation during cycling. Prior linear elasticity models of the Li electrode/solid electrolyte interface suggest that the stability of this interface is highly dependent on the elastic properties of the solid separator. For example, dendritic suppression is predicted to be enhanced as the electrolyte s shear modulus increases. Inmore » the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for highconductivity LLZO compositions based on Al and Ta doping. The calculated and measured isotropic shear moduli are in good agreement and fall within the range of 56-61 GPa. These values are an order of magnitude larger than that for Li metal and far exceed the minimum value ( 8.5 GPa) believed to be necessary to suppress dendrite initiation. These data suggest that LLZO exhibits sufficient stiffness to warrant additional development as a solid electrolyte for Li batteries.« less

  20. Self-doped molecular composite battery electrolytes

    DOEpatents

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  1. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.

    PubMed

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-10-18

    pathways, we design methods to accelerate the Li(+) ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li(+) and e(-) transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.

  2. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  3. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  4. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Maginn, Edward

    2013-09-01

    Molecular dynamics simulations were performed to examine the role cation and anion structure have on the performance of ionic liquid (IL) electrolytes for lithium conduction over the temperature range of 320-450 K. Two model ionic liquids were studied: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([bmim][Tf2N]) and 1-butyl-4-methylpyridinium pyrrolide ([bmpyr][pyl]) doped with Li[Tf2N] and Li[pyl], respectively. The results have demonstrated that the Li+ doped IL containing the planar [bmpyr] cation paired with the planar [pyl] anion significantly outperformed the [bmim][Tf2N] IL. The different coordination of Li+ with the [Tf2N]- or [pyl]- anions produces a remarkable change in IL structure with a concomitant effect on the transport of all ions. For the doped [bmim][Tf2N], each Li+ is coordinated by four oxygen atoms from [Tf2N]- anions. Formation of a rigid structure between Li+ and [Tf2N]- induces a decrease in the mobility of all ions. In contrast, for the doped [bmpyr][pyl], each Li+ is coordinated by two nitrogen atoms from [pyl]- anions. The original alternating structure cation|anion|cation in the neat [bmpyr][pyl] is replaced by another alternating structure cation|anion|Li+|anion|cation in the doped [bmpyr][pyl]. Increases of Li+ mole fraction in doped [bmpyr][pyl] affects the dynamics to a much lesser extent compared with [bmim][Tf2N] and leads to reduced diffusivities of cations and anions, but little change in the dynamics of Li+. More importantly, the calculations predict that the Li+ ion conductivity of doped [bmpyr][pyl] is comparable to that observed in organic liquid electrolytes and is about an order of magnitude higher than that of doped [bmim][Tf2N]. Such Li+ conductivity improvement suggests that this and related ILs may be promising candidates for use as electrolytes in lithium ion batteries and capacitors.

  5. Li@organic superhalogens: possible electrolytes in Li-ion batteries.

    PubMed

    Naaresh Reddy, G; Parida, Rakesh; Giri, Santanab

    2017-08-31

    Inorganic superhalogens are commonly used as anionic counterparts in Li-ion batteries. In an endeavour to prepare better electrolytes, we have modelled the anionic part with different organic heterocyclic-based superhalogens. First principles calculations on those organic superhalogens reveal that the Li-binding energy is at par with that of the Li-salt of a common electrolyte. Out of five different halogen free organic heterocycles, Li[C3BN2(NO2)4] and Li[C2BNO(NO2)3] are found to be mostly suitable as electrolytes in Li-ion batteries. Molecular dynamics simulation studies on C2BNO(NO2)3(-), C3BN2(NO2)4(-), Li[C2BNO(NO2)3] and Li[C3BN2(NO2)4] also reveal that the structures are dynamically stable.

  6. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE PAGES

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-09-30

    their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li+ and e– transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less

  7. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    SciTech Connect

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-09-30

    2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li+ and e transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.

  8. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    SciTech Connect

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-09-30

    2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li+ and e transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.

  9. Acid and alkali doped PBI electrolyte in electrochemical system

    NASA Astrophysics Data System (ADS)

    Xing, Baozhong

    In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism

  10. Self-doped microphase separated block copolymer electrolyte

    DOEpatents

    Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying

    2002-01-01

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  11. Modification of LiCl-LiBr-KBr electrolyte for LiAl/FeS{sub 2} batteries

    SciTech Connect

    Kaun, T.D.; Jansen, A.N.; Henriksen, G.L.; Vissers, D.R.

    1996-06-01

    The bipolar LiAl/FeS{sub 2} battery is being developed to achieve the high performance and long cycle life needed for electric vehicle application. The molten-salt (400 to 440 C operation) electrolyte composition for this battery has evolved to support these objectives. An earlier change to LiCl-LiBr-KBr electrolyte is responsible for significantly increased cycle life (up to 1,000 cycles). Recent electrolyte modification has significantly improved cell performance; approximately 50% increased power, with increased high rate capacity utilization. Results are based on power-demanding EV driving profile test at 600 W/kg. The effects of adding small amounts (1--5 mol%) of LiF and LiI to LiCl-LiBr-KBr electrolyte are discussed. By cyclic voltammetry, the modified electrolytes exhibit improved FeS{sub 2} electrochemistry. Electrolyte conductivity is little changed, but high current density (200 mA/cm{sup 2}) performance improved by approximately 50%. A specific feature of the LiI addition is an enhanced cell overcharge tolerance rate from 2.5 to 5 mA/cm{sup 2}. The rate of overcharge tolerance is related to electrolyte properties and negative electrode lithium activity. As a result, the charge balancing of a bipolar battery configuration with molten-salt electrolyte is improved to accept greater cell-to-cell deviations.

  12. Developing New Electrolytes for Advanced Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  13. Solvate structures and spectroscopic characterization of LiTFSI electrolytes.

    PubMed

    Seo, Daniel M; Boyle, Paul D; Sommer, Roger D; Daubert, James S; Borodin, Oleg; Henderson, Wesley A

    2014-11-26

    A Raman spectroscopic evaluation of numerous crystalline solvates with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI or LiN(SO2CF3)2) has been conducted over a wide temperature range. Four new crystalline solvate structures-(PHEN)3:LiTFSI, (2,9-DMPHEN)2:LiTFSI, (G3)1:LiTFSI and (2,6-DMPy)1/2:LiTFSI with phenanthroline, 2,9-dimethyl[1,10]phenanthroline, triglyme, and 2,6-dimethylpyridine, respectively-have been determined to aid in this study. The spectroscopic data have been correlated with varying modes of TFSI(-)···Li(+) cation coordination within the solvate structures to create an electrolyte characterization tool to facilitate the Raman band deconvolution assignments for the determination of ionic association interactions within electrolytes containing LiTFSI. It is found, however, that significant difficulties may be encountered when identifying the distributions of specific forms of TFSI(-) anion coordination present in liquid electrolyte mixtures due to the wide range of TFSI(-)···Li(+) cation interactions possible and the overlap of the corresponding spectroscopic data signatures.

  14. Garnet Solid Electrolyte Protected Li-Metal Batteries.

    PubMed

    Liu, Boyang; Gong, Yunhui; Fu, Kun; Han, Xiaogang; Yao, Yonggang; Pastel, Glenn; Yang, Chunpeng; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-06-07

    Garnet-type solid state electrolyte (SSE) is a promising candidate for high performance lithium (Li)-metal batteries due to its good stability and high ionic conductivity. One of the main challenges for garnet solid state batteries is the poor solid-solid contact between the garnet and electrodes, which results in high interfacial resistance, large polarizations, and low efficiencies in batteries. To address this challenge, in this work gel electrolyte is used as an interlayer between solid electrolyte and solid electrodes to improve their contact and reduce their interfacial resistance. The gel electrolyte has a soft structure, high ionic conductivity, and good wettability. Through construction of the garnet/gel interlayer/electrode structure, the interfacial resistance of the garnet significantly decreased from 6.5 × 10(4) to 248 Ω cm(2) for the cathode and from 1.4 × 10(3) to 214 Ω cm(2) for the Li-metal anode, successfully demonstrating a full cell with high capacity (140 mAh/g for LiFePO4 cathode) over 70 stable cycles in room temperature. This work provides a binary electrolyte consisting of gel electrolyte and solid electrolyte to address the interfacial challenge of solid electrolyte and electrodes and the demonstrated hybrid battery presents a promising future for battery development with high energy and good safety.

  15. Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping.

    PubMed

    Li, Nian-Wu; Yin, Ya-Xia; Li, Jin-Yi; Zhang, Chang-Huan; Guo, Yu-Guo

    2017-02-01

    Hybrid electrolyte of ionic liquid and ethers is used to passivate the surface of Li metal surface via modification of the as-formed solid electrolyte interphase with N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide (Py13TFSI), thereby reducing the side reactions between the Li metal and electrolyte, leading to remarkably suppressed Li dendrite growth and mitigating Li metal corrosion.

  16. Electrolytic LiCl precipitation from LiCl-KCl melt in porous Li-Al anodes

    NASA Astrophysics Data System (ADS)

    Vallet, C. E.; Heatherly, D. E.; Heatherly, L., Jr.; Braunstein, J.

    1983-12-01

    Composition gradients such as those predicted to occur during discharge of porous Li-Al negative electrodes of Li/S batteries with LiCl-KCl eutectic electrolyte were generated and measured in the LiCl-KCl anolyte of an electrolysis cell with Li-Al electrodes. Precipitation of lithium chloride during electrolysis was observed by two-dimensional scanning of electrolyte composition in the front part of quenched porous Li-Al anode sections using SEM/EDX. The distribution of sites of increased or decreased LiCl concentration, LiCl saturation and precipitation was mapped. Cathodic regions were observed near the cell walls. Preliminary results of analysis by Auger spectroscopy confirm LiCl precipitation in the porous anode.

  17. Electrolytic LiCl precipitation from LiCl-KCl melt in porous Li-Al anodes

    SciTech Connect

    Vallet, C.E.; Heatherly, D.E.; Heatherly, L. Jr.; Braunstein, J.

    1983-12-01

    Composition gradients such as those predicted to occur during discharge of porous Li-Al negative electrodes of Li/S batteries with LiCl-KCl eutectic electrolyte were generated and measured in the LiCl-KCl anolyte of an electrolysis cell with Li-Al electrodes. Precipitation of lithium chloride during electrolysis was observed by two-dimensional scanning of electrolyte composition in the front part of quenched porous Li-Al anode sections using SEM/EDX. The distribution of sites of increased or decreased LiCl concentration, LiCl saturation and precipitation was mapped. Cathodic regions were observed near the cell walls. Preliminary results of analysis by Auger spectroscopy confirm LiCl precipitation in the porous anode. 16 references, 7 figures, 1 table.

  18. Photocured Gelled Electrolytes For Secondary Li Cells

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan

    1994-01-01

    Class of photocured polymers exhibiting lithium-ion conductivities greater than those of well-studied polymers based on polyethylene oxide (PEO) show promise as polymeric electrolytes in rechargeable lithium cells. Increase in conductivity occasioned by use of electrolytes, coupled with amenability of electrolytes to formation into uniform thin (less than 25 micrometers thick), wide films, expected to result in cells with power densities greater than 100 W h/kg and charge/discharge rates exceeding currents equal, in amperes, to ampere-hour ratings. All-solid-state lithium batteries containing these electrolytes used as high-power, high-rate rechargeable power sources in commercial and aerospace applications.

  19. Photocured Gelled Electrolytes For Secondary Li Cells

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan

    1994-01-01

    Class of photocured polymers exhibiting lithium-ion conductivities greater than those of well-studied polymers based on polyethylene oxide (PEO) show promise as polymeric electrolytes in rechargeable lithium cells. Increase in conductivity occasioned by use of electrolytes, coupled with amenability of electrolytes to formation into uniform thin (less than 25 micrometers thick), wide films, expected to result in cells with power densities greater than 100 W h/kg and charge/discharge rates exceeding currents equal, in amperes, to ampere-hour ratings. All-solid-state lithium batteries containing these electrolytes used as high-power, high-rate rechargeable power sources in commercial and aerospace applications.

  20. LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reddy, V. Prakash; Prakash, G. K. Syria; Hu, Jinbo; Yan, Ping; Smart, Marshall; Bugga, ratnakumar; Chin, Keith; Surampudi, Subarao

    2008-01-01

    Lithium tetrakis(trifluoromethane sulfo - nato)gallate [abbreviated "LiGa(OTf)4" (wherein "OTf" signifies trifluoro - methanesulfonate)] has been found to be promising as an electrolyte salt for incorporation into both liquid and polymer electrolytes in both rechargeable and non-rechargeable lithium-ion electrochemical cells. This and other ingredients have been investigated in continuing research oriented toward im proving the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. As described in more detail in those articles, lithiumion cells most commonly contain nonaqueous electrolyte solutions consisting of lithium hexafluorophosphate (LiPF6) dissolved in mixtures of cyclic and linear alkyl carbonates, including ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Although such LiPF6-based electrolyte solutions are generally highly ionically conductive and electrochemically stable, as needed for good cell performance, there is interest in identifying alternate lithium electrolyte salts that, relative to LiPF6, are more resilient at high temperature and are less expensive. Experiments have been performed on LiGa(OTf)4 as well as on several other candidate lithium salts in pursuit of this interest. As part of these experiments, LiGa(OTf)4 was synthesized by the reaction of Ga(OTf)3 with an equimolar portion of LiOTf in a solvent consisting of anhydrous acetonitrile. Evaporation of the solvent yielded LiGa(OTf)4 as a colorless crystalline solid. The LiGa(OTf)4 and the other salts were incorporated into solutions with PC and DMC. The resulting electrolyte solutions exhibited reasonably high ionic conductivities over a relatively wide temperature range down to 40 C (see figure). In cyclic

  1. Structure of liquid PEO-LiTFSI electrolyte

    PubMed

    Mao; Saboungi; Price; Armand; Howells

    2000-06-12

    The structure of a polymer electrolyte, P(EO)7.5LiN(SO 2CF (3))(2), has been determined by neutron diffraction with isotropic substitution. The Li ions are bonded on average to five ether oxygens belonging to pairs of PEO coils. These are arranged with a considerable degree of extended-range order providing pathways for the Li ion conduction. The lack of ion pairing in this system below 4.8 A is reminiscent of that observed in the remarkable structure of P(EO)6LiAsF (6) and implies that anions and cations are free to migrate independently.

  2. Electrolytes for Li-Ion Cells in Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    2000-01-01

    Prototype AA-size lithium-ion cells have been demonstrated to operate effectively at temperatures as low as -30 to -40 C. These improvements in low temperature cell performance have been realized by the incorporation of ethylene carbonate-based electrolytes which possess low melting, low viscosity cosolvents, such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ethyl methyl carbonate. The cells containing a 0.75M LiPF6 EC+DEC+DMC+EMC (1:1:1:1) electrolyte displayed the best performance at -30 C (> 90% of the room temperature capacity at approximately C/15 rate), whereas, at -40 C the cells with the 0.75M LiPF6 EC+DEC+DMC+MA (1:1:1:1) and 0.75M LiPF6 EC+DEC+DMC+EA (1:1:1:1) electrolytes showed superior performance.

  3. Highly conductive Li garnets by a multielement doping strategy.

    PubMed

    Tong, Xia; Thangadurai, Venkataraman; Wachsman, Eric D

    2015-04-06

    Highly conductive Li7La3Zr2O12 (LLZ) garnet-type solid electrolytes were further optimized to improve Li-ion conduction by La(3+)-sites substitution with Ba(2+) and Zr(4+)-sites substitution with Ta(5+) and Nb(5+). Garnet-structured metal oxides of the nominal chemical compositions Li6.65La2.75Ba0.25Zr1.4Ta0.5Nb0.1O12, Li6.4La3Zr1.4Ta0.6-xNbxO12 (x = 0, 0.1, 0.2, and 0.3), and the parent LLZ, as a reference, were prepared via conventional solid-state reaction to investigate the effect of multielement doping on ionic conductivity. The phase formation, morphology, and Li ion conductivity were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy, and alternating current impedance spectroscopy methods, respectively. In addition, solid-state (27)Al and (7)Li magic-angle spinning (MAS) NMR was used to study the effect of "Al doping" on the investigated multielement doped Li-stuffed garnet metal oxides. All the prepared samples obtained the cubic garnet-type structure (space group: Ia3̅d; No. 230) at 1150 °C, similar to that of cubic LLZ. Except for Li6.4La3Zr1.4Ta0.6O12, all the members show Al content by Al MAS NMR. However, it was not possible to detect Al-based impurity phases using PXRD in any of the investigated garnets. Among the samples investigated in this work, "Al-free" Li6.4La3Zr1.4Ta0.6O12 demonstrated a bulk Li ion conductivity of 0.72 mS cm(-1) at 25 °C, with apparent activation energy of 0.26 eV, significantly higher than the parent LLZ.

  4. Film formation in LiBOB-containing electrolytes

    NASA Astrophysics Data System (ADS)

    Panitz, Jan-Christoph; Wietelmann, Ulrich; Wachtler, Mario; Ströbele, Sandra; Wohlfahrt-Mehrens, Margret

    Lithium bis(oxalato)borate (LiBOB), a new electrolyte salt for lithium batteries, is actively involved in the formation of the solid electrolyte interphase (SEI) at the anode. Part of this formation is an irreversible reductive reaction taking place at potentials of around 1.75 V versus Li/Li + and contributing to the irreversible capacity of anode materials in the first cycle. Cyclic voltammetry has been performed on several carbon materials as well as on Li 4Ti 5O 12 and pre-treated glassy carbon electrodes in order to achieve a better understanding of the underlying processes. It is found that the intensity of the 1.75 V peak depends on the BET specific surface area and the surface chemistry of the active material and increases with the amount of oxygen-containing surface functionalities. It is not specific to carbonaceous materials but is also observed on carbon-free anodes like Li 4Ti 5O 12. In addition, the effect of several potential impurities and of film-forming additives on the filming behaviour of LiBOB-containing electrolytes has been investigated.

  5. Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-discharge with an Electrolyte Containing Fluoroether Solvent

    SciTech Connect

    Azimi, Nasim; Xue, Zheng; Rago, Nancy Dietz; Takoudis, Christos G.; Gordin, Mikhail; Song, Jiangxuan; wang, Donghai; Zhang, Zhengcheng

    2015-01-01

    The fluorinated electrolyte containing a fluoroether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was investigated as a new electrolyte for lithium-sulfur (Li-S) batteries. The low solubility of lithium polysulfides (LiPS) in the fluorinated electrolyte reduced the parasitic reactions with Li anode and mitigated the self-discharge by limiting their diffusion from the cathode to the anode. The use of fluorinated ether as a co-solvent and LiNO3 as an additive in the electrolyte shows synergetic effect in suppressing the self-discharge of Li-S battery due to the formation of the solid electrolyte interphase (SEI) on both sulfur cathode and the lithium anode. The Li-S cell with the fluorinated electrolyte showed prolonged shelf life at fully charged state.

  6. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  7. Improved performance of Li hybrid solid polymer electrolyte cells

    NASA Astrophysics Data System (ADS)

    Nagasubramanian, G.; Bronstein, Lyudmila; Carini, John

    The seminal research by Wright et al. on polyethylene oxide (PEO) solid polymer electrolyte (SPE) generated intense interest in all solid-state rechargeable lithium batteries. Following this a number of researchers have studied the physical, electrical and transport properties of thin film PEO electrolyte containing Li salt. These studies have clearly identified the limitations of the PEO electrolyte. Chief among the limitations are a low cation transport number (t +), high crystallinity and segmental motion of the polymer chain, which carries the cation through the bulk electrolyte. While low t + leads to cell polarization and increase in cell resistance high T g reduces conductivity at and around room temperatures. For example, the conductivity of PEO electrolyte containing lithium salt is <10 -7 S cm -1 at room temperature. Although modified PEO electrolytes with lower T g exhibited higher conductivity (∼10 -5 S cm -1 at RT) the t + is still very low ∼0.25 for lithium ion. Numerous other attempts to improving t + have met with limited success. The latest approach involves integrating nano domains of inorganic moieties, such as silcate, alumosilicate, etc. within the polymer component. This approach yields an inorganic-organic component (OIC) based polymer electrolyte with higher conductivity and t + for Li + . This paper describes the improved electrical and electrochemical properties of OIC-based polymer electrolyte and cells containing Li anode with either a TiS 2 cathode or Mag-10 carbon electrode. Several solid polymer electrolytes derived from silicate OIC and salt-in-polymer constituent based on Li triflate (LiTf) and PEO are studied. A typical composition of the SPE investigated in this work consists of 600 kDa PEO, lithium triflate (LiTf, LiSO 3CF 3) and 55% of silicate based on (3-glycidoxypropyl)trimethoxysilane and tetramethoxysilane at molar ratio 4:1 and 0.65 mol% of aluminum(tri- sec-butoxide) (GTMOS-Al1-900k-55%). Several pouch cells

  8. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids.

    PubMed

    Borodin, Oleg; Smith, Grant D; Henderson, Wesley

    2006-08-31

    Molecular dynamics (MD) simulations have been performed on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (mppy(+)TFSI(-)) and N,N-dimethyl- pyrrolidinium bis(trifluoromethanesulfonyl)imide (mmpy(+)TFSI(+)) ionic liquids (ILs) doped with 0.25 mol fraction LiTFSI salt at 303-500 K. The liquid density, ion self-diffusion coefficients, and conductivity predicted by MD simulations were found to be in good agreement with experimental data, where available. MD simulations reveal that the Li(+) environment is similar in mppy(+)TFSI(-) and mmpy(+)TFSI(+) ILs doped with LiTFSI. The Li(+) cations were found to be coordinated on average by slightly less than four oxygen atoms with each oxygen atom being contributed by a different TFSI(-) anion. Significant lithium aggregation by sharing up to three TFSI(-) anions bridging two lithiums was observed, particularly at lower temperatures where the lithium aggregates were found to be stable for tens of nanoseconds. Polarization of TFSI(-) anions is largely responsible for the formation of such lithium aggregates. Li(+) transport was found to occur primarily by exchange of TFSI(-) anions in the first coordination shell with a smaller (approximately 30%) contribution also due to Li(+) cations diffusing together with their first coordination shell. In both ILs, ion self-diffusion coefficients followed the order Li(+) < TFSI(-) < mmpy(+) or mppy(+) with all ion diffusion in mmpy(+)TFSI(-) being systematically slower than that in mppy(+)TFSI(-). Conductivity due to the Li(+) cation in LiTFSI doped mppy(+)TFSI(-) IL was found to be greater than that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte but significantly lower than that for an ethylene carbonate/LiTFSI liquid electrolyte. Finally, the time-dependent shear modulus for the LiTFSI doped ILs was found to be similar to that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte on the subnanosecond time scale.

  9. Catalyst and electrolyte synergy in Li-O2 batteries.

    PubMed

    Gittleson, Forrest S; Sekol, Ryan C; Doubek, Gustavo; Linardi, Marcelo; Taylor, André D

    2014-02-21

    Understanding the interactions between catalyst and electrolyte in Li-O2 systems is crucial to improving capacities, efficiencies, and cycle life. In this study, supported noble metal catalysts Pt/C, Pd/C, and Au/C were paired with popular Li-O2 electrolyte solvents dimethoxyethane (DME), tetraglyme (TEGDME), and dimethyl sulfoxide (DMSO). The effects of these combinations on stability, kinetics, and activity were assessed. We show evidence of a synergistic effect between Pt and Pd catalysts and a DMSO-based electrolyte which enhances the kinetics of oxygen reduction and evolution reactions. DME and TEGDME are more prone to decomposition and less kinetically favorable for oxygen reduction and evolution than DMSO. While the order of oxygen reduction onset potentials with each catalyst was found to be consistent across electrolyte (Pd > Pt > Au), larger overpotentials with DME and TEGDME, and negative shifts in onset after only five cycles favor the stability of a DMSO electrolyte. Full cell cycling experiments confirm that catalyst-DMSO combinations produce up to 9 times higher discharge capacities than the same with TEGDME after 20 cycles (∼707.4 vs. 78.8 mA h g(-1) with Pd/C). Ex situ EDS and in situ EIS analyses of resistive species in the cathode suggest that improvements in capacity with DMSO are due to a combination of greater electrolyte conductivity and catalyst synergies. Our findings demonstrate that co-selection of catalyst and electrolyte is necessary to exploit chemical synergies and improve the performance of Li-O2 cells.

  10. On the structural and impedance characteristics of Li- doped PEO, using n-butyl lithium in hexane as dopant

    SciTech Connect

    Anand, P. B. E-mail: jayalekshmi@cusat.ac.in; Jayalekshmi, S. E-mail: jayalekshmi@cusat.ac.in

    2014-01-28

    Nowadays polymer based solid state electrolytes for applications in rechargeable battery systems are highly sought after materials, pursued extensively by various research groups worldwide. Numerous methods are discussed in literature to improve the fundamental properties like electrical conductivity, mechanical stability and interfacial stability of polymer based electrolytes. The application of these electrolytes in Li-ion cells is still in the amateur state, due to low ionic conductivity, low lithium transport number and the processing difficulties. The present work is an attempt to study the effects of Li doping on the structural and transport properties of the polymer electrolyte, poly-ethelene oxide (PEO) (Molecular weight: 200,000). Li doped PEO was obtained by treating PEO with n-Butyllithium in hexane for different doping concentrations. Structural characterization of the samples was done by XRD and FTIR techniques. Impedance measurements were carried out to estimate the ionic conductivity of Li doped PEO samples. It is seen that, the crystallinity of the doped PEO decreases on increasing the doping concentration. XRD and FTIR studies support this observation. It is inferred that, ionic conductivity of the sample is increasing on increasing the doping concentration since less crystallinity permits more ionic transport. Impedance measurements confirm the results quantitatively.

  11. Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin film

    NASA Technical Reports Server (NTRS)

    West, W. C.; Whitacre, J. F.; Lim, J. R.

    2004-01-01

    Sputter deposition of LiPON films directly onto high Li+ conductivity solid electrolyte plates has been investigated as a means to minimize the reactivity of the plates to metallic Li. The LiPON films were shown to effectively passivate the plates in contact with metallic Li, in contrast to unpassivated plates that reacted immediately in contact with Li metal.

  12. Stability of the Solid Electrolyte Interface on the Li Electrode in Li–S Batteries

    DOE PAGES

    Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang

    2016-04-05

    In this study, by means of high performance liquid chromatography–mass spectroscopy, the concentration of sulfur and polysulfides was determined in nonaqueous electrolytes. The stability of sulfur and Li in eight electrolytes was studied quantitatively. It was found that sulfur reacted with Li in most of the commonly used electrolytes for lithium–sulfur batteries. The reaction products between sulfur and Li were qualitatively identified. In some cases, the solid electrolyte interface on the Li can successfully prevent the interaction between S and Li; however, it was found that the solid electrolyte interface was damaged by polysulfide ions.

  13. Stability of the Solid Electrolyte Interface on the Li Electrode in Li–S Batteries

    SciTech Connect

    Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang

    2016-04-05

    In this study, by means of high performance liquid chromatography–mass spectroscopy, the concentration of sulfur and polysulfides was determined in nonaqueous electrolytes. The stability of sulfur and Li in eight electrolytes was studied quantitatively. It was found that sulfur reacted with Li in most of the commonly used electrolytes for lithium–sulfur batteries. The reaction products between sulfur and Li were qualitatively identified. In some cases, the solid electrolyte interface on the Li can successfully prevent the interaction between S and Li; however, it was found that the solid electrolyte interface was damaged by polysulfide ions.

  14. A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes.

    PubMed

    Smith, Grant D; Borodin, Oleg; Russo, Salvy P; Rees, Robert J; Hollenkamp, Anthony F

    2009-11-14

    We have performed atomistic molecular dynamics (MD) simulations of the (010) surface of LiFePO(4) in contact with an organic liquid electrolyte (OLE), ethylene carbonate : dimethyl carbonate (3 : 7) with approximately 1 mol kg(-1) LiPF(6), and an ionic liquid-based electrolyte (ILE), 1-ethyl 3-methyl-imidazolium: bis(fluorosulfonyl)imide (EMIM(+) : FSI(-)) with approximately 1 mol kg(-1) LiFSI. Surface-induced structure that extends about 1 nm from the LiFePO(4) surface was observed in both electrolytes. The electrostatic potential at the LiFePO(4) surface was found to be negative relative to the bulk electrolyte reflecting an excess of negative charge from the electrolyte coordinating surface Li(+). In the ILE system negative surface charge is partially offset by a high density of EMIM(+) cations coordinating surface oxygen. The electrostatic potential exhibits a (positive) maximum about 3 A from the LiFePO(4) surface which, when combined with the reduced ability of the highly structured electrolytes to solvate Li(+) cations, results in a free energy barrier of almost 4 kcal mol(-1) for penetration of the interfacial electrolyte layer by Li(+). The resistance for bringing Li(+) from the bulk electrolyte to the LiFePO(4) surface through this interfacial barrier was found to be small for both the OLE and ILE. However, we find that the ability of EMIM(+) cations to donate positive charge to LiFePO(4)/electrolyte interface may result in a significant decrease in the concentration of Li(+) at the surface and a corresponding increase in impedance to Li(+) intercalation into LiFePO(4), particularly at lower temperatures.

  15. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-04-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet-type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10(-3) to 10(-4) S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm(2) for the pristine garnet/Li and 75 ohm·cm(2) for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.

  16. Effect of Al2O3 on dielectric behavior of LiClO4/PVA polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Naik, Jagadish; Bhajantri, R. F.; Sheela, T.; Hebbar, Vidyashree

    2017-05-01

    The dielectric properties of lithium per chlorate (LiClO4)/polyvinylalcohol (PVA) solid polymer electrolyte dispersed with alumina (Al2O3) nanoparticles have been investigated in this work. Free standing films of Al2O3/LiClO4/PVA were prepared using solution casting method. FTIR results confirm the successful dispersion of Al2O3 in LiClO4/PVA polymer matrix. The variation in dielectric constant follows Non-Debye type behavior. The interfacial polarization phenomenon is the main reason for lower frequency regime variation in dielectric properties. The inertial properties of the dipoles play vital role in higher frequency regime. The composites with 5wt% Al2O3doped LiClO4/PVA show highest conductivity, can be used as an electrolyte with certain attainable modifications.

  17. Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives

    NASA Astrophysics Data System (ADS)

    Bhatt, Mahesh Datt; O'Dwyer, Colm

    2015-01-01

    Density functional theory is used to investigate the reactivity, reduction and effect of electrolyte additives such as fluoroethylene carbonate (FEC), lithium bis(oxalate) borate (LiBOB) and lithium difluoro(oxalato) borate (LiDFOB) in propylene carbonate (PC)-based Li-ion battery electrolytes. The structural, thermodynamical and calculated infra-red vibrational analyses indicate that FEC additives reduce prior to PC, providing stable SEI film formation near the graphite anode. The reduction and reaction mechanisms of LiBOB and LiDFOB influence the SEI film composition at the graphite surface. These additives contribute to stable SEI film formation without degradation of the anode structure by PC co-intercalation.

  18. Simulated electrolyte-metal interfaces -- Li3PO4 and Li

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Du, Yaojun A.; Holzwarth, N. A. W.

    2007-03-01

    There has recently been a lot of interest in solid electrolyte materials such as LiPON developed at Oak Ridge National Laboratory for use in Li-ion batteries and other technologies. We report on the results of our model calculations on idealized interfaces between Li3PO4 and Li metal, studying the structural stability and the ion mobility, using first-principles density functional techniques with the PWscf and pwpaw codes. Starting with a supercell constructed from Li3PO4 in its crystalline γ-phase structure and several layers of Li metal, we used optimization and molecular dynamics techniques to find several meta-stable configurations. The qualitative features of the results are consistent with experimental evidence that the electrolyte is quite stable with respect to Li metal. In addition to stability analyses, we plan to study Li-ion diffusion across the interface. J. B. Bates, N. J. Dudney, and co-workers, Solid State Ionics, 53-56, 647-654 (1992). http://www.pwscf.org and http://pwpaw.wfu.edu. N. J. Dudney in Gholam-Abbas Nazri and Gianfranco Pistoia, Eds., Lithium Batteries: Science and Technology, Chapt. 20, pp. 623-642, Kluwer Academic Publishers, 2004. ISBN 1-4020-7628-2.

  19. Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seitaro; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2016-11-01

    Ionic liquids (ILs) containing zwitterions have been studied as electrolytes for lithium-ion batteries (LIBs). The effects of addition of a pyrrolidinium zwitterion in an IL electrolyte on the thermal and electrochemical stability and charge/discharge properties of Li/LiCoO2 and graphite/Li cells were investigated. The thermal decomposition temperature of the IL electrolyte composed of N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ([P13][FSA])/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) with 3-(1-butylpyrrolidinium)propane-1-sulfonate (Bpyps) as the zwitterionic additive, the thermal decomposition temperature was about 300 °C. The electrochemical window of [P13][FSA]/LiTFSA/Bpyps was 0-+5.4 V vs. Li/Li+, which was almost identical to that of [P13][FSA]/LiTFSA. Li|electrolyte|LiCoO2 cells containing the IL/Bpyps electrolyte system exhibited high capacities in the cut-off voltage range of 3.0-4.6 V, even after 50 cycles. The increase in the interfacial resistance between the electrolyte and cathode with cycling was suppressed. In the cyclic voltammograms of cells employing a graphite electrode, the intercalation/deintercalation of lithium ions were observed in the range of 0 and + 0.4 V vs. Li/Li+. Further, graphite|electrolyte|Li cells containing [P13][FSA]/LiTFSA/Bpyps exhibited stable charge/discharge cycle behaviour over 50 cycles.

  20. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes

    SciTech Connect

    Mikhaylik, Yuriy

    2014-09-30

    Sion Power focused on metallic lithium anode protection, employing the Dual-Phase Electrolyte approach. The objective of this project was to develop a unique electrolyte providing two liquid phases having good Li+ conductivity, self-partitioning and immiscibility, serving separately the cathode and anode electrodes. This Dual-Phase Electrolyte was combined with thin film multi-layer, physical barrier membranes developed partially under a separate ARPA-E funded project. All these protective structures were stabilized by externally applied pressure. This strategy was used for Li-S cells. The development directly addressed cell safety, particularly higher thermal stability, while also allowing higher energies and cycle life. Safety tests showed that 100% of cells with Dual-Phase Electrolyte were intact and did not exhibit thermal runaway up to 178 °C and thus met the project objective of increasing the runaway temperature to >165°C. Cells also passed cycling at USABC Dynamic Stress Test conditions developed for Electric Vehicle applications and generated specific energy > 300 Wh/kg.

  1. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  2. A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery.

    PubMed

    Hu, J J; Long, G K; Liu, S; Li, G R; Gao, X P

    2014-12-04

    LiFSI and LiTFSI are combined to form a binary-salt electrolyte with higher ionic conductivity and lower viscosity for a Li-S battery. A high capacity and stable cycle performance of the sulfur-based composite with high sulfur content are realized in the electrolyte, accompanied simultaneously by the homogeneous lithium deposition on the anode.

  3. Transport measurement of Li doped monolayer graphene

    NASA Astrophysics Data System (ADS)

    Khademi, Ali; Sajadi, Ebrahim; Dosanjh, Pinder; Folk, Joshua; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich

    Lithium adatoms on monolayer graphene have been predicted to induce superconductivity with a critical temperature near 8 K, and recent experimental evidence by ARPES indicates a critical temperature nearly that high. Encouraged by these results, we investigated the effects of lithium deposited at cryogenic temperatures on the electronic transport properties of epitaxial and CVD monolayer graphene down to 3 K. The change of charge carrier density due to Li deposition was monitored both by the gate voltage shift of the Dirac point and by Hall measurements, in low and high doping regimes. In the high doping regime, a saturation density of 2×1013 cm-2 was observed independent of sample type, initial carrier density and deposition conditions. No signatures of superconductivity were observed down to 3 K.

  4. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping.

    PubMed

    Ning, Guoqing; Ma, Xinlong; Zhu, Xiao; Cao, Yanming; Sun, Yuzhen; Qi, Chuanlei; Fan, Zhuangjun; Li, Yongfeng; Zhang, Xin; Lan, Xingying; Gao, Jinsen

    2014-09-24

    Here, we report a new approach to synthesizing S-doped porous carbons and achieving both a high capacity and a high Coulombic efficiency in the first cycle for carbon nanostructures as anodes for Li ion batteries. S-doped porous carbons (S-PCs) were synthesized by carbonization of pitch using magnesium sulfate whiskers as both templates and S source, and a S doping up to 10.1 atom % (corresponding to 22.5 wt %) was obtained via a S doping reaction. Removal of functional groups or highly active C atoms during the S doping has led to formation of much thinner solid-electrolyte interface layer and hence significantly enhanced the Coulombic efficiency in the first cycle from 39.6% (for the undoped porous carbon) to 81.0%. The Li storage capacity of the S-PCs is up to 1781 mA h g(-1) at the current density of 50 mA g(-1), more than doubling that of the undoped porous carbon. Due to the enhanced conductivity, the hierarchically porous structure and the excellent stability, the S-PC anodes exhibit excellent rate capability and reliable cycling stability. Our results indicate that S doping can efficiently promote the Li storage capacity and reduce the irreversible Li combination for carbon nanostructures.

  5. Superconductivity in Li-doped {alpha}-rhombohedral boron

    SciTech Connect

    Nagatochi, T.; Sumiyoshi, A.; Kimura, K.; Hyodo, H.; Soga, K.; Sato, Y.; Terauchi, M.; Esaka, F.

    2011-05-01

    Metal transition and superconductivity were observed in Li-doped {alpha}-rhombohedral boron ({alpha}-B{sub 12}). The authors have established a purification method and obtained a large amount of high-purity {alpha}-B{sub 12} powder. Li doping into purified {alpha}-B{sub 12} was attempted by vapor diffusion processing (VDP) in a Mo or Ta tube. Li-doped {alpha}-B{sub 12} contained metallic glittering particles. Meissner effects were observed in such a compound with the nominal composition Li{sub x}B{sub 12} (x = 1.0, 1.4, 1.5, 1.7, or 2.5) (T{sub c} = 3.2-7 K). As for Li{sub 2.5}B{sub 12}, the temperature dependence of its electrical conductivity indicates a metallic character and its electrical resistivity drop is detected near the Meissner temperature. The existence of Li and Fermi edges in Li-doped {alpha}-B{sub 12} crystals was verified by transmission electron microscopy-electron energy loss spectroscopy (TEM-EELS). Lattice expansion, which is a well-known indicator of metal doping into a crystal, was also observed. Thus, Li doping into {alpha}-B{sub 12} was successfully achieved. Our work also suggests that it is possible to dope a larger amount of Li into {alpha}-B{sub 12} and to increase its T{sub c}.

  6. The Doping Effect on Conductivity and Glass Transition Temperature of Solid Polymeric Electrolyte Based on Polyvinylchloride (pvc)

    NASA Astrophysics Data System (ADS)

    Abd. Rahman, Mohd. Yusri; Mat Salleh, Muhammad; Abu Talib, Ibrahim; Yahaya, Muhamad

    2002-12-01

    Solid electrolyte materials have been widely used in electrochemical devices such as batteries, solar cells and displays. This is because of its advantages over the liquidmaterial.This paper is concerned with the preparation of solid polymeric electrolyte based on polyvinylchloride (PVC) and its conductivity .The effect of percentage by weight of dopant material (LiClO4) on conductivity and glass transition temperature of the electrolyte was studied by using differential scanning calorimeter (DSC) and impedance spectroscopy technique. The electrolyte doped with 4.8%wt LiClO4 exhibits the highest conductivitiy of 7 × 10-6Scm-1 at room temperature but has the lowest glass transition temperature of 36.37°C. The other results are presented in this paper.

  7. Effects of electrolyte salts on the performance of Li-O2 batteries

    SciTech Connect

    Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Burton, Sarah D.; Cosimbescu, Lelia; Gross, Mark E.; Zhang, Jiguang

    2013-02-05

    It is well known that the stability of nonaqueous electrolyte is critical for the rechargeable Li-O2 batteries. Although stability of many solvents used in the electrolytes has been investigated, considerably less attention has been paid to the stability of electrolyte salt which is the second major component. Herein, we report the systematic investigation of the stability of seven common lithium salts in tetraglyme used as electrolytes for Li-O2 batteries. The discharge products of Li-O2 reaction were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy. The performance of Li-O2 batteries was strongly affected by the salt used in the electrolyte. Lithium tetrafluoroborate (LiBF4) and lithium bis(oxalato)borate (LiBOB) decompose and form LiF and lithium borates, respectively during the discharge of Li-O2 batteries. Several other salts, including lithium bis(trifluoromethane)sulfonamide (LiTFSI), lithium trifluoromethanesulfonate (LiTf), lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4) , and lithium bromide (LiBr) led to the discharge products which mainly consisted of Li2O2 and only minor signs of decomposition of LiTFSI, LiTf, LPF6 and LiClO4 were detected. LiBr showed the best stability during the discharge process. As for the cycling performance, LiTf and LiTFSI were the best among the studied salts. In addition to the instability of lithium salts, decomposition of tetraglyme solvent was a more significant factor contributing to the limited cycling stability. Thus a more stable nonaqueous electrolyte including organic solvent and lithium salt still need to be further developed to reach a fully reversible Li-O2 battery.

  8. Unusual Li-Ion Transfer Mechanism in Liquid Electrolytes: A First-Principles Study.

    PubMed

    Tang, Zhen-Kun; Tse, John S; Liu, Li-Min

    2016-11-17

    Liquid electrolytes play an important role in commercial lithium-ion (Li-ion) batteries as a conduit for Li-ion transfer between anodes and cathodes. It is generally believed that the Li-ions move along with the salt ions; thus, Li-ion diffusion is only affected by the viscosity and salt concentration in the liquid electrolytes based on the Stokes-Einstein equation. In this study, a novel and faster Li-ion diffusion mechanism in electrolytes containing a cyanogen group is identified from first-principles molecular dynamics (FPMD) simulations. In this mechanism, the Li-ions are first detached from the Li-salt and then diffuse along with the solvent molecules, and the Li-ion diffusion does not obey the traditional Stokes-Einstein equation. The ionic conductivity of the electrolyte systems with this "solvent-assisted Li-ion diffusion" mechanism is further enhanced through Li-ion hopping. This novel Li-ion diffusion process explains recent findings of high Li-ion conductivity in electrolytes with cyanogen groups and furnishes a new paradigm for the design of fast-charging liquid electrolyte for Li-ion batteries.

  9. Composite polymer electrolyte for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Xu, Fan; Cheng, Yan; Jiang, Zhiyu

    2002-06-01

    A new method presented in this work mainly describes how to produce polymer electrolyte membranes by using water as plasticizer. Compared with the membranes made by traditional methods, the membranes made by the new method have the properties of easy handling and free-standing. The results of Ac impedance suggest that the polymer electrolyte membranes have high ionic conductivity. Moreover, the images of SEM show that the porous and alveolate structures are greatly improved. It is more important that using water as plasticizer can lower the cost of producing Li-ion batteries and eliminate the pollution produced in process of plasticizer extraction, in which some volatile solvents were used in traditional methods.

  10. Superconductivity in Li-doped α-rhombohedral boron

    NASA Astrophysics Data System (ADS)

    Nagatochi, T.; Hyodo, H.; Sumiyoshi, A.; Soga, K.; Sato, Y.; Terauchi, M.; Esaka, F.; Kimura, K.

    2011-05-01

    Metal transition and superconductivity were observed in Li-doped α-rhombohedral boron (α-B12). The authors have established a purification method and obtained a large amount of high-purity α-B12 powder. Li doping into purified α-B12 was attempted by vapor diffusion processing (VDP) in a Mo or Ta tube. Li-doped α-B12 contained metallic glittering particles. Meissner effects were observed in such a compound with the nominal composition LixB12 (x = 1.0, 1.4, 1.5, 1.7, or 2.5) (Tc = 3.2-7 K). As for Li2.5B12, the temperature dependence of its electrical conductivity indicates a metallic character and its electrical resistivity drop is detected near the Meissner temperature. The existence of Li and Fermi edges in Li-doped α-B12 crystals was verified by transmission electron microscopy-electron energy loss spectroscopy (TEM-EELS). Lattice expansion, which is a well-known indicator of metal doping into a crystal, was also observed. Thus, Li doping into α-B12 was successfully achieved. Our work also suggests that it is possible to dope a larger amount of Li into α-B12 and to increase its Tc.

  11. Method for treating electrolyte to remove Li.sub.2 O

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.; Johnson, Gerald K.; Willit, James L.

    1998-01-01

    A method of removing Li.sub.2 O present in an electrolyte predominantly of LiCl and KCl. The electrolyte is heated to a temperature not less than about 500.degree. C. and then Al is introduced into the electrolyte in an amount in excess of the stoichiometric amount needed to convert the Li.sub.2 O to a Li-Al alloy and lithium aluminate salt. The salt and aluminum are maintained in contact with agitation for a time sufficient to convert the Li.sub.2 O.

  12. Method for treating electrolyte to remove Li{sub 2}O

    DOEpatents

    Tomczuk, Z.; Miller, W.E.; Johnson, G.K.; Willit, J.L.

    1998-01-20

    A method is described for removing Li{sub 2}O present in an electrolyte predominantly of LiCl and KCl. The electrolyte is heated to a temperature not less than about 500 C and then Al is introduced into the electrolyte in an amount in excess of the stoichiometric amount needed to convert the Li{sub 2}O to a Li-Al alloy and lithium aluminate salt. The salt and aluminum are maintained in contact with agitation for a time sufficient to convert the Li{sub 2}O.

  13. Electrolytic coloration and spectral properties of OH --doped KBr polycrystals

    NASA Astrophysics Data System (ADS)

    Gu, Hongen; Liu, Jia; Qin, Fang; Wang, Fen; Chen, Weiwei

    2009-08-01

    OH --doped KBr polycrystals were colored electrolytically by using a pointed cathode and a flat anode. Characteristic O -, OH -, U, Cu + and O-Va+ absorption peaks were observed in resolved absorption spectrum of uncolored polycrystals. Herein the position of the O-Va+ absorption peak at room temperature was determined by using a Mollwo-Ivey plot. Characteristic V 2, V 3, Cu +, O-Va+,I2-, I 2 and F spectral bands were observed in Kubelka-Munk functions of colored polycrystals. Current-time curve for electrolytic coloration of an OH --doped KBr polycrystal and its relationship with electrolytic coloration process were given. Formation and conversion of color centers were explained.

  14. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K.

    Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO 4 cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is ≥40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO 4 is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO 4 cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g -1 at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g -1 with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO 4//Li 4Ti 5O 12 with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate. This study indicates that safety and

  15. Li2OHCl crystalline electrolyte for stable metallic lithium anodes

    SciTech Connect

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; Keum, Jong Kahk; Liang, Chengdu

    2016-01-22

    In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solid electrolytes where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.

  16. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  17. Physical properties of Li ion conducting polyphosphazene based polymer electrolytes

    SciTech Connect

    Sanderson, S.; Zawodzinski, T.; Hermes, R.; Davey, J.; Dai, Hongli

    1996-12-31

    We report a systematic study of the transport properties and the underlying physical chemistry of some polyphosphazene (PPhz)-based polymer electrolytes. We synthesized MEEP and variants which employed mixed combinations of different length oxyethylene side-chains. We compare the conductivity and ion-ion interactions in polymer electrolytes obtained with lithium triflate and lithium bis(trifluoromethanesulfonyl)imide (TFSI) salts added to the polymer. The combination of the lithium imide salt and MEEP yields a maximum conductivity of 8 x 10{sup -5} {Omega}{sup -1} cm{sup -1} at room temperature at a salt loading of 8 monomers per lithium. In one of the mixed side-chain variations, a maximum conductivity of 2 x 10{sup -4} {Omega}{sup -1} cm{sup -1} was measured at the same molar ratio. Raman spectral analysis shows some ion aggregation and some polymer - ion interactions in the PPhz-LiTFSI case but much less than observed with Li CF{sub 3}SO{sub 3}. A sharp increase in the Tg as salt is added corresponds to concentrations above which the conductivity significantly decreases and ion associations appear.

  18. Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes

    NASA Astrophysics Data System (ADS)

    Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.

    2016-10-01

    We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.

  19. Comparative study of EC/DMC LiTFSI and LiPF 6 electrolytes for electrochemical storage

    NASA Astrophysics Data System (ADS)

    Dahbi, Mouad; Ghamouss, Fouad; Tran-Van, François; Lemordant, Daniel; Anouti, Mérièm

    Lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) salt are potentially a good alternative to LiPF 6 since it could both improve the chemical and thermal stability as salt for electrolyte. This work presents a systematic comparative study between LiPF 6 and LiTFSI in a mixture of EC/DMC on the basis of some of their physicochemical properties. Transport properties (viscosity and conductivity) are compared at various temperatures from -20 to 80 °C. Using Walden rule, we have demonstrated that LiTFSI 1 M in EC/DMC is more ionic than LiPF 6 1 M in the same binary solvent. Moreover, the electrochemical storage properties of an activated carbon electrode were investigated in EC/DMC mixture containing LiTFSI or LiPF 6. The specific capacitance C s of activated carbon was determined from the Galvanostatic charge-discharge curve between 2 and 3.7 V, at low current densities. The capacitance values were found to be 100 and 90 F g -1 respectively for LiTFSI and LiPF 6 electrolytes at 2 mA g -1. On the basis of the physicochemical and electrochemical measurements, we have correlated the improvement of the specific capacitance with activated carbon to the increase of the ionicity of the LiTFSI salt in EC/DMC binary system. The drawback concerning the corrosion of aluminium collectors was resolved by adding a few percentage of LiPF 6 (1%) in the binary electrolyte. Finally, we have studied the electrochemical behavior of intercalation-deintercalation of lithium in the graphite electrode with EC/DMC + LiTFSI as electrolyte. Results of this study indicate that the realization of asymmetric graphite/activated carbon supercapacitors with LiFTSI based electrolyte is possible.

  20. Design and synthesis of a crystalline LiPON electrolyte

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Senevirathne, Keerthi; Day, Cynthia S.; Lachgar, Abdessadek; Gross, Michael D.

    2013-03-01

    In the course of a computation study of the broad class of lithium phosphorus oxy-nitride materials of interest for solid electrolyte applications, Du and Holzwarth, [2] recently predicted a stable crystalline material with the stoichiometry Li2PO2N. The present paper reports the experimental preparation of the material using high temperature solid state synthesis and reports the results of experimental and calculational characterization studies. The so-named SD -Li2PO2N crystal structure has the orthorhombic space group Cmc21 with lattice constants a=9.0692(4) Å, b=5.3999(2) Å, and c=4.6856(2) Å. The structure is similar but not identical to the predicted structure, characterized by parallel arrangements of anionic phosphorus oxy-nitride chains having planar P -N -P -N backbones. Nitrogen 2p π states contribute to the strong bonding and to the chemical and thermal stablility of the material in air up to 600° C and in vacuum up to 1050° C. The measured Arrhenius activation energy for ionic conductivity is 0.6 eV which is comparable to computed vacancy migration energies in the presence of a significant population of Li+ ion vacancies. Supported by NSF grant DMR-1105485 and by a grnat from the Wake Forest University Center for Energy, Environment, and Sustainability.

  1. Electrochemical properties of dual phase neodymium-doped ceria alkali carbonate composite electrolytes in intermediate temperature

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Tae; Lee, Tae-Hee; Park, Ka-Young; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-02-01

    Composite electrolyte materials composed of neodymium-doped ceria (Nd0.2Ce0.8O1.9; NDC) and (Li-0.5Na)2CO3 are investigated to understand the unique behaviors of their multi-ionic conduction. In the intermediate temperature, the NDC-based carbonate composite electrolytes exhibit a much higher conductivity compared to pure NDC. It has been claimed that the oxide ions are transported in the doped-ceria phase via oxygen vacancies and the protons are conducted through the second carbonate phase, thereby resulting in an enhanced ionic conductivity. However, it has not been experimentally demonstrated if the proton conduction within the carbonate phase aided in improving the conductivity of oxygen ions in the composite system. Hence, the primary objective of this work is to cultivate a deeper insight into the conduction property of these composites as an attempt to clarify the ionic transport phenomenon responsible for enhanced conductivity. Electrical conductivities of NDC and NDC/carbonate materials are investigated as a function of oxygen partial pressure and vapor pressure of water to understand transport properties of composite electrolytes. The ionic and electronic transference numbers of composite electrolytes are measured by the oxygen- and hydrogen-concentration cells containing water. The dominant charge carriers are identified quantitatively through the analysis of the partial conductivity of proton, oxygen ions, and electrons (holes). Understanding the transport properties and transference numbers of composite electrolytes can contribute to the development of commercial solid oxide fuel cells, which can be done by reducing the operating temperature using a highly ionic conductive NDC/carbonate composite electrolyte at the intermediate temperature.

  2. Electrolytic coloration of hydroxyl-doped potassium iodide polycrystals

    NASA Astrophysics Data System (ADS)

    Wang, Na; Gu, Hongen; Han, Li; Guo, Meili; Qin, Fang

    2007-03-01

    Hydroxyl-doped potassium iodide polycrystals were successfully colored electrolytically by using a pointed cathode and a flat anode at various temperatures and electric field strengths, which mainly benefits appropriate coloration temperatures and electric field strengths. Characteristic OH-, O2--Va+ , U, V2, V3, Cu+, Cu-related, I2- , I2, K, F, R1 and R2 spectral bands were observed in Kubelka-Munk functions of the colored polycrystals, and the OH- and O2--Va+ spectral bands at room temperature were determined from Mollwo-Ivey plots. Color center formation in the electrolytic coloration was explained.

  3. One-pot liquid phase synthesis of (100-x)Li3PS4-xLiI solid electrolytes

    NASA Astrophysics Data System (ADS)

    Phuc, Nguyen Huu Huy; Hirahara, Eito; Morikawa, Kei; Muto, Hiroyuki; Matsuda, Atsunori

    2017-10-01

    (100-x)Li3PS4-xLiI solid electrolytes are successfully prepared using a simple process proposed in this study. The results show that the heat-treatment process plays a crucial role in the formation of the final product. In the case of x = 33.3%, 2Li3PS4-1LiI, a nearly pure crystalline phase of Li7P2S8I (LPSI), is obtained. The cyclic voltammogram result and DC polarization curves indicate that the interfacial layer between LPSI and the Li metal is stable. Li2S, LiI, Li5P, Li4P2S6, and some unknown substances were detected in the interfacial layer by XRD.

  4. Molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory

    NASA Astrophysics Data System (ADS)

    Pu, Weihua; He, Xiangming; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong

    2005-12-01

    A method is proposed to calculate molar conductivity based on mode coupling theory in which the ion transference number is introduced into the theory. The molar conductivities of LiPF6, LiClO4, LiBF4, LiAsF6 in PC (propylene carbonate) are calculated based on this method. The results fit well to the literature data. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.

  5. Molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory.

    PubMed

    Pu, Weihua; He, Xiangming; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong

    2005-12-15

    A method is proposed to calculate molar conductivity based on mode coupling theory in which the ion transference number is introduced into the theory. The molar conductivities of LiPF6, LiClO4, LiBF4, LiAsF6 in PC (propylene carbonate) are calculated based on this method. The results fit well to the literature data. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.

  6. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    PubMed

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  7. Restricting the Solubility of Polysulfides in Li-S Batteries Via Electrolyte Salt Selection

    SciTech Connect

    Chen, Junzheng; Han, Kee Sung; Henderson, Wesley A.; Lau, Kah Chun; Vijayakumar, Murugesan; Dzwiniel, Trevor; Pan, Huilin; Curtiss, Larry A.; Xiao, Jie; Mueller, Karl T.; Shao, Yuyan; Liu, Jun

    2016-03-29

    Polysulfide solubility in the electrolyte has a critical role to the Li-S battery but the mechanism study on the solubility needs to be carefully carried out. In this paper we found that lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI) reveals a suppression of the polysulfide solubility in electrolytes (relative to the most widely used electrolyte formulation) and the Li-S cells achieved homogeneous stable capacity retention upon extensive cycling and Li metal deposition on the anode. Combined experimental, simulation and calculation methods suggest the dominate disproportionation product of Li2S8 is Li2S4 in the LiTDI electrolyte due to a different interaction between lithium ion and TDI anion. The Li2S4 would continuesly form a Li4S8 dimer and be fully locallized to precipitate out. The use of the electrolyte with the LiTDI salt (with polysulfide and LiNO3 additives) enabled a cell with a high sulfur (3 mg-S cm-2) loading to deliver a 1.67 mAh cm-2 areal capacity after 300 stable cycles at a high current (2.4 mA cm-2) density.

  8. Enhanced Performance of Li|LiFePO4 Cells Using CsPF6 as an Electrolyte Additive

    SciTech Connect

    Xiao, Liang; Chen, Xilin; Cao, Ruiguo; Qian, Jiangfeng; Xiang, Hongfa; Zheng, Jianming; Zhang, Jiguang; Xu, Wu

    2015-10-20

    The practical application of lithium (Li) metal anode in rechargeable Li batteries is hindered by both the growth of Li dendrites and the low Coulombic efficiency (CE) during repeated charge/discharge cycles. Recently, we have discovered that CsPF6 as an electrolyte additive can significantly suppress Li dendrite growth and lead to highly compacted and well aligned Li nanorod structure during Li deposition on copper substrates. In this paper, the effect of CsPF6 additive on the performance of rechargeable Li metal batteries with lithium iron phosphate (LFP) cathode was further studied. Li|LFP coin cells with CsPF6 additive in electrolytes show well protected Li anode surface, decreased resistance, enhanced rate capability and extended cycling stability. In Li|LFP cells, the electrolyte with CsPF6 additive shows excellent long-term cycling stability (at least 500 cycles) at a charge current density of 0.5 mA cm-2 without internal short circuit. At high charge current densities, the effect of CsPF6 additive becomes less significant. Future work needs to be done to protect Li metal anode, especially at high charge current densities and for long cycle life.

  9. Enhanced performance of Li|LiFePO4 cells using CsPF6 as an electrolyte additive

    NASA Astrophysics Data System (ADS)

    Xiao, Liang; Chen, Xilin; Cao, Ruiguo; Qian, Jiangfeng; Xiang, Hongfa; Zheng, Jianming; Zhang, Ji-Guang; Xu, Wu

    2015-10-01

    The practical application of lithium (Li) metal anode in rechargeable Li batteries is hindered by both the growth of Li dendrites and the low Coulombic efficiency (CE) during repeated charge/discharge cycles. Recently, we have discovered that CsPF6 as an electrolyte additive can significantly suppress Li dendrite growth and lead to highly compacted and well aligned Li nanorod structures during Li deposition on copper substrates. In this paper, the effect of CsPF6 additive on the performance of rechargeable Li metal batteries with lithium iron phosphate (LFP) cathode is further studied. Li|LFP coin cells with CsPF6 additive in electrolytes show well protected Li anode surface, decreased resistance, enhanced rate capability and extended cycling stability. In Li|LFP cells, the electrolyte with CsPF6 additive shows excellent long-term cycling stability (at least 500 cycles) at a charge current density of 0.5 mA cm-2 without internal short circuit. At high charge current densities, the effect of CsPF6 additive becomes less significant. Future work needs to be done to protect Li metal anode, especially at high charge current densities and for long cycle life.

  10. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    SciTech Connect

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  11. Performance of new 10 kW class MCFC using Li/K and Li/Na electrolyte

    SciTech Connect

    Mugikura, Yoshihiro; Yoshiba, Fumihiko; Izaki, Yoshiyuki; Watanabe, Takao

    1996-12-31

    The molten carbonate fuel cell (MCFC) uses generally mixture of lithium carbonate and potassium carbonate (Li/K) as the electrolyte. NiO cathode dissolution is one of serious problems for MCFC life. The NiO cathode has been found to dissolve into the electrolyte as Ni{sup 2+} ion which is reduced to metallic Ni by H{sub 2} in the fuel gas and bridges the anode and the cathode. The bridges short circuit and degrade cell performance and shorten cell life. Since solubility of NiO in mixture of lithium carbonate and sodium carbonate (Li/Na) is lower than in Li/K, it takes longer time to take place slowing by NiO cathode dissolution in Li/Na compared with in Li/K. The ionic conductivity of Li/Na is higher than of Li/K, however, oxygen solubility in Li/Na is lower 9 than in Li/K. A new 10 kW class MCFC stack composed of Li/K cells and Li/Na cells, was tested. Basic performance of the Li/K cells and Li/Na cells of the stack was reported.

  12. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    DOE PAGES

    Adams, Brian D.; Carino, Emily V.; Connell, Justin G.; ...

    2017-09-08

    The lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, low Coulombic efficiency (CE) during repeated Li metal plating/stripping has severely limited the practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on a high concentration of LiNO3 in diglyme (G2) solvent is developed which enables an exceptionally high CE for Li metal plating/stripping and thus high stability of the Li anode in the sulfur-containing electrolyte.more » The tailoring of electrolyte properties for the Li anode has proven to be a highly successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE of greater than 99% for over 200 cycles of Li plating/stripping. In contrast, the Li anode cycles for less than 35 cycles (with a high CE) in the state-of-the-art 1 M LiTFSI + 0.3 M LiNO3 in 1,3-dioxolane:1,2-dimethoxyethane (DOL:DME) electrolyte under the same conditions. Lastly, the stable Li anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.« less

  13. Li-ion battery electrolyte formulated for low-temperature applications

    SciTech Connect

    Ein-Eli, Y.; Thomas, S.R.; Chadha, R.; Blakley, T.J.; Koch, V.R.

    1997-03-01

    Low-temperature (<0 C) applications of Li-ion batteries have prompted the search for improved, high-conductivity electrolytes. Because the performance of the carbonaceous anode is highly sensitive to changes in electrolyte composition, the authors focused their efforts on this electrode. Electrolytes containing LiAsF{sub 6}, LiPF{sub 6}, LiN(SO{sub 2}CF{sub 3}){sub 2}[lithium bis(trifluoromethanesulfonyl)imide], or LiIm, and LiC(SO{sub 2}CF{sub 3}){sub 3} [lithium tris(trifluoromethanesulfonyl)methide], or LiMe, in methyl formate (MF)-ethylene carbonate (EC) solvent mixtures were tested in lithium-graphite half-cells. The graphite electrodes could be cycled at ambient temperature with high reversible capacity. The best supporting electrolyte was found to be LiAsF{sub 6}, and the presence of a high concentration of ethylene carbonate and up to 300 ppm H{sub 2}O in the solution considerably increased the reversible capacity upon cycling. The conductivity values of a binary solvent mixture of methyl formate and ethylene carbonate containing LiAsF{sub 6} or LiMe were measured between {minus}40 C and room temperature. Graphite electrodes cycled at {minus}2 C in these electrolytes obtained reasonable reversible capacity, approaching 50%.

  14. Direct observation of Li diffusion in Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Guohua; Yu, Lei; Hudak, Bethany M.; Chang, Yao-Jen; Baek, Hyeonjun; Sundararajan, Abhishek; Strachan, Douglas R.; Yi, Gyu-Chul; Guiton, Beth S.

    2016-05-01

    The direct observation of Li diffusion in Li-doped zinc oxide nanowires (NWs) was realized by using in situ heating in the scanning transmission electron microscope (STEM). A continuous increase of low atomic mass regions within a single NW was observed between 200 °C and 600 °C when heated in vacuum, which was explained by the conversion of interstitial to substitutional Li in the ZnO NW host lattice. A kick-out mechanism is introduced to explain the migration and conversion of the interstitial Li (Lii) to Zn-site substitutional Li (LiZn), and this mechanism is verified with low-temperature (11 K) photoluminescence measurements on as-grown and annealed Li-doped zinc oxide NWs, as well as the observation of an increase of NW surface roughing with applied bias.

  15. Performance and discharge characteristics of doped (beta) MnO2 in H2SO4 electrolyte

    NASA Astrophysics Data System (ADS)

    Desai, Buqui D.; Lobo, Fernando S.; Kamatdalal, V. N.

    1994-10-01

    Doped manganese dioxides (beta-MnO2) were prepared by thermal decomposition (180 C) of manganese nitrate in the presence of weighed quantities of NH4VO3, Na2WO4 center-dot 2H2O, LiNO3, AgNO3, or MoO3. Detailed chemical analyses, surface area, and pycnometric density determinations were carried out, and the electrochemical performance was evaluated in H2SO4 (8 N) electrolyte. The discharge behavior was monitored using constant currents and constant resistances (both continuous and intermittent discharge). Some of the Mo-doped samples together with the Li- and Ag-doped materials performed well as cathodes in H2SO4. The consistency of discharge duration under different discharge regimes was a marked feature of the behavior of some of the compositions.

  16. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Petibon, Remi; Xiong, Deijun; Ma, Lin; Dahn, J. R.

    2016-10-01

    Some of the problems of current electrolytes for high voltage Li-ion cells originate from ethylene carbonate (EC) which is thought to be an essential electrolyte component for Li-ion cells. Ethylene carbonate-free electrolytes containing 1 M LiPF6 in ethylmethyl carbonate (EMC) with small loadings of vinylene carbonate, fluoroethylene carbonate, or (4R,5S)-4,5-Difluoro-1,3-dioxolan-2-one acting as ;enablers; were developed. These electrolytes used in Li(Ni0.4Mn0.4Co0.2)O2/graphite pouch type Li-ion cells tested at 4.2 V and 4.5 V yielded excellent charge-discharge cycling and storage properties. The results for cells containing linear alkyl carbonate electrolytes with no EC were compared to those of cells with EC-containing electrolytes incorporating additives proven to enhance cyclability of cells. The combination of EMC with appropriate amounts of these enablers yields cells with better performance than cells with EC-containing electrolytes incorporating additives tested to 4.5 V. Further optimizing these linear alkyl carbonate electrolytes with appropriate co-additives may represent a viable path to the successful commercial utilization of NMC/graphite Li-ion cells operated to 4.5 V and above.

  17. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    NASA Astrophysics Data System (ADS)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  18. Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance

    NASA Astrophysics Data System (ADS)

    Giffin, Guinevere A.; Moretti, Arianna; Jeong, Sangsik; Passerini, Stefano

    2017-02-01

    Ionic liquids are attractive materials for alternative electrolytes to combat the safety issues associated with conventional organic carbonate-based electrolytes. However, the performance of ionic liquid-based cells is generally not competitive as the high viscosity and low conductivity limits the rate performance. The work presented here demonstrates that the drawbacks in terms of rate capability can be overcome through the use of the high lithium concentration Pyr12O1FTFSI0.6LiFTFSI0.4 electrolyte. Despite an order of magnitude difference in the conductivity and viscosity, this high concentration electrolyte outperforms the lithium-dilute electrolyte with the same components in terms of rate capability in Li metal/LFP cells and LTO/LFP cells. The results suggest that the effective Li ion transport in the concentrated electrolyte is higher than in the dilute solution.

  19. Synthesis and characterization of PVA blended LiClO4 as electrolyte material for battery Li-ion

    NASA Astrophysics Data System (ADS)

    Gunawan, I.; Deswita; Sugeng, B.; Sudaryanto

    2017-07-01

    It have been synthesized the materials for Li ion battery electrolytes, namely PVA with the addition of LiClO4 salt were varied 0, 5, 10, 15 and 20% by weight respectively. The objective of this study is to control the ionic conductivity in traditional polymer electrolytes, to improve ionic conductivity with the addition of lithium perchlorat (LiClO4). These electrolyte materials prepared by PVA powder was dissolved into distilled water and added LiClO4 salt were varied. After drying the solution, PVA sheet blended LiClO4 salt as electrolyte material for Li ion battery obtained. PVA blended LiClO4 salt crystallite form was confirmed using X-Ray Difraction (XRD) equipment. Observation of the morphology done by using Scanning Electron Microscope (SEM). While the electrical conductivity of the material is measured using LCR meter. The results of XRD pattern of LiClO4 shows intense peaks at angles 2θ = 23.2, 32.99, and 36.58°, which represent the crystalline nature of the salt. Particles morphology of the sample revealed by scanning electron microscopy are irregular in shape and agglomerated, with mean size 200-300 nm. It can be concluded that polycrystalline particles are composed of large number of crystallites. The study of conductivity by using LCR meter shows that all the graphs represent the DC and AC conductivity phenomena.

  20. Atomistic Modeling of the Electrode–Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring

    SciTech Connect

    Jorn, Ryan P.; Kumar, Revati; Abraham, Daniel P; Voth, Gregory A.

    2013-01-01

    The solid electrolyte interface (SEI) forms as a result of side reactions between the electrolyte and electrode surfaces in Li-ion batteries and can adversely impact performance by impeding Li-ion transport and diminishing the storage capacity of the battery. To gain a detailed understanding of the impact of the SEI on electrolyte structure, atomistic molecular dynamics simulations of the electrode/electrolyte interface were performed in the presence and absence of the SEI under applied voltages. The composition of the SEI was guided by a wealth of data from experiments and allowed to vary across the simulations. A novel computational approach was implemented that showed significant computational speedup compared to fully polarizable electrode simulations, yet, retained the correct qualitative physics for the electrolyte. A force-matching algorithm was used to construct a new force field for the pure electrolyte, LiPF6 in ethylene carbonate, which was developed from ab initio molecular dynamics simulations. The electrode/electrolyte interface was included using a simple, physically motivated model, which includes the polarization of the conducting graphitic electrode by the electrolyte and the application of an external voltage. Changes in the structure of the electrolyte at the interface as a function of applied voltage, the thickness of the SEI layer, and composition of the SEI provide molecular level insight into the species present at these interfaces and potential clues to the effect of the SEI on transport. It is noted that, with increasing SEI thickness and LiF content, lithium ions are drawn closer to the SEI surface, which implies that these interfaces favor desolvation and promote more rapid lithium transport.

  1. Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: a molecular dynamics simulation study.

    PubMed

    Li, Zhe; Borodin, Oleg; Smith, Grant D; Bedrov, Dmitry

    2015-02-19

    Molecular dynamics simulations of N-methyl-N-propylpyrrolidinium (pyr13) bis(trifluoromethanesulfonyl)imide (Ntf2) ionic liquid [pyr13][Ntf2] doped with [Li][Ntf2] salt and mixed with acetonitrile (AN) and ethylene carbonate (EC) organic solvents were conducted using polarizable force field. Structural and transport properties of ionic liquid electrolytes (ILEs) with 20 and 40 mol % of organic solvents have been investigated and compared to properties of neat ILEs. Addition of AN and EC solvents to ILEs resulted in the partial displacement of the Ntf2 anions from the Li(+) first coordination shell by EC and AN and shifting the Li-Ntf2 coordination from bidentate to monodentate. The presence of organic solvents in ILE has increased the ion mobility, with the largest effect observed for the Li(+) cation. The Li(+) conductivity has doubled with addition of 40 mol % of AN. The Li(+)-N(Ntf2) residence times were dramatically reduced with addition of solvents, indicating an increasing contribution from structural diffusion of the Li(+) cations.

  2. Structure and Stoichiometry in doped LLZO (Li7La3Zr2O12)

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam; Huq, Ashfia; Mukhopadyay, Saikat; Wolfenstine, Jeff; Allen, Jan; Thompsen, Travis; Sakamoto, Jeff; Stewart, Derek

    2015-03-01

    LLZO has a tetragonal, Li-ordered phase with very low ionic conductivity and a cubic, Li-disordered phase with two orders of magnitude higher conductivity, relevant for solid electrolyte usage. The jump in conductivity can be correlated to dopant-induced Li vacancies that disorder the Li sublattice and cause the structural phase transition. In this work, we use extremely careful synthesis, neutron diffraction, synchrotron XRD, Raman scattering, and first principles techniques to show how both overall structure and selected local structural elements change as a function of dopant concentration. In particular, we examine how the local structure that defines the Li ion pathways changes with the lattice constant and how important microscopic quantities such as different Li site energies and hopping barriers change accordingly. Our work provides a link between the easily measurable lattice constant and extremely important but difficult to measure performance indicators such as exact Li vacancy concentration and hopping energy barriers. We hope that the ``map'' between structure and property provided here will speed optimization of the ionic conductivity via targeted doping strategies.

  3. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries

    DOE PAGES

    Lei, Wen; Han, Lili; Xuan, Cuijuan; ...

    2016-05-24

    Here, nitrogen-doped carbon nanofiber (NDCN) was synthesized via carbonization of polypyrrole (PPy) coated bacterial cellulose (BC) composites, where BC serves as templates as well as precursor, and PPy serves as the nitrogen source. The synthesized NDCN was employed as electrode for both supercapacitors and Li-ion batteries. The large surface area exposed to electrolyte resulting from the 3D carbon networks leads to sufficient electrode/electrolyte interface and creates shorter transport paths of electrolyte ions and Li+ ion. Besides, the three types of N dopants in NDCN improve the electronic conductivity, as well as superior electrochemical performance.

  4. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries

    SciTech Connect

    Lei, Wen; Han, Lili; Xuan, Cuijuan; Lin, Ruoqian; Liu, Hongfang; Xin, Huolin L.; Wang, Deli

    2016-05-24

    Here, nitrogen-doped carbon nanofiber (NDCN) was synthesized via carbonization of polypyrrole (PPy) coated bacterial cellulose (BC) composites, where BC serves as templates as well as precursor, and PPy serves as the nitrogen source. The synthesized NDCN was employed as electrode for both supercapacitors and Li-ion batteries. The large surface area exposed to electrolyte resulting from the 3D carbon networks leads to sufficient electrode/electrolyte interface and creates shorter transport paths of electrolyte ions and Li+ ion. Besides, the three types of N dopants in NDCN improve the electronic conductivity, as well as superior electrochemical performance.

  5. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries

    SciTech Connect

    Lei, Wen; Han, Lili; Xuan, Cuijuan; Lin, Ruoqian; Liu, Hongfang; Xin, Huolin L.; Wang, Deli

    2016-05-24

    Here, nitrogen-doped carbon nanofiber (NDCN) was synthesized via carbonization of polypyrrole (PPy) coated bacterial cellulose (BC) composites, where BC serves as templates as well as precursor, and PPy serves as the nitrogen source. The synthesized NDCN was employed as electrode for both supercapacitors and Li-ion batteries. The large surface area exposed to electrolyte resulting from the 3D carbon networks leads to sufficient electrode/electrolyte interface and creates shorter transport paths of electrolyte ions and Li+ ion. Besides, the three types of N dopants in NDCN improve the electronic conductivity, as well as superior electrochemical performance.

  6. Ionic liquid electrolytes for Li-air batteries: lithium metal cycling.

    PubMed

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-05-08

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.

  7. Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells.

    PubMed

    Judez, Xabier; Zhang, Heng; Li, Chunmei; Eshetu, Gebrekidan Gebresilassie; Zhang, Yan; González-Marcos, José A; Armand, Michel; Rodriguez-Martinez, Lide M

    2017-08-03

    Polymer-rich composite electrolytes with lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) (LiFSI/PEO) containing either Li-ion conducting glass ceramic (LICGC) or inorganic Al2O3 fillers are investigated in all-solid-state Li-S cells. In the presence of the fillers, the ionic conductivity of the composite polymer electrolytes (CPEs) does not increase compared to the plain LiFSI/PEO electrolyte at various tested temperatures. The CPE with Al2O3 fillers improves the stability of the Li/electrolyte interface, while the Li-S cell with a LICGC-based CPE delivers high sulfur utilization of 1111 mAh g(-1) and areal capacity of 1.14 mAh cm(-2). In particular, the cell performance gets further enhanced when combining these two CPEs (Li | Al2O3-CPE/LICGC-CPE | S), reaching a capacity of 518 mAh g(-1) and 0.53 mAh cm(-2) with Coulombic efficiency higher than 99% at the end of 50 cycles at 70 °C. This study shows that the CPEs can be promising electrolyte candidates to develop safe and high-performance all-solid-state Li-S batteries.

  8. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  9. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  10. On the interfacial charge transfer between solid and liquid Li(+) electrolytes.

    PubMed

    Schleutker, Marco; Bahner, Jochen; Tsai, Chih-Long; Stolten, Detlef; Korte, Carsten

    2017-10-11

    The Li(+) ion transfer between a solid and a liquid Li(+) electrolyte has been investigated by DC polarisation techniques. The current density i is measured as a function of the electrochemical potential drop Δ[small mu, Greek, tilde]Li(+) at the interface, using a liquid electrolyte with different Li(+) concentrations. The subject of this experimental study is the interface between the solid electrolyte Ta-substituted lithium lanthanum zirconate (Li6.6La3Zr1.6Ta0.4O12) and a liquid electrolyte consisting of LiPF6 dissolved in ethylene carbonate/dimethyl carbonate (1 : 1). The functional course of i vs. Δ[small mu, Greek, tilde]Li(+) can be described by a serial connection between a constant ohmic resistance Rslei and a current dependent thermally activated ion transfer process. For the present solid-liquid electrolyte interface the areal resistance Rslei of the surface layer is independent of the Li(+) concentration in the liquid electrolyte. At room temperature a value of about 300 Ω cm(2) is found. The constant ohmic resistance Rslei can be attributed to a surface layer on the solid electrolyte with a (relatively) low conductivity (solid-liquid electrolyte interphase). The low conducting surface layer is formed by degradation reactions with the liquid electrolyte. Rslei is considerably increased if a small amount (ppm) of water is added to the liquid electrolyte. The thermally activated ionic transfer process obeys a Butler-Volmer like behaviour, resulting in an exchange current density i0 depending on the Li(+) concentration in the liquid electrolyte by a power-law. At a Li(+) concentration of 1 mol l(-1) a value of 53.1 μA cm(-2) is found. A charge transfer coefficient α of ∼0.44 is measured. The finding of a superposed constant ohmic resistance due to a solid-liquid electrolyte interphase and a current dependent thermally activated ion transfer process is confirmed by the results of two former experimental studies from the literature, performing AC

  11. Studies on the thermal behavior of CS:LiTFSI:[Amim] Cl polymer electrolytes exerted by different [Amim] Cl content

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Shanti, R.; Morris, Ezra

    2012-01-01

    The principle motivation of this research work is to develop environmental-friendly polymer electrolytes utilizing corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 1-allyl-3-methylimidazolium chloride ([Amim] Cl) by solution casting technique. The highest ionic conductivity value was achieved for the composition CS:LiTFSI:[Amim] Cl (14 wt. %:6 wt. %:80 wt. %) which exhibits the ionic conductivity value of 5.68 × 10 -2 S cm -1 at 40 °C with the activation energy of 4.86 kJ mol -1. This sample possess high concentration of amorphous phase coupled with greater presence of conducting cations (lithium, Li + and imidazolium, [Amim] +) as depicted by the dielectric loss tangent plot. The conductivity-temperature plots were found to obey Arrhenius rule in which the conductivity mechanism is thermally assisted. The melting temperature of polymer electrolyte decreases with increase in [Amim] Cl content. This is attributed to the good miscibility of [Amim] Cl in CS:LiTFSI matrix inducing structural disorderliness. Reference to the TGA results it is found that the addition of [Amim] Cl diminishes the heat-resistivity whereas enhancement in the thermal stability occurred at the initial addition and declines with further doping of [Amim] Cl.

  12. First principles simulations of structural phase transformations in the solid electrolyte LiBH4 with chemical substitutions

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Hoang, Khang; Johannes, Michelle

    2014-03-01

    The proposed hydrogen storage material LiBH4 has been shown to have possible applications as a Li-ion battery solid electrolyte, due to its high Li-ion conductivity over 10-3 S/cm-1 [1], comparable to polymer gel electrolytes. The high conductivity is only observed above a phase transition temperature that is outside of the useful operating range, but doping the material with various substitutions for the Li or BH4 units can bring the phase transition below room temperature. Both smaller and larger substituting species can stabilize the high T structure, indicating that it is not a simple volume effect. We show that variable-cell-shape molecular-dynamics simulations using density functional theory forces and stresses reproduce the structural phase transition. Using umbrella integration to compute the free energy differences between the two structures, we calculate the phase transition temperature and its dependence on substitutional I, Cl, and Na concentrations, and show that they are in very good agreement with experiment. We calculate the effect of K substitution, and predict that it will be even more effective at stabilizing the high T structure. Decomposing the free energy difference changes into enthalpy and entropy contributions shows that the mechanis

  13. Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF 6-based electrolyte

    NASA Astrophysics Data System (ADS)

    Xiao, Ang; Li, Wentao; Lucht, Brett L.

    The thermal reaction of ternary electrolyte (1.0 M LiPF 6 in 1:1:1 ethylene carbonate/dimethyl carbonate/diethyl carbonate) with mesocarbon microbeads (MCMB) particles was investigated by the combined use of NMR, GC-MS, FTIR-ATR, TGA, XPS and SEM/EDS-element map. The thermal decomposition of ternary electrolyte is not inhibited by the presence of MCMB particles. The chemical composition and morphology of the surface of MCMB particles changes significantly upon storage in the presence of ternary electrolyte. Electrolyte decomposition products including oligocarbonates, oligoethylene oxides, polyethylene oxide (PEO), lithium fluorophosphates (Li xPO yF z), and lithium fluoride are deposited on the surface of MCMB particles. The concentration of decomposition products on the surface of MCMB increases with increased storage time and temperature. The addition of dimethyl acetamide (DMAc) impedes the thermal decomposition of the electrolyte and deposition of electrolyte decomposition products on the surface of MCMB.

  14. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect

    Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  15. A new solid-state electrolyte: Rubbery 'polymer-in-salt' containing LiN(CF 3SO 2) 2

    NASA Astrophysics Data System (ADS)

    Feng, Li; Cui, Hailin

    A new class of rubbery 'polymer-in-salt' electrolytes for application in solid-state lithium batteries has been explored by differential scanning calorimetry and a.c. impedance analysis. Simple phase diagrams of LiN(CF 3SO 2) 2+LiClO 4 and LiC(CF 3SO 2) 3+LiN(CF 3SO 2) 2 have been drawn, which are very important to determine polymer-in-salt electrolyte materials. The conductivities obtained by a.c. impedance measurement are smaller for the electrolyte that contains acetate LiOAc salt than for the electrolyte without this salt.

  16. In situ monitoring the viscosity change of an electrolyte in a Li-S battery.

    PubMed

    Ding, Ning; Li, Xiaodong; Chien, Sheau Wei; Liu, Zhaolin; Zong, Yun

    2017-09-12

    We clarify the reactions in a lithium-sulfur cell by in situ monitoring the change in viscosity of its electrolyte. The results have revealed that Li2S2 is a soluble substance in the electrolyte. This contradicts what was suggested in the literature that it is a solid precipitate on the electrode.

  17. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    SciTech Connect

    Schroeder, D.J.; Hubaud, A.A.; Vaughey, J.T.

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  18. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon.

    PubMed

    Soto, Fernando A; Yan, Pengfei; Engelhard, Mark H; Marzouk, Asma; Wang, Chongmin; Xu, Guiliang; Chen, Zonghai; Amine, Khalil; Liu, Jun; Sprenkle, Vincent L; El-Mellouhi, Fedwa; Balbuena, Perla B; Li, Xiaolin

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1) ; ≈ 1/10 of the normal capacity (250 mAh g(-1) ). Unusual selective/preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  19. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes.

    PubMed

    Ramzy, Adam; Thangadurai, Venkataraman

    2010-02-01

    This paper reports a novel approach to designing advanced solid Li ion electrolytes for application in various solid state ionic devices, including Li ion secondary batteries, gas sensors, and electrochromic displays. The employed methodology involves a solid-solution reaction between the two best-known fast Li ion conductors in the garnet-family of compounds Li(6)BaLa(2)M(2)O(12) (M = Nb, Ta) and Li(7)La(3)Zr(2)O(12). Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), AC impedance, and (7)Li nuclear magnetic resonance (Li NMR) spectroscopy were employed to characterize phase formation, morphology, ionic conductivity, and Li ion coordination in Li(6.5)La(2.5)BaZrMO(12). PXRD shows for formation of a cubic garnet-like structure and AC impedance data is consistent with other known solid Li ion electrolytes. Li(6.5)La(2.5)BaZrTaO(12) exhibits a fast Li ion conductivity of about 6 x 10(-3) S cm(-1) at 100 degrees C, which is comparable to that of currently employed organic polymer electrolytes value at room temperature. The Nb analogue shows an order of magnitude lower ionic conductivity than that of the corresponding Ta member, which is consistent with the trend in garnet-type electrolytes reported in the literature. Samples sintered at 1100 degrees C shows the highest electrical conductivity compared to that of 900 degrees C. (7)Li MAS NMR shows a sharp single peak at 0 ppm with respect to LiCl, which may be attributed to fast migration of ions between various sites in the garnets, and also suggesting average distributions of Li ions at average octahedral coordination in Li(6.5)La(2.5)BaZrMO(12). The present work together with literature used to establish very important fundamental relationship of functional property-Li concentration-crystal structure-Li diffusion coefficient in the garnet family of Li ion electrolytes.

  20. Ionic Transport in Polyethylene Oxide (PEO)-LiX Polymeric Solid Electrolyte.

    DTIC Science & Technology

    1988-03-01

    the temperatures specified below; LiCF3SO3 (3M) at 50 0C for several days, LiAsF6 (Alfa) used as received, LiBF4 (Alfa) 50°C for 24 hours, LiAlCl4...converge at about 0.9eV. The trend is as follows: LiBF4 >LiCF 3 S03>LiPF6>LiAICl4>LiASF6 The general dependence of activation energy on salt composition...mole fraction of LIBF4 in the electrolyte 1.0 > 0.8- C LU C 0 0.6- 0.4 0 0.1 0.2 0.3 0.4 0.5 [X(salt)] Figure 6. Variation in the activation energy vs

  1. Praseodymium-doped Ti:LiNbO3 waveguides

    NASA Astrophysics Data System (ADS)

    Baumann, I.; Cusso, F.; Herreros, B.; Holzbrecher, H.; Paulus, H.; Schäfer, K.; Sohler, W.

    The incorporation of praseodymium into LiNbO3 by diffusion doping is investigated by means of secondary neutral mass spectrometry and secondary ion mass spectrometry. The diffusion of praseodymium in LiNbO3 can be described by Fick's laws of diffusion with a concentration-independent diffusion coefficient and a limited solubility of praseodymium in LiNbO3 increasing exponentially with rising temperature. The diffusion depends on the Li2O content of the LiNbO3 crystal. For LiNbO3 crystals with a nominal slight difference in the congruent composition, the diffusion constants and activation energies for Z-cut LiNbO3 are 3.28×10-5 cm2/s and 2.27 eV, and 1.39×10-5 cm2/s and 2.24 eV, respectively. Titanium-doped waveguides are formed in Pr:LiNbO3 and characterised in relation to waveguide loss and absorption in the visible and near infrared.

  2. Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping

    PubMed Central

    2014-01-01

    Undoped ZnO, Ce-doped ZnO, and (Li, Ce)-codoped ZnO nanophosphors were prepared by a sol-gel process. The effects of the additional doping with Li ions on the crystal structure, particle morphology, and luminescence properties of Ce-doped ZnO were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and photoluminescence spectroscopy. The results indicate that the obtained samples are single phase, and a nanorod shaped morphology is observed for (Li, Ce)-codoping. Under excitation with 325 nm light, Ce-doped ZnO phosphors show an ultraviolet emission, a green emission, and a blue emission caused by Zn interstitials. The spectrum of the sample codoped with a proper Li concentration features two additional emissions that can be attributed to the Ce3+ ions. With the increase of the Li doping concentration, the Ce3+ blue luminescence of (Li, Ce)-codoped ZnO is obviously enhanced, which results not only from the increase of the Ce3+ ion concentration itself but also from the energy transfer from the ZnO host material to the Ce3+ ions. This enhancement reaches a maximum at a Li content of 0.02, and then decreases sharply due to the concentration quench. These nanophosphors may promise for application to the visible-light-emitting devices. PACS 78.55.Et; 81.07.Wx; 81.20.Fw PMID:25258604

  3. Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping.

    PubMed

    Shi, Qiang; Wang, Changzheng; Li, Shuhong; Wang, Qingru; Zhang, Bingyuan; Wang, Wenjun; Zhang, Junying; Zhu, Hailing

    2014-01-01

    Undoped ZnO, Ce-doped ZnO, and (Li, Ce)-codoped ZnO nanophosphors were prepared by a sol-gel process. The effects of the additional doping with Li ions on the crystal structure, particle morphology, and luminescence properties of Ce-doped ZnO were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and photoluminescence spectroscopy. The results indicate that the obtained samples are single phase, and a nanorod shaped morphology is observed for (Li, Ce)-codoping. Under excitation with 325 nm light, Ce-doped ZnO phosphors show an ultraviolet emission, a green emission, and a blue emission caused by Zn interstitials. The spectrum of the sample codoped with a proper Li concentration features two additional emissions that can be attributed to the Ce(3+) ions. With the increase of the Li doping concentration, the Ce(3+) blue luminescence of (Li, Ce)-codoped ZnO is obviously enhanced, which results not only from the increase of the Ce(3+) ion concentration itself but also from the energy transfer from the ZnO host material to the Ce(3+) ions. This enhancement reaches a maximum at a Li content of 0.02, and then decreases sharply due to the concentration quench. These nanophosphors may promise for application to the visible-light-emitting devices. 78.55.Et; 81.07.Wx; 81.20.Fw.

  4. Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes.

    PubMed

    Tachikawa, Naoki; Yamauchi, Kento; Takashima, Eriko; Park, Jun-Woo; Dokko, Kaoru; Watanabe, Masayoshi

    2011-07-28

    Electrochemical reactions of sulfur supported on three-dimensionally ordered macroporous carbon in glyme-Li salt molten complex electrolytes exhibit good reversibility and large capacity based on the mass of sulfur, which suggests that glyme-Li salt molten complexes are suitable electrolytes for Li-S batteries.

  5. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.

    PubMed

    Bhatt, Mahesh Datt; O'Dwyer, Colm

    2015-02-21

    There is an increasing worldwide demand for high energy density batteries. In recent years, rechargeable Li-ion batteries have become important power sources, and their performance gains are driving the adoption of electrical vehicles (EV) as viable alternatives to combustion engines. The exploration of new Li-ion battery materials is an important focus of materials scientists and computational physicists and chemists throughout the world. The practical applications of Li-ion batteries and emerging alternatives may not be limited to portable electronic devices and circumventing hurdles that include range anxiety and safety among others, to their widespread adoption in EV applications in the future requires new electrode materials and a fuller understanding of how the materials and the electrolyte chemistries behave. Since this field is advancing rapidly and attracting an increasing number of researchers, it is crucial to summarise the current progress and the key scientific challenges related to Li-ion batteries from theoretical point of view. Computational prediction of ideal compounds is the focus of several large consortia, and a leading methodology in designing materials and electrolytes optimized for function, including those for Li-ion batteries. In this Perspective, we review the key aspects of Li-ion batteries from theoretical perspectives: the working principles of Li-ion batteries, the cathodes, anodes, and electrolyte solutions that are the current state of the art, and future research directions for advanced Li-ion batteries based on computational materials and electrolyte design.

  6. Physicochemical Properties of Industrial Aluminum Electrolytes Enriching Li and K: The Liquidus Temperature

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-jun; Shuang, Ya-jing; Li, Jie; Chen, Shi-yue; Lai, Yan-qing; Zhang, Hong-liang; Liu, Ye-xiang

    2017-04-01

    The alumina contains plenty of Li2O and K2O as a result of using low-grade bauxite in China. Thus, LiF and KF will be enriched in the electrolytes with the operation of the cell, so that the composition and physicochemical properties of electrolytes have been changed. The effects of LiF, KF, and CR on the liquidus temperature of electrolytes based on the xNaF·AlF3-5 wt pct CaF2-2.5 wt pct Al2O3-0.5 wt pct MgF2 system have been investigated in this study. The results show that the liquidus temperature decreases by 5.13 K to 10.74 K (5.13 °C to 10.74 °C) per 1 wt pct addition of LiF and that the liquidus temperature decreases by 1.63 K to 3.8 K (1.63 °C to 3.8 °C) with per 1 wt pct addition of KF. When adding LiF and KF together, it has the interplay between LiF and KF. Under different electrolyte systems, the interplay between LiF and KF is complex. The effect of CR on liquidus temperature has been related to the concentration of LiF and KF.

  7. Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy.

    PubMed

    Ma, Cheng; Cheng, Yongqiang; Yin, Kuibo; Luo, Jian; Sharafi, Asma; Sakamoto, Jeff; Li, Juchuan; More, Karren L; Dudney, Nancy J; Chi, Miaofang

    2016-11-09

    Despite their different chemistries, novel energy-storage systems, e.g., Li-air, Li-S, all-solid-state Li batteries, etc., face one critical challenge of forming a conductive and stable interface between Li metal and a solid electrolyte. An accurate understanding of the formation mechanism and the exact structure and chemistry of the rarely existing benign interfaces, such as the Li-cubic-Li7-3xAlxLa3Zr2O12 (c-LLZO) interface, is crucial for enabling the use of Li metal anodes. Due to spatial confinement and structural and chemical complications, current investigations are largely limited to theoretical calculations. Here, through an in situ formation of Li-c-LLZO interfaces inside an aberration-corrected scanning transmission electron microscope, we successfully reveal the interfacial chemical and structural progression. Upon contact with Li metal, the LLZO surface is reduced, which is accompanied by the simultaneous implantation of Li(+), resulting in a tetragonal-like LLZO interphase that stabilizes at an extremely small thickness of around five unit cells. This interphase effectively prevented further interfacial reactions without compromising the ionic conductivity. Although the cubic-to-tetragonal transition is typically undesired during LLZO synthesis, the similar structural change was found to be the likely key to the observed benign interface. These insights provide a new perspective for designing Li-solid electrolyte interfaces that can enable the use of Li metal anodes in next-generation batteries.

  8. Electrochemical intercalation of lithium ions into LiV 3O 8 in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, G. J.; Qu, Q. T.; Wang, B.; Shi, Y.; Tian, S.; Wu, Y. P.; Holze, R.

    Electrochemical intercalation of lithium ions from a saturated LiNO 3 aqueous electrolyte solution into LiV 3O 8 prepared by a solid-state reaction at 680 °C was studied with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). Results show that there are three steps of intercalation in the presence of an aqueous electrolyte, in agreement with those previously observed with organic liquid electrolytes. In addition, variations of several parameters including the charge transfer resistance (R ct), the capacitance of the double layer (C DL), the Warburg diffusion impedance (Z w), and diffusion coefficient of lithium ions (DLi+) during the intercalation process are reported.

  9. LiSICON-Ionic Liquid Electrolyte for Lithium Ion Battery

    DTIC Science & Technology

    2011-08-15

    LiSICON cell with 0.75M LiTFSI /PYR13+FSI- had a capacity of 325 mAh g-1 and coulombic efficiency of 99.8% during cycling at 80 ?C. 15. SUBJECT TERMS 16...with different Li salt concentrations at elevated temperature. A carbon anode in a LiSICON cell with 0.75M LiTFSI /PYR13 + FSI - had a capacity of...triflouromethanesulfonyl)imide ( LiTFSI , 99%, Acros) were used inside an inert atmosphere glovebox. LiTFSI was dissolved in the PYR13 + FSI - and

  10. LiPF 6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO 4/artificial graphite lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhian; Chen, Xujie; Li, Fanqun; Lai, Yanqing; Li, Jie; Liu, Ping; Wang, Xinyu

    The electrochemical behaviors of LiPF 6 and lithium oxalyldifluoroborate (LiODFB) blend salts in ethylene carbonate + propylene carbonate + dimethyl carbonate (EC + PC + DMC, 1:1:3, v/v/v) for LiFePO 4/artificial graphite (AG) lithium-ion cells have been investigated in this work. It is demonstrated by conductivity test that LiPF 6 and LiODFB blend salts electrolytes have superior conductivity to pure LiODFB-based electrolyte. The results show that the performances of LiFePO 4/Li half cells with LiPF 6 and LiODFB blend salts electrolytes are inferior to pure LiPF 6-based electrolyte, the capacity and cycling efficiency of Li/AG half cells are distinctly improved by blend salts electrolytes, and the optimum LiODFB/LiPF 6 molar ratio is around 4:1. A reduction peak is observed around 1.5 V in LiODFB containing electrolyte systems by means of CV tests for Li/AG cells. Excellent capacity and cycling performance are obtained on LiFePO 4/AG 063048-type cells tests with blend salts electrolytes. A plateau near 1.7-2.0 V is shown in electrolytes containing LiODFB salt, and extends with increasing LiODFB concentration in charge curve of LiFePO 4/AG cells. At 1 C discharge current rate, the initial discharge capacity of 063048-type cell with the optimum electrolyte is 376.0 mAh, and the capacity retention is 90.8% after 100 cycles at 25 °C. When at 65 °C, the capacity and capacity retention after 100 cycles are 351.3 mAh and 88.7%, respectively. The performances of LiFePO 4/AG cells are remarkably improved by blending LiODFB and LiPF 6 salts compared to those of pure LiPF 6-based electrolyte system, especially at elevated temperature to 65 °C.

  11. Structure and Stoichiometry in Supervalent Doped Li7La3 Zr2O12

    DOE PAGES

    Mukhopadhyay, Saikat; Thompson, Travis; Sakamoto, Jeff; ...

    2015-04-20

    The oxide garnet material Li7La3 Zr2O12 shows remarkably high ionic conductivity when doped with supervalent ions that are charge compensated by Li vacancies and is currently one of the best candidates for development of a technologically relevant solid electrolyte. Determination of optimal dopant concentration, however, has remained a persistent problem due to the extreme difficulty of establishing the actual (as compared to nominal) stoichiometry of intentionally doped materials and by the fact that it is still not entirely clear what level of lattice expansion/contraction best promotes. ionic diffusion. By combining careful synthesis, neutron diffraction, high-resolution X-ray diffraction (XRD), Raman measurements,more » and density functional theory calculations, we show that structure and stoichiometry are intimately related such that the former can in many cases be used as a gauge of the latter. We show that different Li-vacancy creating supervalent ions (Al3+ vs Ta5+) affect the structure very differently, both in terms of the lattice constant, which is easily measurable, and hi terms of the local structure, which can be difficult or impossible to access experimentally but may have important ramifications for conduction. We carefully correlate the lattice constant to dopant type/concentration via Vegard's law and then further correlate these quantities to relevant local structural parameters. In conclusion, our work opens the possibility of developing a codopant scheme that optimizes the Li vacancy concentration and the lattice size simultaneously.« less

  12. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.

    PubMed

    Yang, Yufen; Jin, Song; Zhang, Zhen; Du, Zhenzhen; Liu, Huarong; Yang, Jia; Xu, Hangxun; Ji, Hengxing

    2017-04-26

    N-doped carbon materials is of particular attraction for anodes of lithium-ion batteries (LIBs) because of their high surface areas, superior electrical conductivity, and excellent mechanical strength, which can store energy by adsorption/desorption of Li(+) at the interfaces between the electrolyte and electrode. By directly carbonization of zeolitic imidazolate framework-8 nanospheres synthesized by an emulsion-based interfacial reaction, we obtained N-doped hollow carbon nanospheres with tunable shell thickness (20 nm to solid sphere) and different N dopant concentrations (3.9 to 21.7 at %). The optimized anode material possessed a shell thickness of 20 nm and contained 16.6 at % N dopants that were predominately pyridinic and pyrrolic. The anode delivered a specific capacity of 2053 mA h g(-1) at 100 mA g(-1) and 879 mA h g(-1) at 5 A g(-1) for 1000 cycles, implying a superior cycling stability. The improved electrochemical performance can be ascribed to (1) the Li(+) adsorption dominated energy storage mechanism prevents the volume change of the electrode materials, (2) the hollow nanostructure assembled by the nanometer-sized primary particles prevents the agglomeration of the nanoparticles and favors for Li(+) diffusion, (3) the optimized N dopant concentration and configuration facilitate the adsorption of Li(+); and (4) the graphitic carbon nanostructure ensures a good electrical conductivity.

  13. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method

    NASA Astrophysics Data System (ADS)

    Jin, Ying; McGinn, Paul J.

    2011-10-01

    Li7La3Zr2O12 electrolytes doped with different amounts of Al (0, 0.2, 0.7, 1.2, and 2.5 wt.%) were prepared by a polymerized complex (Pechini) method. The influence of aluminum on the structure and conductivity of Li7La3Zr2O12 were investigated by X-ray diffraction (XRD), impedance spectroscopy, scanning electron microscopy (SEM), and thermal dilatometry. It was found that even a small amount of Al (e.g. 0.2 wt.%) added to Li7La3Zr2O12 can greatly accelerate densification during the sintering process. SEM micrographs showed the existence of a liquid phase introduced by Al additions which led to the enhanced sintering rate. The addition of Al also stabilized the higher conductivity cubic form of Li7La3Zr2O12 rather than the less conductive tetragonal form. The combination of these two beneficial effects of Al enabled greatly reduced sintering times for preparation of highly conductive Li7La3Zr2O12 electrolyte. With optimal additions of Al (e.g. 1.2 wt.%), Li7La3Zr2O12 electrolyte sintered at 1200 °C for only 6 h showed an ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature.

  14. Solid–Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics

    SciTech Connect

    Ganesh, P.; Kent, P. R. C.; Jiang, De-en

    2012-11-26

    Understanding the nature and formation of the solid–electrolyte interphase (SEI) formed in electrochemical storage devices, such as Li-ion batteries, is most important for improving functionality. Few experiments exist that adequately probe the SEI, particularly in situ. We perform predictive ab initio molecular dynamics simulations of the anode–electrolyte interface for several electrolytes and interface functionalizations. These show strongly differing effects on the reducibility of the electrolyte. Electrolyte reduction occurs rapidly, on a picosecond time scale. Orientational ordering of electrolyte near the interface precedes reduction. The reduced species depend strongly on surface functionalization and presence of LiPF6 salt. While LiPF6 salt in ethylene carbonate is more stable at a hydrogen-terminated anode, oxygen/hydroxyl termination causes spontaneous dissociation to form LiF and other fluorophosphates. LiF migrates to the interface creating chainlike structures, consistent with experimental observations of LiF agglomeration. Inorganic products such as LiF and Li2CO3 migrate closer to the anode than purely organic components, consistent with their more ionic character. Significantly, we conclude that while the electrolyte reduction occurs at the molecular level near the interface, requiring specific alignments and proximity, the reducibility is governed by the average reduction potential barrier between the electrode (anode) and the electrolyte.

  15. Improved Li/TiS2 cell cycling in ether-based electrolytes with synergistic additives

    NASA Technical Reports Server (NTRS)

    Dominey, L. A.; Goldman, J. L.; Koch, V. R.; Shen, D.; Subbarao, S.; Huang, C.-K.; Halpert, G.; Deligiannis, F.

    1991-01-01

    Based on an extensive series of normalized full cell Li/TiS2 cycling studies, open-circuit storage tests, microcalorimetry and AC impedance studies, and chemical precedent, we propose an integrated chemical model consistent with experimental observations concerning the behavior of numerous LiAsF6/cyclic ether electrolytes. The particularly striking potency of certain additives such as 2-methylfuran and the hydroxide action resides in their ability to intercept several different adverse catalytic processes concurrently in the bulk electrolyte as well as the Li anode and TiS2 cathode.

  16. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-01-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874

  17. Robust cycling of Li-O2 batteries through the synergistic effect of blended electrolytes.

    PubMed

    Kim, Byung Gon; Lee, Je-Nam; Lee, Dong Jin; Park, Jung-Ki; Choi, Jang Wook

    2013-03-01

    Despite their exceptionally large specific capacities, the use of Li-O2 batteries has been limited because of their poor cycle lives, which originates from irreversible reaction processes during each cycle. Recent investigations have found that electrolyte decomposition is one of the most critical reasons for capacity decay. Herein, we report that a blended electrolyte, consisting of a carbonate solvent and an ionic liquid, improves the cycle lives of Li-O2 batteries remarkably through a synergistic effect from both components. Both electrolyte components perform complementary functions to each other: The ionic liquid suppresses the decomposition of the carbonate solvent, and the carbonate solvent resolves the poor ionic conductivity of the ionic liquid. This study confirms the importance and opportunities for the use of electrolytes in Li-O2 batteries.

  18. A flexible Li polymer primary cell with a novel gel electrolyte based on poly(acrylonitrile)

    NASA Astrophysics Data System (ADS)

    Akashi, Hiroyuki; Tanaka, Ko-ichi; Sekai, Koji

    The performance of a Li polymer primary cell with fire-retardant poly(acrylonitrile) (PAN)-based gel electrolytes is reported. By optimizing electrodes, electrolytes, the packaging material, and the structural design of the polymer cell, we succeeded in developing a "film-like" Li polymer primary cell with sufficient performance for practical use. The cell is flexible and less than 0.5 mm thick, which makes it suitable for a power source for some smart devices, such as an IC card. Fast cation conduction in the gel electrolyte minimizes the drop of the discharge capacity even at -20 °C. The high chemical stability of the gel electrolytes and the new packaging material allow the self-discharge rate to be limited to under 4.3%, which is equivalent to that of conventional coin-shaped or cylindrical Li-MnO 2 cells.

  19. Alkyl Pyrocarbonate Electrolyte Additives for Performance Enhancement of Li Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    2000-01-01

    Lithium ion rechargeable batteries are being developed for various aerospace applications under a NASA-DoD Interagency program. These applications require further improvements in several areas, specifically in the cycle life for LEO and GEO satellites and in the low temperature performance for the Mars Lander and Rover missions. Accordingly, we have been pursuing research studies to achieve improvement in the low temperature performance, long cycle life and active life of Li ion cells. The studies are mainly focused on electrolytes, to identify newer formulations of new electrolyte additives to enhance Li permeability (at low temperatures) and stability towards the electrode. The latter approach is particularly aimed at the formation suitable SEI (solid electrolyte interphase) on carbon electrodes. In this paper, we report the beneficial effect of using alkyl pyrocarbonates as electrolyte additives to improve the low temperature performance of Li ion cells.

  20. Improved properties of LiBOB-based solid polymer electrolyte by additive incorporation

    NASA Astrophysics Data System (ADS)

    Ratri, C.; Sabrina, Q.; Lestariningsih, T.; Wigayati, E.

    2017-04-01

    Solid polymer electrolytes comprising of poly(vinylidene fluoride) (PVdF) and lithium bis (oxalato) borate (LiBOB) have been prepared using solution casting technique. Having an important role in lithium-ion battery system, electrolyte is required to have high ability to transfer lithium ions between electrodes. Safety aspect is the main reason for the development of solid polymer electrolyte as advancement from conventional liquid electrolyte. Nevertheless, solid polymer electrolyte generally has lower conductivities compared to liquid electrolyte. In this research, ceramic additives, as well as plasticiser materials, have been incorporated within the solid polymer electrolyte system to improve its conductivity. Addition of TiO2 filler has proven to increase ionic conductivity by two orders of magnitude. Further improvement was seen in the incorporation of PEG plasticiser, where ionic conductivity was enhanced by three orders of magnitude.

  1. Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials

    NASA Astrophysics Data System (ADS)

    Al-Qawasmeh, Ahmad; Holzwarth, N. A. W.

    2017-10-01

    Two lithium oxonitridophosphate materials are computationally examined and found to be promising solid electrolytes for possible use in all solid-state batteries having metallic Li anodes - Li14P2O3N6 and Li7PN4. The first principles simulations are in good agreement with the structural analyses reported in the literature for these materials and the computed total energies indicate that both materials are stable with respect to decomposition into binary and ternary products. The computational results suggest that both materials are likely to form metastable interfaces with Li metal. The simulations also find both materials to have Li ion migration activation energies comparable or smaller than those of related Li ion electrolyte materials. Specifically, for Li7PN4, the experimentally measured activation energy can be explained by the migration of a Li ion vacancy stabilized by a small number of O2- ions substituting for N3- ions. For Li14P2O3N6, the activation energy for Li ion migration has not yet been experimentally measured, but simulations predict it to be smaller than that measured for Li7PN4.

  2. Multi-Scale Mechanical Behavior of the Li3PS4 Solid-Phase Electrolyte.

    PubMed

    Baranowski, Lauryn L; Heveran, Chelsea M; Ferguson, Virginia L; Stoldt, Conrad R

    2016-11-02

    The need for smaller, lighter, and longer lasting rechargeable batteries is projected to increase rapidly in the coming years because of high demand for portable electronics and electric vehicles. While traditional Li-ion batteries use liquid-phase electrolytes, these suffer from safety risks and low energy density. Solid-phase electrolytes can avoid these issues by enabling a Li metal anode, but tend to fail during cycling due to Li metal dendrite growth between the electrodes. Because Li dendrite nucleation and growth can be viewed in terms of the mechanical behavior of the battery components, it is critical to understand the mechanical response of candidate electrolyte materials. In this work, we use nanoindentation and bulk acoustic techniques to characterize the mechanical properties of β-Li3PS4, a promising Li-ion conducting ceramic. We find that the bulk and shear moduli of an 80% dense bulk LPS sample are 10-12 GPa and 5-6 GPa, respectively. Although this value of shear modulus may be too low to prevent Li dendrite propagation, it is likely that there are many other mechanical properties that must be taken into account to fully understand Li dendrite nucleation and growth. Ultimately, this work represents a first step in understanding the relationship between Li3PS4 separator manufacture and its mechanical properties.

  3. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte

    NASA Astrophysics Data System (ADS)

    Zhu, Jinlong; Li, Shuai; Zhang, Yi; Howard, John W.; Lü, Xujie; Li, Yutao; Wang, Yonggang; Kumar, Ravhi S.; Wang, Liping; Zhao, Yusheng

    2016-09-01

    Cubic anti-perovskites with general formula Li3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li3OBr and layered Li7O2Br3, by solid state reaction routes. The results indicate that with the phase fraction of Li7O2Br3 increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li3OBr. Formation energy calculations revealed the meta-stable nature of Li7O2Br3, which supports the great difficulty in producing phase-pure Li7O2Br3 at ambient pressure. Methods of obtaining phase-pure Li7O2Br3 will continue to be explored, including both high pressure and metathesis techniques.

  4. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte

    DOE PAGES

    Zhu, Jinlong; Li, Shuai; Zhang, Yi; ...

    2016-09-07

    Cubic anti-perovskites with general formula Li3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li3OBr and layered Li7O2Br3, by solid state reaction routes. The results indicate that with the phase fraction of Li7O2Br3 increasing to 44 wt. %, the ionic conductivity increasedmore » by more than one order of magnitude compared with pure phase Li3OBr. Formation energy calculations revealed the meta-stable nature of Li7O2Br3, which supports the great difficulty in producing phase-pure Li7O2Br3 at ambient pressure. Here, methods of obtaining phase-pure Li7O2Br3 will continue to be explored, including both high pressure and metathesis techniques.« less

  5. Inorganic-organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene glycol) monomethyl ether for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Aydın, Hamide; Şenel, Mehmet; Erdemi, Hamit; Baykal, Abdülhadi; Tülü, Metin; Ata, Ali; Bozkurt, Ayhan

    In this study, poly(vinyl alcohol) (PVA) was modified with poly(ethylene glycol) monomethyl ether (PEGME) using borane-tetrahydrofuran (BH 3/THF) complex. Molecular weights of both PVA and PEGME were varied prior to reaction. Boron containing comb-branched copolymers were produced and abbreviated as PVA1PEGMEX and PVA2PEGMEX. Then polymer electrolytes were successfully prepared by doping of the host matrix with CF 3SO 3Li at several stoichiomeric ratios with respect to EO to Li. The materials were characterized via nuclear magnetic resonance (1H NMR and 11B NMR), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and differential scanning calorimeter (DSC). The ionic conductivity of these novel polymer electrolytes were studied by dielectric-impedance spectroscopy. Li-ion conductivity of these polymer electrolytes depends on the length of the side units as well as the doping ratio. Such electrolytes possess satisfactory ambient temperature ionic conductivity (>10 -4 S cm -1). Cyclic voltammetry results illustrated that the electrochemical stability domain extends over 4 V.

  6. Ionic limiting molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory.

    PubMed

    He, Xiangming; Pu, Weihua; Han, Jingli; Chen, Jian; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong

    2005-12-15

    A method is proposed based on mode coupling theory in which the ion transference number is introduced into the theory. The ionic limiting molar conductivities of LiPF6, LiClO4, LiBF4, LiCF3SO3, Li(CF3SO3)2N, LiC4F9SO3, and LiAsF6 in PC(propylene carbonate), GBL(gamma-butyrolactone), PC(propylene carbonate)/EMC(ethylmethyl carbonate), and PC(propylene carbonate)/DME(dimethoxyethane) are calculated based on this method, which does not involve any adjustable parameter. The results fit well to the literature data which are calculated by an empirically adjusted formula. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.

  7. Wide Operating Temperature Range Electrolytes for High Voltage and High Specific Energy Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hwang, C.; Krause, F. C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Amine, K.

    2012-01-01

    A number of electrolyte formulations that have been designed to operate over a wide temperature range have been investigated in conjunction with layered-layered metal oxide cathode materials developed at Argonne. In this study, we have evaluated a number of electrolytes in Li-ion cells consisting of Conoco Phillips A12 graphite anodes and Toda HE5050 Li(1.2)Ni(0.15)Co(0.10)Mn(0.55)O2 cathodes. The electrolytes studied consisted of LiPF6 in carbonate-based electrolytes that contain ester co-solvents with various solid electrolyte interphase (SEI) promoting additives, many of which have been demonstrated to perform well in 4V systems. More specifically, we have investigated the performance of a number of methyl butyrate (MB) containing electrolytes (i.e., LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + MB (20:20:60 v/v %) that contain various additives, including vinylene carbonate, lithium oxalate, and lithium bis(oxalato)borate (LiBOB). When these systems were evaluated at various rates at low temperatures, the methyl butyrate-based electrolytes resulted in improved rate capability compared to cells with all carbonate-based formulations. It was also ascertained that the slow cathode kinetics govern the generally poor rate capability at low temperature in contrast to traditionally used LiNi(0.80)Co(0.15)Al(0.05)O2-based systems, rather than being influenced strongly by the electrolyte type.

  8. Wide Operating Temperature Range Electrolytes for High Voltage and High Specific Energy Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hwang, C.; Krause, F. C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Amine, K.

    2012-01-01

    A number of electrolyte formulations that have been designed to operate over a wide temperature range have been investigated in conjunction with layered-layered metal oxide cathode materials developed at Argonne. In this study, we have evaluated a number of electrolytes in Li-ion cells consisting of Conoco Phillips A12 graphite anodes and Toda HE5050 Li(1.2)Ni(0.15)Co(0.10)Mn(0.55)O2 cathodes. The electrolytes studied consisted of LiPF6 in carbonate-based electrolytes that contain ester co-solvents with various solid electrolyte interphase (SEI) promoting additives, many of which have been demonstrated to perform well in 4V systems. More specifically, we have investigated the performance of a number of methyl butyrate (MB) containing electrolytes (i.e., LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + MB (20:20:60 v/v %) that contain various additives, including vinylene carbonate, lithium oxalate, and lithium bis(oxalato)borate (LiBOB). When these systems were evaluated at various rates at low temperatures, the methyl butyrate-based electrolytes resulted in improved rate capability compared to cells with all carbonate-based formulations. It was also ascertained that the slow cathode kinetics govern the generally poor rate capability at low temperature in contrast to traditionally used LiNi(0.80)Co(0.15)Al(0.05)O2-based systems, rather than being influenced strongly by the electrolyte type.

  9. Role of the solid electrolyte interphase on a Li metal anode in a dimethylsulfoxide-based electrolyte for a lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2015-10-01

    The effect of the solid electrolyte interphase (SEI) on a Li anode on the charge-discharge cycling performance in 1 M LiTFSI/dimethylsulfoxide electrolyte solution is examined by using charge-discharge cycling. The chemical structure of the surface and interior of the SEI strongly affects the cycling performance of the anode. The observed coulombic efficiency is low (<45%) when organic compounds such as lithium alkyl carbonates and polycarbonate form predominantly on the surface and interior. However, when inorganic compounds such as Li2CO3, Li2O, and LiF form instead, the coulombic efficiency increases to >85%. This enhanced efficiency remains constant regardless of the O2 content and despite <1000 ppm concentration of the contaminant H2O in the electrolyte. Thus, the lithium surface should be protected by inorganic compounds prior to cycling to prevent it from undergoing side reactions with the electrolyte during cycling in the electrolyte.

  10. Electrolytes in Support of 5V Li-ion Batteries

    DTIC Science & Technology

    2010-12-16

    OF: a. REPORT b. ABSTRACT c . THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...candidates LiCoPO4, LiNi0.5Mn1.5O4, Li2FeCoPO4 etc, projected to deliver 15~40% more energy than state-of-art LiFePO4 The additive invented by SEDD is...battery pack for HEV as example: 300 V hybrid electric system • requires at least 100 LiFePO4 Li ion cells in series • power electronics, protection

  11. Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes.

    PubMed

    Zheng, Jin; Tang, Mingxue; Hu, Yan-Yan

    2016-09-26

    Polymer-ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high-performance all-solid-state rechargeable batteries. Composite electrolytes have been prepared with cubic-phase Li7 La3 Zr2 O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high-resolution solid-state Li NMR, we are able to track Li ion pathways within LLZO-PEO composite electrolytes by monitoring the replacement of (7) Li in the composite electrolyte by (6) Li from the (6) Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO-LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Aurbach, Doron; Markovsky, Boris; Salitra, Gregory; Markevich, Elena; Talyossef, Yossi; Koltypin, Maxim; Nazar, Linda; Ellis, Brian; Kovacheva, Daniella

    In this paper we review some critical aspects related to interactions between cathode materials and electrolyte solutions in lithium-ion batteries. Previous results are briefly summarized, together with the presentation of new results. This review deals with the basic anodic stability of commonly-used electrolyte solutions for Li-ion batteries (mostly based on alkyl carbonate solvents). We discuss herein the surface chemistry of the following cathode materials: LiCoO 2, V 2O 5, LiMn 2O 4, LiMn 1.5Ni 0.5O 4, LiMn 0.5Ni 0.5O 2, and LiFePO 4. The methods applied included solution studies by ICP, Raman, X-ray photoelectron and FTIR spectroscopies, and electron microscopy, all in conjunction with electrochemical techniques. General phenomena are the possible dissolution of transition metal ions from these materials, which leads to changes in the active mass and a retardation in the electrode kinetics due to the formation of blocking surface films. These phenomena are significant mostly at elevated temperatures and in electrolyte solutions containing acidic species. Water-contaminated LiPF 6 solutions can reach a high concentration of acidic species (e.g., HF), which is detrimental to the performance of materials such as LiCoO 2 and LiFePO 4. Both LiMn 1.5Ni 0.5O 4 and LiMn 0.5Ni 0.5O 2, even when used as nanomaterials, show a high stability in commonly-used electrolyte solutions at high temperatures. This stability is attributed to unique surface chemistry that is correlated to the presence of Ni ions in the lattice.

  13. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    PubMed

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g(-1)carbon at 20 μA cm(-2). Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g(-1)carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g(-1)carbon at 20 μA cm(-2) and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  14. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    PubMed Central

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g−1carbon at 20 μA cm−2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g−1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g−1carbon at 20 μA cm−2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage. PMID:28117359

  15. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g-1carbon at 20 μA cm-2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g-1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g-1carbon at 20 μA cm-2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  16. Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive

    SciTech Connect

    Qian, Jiangfeng; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Henderson, Wesley A.; Zhang, Yaohui; Zhang, Jiguang

    2015-07-01

    Residual water presents in nonaqueous electrolytes has been widely regarded as a detrimental factor for lithium (Li) batteries. This is because water is highly reactive with the commonly used LiPF6 salt and leads to the formation of HF that corrodes battery materials. In this work, we demonstrate that a controlled trace-amount of water (25-100 ppm) can be an effective electrolyte additive for achieving dendrite-free Li metal deposition in LiPF6-based electrolytes and avoid its detrimental effect at the same time. Detailed analyses reveal that the trace amount of HF formed by the decomposition reaction of LiPF6 with water will be electrochemically reduced during initial Li deposition process to form a uniform and dense LiF-rich SEI layer on the surface of the substrate. This LiF-rich SEI layer leads to a uniform distribution of the electric field on the substrate surface and enables uniform and dendrite-free Li deposition. Meanwhile the detrimental effect of HF is diminished due to the consumption of HF in the LiF formation process. Microscopic analysis reveals that the as-deposited dendrite-free Li films exhibit a self-aligned and highly-compacted Li nanorods structure which is consistent with their charming blue color or known as structure color. These findings clearly demonstrate a novel approach to control the nucleation and grow process of Li metal films using well-controlled trace-amount of water. They also shine the light on the effect of water on other electrodeposition processes.

  17. Growth and scintillation properties of Eu doped LiSrI3/LiI eutectics

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Chiba, Hiroyuki; Yoshino, Masao; Yamaji, Akihiro; Shoji, Yasuhiro; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2017-06-01

    Eu doped LiSrI3/LiI eutectics were grown by the Bridgman method in a quartz ample with 4 mm inner diameter. and their directionally solidified eutectic system has been investigated. Growth rate was 0.3 mm/min. The eutectic showed well aligned eutectic structure and optically transparent. Grown Eu doped LiSrI3/LiI eutectic shows 400 nm emission ascribed to Eu2+ 4f-5d transition under X-ray excitation. The light yield was around 26,000 photon/MeV for 662 keV gamma-ray and 35,000 photons for 5.5 MeV alpha-ray.

  18. Polyphosphazene-poly(olefin oxide) mixed polymer electrolytes. II - Characterization of MEEP/PPO-(LiX)n

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Alamgir, M.; Moulton, R. D.

    1991-04-01

    The preparation, and the conductivity, calorimetric,, and electrochemical studies of MEEP/PPO-(LiX)n mixed polymer electrolytes, where MEEP = poly(bis-methoxyethoxy ethoxide phosphazene) PPO = poly(propylene oxide) and LiX = LiBF4, LiClO4, LiCF3SO3, LiAsF6, and LiAlCl4, are described. The addition of PPO in various proportions to MEEP-(LiX)n electrolytes significantly improved the latter's dimensional stability but caused a slight decrease in its conductivity. The conductivities of these mixed-polymer electrolytes are much higher than that of PPO-(LiX)n. The Li(+) transport number in MEEP/PPO-(LiX)0.13 electrolytes, with LiX = LiBF4 and LiClO4, was determined to be between 0.3 and 0.5. Differential scanning calorimetric data established the predominantly amorphous nature of the mixed polymer complexes. Cyclic voltammetric studies at a stainless steel electrode indicated a stability domain between 1 and 4.5V and established the good Li plating and stripping efficiency in these electrolytes.

  19. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  20. Mixed-Salt/Ester Electrolytes for Low-Temperature Li+ Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2006-01-01

    Electrolytes comprising, variously, LiPF6 or LiPF6 plus LiBF4 dissolved at various concentrations in mixtures of alkyl carbonates and alkyl esters have been found to afford improved low-temperature performance in rechargeable lithium-ion electrochemical cells. These and other electrolytes have been investigated in a continuing effort to extend the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Ester-Based Electrolytes for Low-Temperature Li-Ion Cells (NPO-41097), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 59. The ingredients of the solvent mixtures include ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), and methyl propionate (MP). The electrolytes were placed in Li-ion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the electrical performances of the cells were measured over a range of temperatures down to 60 C. The electrolytes that yielded the best low-temperature performances were found to consist, variously, of 1.0 M LiPF6 + 0.4 M LiBF4 or 1.4 LiPF6 in 1EC + 1EMC + 8MP or 1EC + 1EMC + 8MB, where the concentrations of the salts are given in molar units and the proportions of the solvents are by relative volume.

  1. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  2. PEMA - LiCF3SO3 polymer electrolytes: Assessment of conductivity and transport properties

    NASA Astrophysics Data System (ADS)

    Rodi, Izzati; Saaid, Farish; Winie, Tan

    2017-09-01

    Poly(ethyl methacrylate) (PEMA)-lithium trifluoromethanesulfonate (LiCF3SO3) polymer electrolytes were prepared using solution casting technique. The interactions between PEMA and LiCF3SO3 were investigated using Fourier Transform Infrared Spectroscopy (FTIR). LiCF3SO3 interacted with PEMA to form a PEMA-salt complex that results in the shifting of the C=O and C-O-C bands to lower wavenumbers. The room temperature ionic conductivity of the polymer electrolyte increased from 2.7 × 10-9 S cm-1 to 7.2 × 10-8 S cm-1 at 20 wt.% of LiCF3SO3. Deconvolution of spectra band in the νs(SO3- ) mode of LiCF SO3 has been carried out to estimate the spectroscopically free form of CF3SO3- . The finding is in good agreement with the conductivity results.

  3. Synthesis and characterisation of copper doped Ca-Li hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pogosova, M. A.; Kazin, P. E.; Tretyakov, Y. D.

    2012-08-01

    Hydroxyapapites M10(PO4)6(OH)2 (MHAP), where M is an alkaline earth metal, colored by incorporation of copper ions substituting protons, were discovered recently [1]. Now this kind of apatite-type materials can be used as inorganic pigments. Until now blue (BaHAP), violet (SrHAP) and wine-red (CaHAP) colors were achieved by the copper ions introduction [2]. The task of the present work was to study possibility of further M-ion substitution to affect the color and shift it toward the red-orange tint. Polycrystalline hydroxyapatites Ca10-xLix+yCuz(PO4)6O2H2-y-z-σ (Ca-LiHAP) were synthesized by solid state reaction at 1150 °C (ceramic method) and studied by X-ray powder diffraction (XRD), infrared absorption and diffuse-reflectance spectroscopy. Refinement of the X-ray diffraction patterns by the Rietveld method shows that CaHAP unit cell parameters are a little bigger, than Ca-LiHAP ones. Small difference between unit cell parameters could be caused by two ways of the Li+ ions introduction: (1) at the Ca2+ sites (Ca-Li substitution); (2) into hexagonal channels (H-Li substitution). The Li ions doping changes the color of the copper doped CaHAP from wine-red to pink and red.

  4. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    PubMed

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  5. Anode-electrolyte double-layer of Li-ion batteries: Structure and Li-ion intercalation

    NASA Astrophysics Data System (ADS)

    Wipf, David O.; Abou Hamad, Ibrahim; Rikvold, Per Arne; Novotny, Mark A.

    2011-03-01

    The electrochemical double-layer structure plays an important role in Li-ion intercalation during charging of Li-ion batteries with a graphite anode. In our recent Molecular Dynamics studies of a proposed accelerated charging method [I. Abou Hamad~et al., Phys. Chem. Chem. Phys. 12, 2740-2743 (2010)], we notice that ethylene carbonate and propylene carbonate molecules of the electrolyte assemble themselves in a preferred orientation at the electrode-electrolyte interface. On the other hand, they are randomly oriented in the bulk electrolyte. We show that the structure of the double layer is affected by the intercalating Li-ion: while the dipole moments of double-layer molecules far from the intercalating Li-ion point toward the graphite sheets of the anode, they point away from the intercalation site close to the intercalating Li-ion. This observation should contribute to a better understanding of the intercalation process. This work was supported in part by NSF Grant No. DMR-0802288.

  6. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Nelson, K. J.; Lu, Zhonghua; Dahn, J. R.

    2016-10-01

    The effects that various electrolyte solvents and electrolyte additives had on both LaPO4-coated LiNi0.4Mn0.4Co0.2O2 and uncoated LiNi0.4Mn0.4Co0.2O2/graphite pouch cells were studied using automated storage, electrochemical impedance spectroscopy, gas production and long-term cycling experiments. Storage experiments showed that the voltage drop during storage at 4.3 or 4.4 V for both coated and uncoated cells was very similar for the same electrolyte choice. At 4.5 V or above, the LaPO4-coated cells had a significantly smaller voltage drop than the uncoated cells except when fluorinated electrolytes were used. Automated charge discharge cycling/impedance spectroscopy testing of cells held at 4.5 V for 24 h every cycle showed that all cells containing ethylene carbonate:ethyl methyl carbonate electrolyte or sulfolane:ethyl methyl carbonate electrolyte exhibited severe capacity fade. By contrast, cells containing fluorinated electrolytes had the best capacity retention and smallest impedance growth during these aggressive cycling/hold tests. Long-term cycling experiments to 4.5 V confirmed that cells containing fluorinated electrolyte had the best cycling performance in the uncoated LiNi0.4Mn0.4Co0.2O2/graphite cells while cells containing sulfolane:ethyl methyl carbonate electrolyte had the best cycling performance in coated LiNi0.4Mn0.4Co0.2O2/graphite cells.

  7. Improved Li-TiS2 cell cycling in ether-based electrolytes with synergistic additives

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Subbarao, S.; Deligiannis, F.; Huang, C.-K.; Halpert, G.; Dominey, L.; Koch, V. R.; Goldman, J.

    1991-01-01

    Results of the application of 2-MeF and KOH additives to improve the lithium stability in THF, dioxolane, and THF/2-MeTHF solvent-based electrolytes are presented. The stability of these electrolytes with and without additives is evaluated by microcalorimetry and AC impedance spectroscopy. A novel method, cathode turnover number, is proposed to represent the electrolyte performance in a given system. The lithium cycling efficiency and cathode turnover number of the electrolytes are calculated from the cycle life data in experimental Li-TiS2 cells. Overall, THF/2-MeTHF electrolyte containing 2-MeF and/or KOH exhibited higher stability, lithium cycling efficiency, and cathode turnover number compared to THF and dioxolane electrolytes with and without additives.

  8. Improved Li-TiS2 cell cycling in ether-based electrolytes with synergistic additives

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Subbarao, S.; Deligiannis, F.; Huang, C.-K.; Halpert, G.; Dominey, L.; Koch, V. R.; Goldman, J.

    1991-01-01

    Results of the application of 2-MeF and KOH additives to improve the lithium stability in THF, dioxolane, and THF/2-MeTHF solvent-based electrolytes are presented. The stability of these electrolytes with and without additives is evaluated by microcalorimetry and AC impedance spectroscopy. A novel method, cathode turnover number, is proposed to represent the electrolyte performance in a given system. The lithium cycling efficiency and cathode turnover number of the electrolytes are calculated from the cycle life data in experimental Li-TiS2 cells. Overall, THF/2-MeTHF electrolyte containing 2-MeF and/or KOH exhibited higher stability, lithium cycling efficiency, and cathode turnover number compared to THF and dioxolane electrolytes with and without additives.

  9. Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar; Surampudi, Subbarao

    2003-01-01

    Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in three different mixtures of alkyl carbonates have been found well suited for use in rechargeable lithium-ion electrochemical cells at low temperatures. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells down to -60 C. This research at earlier stages was reported in numerous previous NASA Tech Briefs articles, the three most recent being "Ethyl Methyl Carbonate as a Cosolvent for Lithium-Ion Cells" (NPO-20605), Vol. 25, Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells No. 6 (June 2001), page 53; "Alkyl Pyrocarbonate Electrolyte Additives for Li-Ion Cells" (NPO-20775), Vol. 26, No. 5 (May 2002), page 37; and "Fluorinated Alkyl Carbonates as Cosolvents in Li-Ion Cells (NPO-21076), Vol. 26, No. 5 (May 2002), page 38. The present solvent mixtures, in terms of volume proportions of their ingredients, are 1 ethylene carbonate (EC) + 1 diethyl carbonate (DEC) + 1 dimethyl carbonate (DMC) + 3 ethyl methyl carbonate (EMC); 3EC + 3DMC + 14EMC; and 1EC + 1DEC + 1DMC + 4EMC. Relative to similar mixtures reported previously, the present mixtures, which contain smaller proportions of EC, have been found to afford better performance in experimental Li-ion cells at temperatures < -20 C.

  10. Study of LiBOB compound synthesis by vacuum process as lithium ion battery electrolytes

    NASA Astrophysics Data System (ADS)

    Lestariningsih, T.; Wigayati, E.; Ratri, C.; Sabrina, Q.

    2017-04-01

    Lithium bis (oxalato) borate or LiBOB is potential candidate to substitute LiPF6 which has many problems in lithium ion batteries. Many studies have been synthesized of electrolyte salt LiBOB to improve performance as electrolyte lithium ion batteries. In this paper we have studied the synthesis of compounds LiBOB undergoing pre-heat treatment in a vacuum. LiBOB was synthesized by mixing technical grade raw materials H2C2O4.2H2O, LiOH and H3BO3. The mixture H2C2O4.2H2O and LiOH was preheated at 60 °C for 2 h before adding H3BO3 in several time to be mortared in vacuum dryer, the mixture of the three starting materials was preheated in two steps at 70 °C for 6 h and the third step of preheating at a temperature of 100 °C. This powder was then characterized using XRD, FTIR and BET. The characterization results of LiBOB compared to commercial LiBOB powder. The XRD analysis results showed that the sample have formed LiBOB and LiBOB hydrate phase, while FTIR analysis results show the formation of functional groups of LiBOB. In addition, the BET results shows the surface area of synthesized LiBOB is 75.994 m2/g, close the surface area of commercial LiBOB, i.e 108.776 m2/g.

  11. Phase Diagrams for the PEO-LiX Electrolyte System.

    DTIC Science & Technology

    1987-01-01

    rather flat, in sharp contrast to previous results. 3.2c PEO- LiBF4 System Pure PEO forms complexes with LiBF , and the subsequent phase diagram for...study; 0 ----NMR(15); 0 -DSC or DTA(7, 10,12); A ---a.c.conductivity(6,10,12); 4- optical microscopy(6). is 350 - (PEO) n- LiBF4 300 (PEO) n-LiCF 3SO 3...the PEO- LiBF4 system IS" , " ATOM RATIO O/Li 50 25 8 4 2 1 250 200 150 1 00 -50I 0 0 0.1 0.2 0.3 0.4 0.5 XLiPF6 -’+’ Figure 6. Phase diagram of the

  12. Electrochemical performance of nanostructured spinel LiMn 2O 4 in different aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Tian, Lei; Yuan, Anbao

    A nanostructured spinel LiMn 2O 4 electrode material was prepared via a room-temperature solid-state grinding reaction route starting with hydrated lithium acetate (LiAc·2H 2O), manganese acetate (MnAc 2·4H 2O) and citric acid (C 6H 8O 7·H 2O) raw materials, followed by calcination of the precursor at 500 °C. The material was characterized by X-ray diffraction (XRD) and transmission electron microscope techniques. The electrochemical performance of the LiMn 2O 4 electrodes in 2 M Li 2SO 4, 1 M LiNO 3, 5 M LiNO 3 and 9 M LiNO 3 aqueous electrolytes was studied using cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. The LiMn 2O 4 electrode in 5 M LiNO 3 electrolyte exhibited good electrochemical performance in terms of specific capacity, rate dischargeability and charge/discharge cyclability, as evidenced by the charge/discharge results.

  13. High-performance gel electrolytes with tetra-armed polymer network for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Hazama, Taisuke; Fujii, Kenta; Sakai, Takamasa; Aoki, Masahiro; Mimura, Hideyuki; Eguchi, Hisao; Todorov, Yanko; Yoshimoto, Nobuko; Morita, Masayuki

    2015-07-01

    An organo gel with only 6 wt % tetra-armed poly(ethylene glycol), TetraPEG, was prepared and applied as a novel gel electrolyte for Li ion batteries (LIBs). The TetraPEG gel electrolyte containing 1.0 M LiPF6 in binary or ternary mixtures, i.e., EC + DEC and EC + DEC + TFEP (EC: ethylene carbonate, DEC: diethyl carbonate and TFEP: tris(2,2,2-trifluoroethyl)phosphate showed high ionic conductivity required for the use in LIB systems. The TetraPEG gel based on ternary EC + DEC + TFEP system acts as a nonflammable gel electrolyte at the TFEP content higher than 20 vol%. In cyclic voltammetry and charge/discharge cycling tests, the TetraPEG gel electrolytes showed good reversibility for a graphite negative electrode.

  14. On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Rawlence, Michael; Garbayo, Inigo; Buecheler, Stephan; Rupp, J. L. M.

    2016-08-01

    Garnet-based Al-doped Li7La3Zr2O12 has the potential to be used as a solid state electrolyte for future lithium microbattery architectures, due to its relatively high Li+ conductivity and stability against Li. Through this work, a model experiment is presented in which the effect of post-lithiation on phase formation and chemical stability is studied for pulsed laser deposited Al-doped Li7La3Zr2O12 thin films on MgO substrates. We report the implications of the newly suggested post-lithiation route for films with thicknesses between 90 and 380 nm. The phase changes from cubic, to a mix of cubic and tetragonal Li7La3Zr2O12, to a cubic Li7La3Zr2O12 and La2Zr2O7 containing film is accompanied by a reduction in the degree of de-wetting as the thickness increases. This study reveals that the thicker, dense, and continuous films remain predominantly in a mixed phase containing cubic Li7La3Zr2O12 and the lithium free La2Zr2O7 phase whereas the thinner, de-wetted films exhibit improved lithium incorporation resulting in the absence of the lithium free phase. For tuning the electrical conductivity and effective use of these structures in future batteries, understanding this material system is of great importance as the chemical stability of the cubic Li7La3Zr2O12 phase in the thin film system will control its effective use. We report a conductivity of 1.2 × 10-3 S cm-1 at 325 °C for a 380 nm thick solid state electrolyte film on MgO for potential operation in future all solid state battery assemblies.Garnet-based Al-doped Li7La3Zr2O12 has the potential to be used as a solid state electrolyte for future lithium microbattery architectures, due to its relatively high Li+ conductivity and stability against Li. Through this work, a model experiment is presented in which the effect of post-lithiation on phase formation and chemical stability is studied for pulsed laser deposited Al-doped Li7La3Zr2O12 thin films on MgO substrates. We report the implications of the newly

  15. Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5 V Li-ion battery applications

    SciTech Connect

    Xu, Wu; Chen, Xilin; Ding, Fei; Xiao, Jie; Wang, Deyu; Pan, Anqiang; Zheng, Jianming; Li, Xiaohong S.; Padmaperuma, Asanga B.; Zhang, Jiguang

    2012-09-01

    The charging voltage limits of mixed carbonate solvents for Li-ion batteries have been systematically investigated from 4.9 to 5.3 V in half cells using Cr-doped spinel cathode material LiNi0.45Cr0.05Mn1.5O4. We found that the stability of conventional carbonate electrolytes is strongly related to the stability and properties of the cathode materials at both lithiated and de-lithiated states. It is the first time to report that the conventional electrolytes based on mixtures of ethylene carbonate (EC) and linear carbonate (dimethyl carbonate - DMC, ethyl methyl carbonate - EMC, and diethyl carbonate - DEC) have shown very similar long-term cycling performance when cycled up to 5.2 V on LiNi0.45Cr0.05Mn1.5O4. The discharge capacity increases with the charge cutoff voltage and reaches the highest discharge capacity at 5.2 V. The capacity retention is about 87% after 500 cycles at 1C rate for all three carbonate mixtures when cycled between 3.0 V and 5.2V. The first-cycle efficiency has a maximum value at 5.1 V, with an average from 83% to 85% at C/10 rate. When cycled to 5.3 V, EC-DMC still shows good cycling performance but EC-EMC and EC-DEC show faster capacity fading. EC-DMC and EC-EMC have much better rate capability than EC-DEC. In addition, the first-cycle irreversible capacity loss increases with the cutoff voltage and the 'inactive' conductive carbon has also been found to be partly associated with the low first-cycle Coulombic efficiency at high voltages due to electrolyte decomposition and probably the PF6- anion irreversible intercalation.

  16. Microdefects in nitrogen doped FZ silicon revealed by Li+ drifting

    SciTech Connect

    Knowlton, W.B.; Walton, J.T.; Lee, J.S.

    1995-07-01

    ULSI technology requires ultra-thin device oxides with excellent breakdown integrity. Recent studies have unveiled degraded dielectric breakdown voltage (DBV) performance of the ultra-thin oxides. These findings suggest that one source for poor oxide integrity is the incorporation of native defects from the Si substrate during oxide growth. Primary defect candidates are D defects which exist mostly in the central region of floating zone (FZ) grown Si crystals. Nitrogen (N) doping eliminates D defects, as detected by conventional means, and improves oxide integrity. Results are presented indicating the prevalence of microdefects in the central region of p-type nitrogen doped FZ Si using the method of Li ion (Li{sup +}) drifting in an electric field. A model has been developed based on Li interactions in Si which describes the Li{sup +} precipitation mechanism. The mechanism establishes that vacancies are the most likely Li{sup +} precipitation sites. The results are discussed in relation to breakdown mode patterns of polished FZ Si wafers after gate oxide tests.

  17. LiMn 2O 4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chan, H. W.; Duh, J. G.; Sheen, S. R.

    LiMn 2O 4 exhibits lower cost, acceptable environmental characteristics, and better safety properties than other positive-electrode (cathode) materials for lithium-ion batteries. In this study, excess Li doped Li 1+ xMn 2O 4 is synthesized by a well-mixed co-precipitation method with LiOH utilized as both the reactant and co-precipitation agent. The precursor is calcined for various heating times and temperatures to form a fine powder of a single spinel phase with different particle sizes, size distributions, and morphology. The minimum heating temperature is around 400 °C. For short heating periods, Mn 2O 3 impurity is observed, but disappears after longer heating times. The average particle size is in the range 2-8 μm for powders calcined between 700 and 870 °C. The lattice parameter increases with increase in heating temperature. The electrochemical behavior of LiMn 2O 4 powder is examined by using test cells which consist of a cathode, a metallic lithium anode, and an electrolyte of 1 M LiPF 6 in a 1:1 (volume ratio) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). Cells with cathodes of LiMn 2O 4, Li 1.08Mn 2O 4 and Li 1.1Mn 2O 4 give a capacity of 85, 109 and 126 mAh g -1, respectively. The introduction of excess Li in LiMn 2O 4 apparently increases the capacity, and decreases significantly the rate of capacity degradation on charge-discharge cycling.

  18. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  19. Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries

    NASA Astrophysics Data System (ADS)

    Gachot, Gregory; Grugeon, Sylvie; Armand, Michel; Pilard, Serge; Guenot, Pierre; Tarascon, Jean-Marie; Laruelle, Stephane

    Electrolytes are crucial to the safety and long life of Li-ion batteries, however, the understanding of their degradation mechanisms is still sketchy. Here we report on the nature and formation of organic/inorganic degradation products generated at low potential in a lithium-based cell using cyclic and linear carbonate-based electrolyte mixtures. The global formation mechanism of ethylene oxide oligomers produced from EC/DMC (1/1 w/w)-LiPF 6 salt (1 M) electrolyte decomposition is proposed then mimicked via chemical tests. Each intermediary product structure/formula/composition is identified by means of combined NMR, FTIR and high resolution mass spectrometry (ESI-HRMS) analysis. The key role played by lithium methoxide as initiator of the electrolyte degradation is evidenced, but more importantly we isolated for the first time lithium methyl carbonate as a side product of the ethylene oxide oligomers chemical formation. The same degradation mechanism was found to hold on for another cyclic and linear carbonate-based electrolyte such as EC/DEC (1/1 w/w)-LiPF 6 salt (1 M). Such findings have important implications in the choice of chemical additives for developing highly performing electrolytes.

  20. Li-Ion Electrolytes with Improved Safety and Tolerance to High-Voltage Systems

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, Surya; Krause, Frederick C.

    2013-01-01

    Given that lithium-ion (Li-ion) technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. Therefore, extensive effort has been devoted to developing nonflammable electrolytes to reduce the flammability of the cells/battery. A number of promising electrolytes have been developed incorporating flame-retardant additives, and have been shown to have good performance in a number of systems. However, these electrolyte formulations did not perform well when utilizing carbonaceous anodes with the high-voltage materials. Thus, further development was required to improve the compatibility. A number of Li-ion battery electrolyte formulations containing a flame-retardant additive [i.e., triphenyl phosphate (TPP)] were developed and demonstrated in high-voltage systems. These electrolytes include: (1) formulations that incorporate varying concentrations of the flame-retardant additive (from 5 to 15%), (2) the use of mono-fluoroethylene carbonate (FEC) as a co-solvent, and (3) the use of LiBOB as an electrolyte additive intended to improve the compatibility with high-voltage systems. Thus, improved safety has been provided without loss of performance in the high-voltage, high-energy system.

  1. Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries

    DOE PAGES

    Ma, Cheng; Cheng, Yongqiang; Chen, Kai; ...

    2016-03-29

    In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlookedmore » mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.« less

  2. Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries

    SciTech Connect

    Ma, Cheng; Cheng, Yongqiang; Chen, Kai; Li, Juchuan; Sumpter, Bobby G.; Nan, Ce-Wen; More, Karren L.; Dudney, Nancy J.; Chi, Miaofang

    2016-03-29

    In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlooked mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li0.33La0.56)TiO3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li0.33La0.56)TiO3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.

  3. Aging of the LiFePO 4 positive electrode interface in electrolyte

    NASA Astrophysics Data System (ADS)

    Dupré, Nicolas; Martin, Jean-Frédéric; Degryse, Jeremy; Fernandez, Vincent; Soudan, Patrick; Guyomard, Dominique

    The evolution of lithium-containing species on the surface of grains of 500 nm LiFePO 4 and 100 nm carbon-coated LiFePO 4 materials during the aging process in LiPF 6 electrolyte has been followed using coupled 7Li MAS NMR, EIS (Electrochemical Impedance Spectroscopy) and XPS for materials synthesized with and without carbon coating. LiFePO 4 undergoes surface reactivity upon immersion in classical LiPF 6 electrolyte, although its open circuit voltage (∼3.2 V) lies in the thermodynamical stability voltage range. The evolution of the NMR signal shows that the reaction of formation of the interphase is very slow as no evidence of passivation could be found even after 1 month of contact with the electrolyte. 7Li MAS NMR combined with XPS indicates that carbon coating has a strong protective role towards formation of surface species on the material and hinders iron dissolution at elevated temperature. Coupled NMR, EIS and XPS experiments showed that the surface of the material grains is not covered by an homogenous layer. Increasing the storage temperature from 25 °C to 55 °C promotes the formation of organic species on the surface, most probably covering inorganic species such as LiF, Li xPF y and LiPO yF z. No evidence of the formation of a resistive film is deduced from the evolution of EIS measurements. The interphase growth can accelerate the degradation of the electrochemical performance, leading to a loss of electrical contact within the electrode.

  4. Molecular dynamics simulation of LiTFSI-acetamide electrolytes: structural properties.

    PubMed

    Li, Shu; Cao, Zhen; Peng, Yuxing; Liu, Lei; Wang, Yonglong; Wang, Shu; Wang, Ji-Qiang; Yan, Tianying; Gao, Xue-Ping; Song, De-Ying; Shen, Pan-Wen

    2008-05-22

    The liquid structures of nonaqueous electrolytes composed of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and acetamide, with LiTFSI/acetamide molar ratios of 1:2, 1:4, and 1:6, were studied by molecular dynamics simulations. The simulations indicate that the Li+ cations prefer to be six-coordinate by the sulfonyl oxygen atoms of the TFSI- anions and the carbonyl oxygen atoms of the acetamide molecules, rather than by the most electronegative nitrogen atom of the TFSI- anion. Therefore, close Li+-TFSI- contact pairs exist in the system. The TFSI- anion prefers to provide only one of four possible oxygen atoms to coordinate to the same Li+ cation. Three conformations (cis, trans, and gauche) of the TFSI- anions were found to coexist in the liquid electrolyte. At high salt concentrations, the TFSI- anions mainly adopt the gauche conformation in order to provide more oxygen atoms to coordinate to different Li+ cations, while simultaneously reducing the repulsion among the Li+ cations. On the other hand, the fraction of TFSI- anions adopting the cis conformation is largest for the system with the molar ratio of 1:6, in which many clusters, mainly composed of the Li+ cations and the TFSI- anions, are immersed in the acetamide molecules. The size and charge distribution of clusters were also investigated. In the system with the molar ratio of 1:2, nearly all of the ions in the PBC (periodic boundary conditions) box aggregate into a bulky cluster that gradually disassembles into small clusters with decreasing salt concentration. The addition of acetamide molecules was found to effectively relax the liquid electrolyte structure, and the system with the molar ratio of 1:4 was found to exhibit a more homogeneous liquid structure than the other two electrolyte systems with molar ratios of 1:2 and 1:6.

  5. Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures

    SciTech Connect

    Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

    2014-09-30

    Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

  6. High-rate Li4Ti5O12/N-doped reduced graphene oxide composite using cyanamide both as nanospacer and a nitrogen doping source

    NASA Astrophysics Data System (ADS)

    Jeong, Jun Hui; Kim, Myeong-Seong; Kim, Young-Hwan; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-12-01

    A Li4Ti5O12(LTO)/N-doped reduced graphene oxide (RGO) composite is proposed using dual functional nitrogen doping source to prevent RGO restacking and achieve uniform nitrogen doping on RGO sheets to increase the rate performance of high-rate lithium ion batteries. The pore structure (both meso- and macro pores) is developed when RGO restacking is prevented, facilitating electrolyte ion diffusion to active sites with lower resistance. Uniform nitrogen doping on RGO sheets with high nitrogen contents provides additional free electrons to the sheets, resulting in increased electronic conductivity. Cyanamide is used as the nitrogen doping source for the N-doped RGO as well as a nanospacer between the RGO sheets. In the composite, the nitrogen content of the RGO sheets is 2.3 wt%, which increases the electronic conductivity of the composite to 1.60 S cm-1. The specific surface area of the composite is increased to 35.8 m2 g-1. Thus, the composite structure with the N-doped RGO sheets and porous secondary particles has high electrical conductivity and high ion accessibility. The LTO/N-doped RGO composite demonstrates excellent electrochemical performance with a low resistance of 48.4 Ω, a high specific capacity of 117.8 mAh g-1 at 30 C, and good cycle stability.

  7. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Gao, Xiangwen; Chen, Yuhui; Johnson, Lee; Bruce, Peter G.

    2016-08-01

    On discharge, the Li-O2 battery can form a Li2O2 film on the cathode surface, leading to low capacities, low rates and early cell death, or it can form Li2O2 particles in solution, leading to high capacities at relatively high rates and avoiding early cell death. Achieving discharge in solution is important and may be encouraged by the use of high donor or acceptor number solvents or salts that dissolve the LiO2 intermediate involved in the formation of Li2O2. However, the characteristics that make high donor or acceptor number solvents good (for example, high polarity) result in them being unstable towards LiO2 or Li2O2. Here we demonstrate that introduction of the additive 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) promotes solution phase formation of Li2O2 in low-polarity and weakly solvating electrolyte solutions. Importantly, it does so while simultaneously suppressing direct reduction to Li2O2 on the cathode surface, which would otherwise lead to Li2O2 film growth and premature cell death. It also halves the overpotential during discharge, increases the capacity 80- to 100-fold and enables rates >1 mA cmareal-2 for cathodes with capacities of >4 mAh cmareal-2. The DBBQ additive operates by a new mechanism that avoids the reactive LiO2 intermediate in solution.

  8. Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte

    SciTech Connect

    Sun, Xiao-Guang; Wang, Xiqing; Mayes, Richard T; Dai, Sheng

    2012-01-01

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

  9. A Rechargeable Li-CO2 Battery with a Gel Polymer Electrolyte.

    PubMed

    Li, Chao; Guo, Ziyang; Yang, Bingchang; Liu, Yao; Wang, Yonggang; Xia, Yongyao

    2017-07-24

    The utilization of CO2 in Li-CO2 batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles' heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme-based liquid electrolyte, was used to fabricate a rechargeable Li-CO2 battery with a carbon nanotube-based gas electrode. The discharge product of Li2 CO3 formed in the GPE-based Li-CO2 battery exhibits a particle-shaped morphology with poor crystallinity, which is different from the contiguous polymer-like and crystalline discharge product in conventional Li-CO2 battery using a liquid electrolyte. Accordingly, the GPE-based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g(-1) ) are much higher than most of previous reports, which points a new way to develop high-performance Li-CO2 batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preperation and electrochemical characterization of Sm and Gd co-doped ceria/carbonate composite electrolytes for IT-SOFC applications

    NASA Astrophysics Data System (ADS)

    Dikmen, Sibel; Ozsakarya, Rabia; Dikmen, Erdal

    2014-03-01

    Sm and Gd co-doped ceria based composite electrolytes were prepared by mixing nanosized powders of Ce0.8Sm0.1Gd0.1O2-δ (SGDC) and alkaline carbonates (Na-Li)2CO3, (Li-K)2CO3,and(Na-K)2CO3 at a weight ratio of 4:1. Structure of the samples was characterized by powder X-ray diffraction. The microstructure and morphology were examined by SEM. Impedance spectroscopy was used to perform electrochemical characterization. The conductivities of the samples increase as the temperature increases and for the composite electrolytes SGDC(Na-Li)2CO3,andSGDC(Li-K)2CO3, there is a sharp increase in conductivity at around 475 and 450oC, respectively. This sudden change in the conductivity refers to superionic phase transition in the interfaces between SGDC phase and salt phase. The single cell power density reached a maximum of 1056, 826, and 565 mWcm-2 for SGDC/ (Na-Li)2CO3, SGDC/(Li-K)2CO3,andSGDC/(Na-K)2CO3 as the electrolytes, respectively. This work was funded by TUB?TAK 106T536, SDU-BAP 3231-YL1-12.

  11. Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell.

    PubMed

    Judez, Xabier; Zhang, Heng; Li, Chunmei; González-Marcos, José Antonio; Zhou, Zhi-Bin; Armand, Michel; Rodriguez-Martinez, Lide Mercedes

    2017-04-13

    Solid polymer electrolytes (SPEs) comprising lithium bis(fluorosulfonyl)imide (Li[N(SO2F)2], LiFSI) and poly(ethylene oxide) (PEO) have been studied as electrolyte material and binder for the Li-S polymer cell. The LiFSI-based Li-S all solid polymer cell can deliver high specific discharge capacity of 800 mAh gsulfur-1 (i.e., 320 mAh gcathode-1), high areal capacity of 0.5 mAh cm-2 and relatively good rate capability. The cycling performances of Li-S polymer cell with LiFSI are significantly improved compared to with those with conventional LiTFSI (Li[N(SO2CF3)2]) salt in the polymer membrane, due to the improved stability of the Li anode/electrolyte interphases formed in the LiFSI-based SPEs. These results suggest that the LiFSI-based SPEs are attractive electrolyte materials for solid-state Li-S batteries.

  12. A novel Lithium/Sodium hybrid aqueous electrolyte for hybrid supercapacitors based on LiFePO4 and activated carbon

    NASA Astrophysics Data System (ADS)

    An, Yongling; Fei, Huifang; Feng, Jinkui; Ci, Lijie; Xiong, Shenglin

    A novel low cost Na+/Li+ hybrid electrolyte was proposed for hybrid supercapacitor. By partly substituting Lithium salt with Sodium salt, the Li+/Na+ hybrid electrolyte exhibits synergic advantages of both Li+ and Na+ electrolytes. Our findings could also be applied to other hybrid power sources.

  13. Oxygen substitution effects in Li10GeP2S12 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Sun, Yulong; Suzuki, Kota; Hara, Kosuke; Hori, Satoshi; Yano, Taka-aki; Hara, Masahiko; Hirayama, Masaaki; Kanno, Ryoji

    2016-08-01

    For the lithium super-ionic conductor Li10GeP2S12, the partial substitution of sulfur by oxygen is achieved via a solid-state reaction. The solid-solution range of oxygen is found to be 0 ≤ x < 0.9 in Li10GeP2S12-xOx. Structure refinements using synchrotron X-ray diffraction data confirm the preference for oxygen substitution in the PS4 tetrahedra. The local structural change in the P(S/O)4 tetrahedra upon substitution is also indicated by Raman spectroscopy. Ionic conduction properties are maintained even after the oxygen substitution in Li10GeP2S12; the ionic conductivity of Li10GeP2S12-xOx (0.3 ≤ x ≤ 0.6) ranges from 1.03 × 10-2 to 8.43 × 10-3 S cm-1 at 298 K. No redox current is observed by cyclic voltammetry from nearly 0 to 10 V versus Li/Li+ except for that due to the lithium deposition/dissolution reactions. All-solid-state batteries using Li10GeP2S12-xOx (x = 0.3 and 0.6) as solid electrolytes with Li metal anodes show discharge capacities exceeding 100 mAh g-1 and better cycling performance compared to batteries using the original Li10GeP2S12. The partial substitution of oxygen for sulfur in Li10GeP2S12 affords a novel solid electrolyte, Li10GeP2S12-xOx, with high conductive properties and electrochemical stability.

  14. Conductivity and optical band gaps of polyethylene oxide doped with Li{sub 2}SO{sub 4} salt

    SciTech Connect

    Chapi, Sharanappa Raghu, S. Subramanya, K. Archana, K. Mini, V. Devendrappa, H.

    2014-04-24

    The conductivity and optical properties of Li{sub 2}SO{sub 4} doped polyethylene oxide (PEO) films were studied. The polymer electrolyte films are prepared using solution casting technique. The material phase change was confirmed by X-ray diffraction (XRD) technique. Optical absorption study was conducted using UV- Vis. Spectroscopy in the wavelength range 190–1100nm on pure and doped PEO films. The direct and indirect optical band gaps were found decreased from 5.81–4.51eV and 4.84–3.43eV respectively with increasing the Li{sub 2}SO{sub 4}. The conductivity found to increases with increasing the dopant concentration due to strong hopping mechanism at room temperature.

  15. Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2007-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  16. Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2007-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  17. Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes

    SciTech Connect

    Seo, D. M.; Boyle, Paul D.; Allen, Joshua L.; Han, Sang D.; Jonsson, Erlendur; Johansson, Patrik; Henderson, Wesley A.

    2014-07-21

    Crystal structures have been determined for both LiBF4 and HBF4 solvates—(acetonitrile)2:LiBF4, (ethylene glycol diethyl ether)1:LiBF4, (diethylene glycol diethyl ether)1:LiBF4, (tetrahydrofuran)1:LiBF4, (methyl methoxyacetate)1:LiBF4, (suc-cinonitrile)1:LiBF4, (N,N,N',N",N"-pentamethyldiethylenetriamine)1:HBF4, (N,N,N',N'-tetramethylethylenediamine)3/2:HBF4 and (phenanthroline)2:HBF4. These, as well as other known LiBF4 solvate structures, have been characterized by Raman vibrational spectroscopy to unambiguously assign the anion Raman band positions to specific forms of BF4-...Li+ cation coordination. In addition, complementary DFT calculations of BF4-...Li+ cation complexes have provided additional insight into the challenges associated with accurately interpreting the anion interactions from experimental Raman spectra. This information provides a crucial tool for the characterization of the ionic association interactions within electrolytes.

  18. Ester-Based Electrolytes for Low-Temperature Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2005-01-01

    Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in five different solvent mixtures of alkyl carbonates have been found to afford improved performance in rechargeable lithium-ion electrochemical cells at temperatures as low as -70 C. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells (NPO-30226), NASA Tech Briefs, Vol. 27, No. 1 (January 2003), page 46. The ingredients of the present solvent mixtures are ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), and ethyl valerate (EV). In terms of volume proportions of these ingredients, the present solvent mixtures are 1EC + 1EMC + 8MB, 1EC + 1EMC + 8EB, 1EC + 1EMC + 8MP, 1EC + 1EMC + 8EV, and 1EC + 9EMC. These electrolytes were placed in Liion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the low-temperature electrical performances of the cells were measured. The cells containing the MB and MP mixtures performed best.

  19. Estimation of energy density of Li-S batteries with liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.

    2016-09-01

    With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.

  20. Evaluation of Doped Polyethylene Oxide as Solid Electrolyte for Polymer Batteries

    DTIC Science & Technology

    1992-02-01

    LiBF4 ) complexes for application as solid electrolytes in polymer batteries. AC conductivity and permittivity (dielectric constant) as a function of...frequency, temperature, and concentration of lithium tetrafluoroborate ( LiBF4 ) in polyethylene oxide (PEO) films were measured with a TA Instruments...Concentrations 19 3 Crystallinity of PEO as a Function of Weight Fraction LiBF4 20 4 TG-DTG Curve for LiBF4 21 5 Peak Temperature of PEO:LiBF 4 Complexes

  1. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes

    PubMed Central

    Chen, Liang; Gu, Qingwen; Zhou, Xufeng; Lee, Saixi; Xia, Yonggao; Liu, Zhaoping

    2013-01-01

    Rechargeable batteries made from low-cost and abundant materials operating in safe aqueous electrolytes are attractive for large-scale energy storage. Sodium-ion battery is considered as a potential alternative of current lithium-ion battery. As sodium-intercalation compounds suitable for aqueous batteries are limited, we adopt a novel concept of Li+/Na+ mixed-ion electrolytes to create two batteries (LiMn2O4/Na0.22MnO2 and Na0.44MnO2/TiP2O7), which relies on two electrochemical processes. One involves Li+ insertion/extraction reaction, and the other mainly relates to Na+ extraction/insertion reaction. Two batteries exhibit specific energy of 17 Wh kg−1 and 25 Wh kg−1 based on the total weight of active electrode materials, respectively. As well, aqueous LiMn2O4/Na0.22MnO2 battery is capable of separating Li+ and Na+ due to its specific mechanism unlike the traditional “rocking-chair” lithium-ion batteries. Hence, the Li+/Na+ mixed-ion batteries offer promising applications in energy storage and Li+/Na+ separation. PMID:23736113

  2. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  3. Li-air batteries having ether-based electrolytes

    DOEpatents

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  4. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries.

    PubMed

    Dedryvère, R; Leroy, S; Martinez, H; Blanchard, F; Lemordant, D; Gonbeau, D

    2006-07-06

    X-ray photoelectron valence spectra of lithium salts LiBF4, LiPF6, LiTFSI, and LiBETI have been recorded and analyzed by means of density functional theory (DFT) calculations, with good agreement between experimental and calculated spectra. The results of this study are used to characterize electrode/electrolyte interfaces of graphite negative electrodes in Li-ion batteries using organic carbonate electrolytes containing LiTFSI or LiBETI salts. By a combined X-ray photoelectron spectroscopy (XPS) core peaks/valence analysis, we identify the main constituents of the interface. Differences in the surface layers' composition can be evidenced, depending on whether LiTFSI or LiBETI is used as the lithium salt.

  5. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  6. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  7. Effect of electrolyte water content on the anodic passivation of lithium in IM LiC104-propylene carbonate

    NASA Astrophysics Data System (ADS)

    James, S. D.; Nagao, A. R.

    1982-06-01

    This work deals with the effect of aqueous contamination on the anode passivation of Li in 1M LiC10 4-propylene carbonate. Passivation occurs more readily with increasing electrolyte water content. Preliminary evidence suggests that anodic passivation may be due to anodic enrichment and eventual precipitation of LiC10 4 in the superficial anolyte layer.

  8. A High-Performance Li-O2 Battery with a Strongly Solvating Hexamethylphosphoramide Electrolyte and a LiPON-Protected Lithium Anode.

    PubMed

    Zhou, Bin; Guo, Limin; Zhang, Yantao; Wang, Jiawei; Ma, Lipo; Zhang, Wen-Hua; Fu, Zhengwen; Peng, Zhangquan

    2017-08-01

    The aprotic Li-O2 battery has attracted a great deal of interest because theoretically it can store more energy than today's Li-ion batteries. However, current Li-O2 batteries suffer from passivation/clogging of the cathode by discharged Li2 O2 , high charging voltage for its subsequent oxidation, and accumulation of side reaction products (particularly Li2 CO3 and LiOH) upon cycling. Here, an advanced Li-O2 battery with a hexamethylphosphoramide (HMPA) electrolyte is reported that can dissolve Li2 O2 , Li2 CO3 , and LiOH up to 0.35, 0.36, and 1.11 × 10(-3) m, respectively, and a LiPON-protected lithium anode that can be reversibly cycled in the HMPA electrolyte. Compared to the benchmark of ether-based Li-O2 batteries, improved capacity, rate capability, voltaic efficiency, and cycle life are achieved for the HMPA-based Li-O2 cells. More importantly, a combination of advanced research techniques provide compelling evidence that operation of the HMPA-based Li-O2 battery is backed by nearly reversible formation/decomposition of Li2 O2 with negligible side reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM.

    PubMed

    Zeng, Zhiyuan; Liang, Wen-I; Liao, Hong-Gang; Xin, Huolin L; Chu, Yin-Hao; Zheng, Haimei

    2014-01-01

    We report direct visualization of electrochemical lithiation and delithiation of Au anodes in a commercial LiPF6/EC/DEC electrolyte for lithium ion batteries using transmission electron microscopy (TEM). The inhomogeneous lithiation, lithium metal dendritic growth, electrolyte decomposition, and solid-electrolyte interface (SEI) formation are observed in situ. These results shed lights on strategies of improving electrode design for reducing short-circuit failure and improving the performance of lithium ion batteries.

  10. Air-Stable, High-Conduction Solid Electrolytes of Arsenic-Substituted Li4SnS4

    SciTech Connect

    Sahu, Gayatri; Lin, Zhan; Li, Juchuan; Liu, Zengcai; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    Lithium-ion-conducting solid electrolytes show promise for enabling high-energy secondary battery chemistries and solving safety issues associated with conventional lithium batteries. Achieving the combination of high ionic conductivity and outstanding chemical stability in solid electrolytes is a grand challenge for the synthesis of solid electrolytes. Herein we report the design of aliovalent substitution of Li4SnS4 to achieve high conduction and excellent air stability based on the hard and soft acids and bases theory. The composition of Li3.833Sn0.833As 0.166S4 has a high ionic conductivity of 1.39 mS/cm 1 at 25 C. Considering the high Li+ transference number, this phase conducts Li+ as well as carbonate-based liquid electrolytes. This research also addresses the compatibility of the sulfide-based solid electrolytes through chemical passivation.

  11. Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li-O2 Batteries.

    PubMed

    Wu, Feng; Xing, Yi; Li, Li; Qian, Ji; Qu, Wenjie; Wen, Jianguo; Miller, Dean; Ye, Yusheng; Chen, Renjie; Amine, Khalil; Lu, Jun

    2016-09-14

    To improve the electrochemical performance of the high energy Li-O2 batteries, it is important to design and construct a suitable and effective oxygen-breathing cathode. Herein, a three-dimensional (3D) porous boron-doped reduction graphite oxide (B-rGO) material with a hierarchical structure has been prepared by a facile freeze-drying method. In this design, boric acid as the boron source helps to form the 3D porous structure, owing to its cross-linking and pore-forming function. This architecture facilitates the rapid oxygen diffusion and electrolyte penetration in the electrode. Meanwhile, the boron-oxygen functional groups linking to the carbon surface or edge serve as additional reaction sites to activate the ORR process. It is vital that boron atoms have been doped into the carbon lattices to greatly activate the electrons in the carbon π system, which is beneficial for fast charge under large current densities. Density functional theory calculation demonstrates that B-rGO exhibits much stronger interactions with Li5O6 clusters, so that B-rGO more effectively activates Li-O bonds to decompose Li2O2 during charge than rGO does. With B-rGO as a catalytic substrate, the Li-O2 battery achieves a high discharge capacity and excellent rate capability. Moreover, catalysts could be added into the B-rGO substrate to further lower the overpotential and enhance the cycling performance in future.

  12. Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes

    SciTech Connect

    Han, Sang D.; Yun, Sung-Hyun; Borodin, Oleg; Seo, D. M.; Sommer, Roger D.; Young, Victor G.; Henderson, Wesley A.

    2015-04-23

    Raman spectroscopy is a powerful method for identifying ion-ion interactions, but only if the vibrational band signature for the anion coordination modes can be accurately deciphered. The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates to create a characterization tool for liquid electrolytes. To facilitate this, the crystal structures for two new solvates—(G3)1:LiPF6 and (DEC)2:LiPF6 with triglyme and diethyl carbonate, respectively—are reported. The information obtained from this analysis provides key guidance about the ionic association information which may be obtained from a Raman spectroscopic evaluation of electrolytes containing the LiPF6 salt and aprotic solvents. Of particular note is the overlap of the Raman bands for both solvent-separated ion pair (SSIP) and contact ion pair (CIP) coordination in which the PF6- anions are uncoordinated or coordinated to a single Li+ cation, respectively.

  13. Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries.

    PubMed

    Ruzmetov, Dmitry; Oleshko, Vladimir P; Haney, Paul M; Lezec, Henri J; Karki, Khim; Baloch, Kamal H; Agrawal, Amit K; Davydov, Albert V; Krylyuk, Sergiy; Liu, Yang; Huang, Jiany; Tanase, Mihaela; Cumings, John; Talin, A Alec

    2012-01-11

    Rechargeable, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly desirable to power an emerging class of miniature, autonomous microsystems that operate without a hardwire for power or communications. A variety of three-dimensional (3D) LIB architectures that maximize areal energy density has been proposed to address this need. The success of all of these designs depends on an ultrathin, conformal electrolyte layer to electrically isolate the anode and cathode while allowing Li ions to pass through. However, we find that a substantial reduction in the electrolyte thickness, into the nanometer regime, can lead to rapid self-discharge of the battery even when the electrolyte layer is conformal and pinhole free. We demonstrate this by fabricating individual, solid-state nanowire core-multishell LIBs (NWLIBs) and cycling these inside a transmission electron microscope. For nanobatteries with the thinnest electrolyte, ≈110 nm, we observe rapid self-discharge, along with void formation at the electrode/electrolyte interface, indicating electrical and chemical breakdown. With electrolyte thickness increased to 180 nm, the self-discharge rate is reduced substantially, and the NWLIBs maintain a potential above 2 V for over 2 h. Analysis of the nanobatteries' electrical characteristics reveals space-charge limited electronic conduction, which effectively shorts the anode and cathode electrodes directly through the electrolyte. Our study illustrates that, at these nanoscale dimensions, the increased electric field can lead to large electronic current in the electrolyte, effectively shorting the battery. The scaling of this phenomenon provides useful guidelines for the future design of 3D LIBs.

  14. Practical performances of Li-ion polymer batteries with LiNi 0.8Co 0.2O 2, MCMB, and PAN-based gel electrolyte

    NASA Astrophysics Data System (ADS)

    Akashi, Hiroyuki; Shibuya, Mashio; Orui, Ken; Shibamoto, Gorou; Sekai, Koji

    The practical performances and thermal stability of Li-ion polymer batteries with LiNi 0.8Co 0.2O 2, mesocarbon microbead-based graphite, and poly(acrylonitrile) (PAN)-based gel electrolytes are reported. The gel electrolyte, which shows a fire-retardance by itself as well as good chemical stability effectively improved thermal stability of the Li-ion polymer battery up to 170 °C. We also found that the mesocarbon microbead-based graphite showed better coulombic efficiency even though the gel electrolyte contained PC and GBL. An evaluation of cell performances showed that the electrodes and the gel electrolyte were promising material for a next-generation Li-ion polymer battery.

  15. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Knight, Brandon M.

    Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both

  16. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights.

    PubMed

    Gauthier, Magali; Carney, Thomas J; Grimaud, Alexis; Giordano, Livia; Pour, Nir; Chang, Hao-Hsun; Fenning, David P; Lux, Simon F; Paschos, Odysseas; Bauer, Christoph; Maglia, Filippo; Lupart, Saskia; Lamp, Peter; Shao-Horn, Yang

    2015-11-19

    Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2-xMnO3·(1-y)Li1-xMO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.

  17. Effect of organic acids and nano-sized ceramic doping on PEO-based solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Park, Jae Won; Jeong, Euh Duck; Won, Mi-Sook; Shim, Yoon-Bo

    Composite solid polymer electrolytes (CSPEs) consisting of polyethyleneoxide (PEO), LiClO 4, organic acids (malonic, maleic, and carboxylic acids), and/or Al 2O 3 were prepared in acetonitrile. CSPEs were characterized by Brewster Angle Microscopy (BAM), thermal analysis, ac impedance, cyclic voltammetry, and tested for charge-discharge capacity with the Li or LiNi 0.5Co 0.5O 2 electrodes coated on stainless steel (SS). The morphologies of the CSPE films were homogeneous and porous. The differential scanning calorimetric (DSC) results suggested that performance of the CSPE film was highly enhanced by the acid and inorganic additives. The composite membrane doped with organic acids and ceramic showed good conductivity and thermal stability. The ac impedance data, processed by non-linear least square (NLLS) fitting, showed good conducting properties of the composite films. The ionic conductivity of the film consisting of (PEO) 8LiClO 4:citric acid (99.95:0.05, w/w%) was 3.25 × 10 -4 S cm -1 and 1.81 × 10 -4 S cm -1 at 30 °C. The conductivity has further improved to 3.81 × 10 -4 S cm -1 at 20 °C by adding 20 w/w% Al 2O 3 filler to the (PEO) 8LiClO 4 + 0.05% carboxylic acid composite. The experimental data for the full cell showed an upper limit voltage window of 4.7 V versus Li/Li + for CSPE at room temperature.

  18. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.

    PubMed

    Marinaro, M; Balasubramanian, P; Gucciardi, E; Theil, S; Jörissen, L; Wohlfahrt-Mehrens, M

    2015-09-21

    Although still in their embryonic state, aprotic rechargeable Li-O2 batteries have, theoretically, the capabilities of reaching higher specific energy densities than Li-ion batteries. There are, however, significant drawbacks that must be addressed to allow stable electrochemical performance; these will ultimately be solved by a deeper understanding of the chemical and electrochemical processes occurring during battery operations. We report a study on the electrochemical and chemical stability of Li-O2 batteries comprising Au-coated carbon cathodes, a dimethyl sulfoxide (DMSO)-based electrolyte and Li metal negative electrodes. The use of the aforementioned Au-coated cathodes in combination with a 1 M lithium bis(trifluoromethane)sulfonimide (LiTFSI)-DMSO electrolyte guarantees very good cycling stability (>300 cycles) by minimizing eventual side reactions. The main drawbacks arise from the high reactivity of the Li metal electrode when in contact with the O2 -saturated DMSO-based electrolyte.

  19. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes

    DOE PAGES

    Dufek, Eric J.; Klaehn, John R.; McNally, Joshua S.; ...

    2016-05-09

    In this study, the use of phosphoranimines (PAs), a class of linear, monomeric phosphazenes, as electrolytes for Li-ion battery applications has been investigated as a route to improve safety and stability for Li-ion batteries. Of the potential PAs for use in battery applications, this work focuses on the initial synthetic preparation and analysis of N-trimethylsilyl-P,P-bis((2-methoxyethoxy)ethoxy)-P-ethylphosphoranimine (PA-5). PA-5 has high LiPF6 solubility in excess of 2 M, high thermal stability with a melting point below -80°C and high thermal stability as a neat compound to at least 250°C. As part of electrolyte blends, the inclusion of PA-5 shifts the onset ofmore » thermal degradation by close to 40°C at 35% loading and by 20°C at a 10% loading, improves the low temperature performance of the electrolyte, and when used as a primary solvent leads to increases in the flash point (by 20°C) when compared to more traditional EC:EMC blends. Cycling capabilities of full-coin cells with graphite negative electrodes and Li1+w[Ni0.5Mn0.3Co0.2]1-wO2 positive electrodes using PA-5:EC:EMC electrolyte blends are comparable with the performance seen for traditional EC:EMC blends. Analysis of the impact of the use of additives such as vinylene carbonate in PA-5:EC:EMC blended electrolyte results in enhanced capacity retention and improved coulombic efficiency.« less

  20. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes

    SciTech Connect

    Dufek, Eric J.; Klaehn, John R.; McNally, Joshua S.; Rollins, Harry W.; Jamison, David K.

    2016-05-09

    In this study, the use of phosphoranimines (PAs), a class of linear, monomeric phosphazenes, as electrolytes for Li-ion battery applications has been investigated as a route to improve safety and stability for Li-ion batteries. Of the potential PAs for use in battery applications, this work focuses on the initial synthetic preparation and analysis of N-trimethylsilyl-P,P-bis((2-methoxyethoxy)ethoxy)-P-ethylphosphoranimine (PA-5). PA-5 has high LiPF6 solubility in excess of 2 M, high thermal stability with a melting point below -80°C and high thermal stability as a neat compound to at least 250°C. As part of electrolyte blends, the inclusion of PA-5 shifts the onset of thermal degradation by close to 40°C at 35% loading and by 20°C at a 10% loading, improves the low temperature performance of the electrolyte, and when used as a primary solvent leads to increases in the flash point (by 20°C) when compared to more traditional EC:EMC blends. Cycling capabilities of full-coin cells with graphite negative electrodes and Li1+w[Ni0.5Mn0.3Co0.2]1-wO2 positive electrodes using PA-5:EC:EMC electrolyte blends are comparable with the performance seen for traditional EC:EMC blends. Analysis of the impact of the use of additives such as vinylene carbonate in PA-5:EC:EMC blended electrolyte results in enhanced capacity retention and improved coulombic efficiency.

  1. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes

    SciTech Connect

    Dufek, Eric J.; Klaehn, John R.; McNally, Joshua S.; Rollins, Harry W.; Jamison, David K.

    2016-05-09

    In this study, the use of phosphoranimines (PAs), a class of linear, monomeric phosphazenes, as electrolytes for Li-ion battery applications has been investigated as a route to improve safety and stability for Li-ion batteries. Of the potential PAs for use in battery applications, this work focuses on the initial synthetic preparation and analysis of N-trimethylsilyl-P,P-bis((2-methoxyethoxy)ethoxy)-P-ethylphosphoranimine (PA-5). PA-5 has high LiPF6 solubility in excess of 2 M, high thermal stability with a melting point below -80°C and high thermal stability as a neat compound to at least 250°C. As part of electrolyte blends, the inclusion of PA-5 shifts the onset of thermal degradation by close to 40°C at 35% loading and by 20°C at a 10% loading, improves the low temperature performance of the electrolyte, and when used as a primary solvent leads to increases in the flash point (by 20°C) when compared to more traditional EC:EMC blends. Cycling capabilities of full-coin cells with graphite negative electrodes and Li1+w[Ni0.5Mn0.3Co0.2]1-wO2 positive electrodes using PA-5:EC:EMC electrolyte blends are comparable with the performance seen for traditional EC:EMC blends. Analysis of the impact of the use of additives such as vinylene carbonate in PA-5:EC:EMC blended electrolyte results in enhanced capacity retention and improved coulombic efficiency.

  2. Electrolytes for Low-Temperature Operation of Li-CFx Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Whitacre, Jay F.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Bhalla, Pooja; Smith, Kiah

    2009-01-01

    A report describes a study of electrolyte compositions selected as candidates for improving the low-temperature performances of primary electrochemical cells that contain lithium anodes and fluorinated carbonaceous (CFx) cathodes. This study complements the developments reported in Additive for Low-Temperature Operation of Li-(CF)n Cells (NPO- 43579) and Li/CFx Cells Optimized for Low-Temperature Operation (NPO- 43585), which appear elsewhere in this issue of NASA Tech Briefs. Similar to lithium-based electrolytes described in several previous NASA Tech Briefs articles, each of these electrolytes consisted of a lithium salt dissolved in a nonaqueous solvent mixture. Each such mixture consisted of two or more of the following ingredients: propylene carbonate (PC); 1,2-dimethoxyethane (DME); trifluoropropylene carbonate; bis(2,2,2-trifluoroethyl) ether; diethyl carbonate; dimethyl carbonate; and ethyl methyl carbonate. The report describes the physical and chemical principles underlying the selection of the compositions (which were not optimized) and presents results of preliminary tests made to determine effects of the compositions upon the low-temperature capabilities of Li-CFx cells, relative to a baseline composition of LiBF4 at a concentration of 1.0 M in a solvent comprising equal volume parts of PC and DME.

  3. Flexible Li-CO2 Batteries with Liquid-Free Electrolyte.

    PubMed

    Hu, Xiaofei; Li, Zifan; Chen, Jun

    2017-05-15

    Developing flexible Li-CO2 batteries is a promising approach to reuse CO2 and simultaneously supply energy to wearable electronics. However, all reported Li-CO2 batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO2 batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO4 -3 wt %SiO2 composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14×10(-2)  mS cm(-1) ) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g(-1) . Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg(-1) , and long operation time of 220 h at different degrees of bending (0-360°) at 55 °C. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solvation structure around the Li(+) ion in succinonitrile-lithium salt plastic crystalline electrolytes.

    PubMed

    Shen, Yuneng; Deng, Gang-Hua; Ge, Chuanqi; Tian, Yuhuan; Wu, Guorong; Yang, Xueming; Zheng, Junrong; Yuan, Kaijun

    2016-06-01

    Herein, we discuss the study of solvation dynamics of lithium-succinonitrile (SN) plastic crystalline electrolytes by ultrafast vibrational spectroscopy. The infrared absorption spectra indicated that the CN stretch of the Li(+) bound and unbound succinonitrile molecules in a same solution have distinct vibrational frequencies (2276 cm(-1)vs. 2253 cm(-1)). The frequency difference allowed us to measure the rotation decay times of solvent molecules bound and unbound to Li(+) ion. The Li(+) coordination number of the Li(+)-SN complex was found to be 2 in the plastic crystal phase (22 °C) and 2.5-3 in the liquid phase (80 °C), which is independent of the concentration (from 0.05 mol kg(-1) to 2 mol kg(-1)). The solvation structures along with DFT calculations of the Li(+)-SN complex have been discussed. In addition, the dissociation percentage of lithium salt was also determined. In 0.5 mol kg(-1) LiBF4-SN solutions at 80 °C, 60% ± 10% of the salt dissociates into Li(+), which is bound by 2 or 3 solvent molecules. In the 0.5 mol kg(-1) LiClO4-SN solutions at 80 °C, the salt dissociation ratio can be up to 90% ± 10%.

  5. Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Buga, Ratnakumar V.; Gozdz, Antoni S.; Mani, Suresh

    2010-01-01

    As part of the continuing efforts to develop advanced electrolytes to improve the performance of lithium-ion cells, especially at low temperatures, a number of electrolyte formulations have been developed that result in improved low-temperature performance (down to 60 C) of 26650 A123Systems commercial lithium-ion cells. The cell type/design, in which the new technology has been demonstrated, has found wide application in the commercial sector (i.e., these cells are currently being used in commercial portable power tools). In addition, the technology is actively being considered for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In current work, a number of low-temperature electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed, which include the use of ternary mixtures of carbonates, the use of ester co-solvents [e.g., methyl butyrate (MB)], and optimized lithium salt concentrations (e.g., LiPF6), were compared with the commercial baseline electrolyte, as well as an electrolyte being actively considered for DoE HEV applications and previously developed by a commercial enterprise, namely LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC)(30:70%).

  6. Li conductivity in siloxane-based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Stacy, Eric; Fan, Fei; Feng, Hongbo; Gainaru, Catalin; Mays, Jimmy; Sokolov, Alexei

    Polymer electrolytes containing lithium ions are ideal candidates for electrochemical devices and energy storage applications. Understanding their ionic transport mechanism is the key for rational designing of highly conductive polymer matrices. Complementing dielectric spectroscopy investigations by results from rheology and differential scanning calorimetry we focused on the interplay between dynamics of lithium ions and the polymer matrix based on polysiloxane backbone. Our results demonstrate that the conductivity and the degree of decoupling between ion dynamics and structural relaxation depend strongly not only on the ions concentration, but also on the polarity and size of the polymeric side-groups. Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

  7. Li doped ZnO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-01

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  8. Li doped ZnO thin films for optoelectronic applications

    SciTech Connect

    Sandeep, K. M. Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-23

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  9. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  10. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  11. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Kai; Hu, Shuchun; Li, Yongkui

    2016-09-01

    In this study, nitrogen-doped graphene decorated LiVPO4F cathode material is firstly synthesized via a facile method. Well-dispersed LiVPO4F nanoparticles are embedded in nitrogen-doped graphene nanosheets, forming an effective conducting network. The added nitrogen-doped graphene nanosheets greatly enhance the electronic conductivity and Li-ion diffusion of LiVPO4F sample. When tested as cathode material for rechargeable lithium-ion batteries, the hybrid electrode exhibits superior high-rate performance and long-term cycling stability between 3.0 and 4.5 V. It delivers a large discharge capacity of 152.7 mAhg-1 at 0.1 C and shows a capacity retention of 97.8% after 60 cycles. Moreover, a reversible capacity of 90.1 mAhg-1 is maintained even after 500 cycles at a high rate of 20 C. The charge-transfer resistance of LiVPO4F electrode is also reduced in the nitrogen-doped graphene, revealing that its electrode-electrolyte complex reactions take place easily and thus improve the electrochemical performance. The above results provide a facile and effective strategy for the synthesis of LiVPO4F cathode material for high-performance lithium-ion batteries.

  12. A method for treating electrolyte to remove Li{sub 2}O

    SciTech Connect

    Tomczuk, Z.; Miller, W.E.; Johnson, G.K.; Willit, J.L.

    1998-04-01

    Electrorefining has been used in processes for recovering uranium and plutonium metals from spent nuclear fuel. The electrorefining is performed in an electrochemical cell in which the chopped fuel elements from the reactor forms the anode, the electrolyte, preferably, is the fused eutectic salt of the LiCl-KCl which contain UCl{sub 3} and PuCl{sub 3}. Purified metal collected at the cathode collects at the bottom of the cell. This invention provides a method for removing lithium oxide from the electrolyte salt, with the end formation of a solid lithium-aluminium alloy.

  13. The effectiveness of electrolyte additives in fluorinated electrolytes for high voltage Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch Li-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Petibon, R.; Xiao, A.; Lamanna, W. M.; Dahn, J. R.

    2016-10-01

    The effectiveness of electrolyte additives in fluorinated electrolytes containing 1 M LiPF6/fluoroethylene carbonate:bis (2,2,2-trifluoroethyl) carbonate (1:1 w:w) were studied in high voltage Li(Ni0.4Mn0.4Co0.2)O2/graphite pouch cells tested to 4.5 V. The results showed that fluorinated electrolytes containing prop-1-ene-1,3-sultone alone or in combination with other additives exhibited significant improvements in terms of coulombic efficiency and charge endpoint capacity slippage during UHPC cycling, voltage drop during storage, as well as capacity retention during long-term cycling compared with state-of-the-art ethylene carbonate-based (ethylene carbonate: ethylmethyl carbonate 3:7) or sulfolane-based electrolytes (sulfolane: ethylmethyl carbonate 3:7) with some promising additive blends. These results indicate that fluorinated electrolytes offer an interesting alternative for high voltage Li-ion batteries.

  14. EMF measurements on the Li-Al/Ni/sub 3/S/sub 2/ couple in molten salt electrolytes

    SciTech Connect

    Tomczuk, Z.; Redey, L.; Vissers, D.R.

    1983-05-01

    The (emf) vs. temperature curve for the Li-Al/Ni/sub 3/S/sub 2/ couple was determined in 58.2 mol percen (m/o) LiCl-41.8 m/o KCl (eutectic electrolyte), 49.1 m/o LiCl-50.9 m/o KCl (KCl-rich electrolyte), 69.6 m/o LiCl-30.4 m/o KCl (LiCl-rich electrolyte), and in 22 m/o Lif-31 m/o LiCl-47 m/o LiBr electrolyte. The results indicate that with these electrolytes the emf value of the couple at a given temperature is independent of the electrolyte composition. Equilibrium emf values were obtained instantaneously upon heating or cooling at rates of about0.2/sup 0/C/min, while at higher rates ( about0.5/sup 0/C/ min) equilibrium values were obtained after about 1 1/2 hr at a given temperature. X-ray diffraction analyses of the positive electrodes from the cells tested indicate that the only nickel-sulfur phase formed in the electrode reaction is Ni/sub 3/S/sub 2/. Thermochemical analyses also suggest Ni/sub 3/S/sub 2/ as the active nickel sulfide phase.

  15. Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries.

    PubMed

    Zeng, Xian-Xiang; Yin, Ya-Xia; Li, Nian-Wu; Du, Wen-Cheng; Guo, Yu-Guo; Wan, Li-Jun

    2016-12-14

    High-energy rechargeable Li metal batteries are hindered by dendrite growth due to the use of a liquid electrolyte. Solid polymer electrolytes, as promising candidates to solve the above issue, are expected to own high Li ion conductivity without sacrificing mechanical strength, which is still a big challenge to realize. In this study, a bifunctional solid polymer electrolyte exactly having these two merits is proposed with an interpenetrating network of poly(ether-acrylate) (ipn-PEA) and realized via photopolymerization of ion-conductive poly(ethylene oxide) and branched acrylate. The ipn-PEA electrolyte with facile processing capability integrates high mechanical strength (ca. 12 GPa) with high room-temperature ionic conductance (0.22 mS cm(-1)), and significantly promotes uniform Li plating/stripping. Li metal full cells assembled with ipn-PEA electrolyte and cathodes within 4.5 V vs Li(+)/Li operate effectively at a rate of 5 C and cycle stably at a rate of 1 C at room temperature. Because of its fabrication simplicity and compelling characteristics, the bifunctional ipn-PEA electrolyte reshapes the feasibility of room-temperature solid-state Li metal batteries.

  16. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.

    PubMed

    Yi, Jin; Zhou, Haoshen

    2016-09-08

    In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application.

  17. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  18. Li-Ion Conductivity and Phase Stability of Ca-Doped LiBH4 under High Pressure.

    PubMed

    Mezaki, Takeya; Kuronuma, Yota; Oikawa, Itaru; Kamegawa, Atsunori; Takamura, Hitoshi

    2016-10-17

    The effect of Ca doping on the Li-ion conductivity and phase stability of the rock-salt-type LiBH4 phase emerging under high pressures in the range of gigapascals has been investigated. In situ electrochemical measurements under high pressure were performed using a cubic-anvil-type apparatus. Ca doping drastically enhanced the ionic conductivity of the rock-salt-type phase: the ionic conductivity of undoped and 5 mol %Ca-doped LiBH4 was 2.2 × 10(-4) and 1.4 × 10(-2) S·cm(-1) under 4.0 GPa at 220 °C, respectively. The activation volume of LiBH4-5 mol %Ca(BH4)2, at 3.2 cm(3)·mol(-1), was comparable to that of other fast ionic conductors, such as lithium titanate and NASICONs. Moreover, Ca-doped LiBH4 showed lithium plating-stripping behavior in a cyclic voltammogram. These results indicate that the conductivity enhancement by Ca doping can be attributed to the formation of a LiBH4-Ca(BH4)2 solid solution; however, the solid solution decomposed into the orthorhombic LiBH4 phase and the orthorhombic Ca(BH4)2 phase after unloading the high pressure.

  19. Characterization of high-voltage cathodes in CsBr-LiBr-KBr eutectic electrolyte

    SciTech Connect

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.

    2000-04-20

    The transition-metal oxides LiMn{sub 2}O{sub 4}, MnO{sub 2}, CrO{sub 2}, and LiCoO{sub 2} were evaluated for possible use as high-voltage cathodes for potential geothermal power applications. These were coupled with Li(Si) anodes and a low-melting CsBr-LiBr-KBr eutectic electrolyte that melts at 228.5 C. Single-cell tests at 250 C and 300 C at 15.8 and 31.6 mA/cm{sup 2} showed that MnO{sub 2} performed the best overall and had the lowest polarization. A 5-cell battery test using LiMn{sub 2}O{sub 4} cathodes was only modestly successful due to possible parasitic chemical reactions between the cathode and electrolyte at the much higher temperature (500 C) during discharge. The overall energy densities for these cathode were still less than for FeS{sub 2}.

  20. Effect of impurities and moisture on lithium bisoxalatoborate (LiBOB) electrolyte performance in lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Yang, L.; Furczon, M. M.; Xiao, A.; Lucht, B. L.; Zhang, Z.; Abraham, D. P.

    Electrolytes containing LiB(C 2O 4) 2 (LiBOB) salts are of increasing interest for lithium-ion cells for several reasons that include their ability to form a stable solid electrolyte interphase on graphite electrodes. However, cells containing these electrolytes often show inconsistent performance because of impurities in the LiBOB salt. In this work we compare cycling and impedance data from cells containing electrolytes with LiBOB that was obtained commercially and LiBOB purified by a rigorous recrystallization procedure. We relate the difference in performance to a lithium oxalate impurity that may be a residual from the salt manufacturing process. We also examine the reaction of LiBOB with water to determine the effect of salt storage in high-humidity environments. Although LiBOB electrolytes containing trace amounts (∼100 ppm) of moisture appear relatively stable, higher moisture contents (∼1 wt%) lead to observable salt decomposition resulting in the generation of B(C 2O 4)(OH) and LiB(C 2O 4)(OH) 2 compounds that do not dissolve in typical carbonate solutions and impair lithium-ion cell performance.

  1. Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Perea, Alexis; Dontigny, Martin; Zaghib, Karim

    2017-08-01

    In this article we present the difference in thermal stability of Li/LiFePO4| half cells with liquid and solid polymer electrolytes. After two initial cycles, the cells were charged to two different state of charge (SOC) of 50 and 100%. The thermal stability of the half cells is assessed with an accelerating rate calorimeter, and the thermal runaway parameters are discussed for each experiment: dependence of self-heating rate on temperature, temperature of a first-detected exothermic reaction, and maximum cell temperature. The dependence of those parameters with respect to the SOC is also presented.

  2. First-principles study of LiPON and related solid electrolytes

    NASA Astrophysics Data System (ADS)

    Du, Yaojun A.; Holzwarth, N. A. W.

    2010-05-01

    Lithium phosphorus oxynitride materials have been investigated for many years, especially in relation to the thin-film electrolyte LiPON, developed at Oak Ridge National Laboratory. We have carried out first-principles simulations of related crystalline materials as a first step toward understanding the sources of stability and mechanisms of Li-ion conductivity in these materials. In addition to a comprehensive survey of known crystalline materials related to LiPON, we have also predicted some materials. For example, starting with crystalline LiPO3 which has twisted phosphate chains, we considered the possibility of modifying the structure by substituting N and Li for O. The optimized structures were computed to have regularized phosphate chains which form planar -P-N-P-N- backbones. To the best of our knowledge, the predicted crystals, which we call s1-Li2PO2N with a 24-atom unit cell and s2-Li2PO2N with a 12-atom unit cell, have not yet been observed experimentally. We suggest several possible exothermic reaction pathways to synthesize these crystals.

  3. Non-aqueous solution preparation of doped and undoped Li{sub x}Mn{sub y}O{sub z}

    DOEpatents

    Boyle, T.J.; Voigt, J.A.

    1997-05-20

    A method is described for generation of phase-pure doped and undoped Li{sub x}Mn{sub y}O{sub z} precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder. 1 fig.

  4. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    PubMed

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn(3+) and not Mn(2+), as commonly accepted, is the dominant dissolved manganese cation in LiPF6-based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn(3+) fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn(3+) in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn(3+) occurs at a very slow rate.

  5. A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent

    NASA Astrophysics Data System (ADS)

    Ito, Seitaro; Nakakita, Moeka; Aihara, Yuichi; Uehara, Takahiro; Machida, Nobuya

    2014-12-01

    A crystalline solid electrolyte, Li7P3S11, was synthesized by a liquid-phase reaction of Li2S and P2S5 in an organic solvent. A precursor, which was a mixture of solvated Li3PS4 and Li4P2S7, was prepared by mixing Li2S and P2S5 powders in 1,2-dimethoxyethane (DME) solvent. After a vacuum drying of the precursor, the crystalline phase of Li7P3S11 was obtained by heat treatment at 250 °C for 1 h in Ar atmosphere. The Li7P3S11 sample showed high ionic conductivity of 2.7 × 10-4 S cm-1 at room temperature. The liquid-phase synthesis of the solid electrolyte has advantages for mass-production of all-solid-state batteries.

  6. Structure and properties of Li-ion conducting polymer gel electrolytes based on ionic liquids of the pyrrolidinium cation and the bis(trifluoromethanesulfonyl)imide anion

    NASA Astrophysics Data System (ADS)

    Pitawala, Jagath; Navarra, Maria Assunta; Scrosati, Bruno; Jacobsson, Per; Matic, Aleksandar

    2014-01-01

    We have investigated the structure and physical properties of Li-ion conducting polymer gel electrolytes functionalized with ionic liquid/lithium salt mixtures. The membranes are based on poly(vinylidene fluoride-co-hexafluoropropylene) copolymer, PVdF-HFP, and two ionic liquids: pyrrolidinium cations, N-butyl-N-methylpyrrolidinium (PyR14+), N-butyl-N-ethylpyrrolidinium (PyR24+), and bis(trifluoromethanesulfonyl)imide anion (TFSI). The ionic liquids where doped with 0.2 mol kg-1 LiTFSI. The resulting membranes are freestanding, flexible, and nonvolatile. The structure of the polymer and the interactions between the polymer and the ionic liquid electrolyte have been studied using Raman spectroscopy. The ionic conductivity of the membranes has been studied using dielectric spectroscopy whereas the thermal properties were investigated using differential scanning caloriometry (DSC). These results show that there is a weak, but noticeable, influence on the physical properties of the ionic liquid by the confinement in the membrane. We observe a change in the Li-ion coordination, conformation of the anion, the fragility and a slight increase of the glass transition temperatures for IL/LiTFSI mixtures in the membranes compared to the neat mixtures. The effect can be related to the confinement of the liquid in the membrane and/or to interactions with the PVdF-HFP polymer matrix where the crystallinity is decreased compared to the starting polymer powder.

  7. Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Unemoto, Atsushi; Chen, ChunLin; Wang, Zhongchang; Matsuo, Motoaki; Ikeshoji, Tamio; Orimo, Shin-ichi

    2015-06-01

    The ionic conduction and electrochemical and thermal stabilities of the LiBH4-LiCl solid-state electrolyte were investigated for use in bulk-type all-solid-state lithium-sulfur batteries. The LiBH4-LiCl solid-state electrolyte exhibiting a lithium ionic conductivity of log ≤ft( σ /S c{{m}-1} \\right)=-3.3 at 373 K, forms a reversible interface with a lithium metal electrode and has a wide electrochemical potential window up to 5 V. By means of the high-energy mechanical ball-milling technique, we prepared a composite powder consisting of elemental sulfur and mixed conductive additive, i.e., Ketjen black and Maxsorb. In that composite powder, homogeneous dispersion of the materials is achieved on a nanometer scale, and thereby a high concentration of the interface among them is induced. Such nanometer-scale dispersals of both elemental sulfur and carbon materials play an important role in enhancing the electrochemical reaction of elemental sulfur. The highly deformable LiBH4-LiCl electrolyte assists in the formation of a high concentration of tight interfaces with the sulfur-carbon composite powder. The LiBH4-LiCl electrolyte also allows the formation of the interface between the positive electrode and the electrolyte layers, and thus the Li-ion transport paths are established at that interface. As a result, our battery exhibits high discharge capacities of 1377, 856, and 636 mAh g-1 for the 1st, 2nd, and 5th discharges, respectively, at 373 K. These results imply that complex hydride-based solid-state electrolytes that contain Cl-ions in the crystal would be integrated into rechargeable batteries.

  8. Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery.

    PubMed

    Unemoto, Atsushi; Chen, ChunLin; Wang, Zhongchang; Matsuo, Motoaki; Ikeshoji, Tamio; Orimo, Shin-Ichi

    2015-01-26

    The ionic conduction and electrochemical and thermal stabilities of the LiBH4-LiCl solid-state electrolyte were investigated for use in bulk-type all-solid-state lithium-sulfur batteries. The LiBH4-LiCl solid-state electrolyte exhibiting a lithium ionic conductivity of [Formula: see text] at 373 K, forms a reversible interface with a lithium metal electrode and has a wide electrochemical potential window up to 5 V. By means of the high-energy mechanical ball-milling technique, we prepared a composite powder consisting of elemental sulfur and mixed conductive additive, i.e., Ketjen black and Maxsorb. In that composite powder, homogeneous dispersion of the materials is achieved on a nanometer scale, and thereby a high concentration of the interface among them is induced. Such nanometer-scale dispersals of both elemental sulfur and carbon materials play an important role in enhancing the electrochemical reaction of elemental sulfur. The highly deformable LiBH4-LiCl electrolyte assists in the formation of a high concentration of tight interfaces with the sulfur-carbon composite powder. The LiBH4-LiCl electrolyte also allows the formation of the interface between the positive electrode and the electrolyte layers, and thus the Li-ion transport paths are established at that interface. As a result, our battery exhibits high discharge capacities of 1377, 856, and 636 mAh g(-1) for the 1st, 2nd, and 5th discharges, respectively, at 373 K. These results imply that complex hydride-based solid-state electrolytes that contain Cl-ions in the crystal would be integrated into rechargeable batteries.

  9. The effect of different internal surfaces in composite lithium electrolytes

    NASA Astrophysics Data System (ADS)

    Poulsen, F. W.

    A linear increase in the conductivity of LiI—alumina composite electrolytes with increasing specific surface area (2.4 - 260 m 2 g -1) of the alumina is demonstrated. Part of the enhanced conductivity is probably due to normal doping of the LiI by the alumina. Replacing 25% of the LiI by LiBr does not change the conductivity. Replacing part of the LiI by Li 3N has a detrimental effect.

  10. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH4SCN

    NASA Astrophysics Data System (ADS)

    Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Genova, F. Kingslin Mary; Umamaheswari, R.

    2016-05-01

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10-3 S cm-1 for 20 mol % NH4SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  11. Er-doped LiNbO3 waveguide lasers

    NASA Astrophysics Data System (ADS)

    Sohler, Wolfgang; Suche, Hubertus

    1997-05-01

    The state-of-the-art of Er-doped integrated optical lasers in LiNbO3 is reviewed. They are fabricated in Er- diffusion doped substrates with Ti-diffused channel guides of high quality. The laser resonators are formed by dielectric mirrors vacuum-deposited on the polished waveguide end faces. Five different types of Ti:Er:LiNbO3 waveguide lasers are presented.Among them are free running Fabry-Perot lasers of six different wavelengths in the range 153nm < (lambda) < 1610nm with a cw-output power up to 63mW. They have a shot noise limited relative intensity noise at frequencies above 50MHz. Tunable lasers have been developed by the intracavity integration of an acoustooptical amplifying wavelength filter yielding a tuning range up to 31nm. With an intracavity electrooptic phase modulator modelocked laser operation has been obtained with pulse repetition frequencies up to 10GHz; pulses of only a few ps width could be generated. With an intracavity amplitude modulator Q-switched laser operation has been achieved with up to 2.4W pulse peak power at 2kHz repetition frequency. Moreover, distributed Bragg reflector lasers of emission linewidth < 8kHz have been developed using a dry- etched surface grating as one of the mirrors of the laser cavity.

  12. Li-ion Battery Electrolytes Designed for a Wide Temperature Range

    DTIC Science & Technology

    2006-06-01

    ion battery performance steeply declines as the operating temperature dips below -10° C . Additionally, battery characteristics rapidly deteriorate...at temperatures above 60° C . We report on the development of a new family of Li-ion battery electrolytes designed to operate over a wide temperature...formulations may now be discharged at rates as high as C /4 at -50° C . Further, such cells demonstrate long cycle life both at room temperature and at

  13. Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells

    SciTech Connect

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Gilbert, James A.; Trask, Stephen E.; Abraham, Daniel P.

    2016-12-01

    Lithium hexafluorophosphate (LiPF6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reduced on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li+, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.

  14. Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells

    DOE PAGES

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Gilbert, James A.; ...

    2016-12-01

    Lithium hexafluorophosphate (LiPF6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reduced onmore » lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li+, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.« less

  15. Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies

    DOE PAGES

    Ma, Cheng; Chi, Miaofang

    2016-06-08

    Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solidmore » electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.« less

  16. Molecular Engineering toward Stabilized Interface: An Electrolyte Additive for High-Performance Li-Ion Battery

    SciTech Connect

    Zhang, Lu; Huang, Jinhua; Youssef, Kyrrilos; Redfern, Paul C.; Curtiss, Larry A.; Amine, Khalil; Zhang, Zhengcheng

    2014-10-31

    A novel electrolyte additive, 3-oxabicyclo[3.1.0]hexane-2,4-dione (OHD), has been discovered and evaluated in Li-1.1(Mn1/3Ni1/3Co1/3)0.9O2/graphite cells under elevated temperature. When an appropriate amount of OHD is used, the cell capacity retention is improved from 60% (Gen 2 electrolyte alone) to 82% (Gen 2 electrolyte plus OHD) after 200 cycles with no obvious impedance increase. The amount of OHD added is the key to achieving the superior cell performance. In conclusion, the effect of OHD additive was investigated by means of electrochemical analysis, fourier transform infrared spectroscopy, scanning electron microscopy, and density functional theory computation.

  17. Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies

    SciTech Connect

    Ma, Cheng; Chi, Miaofang

    2016-06-08

    Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solid electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.

  18. Molecular Engineering toward Stabilized Interface: An Electrolyte Additive for High-Performance Li-Ion Battery

    DOE PAGES

    Zhang, Lu; Huang, Jinhua; Youssef, Kyrrilos; ...

    2014-10-31

    A novel electrolyte additive, 3-oxabicyclo[3.1.0]hexane-2,4-dione (OHD), has been discovered and evaluated in Li-1.1(Mn1/3Ni1/3Co1/3)0.9O2/graphite cells under elevated temperature. When an appropriate amount of OHD is used, the cell capacity retention is improved from 60% (Gen 2 electrolyte alone) to 82% (Gen 2 electrolyte plus OHD) after 200 cycles with no obvious impedance increase. The amount of OHD added is the key to achieving the superior cell performance. In conclusion, the effect of OHD additive was investigated by means of electrochemical analysis, fourier transform infrared spectroscopy, scanning electron microscopy, and density functional theory computation.

  19. The dielectric properties of polyindole -Zno containing LiClO4 polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Rajasudha, G.; Narayanan, V.; Stephen, A.

    2012-06-01

    The frequency dependent dielectric behaviour of composite polymer electrolyte (CPE) based on Polyindole with ZnO nano particles containing LiClO4 has been studied. The Impedance spectroscopy studies were obtained from 5MHz to 1Hz over the temperature range of 40°-100°C. The high dielectric permittivity values observed at low frequency region can be attributed to the space charge built near the electrode-electrolyte interface which blocks the charge transport. At higher frequencies, the permittivity values of the CPE were found to decrease rapidly and saturate, as the dipoles in the macromolecules hardly be able to orient in the direction of the applied field. These features make the electrolyte quite convenient for the development of advanced, solid-state, rechargeable lithium polymer batteries.

  20. Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Krause, Frederick C.

    2011-01-01

    A number of future NASA missions involving the exploration of the Moon and Mars will be human-rated and thus require high-specific-energy rechargeable batteries that possess enhanced safety characteristics. Given that Li-ion technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. There is also a strong desire to develop Li-ion batteries with improved safety characteristics for terrestrial applications, most notably for hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) automotive applications. Therefore, extensive effort has been devoted recently to developing non-flammable electrolytes to reduce the flammability of the cells/battery. A number of electrolyte formulations have been developed, including systems that (1) incorporate greater concentrations of the flame-retardant additive (FRA); (2) use di-2,2,2-trifluoroethyl carbonate (DTFEC) as a co-solvent; (3) use 2,2,2- trifluoroethyl methyl carbonate (TFEMC); (4) use mono-fluoroethylene carbonate (FEC) as a co-solvent and/or a replacement for ethylene carbonate in the electrolyte mixture; and (5) utilize vinylene carbonate as a "SEI promoting" electrolyte additive, to build on the favorable results previously obtained. To extend the family of electrolytes developed under previous work, a number of additional electrolyte formulations containing FRAs, most notably triphenyl phosphate (TPP), were investigated and demonstrated in experimental MCMB (mesocarbon micro beads) carbon- LiNi(0.8)Co(0.2)O2 cells. The use of higher concentrations of the FRA is known to reduce the flammability of the electrolyte solution, thus, a concentration range was investigated (i.e., 5 to 20 percent by volume). The desired concentration of the FRA is the highest amount tolerable without adversely affecting the performance in terms of reversibility, ability to operate over a wide temperature range, and

  1. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    DOE PAGES

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; ...

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses producedmore » during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.« less

  2. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    SciTech Connect

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.

  3. Study of novel nonflammable electrolytes in Sandia-built Li-ion cells.

    SciTech Connect

    Nagasubramanian, Ganesan; Orendorff, Christopher J.

    2010-04-01

    Even after decades of research, Li-ion cells still lack thermal stability. A number of approaches, including adding fire retardants or fluoro compounds to the electrolyte to mitigate fire, have been investigated. These additives improved the thermal stability of the cells (only marginally) but not enough for use in transportation applications. Recent investigations indicate that hydrofluoro-ethers are promising as nonflammable additives1. We describe here the results of our studies on electrolytes containing the hydrofluoro-ethers in cells fabricated at Sandia. In particular, we are investigating two solvents as nonflammable additives. These are: (1) 2-trifluoromethyl-3-methoxyperfluoropentane {l_brace}TMMP{r_brace} and (2) 2-trifluoro-2-fluoro-3-difluoropropoxy-3-difluoro-4-fluoro-5-trifluoropentane {l_brace}TPTP{r_brace}. These electrolytes not only have good thermal stability compared to the conventional electrolytes but respectable ionic conductivity. Sandia made 18650 cells successfully completed the formational cycle. The impedance behavior is typical of Li-ion cells.

  4. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.

    PubMed

    Lindgren, Fredrik; Xu, Chao; Niedzicki, Leszek; Marcinek, Marek; Gustafsson, Torbjörn; Björefors, Fredrik; Edström, Kristina; Younesi, Reza

    2016-06-22

    An electrolyte based on the new salt, lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), is evaluated in combination with nano-Si composite electrodes for potential use in Li-ion batteries. The additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are also added to the electrolyte to enable an efficient SEI formation. By employing hard X-ray photoelectron spectroscopy (HAXPES), the SEI formation and the development of the active material is probed during the first 100 cycles. With this electrolyte formulation, the Si electrode can cycle at 1200 mAh g(-1) for more than 100 cycles at a coulombic efficiency of 99%. With extended cycling, a decrease in Si particle size is observed as well as an increase in silicon oxide amount. As opposed to LiPF6 based electrolytes, this electrolyte or its decomposition products has no side reactions with the active Si material. The present results further acknowledge the positive effects of SEI forming additives. It is suggested that polycarbonates and a high LiF content are favorable components in the SEI over other kinds of carbonates formed by ethylene carbonate (EC) and dimethyl carbonate (DMC) decomposition. This work thus confirms that LiTDI in combination with the investigated additives is a promising salt for Si electrodes in future Li-ion batteries.

  5. Charge Transport and Insulator-Conductor Transition of li Salt Doped Polyaniline

    NASA Astrophysics Data System (ADS)

    Joo, J.; Jung, J. H.; Kim, B. H.; Moon, B. W.; Kim, J. Y.; Chang, S. H.; Ryu, K. S.

    2001-04-01

    Charge transport properties such as temperature dependent dc conductivity [σdc(T)] and thermoelectric power [S(T)], electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS) for various Li salt (LiPF6, LiBF4, LiAsF6, and LiClO4) doped polyaniline (PAN) samples are compared to those of protonic acid (HCl) doped PAN (PAN-ES) samples. The room temperature σdc of Li salt doped PANs varies from 1 to 10-7 S/cm depending on dopants used. The σdc(T) of the systems follows a quasi one-dimensional variable range hopping model, which is similar to PAN-ES. The S(T) of PAN-LiPF6 shows the metallic behavior. With increasing doping level, the insulator-conductor transition is observed in the results of σdc and the density of states obtained from EPR. From XPS experimetns, the doping level of the systems is estimated. The insulator-conductor transition of Li salt doped PANs is compared to that of PAN-ES samples and the charge transport properties of NaPF6 doped PANs are presented.

  6. Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes.

    PubMed

    Deng, Yue; Eames, Christopher; Chotard, Jean-Noël; Lalère, Fabien; Seznec, Vincent; Emge, Steffen; Pecher, Oliver; Grey, Clare P; Masquelier, Christian; Islam, M Saiful

    2015-07-22

    Solid electrolytes that are chemically stable and have a high ionic conductivity would dramatically enhance the safety and operating lifespan of rechargeable lithium batteries. Here, we apply a multi-technique approach to the Li-ion conducting system (1-z)Li4SiO4-(z)Li3PO4 with the aim of developing a solid electrolyte with enhanced ionic conductivity. Previously unidentified superstructure and immiscibility features in high-purity samples are characterized by X-ray and neutron diffraction across a range of compositions (z = 0.0-1.0). Ionic conductivities from AC impedance measurements and large-scale molecular dynamics (MD) simulations are in good agreement, showing very low values in the parent phases (Li4SiO4 and Li3PO4) but orders of magnitude higher conductivities (10(-3) S/cm at 573 K) in the mixed compositions. The MD simulations reveal new mechanistic insights into the mixed Si/P compositions in which Li-ion conduction occurs through 3D pathways and a cooperative interstitial mechanism; such correlated motion is a key factor in promoting high ionic conductivity. Solid-state (6)Li, (7)Li, and (31)P NMR experiments reveal enhanced local Li-ion dynamics and atomic disorder in the solid solutions, which are correlated to the ionic diffusivity. These unique insights will be valuable in developing strategies to optimize the ionic conductivity in this system and to identify next-generation solid electrolytes.

  7. Investigation of interfacial resistance between LiCoO 2 cathode and LiPON electrolyte in the thin film battery

    NASA Astrophysics Data System (ADS)

    Jeong, Eunkyung; Hong, Chan; Tak, Yongsug; Nam, Sang Cheol; Cho, Sungbaek

    All solid-state thin film battery was prepared with conventional sputtering technologies. Low conductivity of lithium phosphorus oxynitride (LiPON) electrolyte and higher resistance at the interface of LiCoO 2/LiPON was crucial for the development of thin film battery. Presence of thermally treated Al 2O 3 thin film at the interface of LiCoO 2/LiPON decreased the interfacial resistance and increased the discharge capacity with the better cycling behaviors. Surface analysis and electrochemical impedance measurement indicate the formation of solid solution LiCo 1- yAl yO 2 at the interface of LiCoO 2/LiPON.

  8. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.

    The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  9. Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}

    SciTech Connect

    Prayogi, Lugas Dwi Faisal, Muhamad; Kartini, Evvy Honggowiranto, Wagiyo; Supardi

    2016-02-08

    The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound of Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.

  10. Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar

    2010-01-01

    A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non

  11. Electrolyte decomposition on Li-metal surfaces from first-principles theory.

    PubMed

    Ebadi, Mahsa; Brandell, Daniel; Araujo, C Moyses

    2016-11-28

    An important feature in Li batteries is the formation of a solid electrolyte interphase (SEI) on the surface of the anode. This film can have a profound effect on the stability and the performance of the device. In this work, we have employed density functional theory combined with implicit solvation models to study the inner layer of SEI formation from the reduction of common organic carbonate electrolyte solvents (ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate) on a Li metal anode surface. Their stability and electronic structure on the Li surface have been investigated. It is found that the CO producing route is energetically more favorable for ethylene and propylene carbonate decomposition. For the two linear solvents, dimethyl and diethyl carbonates, no significant differences are observed between the two considered reduction pathways. Bader charge analyses indicate that 2 e(-) reductions take place in the decomposition of all studied solvents. The density of states calculations demonstrate correlations between the degrees of hybridization between the oxygen of adsorbed solvents and the upper Li atoms on the surface with the trend of the solvent adsorption energies.

  12. Electrolyte decomposition on Li-metal surfaces from first-principles theory

    NASA Astrophysics Data System (ADS)

    Ebadi, Mahsa; Brandell, Daniel; Araujo, C. Moyses

    2016-11-01

    An important feature in Li batteries is the formation of a solid electrolyte interphase (SEI) on the surface of the anode. This film can have a profound effect on the stability and the performance of the device. In this work, we have employed density functional theory combined with implicit solvation models to study the inner layer of SEI formation from the reduction of common organic carbonate electrolyte solvents (ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate) on a Li metal anode surface. Their stability and electronic structure on the Li surface have been investigated. It is found that the CO producing route is energetically more favorable for ethylene and propylene carbonate decomposition. For the two linear solvents, dimethyl and diethyl carbonates, no significant differences are observed between the two considered reduction pathways. Bader charge analyses indicate that 2 e- reductions take place in the decomposition of all studied solvents. The density of states calculations demonstrate correlations between the degrees of hybridization between the oxygen of adsorbed solvents and the upper Li atoms on the surface with the trend of the solvent adsorption energies.

  13. Spin relaxation studies of Li(+) ion dynamics in polymer gel electrolytes.

    PubMed

    Brinkkötter, M; Gouverneur, M; Sebastião, P J; Vaca Chávez, F; Schönhoff, M

    2017-03-08

    Two ternary polymer gel electrolyte systems are compared, containing either polyethylene oxide (PEO) or the poly-ionic liquid poly(diallyldimethylammonium) bis(trifluoromethyl sulfonyl)imide (PDADMA-TFSI). Both gel types are based on the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide (P14TFSI) and LiTFSI. We study the influence of the polymers on the local lithium ion dynamics at different polymer concentrations using (7)Li spin-lattice relaxation data in dependence on frequency and temperature. In all cases the relaxation rates are well described by the Cole-Davidson motional model with Arrhenius dependence of the correlation time and a temperature dependent quadrupole coupling constant. For both polymers the correlation times are found to increase with polymer concentration. The activation energy of local motions slightly increases with increasing PEO concentration, and slightly decreases with increasing PDADMA-TFSI concentration. Thus the local Li(+) motion is reduced by the presence of either polymer; however, the reduction is less effective in the PDADMA(+) samples. We thus conclude that mechanical stabilization of a liquid electrolyte by a polymer can be achieved at a lower decrease of Li(+) motion when a cationic polymer is used instead of PEO.

  14. Study on the LLT solid electrolyte thin film with LiPON interlayer intervening between LLT and electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Jong min; Kim, Soo ho; Tak, Yongsug; Yoon, Young Soo

    In this study, a lithium lanthanum titanate (LLT) thin film electrolyte was prepared by RF magnetron sputtering, in order to assess its potential use in solid state thin film batteries. Even though the LLT has high ionic conductivity, it cannot be used alone as a thin film electrolyte since it is chemically unstable when it comes into contact with Li metal and it has a high electronic conductivity. Lithium phosphorous oxynitride (LiPON) is stable when in contact with Li and has an extremely low electronic conductivity. We expected that the LiPON/LLT/LiPON structure would make it possible to use a LLT thin film as a thin film solid electrolyte. In order to prepare this structure, a LiPON thin film was also deposited by RF magnetron sputtering and was deposited for various times (30, 60, 90 and 120 min), in order to determine the optimum thickness ratio between LLT and LiPON. In linear sweep voltammetry measurements, the current hardly flowed in the potential range from 0 to 5.5 V in the blocking electrode and ac impedance was measured for measuring the resistance at LiPON/LLT/LiPON. When only the LLT thin film was deposited, a current of scores of mA flowed in the operating potential range, but when an interlayer of LiPON thin film was deposited for more than 30 min on both sides of the LLT thin film, the current was less than 1 μA. Ionic conductivities of 1.11, 0.82 and 0.48 × 10 -7 S cm -1 were observed for the deposition times of the LiPON thin film of 60, 90 and 120 min, respectively. This result suggests that the LiPON/LLT/LiPON structure might be able to be used as a thin film solid electrolyte if its ionic conductivity could be improved.

  15. Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal.

    PubMed

    Aguesse, Frederic; Manalastas, William; Buannic, Lucienne; Lopez Del Amo, Juan Miguel; Singh, Gurpreet; Llordés, Anna; Kilner, John

    2017-02-01

    All-solid-state batteries including a garnet ceramic as electrolyte are potential candidates to replace the currently used Li-ion technology, as they offer safer operation and higher energy storage performances. However, the development of ceramic electrolyte batteries faces several challenges at the electrode/electrolyte interfaces, which need to withstand high current densities to enable competing C-rates. In this work, we investigate the limits of the anode/electrolyte interface in a full cell that includes a Li-metal anode, LiFePO4 cathode, and garnet ceramic electrolyte. The addition of a liquid interfacial layer between the cathode and the ceramic electrolyte is found to be a prerequisite to achieve low interfacial resistance and to enable full use of the active material contained in the porous electrode. Reproducible and constant discharge capacities are extracted from the cathode active material during the first 20 cycles, revealing high efficiency of the garnet as electrolyte and the interfaces, but prolonged cycling leads to abrupt cell failure. By using a combination of structural and chemical characterization techniques, such as SEM and solid-state NMR, as well as electrochemical and impedance spectroscopy, it is demonstrated that a sudden impedance drop occurs in the cell due to the formation of metallic Li and its propagation within the ceramic electrolyte. This degradation process is originated at the interface between the Li-metal anode and the ceramic electrolyte layer and leads to electromechanical failure and cell short-circuit. Improvement of the performances is observed when cycling the full cell at 55 °C, as the Li-metal softening favors the interfacial contact. Various degradation mechanisms are proposed to explain this behavior.

  16. Novel structured gadolinium doped ceria based electrolytes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Timurkutluk, Bora; Timurkutluk, Cigdem; Mat, Mahmut D.; Kaplan, Yuksel

    Novel three-layered intermediate temperature solid oxide fuel cell (SOFC) electrolytes based on gadolinium doped ceria (GDC) are developed to suppress the electronic conductivity of GDC, to improve the mechanical properties of the cell and to minimize power loss due to mixed conductive nature of GDC. Three different electrolytes are fabricated by sandwiching thin YSZ, ScSZ and ScCeSZ between two relatively thick GDC layers. An electrolyte composed of pure GDC is also manufactured for comparison. NiO/GDC and LSCF/GDC electrodes are then coated on the electrolytes by a screen printing route. SEM results show that it is possible to obtain dense and crack free thin layers of YSZ, ScSZ and ScCeSZ between two GDC layers without delamination. Performance measurements indicate that interlayered thin electrolytes act as an electronic conduction barrier and improve open circuit voltages (OCVs) of GDC based cells.

  17. Investigation of the Structure and Dynamics of Electrolytes in solvents Used for Primary and Secondary Li-Batteries.

    DTIC Science & Technology

    1985-02-01

    dimers, whereas for LIBF4 contact species predominate. Literature data for LICIO 4 suggest that the dimers are the major species present. Hence, the...extent of dimerization pro- cess for the three electrolytes seems to follow the order: LiAsF 6 = LiBF4 < LICO 4. Electrical conductance data at t 25.00°C

  18. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells

    NASA Astrophysics Data System (ADS)

    Cappetto, A.; Cao, W. J.; Luo, J. F.; Hagen, M.; Adams, D.; Shelikeri, A.; Xu, K.; Zheng, J. P.

    2017-08-01

    Four types of wide temperature-range electrolyte formulations based on carbonate and carboxylate esters were evaluated at various temperatures in lithium-ion capacitor (LIC) pouch cells consisting of both hard carbon (HC) and graphite negative electrodes (NEs) with thin lithium foil and an activated carbon (AC) positive electrodes (PEs). The electrolytes containing methyl butyrate (MB) with various additives enabled the LIC to operate at -40 °C, where all electrolytes based only on carbonates fail. MB-containing electrolyte with lithium Difluoro(oxalato)borate (LiDFOB) as additive showed the best cycling performance over 5000 cycles. Lithium plating also occurred on graphite NEs when charged at low temperatures starting at -20 °C, which resulted in the non-linear curves. When charged at 30 °C and discharged at -40 °C, graphite NE based LIC displayed regular linear charge-discharge curves without lithium plating. In comparison, HC NE based LICs showed better capacity retention at -40 °C and no signs of lithium plating. It could be concluded that low temperature performance of LIC was influenced by both electrolyte formulations and negative electrode material.

  19. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility

    NASA Astrophysics Data System (ADS)

    l'Abee, Roy; DaRosa, Fabien; Armstrong, Mark J.; Hantel, Moritz M.; Mourzagh, Djamel

    2017-03-01

    We report (electro-)chemically stable, high temperature resistant and fast wetting Li-ion battery separators produced through a phase inversion process using novel polyetherimides (PEI) based on bisphenol-aceton diphthalic anhydride (BPADA) and para-phenylenediamine (pPD). In contrast to previous studies using PEI based on BPADA and meta-phenylenediamine (mPD), the separators reported herein show limited swelling in electrolytes and do not require fillers to render sufficient mechanical strength and ionic conductivity. In this work, the produced 15-25 μm thick PEI-pPD separators show excellent electrolyte compatibility, proven by low degrees of swelling in electrolyte solvents, low contact angles, fast electrolyte wicking and high electrolyte uptake. The separators cover a tunable range of morphologies and properties, leading to a wide range of ionic conductivities as studied by Electrochemical Impedance Spectroscopy (EIS). Dynamic Mechanical Analysis (DMA) demonstrated dimensional stability up to 220 °C. Finally, single layer graphite/lithium nickel manganese cobalt oxide (NMC) pouch cells were assembled using this novel PEI-pPD separator, showing an excellent capacity retention of 89.3% after 1000 1C/2C cycles, with a mean Coulombic efficiency of 99.77% and limited resistance build-up. We conclude that PEI-pPD is a promising new material candidate for high performance separators.

  20. Relevance between the Bulk Density and Li+-Ion Conductivity in a Porous Electrolyte: The Case of Li[Li1/3Ti5/3]O4.

    PubMed

    Mukai, Kazuhiko; Nunotani, Naoyoshi; Moriyasu, Ryuta

    2015-09-16

    The Li+-ion conductivity (σLi) in an electrolyte is an important parameter with respect to the performance of all-solid-state lithium-ion batteries (LIBs). However, little is known about how σLi in a porous electrolyte differs from that in a highly dense electrolyte. In this study, the relationship between the bulk density (dbulk) and apparent σLi (σLiapp) in a porous electrolyte of Li[Li1/3Ti5/3]O4 (LTO) was examined by theoretical and experimental approaches. The theoretical calculations demonstrated that dbulk and σLi have a simple relationship irrespective of the radius of the spherical pores in the electrolyte; i.e., σLi increases almost linearly with increasing ζ,where ζ is the ratio of d bulk to the theoretical density. In fact, the observed σLiapp of LTO, which was determined by four-probe alternating-current impedance measurements, increased with increasing ζ. Hence, with this relationship, σLiapp can be estimated by ζ and intrinsic σLi (σLiint) and vice versa; such estimations provide critical information for determining the optimum compositions of composite electrodes for all-solid-state LIBs. The temperature dependence of σLiapp in LTO and differences between the calculated and experimental results are also discussed.

  1. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Salian, Girish D.; Lebouin, Chrystelle; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, Thierry

    2017-02-01

    We report that electrodeposition of polymer electrolyte in nanostructured electrodes has a strong influence on the electrochemical properties of thin-film Li-ion microbatteries. Electropolymerization of PMMA-PEG (polymethyl methacrylate-polyethylene glycol) was carried out on both the anode (self-supported titania nanotubes) and the cathode (porous LiNi0.5Mn1.5O4) by cyclic voltammetry and the resulting electrode-electrolyte interface was examined by scanning electron microscopy. The electrochemical characterizations performed by galvanostatic experiments reveal that the capacity values obtained at different C-rates are doubled when the electrodes are completely filled by the polymer electrolyte.

  2. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect

    Unemoto, Atsushi Ikeshoji, Tamio; Yasaku, Syun; Matsuo, Motoaki; Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu; Orimo, Shin-ichi

    2014-08-25

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  3. Impedance study of the interface between lithium, polyaniline, lithium-doped MnO 2 and modified poly(ethylene oxide) electrolyte

    NASA Astrophysics Data System (ADS)

    Baochen, Wang; Li, Feng; Yongyao, Xia

    1993-03-01

    Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO 2 and modified poly(ethylene oxide) (PEO) electrolyte under various conditions. The interfacial charge-transfer resistance Rct on PEO/PAn, Rct on PEO/LiMn 2O 4 increase with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance Rct on PEO/PAn is higher than Rct on PEO/LiMn 2O 4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn 2O 4 cell. The diffusion coefficients have been calculated from impedance data.

  4. Impedance study of the interfaces between lithium, polyaniline, lithium-doped MnO2 and modified poly(ethylene oxide) electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Baochen; Feng, Li; Xia, Yongyao

    1993-03-01

    Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO2 and modified poly(ethylene oxide) (PEO) electrolyte under various conditions. The interfacial charge-transfer resistances R(sub ct) on PEO/PAn, R(sub ct) on PEO/LiMn2O increas e with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance R(sub ct) on PEO/PAn is higher than R(sub ct) on PEO/LiMn2O4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn2O4 cell. The diffusion coefficients have been calculated from impedance data.

  5. Temperature-Dependent Morphology, Magnetic and Optical Properties of Li-Doped MgO

    SciTech Connect

    Myrach, Philipp; Niklas, Nilius; Levchenko, Sergey; Gonchar, Anastasia; Risse, Thomas; Klaus-Peter, Dinse; Boatner, Lynn A; Frandsen, Wiebke; Horn, Raimund; Hans-Joachim, Freund; Schlçgl, Robert; Scheffler, Matthias

    2010-01-01

    Li-doped MgO is a potential catalyst for the oxidative coupling of methane, whereby surface Li+ O centers are suggested to be the chemically active species. To elucidate the role of Li in the MgO matrix, two model systems are prepared and their morphological, optical and magnetic properties as a function of Li doping are investigated. The first is an MgO film deposited on Mo(001) and doped with various amounts of Li, whereas the second is a powder sample fabricated by calcination of Li and Mg precursors in an oxygen atmosphere. Scanning tunneling and transmission electron microscopy are performed to characterize the morphology of both samples. At temperatures above 700 K, Li starts segregating towards the surface and forms irregular Li-rich oxide patches. Above 1050 K, Li desorbs from the MgO surface, leaving behind a characteristic defect pattern. Traces of Li also dissolve into the MgO, as concluded from a distinct optical signature that is absent in the pristine oxide. No electron paramagnetic resonance signal that would be compatible with Li+O centers is detected in the two Li/ MgO samples. Density-functional theory calculations are used to determine the thermodynamic stability of various Li-induced defects in the MgO. The calculations clarify the driving forces for Li segregation towards the MgO surface, but also rationalize the absence of Li+O centers. From the combination of experimental and theoretical results, a detailed picture arises on the role of Li for the MgO properties, which can be used as a starting point to analyze the chemical behavior of the doped oxide in future.

  6. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend

    SciTech Connect

    Costa, Luciano T.

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li{sup +} coordination and transportation were studied in the ternary electrolyte system, i.e., PEO{sub 16}LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  7. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.

    PubMed

    Costa, Luciano T; Sun, Bing; Jeschull, Fabian; Brandell, Daniel

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li(+) coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  8. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend

    NASA Astrophysics Data System (ADS)

    Costa, Luciano T.; Sun, Bing; Jeschull, Fabian; Brandell, Daniel

    2015-07-01

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li+ coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSIṡ1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  9. Process related effects upon formation of composite electrolyte interfaces: Nitridation and reduction of NASICON-type electrolytes by deposition of LiPON

    NASA Astrophysics Data System (ADS)

    Guhl, Conrad; Fingerle, Mathias; Hausbrand, René

    2017-09-01

    Commercial NASICON-type electrolyte plates are coated with a thin film of LiPON to obtain a composite electrolyte system with high conductivity at room temperature that can be used in contact with metallic Lithium. The formation of the interface between the NASICON substrate and the LiPON coating is studied using an in-situ X-ray photoemission spectroscopy (XPS) surface science approach. The process of LiPON deposition induces changes in the surface chemical structure of the NASICON substrates as observed by XPS, including the partial reduction of Ti and the incorporation of N into the NASICON. The practical impact of the interface formation is studied by impedance spectroscopy, revealing a substantial increase of resistance for LiPON coated samples.

  10. Highly Efficient Br(-)/NO3(-) Dual-Anion Electrolyte for Suppressing Charging Instabilities of Li-O2 Batteries.

    PubMed

    Xin, Xing; Ito, Kimihiko; Kubo, Yoshimi

    2017-08-09

    The main issues with Li-O2 batteries are the high overpotential at the cathode and the dendrite formation at the anode during charging. Various types of redox mediators (RMs) have been proposed to reduce the charging voltage. However, the RMs tend to lose their activity during cycling owing to not only decomposition reactions but also undesirable discharge (shuttle effect) at the Li metal anode. Moreover, the dendrite growth of the Li metal anode is not resolved by merely adding RMs to the electrolytes. Here we report a simple yet highly effective method to reduce the charge overpotential while protecting the Li metal anode by incorporating LiBr and LiNO3 in a tetraglyme solvent as the electrolyte for Li-O2 cells. The Br(-)/Br3(-) couple acts as an RM to oxidize the discharge product Li2O2 at the cathode, whereas the NO3(-) anion oxidizes the Li metal surface to prevent the shuttle reaction. In this work, we found that both anions work synergistically in the mixed Br(-)/NO3(-) electrolyte to dramatically suppress both parasitic reactions and dendrite formation by generating a solid Li2O thin film on the Li metal anode. As a result, the charge voltage was reduced to below 3.6 V over 40 cycles. The O2 evolution during charging was more than 80% of the theoretical value, and CO2 emission during charging was negligible. After cycling, the Li metal anode showed smooth surfaces with no indication of dendrite formation. These observations clearly demonstrate that the Br(-)/NO3(-) dual-anion electrolyte can solve the problems associated with both the overpotential at the cathode and the dendrite formation at the anode.

  11. Charge-storage performance of Li/LiFePO4 cells with additive-incorporated ionic liquid electrolytes at various temperatures

    NASA Astrophysics Data System (ADS)

    Wongittharom, Nithinai; Wang, Chueh-Han; Wang, Yi-Chen; Fey, George Ting-Kuo; Li, Hui-Ying; Wu, Tzi-Yi; Lee, Tai-Chou; Chang, Jeng-Kuei

    2014-08-01

    Butylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI) ionic liquid (IL) with LiTFSI solute is used as a base electrolyte for Li/LiFePO4 cells. Three kinds of electrolyte additive, namely vinylene carbonate (VC), gamma-butyrolactone (γ-BL), and propylene carbonate (PC), with various concentrations are introduced. The thermal stability, flammability, and electrochemical properties of the electrolytes are investigated. At 25 °C, the additives (γ-BL is found to be the most effective) can significantly improve the capacity, high-rate performance, and cyclability of the cells. With an increase in temperature to 50 °C, the benefits of the additives gradually become insignificant. At 75 °C, the additives even have adverse effects. At such an elevated temperature, in the plain IL electrolyte (without additives), a LiFePO4 capacity of 152 mAh g-1 is found at 0.1 C. 77% of this capacity can be retained when the rate is increased to 3 C. These values are superior to those found for the additive-incorporated IL and conventional organic electrolytes. Moreover, negligible capacity loss is measured after 100 charge-discharge cycles at 75 °C in the plain IL electrolyte.

  12. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    PubMed Central

    Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-01-01

    The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI−) or bis(fluorosulfonyl)imide (FSI−) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies. PMID:25153637

  13. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Han, Hong-Bo; Zhou, Si-Si; Zhang, Dai-Jun; Feng, Shao-Wei; Li, Li-Fei; Liu, Kai; Feng, Wen-Fang; Nie, Jin; Li, Hong; Huang, Xue-Jie; Armand, Michel; Zhou, Zhi-Bin

    Lithium bis(fluorosulfonyl)imide (LiFSI) has been studied as conducting salt for lithium-ion batteries, in terms of the physicochemical and electrochemical properties of the neat LiFSI salt and its nonaqueous liquid electrolytes. Our pure LiFSI salt shows a melting point at 145 °C, and is thermally stable up to 200 °C. It exhibits far superior stability towards hydrolysis than LiPF 6. Among the various lithium salts studied at the concentration of 1.0 M (= mol dm -3) in a mixture of ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (3:7, v/v), LiFSI shows the highest conductivity in the order of LiFSI > LiPF 6 > Li[N(SO 2CF 3) 2] (LiTFSI) > LiClO 4 > LiBF 4. The stability of Al in the high potential region (3.0-5.0 V vs. Li +/Li) has been confirmed for high purity LiFSI-based electrolytes using cyclic voltammetry, SEM morphology, and chronoamperometry, whereas Al corrosion indeed occurs in the LiFSI-based electrolytes tainted with trace amounts of LiCl (50 ppm). With high purity, LiFSI outperforms LiPF 6 in both Li/LiCoO 2 and graphite/LiCoO 2 cells.

  14. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  15. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  16. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect

    Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R.

    2015-02-23

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  17. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics.

    PubMed

    Hofmann, Andreas; Migeot, Matthias; Thißen, Eva; Schulz, Michael; Heinzmann, Ralf; Indris, Sylvio; Bergfeldt, Thomas; Lei, Boxia; Ziebert, Carlos; Hanemann, Thomas

    2015-06-08

    In this study, novel electrolyte mixtures for Li-ion cells are presented with highly improved safety features. The electrolyte formulations are composed of ethylene carbonate/dimethyl sulfone (80:20 wt/wt) as the solvent mixture and LiBF4 , lithium bis(trifluoromethanesulfonyl)azanide, and lithium bis(oxalato)borate as the conducting salts. Initially, the electrolytes are characterized with regard to their physical properties, their lithium transport properties, and their electrochemical stability. The key advantages of the electrolytes are high flash points of >140 °C, which enhance significantly the intrinsic safety of Li-ion cells containing these electrolytes. This has been quantified by measurements in an accelerating rate calorimeter. By using the newly developed electrolytes, which are liquid down to T=-10 °C, it is possible to achieve C-rates of up to 1.5 C with >80 % of the initial specific capacity. During 100 cycles in cell tests (graphite||LiNi1/3 Co1/3 Mn1/3 O2 ), it is proven that the retention of the specific capacity is >98 % of the third discharge cycle with dependence on the conducting salt. The best electrolyte mixture yields a capacity retention of >96 % after 200 cycles in coin cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li-S Battery.

    PubMed

    See, Kimberly A; Wu, Heng-Liang; Lau, Kah Chun; Shin, Minjeong; Cheng, Lei; Balasubramanian, Mahalingam; Gallagher, Kevin G; Curtiss, Larry A; Gewirth, Andrew A

    2016-12-21

    Li-S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed "solvates" that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability; however, hydrofluoroether cosolvents, thought to be inert to the solvate structure itself, can be introduced to reduce viscosity and enhance diffusion. Nazar and co-workers previously reported that addition of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) to the LiTFSI in acetonitrile solvate, (MeCN)2-LiTFSI, results in enhanced capacity retention compared to the neat solvate. Here, we evaluate the effect of TTE addition on both the electrochemical behavior of the Li-S cell and the solvation structure of the (MeCN)2-LiTFSI electrolyte. Contrary to previous suggestions, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that TTE coordinates to Li(+) at the expense of MeCN coordination, thereby producing a higher content of free MeCN, a good polysulfide solvent, in the electrolyte. The electrolytes containing a higher free MeCN content facilitate faster polysulfide formation kinetics during the electrochemical reduction of S in a Li-S cell likely as a result of the solvation power of the free MeCN.

  19. A LiAl/Cl2 battery with a four-component alkali-metal chloride electrolyte

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel L.; Bennion, Douglas N.

    1989-12-01

    A LiAl/Cl2 cell operating at 280 C was investigated. This electrolyte is a mixture of LiC, KCl, RbCl, and CsCl with a eutectic melting point of 258 C. The positive electrode is a gas-diffusion electrode formed by coating one side of a porous carbon electrode with PTCE. The limiting discharge current of the cell was controlled by solid-state diffusion of Li in the LiAl alloy. Polarization of Cl2 electrode was caused by the low cross-sectional area of the electrolyte film compared with the pore cross-sectional area. Deactivation of the positive electrode was caused by impurities, such as Cu(+), in the electrolyte. Mathematical models of the negative and positive electrodes in a LiAl/Cl2 cell with a gas diffusion Cl2 electrode have been formulated. A thin film gas diffusion electrode model was used for the positive electrode, while solid-state diffusion of Li-in alpha-LiAl was assumed to limit the negative electrode and the cell current. Comparison of the experimental results with the model indicate that the diffusivity of Li in alpha-LiAl is of the order of 10 to the -12 sq cm/sec.

  20. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    PubMed

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the Tg and Tm are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO4/15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g(-1) @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g(-1) @0.2 C at 30 °C after 150 cycles).

  1. X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: a model lithium ion battery electrolyte.

    PubMed

    Smith, Jacob W; Lam, Royce K; Sheardy, Alex T; Shih, Orion; Rizzuto, Anthony M; Borodin, Oleg; Harris, Stephen J; Prendergast, David; Saykally, Richard J

    2014-11-21

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li(+) ion in this model electrolyte. By generating linear combinations of the computed spectra of Li(+)-associating and free PC molecules and comparing to the experimental spectrum, we find a Li(+)-solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.

  2. Neutron scattering study on cathode LiMn2O4 and solid electrolyte 5(Li2O)(P2O5)

    NASA Astrophysics Data System (ADS)

    Kartini, E.; Putra, Teguh P.; Jahya, A. K.; Insani, A.; Adams, S.

    2014-09-01

    Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO2, LiMn2O4 and LiFePO4, and solid electrolyte Li3PO4. Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn2O4 and 5(Li2O)(P2O5), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia.

  3. Preparation of Li2S-P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery

    NASA Astrophysics Data System (ADS)

    Teragawa, Shingo; Aso, Keigo; Tadanaga, Kiyoharu; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2014-02-01

    Electrode-solid electrolyte composite materials for all-solid-state lithium batteries were prepared by coating of the Li2S-P2S5 solid electrolyte onto LiCoO2 particles using a N-methylformamide (NMF) solution of 80Li2S·20P2S5 (mol%) solid electrolyte. SEM and EDX analysis showed that the Li2S-P2S5 solid electrolyte was uniformly coated on LiCoO2 particles. The all-solid-state cell using the LiCoO2 particles coated with the solid electrolyte showed higher charge-discharge capacity than the cells using uncoated LiCoO2 particles.

  4. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  5. New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO 4

    NASA Astrophysics Data System (ADS)

    Hu, Linfeng; Tang, Zilong; Zhang, Zhongtai

    Mesoporous materials, due to its potential for advanced applications in catalysis and nanoscience, have attracted much attention in the past decade. In this work, mesoporous lithium aluminate (next called MLA) nanosheets with high specific surface area were prepared by a hydrothermal method using hex-adecyltrimethyl ammonium bromide (CTAB) as the template. A novel PEO-based composite polymer electrolyte has been developed by using MLA powders as the filler. The electrochemical impedance showed that the conductivity was improved simultaneously. A high conductivity of 2.24 × 10 -5 S cm -1 at 25 °C was obtained. The lithium polymer battery using this novel composite polymer electrolyte and with lithium metal and LiFePO 4 employed as anode and cathode, respectively, showed high discharge capacity (more than 140 mAh g -1 at 60 °C) and excellent cycling stability as revealed by galvanostastically charge/discharge cycling tests. The excellent electrochemical performances at low temperature of the cells were obtained, which was attributed to the high surface area and channels structure of the filler. The excellent properties of the solid-state lithium battery suggested that, PEO 16-LiClO 4-MLA composite polymer electrolyte can be used as a candidate material for lithium polymer batteries.

  6. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  7. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  8. Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hu, Lingjun; Qiu, Bao; Xia, Yonggao; Qin, Zhihong; Qin, Laifen; Zhou, Xufeng; Liu, Zhaoping

    2014-02-01

    The Fe-doping LiMnPO4 (LiMn1-xFexPO4, x ≤ 0.5) nanomaterials are solvothermally synthesized in a mixed solvent of water and polyethylene glycol (PEG). The particle morphology can be controlled simply by adjusting the pH values of precursor suspensions. Electrochemical test shows that LiMn0.9Fe0.1PO4 nanoplates with a thickness of 20-30 nm could deliver the largest discharge capacity, which is attributed to the fast Li+ diffusion in the diffusion path of [010] crystallographic axis along the short radial direction of the nanoplates. It is demonstrated that Fe doping could significantly increase the initial reversible capacity, cycle performance and rate capability. The first discharge capacities of Fe-doped LiMnPO4 are all above 150 mAh g-1 at the discharge rate of 0.05 C. Especially, LiMn0.5Fe0.5PO4 delivers 100% capacity retention with the reversible capacity of 147 mAh g-1 at the discharge rate of 1 C, and losses only about 23.4% capacity with the discharge rate varying from 0.1 C to 5 C. The variation of energy density predicts that LiMn0.5Fe0.5PO4 shows the potential application for high-power devices.

  9. Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna

    Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.

  10. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nair, J. R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.

    In this paper, we report the synthesis and characterisation of novel methacrylic based polymer electrolyte membranes for lithium batteries. The method adopted for preparing the solid polymer electrolyte was the UV-curing process, which is well known for being easy, low cost, fast and reliable. It consists of a free radical photo polymerisation of poly-functional monomers: Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate (BEMA) was chosen, as it can readily form flexible 3D networks and has long poly-ethoxy chains which can enhance the movement of Li +-ions inside the polymer matrix. The preliminary results reported here refer to systems where LiPF 6 solutions swelled the preformed polymer membranes. The tests on the conductivity, stability and cyclability of the membranes put in evidence the importance of the polymerisation in presence of mono-methacrylates acting as reactive diluents. Good values of ionic conductivity have been found, especially at ambient temperature. Much better results can be expected by choosing an appropriate mono-methacrylate to modify the polymeric membrane properties and by modifying the methodology of Li +-ions incorporation inside the polymer matrix.

  11. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI

    NASA Astrophysics Data System (ADS)

    Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano

    2017-06-01

    The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.

  12. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  13. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study

    NASA Astrophysics Data System (ADS)

    Zhou, Yanan; Chu, Wei; Jing, Fangli; Zheng, Jian; Sun, Wenjing; Xue, Ying

    2017-07-01

    The characteristics of hydrogen adsorption on Li-doped defective graphene systems were investigated using density functional theory (DFT) calculations. Four types of defective structures were selected. Li atoms were well dispersed on the defective graphene without clustering, evidenced by the binding energy value between Li and defective graphene than that of Li-Lix. Additionally, as the amount of adsorbed H2 molecules increase, the H2 molecules show tilting configuration toward the Li adatom. This is beneficial for more hydrogen adsorption under the electrostatic interaction. On these four stable structures, there were up to three polarized H2 molecules adsorbed on per Li adatom, with the average hydrogen adsorption energy in the range of approximately 0.2-0.4 eV. These results provide new focus on the nature of Li-doped defective graphene with sometimes B substitution medium, which could be considered as a promising candidate for hydrogen storage.

  14. Improvement of Li ion conductivity of Li5La3Ta2O12 solid electrolyte by substitution of Ge for Ta

    NASA Astrophysics Data System (ADS)

    Kotobuki, Masashi; Song, Shufeng; Takahashi, Rika; Yanagiya, Shunichi; Lu, Li

    2017-05-01

    Li5La3Ta2O12 (LLTa) is a promising solid electrolyte for all-solid-state batteries due to its high stability in contact with Li metal, however, low Li ion conductivity of LLTa has restricted its application. In this study, improvement of the Li ion conductivity of LLTa solid electrolyte by substitution of Ge4+ for Ta5+ is studied because the improvement is thought to be achieved by increase of charge carrier concentration caused by the substitution of low valence Ge4+ for high valence Ta5+. The Ge substitution shrinks a lattice of cubic LLTa due to small ion radius of Ge4+ (0.530 Å) compared with Ta5+ (0.640 Å). The Li ion conductivity of LLTa is improved by the Ge substitution. The highest bulk and total Li ion conductivities are obtained in Li5.25La3Ta1.75Ge0.25O12 prepared by spark plasma sintering at 1100 °C and the values are 1.3 × 10-4 and 8.4 × 10-5 S cm-1 at 28 °C, respectively. The lithium transference number of the Ge-substituted LLTa determined by Hebb-Wagner (HW) polarization method is ≈ 1. Also, it is verified that the new solid electrolyte is stable in a potential range of 0-10 V vs. Li/Li+, indicating that the Ge-substituted LLTa is a promising solid electrolyte for all-solid-state battery application.

  15. Doped carbon-sulfur species nanocomposite cathode for Li--S batteries

    DOEpatents

    Wang, Donghai; Xu, Tianren; Song, Jiangxuan

    2015-12-29

    We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.

  16. Transition from half metal to semiconductor in Li doped g-C4N3

    NASA Astrophysics Data System (ADS)

    Hashmi, Arqum; Hu, Tao; Hong, Jisang

    2014-03-01

    We have investigated the structural and magnetic properties of Li doped graphitic carbon nitride (g-C4N3) using the van der Waals density functional theory. A free standing g-C4N3 was known to show a half metallic state with buckling geometry, but this feature completely disappears in the presence of Li doping. Besides this structural modification, very interestingly, we have obtained that the Li doped g-C4N3 shows dramatic change in its electronic structure. Both ferromagnetic and nonmagnetic states are almost degenerated in one Li atom doped system. However, the transition from half metallic state to semiconductor is observed with further increase of Li concentration and the calculated energy gap is 1.97 eV. We found that Li impurity plays as a donor element and charge transfer from the Li atom to neighboring N atoms induces a band gap. Overall, we have observed that the electronic and magnetic properties of g-C4N3 are substantially modified by Li doping.

  17. Highly conformal electrodeposition of copolymer electrolytes into titania nanotubes for 3D Li-ion batteries

    PubMed Central

    2012-01-01

    The highly conformal electrodeposition of a copolymer electrolyte (PMMA-PEO) into self-organized titania nanotubes (TiO2nt) is reported. The morphological analysis carried out by scanning electron microscopy and transmission electron microscopy evidenced the formation of a 3D nanostructure consisting of a copolymer-embedded TiO2nt. The thickness of the copolymer layer can be accurately controlled by monitoring the electropolymerization parameters. X-ray photoelectron spectroscopy measurements confirmed that bis(trifluoromethanesulfone)imide salt was successfully incorporated into the copolymer electrolyte during the deposition process. These results are crucial to fabricate a 3D Li-ion power source at the micrometer scale using TiO2nt as the negative electrode. PMID:22738205

  18. Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries.

    PubMed

    Giordano, Livia; Karayaylali, Pinar; Yu, Yang; Katayama, Yu; Maglia, Filippo; Lux, Simon; Shao-Horn, Yang

    2017-08-17

    Understanding electrochemical and chemical reactions at the electrode-electrolyte interface is of fundamental importance for the safety and cycle life of Li-ion batteries. Positive electrode materials such as layered transition metal oxides exhibit different degrees of chemical reactivity with commonly used carbonate-based electrolytes. Here we employed density functional theory methods to compare the energetics of four different chemical reactions between ethylene carbonate (EC) and layered (LixMO2) and rocksalt (MO) oxide surfaces. EC dissociation on layered oxides was found energetically more favorable than nucleophilic attack, electrophilic attack, and EC dissociation with oxygen extraction from the oxide surface. In addition, EC dissociation became energetically more favorable on the oxide surfaces with transition metal ions from left to right on the periodic table or by increasing transition metal valence in the oxides, where higher degree of EC dissociation was found as the Fermi level was lowered into the oxide O 2p band.

  19. Li + conducting 'fuzzy' poly(ethylene oxide)-SiO 2 polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Lee, Jim Y.; Hong, L.

    Short and 'fuzzy' poly(ethylene) glycol chains with different molecule weights have been successfully grafted on to a pristine SiO 2 nanoparticle surface using toluene 2,4-diisocyanate as the bridging molecule. Solvent-free composite electrolytes based on poly(ethylene oxide), LiBF 4 and SiO 2 or modified SiO 2 particles have been prepared and compared. Composite electrolytes with modified SiO 2 show a noticeably smoother surface texture under scanning electron microscopy. This is attributed to improved compatibility between the ceramic particles and polymer. The increased amorphization of the polymer leads to increase in room-temperature ionic conductivity as more ion-conduction channels are created in close proximity to the modified silica particles. On the other hand, a lower transference number is the result of weakened Lewis acid-base interactions between the polymer backbone and a smaller number of OH groups on the silica surface.

  20. A study of tetrabromobisphenol A (TBBA) as a flame retardant additive for Li-ion battery electrolytes

    NASA Astrophysics Data System (ADS)

    Belov, Dmitry G.; Shieh, D. T.

    2014-02-01

    Electrochemical behavior and flammability of tetrabromobisphenol A (TBBA)-mixed electrolyte solutions are investigated using 1 mol L-1 LiPF6-EC:EMC (1:2 vol.%) with 0 wt.% (reference electrolyte) and 1-3 wt.% of TBBA. The cycling performance (at room and elevated temperature) and rate capability of the 18650 cell (LiMn2O4:Li(Ni1/3Co1/3Mn1/3)O2 (8:2)/Li4Ti5O12) cell containing TBBA-mixed electrolyte is similar to that of cell containing the reference electrolyte. A detailed analysis of the surface on both the anode and the cathode electrodes via X-ray photoelectron spectroscopy (XPS) indicated that the cathode electrode contains more Br components than the anode electrode. Within the first few cycles, on the positive electrode, we observe competing redox processes between the cathode material containing Mn and TBBA, which generate hydroxy radicals and other by-products. This process and the electrochemical reductive decomposition of TBBA to HBr, Br2 and bisphenole A are responsible for the increased flame retardant properties of the electrolyte containing TBBA. Safety tests were performed using an 18650 cell showed that even 1 wt.% of TBBA in the electrolyte significantly reduces cell flammability.

  1. Novel electrolyte mixtures based on dimethyl sulfone, ethylene carbonate and LiPF6 for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hofmann, Andreas; Hanemann, Thomas

    2015-12-01

    In this study, novel electrolyte mixtures for Li-ion cells are presented which are composed of ethylene carbonate/dimethyl sulfone (80:20 wt./wt.) as a solvent mixture and LiPF6, lithium bis(oxalato)borate and lithium difluoro(oxalato)borate as conducting salts. The main advantages of the solvent mixture are high flash points of >140 °C which enhance the intrinsic safety of Li-ion cells while maintaining good cell performance above 0-5 °C. The movability of the lithium ions in the electrolyte is investigated via programmed current derivative chronopotentiometry. It is found that pure electrolyte properties cannot necessarily predict the electrolyte behavior in real Li-ion cells but the complex interplay between electrolytes, electrode materials and separators has to be taken into account. Using the newly developed electrolytes, it is possible to achieve C-rates up to 1.5C with >80% of the initial specific discharge capacity (25 °C). Within 200 cycles during one month in cell tests (C||NMC) it is proven that the retention of the specific capacity is >98% of the third discharge cycle in dependence of the conducting salt.

  2. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    PubMed

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  3. DMAC and NMP as Electrolyte Additives for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar; Lucht, Brett

    2008-01-01

    Dimethyl acetamide (DMAC) and N-methyl pyrrolidinone (NMP) have been found to be useful as high-temperature-resilience-enhancing additives to a baseline electrolyte used in rechargeable lithium-ion electrochemical cells. The baseline electrolyte, which was previously formulated to improve low-temperature performance, comprises LiPF6 dissolved at a concentration of 1.0 M in a mixture comprising equal volume proportions of ethylene carbonate, diethyl carbonate, and dimethyl carbonate. This and other electrolytes comprising lithium salts dissolved in mixtures of esters (including alkyl carbonates) have been studied in continuing research directed toward extending the lower limits of operating temperatures and, more recently, enhancing the high-temperature resilience of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. Although these electrolytes provide excellent performance at low temperatures (typically as low as -40 C), when the affected Li-ion cells are subjected to high temperatures during storage and cycling, there occur irreversible losses of capacity accompanied by power fade and deterioration of low-temperature performance. The term "high-temperature resilience" signifies, loosely, the ability of a cell to resist such deterioration, retaining as much as possible of its initial charge/discharge capacity during operation or during storage in the fully charged condition at high temperature. For the purposes of the present development, a temperature is considered to be high if it equals or exceeds the upper limit (typically, 30 C) of the operating-temperature range for which the cells in question are generally designed.

  4. PVA:LiClO4: a robust, high Tg polymer electrolyte for adjustable ion gating of 2D materials

    NASA Astrophysics Data System (ADS)

    Kinder, Erich; Fullerton, Susan; CenterLow Energy Systems Technology Team

    2015-03-01

    Polymer electrolytes are an effective way to gate organic semiconductors and nanomaterials, such as nanotubes and 2D materials, by establishing an electrostatic double layer with large capacitance. Widely used solid electrolytes, such as those based on polyethylene oxide, have a glass transition temperature below room temperature. This permits relatively fast ion mobility at T = 23 °C, but requires a constant applied field to maintain a doping profile. Moreover, PEO-based electrolytes cannot withstand a variety of solvents, limiting its use. Here, we demonstrate a polymer electrolyte using polyvinyl alcohol (PVA) with Tg >23 °C, through which a doping profile can be defined by a potential applied when the polymer is heated above Tg, then ``locked-in'' by cooling the electrolyte to room temperature (electrolyte gate bias. Hall bar measurements are used to quantify the charge carrier density. Owing to PVA's chemical stability, photolithography can be performed directly on the polymer electrolyte, which allows for the deposition of a patterned, metal gate directly on the electrolyte, as well as the ability to pattern the electrolyte itself. This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  5. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    SciTech Connect

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  6. Compositional effect investigation by addition PEG, PEO plasticiser of LiBOB based solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sabrina, Qolby; Ratri, Christin Rina

    2017-08-01

    Development polymer electrolyte with high ionic conductivity is main of object in solid state electrolyte will be potential application as electrolyte batteries. Casting method have been used to prepared solid polymer electrolyte. Adding polyethylene(glycol) PEG and Poly(ethylene oxide) PEO as polymer matrix be made of poly(vinylidene fluoride) (PVdF) and lithium bis(oxalato) borate (LiBOB) to improve structure morphology and impedance characterization of solid electrolyte. The ratio of PEG and PEO is varied to study effect on the conductivity. Electro impedance spectroscopy (EIS) studies are carried out on the prepared samples. The impedance measurement show that the conductivity with composition PVdF- PEG- LiBOB 10% better than the other varieties to applied as solid electrolyte batteries. SEM morphology PVdF- PEG- LiBOB 10% sample showed the low crystallinity was caused by interaction between lithium salt and polymer. With their properties the solid polymer electrolyte are considered as promising candidates of applications for lithium ion batteries.

  7. Conductivity of LiBF4/mixed ether electrolytes for secondary lithium cells

    NASA Astrophysics Data System (ADS)

    Matsuda, Y.; Morita, M.; Yamashita, T.

    1984-12-01

    Electrolytic conductivity of LiBF4 has been studied in the mixed system of 1,3-dioxolane with 1,2-dimethoxyethane or with tetrahydrofuran. Relative permittivity (dielectric constant) of the solvents suggested the formation of associated ion pairs in the systems, but the conductivity measured was higher than that expected from the viewpoint of ionic association. Conductivity maxima were observed in the solutions containing about 1:1 (by volume) mixed solvents. Viscosities of the solvent and the solution were also measured, and their contribution to the conductivity change with the solvent composition was discussed. Solute concentration dependence of the molar conductivity was specific for the ether solutions. Apparent activation energy for conduction, which was determined by the temperature dependence of the conductivity, varied with LiBF4 concentration. Structural specificity of the mixed ether solutions was discussed with these parameters and H-1 NMR spectra of the solutions.

  8. Neutron Fading Characteristics of Copper Doped Lithium Fluoride (LiF: MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2008-05-21

    Fading Characteristics of Copper-Doped Lithium Fluoride (LiF: MCP) Thermoluminescent Dosimeters (TLDs)" Name of Candidate: L T Jeffrey A. Delzer Master...Lithium Fluoride Thermoluminescent Dosimeters beyond brief excerpts is with the permission of the copyright owner, and will save and hold harmless...Thesis: Author: Thesis directed by: ABSTRACT "Neutron Fading Characteristics of Copper-Doped Lithium Fluoride (LiF: MCP) Thermoluminescent

  9. Novel Concentrated Li[(FSO2)(n-C4F9SO2)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode.

    PubMed

    Fang, Zheng; Ma, Qiang; Liu, Pin; Ma, Jie; Hu, Yong-Sheng; Zhou, Zhibin; Li, Hong; Huang, Xuejie; Chen, Liquan

    2017-02-08

    Lithium (fluorosulfonyl)(n-nonafluorobutanesulfonyl)imide [Li[(FSO2)(n-C4F9SO2)N] (LiFNFSI)] is investigated as a conducting salt, which can form a relatively stable solid-electrolyte-interphase film in concentrated ether electrolyte to achieve favorable protection for lithium metal anodes. Li|Cu and Li|Li cells with concentrated LiFNFSI-based electrolyte have been demonstrated to display high average Coulombic efficiency (≈97%) and excellent cycling stability (over 1,000 h) of metallic lithium anodes, compared to concentrated lithium bis(trifluoromethanesulfonyl)imide [Li[N(SO2CF3)2] (LiTFSI)]-based electrolyte. The morphologies and compositions of the lithium-metal anode surface are also comparatively analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Moreover, superior electrochemical performance in the concentrated LiFNFSI-based electrolyte for Li|LiFePO4 cells is also presented herein. These results indicate that concentrated LiFNFSI-based electrolyte is a promising candidate for metallic lithium rechargeable batteries.

  10. Enhancing the high rate capability and cycling stability of LiMn₂O₄ by coating of solid-state electrolyte LiNbO₃.

    PubMed

    Zhang, Zhi-Jia; Chou, Shu-Lei; Gu, Qin-Fen; Liu, Hua-Kun; Li, Hui-Jun; Ozawa, Kiyoshi; Wang, Jia-Zhao

    2014-12-24

    To study the influence of solid-state electrolyte coating layers on the performance of cathode materials for lithium-ion batteries in combination with organic liquid electrolyte, LiNbO3-coated Li1.08Mn1.92O4 cathode materials were synthesized by using a facile solid-state reaction method. The 0.06LiNbO3-0.97Li1.08Mn1.92O4 cathode exhibited an initial discharge capacity of 125 mAh g(-1), retaining a capacity of 119 mAh g(-1) at 25 °C, while at 55 °C, it exhibited an initial discharge capacity of 130 mAh g(-1), retaining a capacity of 111 mAh g(-1), both at a current density of 0.5 C (where 1 C is 148 mAh g(-1)). Very good rate capability was demonstrated, with the 0.06LiNbO3-0.97Li1.08Mn1.92O4 cathode showing more than 85% capacity at the rate of 50 C compared with the capacity at 0.5 C. The 0.06LiNbO3-0.97Li1.08Mn1.92O4 cathode showed a high lithium diffusion coefficient (1.6 × 10(-10) cm(2) s(-1) at 55 °C), and low apparent activation energy (36.9 kJ mol(-1)). The solid-state electrolyte coating layer is effective for preventing Mn dissolution and maintaining the high ionic conductivity between the electrode and the organic liquid electrolyte, which may improve the design and construction of next-generation large-scale lithium-ion batteries with high power and safety.

  11. Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries?

    PubMed

    Rezvani, S Javad; Gunnella, Roberto; Witkowska, Agnieszka; Mueller, Franziska; Pasqualini, Marta; Nobili, Francesco; Passerini, Stefano; Cicco, Andrea Di

    2017-02-08

    Advanced metal oxide electrodes in Li-ion batteries usually show reversible capacities exceeding the theoretically expected ones. Despite many studies and tentative interpretations, the origin of this extra-capacity is not assessed yet. Lithium storage can be increased through different chemical processes developing in the electrodes during charging cycles. The solid electrolyte interface (SEI), formed already during the first lithium uptake, is usually considered to be a passivation layer preventing the oxidation of the electrodes while not participating in the lithium storage process. In this work, we combine high resolution soft X-ray absorption spectroscopy with tunable probing depth and photoemission spectroscopy to obtain profiles of the surface evolution of a well-known prototype conversion-alloying type mixed metal oxide (carbon coated ZnFe2O4) electrode. We show that a partially reversible layer of alkyl lithium carbonates is formed (∼5-7 nm) at the SEI surface when reaching higher Li storage levels. This layer acts as a Li reservoir and seems to give a significant contribution to the extra-capacity of the electrodes. This result further extends the role of the SEI layer in the functionality of Li-ion batteries.

  12. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.

    PubMed

    Huang, Shuping; Wilson, Benjamin E; Wang, Bo; Fang, Yuan; Buffington, Keegan; Stein, Andreas; Truhlar, Donald G

    2015-09-02

    We study--experimentally and theoretically--the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li8ZrO6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li(+) for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/discharge cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO2, and O2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li6ZrO6 and Li5ZrO6 delithiation products can be thermodynamically metastable to release of O2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.

  13. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    SciTech Connect

    Zhu, Jinlong E-mail: yusheng.zhao@unlv.edu Li, Shuai; Zhang, Yi; Howard, John W.; Wang, Yonggang; Kumar, Ravhi S.; Wang, Liping; Lü, Xujie; Li, Yutao; Zhao, Yusheng E-mail: yusheng.zhao@unlv.edu

    2016-09-05

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.

  14. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material

    NASA Astrophysics Data System (ADS)

    Zhou, Hongming; Xiao, Kaiwen; Li, Jian

    2016-01-01

    The electrochemical behaviors of lithium difluoro(oxalate)borate (LiODFB) and LiBF4 blend salts in ethylene carbonate + dimethyl carbonate + ethyl(methyl) carbonate (EC + DMC + EMC, 1:1:1, by wt.) have been investigated for LiNi0.5Mn1.5O4 cathode in lithium-ion batteries. The electric conductivity tests are utilized to examine the relationship among solution conductivity, the electrolyte composition and temperature. Through cyclic voltammetry, charge-discharge test and AC impedance measurements, we compare the capacity and cycling efficiency of LNMO cathode in different electrolyte systems at different temperatures and discharge current rates. Scanning electron microscopy (SEM) analysis and X-ray photoelectron spectroscopy (XPS) are served to analyze the surface nature of LNMO cathode after cycles at elevated temperature. These results demonstrate that LNMO cathode can exert excellent electrochemical performance with the increase of LiODFB concentration at room temperature and elevated temperature and it is found that just slight LiBF4, mixed with LiODFB as blend salts, can strikingly improve the cyclability at -20 °C, especially in high-rate cycling. Grouped together, the optimum LiODFB/LiBF4 molar ratio is around 4:1, which can present an excellent affinity to LNMO cathode in a wide electrochemical window.

  15. Magnetic properties of high Li doped ZnO sol–gel thin films

    SciTech Connect

    Vettumperumal, R.; Kalyanaraman, S.; Santoshkumar, B.; Thangavel, R.

    2014-02-01

    Highlights: • Ferromagnetism in high Li doped ZnO films. • Magnetic properties observed by Guoy's and VSM method. • The rod and wrinkle like structures are observed from the surface of the films. • Band gap of ZnO does not get altered by high Li doping. - Abstract: Undoped and Li doped ZnO thin films were deposited on a glass substrate using the sol–gel dip coating method. The films were prepared at 5 mol.% and 10 mol.% of Li doped ZnO at 550 °C annealing temperature and the deposited films were characterized by X-ray diffraction (XRD), microscopic studies, Gouy's method, vibrating sample magnetometer (VSM) and UV–visible spectroscopy. All the deposited thin films had a hexagonal wurtzite structure with polycrystalline grains at random. Primarily magnetic properties of pure and Li doped ZnO films were observed by Guoy's method which depicted Dia and Para magnetic behavior at room temperature. VSM measurement reveals a coercivity of 97.7 Oe in the films. An inverse relative ferromagnetism was perceived in Li doped ZnO films which had an average transmission of <90%.

  16. Enhanced luminescence of Gd2O3:Eu3+ thin-film phosphors by Li doping

    NASA Astrophysics Data System (ADS)

    Yi, Soung-soo; Bae, Jong Seong; Shim, Kyoo Sung; Jeong, Jung Hyun; Park, Jung-Chul; Holloway, P. H.

    2004-01-01

    Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ luminescent thin films have been grown on Al2O3 (0001) substrates using pulsed-laser deposition. The films grown under different deposition conditions show different microstructural and luminescent characteristics. Both cubic and monoclinic crystalline structures were observed in Gd2O3:Eu3+ films, but only the cubic crystalline structure was observed for Li-doped Gd2O3:Eu3+ films grown under certain condition. The photoluminescence (PL) brightness data obtained from Li-doped Gd2O3:Eu3+ films indicate that sapphire is a promising substrate for growth of high-quality Li-doped Gd2O3:Eu3+ thin-film red phosphor. In particular, incorporation of Li+ ions into the Gd2O3 lattice can induce a remarkable increase of PL. The highest emission intensity was observed with LiF-doped Gd1.84Li0.08Eu0.08O3, whose brightness was a factor of 2.3 larger than that from Gd2O3:Eu3+ films. This phosphor is promising for applications in flat-panel displays.

  17. Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao

    2017-02-01

    A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.

  18. Study of microstructural characterization and ionic conductivity of a chemical-covalent polyether-siloxane hybrid doped with LiClO4.

    PubMed

    Liang, Wuu-Jyh; Chen, Ying-Pin; Wu, Chien-Pang; Kuo, Ping-Lin

    2005-12-29

    The chemical-covalent polyether-siloxane hybrids (EDS) doped with various amounts of LiClO4 salt were characterized by FT-IR, DSC, TGA, and solid-state NMR spectra as well as impedance measurements. These observations indicate that different types of complexes by the interactions of Li+ and ClO4- ions are formed within the hybrid host, and the formation of transient cross-links between Li+ ions and ether oxygens results in the increase in T(g) of polyether segments and the decrease in thermal stability of hybrid electrolyte. Initially a cation complexation dominated by the oxirane-cleaved cross-link site and PEO block is present, and after the salt-doped level of O/Li+ = 20, the complexation through the PPO block becomes more prominent. Moreover, a significant degree of ionic association is examined in the polymer-salt complexes at higher salt uptakes. A VTF-like temperature dependence of ionic conductivity is observed in all of the investigated salt concentrations, implying that the diffusion of charge carrier is assisted by the segmental motions of the polymer chains. The behavior of ion transport in these hybrid electrolytes is further correlated with the interactions between ions and polymer host.

  19. Polyfluorinated boron cluster-based salts: A new electrolyte for application in Li 4Ti 5O 12/LiMn 2O 4 rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ionica-Bousquet, C. M.; Muñoz-Rojas, D.; Casteel, W. J.; Pearlstein, R. M.; GirishKumar, G.; Pez, G. P.; Palacín, M. R.

    The cycling performance of Li 4Ti 5O 12 and LiMn 2O 4 electrode materials has been studied in half and complete Li-ion cells with two new polyfluorinated boron cluster lithium salts (Li 2B 12F xH 12- x) as the electrolytes. The results were compared with those obtained for the standard electrolyte, 1 M LiPF 6 dissolved in ethylene carbonate and dimethyl carbonate (EC:DMC; 1:1, v/v). Three different technologies were employed for electrode fabrication: powder mixture, self-standing films and films deposited on the current collector. The latter exhibit the most interesting behavior and best performance. Cells assembled using the new electrolyte salts show excellent reversibility, coulombic efficiency, rate capability and cyclability comparable with the standard electrolyte. These features confirm the feasibility of using these polyfluorinated boron cluster-based salts as new stable Li-ion battery electrolytes.

  20. High Voltage LiNi0.5Mn1.5O4/Li4Ti5O12 Lithium Ion Cells at Elevated Temperatures: Carbonate- versus Ionic Liquid-Based Electrolytes.

    PubMed

    Cao, Xia; He, Xin; Wang, Jun; Liu, Haidong; Röser, Stephan; Rad, Babak Rezaei; Evertz, Marco; Streipert, Benjamin; Li, Jie; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2016-10-05

    Thanks to its high operating voltage, the LiNi0.5Mn1.5O4 (LNMO) spinel represents a promising next-generation cathode material candidate for Lithium ion batteries. However, LNMO-based full-cells with organic carbonate solvent electrolytes suffer from severe capacity fading issues, associated with electrolyte decomposition and concurrent degradative reactions at the electrode/electrolyte interface, especially at elevated temperatures. As promising alternatives, two selected LiTFSI/pyrrolidinium bis(trifluoromethane-sulfonyl)imide room temperature ionic liquid (RTIL) based electrolytes with inherent thermal stability were investigated in this work. Linear sweep voltammetry (LSV) profiles of the investigated LiTFSI/RTIL electrolytes display much higher oxidative stability compared to the state-of-the-art LiPF6/organic carbonate based electrolyte at elevated temperatures. Cycling performance of the LNMO/Li4Ti5O12 (LTO) full-cells with LiTFSI/RTIL electrolytes reveals remarkable improvements with respect to capacity retention and Coulombic efficiency. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns indicate maintained pristine morphology and structure of LNMO particles after 50 cycles at 0.5C. The investigated LiTFSI/RTIL based electrolytes outperform the LiPF6/organic carbonate-based electrolyte in terms of cycling performance in LNMO/LTO full-cells at elevated temperatures.

  1. Enhanced low-temperature ionic conductivity via different Li(+) solvated clusters in organic solvent/ionic liquid mixed electrolytes.

    PubMed

    Aguilera, Luis; Scheers, Johan; Matic, Aleksandar

    2016-09-14

    We investigate Li(+) coordination in mixed electrolytes based on ionic liquids (ILs) and organic solvents and its relation with the macroscopic properties such as phase behaviour and ionic conductivity. Using Raman spectroscopy we determine the solvation shell around Li(+) in mixtures formed by the IL N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, the organic solvents ethylene carbonate and dimethyl carbonate (EC : DMC 1 : 1), and the salt LiTFSI. We find that the organic solvent molecules preferentially solvate Li(+) as long as there are enough of them. Our results are consistent with a model where Li(EC)3(DMC)1 and Li(EC)2(DMC)2 are the main complexes formed by the organic solvent molecules and where TFSI(-) mainly participates in Li(TFSI)2(-) clusters. As the amount of organic solvent is increased, the number of TFSI(-) around Li(+) rapidly decreases showing a higher affinity of the organic solvents to solvate Li(+). The changes in the local configurations are also reflected in the ionic conductivity and the phase behaviour. The formation of larger clusters leads to a decrease in the conductivity, whereas the presence of several different clusters at intermediate compositions effectively hinders crystallization at low temperatures. The result is an enhanced low-temperature ionic conductivity in comparison with the pure IL or organic solvent electrolytes.

  2. Treatment of electrochemical cell components with lithium tetrachloroaluminate (LiAlCl.sub.4) to promote electrolyte wetting

    DOEpatents

    Eberhart, James G.; Battles, James E.

    1980-01-01

    Electrochemical cell components such as interelectrode separators, retaining screens and current collectors are contacted with lithium tetrachloroaluminate prior to contact with molten electrolytic salt to improve electrolyte wetting. The LiAlCl.sub.4 can be applied in powdered, molten or solution form but, since this material has a lower melting point than the electrolytic salt used in high-temperature cells, the powdered LiAlCl.sub.4 forms a molten flux prior to contact by the molten electrolyte when both materials are initially provided in solid form. Components of materials such as boron nitride and other materials which are difficult to wet with molten salts are advantageously treated by this process.

  3. Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI.

    PubMed

    Borodin, Oleg; Smith, G D; Geiculescu, Olt; Creager, Stephen E; Hallac, Boutros; DesMarteau, Darryl

    2006-11-30

    The Li+ environment and transport in an ionic liquid (IL) comprised of Li+ and an anion of bis(trifluoromethanesulfonyl)imide anion (TFSI-) tethered to oligoethylene oxide (EO) (EO(12)TFSI-/Li+) were determined and compared to those in a binary solution of the oligoethylene oxide with LiTFSI salt (EO(12)/LiTFSI) by using molecular dynamics (MD) simulations and AC conductivity measurements. The latter revealed that the AC conductivity is 1 to 2 orders of magnitude less in the IL compared to the oligoether/salt binary electrolyte with greater differences being observed at lower temperatures. The conductivity of these electrolytes was accurately predicted by MD simulations, which were used in conjunction with a microscopic model to determine mechanisms of Li+ transport. It was discerned that structure-diffusion of the Li+ cation in the binary electrolyte (EO(12)/LiTFSI-) was similar to that in EO(12)TFSI-/Li+ IL at high temperature (>363 K), thus, one can estimate conductivity of IL at this temperature range if one knows the structure-diffusion of Li+ in the binary electrolyte. However, the rate of structure-diffusion of Li+ in IL was found to slow more dramatically with decreasing temperature than in the binary electrolyte. Lithium motion together with EO(12) solvent accounted for 90% of Li+ transport in EO(12)/LiTFSI-, while the Li+ motion together with the EO(12)TFSI- anion contributed approximately half to the total Li+ transport but did not contribute to the charge transport in IL.

  4. Transport properties of the solid polymer electrolyte system P(EO){sub n}LiTFSI

    SciTech Connect

    Edman, L.; Doeff, M.M.; Ferry, A.; Kerr, J.; De Jonghe, L.C.

    2000-04-20

    Values for the lithium ion transference number ({tau}{sub +}{sup 0}) are reported for the solid polymer electrolyte system poly(ethylene oxide) (PEO) complexed with Li(CF{sub 3}SO{sub 2}){sub 2}N (LiTFSI). {tau}{sub +}{sup 0} ranges from 0.17 {+-} 0.17 to 0.60 {+-} 0.03 in the salt concentration (c) region of 742 to 2,982 mol/m{sup 3} at 85 C. The concentration dependence of {tau}{sub +}{sup 0} and the molar ionic conductivity ({Lambda}) are shown to be in good agreement with a free volume approach over the salt-rich composition range investigated. The present {tau}{sub +}{sup 0} results were obtained using an electrochemical technique based on concentrated solution theory. This experimentally straightforward method is herein demonstrated to give accurate results for a highly concentrated SPE system, without relying on any dubious simplifications regarding the state of the electrolyte.

  5. Preparation and characterization of PVC-LiClO 4 based composite polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Rahman, M. Y. A.; Su'ait, M. S.

    2008-11-01

    The preparation of PVC-LiClO 4 based composite polymer electrolyte was carried out to study the effect of ceramic fillers such as ZnO, TiO 2 and Al 2O 3 on the room temperature conductivity. The samples were tested using impedance spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The samples were prepared with different percentage (%) by weight of ceramic filler. The highest ionic conductivity achieved was 3.7×10 -7 S cm -1 for the sample prepared with 20% of ZnO. The glass transition temperature decreases with the fillers concentration due to the increasing amorphous state. While, the decomposition temperature increases with the increase in the fillers content. Both of these thermal properties influence the enhancement of the conductivity value. The morphology of the samples shows the even distribution of the ceramic filler in the samples however the filler starts to agglomerate in the sample at higher concentration of filler. In conclusion, the addition of ceramic filler improves the ionic conductivity of PVC-LiCIO 4 composite polymer electrolyte.

  6. Hurdles to organic quinone flow cells. Electrode passivation by quinone reduction in acetonitrile Li electrolytes

    NASA Astrophysics Data System (ADS)

    Rueda-García, D.; Dubal, D. P.; Huguenin, F.; Gómez-Romero, P.

    2017-05-01

    The uses of quinones in Redox Flow Batteries (RFBs) has been mainly circumscribed to aqueous solutions (of derivatives with polar groups) despite a larger solubility and wider electrochemical window provided by organic media. The redox mechanism of quinones in protic media is simpler and better known than in aprotic media, where radical species are involved. This paper reports the behaviour of methyl-p-benzoquinone (MBQ) under electrochemical reduction conditions in a LiClO4sbnd CH3CN electrolyte and various working electrodes. We detected the reversible generation of a bright green coating on the working electrode and the subsequent formation of a polymer (the nature of which depends on the presence or absence of oxygen). These coatings prevent the regular redox process of methyl-p-benzoquinone from taking place on the surface of the electrode and is generated regardless of the electrode material used or the presence of O2 in solution. In addition to MBQ, the green passivating layer was also found for less sterically hindered quinones such as p-benzoquinone or 1,4-naphthoquinone, but not for anthraquinone. We have also shown the central role of Li+ in the formation of this green layer. This work provides important guidelines for the final use of quinones in RFBs with organic electrolytes.

  7. Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2015-05-01

    Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes have been studied for different concentrations of Al2O3 nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al2O3. The maximum ionic conductivity ˜3.3 × 10-4 S cm-1 has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al2O3 nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymer chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al2O3 concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al2O3 in these electrolytes.

  8. Ab-initio studies on Li doping, Li-pairs, and complexes between Li and intrinsic defects in ZnO

    NASA Astrophysics Data System (ADS)

    Vidya, R.; Ravindran, P.; Fjellvâg, H.

    2012-06-01

    First-principles density functional calculations have been performed on Li-doped ZnO using all-electron projector augmented plane wave method. Li was considered at six different interstitial sites (Lii), including anti-bonding and bond-center sites and also in substitutional sites such as at Zn-site (Lizn) and at oxygen site (Lio) in the ZnO matrix. Stability of LiZn over Lii is shown to depend on synthetic condition, viz., LiZn is found to be more stable than Lii under O-rich conditions. Hybrid density functional calculations performed on LiZn indicate that it is a deep acceptor with (0/-) transition taking place at 0.74 eV above valence band maximum. The local vibrational frequencies for Li-dopants are calculated and compared with reported values. In addition, we considered the formation of Li-pair complexes and their role on electronic properties of ZnO. Present study suggests that at extreme oxygen-rich synthesis condition, a pair of acceptor type LiZn-complex is found to be stable over the compensating Lii + LiZn pair. The stability of complexes formed between Li impurities and various intrinsic defects is also investigated and their role on electronic properties of ZnO has been analyzed. We have shown that a complex between LiZn and oxygen vacancy has less formation energy and donor-type character and could compensate the holes generated by Li-doping in ZnO.

  9. Electrolytes with Improved Safety Developed for High Specific Energy Li-Ion Cells with Si-Based Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Prakash, G. K. S.

    2012-01-01

    A number of electrolyte formulations that have improved safety characteristics have been developed for use with high capacity silicon-based anodes. To improve the compatibility with Si-based anodes, a number of technical approaches have been employed, including: (1) the use of mono-fluoroethylene carbonate (FEC) in conjunction with, or in lieu of, ethylene carbonate (EC), (2) the use of high proportions of fluorinated co-solvents, (3) the use of vinylene carbonate (VC) to stabilize the Si/C electrode, and (4) the use of lithium bis(oxalato)borate (LiBOB) to improve the compatibility of the electrolyte when Si/C electrodes are used in conjunction with high voltage cathodes. Candidate electrolytes were studied in Li/Si-C and Si-C/ Li(MnNiCo)O2 (NMC) coin cells, as well as in larger Si-C/NMC three-electrode cells equipped with lithium reference electrodes. In summary, many electrolytes that contain triphenyl phosphate (TPP), which is used as a flame retardant additive up to concentrations of 15 volume percent, and possess FEC as a co-solvent have been demonstrated to outperform the all-carbonate baseline electrolytes when evaluated in Si-C/ Li(MnNiCo)O2 cells.

  10. Improved electrical properties of Fe nanofiller impregnated PEO + PVP:Li+ blended polymer electrolytes for lithium battery applications

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Saijyothi, K.; Kang, Misook; Ratnakaram, Y. C.; Hari Krishna, K.; Jin, Dahee; Lee, Yong Min

    2016-07-01

    Solid polymer-blended electrolyte films of polyethylene oxide (PEO) + polyvinyl pyrrolidone (PVP)/lithium perchlorate embedded with iron (Fe) nanofiller in different concentrations have been synthesized by a solution casting method. The semicrystalline nature of these polymer electrolyte films has been confirmed from their XRD profiles. Polymer complex formation and ion-polymer interactions are systematically studied by FTIR and laser Raman spectral analysis. Surface morphological studies are carried out from SEM analysis. Dispersed Fe nanofiller size evaluation study has been carried out using transmission electron microscopy (TEM). In order to evaluate the thermal stability, decomposition temperature, and thermogravimetric dynamics, we carried out the TG/DTA measurement. Upon addition of Fe nanofiller to the PEO + PVP/Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14 × 10-4 Scm-1 at the optimized concentration of 4 wt% Fe nanofiller-embedded PEO + PVP/Li+ polymer electrolyte nanocomposite at an ambient temperature. PEO + PVP/Li+ + Fe nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. Based on the cell parameters, the 4 wt% Fe nanofiller-dispersed PEO + PVP/Li+ polymer electrolyte system could be suggested as a perspective candidate for solid-state battery applications.

  11. Electrolytes with Improved Safety Developed for High Specific Energy Li-Ion Cells with Si-Based Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Prakash, G. K. S.

    2012-01-01

    A number of electrolyte formulations that have improved safety characteristics have been developed for use with high capacity silicon-based anodes. To improve the compatibility with Si-based anodes, a number of technical approaches have been employed, including: (1) the use of mono-fluoroethylene carbonate (FEC) in conjunction with, or in lieu of, ethylene carbonate (EC), (2) the use of high proportions of fluorinated co-solvents, (3) the use of vinylene carbonate (VC) to stabilize the Si/C electrode, and (4) the use of lithium bis(oxalato)borate (LiBOB) to improve the compatibility of the electrolyte when Si/C electrodes are used in conjunction with high voltage cathodes. Candidate electrolytes were studied in Li/Si-C and Si-C/ Li(MnNiCo)O2 (NMC) coin cells, as well as in larger Si-C/NMC three-electrode cells equipped with lithium reference electrodes. In summary, many electrolytes that contain triphenyl phosphate (TPP), which is used as a flame retardant additive up to concentrations of 15 volume percent, and possess FEC as a co-solvent have been demonstrated to outperform the all-carbonate baseline electrolytes when evaluated in Si-C/ Li(MnNiCo)O2 cells.

  12. New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution

    NASA Astrophysics Data System (ADS)

    Stepniak, Izabela; Ciszewski, Aleksander

    Activated carbon (AC) fiber cloths and a hydrophobic microporous polypropylene (PP) membrane, both modified with lithiated acetone oligomers, were used as electrodes and a separator in electric double layer capacitors (EDLCs) with aqueous lithium hydroxide (LiOH) as the electrolyte. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge cycle tests and impedance spectroscopy (EIS), compared with a case of the capacitor with aqueous potassium hydroxide (KOH) as an electrolyte. As a result, the capacitor with LiOH aqueous solution and a modified separator and electrodes was found to exhibit higher specific capacitance, maximum energy stored and maximum power than that with KOH aqueous solution.

  13. Study on (100-x)(70Li2S-30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Penghao; Ding, Fei; Xu, Zhibin; Liu, Jiaquan; Liu, Xingjiang; Xu, Qiang

    2017-07-01

    A novel glass-ceramic electrolyte of (100-x)(70Li2S-30P2S5)-xLi2ZrO3 (x = 0, 1, 2, 5) is successfully prepared by a vibratory ball-milling method and followed by a heat-treatment process. Composition of the ternary sulfide electrolyte and the heat-treatment process are optimized by physical characterizations and electrochemical measurements. The testing results show that the optimal substitution quantity of Li2ZrO3 into the Li2S-P2S5 electrolyte substrate is 1 mol %. An appropriate heat-treatment temperature of 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte is 285 °C. Among the as-prepared ternary electrolyte samples, 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte may exhibit the highest conductivity of 2.85 × 10-3 S cm-1 at room temperature, which is much higher than that of the 70Li2S-30P2S5 glass-ceramic electrolyte. Compared to that of the all-solid-state lithium-ion battery of LiCoO2/70Li2S-30P2S5/In-Li, discharge capacities of all-solid-state lithium-ion battery of LiCoO2/99(70Li2S-30P2S5)-1Li2ZrO3/In-Li may increase 41.0% at the 10th charge-discharge cycle and 21.9% at the 50th charge-discharge cycle, respectively. Furthermore, electrochemical impedance spectroscopy (EIS) analyses of all-solid-state lithium-ion batteries reveal that addition of Li2ZrO3 into the Li2S-P2S5 electrolyte substrate may decrease the interfacial resistance between the electrodes and solid electrolyte. The improvement of electrochemical performances of 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte is ascribed to both the stable crystal structure and a high lithium-ion diffusion coefficient of Li2ZrO3.

  14. Evaluation of doped polyethylene oxide as solid electrolyte for polymer batteries

    NASA Astrophysics Data System (ADS)

    Sircar, A. K.; Weissman, P. T.; Kumar, B.

    1992-02-01

    This report presents results of an investigation on the preparation and characterization of polyethylene oxide (PEO) and lithium tetrafluoroborate (LiBF4) complexes for application as solid electrolytes in polymer batteries. AC conductivity and permittivity (dielectric constant) were measured as functions of frequency, temperature, and concentration of lithium tetrafluoroborate (LiBF4) in polyethylene oxide (PEO) films. Differential Scanning Calorimetry (DSC) was used to trace changes of the morphology of the polymeric medium. Thermogravimetry (TG) and derivative thermogravimetry (DTG) were used to follow the decomposition of components and to define the maximum temperature limits for these measurements. Infrared Spectroscopy monitored structural evolution as the O:Li ratio in the polymer complex was varied. Thin films of a complex (O:Li = 8) were used to assemble Li/Polymer/Li Cell for electrochemical characterization. The study showed that the relationship of dopant concentration to electrical properties is rather complex. Degree of ion-pairing, dissociation of ions on dilution, changes in the morphology of the polymeric medium, and variations in viscosity and its consequence on ion mobility were considered to explain the data. An optimum in room conductivity occurred in a complex with O:Li ratio of 8.

  15. Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries

    DOE PAGES

    Chen, Lin; Liu, Yuzi; Ashuri, Maziar; ...

    2014-09-26

    Using high-energy ball milling of the Li2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li2S-plus-C composite particles of average size 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered core–shell structure exhibits an ultrahigh initial discharge specific capacity (1029 mAh/g), reaching 88% of the theoretical capacity (1,166 mAh/g of Li2S) and thus offering the highest utilization of Li2S in the cathode among all of the reported works for the encapsulated Li2S cathodes. This Li2S/C composite core with a nitrogen-doped carbon shell can still retain 652 mAh/g after prolongedmore » 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li2S in the cathode. As a result, fine particle sizes and the presence of carbon black within the Li2S core may also play a role in high utilization of Li2S in the cathode.« less

  16. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    NASA Astrophysics Data System (ADS)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10-4 S cm-1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  17. In situ Raman and electrochemical characterization of the role of electrolyte additives in Li/SOCl2 batteries

    NASA Astrophysics Data System (ADS)

    Kovac, M.; Milicev, S.; Kovac, A.; Pejovnik, S.

    1995-05-01

    A simple glass cell has been constructed for in situ Raman characterization of discharge products in Li/SOCl2 batteries with polyvinyl chloride (PVC) and LiAl(SO3Cl4) additives. The assembly enables the characterization of catholyte-soluble discharge products in the electrolyte as well as products on the lithium and carbon electrode surfaces. The effect of the additives was also examined by scanning electron microscopy/energy dispersive spectroscopy and impedance spectroscopy and correlated to the voltage delay in batteries. The best results, as regards to the elimination of the delay effect, were obtained with a new electrolyte consisting of LiAlCl4/SOCl2 with an admixture of PVC and LiAl(SO3Cl4).

  18. The use of 6Li{7Li}-REDOR NMR spectroscopy to compare the ionic conductivities of solid-state lithium ion electrolytes.

    PubMed

    Spencer, T L; Plagos, N W; Brouwer, D H; Goward, G R

    2014-02-14

    Garnet-like solid-state electrolyte materials for lithium ion batteries are promising replacements for the currently-used liquid electrolytes. This work compares the temperature dependent Li(+) ion hopping rate in Li6BaLa2M2O12 (M = Ta, Nb) using solid-state (6)Li{(7)Li}-REDOR NMR. The slope of the (6)Li{(7)Li}-REDOR curve is highly temperature dependent in these two phases, and a comparison of the changes of the REDOR slopes as a function of temperature has been used to evaluate the Li(+) ion dynamics. Our results indicate that the Nb phase has a higher overall ionic conductivity in the range of 247 K to 350 K, as well as a higher activation energy for lithium ion hopping than the Ta counterpart. For appropriate relative timescales of the dipolar couplings and ion transport processes, this is shown to be a facile method to compare ion dynamics among similar structures.

  19. Electrical and optical properties of As- and Li-doped ZnSe films

    NASA Astrophysics Data System (ADS)

    Hingerl, Kurt; Lilja, Jarmo; Toivonen, Mika; Pessa, Markus; Jantsch, Wolfgang; As, Donat J.; Rothemund, W.; Juza, P.; Sitter, Helmut

    1991-03-01

    Luminescense and photoconductivity measurements were performed on MBE grown ZnSe layers with various arsenic concentrations. Two shallow acceptor levels with energies of 125 meV and 260 meV were found. Increasing the As content in order to increase the number of shallow acceptor states resulted in highly compensated samples. For Li the acceptor binding energy was found to be 113 meV. Also in the case of Li a higher doping concentration did not augment the shallow levels. Electrical characterization of the Li doped samples was done by C-V and I-V measurements. The films were found to be p-type.

  20. Improved electrolyte and its application in LiNi1/3Mn1/3Co1/3O2-Graphite full cells

    NASA Astrophysics Data System (ADS)

    Liu, Minghong; Dai, Fang; Ma, Zhiru; Ruthkosky, Marty; Yang, Li

    2014-12-01

    Lithium oxalatodifluoroborate (LiODFB) has been synthesized and used as a novel electrolyte additive. Standard and modified electrolytes were flame-sealed in NMR tubes and stored at 60 °C for 3 months. Multiple nuclear NMR (1H, 11B, 13C, 19F, 31P) studies confirmed that the modified electrolyte (2% LiODFB added) showed no signs of decomposition as that of regular electrolyte, which is possibly due to the -F of LiPF6 and oxalate of LiODFB ligand exchange effect. The high temperature stabilization mechanism of the added LiODFB was studied using quantum mechanical calculations. Electrochemical tests of LiNi1/3Mn1/3Co1/3O2 (NMC)-Graphite full-cells with and without LiODFB as the electrolyte additive were conducted. When cycling with the NMC-Graphite full-cell at elevated temperature (60 °C), the 100th cycle capacity retention rate of the modified electrolyte was 60%, compared to 27% with the standard electrolyte. The EIS study indicates the full-cells with LiODFB have much lower interfacial impedance than the standard cells. Theoretical calculations reveal that LiODFB generates a layer of thin and resilient SEI on the graphite surface at a higher reduction potential than ethylene carbonate (EC) due to its higher ring strain and protects graphite from the toxic Mn2+ resulting in improved electrochemical performance of NMC-Graphite based cells.

  1. Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors

    NASA Astrophysics Data System (ADS)

    Fukutsuka, Tomokazu; Nakagawa, Takuya; Miyazaki, Kohei; Abe, Takeshi

    2016-02-01

    Compatibility of LiF + anion receptors/propylene carbonate (PC) electrolyte solution with high potential positive electrode for lithium-ion batteries was examined by cyclic voltammetry. As anion receptors, tripropyl borate (TPB), tris(pentafluorophenyl) borane (TPFPB), and tris(hexafluoroisopropyl) borate (THFIPB) were used. LiCoPO4 thin-film electrodes were prepared by sol-gel method and used as both carbon- and binder-free model electrodes. From cyclic voltammograms, LiCoPO4 showed better cycleability in 0.1 mol dm-3 LiF + 0.1 mol dm-3 THFIPB/PC, however, other anion receptors did not give positive influence. It is indicated that the surface protecting layer from F--THFIPB complex and made LiCoPO4 stable. Electrochemical behavior depending on anion receptors was discussed according to reaction activity of F-.

  2. 3d-Metal Doped into LiMn2O4 Thin Films

    SciTech Connect

    Bates, J.B.; Ueda, A.; Zuhr, R.A.

    1998-11-01

    3d-metal (Me) doped LiMn{sub 2}O{sub 4} thin films were deposited by rf magnetron sputtering of Li[Mn{sub 1.9}Me{sub 0.1}]O{sub 4} targets in Ar + N{sub 2} and Ar + O{sub 2} gas mixtures and annealed at 750{degrees}C in O{sub 2} for 1 h. From XRD measurements, the structure of the Me-doped thin film was dependent upon the element and the deposition conditions. The doping level of Me/Mn of cubic phase was less than 0.1 by EDX measurements. The Ti-LiMn{sub 2}O{sub 4} films exhibited a capacity close to theoretical for stoichiometric LiMn{sub 2}O{sub 4}. This improvement at 4 V comes at the expense of the capacity at 5 V. Cells with Ti-doped films exhibited the same low capacity fade as those with undoped LiMn{sub 2}O{sub 4} cathodes. Similar electrochemical changes were observed with the Cr- and Zn-LiMn{sub 2}O{sub 4} films. The discharge capacities above 4.5 V for the Ni-doped films were about equal to those below 4.5 V, and the thin-film cells could be cycled reversibility between 3.5 and 5.3 V.

  3. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions

    DOE PAGES

    Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu; ...

    2014-10-21

    Batteries with an aqueous catholyte and a Li metal anode have attracted interest owing to their exceptional energy density and high charge/discharge rate. The long-term operation of such batteries requires that the solid electrolyte separator between the anode and aqueous solutions must be compatible with Li and stable over a wide pH range. Unfortunately, no such compound has yet been reported. In this study, an excellent stability in neutral and strongly basic solutions was observed when using the cubic Li7La3Zr2O12 garnet as a Li-stable solid electrolyte. The material underwent a Li+/H+ exchange in aqueous solutions. Nevertheless, its structure remained unchangedmore » even under a high exchange rate of 63.6%. When treated with a 2 M LiOH solution, the Li+/H+ exchange was reversed without any structural change. Furthermore, these observations suggest that cubic Li7La3Zr2O12 is a promising candidate for the separator in aqueous lithium batteries.« less

  4. Studies on various properties of pure and Li-doped Barium Hydrogen Phosphate (BHP) single crystals

    NASA Astrophysics Data System (ADS)

    Nallamuthu, D.; Selvarajan, P.; Freeda, T. H.

    2010-12-01

    Single crystals of pure and Li-doped barium hydrogen phosphate (BHP) were grown by solution method with gel technique. Various properties of the harvested crystals were studied by carrying out single crystal and powder XRD, FTIR, TG/DTA, microhardness and dielectric studies. Atomic absorption study was carried out for Li-doped BHP crystal to check the presence of Li dopants. Unit cell dimensions and diffracting planes of the grown crystals have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Density of the grown crystals was calculated using the XRD data. Thermal stability of the samples was checked by TG/DTA studies. Mechanical and dielectric characterizations of the harvested pure and Li-doped BHP crystals reveal the mechanical strength and ferroelectric transition. The observed results are reported and discussed.

  5. Effects of Li intercalation on magnetic properties of Co-doped rutile TiO2

    NASA Astrophysics Data System (ADS)

    Park, Min Sik; Min, B. I.

    2004-12-01

    We have investigated the electronic structures and magnetic properties of Li-intercalated Co-doped rutile TiO2. For non-intercalated Ti0.9375Co0.0625O2, the half-metallic and low-spin ({\\sim }0.94~\\mu_{\\mathrm {B}}/{\\mathrm {Co}} ) ground state is obtained. By Li intercalation, Ti0.9375Co0.0625O2 becomes a paramagnetic insulator at the concentration of Li/Ti = 0.067. At the higher concentration of Li/Ti = 0.133, it becomes a paramagnetic metal. Hence, as in the transition metal doped anatase TiO2 case, we expect that the magnetic and transport properties of Co-doped rutile TiO2 can be controlled by an electric field.

  6. Preparation and characterization of chlorine doped Li3V2(PO4)3 as high rate cathode active material for lithium secondary batteries.

    PubMed

    Lee, S N; Kim, H S; An, J Y; Amaresh, S; Lee, Y G; Nam, K W; Lee, Y S

    2014-10-01

    Monoclinic Li3V2(PO4)2.99Cl0.01 was synthesized using the conventional solid state method and the X-ray diffraction pattern was indexed based on P2(1)/n space group. The sharp cyclic voltammetric curves clearly revealed three lithium extraction/insertion processes at approximately 3.64, 3.72, 4.13, and 4.58 V during the anodic scan and 3.96, 3.58, and 3.48 V during the cathodic scan. Charge/discharge studies showed reduced electrolyte decomposition contribution in the case of the chlorine doped Li3V2(PO4)2.99Cl0.01 sample with an initial capacity of 176 mA h g(-1) at a 0.1 C current rate. The chlorine doped Li3V2(PO4)3 sample showed an increased capacity retention with an increase in current rate, even at a very high C-rate (20 C), than the pristine and carbon coated samples. The pristine and carbon coated Li3V2(PO4)3 samples showed a lower capacity retention of 71% and 84%, respectively, at a current rate of 0.1 C. In contrast, the chlorine doped Li3V,(PO4)3 sample retained 87% of the initial capacity (176 mA h g(-1)) at the same current rate but with a higher coulombic efficiency of 91%. The enhanced capacity retention for the chlorine doped Li3V2(PO4)3 was attributed to the reduction in polarization and decreased charge transfer resistance of the electrode.

  7. Atomic-Scale Mechanisms for Electrolyte Decomposition in Li-ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Fuhst, Mallory; Siegel, Donald

    Li-ion batteries using high energy density LiCoO2 (LCO) intercalation cathodes are known to generate gaseous species inside the cell, which can lead to venting flammable solvent vapor. It has been hypothesized that reactions at the cathode/electrolyte interface catalyze the production of these gaseous species. To elucidate the underlying reaction mechanism, first principles calculations were used to model interactions between LCO surfaces and Ethylene Carbonate (EC), a commonly used solvent in Li-ion batteries. A Metropolis Monte Carlo algorithm was used to identify likely low energy adsorption configurations for EC on the (10-14) surface of LCO. Several of these geometries were further analyzed with DFT. The thermodynamics and kinetics of EC decomposition were evaluated for plausible reaction pathways and associated various solvent decomposition mechanisms, such as hydrogen abstraction. Preliminary results indicate that hydrogen abstraction may lead to the spontaneous decomposition of EC into CO and other adsorbed species at the surface. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260.

  8. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.

    PubMed

    Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi

    2016-06-29

    Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency.

  9. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells

    NASA Astrophysics Data System (ADS)

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-01

    In reducing the high operating temperatures (>=800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (<=600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  10. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.

    PubMed

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-23

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  11. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells

    PubMed Central

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-01-01

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells. PMID:28230080

  12. A Study on Electrolytic Corrosion of Boron-Doped Diamond Electrodes when Decomposing Organic Compounds.

    PubMed

    Kashiwada, Takeshi; Watanabe, Takeshi; Ootani, Yusuke; Tateyama, Yoshitaka; Einaga, Yasuaki

    2016-03-02

    Electrolytic corrosion of boron-doped diamond (BDD) electrodes after applying a high positive potential to decompose organic compounds in aqueous solution was studied. Scanning electron microscopy images, Raman spectra, and glow discharge optical emission spectroscopy revealed that relatively highly boron-doped domains were primarily corroded and relatively low boron-doped domains remained after electrolysis. The corrosion due to electrolysis was observed especially in aqueous solutions of acetic acid or propionic acid, while it was not observed in other organic compounds such as formic acid, glucose, and methanol. Electron spin resonance measurements after electrolysis in the acetic acid solution revealed the generation of methyl radicals on the BDD electrodes. Here, the possible mechanisms for the corrosion are discussed. Dangling bonds may be formed due to abstraction of OH groups from C-OH functional groups by methyl radicals generated on the surface of the BDD electrodes. As a result, the sp(3) diamond structure would be converted to the sp(2) carbon structure, which can be easily etched. Furthermore, to prevent electrolytic corrosion during electrolysis, both the current density and the pH condition in the aqueous solution were optimized. At low current densities or high pH, the BDD electrodes were stable without electrolytic corrosion even in the acetic acid aqueous solution.

  13. Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes

    NASA Astrophysics Data System (ADS)

    Saccoccio, Mattia; Yu, Jing; Lu, Ziheng; Kwok, Stephen C. T.; Wang, Jian; Yeung, Kan Kan; Yuen, Matthew M. F.; Ciucci, Francesco

    2017-10-01

    With its stability against Li and good ionic conductivity, Li7La3Zr2O12 (LLZO) has emerged as a promising electrolyte material for lithium-based solid-state batteries (SSBs). Thin layers of solid electrolyte are needed to enable the practical use of SSBs. We report the first deposition of Li-conductive crystalline Ta-doped LLZO thin films on MgO (100) substrates via pulsed laser deposition. Further, we investigate the impact of laser fluence, deposition temperature (in the 50 °C-700 °C range), and post-deposition annealing on the structural, compositional, and transport properties of the film. We analyze the structure of the deposited films via grazing incident X-ray diffraction, their morphology via scanning electron microscopy, and the composition via depth profiling X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. The Li ionic conductivity is investigated via electrochemical impedance spectroscopy. Contrary to previous reports for LLZO films, the crystalline Ta-doped films presents a pure cubic LLZO structure for deposition temperatures as low as 50 °C, with resulting conductivities not significantly influenced by the temperature deposition. Instead, the laser fluence has a major effect on the growth rate of the thin films.

  14. Substitution mechanism and structural study of Ag-doped LiCu2O2

    NASA Astrophysics Data System (ADS)

    Tellgren, R.; Ivanov, S. A.; Bush, A. A.; Kumar, P. Anil; Nordblad, P.; Mathieu, R.

    2017-08-01

    Plate-like stoichiometric crystals of Ag-doped LiCu2O2 have been grown by slowly cooling Li2CO3·4(1 - x)CuO·4xAgNO3 (0 ≤ x ≤ 0.5) melts. X-ray single crystal diffraction has shown that the crystals are isostructural with LiCu2O2 and contain around 5 at % Ag (relative to the Cu atoms). The addition of silver to lithium cuprate crystals significantly increases their electrical conductivity but has little effect on the temperature behavior of their magnetic moment. The possible substitution mechanism is determined which supports Ag+ ↔ Cu+, rather than Ag+ ↔ Li+ in the Ag-doped LiCu2O2 crystals.

  15. First-principles calculations of Raman spectra in Li-doped Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Scott Bobbitt, N.; Chelikowsky, James R.

    2016-02-01

    We examine the vibrational and Raman spectra for Li doped Si nanocrystals using real-space pseudopotentials constructed within density functional theory. We calculate differences in the Raman spectra using the Placzek approximation. The insertion of Li atoms into Si nanocrystals disrupts the Si crystal structure forming a region of Li-Si alloy in which the regular crystal structure is significantly disrupted. The Raman spectrum for this alloy exhibits a Li induced peak at 440-480 cm-1. We find an accompanying reduction in the size of the dominant bulk-like Si peak at 520 cm-1. Both of these results are consistent with experiment. Our analysis of the calculated spectrum confirms the utility of using Raman spectroscopy, coupled with first principle computations, to predict the structural and electronic properties of Li doped Si nanocrystals.

  16. Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy

    SciTech Connect

    Rani, Babita; Jindal, V.K.; Dharamvir, Keya

    2016-08-15

    We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates. Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene. - Graphical abstract: Adsorption and diffusion of Li atom across the B/N doped monovacancy graphene is studied using ab-initio DFT calculations. Our results show that bonding mechanism and binding of Li with graphene can be tuned with the help of N/B doping of defects. Also, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries as compared to N-pyridinic graphene. Display Omitted - Highlights: • Density

  17. Electrochemical Characterization of poly (styrene-b-ethylene oxide)/LiTFSI Lamellar Diblock Copolymer Electrolyte System

    NASA Astrophysics Data System (ADS)

    Balsara, Nitash; Panday, Ashoutosh; Mullin, Scott; Wanakule, Nisita

    2009-03-01

    We present the electrochemical characterization studies of symmetric poly (styrene-b-ethylene oxide) copolymers (SEO) and Li[N(SO2CF3)2] (LiTFSI). The molar ratio of Li to ethylene monomers, r, was varied from 0.02 to 0.10. The ionic conductivity of these electrolytes increases with molecular weight over the entire range of temperatures and r values examined. Preliminary data suggest that the salt diffusion coefficient also increases with increasing MW of PEO block.

  18. 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid.

    PubMed

    Dubal, Deepak P; Aradilla, David; Bidan, Gérard; Gentile, Pascal; Schubert, Thomas J S; Wimberg, Jan; Sadki, Saïd; Gomez-Romero, Pedro

    2015-05-18

    Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO2@silicon nanowires (MnO2@SiNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO2@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm(-2). The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO2 nanoflakes are responsible for the remarkable performance of these MnO2@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors.

  19. 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid

    PubMed Central

    Dubal, Deepak P.; Aradilla, David; Bidan, Gérard; Gentile, Pascal; Schubert, Thomas J.S.; Wimberg, Jan; Sadki, Saïd; Gomez-Romero, Pedro

    2015-01-01

    Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO2@silicon nanowires (MnO2@SiNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO2@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm−2. The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO2 nanoflakes are responsible for the remarkable performance of these MnO2@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors. PMID:25985388

  20. Li 2O-B 2O 3-P 2O 5 solid electrolyte for thin film batteries

    NASA Astrophysics Data System (ADS)

    Cho, Kang Ill; Lee, Sun Hwa; Cho, Ki Hyun; Shin, Dong Wook; Sun, Yang Kuk

    Solid-state glass electrolyte, xLi 2O-(1 - x)(yB 2O 3-(1 - y)P 2O 5) glasses were prepared with wide range of composition, i.e. x = 0.35-0.5 and y = 0.17-0.67. This material system is one of the parent compositions for chemically and electrochemically stable solid-state electrolyte applicable to thin film battery. The purpose of this study is to seek the best composition among the various compositions for the deposition of thin film electrolytes. Lithium ion conductivity of Li 2O-B 2O 3-P 2O 5 glasses was characterized by ac impedance technique. The ionic conductivity of the electrolyte at room temperature increased with x and y. The maximum conductivity of this glass system was 1.6 × 10 -7 Ω -1 cm -1 for 0.45Li 2O-0.275B 2O 3-0.275P 2O 5 at room temperature. It was shown that the addition of P 2O 5 reduces the tendency of devitrification and increases the maximum amount of Li 2O added into glass former without devitrification.

  1. Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes

    SciTech Connect

    Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

    2011-04-15

    The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

  2. Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability

    NASA Astrophysics Data System (ADS)

    Pohl, Benjamin; Hiller, Martin M.; Seidel, Sarah M.; Grünebaum, Mariano; Wiemhöfer, Hans-Dieter

    2015-01-01

    Liquid disiloxanes functionalized with terminal nitrile groups are introduced as alternative non-volatile solvents for lithium-ion battery electrolytes in combination with LiTFSI as lithium salt. Two series of disiloxanes were investigated differing with respect to the attachment of the nitrile containing side group to silicon, i.e. via a Si-C or a Si-O bond. Total conductivities up to 1 mS cm-1 at 30 °C were measured by impedance spectroscopy. Electrochemical characterization was done on half cells using LiFePO4 cathodes by cyclic voltammetry and constant current cycling. Attractive issues and advantages of the investigated LiTFSI containing disiloxanes in comparison to current electrolyte solvents are: a) In spite of the presence of LiTFSI, the aluminum pitting corrosion is suppressed, b) the electrochemical stability window is extended on the cathode side up to 5.6 V vs. Li/Li+, for a LiTFSI concentration of 0.7 mol kg-1, c) the reported nitrile functionalized disiloxanes show excellent thermal stability with a boiling point up to 106 °C (0.1 mbar), a rather low glass transition temperature of -107 °C, while no melting/crystallization was observed.

  3. Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer.

    PubMed

    Luo, Wei; Gong, Yunhui; Zhu, Yizhou; Li, Yiju; Yao, Yonggang; Zhang, Ying; Fu, Kun Kelvin; Pastel, Glenn; Lin, Chuan-Fu; Mo, Yifei; Wachsman, Eric D; Hu, Liangbing

    2017-06-01

    Substantial efforts are underway to develop all-solid-state Li batteries (SSLiBs) toward high safety, high power density, and high energy density. Garnet-structured solid-state electrolyte exhibits great promise for SSLiBs owing to its high Li-ion conductivity, wide potential window, and sufficient thermal/chemical stability. A major challenge of garnet is that the contact between the garnet and the Li-metal anodes is poor due to the rigidity of the garnet, which leads to limited active sites and large interfacial resistance. This study proposes a new methodology for reducing the garnet/Li-metal interfacial resistance by depositing a thin germanium (Ge) (20 nm) layer on garnet. By applying this approach, the garnet/Li-metal interfacial resistance decreases from ≈900 to ≈115 Ω cm(2) due to an alloying reaction between the Li metal and the Ge. In agreement with experiments, first-principles calculation confirms the good stability and improved wetting at the interface between the lithiated Ge layer and garnet. In this way, this unique Ge modification technique enables a stable cycling performance of a full cell of lithium metal, garnet electrolyte, and LiFePO4 cathode at room temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles

    NASA Astrophysics Data System (ADS)

    Ito, Yusuke; Otoyama, Misae; Hayashi, Akitoshi; Ohtomo, Takamasa; Tatsumisago, Masahiro

    2017-08-01

    Bulk-type all-solid-state batteries, which use composite electrodes with a powder mixture of active materials and solid electrolytes, are anticipated for large-scale power sources. However, conventional powder mixing protocols are insufficient to maintain ion-conductive pathways within composite electrodes. Herein, sulfide electrolyte coatings have attracted attention as a promising means to overcome this difficulty. We assessed the effects of sulfide electrolyte coatings for active materials on the electrochemical properties and structural changes in all-solid-state cells. A favorable electrode-electrolyte interface was formed by coating significantly small amounts (ca. 3 wt%) of Li4GeS4-Li3PS4 solid electrolyte (SE) onto LiCoO2 particles via vapor phase process. The all-solid-state cell (In/Li2S-P2S5/SE-coated LiCoO2) was charged and discharged with a larger capacity than that using non-SE-coated LiCoO2 particles, indicating that the SE-coating is effective in forming a favorable ion-conductive pathway to LiCoO2 particles. Improvement of the cell performance after heat treatment was considered to derive not only from the enhancement of ionic conductivity in the SE-coating layer, but also from the reduction of voids in the composite electrode. Less ionic resistance and denser environment are beneficial for the Li-ion supply to the deepest part in the composite electrode, which results in more homogeneous electrochemical reaction in all-solid-state cells.

  5. Optical and surface properties of optically transparent Li3 PO4 solid electrolyte layer for transparent solid batteries.

    PubMed

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2016-07-01

    In this study, optical and surface properties of the optically transparent Li3 PO4 solid electrolyte layer for transparent solid battery have been investigated for the first time. To determine the optical properties, transmittance, absorbance, reflection, refractive index spectra, and optical band gap were determined by UV-Vis spectrophotometer and optical interferometer. The surface property of the transparent Li3 PO4 solid electrolyte was analyzed using atomic force microscopy. One another important parameter is contact angle (CA) surface free energy (SFE). CA and SFE were determined by optical tensiometer. These values probably are a most important parameter for polymer and hybrid battery performance. For the best performance, value of CA should be low. As a result, solid electrolyte layer is a highly transparent and it has a high wettability. SCANNING 38:317-321, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  6. Dopant-vacancy binding effects in Li-doped magnesium hydride

    NASA Astrophysics Data System (ADS)

    Smith, Kyle C.; Fisher, Timothy S.; Waghmare, Umesh V.; Grau-Crespo, Ricardo

    2010-10-01

    We use a combination of ab initio calculations and statistical mechanics to investigate the substitution of Li+ for Mg2+ in magnesium hydride (MgH2) accompanied by the formation of hydrogen vacancies with positive charge (with respect to the original ion at the site). We show that the binding energy between dopants and vacancy defects leads to a significant fraction of trapped vacancies and therefore a dramatic reduction in the number of free vacancies available for diffusion. The concentration of free vacancies initially increases with dopant concentration but reaches a maximum at around 1mol% Li doping and slowly decreases with further doping. At the optimal level of doping, the corresponding concentration of free vacancies is much higher than the equilibrium concentrations of charged and neutral vacancies in pure MgH2 at typical hydrogen storage conditions. We also show that Li-doped MgH2 is thermodynamically metastable with respect to phase separation into pure magnesium and lithium hydrides at any significant Li concentration, even after considering the stabilization provided by dopant-vacancy interactions and configurational entropic effects. Our results suggest that lithium doping may enhance hydrogen diffusion hydride but only to a limited extent determined by an optimal dopant concentration and conditioned to the stability of the doped phase.

  7. Temperature Dependence of Aliovalent-vanadium Doping in LiFePO4 Cathodes

    SciTech Connect

    Harrison, Katharine L; Bridges, Craig A; Paranthaman, Mariappan Parans; Idrobo Tapia, Juan C; Manthiram, Arumugam; Goodenough, J. B.; Segre, C; Katsoudas, John; Maroni, V. A.

    2013-01-01

    Vanadium-doped olivine LiFePO4 cathode materials have been synthesized by a novel low-temperature microwave-assisted solvothermal (MW-ST) method at 300 oC. Based on chemical and powder neutron/X-ray diffraction analysis, the compositions of the synthesized materials were found to be LiFe1-3x/2Vx x/2PO4 (0 x 0.2) with the presence of a small number of lithium vacancies charge-compensated by V4+, not Fe3+, leading to an average oxidation state of ~ 3.2+ for vanadium. Heating the pristine 15 % V-doped sample in inert or reducing atmospheres led to a loss of vanadium from the olivine lattice with the concomitant formation of a Li3V2(PO4)3 impurity phase; after phase segregation, a partially V-doped olivine phase remained. For comparison, V-doped samples were also synthesized by conventional ball milling and heating, but only ~ 10 % V could be accommodated in the olivine lattice in agreement with previous studies. The higher degree of doping realized with the MW-ST samples demonstrates the temperature dependence of the aliovalent-vanadium doping in LiFePO4.

  8. Quadratic nonlinear optical parameters of 7% MgO-doped LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Kulyk, B.; Kapustianyk, V.; Figà, V.; Sahraoui, B.

    2016-06-01

    Pure and 7% MgO-doped lithium niobate (LiNbO3) single crystals were grown by the Czochralski technique. The shift of optical absorption edge in 7% MgO-doped crystal in direction of shorter wavelength compared to undoped crystal was observed. The second harmonic generation measurements of 7% MgO-doped LiNbO3 crystal were performed at room temperature by means of the rotational Maker fringe technique using Nd:YAG laser generating at 1064 nm in picoseconds regime. Experimentally obtained value of nonlinear optical coefficient d33 for 7% MgO-doped LiNbO3 was found to be less than for undoped crystal but higher than for 5% MgO-doped. I-type phase-matched second harmonic generation was achieved and the value of phase-matched angle was calculated. High quadratic nonlinearity together with tolerance to intensive laser irradiation makes 7% MgO-doped LiNbO3 crystal interesting for application in optoelectronics.

  9. Functionalized ionic liquids based on quaternary ammonium cations with two ether groups as new electrolytes for Li/LiFePO4 secondary battery

    NASA Astrophysics Data System (ADS)

    Jin, Yide; Zhang, Jianhao; Song, Jianzhi; Zhang, Zhengxi; Fang, Shaohua; Yang, Li; Hirano, Shin-ichi

    2014-05-01

    New functionalized ILs based on quaternary ammonium cations with two ether groups and bis(trifluoromethanesulfonyl)imide (TFSA-) anion are synthesized and characterized. Physical and electrochemical properties, including melting point, thermal stability, viscosity, conductivity and electrochemical stability are investigated for these ILs. All these ILs are liquids at room temperature except N,N-diethyl-N,N-bis(2-ethoxyethyl)ammonium TFSA (N22(2o2)(2o2)-TFSA, Tm = 29.7 °C), and the viscosities of N-methyl-N-ethyl-N-(2-methoxyethyl)-N-(2-ethoxyethyl)ammonium TFSA (N12(2o1)(2o2)-TFSA) and N-methyl-N-ethyl-N,N-bis(2-ethoxyethyl)ammonium TFSA (N12(2o2)(2o2)-TFSA) are 68.0 cP and 63.0 cP at 25 °C, respectively. N-Methyl-N,N-diethyl-N-(2-methoxyethyl)ammonium TFSA (DEME-TFSA) and five ILs with lower viscosity are chosen to dissolve 0.6 mol kg-1 of LiTFSA as IL electrolytes without additive for lithium battery. Lithium plating and striping on Ni electrode can be observed in these IL electrolytes, and cycle performances of lithium symmetrical cells are also investigated for these IL electrolytes. Li/LiFePO4 cells using these IL electrolytes without additives have good cycle property at the current rate of 0.1 C, and the N-methyl-N-ethyl-N,N-bis(2-methoxyethyl)ammonium TFSA (N12(2o1)(2o1)-TFSA) and N12(2o2)(2o2)-TFSA electrolytes own better rate property than DEME-TFSA electrolyte.

  10. Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface.

    PubMed

    Xu, Shenzhen; Luo, Guangfu; Jacobs, Ryan; Fang, Shuyu; Mahanthappa, Mahesh K; Hamers, Robert J; Morgan, Dane

    2017-06-21

    Electrolyte decomposition reactions on Li-ion battery electrodes contribute to the formation of solid electrolyte interphase (SEI) layers. These SEI layers are one of the known causes for the loss in battery voltage and capacity over repeated charge/discharge cycles. In this work, density functional theory (DFT)-based ab initio calculations are applied to study the initial steps of the decomposition of the organic electrolyte component ethylene carbonate (EC) on the (101̅4) surface of a layered Li(Nix,Mny,Co1-x-y)O2 (NMC) cathode crystal, which is commonly used in commercial Li-ion batteries. The effects on the EC reaction pathway due to dissolved Li(+) ions in the electrolyte solution and different NMC cathode surface terminations containing adsorbed hydroxyl -OH or fluorine -F species are explicitly considered. We predict a very fast chemical reaction consisting of an EC ring-opening process on the bare cathode surface, the rate of which is independent of the battery operation voltage. This EC ring-opening reaction is unavoidable once the cathode material contacts with the electrolyte because this process is purely chemical rather than electrochemical in nature. The -OH and -F adsorbed species display a passivation effect on the surface against the reaction with EC, but the extent is limited except for the case of -OH bonded to a surface transition metal atom. Our work implies that the possible rate-limiting steps of the electrolyte molecule decomposition are the reactions on the decomposed organic products on the cathode surface rather than on the bare cathode surface.

  11. Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Usui, Hiroyuki; Domi, Yasuhiro; Shimizu, Masahiro; Imoto, Akinobu; Yamaguchi, Kazuki; Sakaguchi, Hiroki

    2016-10-01

    The anode properties of Nb-doped rutile TiO2 electrodes were investigated in an ionic liquid electrolyte comprised of N-methyl-N-propylpyrrolidinium cation and bis(fluorosulfonyl)amide anion for use in a safe Na-ion battery. Although the electrolyte's conductivity was lower than that of a conventional organic electrolyte at 30 °C, it showed high conductivity comparable to that of the organic electrolyte at 60 °C. The Nb-doped TiO2 electrode showed excellent cyclability in the ionic liquid electrolyte at 60 °C: a high capacity retention of 97% was observed even at the 350th cycle, which is comparable to value in the organic electrolyte (91%). In a non-flammability test in a closed system, no ignition was observed with the ionic liquid electrolyte even at 300 °C. These results indicate that combination of a Nb-doped TiO2 anode and ionic liquid electrolyte gives not only an excellent cyclability but also high safety for a Na-ion battery operating at a temperature below the sodium's melting point of 98 °C.

  12. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    DOE PAGES

    Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; ...

    2015-02-23

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquidmore » cell.« less

  13. An upper limit of Cr-doping level to Retain Zero-strain Characteristics of Li4Ti5O12 Anode Material for Li-ion Batteries

    PubMed Central

    Song, Hannah; Jeong, Tae-Gyung; Yun, Su-Won; Lee, Eun-Kyung; Park, Shin-Ae; Kim, Yong-Tae

    2017-01-01

    Since Li4Ti5O12 as a promising anode material in lithium-ion batteries (LIBs) has a poor rate performance due to low electronic conductivity, a doping of Li4Ti5O12 with heterogeneous atoms has been considered to overcome this problem. Herein, we report that there is an upper limit of doping level to maintain the zero strain characteristics of Li4Ti5O12 lattice during charge/discharge process. By using synchrotron studies, it was revealed that the Li+ diffusivity was maximized at a certain doping level for which the conductivity was markedly increased with maintaining the zero strain characteristics. However, with more doses of dopants over the upper limit, the lattice shrank and therefore the Li+ diffusivity decreased, although the electronic conductivity was further increased in comparison with the optimal doping level. PMID:28233818

  14. An upper limit of Cr-doping level to Retain Zero-strain Characteristics of Li4Ti5O12 Anode Material for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Song, Hannah; Jeong, Tae-Gyung; Yun, Su-Won; Lee, Eun-Kyung; Park, Shin-Ae; Kim, Yong-Tae

    2017-02-01

    Since Li4Ti5O12 as a promising anode material in lithium-ion batteries (LIBs) has a poor rate performance due to low electronic conductivity, a doping of Li4Ti5O12 with heterogeneous atoms has been considered to overcome this problem. Herein, we report that there is an upper limit of doping level to maintain the zero strain characteristics of Li4Ti5O12 lattice during charge/discharge process. By using synchrotron studies, it was revealed that the Li+ diffusivity was maximized at a certain doping level for which the conductivity was markedly increased with maintaining the zero strain characteristics. However, with more doses of dopants over the upper limit, the lattice shrank and therefore the Li+ diffusivity decreased, although the electronic conductivity was further increased in comparison with the optimal doping level.

  15. A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte

    SciTech Connect

    Li, YF; Huang, K; Xing, YC

    2012-10-30

    We demonstrate a type of carbon nanotube based buckypaper cathode in a hybrid electrolyte Li-air battery (HyLAB) that showed outstanding discharging performances. The HyLAB has sulfuric acid as the catholyte and a large active electrode area (10 cm(2)). The active cathode layer was made from a buckypaper with 5 wt.% Pt supported on carbon nanotubes (Pt/CNTs) for oxygen reduction and evolution. A similar cathode was constructed with a catalyst of 5 wt.% Pt supported on carbon black (Pt/CB). It is demonstrated that sulfuric acid can achieve high discharging current densities while maintaining relatively high cell potentials. The cell with Pt/CNTs showed a much better performance than with Pt/CB at high current densities. The HyLAB with Pt/CNTs achieved a discharging capacity of 306 mAh/g and a cell voltage of 3.15 V at 0.2 mA/cm(2). The corresponding specific energy is 1067 Wh/kg based on the total weight of the sulfuric acid. Slow decrease in performance was observed, but it can be recovered by refilling the cell with new electrolyte after continuous discharging of more than 75 h. A charge-discharge experiment at 0.2 mA/cm(2) showed that the cell was rechargeable with a capacity of more than 300 mAh/g. (c) 2012 Elsevier Ltd. All rights reserved.

  16. Structure and mobility of PEO/LiClO4 solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Fullerton, Susan; Maranas, Janna

    2009-03-01

    Solid polymer electrolytes [SPEs] for use in rechargeable lithium-ion batteries offer many advantages over traditional liquid electrolytes, including mechanical flexibility and environmental friendliness. The practical limitation is that room temperature conductivity remains insufficient to power a portable device. While it is well-established that ion mobility is driven by polymer dynamics, high conductivity values have also been reported through fully crystalline SPEs. PEO-based SPEs have a rich phase behavior, and can form several crystalline complexes depending on the lithium concentration, temperature, and recrystallization time. We investigate the structure, mobility, conductivity, and thermal properties of both semi-crystalline and amorphous PEO/LiClO4 SPEs. Structure is measured with small-angle neutron scattering, and PEO mobility with quasi-elastic neutron scattering. We observe a decoupling of ionic conductivity and PEO mobility in a semi-crystalline sample. We also determine that PEO hydrogen atoms undergo restricted rotation on a circle. The radius of the circle is consistent with a cylindrical, crystalline structure that persists to some extent in the amorphous phase. The results suggest that directed ion transport via ordered structures is perhaps equally important as polymer mobility for increasing conductivity, provided that the structures percolate over large spatial scales.

  17. Composite Gel Polymer Electrolyte for Improved Cyclability in Li-Oxygen Batteries.

    PubMed

    Chamaani, Amir; Safa, Meer; Chawla, Neha; El-Zahab, Bilal

    2017-09-06

    Gel polymer electrolytes (GPE) and composite GPE (cGPE) using one-dimensional microfillers have been developed for their use in lithium-oxygen batteries. Using glass microfillers, tetragylme solvent, UV curable polymer, and lithium salt at various concentrations, the preparation of cGPE yielded free-standing films. These cGPE, with 1% by weight of microfillers, demonstrated increased ionic conductivity and lithium transference number over GPE at various concentrations of lithium salt. Improvements as high as 50% and 28% in lithium transference number were observed for 0.1 and 1.0 mol•kg-1 salt concentrations, respectively. Lithium-oxygen batteries containing cGPE similarly showed superior charge/discharge cycling for 500 mAh.g-1 cycle capacity with as high as 86% and 400% increase in cycles for cGPE with 1.0 and 0.1 mol•kg-1 over GPE. Results using electrochemical impedance spectroscopy, Raman spectroscopy, and scanning electron microscopy revealed that the source of the improvement was the reduction of the rate of lithium carbonates formation on the surface of the cathode. This reduction in formation rate afforded by cGPE-containing batteries was possible due to the reduction of the rate of electrolyte decomposition. The increase in solvated to paired Li+ ratio at the cathode, afforded by increased lithium transference number, helped reduce the probability of superoxide radicals reacting with the tetraglyme solvent. This stabilization during cycling helped prolong the cycling life of the batteries.

  18. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature.

    PubMed

    Hu, Pu; Duan, Yulong; Hu, Deping; Qin, Bingsheng; Zhang, Jianjun; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan

    2015-03-04

    LiMn2O4-based batteries exhibit severe capacity fading during cycling or storage in LiPF6-based liquid electrolytes, especially at elevated temperatures. Herein, a novel rigid-flexible gel polymer electrolyte is introduced to enhance the cyclability of LiMn2O4/graphite battery at elevated temperature. The polymer electrolyte consists of a robust natural cellulose skeletal incorporated with soft segment poly(ethyl α-cyanoacrylate). The introduction of the cellulose effectively overcomes the drawback of poor mechanical integrity of the gel polymer electrolyte. Density functional theory (DFT) calculation demonstrates that the poly(ethyl α-cyanoacrylate) matrices effectively dissociate the lithium salt to facilitate ionic transport and thus has a higher ionic conductivity at room temperature. Ionic conductivity of the gel polymer electrolyte is 3.3 × 10(-3) S cm(-1) at room temperature. The gel polymer electrolyte remarkably improves the cycling performance of LiMn2O4-based batteries, especially at elevated temperatures. The capacity retention after the 100th cycle is 82% at 55 °C, which is much higher than that of liquid electrolyte (1 M LiPF6 in carbonate solvents). The polymer electrolyte can significantly suppress the dissolution of Mn(2+) from surface of LiMn2O4 because of strong interaction energy of Mn(2+) with PECA, which was investigated by DFT calculation.

  19. Characterization of conducting cellulose acetate based polymer electrolytes doped with "green" ionic mixture.

    PubMed

    Ramesh, S; Shanti, R; Morris, Ezra

    2013-01-02

    Polymer electrolytes were developed by solution casting technique utilizing the materials of cellulose acetate (CA), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and deep eutectic solvent (DES). The DES is synthesized from the mixture of choline chloride and urea of 1:2 ratios. The increasing DES content well plasticizes the CA:LiTFSI:DES matrix and gradually improves the ionic conductivity and chemical integrity. The highest conducting sample was identified for the composition of CA:LiTFSI:DES (28 wt.%:12 wt.%:60 wt.%), which has the greatest ability to retain the room temperature ionic conductivity over the entire 30 days of storage time. The changes in FTIR cage peaks upon varying the DES content in CA:LiTFSI:DES prove the complexation. This complexation results in the collapse of CA matrix crystallinity, observed from the reduced intensity of XRD diffraction peaks. The DES-plasticized sample is found to be more heat-stable compared to pure CA. Nevertheless, the addition of DES diminishes the CA:LiTFSI matrix's heat-resistivity but at the minimum addition the thermal stability is enhanced.

  20. Growth and optical properties of Mg, Fe Co-doped LiTaO3 crystal

    NASA Astrophysics Data System (ADS)

    Fang, Shuangquan; Ma, Decai; Zhang, Tao; Ling, Furi; Wang, Biao

    2006-02-01

    Mg, Fe double-doped LiTaO3 and LiNbO3 crystals have been grown by Czochralski method. The optical properties were measured by two-beam coupling experiments and transmitted facula distortion method. The results showed that the photorefractive response speed of Mg:Fe:LiTaO3 was about three times faster than that of Fe:LiTaO3, whereas the photo-damage resistance was two orders of magnitude higher than that of Fe:LiTaO3. In this paper, site occupation mechanism of impurities was also discussed to explain the high photo-damage resistance and fast response speed in Mg:Fe:LiTaO3 crystal.

  1. A review on the separators of liquid electrolyte Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng Shui

    This paper reviews the separators used in liquid electrolyte Li-ion batteries. According to the structure and composition of the membranes, the battery separators can be broadly divided as three groups: (1) microporous polymer membranes, (2) non-woven fabric mats and (3) inorganic composite membranes. The microporous polymer membranes are characterised by their thinness and thermal shutdown properties. The non-woven mats have high porosity and a low cost, while the composite membranes have excellent wettability and exceptional thermal stability. The manufacture, characteristics, performance and modifications of these separators are introduced and discussed. Among numerous battery separators, the thermal shutdown and ceramic separators are of special importance in enhancing the safety of Li-ion batteries. The former consists of either a polyethylene (PE)-polypropylene (PP) multilayer structure or a PE-PP blend which increases safety by allowing meltdown of the PE to close the ionic conduction pathways at a temperature below that at which thermal runway occurs. Whereas the latter comprises nano-size ceramic materials coated on two sides of a flexible and highly porous non-woven matrix which enhances the safety by retaining extremely stable dimensions even at very high temperatures to prevent the direct contact of the electrodes.

  2. Synthesis and Characterization of La, Sc, Yb and Nd co-doped Gadolinium doped Cerium (GDC) Composite Electrolyte for IT-SOFC

    NASA Astrophysics Data System (ADS)

    Damisih; Raharjo, Jarot; Masmui; Setya Aninda, Raffty; Ami Lestari, Novita

    2017-07-01

    Composite based on gadolinium doped cerium (GDC) co-doped Lanthanum (La), Scandium (Sc), Ytterbium (Yb) were investigated as electrolyte for solid oxide fuel cell (SOFC), namely GDC-La, GDC-Sc, GDC-Yb and GDC-Nd, respectively. The second co-doped La, Sc, Yb and Nd ensured the stability and high ionic conductivity of the GDC ceria-based electrolyte materials for SOFC. The GDC powder was synthesized via sol-gel technique. Then the La-GDC, Sc-GDC, Yb-GDC and GDC-Nd were subsequently prepared by mixing the GDC with La, Sc, Yb, and Nd respectively, through solid-state reaction in ballmill at 200rpm alumina balls. The composite electrolytes were then characterized in terms of its morphology, phase and thermal properties of the powders. Among the composite electrolytes investigated, GDC-Yb powder show higher purity and better dispersion than the others co-doped GDC. TGA analysis present that the addition of co-dopant led to improve thermal resistance and stability of solid electrolyte powders. The results confirm that GDC with co-dopant is promising alternative electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFC).

  3. Lithium-ion-conducting solid electrolytes in the Li/sub 4/GeO/sub 4/-Li/sub 2/SeO/sub 4/ system

    SciTech Connect

    Burmakin, E.I.; Alikin, V.N.; Stepanov, G.K.

    1986-02-01

    The authors studied the Li/sub 4/GeO/sub 4/-Li/sub 2/SeO/sub 4/ system as a continuation of an earlier investigation of solid electrolytes on the basis of lithium orthogermanate. The solid electrolytes were synthesized by sintering samples which had been pressed from a mixture of highly disperse powders of Li/sub 2/SeO/sub 4/ and Li/sub 4/GeO/sub 4/. The x-ray phase analysis was performed with a DRON-2 diffractometer in Cu Kalpha-radiation with a nickel filter. Electric resistance was measured with an R502 ac bridge using silver electrodes that had been applied thermochemically with a paste based on silver carbonate. The lowest values of specific resistance are seen near the lower limit of the single-phase region of P-solid solutions. This is in accord with the decisive influence of the concentration of highly mobile carriers (the interstitial lithium ions) on the transport properties of structures similar to gamma-Li/sub 3/PO/sub 4/. The number of interstitial lithium ions increases with decreasing x, and will be highest at the lower limit of the region of existence of P-solid solutions.

  4. Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy

    NASA Astrophysics Data System (ADS)

    Rani, Babita; Jindal, V. K.; Dharamvir, Keya

    2016-08-01

    We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates. Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene.

  5. Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes

    SciTech Connect

    Wan, Chuan; Hu, Mary Y.; Borodin, Oleg; Qian, Jiangfeng; Qin, Zhaohai; Zhang, Ji-Guang; Hu, Jian Zhi

    2016-03-01

    Natural abundance 17O and 6Li NMR experiments, quantum chemistry and molecular dynamics studies were employed to investigate the solvation structures of Li+ at various concentrations of LiFSI in DME electrolytes in an effort to solve this puzzle. It was found that the chemical shifts of both 17O and 6Li changed with the concentration of LiFSI, indicating the changes of solvation structures with concentration. For the quantum chemistry calculations, the coordinated cluster LiFSI(DME)2 forms at first, and its relative ratio increases with increasing LiFSI concentration to 1 M. Then the solvation structure LiFSI(DME) become the dominant component. As a result, the coordination of forming contact ion pairs between Li+ and FSI- ion increases, but the association between Li+ and DME molecule decreases. Furthermore, at LiFSI concentration of 4 M the solvation structures associated with Li+(FSI-)2(DME), Li+2(FSI-)(DME)4 and (LiFSI)2(DME)3 become the dominant components. For the molecular dynamics simulation, with increasing concentration, the association between DME and Li+ decreases, and the coordinated number of FSI- increases, which is in perfect accord with the DFT results. These results provide more insight on the fundamental mechanism on the very high CE of Li deposition in these electrolytes, especially at high current density conditions.

  6. Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.

    2010-01-01

    For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.

  7. Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.

    2010-01-01

    For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.

  8. Structural and magnetic properties of quasi-one-dimensional doped LiCuVO4

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Kumari, Poonam; Das, A.; Dwivedi, G. D.; Shahi, P.; Shukla, K. K.; Ghosh, A. K.; Nigam, A. K.; Chattopadhyay, K. K.; Chatterjee, Sandip

    2013-12-01

    The Neutron diffraction, X-ray photoemission and Magnetic properties of Zn, Co and Mn-doped LiCuVO4 were investigated. Both with Zn and Co doping the antiferromagnetic correlation increase. On the other hand Mn-doping induces the short range ferromagnetic ordering. Neutron diffraction study does not show any phase transition down to 5 K i.e., there is no indication of long range magnetic ordering. Neutron diffraction study also indicates that with Zn, Co and Mn doping the V-O lengths are changed. Maximum change in the V-O distances is observed for Mn-doped sample. On the other hand, X-ray photoemission spectroscopic data indicates Mn doping converts some Cu2+ ions into Cu3+ ions.

  9. Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4

    NASA Astrophysics Data System (ADS)

    Borodin, Oleg; Smith, Grant D.; Bandyopadhyaya, Rajdip; Redfern, Paul; Curtiss, Larry A.

    2004-05-01

    Interactions of Li+ and BF_{4}^{-} ions with TiO2 clusters were investigated using ab initio quantum chemistry methods. Classical force fields have been developed for poly(ethylene oxide)/LiBF4/TiO2, and molecular dynamics simulations have been performed on poly(ethylene oxide)/LiBF4 polymer electrolyte with and without embedded TiO2 nanoparticles using the developed force field. Addition of a TiO2 nanoparticle to PEO/LiBF4 solid polymer electrolyte resulted in the formation of a highly structured layer with a thickness of 5-6 Å that had more than an order of magnitude slower mobility than that of bulk PEO/LiBF4. The PEO and ions in the layers extending from 6 to 15 Å from the TiO2 nanoparticle also revealed some structuring and reduced dynamics, whereas the PEO/LiBF4 located further than 15 Å was basically unaffected by the presence of the TiO2 nanoparticle. Both cations and anions tended to form a region with an increased concentration in the interfacial layers extending from 5 to 15 Å. No ions were dissolved by the first interfacial layer of PEO. Addition of a nanoparticle with soft-repulsion interactions with PEO resulted in the formation of a PEO interfacial layer with reduced PEO density but increased ion concentration. The PEO and ion mobility in the interfacial layer next to the soft-repulsive nanoparticle were higher than those of bulk PEO/LiBF4 by 20-50%, whereas the conductivity of the nanocomposite electrolyte with the soft-repulsive particle increased only by 10%.

  10. Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation.

    PubMed

    Yao, Zhongping; Jia, Fangzhou; Tian, Shujun; Li, ChunXiang; Jiang, Zhaohua; Bai, Xuefeng

    2010-09-01

    Ni-doped TiO2 film catalysts were prepared by a plasma electrolytic oxidation (PEO) method and were mainly characterized by means of SEM, EDS, XRD, XPS, and DRS, respectively. The effects of Ni doping on the structure, composition and optical absorption property of the film catalysts were investigated along with their inherent relationships. The results show that the film catalyst is composed of anatase and rutile TiO2 with microporous structure. Doping Ni changes the phase composition and the lattice parameters (interplanar crystal spacing and cell volume) of the films. The optical absorption range of TiO2 film gradually expands and shifts to the red with increasing dosages. Both direct and indirect transition band gaps of the TiO2 films are deduced consequently. Moreover, the photocatalytic activity of the film catalysts for splitting Na2S+Na2SO3 solution into H2 is enhanced by doping with an appropriate amount of Ni. The as-prepared TiO2 film catalyst doping with 10 g/L of Ni(Ac)2 presents the highest photocatalytic reducing activity.

  11. Real-time tracking the Li+-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes

    PubMed Central

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-01-01

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li+ migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains. PMID:28378837

  12. Real-time tracking the Li(+)-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes.

    PubMed

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-04-05

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li(+) migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains.

  13. Real-time tracking the Li+-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes

    NASA Astrophysics Data System (ADS)

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-04-01

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li+ migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains.

  14. Structural and Conductivity Studies on Lanthanum Doped LiNiPO4 Prepared by Polyol Method

    NASA Astrophysics Data System (ADS)

    Karthickprabhu, S.; Hirankumar, G.; Maheswaran, A.; Bella, R. S. Daries; Sanjeeviraja, C.

    2013-07-01

    Pure and Lanthanum doped LiNiPO4 (with different Molar concentrations) have been prepared by polyol method using 1,2 propanediol as a polyol medium. XRD analysis reveal that sample calcined at 650°C for 6 hrs shows good crystalline nature with orthorhombic structure and this result is consistent with TG/DTA result. It is found that the conductivity enhances upon doping of Lanthanum while backhoprate decreases compared with pure LiNiPO4. Dielectric studies have also been discussed.

  15. Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Le, Hang T. T.; Kalubarme, Ramchandra S.; Ngo, Duc Tung; Jang, Seong-Yong; Jung, Kyu-Nam; Shin, Kyoung-Hee; Park, Chan-Jin

    2015-01-01

    Aluminium doped lithium lanthanum titanate (A-LLTO) powders with various excess Li2O content are synthesized using a simple citrate gel method. The obtained A-LLTO powders show an agglomerated form, composed of nano-sized particles of 20-50 nm. The morphology and conductivity of the A-LLTO ceramics are largely affected by the content of excess Li2O. The highest total ionic conductivity of 3.17 × 10-4 S cm-1 is achieved for the A-LLTO sample containing 20% excess Li2O, exhibiting a vacancy content of 6%, and a total activation energy of 0.358 eV. The A-LLTO can act as a membrane to protect lithium metal from oxygen and other contaminants diffused through the oxygen electrode part. The Li-O2 cell employing the A-LLTO solid electrolyte shows a good cycle life of longer than 100 discharge-charge cycles, under the constant capacity mode of 300 mAh g-1.

  16. Vanadium doping of LiMnPO4: Vibrational spectroscopy and first-principle studies

    NASA Astrophysics Data System (ADS)

    Kellerman, D.; Medvedeva, N.; Mukhina, N.; Semenova, A.; Baklanova, I.; Perelyaeva, L.; Gorshkov, V.

    2014-01-01

    The samples of pure and 10% vanadium-doped LiMnPO4 have been synthesized by the solid-state reaction technique. The results of Raman and infrared absorption spectroscopy show that the vanadium atoms replace phosphorus giving rise to LiMn(PO4)1-x(VO4)x solid solutions. This conclusion is confirmed by the first-principle studies.

  17. Predicting the Solubility of Sulfur: A COSMO-RS-Based Approach to Investigate Electrolytes for Li-S Batteries.

    PubMed

    Jeschke, Steffen; Johansson, Patrik

    2017-07-06

    Lithium-sulfur (Li-S) batteries are, in theory, considering their basic reactions, very promising from a specific energy density point of view, but have poor power rate capabilities. The dissolution of sulfur from the C/S cathode in the electrolyte is a rate-determining and crucial step for the functionality. To date, time-consuming experimental methods, such as HPLC/UV, have been used to quantify the corresponding solubilities. Here, we use a computational fluid-phase thermodynamics approach, the conductor-like screening model for real solvents (COSMO-RS), to compute the solubilities of sulfur in different binary and ternary electrolytes. By using both explicit and implicit solvation approaches for lithium bistrifluoromethanesulfonimidate (LiTFSI)-containing electrolytes, a deviation of <0.4 log units was achieved with respect to experimental data, within the range of experimental error, thus proving COSMO-RS to be a useful tool for exploring novel Li-S battery electrolytes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Charge carrier dynamics in PMMA-LiClO4 based polymer electrolytes plasticized with different plasticizers

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2017-07-01

    We have studied the charge carrier dynamics in poly(methylmethacrylate)-LiClO4 polymer electrolytes plasticized with different plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), polyethylene glycol (PEG), and dimethyl carbonate (DMC). We have measured the broadband complex conductivity spectra of these electrolytes in the frequency range of 0.01 Hz-3 GHz and in the temperature range of 203 K-363 K and analyzed the conductivity spectra in the framework of the random barrier model by taking into account the contribution of the electrode polarization observed at low frequencies and/or at high temperatures. It is observed that the temperature dependences of the ionic conductivity and relaxation time follow the Vogel-Tammann-Fulcher relation for all plasticized electrolytes. We have also performed the scaling of the conductivity spectra, which indicates that the charge carrier dynamics is almost independent of temperature and plasticizers in a limited frequency range. The existence of nearly constant loss in these electrolytes has been observed at low temperatures and/or high frequencies. We have studied the dielectric relaxation in these electrolytes using electric modulus formalism and obtained the stretched exponent and the decay function. We have observed less cooperative ion dynamics in electrolytes plasticized with DMC compared to electrolytes plasticized with EC, PC, and PEG.

  19. Electrochemical studies of molybdate-doped LiFePO4 as a cathode material in Li-ion batteries.

    PubMed

    Kim, Ketack; Kam, Daewoong; Kim, Yeonjoo; Kim, Sinwoong; Kim, Minsoo; Kim, Hyun-Soo

    2013-05-01

    The use of molybdate as a new anionic dopant that replaces phosphate in LiFePO4 was studied. When a small amount of molybdate (0.5 mol%) was used as a dopant, the olivine structure was maintained, while the lattice volume increased by 0.4%. The expanded volume facilitates ionic transfer, because of which the capacity of doped LiFePO4 at high current discharge rates is higher than that of pure LiFePO4. The discharge value increased by 25.2% at a charge rate of 5 C when the material was doped with 0.5 mol% molybdate ions. The slight expansion of the lattice volume in the olivine structure facilitates a fast redox reaction by lowering the charge transfer resistance. The current values from cyclic voltammetry indicate that the oxidation (charge) process of the cathode material is more improved than the corresponding reduction (discharge) process. Increasing the level of doping beyond 0.5 mol% had no effect on the results. At some discharge rates, the discharge capacity became worse. Because molybdate is divalent while phosphate is trivalent, a large number of molybdate ions in the lattice can exert considerable stress on the structure.

  20. A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction

    DOE PAGES

    Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...

    2015-01-01

    Doped Li7La3Zr2O12 garnets, oxide-based solids with good Li+ conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediate phases. The off-stoichiometry due tomore » the liquid Li2CO3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less

  1. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Liu, Xiao; Chang, Jiuli; Wu, Dapeng; Xu, Fang; Zhang, Lingcui; Du, Weimin; Jiang, Kai

    2017-01-01

    Graphene incorporated, N doped activated carbons (GNACs) are synthesized by alkali activation of graphene-polypyrrole composite (G-PPy) at different temperatures for application as electrode materials of supercapacitors. Under optimal activation temperature of 700 °C, the resultant samples, labeled as GNAC700, owns hierarchically porous texture with high specific surface area and efficient ions diffusion channels, N, O functionalized surface with apparent pseudocapacitance contribution and high wettability, thus can deliver a moderate capacitance, a high rate capability and a good cycleability when used as supercapacitor electrode. Additionally, the GNAC700 electrode demonstrates high catalytic activity for the redox reaction of pyrocatechol/o-quinone pair in H2SO4 electrolyte, thus enables a high pseudocapacitance from electrolyte. Under optimal pyrocatechol concentration in H2SO4 electrolyte, the electrode capacitance of GNAC700 increases by over 4 folds to 512 F g-1 at 1 A g-1, an excellent cycleability is also achieved simultaneously. Pyridinic- N is deemed to be responsible for the high catalytic activity. This work provides a promising strategy to ameliorate the capacitive performances of supercapacitors via the synergistic interaction between redox-active electrolyte and catalytic electrodes.

  2. High Performance C/S Composite Cathodes with Conventional Carbonate-Based Electrolytes in Li-S Battery

    PubMed Central

    Zheng, Shiyou; Han, Pan; Han, Zhuo; Zhang, Huijuan; Tang, Zhihong; Yang, Junhe

    2014-01-01

    High stable C/S composites are fabricated by a novel high-temperature sulfur infusion into micro-mesoporous carbon method following with solvent cleaning treatment. The C/S composite cathodes show high Coulombic efficiency, long cycling stability and good rate capability in the electrolyte of 1.0 M LiPF6 + EC/DEC (1:1 v/v), for instance, the reversible capacity of the treated C/S-50 (50% S) cathode retains around 860 mAh/g even after 500 cycles and the Coulombic efficiency is close to 100%, which demonstrates the best electrochemical performance of carbon-sulfur composite cathodes using the carbonate-based electrolyte reported to date. It is believed that the chemical bond of C-S is responsible for the superior electrochemical properties in Li-S battery, that is, the strong interaction between S and carbon matrix significantly improves the conductivity of S, effectively buffers the structural strain/stress caused by the large volume change during lithiation/delithiation, completely eliminates the formation of high-order polysulfide intermediates, and substantially avoids the shuttle reaction and the side reaction between polysulfide anions and carbonate solvent, and thus enables the C/S cathode to use conventional carbonate-based electrolytes and achieve outstanding electrochemical properties in Li-S battery. The results may substantially contribute to the progress of the Li-S battery technology. PMID:24776750

  3. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics

    SciTech Connect

    Ganesh, P.; Jiang, D.; Kent, P.R.C.

    2011-03-31

    Lithium-ion batteries have the potential to revolutionize the transportation industry, as they did for wireless communication. A judicious choice of the liquid electrolytes used in these systems is required to achieve a good balance among high-energy storage, long cycle life and stability, and fast charging. Ethylene-carbonate (EC) and propylene-carbonate (PC) are popular electrolytes. However, to date, almost all molecular-dynamics simulations of these fluids rely on classical force fields, while a complete description of the functionality of Li-ion batteries will eventually require quantum mechanics. We perform accurate ab initio molecular-dynamics simulations of ethylene- and propylene-carbonate with LiPF6 at experimental concentrations to build solvation models which explain available neutron scattering and nuclear magnetic resonance (NMR) results and to compute Li-ion solvation energies and diffusion constants. Our results suggest some similarities between the two liquids as well as some important differences. Simulations also provide useful insights into formation of solid-electrolyte interphases in the presence of electrodes in conventional Li-ion batteries.

  4. Accurate static and dynamic properties of liquid-electrolytes for Li-ion batteries from ab initio molecular dynamics

    SciTech Connect

    Ganesh, Panchapakesan; Jiang, Deen; Kent, Paul R

    2011-01-01

    Lithium-ion batteries have the potential to revolutionize the transportation industry, as they did for wireless communication. A judicious choice of the liquid electrolytes used in these systems is required to achieve a good balance among high-energy storage, long cycle life and stability, and fast charging. Ethylene-carbonate (EC) and propylene-carbonate (PC) are popular electrolytes. However, to date, almost all molecular-dynamics simulations of these fluids rely on classical force fields, while a complete description of the functionality of Li-ion batteries will eventually require quantum mechanics. We perform accurate ab initio molecular-dynamics simulations of ethylene- and propylene-carbonate with LiPF6 at experimental concentrations to build solvation models which explain available neutron scattering and nuclear magnetic resonance (NMR) results and to compute Li-ion solvation energies and diffusion constants. Our results suggest some similarities between the two liquids as well as some important differences. Simulations also provide useful insights into formation of solid-electrolyte interphases in the presence of electrodes in conventional Li-ion batteries.

  5. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics.

    PubMed

    Ganesh, P; Jiang, De-en; Kent, P R C

    2011-03-31

    Lithium-ion batteries have the potential to revolutionize the transportation industry, as they did for wireless communication. A judicious choice of the liquid electrolytes used in these systems is required to achieve a good balance among high-energy storage, long cycle life and stability, and fast charging. Ethylene-carbonate (EC) and propylene-carbonate (PC) are popular electrolytes. However, to date, almost all molecular-dynamics simulations of these fluids rely on classical force fields, while a complete description of the functionality of Li-ion batteries will eventually require quantum mechanics. We perform accurate ab initio molecular-dynamics simulations of ethylene- and propylene-carbonate with LiPF(6) at experimental concentrations to build solvation models which explain available neutron scattering and nuclear magnetic resonance (NMR) results and to compute Li-ion solvation energies and diffusion constants. Our results suggest some similarities between the two liquids as well as some important differences. Simulations also provide useful insights into formation of solid-electrolyte interphases in the presence of electrodes in conventional Li-ion batteries.

  6. X-ray absorption spectroscopy of LiBF 4 in propylene carbonate. A model lithium ion battery electrolyte

    DOE PAGES

    Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; ...

    2014-08-20

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li+ ion in this model electrolyte.more » By generating linear combinations of the computed spectra of Li+-associating and free PC molecules and comparing to the experimental spectrum, we find a Li+–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less

  7. Performance Demonstration of Mcmb-LiNiCoO2 Cells Containing Electrolytes Designed for Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whicanack, L. D.; Smith, K. A.; Santee, S.; Puglia, F. J.; Gitzendanner, R.

    2009-01-01

    With the intent of improving the performance of Li-ion cells over a wide operating temperature range, we have investigated the use of co-solvents to improve the properties of electrolyte formulations. In the current study, we have focused upon evaluating promising electrolytes which have been incorporated into large capacity (7 Ah) prototype Li-ion cells, fabricated by Yardney Technical Products, Inc. The electrolytes selected for performance evaluation include the use of a number of esters as co-solvents, including methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), propyl butyrate (PB), and 2,2,2-trifluoroethyl butyrate (TFEB). The performance of the prototype cells containing the ester-based electrolytes was compared with an extensive data base generated on cells containing previously developed all carbonate-based electrolytes. A number of performance tests were performed, including determining (i) the discharge rate capacity over a wide range of temperatures, (ii) the charge characteristics, (iii) the cycle life characteristics under various conditions, and (iv) the impedance characteristics.

  8. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    PubMed

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  9. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    PubMed Central

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  10. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE PAGES

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; ...

    2017-09-07

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li3PS4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functional theory (DFT)more » calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10-3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10-7 S/cm) of β-Li3PS4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10-4 S/cm) that is in good agreement with experimental data (1.64×10-4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  11. Phase-Field Based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li3PS4.

    PubMed

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; Yang, Tiannan; Cheng, Xiaoxing; Wang, Yi; Chen, Long-Qing

    2017-09-27

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. However, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. Using nanoporous β-Li3PS4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functional theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14 × 10(-3) S/cm) and experimentally measured bulk Li-ion conductivity (8.93 × 10(-7) S/cm) of β-Li3PS4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. When porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74 × 10(-4) S/cm) that is in good agreement with experimental data (1.64 × 10(-4) S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.

  12. Improved Li storage performance in SnO2 nanocrystals by a synergetic doping

    DOE PAGES

    Wan, Ning; Lu, Xia; Wang, Yuesheng; ...

    2016-01-06

    Tin dioxide (SnO2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO2 (Co/SnO2) and a cobalt and nitrogen co-doped SnO2 (Co-N/SnO2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO2 electrode delivers a specific capacity as high as 716 mAh g–1 after 50 cycles, and the same outstandingmore » rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO2 electrodes. Furthermore, we find that the method of synergetic doping into SnO2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well.« less

  13. Improved Li storage performance in SnO2 nanocrystals by a synergetic doping.

    PubMed

    Wan, Ning; Lu, Xia; Wang, Yuesheng; Zhang, Weifeng; Bai, Ying; Hu, Yong-Sheng; Dai, Sheng

    2016-01-06

    Tin dioxide (SnO2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO2 (Co/SnO2) and a cobalt and nitrogen co-doped SnO2 (Co-N/SnO2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO2 electrode delivers a specific capacity as high as 716 mAh g(-1) after 50 cycles, and the same outstanding rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO2 electrodes. The method of synergetic doping into SnO2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well.

  14. Improved Li storage performance in SnO2 nanocrystals by a synergetic doping

    PubMed Central

    Wan, Ning; Lu, Xia; Wang, Yuesheng; Zhang, Weifeng; Bai, Ying; Hu, Yong-Sheng; Dai, Sheng

    2016-01-01

    Tin dioxide (SnO2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO2 (Co/SnO2) and a cobalt and nitrogen co-doped SnO2 (Co-N/SnO2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO2 electrode delivers a specific capacity as high as 716 mAh g−1 after 50 cycles, and the same outstanding rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO2 electrodes. The method of synergetic doping into SnO2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well. PMID:26733355

  15. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations

  16. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    NASA Astrophysics Data System (ADS)

    Yeom, Tae Ho; Lim, Ae Ran

    2016-04-01

    In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C) single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  17. Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO(3):Zr,Cu,Ce.

    PubMed

    Liu, Fucai; Kong, Yongfa; Ge, Xinyu; Liu, Hongde; Liu, Shiguo; Chen, Shaolin; Rupp, Romano; Xu, Jingjun

    2010-03-15

    We have designed and grown triply doped LiNbO(3):Zr,Cu,Ce crystal and investigated its characteristics of nonvolatile holographic storage. It's observed that the photorefractive sensitivity of LiNbO(3):Zr,Cu,Ce has improved to 0.099 cm/J, which is about one order of magnitude larger than that of congruent LiNbO(3):Cu,Ce. And LiNbO(3):Zr,Cu,Ce also has high suppression to light-induced scattering. Our results indicated that triply doped LiNbO(3):Zr,Cu,Ce is an excellent candidate for nonvolatile holographic data storage.

  18. Enhanced structural and electrical properties due to the effect of co-doping ceria electrolyte

    NASA Astrophysics Data System (ADS)

    Sandhya, K.; Chitra Priya N., S.; Aswathy P., K.; Rajendran, Deepthi N.; Thappily, Praveen

    2017-06-01

    In the present investigation, ceria co-doped with samarium and antimony has been prepared by the citrate reaction method. The FTIR pattern shows the extent of ceria content by Ce-O peaks with the effect of codoping. XRD pattern exhibits single phase structure with lattice parameter of 5.475Å. SEM images show surface morphology improved by the process of codoping at reduced sintering temperature. Electrical measurement of the sample reveals ionic conduction mechanism with higher grain conductivity at 750°C. The results of the analysis show that the codoped samples have better structural and electrical properties for usage as a solid electrolyte for IT-SOFC.

  19. Study of gadolinia-doped ceria solid electrolyte surface by XPS

    SciTech Connect

    Datta, Pradyot Majewski, Peter; Aldinger, Fritz

    2009-02-15

    Gadolinia-doped ceria (CGO) is an important material to be used as electrolyte for solid oxide fuel cell for intermediate temperature operation. Ceria doped with 10 mol% gadolinia (Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}) was prepared by conventional solid state synthesis and found to be single phase by room temperature X-ray diffraction (XRD). The chemical states of the surface of the prepared sample were analyzed by X-ray photoelectron spectroscopy (XPS). Though Gd was present in its characteristic chemical state, Ce was found in both Ce{sup 4+} and Ce{sup 3+} states. Presence of Ce{sup 3+} state was ascribed to the differential yield of oxygen atoms in the sputtering process.

  20. Electrolytes

    MedlinePlus

    ... Chloride Magnesium Phosphorus Potassium Sodium Electrolytes can be acids, bases, or salts. They can be measured by different ... Saunders; 2013:464-467. DuBose TD. Disorders of acid-base balance. In: Taal MW, Chertow GM, Marsden PA, ...

  1. Ag nanoparticles-anchored reduced graphene oxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li-O2 cells.

    PubMed

    Kumar, Surender; Selvaraj, C; Scanlon, L G; Munichandraiah, N

    2014-11-07

    Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag(+) ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O2 cells, these cells are assembled and characterized. Li-O2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O2 cells.

  2. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    SciTech Connect

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  3. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    DOE PAGES

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  4. Real-time mass spectroscopy analysis of Li-ion battery electrolyte degradation under abusive thermal conditions

    NASA Astrophysics Data System (ADS)

    Gaulupeau, B.; Delobel, B.; Cahen, S.; Fontana, S.; Hérold, C.

    2017-02-01

    The lithium-ion batteries are widely used in rechargeable electronic devices. The current challenges are to improve the capacity and safety of these systems in view of their development to a larger scale, such as for their application in electric and hybrid vehicles. Lithium-ion batteries use organic solvents because of the wide operating voltage. The corresponding electrolytes are usually based on combinations of linear, cyclic alkyl carbonates and a lithium salt such as LiPF6. It has been reported that in abusive thermal conditions, a catalytic effect of the cathode materials lead to the formation fluoro-organics compounds. In order to understand the degradation phenomenon, the study at 240 °C of the interaction between positive electrode materials (LiCoO2, LiNi1/3Mn1/3Co1/3O2, LiMn2O4 and LiFePO4) and electrolyte in dry and wet conditions has been realized by an original method which consists in analyzing by mass spectrometry in real time the volatile molecules produced. The evolution of specific gases channels coupled to the NMR reveal the formation of rarely discussed species such as 2-fluoroethanol and 1,4-dioxane. Furthermore, it appears that the presence of water or other protic impurities greatly influence their formation.

  5. Fabrication of multi-non-metal-doped TiO{sub 2} nanotubes by anodization in mixed acid electrolyte

    SciTech Connect

    Lei Lecheng Su Yaling; Zhou Minghua; Zhang Xingwang; Chen Xiuqin

    2007-12-04

    Multi-non-metal-doped TiO{sub 2} nanotubes were fabricated by electrochemical anodization of Ti in the mixed acid electrolyte of C{sub 2}H{sub 2}O{sub 4}.2H{sub 2}O and HIO{sub 3} containing NH{sub 4}F. The samples were annealed in air and characterized by FE-SEM, XRD, XPS and DRS. The results indicate non-metals of N, F and I are successfully doped into TiO{sub 2} nanotubes in aqueous solution by adjusting the electrolyte composition. The multi-non-metal-doped samples display a significant visible-light response. Additionally, the atomic concentration of non-metals is closely related with the electrolyte composition.

  6. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    SciTech Connect

    Premalatha, M.; Mathavan, T. E-mail: kingslin.genova20@gmail.com; Selvasekarapandian, S.; Genova, F. Kingslin Mary E-mail: kingslin.genova20@gmail.com; Umamaheswari, R.

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  7. Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Barghamadi, Marzieh; Best, Adam S.; Bhatt, Anand I.; Hollenkamp, Anthony F.; Mahon, Peter J.; Musameh, Mustafa; Rüther, Thomas

    2015-11-01

    The lithium-sulfur (Li-S) battery in which the ionic liquid (IL) C4mpyr-TFSI is a major component of the electrolyte has attracted much attention by researchers due to the ability of the IL to suppress the polysulfide shuttle effect, combined with advantageous properties of thermal, chemical and electrochemical stability. In a largely parallel stream of research, LiNO3 has come to be known as an additive for improving Li-S battery performance through its influence on protecting the lithium anode and beneficial interaction with the polysulfide shuttle. In this work a deeper understanding is sought of the combined effects of LiNO3 and C4mpyr-TFSI on the factors that impact Li-S cell performance. Specifically, we investigate the formation of the protective surface film on lithium anode and results are compared with those for a typical organic electrolyte for the Li-S battery, DOL:DME. Electrochemical impedance spectroscopy (EIS) confirms that the LiNO3 additive is vital to achieving acceptable levels of performance with the organic electrolyte. Although LiNO3 improves the performance of a battery assembled with IL containing electrolyte, it shows a higher impact in the organic electrolyte based battery. Furthermore X-ray photoelectron spectroscopy (XPS) spectra confirm the participation of C4mpyr-TFSI on the formation of the interphase layer on the anode.

  8. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-04-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm-2 between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g-1. Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  9. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.

    PubMed

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-12-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  10. Ionic transport studies in PVDF-HFP-PMMA-(PC+DEC)-LiClO4 gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Gohel, Khushbu; Kanchan, D. K.

    2017-05-01

    Poly(vinylidene fluoride-hexafluropropylene)(PVdF-HFP) and Polymethylmethacrylate(PMMA) based gel polymer electrolytes comprising Propylene Carbonate and Diethyl Carbonate mixed plasticizers and different concentrations of Lithium Perchlorate (LiClO4) salt have been prepared using a solvent casting technique. Electrical conductivity and transference number measurements have been carried out by Electrochemical Impedance Spectroscopy in the temperature range 303 K to 363 K and Wagner's Polarization method respectively. The maximum room temperature conductivity of 2.83 ×10-4 S cm-1 has been observed for the gel polymer electrolytes at 7.5 wt% LiClO4. The variation of ac conductivity with frequency has been discussed.

  11. Recording and reconstruction of vector fields in a Fe-doped LiNbO₃ crystal.

    PubMed

    Qian, Sheng-Xia; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2014-04-01

    We propose a flexible method to record and reconstruct vector fields with space-variant polarization distribution in c-cut Fe-doped LiNbO3, based on photorefractive two-wave mixing. To our knowledge, this is the first approach for the reconstruction of vector fields without using the photoinduced anisotropy of the recording material.

  12. Atomistic insights into deep eutectic electrolytes: the influence of urea on the electrolyte salt LiTFSI in view of electrochemical applications.

    PubMed

    Lesch, Volker; Heuer, Andreas; Rad, Babak R; Winter, Martin; Smiatek, Jens

    2016-10-19

    The influence of urea on the conducting salt lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) in terms of lithium ion coordination numbers and lithium ion transport properties is studied via atomistic molecular dynamics simulations. Our results indicate that the presence of urea favors the formation of a deep eutectic electrolyte with pronounced ion conductivities which can be explained by a competition between urea and TFSI in occupying the first coordination shell around lithium ions. All simulation findings verify that high urea concentrations lead to a significant increase of ionic diffusivities and an occurrence of relatively high lithium transference numbers in good agreement with experimental results. The outcomes of our study point at the possible application of deep eutectic electrolytes as ion conducting materials in lithium ion batteries.

  13. Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes.

    PubMed

    Veith, Gabriel M; Baggetto, Loïc; Sacci, Robert L; Unocic, Raymond R; Tenhaeff, Wyatt E; Browning, James F

    2014-03-21

    We report the first direct measurement of the extent of the spontaneous non-electrochemically driven reaction between a lithium ion battery electrode surface (Si) and a liquid electrolyte (1.2 M LiPF6-3 : 7 wt% ethylene carbonate : dimethyl carbonate). This layer is estimated to be 35 Å thick with a SLD of ∼ 4 × 10(-6) Å(-2) and likely originates from the consumption of the silicon surface.

  14. Defect assisted saturable absorption characteristics in Al and Li doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    K. M., Sandeep; Bhat, Shreesha; S. M., Dharmaprakash; P. S., Patil; Byrappa, K.

    2016-09-01

    The influence of different doping ratios of Al and Li on the nonlinear optical properties, namely, a two-photon absorption and a nonlinear refraction using single beam Z-scan technique, of nano-crystalline ZnO thin films has been investigated in the present study. A sol-gel spin-coated pure ZnO, Al-doped ZnO (AZO), and Li-doped ZnO (LZO) thin films have been prepared. The stoichiometric deviations induced by the occupancy of Al3+ and Li+ ions at the interstitial sites injects the compressive stress in the AZO and LZO thin films, respectively, while the extended defect states below the conduction band leads to a redshift of energy band gap in the corresponding films as compared to pure ZnO thin film. Switching from an induced absorption in ZnO and 1 at. wt. % doped AZO and LZO films to a saturable absorption (SA) in 2 at. wt. % doped AZO and LZO films has been observed, and it is attributed to the saturation of a linear absorption of the defect states. The closed aperture Z-scan technique revealed the self-focusing (a positive nonlinear refractive index) in all the films, which emerge out of the thermo-optical effects due to the continuous illumination of laser pulses. A higher third-order nonlinear optical susceptibility χ(3) of the order 10-3 esu has been observed in all the films.

  15. Electronic charge density analysis of Li-doped polyacetylene: molecular vs periodic descriptions and nature of Li-to-chain bonding.

    PubMed

    Hô, Minhhuy; Navarrete-López, Alejandra M; Zicovich-Wilson, Claudio M; Ramírez-Solís, Alejandro

    2013-01-17

    A detailed analysis of the electronic structure and charge distribution around the trigonal site of Li-doped polyacetylene is reported using finite chain and periodic descriptions of the polymer. Atoms-in-molecules (AIM) analysis is done to characterize the nature of the bond between Li and the polymer backbone through the location of the bond critical points and computation of the total charge on the atomic basins around the doping site. We find that the Li atom donates practically one electron to the π-system, in accordance with the classical Su-Schriffer-Heeger model. However, despite that the Li atom is equidistant from the three closest C atoms in the geometric soliton, a single Li-C bond critical point is found. The AIM quantitative analysis of the electronic density reveals that the Li(+) ion is immersed into the polymer π-cloud in a way that resembles a metallic bonding interaction.

  16. Enhanced ionic conductivity of co-doped ceria-carbonate nano composite electrolyte material for LT-SOFCs

    NASA Astrophysics Data System (ADS)

    Venkataramana, Kasarapu; Madhuri, Chittimadula; Reddy, C. Vishnuvardhan

    2017-05-01

    Co-doped ceria Ce0.8Sm0.1Y0.12-δ and co-doped ceria-carbonate nano composite Ce0.8Sm0.1Y0.1O2-δ - (Na-K)2CO3 used as electrolytes in low temperature solid oxide fuel cells (LT-SOFCs) were synthesized. Structural and morphological studies were characterized by XRD and SEM. Electrical conductivity measurements were carried out by using Impedance Spectroscopy in the temperature range of 100 to 500°C. It was observed that the co-doped ceria-carbonate Nano composite material exhibited high ionic conductivity than that of co-doped ceria making it useful as promising electrolyte material for LT-SOFCs.

  17. LiF-doped mesoporous TiO2 as the photoanode of highly efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Neo, Chin Yong; Ouyang, Jianyong

    2013-11-01

    This paper reports the doping of nanocrystalline TiO2 with LiF by mechanical grinding and subsequent sintering and the application of LiF-doped TiO2 as the photoanode of highly efficient dye-sensitized solar cells (DSCs). The fluoride ions can dope into the TiO2 matrix as revealed by X-ray photoelectron spectroscopy (XPS). The LiF-doped TiO2 samples are characterized by scanning electron microscopy (SEM), tunneling electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible absorption spectroscopy. Doping of TiO2 with a small amount of LiF can improve the photovoltaic performance of DSCs. At the optimal LiF loading of 0.53 wt% in TiO2, the power conversion efficiency (PCE) of DSCs is enhanced from 7.74% to 8.24% under simulated AM1.5 illumination. The effect of the LiF doping on the photovoltaic performance of DSCs is investigated by electrochemical impedance spectroscopy (EIS) and incident photon conversion efficiency (IPCE) measurements. The improvement in the photovoltaic efficiency is attributed to the facilitation of the electron transport through the TiO2 electrode as a result of the increase in the anatase crystallinity induced by the LiF doping. The enhanced anatase crystallinity also causes a decrease in the charge recombination.

  18. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    PubMed

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    SciTech Connect

    Nurhadini, Arcana, I Made

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  20. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    NASA Astrophysics Data System (ADS)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  1. FTIR Spectroscopic and DC Ionic conductivity Studies of PVDF-HFP: LiBF4: EC Plasticized Polymer Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-08-01

    In the present paper; the FTIR and Temperature dependent DC Ionic conductivity studies of polymer (80 Wt% PVDF-HFP) with inorganic lithium tetra fluoroborate salt (20 Wt% LiBF4) as ionic charge carrier and plasticized with various weight ratios of Ethylene carbonate plasticizer (10 Wt% to 70 Wt% EC) as gel polymer electrolytes. Solution casting method is used for the preparation of plasticized polymer-salt electrolyte films. FTIR analysis shows the good complexation between PVDF-HFP: LiBF4 and the presence of functional groups in the plasticized polymer-salt electrolyte membrane. Also the analysis and results show that the highest DC ionic conductivity of 1.66 × 10‑3 SCm ‑1 was found at 373 K for a particular concentration of 80 Wt% PVDF-HFP: 20 Wt% LiBF4: 40 Wt% EC porous gel type polymer-salt plasticized porous membrane. Increase of temperature results expansion and segmental motion of polymer chain that generates free volume in turn promotes hopping of the lithium ions satisfying Vogel-Tammann-Fulcher equation.

  2. The anomaly Cu doping effects on LiFeAs superconductors

    NASA Astrophysics Data System (ADS)

    Xing, L. Y.; Miao, H.; Wang, X. C.; Ma, J.; Liu, Q. Q.; Deng, Z.; Ding, H.; Jin, C. Q.

    2014-10-01

    The Cu substitution effect on the superconductivity of LiFeAs has been studied in comparison with Co/Ni substitution. It is found that the shrinking rate of the lattice parameter c for Cu substitution is much smaller than that of Co/Ni substitution. This is in conjugation with the observation of ARPES that shows almost the same electron and hole Fermi surfaces (FSs) size for undoped and Cu substituted LiFeAs sample, except for a very small hole band sinking below Fermi level with doping. This indicates that there is little doping effect at Fermi surface by Cu substitution, in sharp contrast to the more effective carrier doping effect by Ni or Co.

  3. Transport Properties Of PbI2 Doped Silver Oxysalt Based Amorphous Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Shrisanjaykumar Jayswal, Manishkumar

    Solid electrolytes are a class of materials that conduct electricity by means of motion of ions like Ag+, Na+, Li +, Cu+, H+, F-, O -2 etc. in solid phase. The host materials include crystalline, polycrystalline, glasses, polymers and composites. Ion conducting glasses are one of the most sought after solid electrolytes that are useful in various electrochemical applications like solid state batteries, gas sensors, supercapacitors, electrochromic devices, to name a few. Since the discovery of fast silver ion transport in silver oxyhalide glasses at the end of the 1960s, many glasses showing large ionic conductivity up to 10-4 10-2 S/cm at room temperature have been developed, chiefly silver and copper ion conductors. The silver ion conducting glasses owe their high ionic conductivity mainly to stabilized alpha-AgI. AgI, as we know, undergoes a structural phase transition from wurtzite (beta phase) at room temperature to body centered cubic (alpha phase) structure at temperatures higher than 146 °C. The alpha-AgI possesses approximately six order of higher ionic conductivity than beta-AgI. The high ionic conductivity of alpha-AgI is attributed to its molten sublattice type of structure, which facilitates easy Ag+ ion migration, like a liquid. And hence, several attempts have been made to stabilize it at room temperature in crystalline as well as non-crystalline hosts like oxide and non-oxide glasses. Recently, in order to stabilize AgI in glasses, instead of directly doping it, indirect routes have a