Sample records for electrolytic accessible surface

  1. Supercapacitors based on modified graphene electrodes with poly(ionic liquid)

    NASA Astrophysics Data System (ADS)

    Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.

    2014-06-01

    The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.

  2. Ultrasonic hydrometer

    DOEpatents

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  3. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  4. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  5. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.

    PubMed

    Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S

    2011-01-25

    We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.

  6. A novel approach for supercapacitors degradation characterization

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Gelman, Danny; Goren, Emanuelle; Shomrat, Neta; Baltianski, Sioma; Tsur, Yoed

    2017-07-01

    A novel approach to analyze electrochemical impedance spectroscopy (EIS), based on evolutionary programming, has been utilized to characterize supercapacitors operation mechanism and degradation processes. This approach poses the ability of achieving a comprehensive study of supercapacitors via solely AC measurements. Commercial supercapacitors were examined during accelerated degradation. The microstructure of the electrode-electrolyte interface changes upon degradation; electrolyte parasitic reactions yield the formation of precipitates on the porous surface, which limit the access of the electrolyte ions to the active area and thus reduces performance. EIS analysis using Impedance Spectroscopy Genetic Programming (ISGP) technique enables identifying how the changing microstructure is affecting the operation mechanism of supercapacitors, in terms of each process effective capacitance and time constant. The most affected process is the transport of electrolyte ions at the porous electrode. Their access to the whole active area is hindered, which is shown in our analysis by the decrease of the capacitance gained in the transport and the longer time it takes to penetrate the entire pores depth. Early failure detection is also demonstrated, in a way not readily possible via conventional indicators. ISGP advanced analysis method has been verified using conventional and proven techniques: cyclic voltammetry and post mortem measurements.

  7. Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells.

    PubMed

    Boschloo, Gerrit; Häggman, Leif; Hagfeldt, Anders

    2006-07-06

    Addition of 4-tert-butylpyridine (4TBP) to redox electrolytes used in dye-sensitized TiO2 solar cells has a large effect on their performance. In an electrolyte containing 0.7 M LiI and 0.05 M I2 in 3-methoxypropionitrile, addition of 0.5 M 4TBP gave an increase of the open-circuit potential of 260 mV. Using charge extraction and electron lifetime measurements, this increases could be attributed to a shift of the TiO2 band edge toward negative potentials (responsible for 60% of the voltage increase) and to an increase of the electron lifetime (40%). At a lower 4TBP concentration the shift of the band edge was similar, but the effect on the electron lifetime was less pronounced. The working mechanism of 4TBP can be summarized as follows: (1) 4TBP affects the surface charge of TiO2 by decreasing the amount of adsorbed protons and/or Li+ ions. (2) It decreases the recombination of electrons in TiO2 with triiodide in the electrolyte by preventing triiodide access to the TiO2 surface and/or by complexation with iodine in the electrolyte.

  8. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

    NASA Astrophysics Data System (ADS)

    Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei

    2014-07-01

    Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m2 g-1 is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA+, diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm-2 and high energy density of 10/39 Wh kg-1 at power of 52/286 kW kg-1 in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively.

  9. Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-12-02

    A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.

  10. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes.

    PubMed

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-06-07

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m(2) g(-1) shows an extremely high energy density, i.e., 118 W h kg(-1) at a power density of 100 W kg(-1). This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.

  11. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.

    PubMed

    Jung, Naeyoung; Kwon, Soongeun; Lee, Dongwook; Yoon, Dong-Myung; Park, Young Min; Benayad, Anass; Choi, Jae-Young; Park, Jong Se

    2013-12-17

    Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Capacitance of Ti 3C 2T x MXene in Ionic Liquid Electrolyte

    DOE PAGES

    Lin, Zifeng; Barbara, Daffos; Taberna, Pierre-Louis; ...

    2016-04-14

    Ti 3C 2T x MXene, a two-dimensional (2D) early transition metal carbide, has shown an extremely high volumetric capacitance in aqueous electrolytes, but in a narrow voltage window (less than 1.23 V). The utilization of MXene materials in ionic liquid electrolytes with a large voltage window has never been addressed. Here, we report the preparation of the Ti 3C 2T x MXene ionogel film by vacuum filtration for use as supercapacitor electrodes operating in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte. Due to the disordered structure of the Ti 3C 2T x hydrogel film and a stable spacing after vacuummore » drying, achieved through ionic liquid electrolyte immersion of the Ti 3C 2T x hydrogel film, the Ti 3C 2T x surface became accessible to EMI + and TFSI - ions. A capacitance of 70 F g -1 together with a large voltage window of 3 V was obtained at a scan rate of 20 mV s -1 in neat EMI-TFSI electrolyte. The electrochemical signature indicates a capacitive behavior even at a high scan rate (500 mV s -1) and a high power performance. This work opens up the possibilities of using MXene materials with various ionic liquid electrolytes.« less

  13. Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps

    PubMed Central

    Sharma, Abeera; Bhattarai, Jay K.; Alla, Allan J.; Demchenko, Alexei V.; Stine, Keith J.

    2015-01-01

    An electrochemical method for annealing the pore sizes of nanoporous gold is reported. The pore sizes of nanoporous gold can be increased by electrochemical cycling with the upper potential limit being just at the onset of gold oxide formation. This study has been performed in electrolyte solutions including potassium chloride, sodium nitrate and sodium perchlorate. Scanning electron microscopy images have been used for ligament and pore size analysis. We examine the modifications of nanoporous gold due to annealing using electrochemical impedance spectroscopy, and cyclic voltammetry and offer a comparison of the surface coverage using the gold oxide stripping method as well as the method in which electrochemically accessible surface area is determined by using a diffusing redox probe. The effect of additives adsorbed on the nanoporous gold surface when subjected to annealing in different electrolytes as well as the subsequent structural changes in nanoporous gold are also reported. The effect of the annealing process on the application of nanoporous gold as a substrate for glucose electro-oxidation is briefly examined. PMID:25649027

  14. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  15. Tuning filler shape, surface chemistry and ion content in nanofilled polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha V. N. R.

    We investigate how nanofiller surface chemistry and aspect ratio affect the performance of nanofilled solid polymer electrolytes. Polymer-based electrolytes are an attractive alternative to the organic electrolytes currently used in lithium ion batteries. We characterize acidic nanoparticle filled electrolytes and compare them to neutral particle-filled electrolytes previously measured in our lab. Dielectric spectroscopy measurements indicate that the highest increase in conductivity occurs at the eutectic composition (EO/Li=10) and is independent of filler surface chemistry. We measure PEO dynamics using quasi-elastic neutron scattering and do not observe any change in polymer dynamics with particle surface chemistry. When we examine the elastic incoherent structure factor associated with the rotational process, fillers are found to restrict the rotation of the highly conducting PEO6:LiClO4 tunnels. At the eutectic composition, these tunnels are stabilized at the filler surface even above PEO melting temperature. Marginal stability theory predicts formation of alternating layers of coexisting phases at the eutectic composition. We propose a new mechanism, via stabilization of alternating layers of PEO and highly conducting PEO 6:LiClO4 tunnels at the filler surface. When compared to spherical particles, more such structures would be stabilized at a filler surface with high aspect ratio. Consistent with this hypothesis, neutral gamma-Al2O3 nanowhiskers (2-4 nm in diameter and 200-400 nm in length) intensify the effect of neutral gamma-Al 2O3 nanoparticles. The diameters of the two fillers are similar, but the change in aspect ratio (1 to 100) improves conductivity by a factor of 5. This enhancement occurs at battery operation temperatures! Although the change in aspect ratio does not affect thermal transitions and segmental dynamics at optimal whisker loading, the rotation of PEO6 remnants is distinct at the eutectic composition. Because the mechanism by which nanofillers enhance conductivity is related to stabilization of conducting structures at the filler-electrolyte interface, we determine the interface morphology using neutron reflectometry. For this, we spin-coat the unfilled electrolytes EO/Li = 8, 10 on sapphire substrate, which has the same surface chemistry as alpha-Al2O3. When freshly-spin coated on sapphire substrate, the non-eutectic sample does not exhibit any segregation of layers. The freshly spin-coated eutectic sample forms layers with alternating high and low salt concentrations, very similar to the eutectic lamellae predicted by the marginal stability theory for eutectic solidification. Such lamellae do not develop further when the sample is annealed at eutectic temperature and the salt concentration in the polymer decreases gradually away from the surface of sapphire. To take fullest advantage of the surface mechanism and obtain larger increases in conductivity we tailor the aspect ratio of high aspect ratio fillers. Commercial availability of alumina nanowhiskers is limited to neutral surface chemistry and aspect ratio of 100, cellulose nanowhiskers provide a model system where a wide range of surface chemistries may be accessed with variable aspect ratio. We synthesized cellulose whiskers of two different aspect ratios [cotton whiskers: aspect ratio ˜ 10, acetobacter whiskers: aspect ratio ˜ 200] and tested their influence on conductivity and morphology of polymer electrolytes. Similar to all fillers studied in this work, both types of cellulose whiskers provide highest increase in conductivity at the eutectic composition, with the longer acetobacter whiskers providing a marginally higher increase than the cotton whiskers. Although both cellulose whiskers do not alter the crystallinity or glass transition temperature at the optimal 1 wt% loading, they amplify the faint cold crystallization behavior observed in the unfilled eutectic electrolyte without changing the overall crystallinity. At the non-eutectic compositions, cellulose whiskers behave similar to the acidic nanoparticles. To determine the function of nanofillers in entire composition range of the phase diagram, we extend the range of measurements on the nanofilled PEO+LiClO4 electrolyte to EO/Li = 4 to 100. Because PEO+LiAsF 6 electrolytes have similar phase diagram as the PEO+LiClO4 electrolytes, we augment the study of nanofilled PEO+LiAsF6 complexes to the PEO+LiClO4 electrolytes. At compositions near the high and low ends of the phase diagram, the effect of nanofillers on conductivity is governed by reduction in crystallinity of PEO and PEO-salt complexes. In the absence of PEO6, fillers interact directly with PEO and suppress crystallization. This is consistent with the reflectometry experiment where sapphire surface prefers to interact with the salt-rich layers. Around the eutectic composition fillers restrict the highly conducting PEO6 complex at their surface and any increase in conductivity is due to stabilization of these conducting tunnels. For room temperature applications, lithium hexafluoroarsenate seems to be the better salt than lithium perchlorate. At temperatures higher than the eutectic temperature (50°C), conductivity levels off at the value set by the eutectic composition. (Abstract shortened by ProQuest.).

  16. Experimental and modeling study on charge storage/transfer mechanism of graphene-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Ban, Shuai; Jing, Xie; Zhou, Hongjun; Zhang, Lei; Zhang, Jiujun

    2014-12-01

    A symmetrical graphene-based supercapacitor is constructed for studying the charge-transfer mechanism within the graphene-based electrodes using both experiment measurements and molecular simulation. The in-house synthesized graphene is characterized by XRD, SEM and BET measurements for morphology and surface area. It is observed that the electric capacity of graphene electrode can be reduced by both high internal resistance and limited mass transfer. Computer modeling is conducted at the molecular level to characterize the diffusion behavior of electrolyte ions to the interior of electrode with emphasis on the unique 2D confinement imposed by graphene layers. Although graphene powder poses a moderate internal surface of 400 m2 g-1, the capacitance performance of graphene electrode can be as good as that of commercial activated carbon which has an overwhelming surface area of 1700 m2 g-1. An explanation to this abnormal correlation is that graphene material has an intrinsic capability of adaptively reorganizing its microporous structure in response to intercalation of ions and immergence of electrolyte solvent. The accessible surface of graphene is believed to be dramatically enlarged for ion adsorption during the charging process of capacitor.

  17. Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors.

    PubMed

    She, Zimin; Ghosh, Debasis; Pope, Michael A

    2017-10-24

    A major stumbling block in the development of high energy density graphene-based supercapacitors has been maintaining high ion-accessible surface area combined with high electrode density. Herein, we develop an ionic liquid (IL)-surfactant microemulsion system that is found to facilitate the spontaneous adsorption of IL-filled micelles onto graphene oxide (GO). This adsorption distributes the IL over all available surface area and provides an aqueous formulation that can be slurry cast onto current collectors, leaving behind a dense nanocomposite film of GO/IL/surfactant. By removing the surfactant and reducing the GO through a low-temperature (360 °C) heat treatment, the IL plays a dual role of spacer and electrolyte. We study the effect of IL content and operating temperature on the performance, demonstrating a record high gravimetric capacitance (302 F/g at 1 A/g) for 80 wt % IL composites. At 60 wt % IL, combined high capacitance and bulk density (0.76 g/cm 3 ), yields one of the highest volumetric capacitances (218 F/cm 3 , at 1 A/g) ever reported for a high-voltage IL-based supercapacitor. While achieving promising rate performance and cycle-life, the approach also eliminates the long and costly electrolyte imbibition step of cell assembly as the electrolyte is cast directly with the electrode material.

  18. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    DOE PAGES

    Mashtalir, O.; Lukatskaya, Maria R.; Kolesnikov, Alexander I.; ...

    2016-03-25

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti 3C 2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti 3C 2T x layers pre-opening the structure and improving the accessability to active sites. Furthermore, the hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g –1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

  19. Impact of isoelectric points of nanopowders in electrolytes on electrochemical characteristics of dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohanty, Shyama Prasad; Bhargava, Parag

    2012-11-01

    Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.

  20. The Li-ion rechargeable battery: a perspective.

    PubMed

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.

  1. An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor

    NASA Astrophysics Data System (ADS)

    Yijing, Yin

    Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.

  2. Covalently functionalized single-walled carbon nanotubes and graphene composite electrodes for pseudocapacitor application

    NASA Astrophysics Data System (ADS)

    Le Barny, Pierre; Servet, Bernard; Campidelli, Stéphane; Bondavalli, Paolo; Galindo, Christophe

    2013-09-01

    The use of carbon-based materials in electrochemical double-layer supercapacitors (EDLC) is currently being the focus of much research. Even though activated carbon (AC) is the state of the art electrode material, AC suffers from some drawbacks including its limited electrical conductivity, the need for a binder to ensure the expected electrode cohesion and its limited accessibility of its pores to solvated ions of the electrolyte. Owing to their unique physical properties, carbon nanotubes (CNTs) or graphene could overcome these drawbacks. It has been demonstrated that high specific capacitance could be obtained when the carbon accessible surface area of the electrode was finely tailored by using graphene combined with other carbonaceous nanoparticles such as CNTs12.In this work, to further increase the specific capacitance of the electrode, we have covalently grafted onto the surface of single-walled carbon nanotubes (SWCNTs), exfoliated graphite or graphene oxide (GO), anthraquinone (AQ) derivatives which are electrochemically active materials. The modified SWCNTs and graphene-like materials have been characterized by Raman spectroscopy, X-ray photoemission and cyclic voltammetry . Then suspensions based on mixtures of modified SWCNTs and modified graphene-like materials have been prepared and transformed into electrodes either by spray coating or by filtration. These electrodes have been characterized by SEM and by cyclic voltammetry in 0.1M H2S04 electrolyte.

  3. Electrolytic cell with reference electrode

    DOEpatents

    Kessie, Robert W.

    1989-01-01

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane.

  4. Reference electrode for electrolytic cell

    DOEpatents

    Kessie, R.W.

    1988-07-28

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  5. Decontaminating metal surfaces

    DOEpatents

    Childs, E.L.

    1984-01-23

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

  6. Decontaminating metal surfaces

    DOEpatents

    Childs, Everett L.

    1984-11-06

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g.,>600 g/l of NaNO.sub.3, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH<6.

  7. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    DOEpatents

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  8. Method of Electrolyte-Plasma Surface Hardening of 65G and 20GL Low-Alloy Steels Samples

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Zhurerova, Laila; Pavlov, Alexander

    2016-08-01

    This work is devoted to formation of modified surface layers in 65G and 20GL steels which using for the manufacture of railway transport parts, as well as the study of influence of the parametersof electrolyte-plasma surface hardening methodon the changes in structural-phase states, improving of wear-resistance. The process of electrolyte-plasma surface hardening of 65G and 20GL steels samples conducted in the electrolyte from water solution of 20% sodium carbonate, in the mode ~850°C - 2 seconds, ∼⃒1200°C - 3 seconds. It is established that in the initial state 20GL steel has ferrite-pearlite structure, and the 60G steel consists of pearlite and cement structure. After application of electrolyte-plasma surface hardening is observed the formation of carbides particles and martensite phase components in the structure of 20GL and 60G steels. It is determined that after electrolyte-plasma surface hardening with heating time - 2 seconds, the abrasive wear-resistance of 65G and 20GL steels increased to 1.3 times and 1.2 times, respectively, and the microhardness is increased to 1.6 times and 1.3 times, respectively.

  9. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin

    Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less

  11. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  12. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix

    2017-10-20

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.

  13. Molecular adsorption at electrolyte/α-Al2O3 interface of aluminum electrolytic capacitor revealed by sum frequency vibrational spectroscopy.

    PubMed

    Jia, Ming; Hu, Xiaoyu; Liu, Jin; Liu, Yexiang; Ai, Liang

    2017-05-21

    The operating voltage of an aluminum electrolytic capacitor is determined by the breakdown voltage (U b ) of the Al 2 O 3 anode. U b is related to the molecular adsorption at the Al 2 O 3 /electrolyte interface. Therefore, we have employed sum-frequency vibrational spectroscopy (SFVS) to study the adsorption states of a simple electrolyte, ethylene glycol (EG) solution with ammonium adipate, on an α-Al 2 O 3 surface. In an acidic electrolyte (pH < 6), the Al 2 O 3 surface is positively charged. The observed SFVS spectra show that long chain molecules poly ethylene glycol and ethylene glycol adipate adopt a "lying" orientation at the interface. In an alkaline electrolyte (pH > 8), the Al 2 O 3 surface is negatively charged and the short chain EG molecules adopt a "tilting" orientation. The U b results exhibit a much higher value at pH < 6 compared with that at pH > 8. Since the "lying" long chain molecules cover and protect the Al 2 O 3 surface, U b increases with a decrease of pH. These findings provide new insights to study the breakdown mechanisms and to develop new electrolytes for high operating voltage capacitors.

  14. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  15. Methods and electrolytes for electrodeposition of smooth films

    DOEpatents

    Zhang, Jiguang; Xu, Wu; Graff, Gordon L; Chen, Xilin; Ding, Fei; Shao, Yuyan

    2015-03-17

    Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.

  16. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries.

    PubMed

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M

    2014-08-29

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  17. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-08-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  18. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    PubMed Central

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  19. Lithium-ion battery electrolyte mobility at nano-confined graphene interfaces

    PubMed Central

    Moeremans, Boaz; Cheng, Hsiu-Wei; Hu, Qingyun; Garces, Hector F.; Padture, Nitin P.; Renner, Frank Uwe; Valtiner, Markus

    2016-01-01

    Interfaces are essential in electrochemical processes, providing a critical nanoscopic design feature for composite electrodes used in Li-ion batteries. Understanding the structure, wetting and mobility at nano-confined interfaces is important for improving the efficiency and lifetime of electrochemical devices. Here we use a Surface Forces Apparatus to quantify the initial wetting of nanometre-confined graphene, gold and mica surfaces by Li-ion battery electrolytes. Our results indicate preferential wetting of confined graphene in comparison with gold or mica surfaces because of specific interactions of the electrolyte with the graphene surface. In addition, wetting of a confined pore proceeds via a profoundly different mechanism compared with wetting of a macroscopic surface. We further reveal the existence of molecularly layered structures of the confined electrolyte. Nanoscopic confinement of less than 4–5 nm and the presence of water decrease the mobility of the electrolyte. These results suggest a lower limit for the pore diameter in nanostructured electrodes. PMID:27562148

  20. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions - A Sum Frequency Generation Vibrational Spectroscopy Study

    DOE PAGES

    Horowitz, Yonatan; Han, Hui-Ling; Ross, Philip N.; ...

    2015-12-11

    The key factor in long-term use of batteries is the formation of an electrically insulating solid layer that allows lithium ion transport but stops further electrolyte redox reactions on the electrode surface, hence solid electrolyte interphase (SEI). In this paper, we have studied a common electrolyte, 1.0 M LiPF 6/ethylene carbonate (EC)/diethyl carbonate (DEC), reduction products on crystalline silicon (Si) electrodes in a lithium (Li) half-cell system under reaction conditions. We employed in situ sum frequency generation vibrational spectroscopy (SFG-VS) with interface sensitivity in order to probe the molecular composition of the SEI surface species under various applied potentials wheremore » electrolyte reduction is expected. We found that, with a Si(100)-hydrogen terminated wafer, a Si-ethoxy (Si-OC 2H 5) surface intermediate forms due to DEC decomposition. Our results suggest that the SEI surface composition varies depending on the termination of Si surface, i.e., the acidity of the Si surface. We provide the evidence of specific chemical composition of the SEI on the anode surface under reaction conditions. This supports an electrochemical electrolyte reduction mechanism in which the reduction of the DEC molecule to an ethoxy moiety plays a key role. Finally, these findings shed new light on the formation mechanism of SEI on Si anodes in particular and on SEI formation in general.« less

  1. High resolution electrolyte for thinning InP by anodic dissolution and its applications to EC-V profiling, defect revealing and surface passivation

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Weinberg, Irving; Goradia, Manju; Vargas, Carlos

    1991-01-01

    An extensive experimental study was conducted using various electrolytes in an effort to find an appropriate electrolyte for anodic dissolution of InP. From the analysis of electrochemical characteristics in the dark and under different illumination levels, x ray photoelectron spectroscopy and SEM/Nomarski inspection of the surfaces, it was determined that the anodic dissolution of InP front surface layers by FAP electrolyte is a very good choice for rendering smooth surfaces, free of oxides and contaminants and with good electrical characteristics. The FAP electrolyte, based on HF, CH3COOH, and H2O2 appears to be inherently superior to previously reported electrolytes for performing accurate EC-V profiling of InP at current densities of up to 0.3 mA/sq cm. It can also be used for accurate electrochemical revealing of either precipitates or dislocation density with application to EPD mapping as a function of depth, and for defect revealing of multilayer InP structures at any depth and/or at the interfaces.

  2. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, C.A.; Maricle, D.L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

  3. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, Carl A.; Maricle, Donald L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

  4. Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup.

    PubMed

    Nguyen, Duc Dung; Hsieh, Ping-Yen; Tsai, Meng-Ting; Lee, Chi-Young; Tai, Nyan-Hwa; To, Bao Dong; Vu, Duc Tu; Hsu, Chia Chen

    2017-11-22

    We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

  5. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-05-01

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c

  6. Electrolyte for batteries with regenerative solid electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  7. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, inmore » which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.« less

  8. A new anion receptor for improving the interface between lithium- and manganese-rich layered oxide cathode and the electrolyte

    DOE PAGES

    Ma, Yulin; Zhou, Yan; Du, Chunyu; ...

    2017-02-15

    Surface degradation on cycled lithium-ion battery cathode particles is governed not only by intrinsic thermodynamic properties of the material but also, oftentimes more predominantly, by the side reactions with the electrolytic solution. A superior electrolyte inhibits these undesired side reactions on the cathode and at the electrolyte interface, which consequently minimizes the deterioration of the cathode surface. The present study investigates a new boron-based anion receptor, tris(2,2,2-trifluoroethyl)borate (TTFEB), as an electrolyte additive in cells containing a lithium- and manganese-rich layered oxide cathode, Li 1.16Ni 0.2Co 0.1Mn 0.54O 2. Our electrochemical studies demonstrate that the cycling performance and Coulombic efficiency aremore » significantly improved because of the additive, in particular, under elevated temperature conditions. Spectroscopic analyses revealed that the addition of 0.5 wt % TTFEB is capable of reducing the content of lithium-containing inorganic species within the cathode-electrolyte interphase layer and minimizing the reduction of tetravalent Mn4+ at the cathode surface. Furthermore, our work introduces a novel additive highly effective in improving lithium-ion battery performance, highlights the importance in preserving the surface properties of cathode materials, and provides new insights on the working mechanism of electrolyte additives.« less

  9. Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bareno, Javier; Shkrob, Ilya A.; Gilbert, James A.

    Silicon-graphite (Si-Gr) electrodes typically contain lithiated carboxylates as polymer binders that are introduced through aqueous processing. Li-ion cells with such electrodes show significantly faster capacity fade than cells with graphite (Gr) electrodes. Here we examine the causes for capacity loss in Si-Gr cells containing LiPF 6-based electrolytes. The presence of SiO xF y in the Si-Gr electrode, fluorophosphate species in the electrolyte, and silica on the positive electrode indicates the crucial role of the hydrolytic cycle. In particular, HF acid that is generated through LiPF 6 hydrolysis corrodes Si particles. As it reacts, the released water re-enters the cycle. Wemore » trace the moisture initiating this detrimental cycle to the hydration water in the lithiated binders that cannot be fully removed by thermal treatment. The rate of HF corrosion can be reduced through the use of electrolyte additives. For the fluoroethylene carbonate (FEC) additive, the improved performance arises from changes to the solid electrolyte interphase (SEI) that serves as a barrier against HF attack. Here, we propose that the greater extent of polymer cross-linking, that gives FEC-derived SEI elastomer properties, slows down HF percolation through this SEI membrane and inhibits the formation of deep cracks through which HF can access and degrade the Si surface.« less

  10. Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes

    DOE PAGES

    Bareno, Javier; Shkrob, Ilya A.; Gilbert, James A.; ...

    2017-09-06

    Silicon-graphite (Si-Gr) electrodes typically contain lithiated carboxylates as polymer binders that are introduced through aqueous processing. Li-ion cells with such electrodes show significantly faster capacity fade than cells with graphite (Gr) electrodes. Here we examine the causes for capacity loss in Si-Gr cells containing LiPF 6-based electrolytes. The presence of SiO xF y in the Si-Gr electrode, fluorophosphate species in the electrolyte, and silica on the positive electrode indicates the crucial role of the hydrolytic cycle. In particular, HF acid that is generated through LiPF 6 hydrolysis corrodes Si particles. As it reacts, the released water re-enters the cycle. Wemore » trace the moisture initiating this detrimental cycle to the hydration water in the lithiated binders that cannot be fully removed by thermal treatment. The rate of HF corrosion can be reduced through the use of electrolyte additives. For the fluoroethylene carbonate (FEC) additive, the improved performance arises from changes to the solid electrolyte interphase (SEI) that serves as a barrier against HF attack. Here, we propose that the greater extent of polymer cross-linking, that gives FEC-derived SEI elastomer properties, slows down HF percolation through this SEI membrane and inhibits the formation of deep cracks through which HF can access and degrade the Si surface.« less

  11. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    DOEpatents

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  12. Gate-Induced Metal–Insulator Transition in MoS 2 by Solid Superionic Conductor LaF 3

    DOE PAGES

    Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin; ...

    2018-03-23

    Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less

  13. Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance

    DOE PAGES

    Jang, Gyoung Gug; Song, Bo; Moon, Kyoung-sik; ...

    2017-04-17

    Graphene-based electrodes for high performance supercapacitors are developed by taking advantage of particle size control, large mass loading, and surface functionalization of reduced graphene oxide (rGO) sheets. Two controlled sizes of graphene sheets (100 nm vs. 45 μm average lateral dimensions) were prepared to study two-electrode system performance. The nano-size graphenes led to the formation of mesoporous films, resulting in higher capacitance, better capacitance retension and lower equivalent series resistance (ESR), indicating better surface usability for diffusion and accessibility of electrolyte ions by shortening transport paths (compared with horizontally stacked films from micro-sized graphenes). For studies using an aqueous electrolyte,more » the maximum specific capacitance of nano-rGO film was 302 F/g (at 1 A/g with 4.3 mg/cm 2 of mass loading), which was ~2.4 times higher than micro-rGO film, and achieved a ~67% reduced ESR. With an organic electrolyte, the nano-rGO delivered ~4.2 times higher capacitance (115 F/g at 2 A/g with 4.3 mg/cm 2), 4.0 times lower IR drops, and an order-of-magnitude lower charge-transfer resistance with an energy density of 18.7 Wh/kg. Finally, the results of this work indicate that the size control of graphene sheet particles for film deposit electrodes can be a simple but effective approach to improve supercapacitor performance.« less

  14. Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Gyoung Gug; Song, Bo; Moon, Kyoung-sik

    Graphene-based electrodes for high performance supercapacitors are developed by taking advantage of particle size control, large mass loading, and surface functionalization of reduced graphene oxide (rGO) sheets. Two controlled sizes of graphene sheets (100 nm vs. 45 μm average lateral dimensions) were prepared to study two-electrode system performance. The nano-size graphenes led to the formation of mesoporous films, resulting in higher capacitance, better capacitance retension and lower equivalent series resistance (ESR), indicating better surface usability for diffusion and accessibility of electrolyte ions by shortening transport paths (compared with horizontally stacked films from micro-sized graphenes). For studies using an aqueous electrolyte,more » the maximum specific capacitance of nano-rGO film was 302 F/g (at 1 A/g with 4.3 mg/cm 2 of mass loading), which was ~2.4 times higher than micro-rGO film, and achieved a ~67% reduced ESR. With an organic electrolyte, the nano-rGO delivered ~4.2 times higher capacitance (115 F/g at 2 A/g with 4.3 mg/cm 2), 4.0 times lower IR drops, and an order-of-magnitude lower charge-transfer resistance with an energy density of 18.7 Wh/kg. Finally, the results of this work indicate that the size control of graphene sheet particles for film deposit electrodes can be a simple but effective approach to improve supercapacitor performance.« less

  15. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    NASA Technical Reports Server (NTRS)

    Liu, Chung Chiun (Inventor); Ward, Benjamin J. (Inventor); Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)

    2011-01-01

    A gas sensor includes a substrate and a pair of interdigitated metal electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, and Os. The electrodes each include an upper surface. A first solid electrolyte resides between the interdigitated electrodes and partially engages the upper surfaces of the electrodes. The first solid electrolyte is selected from the group consisting of NASICON, LISICON, KSICON, and .beta.''-Alumina (beta prime-prime alumina in which when prepared as an electrolyte is complexed with a mobile ion selected from the group consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+). A second electrolyte partially engages the upper surfaces of the electrodes and engages the first solid electrolyte in at least one point. The second electrolyte is selected from the group of compounds consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+ ions or combinations thereof.

  16. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries.

    PubMed

    Kil, Eun-Hye; Choi, Keun-Ho; Ha, Hyo-Jeong; Xu, Sheng; Rogers, John A; Kim, Mi Ri; Lee, Young-Gi; Kim, Kwang Man; Cho, Kuk Young; Lee, Sang-Young

    2013-03-13

    A class of imprintable, bendable, and shape-conformable polymer electrolyte with excellent electrochemical performance in a lithium battery system is reported. The material consists of a UV-cured polymer matrix, high-boiling point liquid electrolyte, and Al2 O3 nanoparticles, formulated for use in lithium-ion batteries with 3D-structured electrodes or flexible characteristics. The unique structural design and well-tuned rheological characteristics of the UV-curable electrolyte mixture, in combination with direct UV-assisted nanoimprint lithography, allow the successful fabrication of polymer electrolytes in geometries not accessible with conventional materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Mrinal K.; Antonio, Mark R.

    Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less

  18. Microhardness of anodic aluminum oxide formed in an alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Kanygina, O. N.; Filyak, M. M.

    2017-04-01

    The microhardness of anodic aluminum oxide formed by anodizing of aluminum sheet in electrolyte on the basis of sodium hydroxide has been determined experimentally. The microhardness of the hard film/soft substrate system has been estimated by three approaches: indentation geometry (length of diagonals) in film surfaces, the sum of the hardnesses of the film and the surface with allowance for the indentation surface area and geometry, and with allowance for the indentation depth. It is demonstrated that the approach accounting for the indentation depth makes it possible to eliminate the influence of the substrate. It is established that the microhardness of the films formed in alkaline electrolytes is comparable with that formed in acid electrolytes.

  19. A stable perovskite electrolyte in moist air for Li-ion batteries.

    PubMed

    Li, Yutao; Xu, Henghui; Chien, Po-Hsiu; Wu, Nan; Xin, Sen; Xue, Leigang; Park, Kyusung; Hu, Yan-Yan; Goodenough, John B

    2018-05-07

    Solid-oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air, H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell having a solid-electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, having a Li-ion conductivity σLi = 4.8×10-4 S cm-1 at 25 oC that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+-conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low-impedance dendrite-free plating/stripping of a lithium anode. It is also stable on contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all-solid-state Li/LiFePO4 cell, a Li-S cell with a polymer-gel cathode, and a supercapacitor. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing lithium bis(oxalate)borate

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi

    2012-07-01

    Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.

  1. Light emitting diode with porous SiC substrate and method for fabricating

    DOEpatents

    Li, Ting; Ibbetson, James; Keller, Bernd

    2005-12-06

    A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.

  2. Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study.

    PubMed

    Boyer, Mathew J; Vilčiauskas, Linas; Hwang, Gyeong S

    2016-10-12

    Electrolyte and electrode materials used in lithium-ion batteries have been studied separately to a great extent, however the structural and dynamical properties of the electrolyte-electrode interface still remain largely unexplored despite its critical role in governing battery performance. Using molecular dynamics simulations, we examine the structural reorganization of solvent molecules (cyclic ethylene carbonate : linear dimethyl carbonate 1 : 1 molar ratio doped with 1 M LiPF 6 ) in the vicinity of graphite electrodes with varying surface charge densities (σ). The interfacial structure is found to be sensitive to the molecular geometry and polarity of each solvent molecule as well as the surface structure and charge distribution of the negative electrode. We also evaluated the potential difference across the electrolyte-electrode interface, which exhibits a nearly linear variation with respect to σ up until the onset of Li + ion accumulation onto the graphite edges from the electrolyte. In addition, well-tempered metadynamics simulations are employed to predict the free-energy barriers to Li + ion transport through the relatively dense interfacial layer, along with analysis of the Li + solvation sheath structure. Quantitative analysis of the molecular arrangements at the electrolyte-electrode interface will help better understand and describe electrolyte decomposition, especially in the early stages of solid-electrolyte-interphase (SEI) formation. Moreover, the computational framework presented in this work offers a means to explore the effects of solvent composition, electrode surface modification, and operating temperature on the interfacial structure and properties, which may further assist in efforts to engineer the electrolyte-electrode interface leading to a SEI layer that optimizes battery performance.

  3. Pt Catalyst Degradation in Aqueous and Fuel Cell Environments studied via In-Operando Anomalous Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, James A.; Kariuki, Nancy N.; Wang, Xiaoping

    2015-08-01

    The evolution of Pt nanoparticle cathode electrocatalyst size distribution in a polymer electrolyte membrane fuel cell (PEMFC) was followed during accelerated stress tests using in-operando anomalous small-angle X-ray scattering (ASAXS). This evolution was compared to that observed in an aqueous electrolyte environment using stagnant electrolyte, flowing electrolyte, and flowing electrolyte at elevated temperature to reveal the different degradation trends in the PEMFC and aqueous environments and to determine the relevance of aqueous measurements to the stability of Pt nanoparticle catalyst in the fuel cell environment. The observed changes in the particle size distributions (PSDs) were analyzed to elucidate the extentmore » and mechanisms of particle growth and corresponding mass and active surface area losses in the different environments. These losses indicate a Pt nanoparticle surface area loss mechanism controlled by Pt dissolution, the particle size dependence of Pt dissolution, the loss of dissolved Pt into the membrane and electrolyte, and, to a lesser extent, the re-deposition of dissolved Pt onto larger particles. Based on the geometric surface area loss, mass loss, and mean particle size increase trends, the aqueous environment best reflecting the fuel cell environment was found to be one in which the electrolyte is flowing rather than stagnant. Pt nanoparticle surface area loss resulting from potential cycling can be inhibited by reducing the number of particles smaller than a critical particle diameter (CPD), which was found to be similar to 3.5 to similar to 4 nm, with the CPD dependent on both the cycling protocol (square wave vs triangle wave) and the catalyst environment (fuel cell, aqueous stagnant, aqueous flowing electrolyte, or elevated temperature flowing electrolyte)« less

  4. Extensive ionic partitioning in interfaces that membranous and biomimetic surfaces form with electrolytes: Antitheses of the gold-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Chilcott, Terry; Guo, Chuan; Coster, Hans

    2013-04-01

    Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.

  5. Apparatus and method for the electrolysis of water

    DOEpatents

    Greenbaum, Elias

    2015-04-21

    An apparatus for the electrolytic splitting of water into hydrogen and/or oxygen, the apparatus comprising: (i) at least one lithographically-patternable substrate having a surface; (ii) a plurality of microscaled catalytic electrodes embedded in said surface; (iii) at least one counter electrode in proximity to but not on said surface; (iv) means for collecting evolved hydrogen and/or oxygen gas; (v) electrical powering means for applying a voltage across said plurality of microscaled catalytic electrodes and said at least one counter electrode; and (vi) a container for holding an aqueous electrolyte and housing said plurality of microscaled catalytic electrodes and said at least one counter electrode. Electrolytic processes using the above electrolytic apparatus or functional mimics thereof are also described.

  6. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective graphene monolayers can exhibit four-fold higher double-layer capacitance than pristine graphene. High temperature annealing lowered the capacitance until it approached that of pristine graphene. An optimal level of functionalization and lattice disorder is found necessary to retain high double-layer capacitance suggesting that graphene-based materials can be chemically tailored to engineer higher capacitance electrodes. The second half of this thesis focuses on understanding the factors that control the SSA of FGS aggregates when processed into dense electrodes and the development of a new electrode fabrications strategy to improve the ion-accessible surface area of FGS-based electrodes. Using various processing conditions, it was demonstrated that aggregates can exhibit a wide range of SSAs (1 m 2/g to 1750 m2/g) accessible to the adsorption of nitrogen or methylene blue. The effects of capillary forces, van der Waals interactions and aggregation kinetics on the SSA were explored and an aggregation model was proposed to account for these effects. In order to minimize aggregation, a new strategy for preparing graphene-based electrodes for EDLCs was developed. Colloidal gels of graphene oxide in a water-ethanol-ionic liquid solution were assembled into graphene-ionic liquid laminated structures. Our process involves evaporating the solvents water and ethanol yielding a graphene oxide/ionic liquid composite, followed by thermal reduction of the graphene oxide to electrically conducting functionalized graphene. This yields an electrode in which the ionic liquid serves not only as the working electrolyte but also as a spacer to separate the graphene sheets and to increase their electrolyte-accessible surface area. Using this approach, we achieve an outstanding energy density of 17.5 Wh/kg at a gravimetric capacitance of 156 F/g and 3 V operating voltage, due to a high effective density of the active electrode material of 0.46 g/cm2. By increasing the ionic liquid content and degree of thermal reduction, we obtain electrodes that retain >90% of their capacity at a scan rate of 500 mV/s, illustrating that we can tailor the electrodes towards higher power density if energy density is not the primary goal. The ease of manufacturing, achieved by combining the steps of electrode assembly and electrolyte infiltration, makes this bottom-up assembly approach scalable and well suited for combinations of potentially any graphene material with ionic liquid electrolytes.

  7. Photoelectrochemical cell

    DOEpatents

    Rauh, R. David; Boudreau, Robert A.

    1983-06-14

    A photoelectrochemical cell comprising a sealed container having a light-transmitting window for admitting light into the container across a light-admitting plane, an electrolyte in the container, a photoelectrode in the container having a light-absorbing surface arranged to receive light from the window and in contact with the electrolyte, the surface having a plurality of spaced portions oblique to the plane, each portion having dimensions at least an order of magnitude larger than the maximum wavelength of incident sunlight, the total surface area of the surface being larger than the area of the plane bounded by the container, and a counter electrode in the container in contact with the electrolyte.

  8. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms. The optimized polymer electrolyte demonstrated even higher proton conductivity than pure HPAs and the enabled electrochemical capacitors have demonstrated an exceptionally high rate capability of 50 Vs-1 in cyclic voltammograms and a 10 ms time constant in impedance analyses.

  9. Carbon Capsules of Ionic Liquid for Enhanced Performance of Electrochemical Double-Layer Capacitors.

    PubMed

    Luo, Qinmo; Wei, Peiran; Huang, Qianwen; Gurkan, Burcu; Pentzer, Emily B

    2018-05-16

    Ion accessibility, large surface area, and complete wetting of a carbonaceous electrode by the electrolyte are crucial for high-performance electrochemical double-layer capacitors. Herein, we report a facile and scalable method to prepare electrode-electrolyte hybrid materials, where an ionic liquid (IL) electrolyte is encapsulated within a shell of reduced graphene oxide (rGO) nanosheets as the active electrode material (called rGO-IL capsules). These structures were templated using a Pickering emulsion consisting of a dispersed phase of 1-methyl-3-butylimidazolium hexafluorophosphate ([bmim][PF 6 ]) and a continuous water phase; graphene oxide nanosheets were used as the surfactant, and interfacial polymerization yielded polyurea that bound the nanosheets together to form the capsule shell. This method prevents the aggregation and restacking of GO nanosheets and allows wetting of the materials by IL. The chemical composition, thermal properties, morphology, and electrochemical behavior of these new hybrid architectures are fully characterized. Specific capacitances of 80 F g -1 at 18 °C and 127 F g -1 at 60 °C were achieved at a scan rate of 10 mV s -1 for symmetric coin cells of rGO-IL capsules. These architected materials have higher capacitance at low temperature (18 °C) across many scan rates (10-500 mV s -1 ) compared with analogous cells with the porous carbon YP-50. These results demonstrate a distinct and important methodology to enhance the performance of electrochemical double-layer capacitors by incorporating electrolyte and carbon material together during synthesis.

  10. Study of Surface States at the Semiconductor/electrolyte Interface of Liquid-Junction Solar Cells.

    NASA Astrophysics Data System (ADS)

    Siripala, Withana P.

    The existence of surface states at the semiconductor electrolyte interface of photoelectrochemical (PEC) cells plays a major role in determining the performance of the device in regard to the potential distribution and transport mechanisms of photogenerated carriers at the interface. We have investigated the n-TiO(,2)/electrolyte interface using three experimental techniques: relaxation spectrum analysis, photocurrent spectroscopy, and electrolyte electroreflectance (EER) spectroscopy. The effect of Fermi level pinning at the CdIn(,2)SE(,4)/aqueous-polysulfide interface was also studied using EER. Three distinct surface states were observed at the n-TiO(,2)/aqueous-electrolyte interface. The dominant state, which tails from the conduction band edge, is primarily responsible for the surface recombination of photocarriers at the interface. The second surface state, observed at 0.8 eV below the conduction band of TiO(,2), originates in the dark charge transfer intermediates (TiO(,2)-H). It is proposed that the sub-bandgap (SBG) photocurrent-potential behavior is a result of the mechanism of dynamic formation and annihilation of these surface states. The third surface state was at 1.3 eV below the conduction band of TiO(,2), and the SBG EER measurements show this state is "intrinsic" to the surface. These states were detected with SBG EER and impedance measurements in the presence of electrolytes that can adsorb on the surface of TiO(,2). Surface concentration of these states was evaluated with impedance measurements. EER measurements on a CdIn(,2)Se(,4)/polysulfide system have shown that the EER spectrum is sensitive to the surface preparation of the sample. The EER signal was quenched as the surface was driven to strong depletion, owing to Fermi level pinning at the interface in the presence of a high density of surface states. The full analysis of this effect enables us to measure the change in the flatband potential, as a function of the electrode potential, and also the energy distribution of these states.

  11. Electrolytic decontamination of conductive materials for hazardous waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-12-31

    Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodiummore » nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.« less

  12. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported.

    PubMed

    Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio

    2011-10-01

    Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

  13. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan

    2018-06-01

    Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.

  14. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  15. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  16. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando [Santa Fe, NM

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  17. Electrodes for solid state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Rangachary; Brosha, Eric L; Garzon, Fernando

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within themore » die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.« less

  18. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-08-12

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  19. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  20. A high-mobility electronic system at an electrolyte-gated oxide surface

    DOE PAGES

    Gallagher, Patrick; Lee, Menyoung; Petach, Trevor A.; ...

    2015-03-12

    Electrolyte gating is a powerful technique for accumulating large carrier densities at a surface. Yet this approach suffers from significant sources of disorder: electrochemical reactions can damage or alter the sample, and the ions of the electrolyte and various dissolved contaminants sit Angstroms from the electron system. Accordingly, electrolyte gating is well suited to studies of superconductivity and other phenomena robust to disorder, but of limited use when reactions or disorder must be avoided. Here we demonstrate that these limitations can be overcome by protecting the sample with a chemically inert, atomically smooth sheet of hexagonal boron nitride. We illustratemore » our technique with electrolyte-gated strontium titanate, whose mobility when protected with boron nitride improves more than 10-fold while achieving carrier densities nearing 10 14 cm –2. In conclusion, our technique is portable to other materials, and should enable future studies where high carrier density modulation is required but electrochemical reactions and surface disorder must be minimized.« less

  1. Underscreening in concentrated electrolytes.

    PubMed

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  2. Advanced electrorefiner design

    DOEpatents

    Miller, W.E.; Gay, E.C.; Tomczuk, Z.

    1996-07-02

    A combination anode and cathode is described for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl{sub 3} to UCl{sub 3} ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode. 6 figs.

  3. Advanced electrorefiner design

    DOEpatents

    Miller, William E.; Gay, Eddie C.; Tomczuk, Zygmunt

    1996-01-01

    A combination anode and cathode for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl.sub.3 to UCl.sub.3 ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode.

  4. Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation.

    PubMed

    van Hengel, Ingmar A J; Riool, Martijn; Fratila-Apachitei, Lidy E; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, Amir A; Zaat, Sebastian A J; Apachitei, Iulian

    2017-08-01

    Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in surface morphology during plasma electrolytic oxidation. Data presented in this article are related to the research article "Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus" (van Hengel et al., 2017) [1].

  5. Ultra-fast boriding of metal surfaces for improved properties

    DOEpatents

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  6. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device.

    PubMed

    Sumboja, Afriyanti; Foo, Ce Yao; Wang, Xu; Lee, Pooi See

    2013-05-28

    Well-separated RGO sheets decorated with MnO2 nanoparticles facilitate easy access of the electrolyte ions to the high surface area of the paper electrode, enabling the fabrication of a thicker electrode with heavier areal mass and higher areal capacitance (up to 897 mF cm(-2) ). The electrochemical performance of the bent asymmetric device with a total active mass of 15 mg remains similar to the one in the flat configuration, demonstrating good mechanical robustness of the device. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  8. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  9. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon.

    PubMed

    Pech, David; Brunet, Magali; Durou, Hugo; Huang, Peihua; Mochalin, Vadym; Gogotsi, Yury; Taberna, Pierre-Louis; Simon, Patrice

    2010-09-01

    Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s(-1), which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.

  10. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

    NASA Astrophysics Data System (ADS)

    Pech, David; Brunet, Magali; Durou, Hugo; Huang, Peihua; Mochalin, Vadym; Gogotsi, Yury; Taberna, Pierre-Louis; Simon, Patrice

    2010-09-01

    Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s-1, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.

  11. Gex-Model Using Local Area Fraction for Binary Electrolyte Systems

    NASA Astrophysics Data System (ADS)

    Haghtalab, Ali; Joda, Marzieh

    2007-06-01

    The correlation and prediction of phase equilibria of electrolyte systems are essential in the design and operation of many industrial processes such as downstream processing in biotechnology, desalination, hydrometallurgy, etc. In this research, the local composition non-random two liquid-nonrandom factor (NRTL-NRF) model of Haghtalab and Vera was extended for uni-univalent aqueous electrolyte solutions. Based on the assumptions of the NRTL-NRF model, excess Gibbs free energy ( g E) functions were derived for binary electrolyte systems. In this work, the local area fraction was applied and the modified model of NRTL-NRF was developed with either an equal or unequal surface area of an anion to the surface area of a cation. The modified NRTL-NRF models consist of two contributions, one due to long-range forces represented by the Debye-Hückel theory, and the other due to short-range forces, represented by local area fractions of species through nonrandom factors. Each model contains only two adjustable parameters per electrolyte. In addition, the model with unequal surface area of ionic species gives better results in comparison with the second new model with equal surface area of ions. The results for the mean activity coefficients for aqueous solutions of uni-univalent electrolytes at 298.15 K showed that the present model is more accurate than the original NRTL-NRF model.

  12. Electrochemical and mechanical polishing and shaping method and system

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E. (Inventor); Gubarev, Mikhail V. (Inventor); Jones, William David (Inventor); Ramsey, Brian D. (Inventor); Benson, Carl M. (Inventor)

    2011-01-01

    A method and system are provided for the shaping and polishing of the surface of a material selected from the group consisting of electrically semi-conductive materials and conductive materials. An electrically non-conductive polishing lap incorporates a conductive electrode such that, when the polishing lap is placed on the material's surface, the electrode is placed in spaced-apart juxtaposition with respect to the material's surface. A liquid electrolyte is disposed between the material's surface and the electrode. The electrolyte has an electrochemical stability constant such that cathodic material deposition on the electrode is not supported when a current flows through the electrode, the electrolyte and the material. As the polishing lap and the material surface experience relative movement, current flows through the electrode based on (i) adherence to Faraday's Law, and (ii) a pre-processing profile of the surface and a desired post-processing profile of the surface.

  13. Cured composite materials for reactive metal battery electrolytes

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.

    2006-03-07

    A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.

  14. Electrochemical characterization of p(+)n and n(+)p diffused InP structures

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Faur, Maria; Faur, Mircea; Goradia, M.; Vargas-Aburto, Carlos

    1993-01-01

    The relatively well documented and widely used electrolytes for characterization and processing of Si and GaAs-related materials and structures by electrochemical methods are of little or no use with InP because the electrolytes presently used either dissolve the surface preferentially at the defect areas or form residual oxides and introduce a large density of surface states. Using an electrolyte which was newly developed for anodic dissolution of InP, and was named the 'FAP' electrolyte, accurate characterization of InP related structures including nature and density of surface states, defect density, and net majority carrier concentration, all as functions of depth was performed. A step-by-step optimization of n(+)p and p(+)n InP structures made by thermal diffusion was done using the electrochemical techniques, and resulted in high performance homojunction InP structures.

  15. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    PubMed

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  16. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  17. Bridging Redox Species-Coated Graphene Oxide Sheets to Electrode for Extending Battery Life Using Nanocomposite Electrolyte.

    PubMed

    Huang, Yi Fu; Ruan, Wen Hong; Lin, Dong Ling; Zhang, Ming Qiu

    2017-01-11

    Substituting conventional electrolyte for redox electrolyte has provided a new intriguing method for extending battery life. The efficiency of utilizing the contained redox species (RS) in the redox electrolyte can benefit from increasing the specific surface area of battery electrodes from the electrode side of the electrode-electrolyte interface, but is not limited to that. Herein, a new strategy using nanocomposite electrolyte is proposed to enlarge the interface with the aid of nanoinclusions from the electrolyte side. To do this, graphene oxide (GO) sheets are first dispersed in the electrolyte solution of tungstosilicic salt/lithium sulfate/poly(vinyl alcohol) (SiWLi/Li 2 SO 4 /PVA), and then the sheets are bridged to electrode, after casting and evaporating the solution on the electrode surface. By applying in situ conductive atomic force microscopy and Raman spectra, it is confirmed that the GO sheets doped with RS of SiWLi/Li 2 SO 4 can be bridged and electrically reduced as an extended electrode-electrolyte interface. As a result, the RS-coated GO sheets bridged to LiTi 2 (PO 4 ) 3 //LiMn 2 O 4 battery electrodes are found to deliver extra energy capacity (∼30 mAh/g) with excellent electrochemical cycling stability, which successfully extends the battery life by over 50%.

  18. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  19. Polymer Coatings Reduce Electro-osmosis

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  20. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOEpatents

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  1. Charge regulation at semiconductor-electrolyte interfaces.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  3. Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors.

    PubMed

    Zhu, Jixin; Cao, Liujun; Wu, Yingsi; Gong, Yongji; Liu, Zheng; Hoster, Harry E; Zhang, Yunhuai; Zhang, Shengtao; Yang, Shubin; Yan, Qingyu; Ajayan, Pulickel M; Vajtai, Robert

    2013-01-01

    Various two-dimensional (2D) materials have recently attracted great attention owing to their unique properties and wide application potential in electronics, catalysis, energy storage, and conversion. However, large-scale production of ultrathin sheets and functional nanosheets remains a scientific and engineering challenge. Here we demonstrate an efficient approach for large-scale production of V2O5 nanosheets having a thickness of 4 nm and utilization as building blocks for constructing 3D architectures via a freeze-drying process. The resulting highly flexible V2O5 structures possess a surface area of 133 m(2) g(-1), ultrathin walls, and multilevel pores. Such unique features are favorable for providing easy access of the electrolyte to the structure when they are used as a supercapacitor electrode, and they also provide a large electroactive surface that advantageous in energy storage applications. As a consequence, a high specific capacitance of 451 F g(-1) is achieved in a neutral aqueous Na2SO4 electrolyte as the 3D architectures are utilized for energy storage. Remarkably, the capacitance retention after 4000 cycles is more than 90%, and the energy density is up to 107 W·h·kg(-1) at a high power density of 9.4 kW kg(-1).

  4. Enhanced ionic conductivity in planar sodium-β"-alumina electrolyte for electrochemical energy storage applications.

    PubMed

    La Rosa, Daniela; Monforte, Giuseppe; D'Urso, Claudia; Baglio, Vincenzo; Antonucci, Vincenzo; Aricò, Antonino S

    2010-12-17

    Solid Na-β"-Al₂O₃ electrolyte is prepared by a simple chemical route involving a pseudo-boehmite precursor and thermal treatment. Boehmite powder is used for manufacturing the planar electrolyte with appropriate bulk density after firing at 1500 °C. The structure, morphology, and surface properties of precursor powders and sintered electrolytes are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). As shown by XRD and TEM analyses, nanometer-sized particles are obtained for the boehmite precursor and a pure crystallographic phase is achieved for the sintered electrolyte. SEM analysis of the cross-section indicates good sintering characteristics. XPS shows a higher Na/Al atomic ratio on the surface for the planar electrolyte compared to a commercial tubular electrolyte (0.57 vs. 0.46). Energy-dispersive X-ray microanalysis (EDX) shows an Na/Al ratio in the bulk of 0.16, similar in the two samples. The ionic conductivity of the planar electrolyte is larger than that measured on a commercial tube of sodium-β"-alumina in a wide temperature range. At 350 °C, conductivity values of 0.5 S cm⁻¹ and 0.26 S cm⁻¹ are obtained for the planar electrolyte and the commercial tube, respectively. AC-impedance spectra show smaller grain boundary effects in the planar electrolyte than in the tubular electrolyte. These favorable properties may increase the perspectives for applying planar Na-β"-Al₂O₃ electrolytes in high-temperature batteries.

  5. Nanoscale CuO solid-electrolyte-based conductive-bridging, random-access memory cell with a TiN liner

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sun; Kim, Dong-Won; Kim, Hea-Jee; Jin, Soo-Min; Song, Myung-Jin; Kwon, Ki-Hyun; Park, Jea-Gun; Jalalah, Mohammed; Al-Hajry, Ali

    2018-01-01

    The Conductive-bridge random-access memory (CBRAM) cell is a promising candidate for a terabit-level non-volatile memory due to its remarkable advantages. We present for the first time TiN as a diffusion barrier in CBRAM cells for enhancing their reliability. CuO solid-electrolyte-based CBRAM cells implemented with a 0.1-nm TiN liner demonstrated better non-volatile memory characteristics such as 106 AC write/erase endurance cycles with 100-μs AC pulse width and a long retention time of 7.4-years at 85 °C. In addition, the analysis of Ag diffusion in the CBRAM cell suggests that the morphology of the Ag filaments in the electrolyte can be effectively controlled by tuning the thickness of the TiN liner. These promising results pave the way for faster commercialization of terabit-level non-volatile memories.

  6. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  7. Supercapacitor Electrode Materials from Highly Porous Carbon Nanofibers with Tailored Pore Distributions

    NASA Astrophysics Data System (ADS)

    Chathurika Abeykoon, Nimali

    Environmental and human health risks associated with the traditional methods of energy production (e.g., oil and gas) and intermittency and uncertainty of renewable sources (e.g., solar and wind) have led to exploring effective and alternative energy sources to meet the growing energy demands. Electricity based on energy storage devices are the most promising solutions for realization of these objectives. Among the energy storage devices, electrochemical double layer capacitors (EDLCs) or supercapacitors have become an attractive research interest due to their outstanding performance, especially high power densities, long cycle life and rapid charge and discharge times, which enables them to utilize in many applications including consumer electronics and transportation, where high power is needed. However, low energy density of supercapacitors is a major obstacle to compete with the commercially existing high energy density energy storage device such as batteries. The fabrication of advanced electrodes materials with very high surface area from novel precursors and utilization of electrolytes with higher operating voltages are essential to enhance energy density of supercapacitors. In this work, carbon nanofibers (CNFs) from different polymer precursors with new fabrication techniques are explored to develop highly porous carbon with tailored pore distributions to match with employed ionic liquid electrolytes (which possess high working voltages), to realize high energy storage capability. Novel electrode materials derived from electrospun immiscible polymer blends and synthesized copolymers and terpolymers were described. Pore distributions of CNFs were tailored by varying the composition of polymers in immiscible blends or varying the monomer ratios of copolymer or terpolymers. Chapter 1 gives the detailed introduction of supercapacitors including history and storage principle of EDLCs, fabrication of carbon nanofiber based electrodes and electrolytes employed for EDLCs. It also explains the necessity and the advantages of tailored high surface area nanofibers as an electrode materials for supercapacitors. Chapter 2 describes the preparation of high surface area carbon nanofibers using polymer blends containing PAN and PMMA and introduces an effective and simple strategy to improve the surface area of CNFs by using a sacrificial polymer, PMMA. Chapter 3 describes blending of high fractional free volume polymer, 6FDA-DAM: DABA (3:2) into PBI to increase surface area and by using the higher etch rate of 6FDA-DAM: DABA in the blend to optimize pore distribution of CNFs. Chapter 4 introduces a novel approach to increase surface area of CNFs without any physical or chemical activation by using an in situ porogen containing copolymer P(AN-co-IA). The concept developed here avoids unnecessary and complex extra activation steps when fabricating carbon nanofibers which leads to lower char yield and uncontrollable pore sizes. Chapter 5 describes enhancement of surface area by using terpolymer P(AN-VIM-IA) to develop a new precursor. This approach is further advantageous since terpolymer can combine superior electrochemical properties of homopolymer, PAN and P(AN- co-IA) and P(AN-co-VIM). Chapter 6 describes the use of commercially available small molecule compatibilizer 2-MI to tailor pore architecture of carbon fiber derived from the immiscible blend of PBI/6FDD to match with the ion sizes of ionic liquid electrolytes thereby increasing the surface area of the CNFs that is accessible to electrolytes.

  8. Surface NH2-rich nanoparticles: Solidifying ionic-liquid electrolytes and improving the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Fang, Yanyan; Ma, Pin; Fu, Nianqing; Zhou, Xiaowen; Fang, Shibi; Lin, Yuan

    2017-12-01

    The surface properties of nanoparticles have a significant influence on the properties of the gel electrolytes. Herein, the surface NH2-rich nanoparticle (A-SiO2), with a tightening network, is synthesized by silanizing SiO2 nanoparticles with pre-polymerized aminopropyltriethoxysilane, which is further employed to prepare ionic-liquid gel electrolytes for dye-sensitized solar cells. The addition of a small amount of A-SiO2 can effectively solidify the ionic-liquid, whereas a large number of NH2 groups on the SiO2 surface leads to a large negative shift of the TiO2 conduction band edge, and can react with I3- in the form of a Lewis complex, resulting in an increase in the concentration of I- and a decrease in the concentration of I3- in the electrolyte. In addition, the ionic-liquid gel electrolyte possesses thixotropic behavior, which allows it to easily penetrate into the inner part of the TiO2 mesoporous film. As a result, large improvements of the photovoltage from 695 mV to 785 mV and of the photocurrent from 13.3 mA cm-2 to 14.9 mA cm-2 are achieved. This leads to significant enhancement of the power conversion efficiency, from 6.2% to 8.1%, for the cell with A-SiO2 compared to that of the pristine ionic-liquid electrolyte.

  9. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage.

    PubMed

    Zhou, Zehang; Panatdasirisuk, Weerapha; Mathis, Tyler S; Anasori, Babak; Lu, Canhui; Zhang, Xinxing; Liao, Zhiwei; Gogotsi, Yury; Yang, Shu

    2018-03-29

    Free-standing, highly flexible and foldable supercapacitor electrodes were fabricated through the spray-coating assisted layer-by-layer assembly of Ti3C2Tx (MXene) nanoflakes together with multi-walled carbon nanotubes (MWCNTs) on electrospun polycaprolactone (PCL) fiber networks. The open structure of the PCL network and the use of MWCNTs as spacers not only limit the restacking of Ti3C2Tx flakes but also increase the accessible surface of the active materials, facilitating fast diffusion of electrolyte ions within the electrode. Composite electrodes have areal capacitance (30-50 mF cm-2) comparable to other templated electrodes reported in the literature, but showed significantly improved rate performance (14-16% capacitance retention at a scan rate of 100 V s-1). Furthermore, the composite electrodes are flexible and foldable, demonstrating good tolerance against repeated mechanical deformation, including twisting and folding. Therefore, these tens of micron thick fiber electrodes will be attractive for applications in energy storage, electroanalytical chemistry, brain electrodes, electrocatalysis and other fields, where flexible freestanding electrodes with an open and accessible surface are highly desired.

  10. Adsorption of surfactant ions and binding of their counterions at an air/water interface.

    PubMed

    Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki

    2009-01-01

    An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.

  11. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  12. Method for electrochemical decontamination of radioactive metal

    DOEpatents

    Ekechukwu, Amy A [Augusta, GA

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  13. Artificially-built solid electrolyte interphase via surface-bonded vinylene carbonate derivative on graphite by molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.

    2017-12-01

    Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.

  14. Surface Modification of Titanium Using Anodization to Enhance Antimicrobial Properties and Osseointegration

    NASA Astrophysics Data System (ADS)

    Jain, Sakshi

    Titanium and its alloys are frequently used in dental and orthopedic implants because they have good mechanical strength, chemical stability and biocompatibility. These properties can be further improved by surface treatments such as anodization that are able to grow thicker and produce crystalline oxide layers with controlled morphological and physico-chemical properties. Both anatase (A) and rutile (R) crystalline phases of titanium oxide have been shown to promote bioactivity and antimicrobial effects. In a previous study in our laboratories, four electrolyte mixtures were optimized to produce anodized layers on commercially pure titanium consisting of specific anatase and rutile oxide ratios at an endpoint forming voltage of 180 V. In the present study, changes that occurred in the anodized layers with increasing forming voltage including crystallinity, thickness, surface morphology, surface roughness, surface chemistry, fractal dimension, shear strength, and corrosion resistance were determined for each of these electrolytes. The results showed the crystallinity, thickness, surface pore sizes, and surface roughness increased with increasing forming voltage. Incorporation of phosphorus into the anodized layers was shown in phosphoric acid containing electrolytes at higher forming voltages. Decreases in corrosion resistance were also shown at higher forming voltages in each electrolyte due to increased pore interconnectivity within the anodized layers. In addition, the apatite inducing ability of anodized layers in SBF was examined for selected forming voltages in each electrolyte. Anodization in phosphoric acid containing electrolytes was shown to be more favorable for apatite formation. The streptococcal and MRSA bacterial attachment before and after UV treatments was determined for selected forming voltages in each electrolyte. Additionally, the killing efficacy after 10-minute pre-irradiation with UVA or UVC treatments was determined. UVA treatments showed trends of at least a 20% reduction in bacterial attachment regardless of the crystallinity within the oxide for S. sanguinis. The anodized layer with an approximately equal distribution of anatase and rutile phases showed bacterial killing efficacy over 50% for S. sanguinis and over 80% for MRSA after UVA or UVC treatments. Finally, two forming voltage sample groups in two of the electrolytes were examined for MC3T3E-1 cell attachment, proliferation, and differentiation. Total intracellular protein content, alkaline phosphatase (ALP) activity, osteocalcin (OCN) activity, and cellular mineralization were investigated for different time periods up to 21 days. All sample groups showed suitable cellular proliferation, differentiation, and maturation but those anodized in the phosphoric acid containing electrolyte showed delayed proliferation and early differentiation and maturation. Also, anodized samples containing at least 50% anatase were shown to produce higher osteoblast mineralization compared to majority rutile phase anodized layers.

  15. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1993-01-01

    A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.

  16. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; ...

    2015-12-24

    Our study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Moreover, quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Aminated pores, unlike hydrogenatedmore » pores, do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.« less

  17. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    NASA Astrophysics Data System (ADS)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  18. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.

    PubMed

    Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen

    2005-06-21

    The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.

  19. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    DOE PAGES

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less

  20. Surface potential of methyl isobutyl carbinol adsorption layer at the air/water interface.

    PubMed

    Phan, Chi M; Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo; Le, Thu N; Ang, Ha M

    2012-01-26

    The surface potential (ΔV) and surface tension (γ) of MIBC (methyl isobutyl carbinol) were measured on the subphase of pure water and electrolyte solutions (NaCl at 0.02 and 2 M). In contrast to ionic surfactants, it was found that surface potential gradually increased with MIBC concentration. The ΔV curves were strongly influenced by the presence of NaCl. The available model in literature, in which surface potential is linearly proportional to surface excess, failed to describe the experimental data. Consequently, a new model, employing a partial charge of alcohol adsorption layer, was proposed. The new model predicted the experimental data consistently for MIBC in different NaCl solutions. However, the model required additional information for ionic impurity to predict adsorption in the absence of electrolyte. Such inclusion of impurities is, however, unnecessary for industrial applications. The modeling results successfully quantify the influence of electrolytes on surface potential of MIBC, which is critical for froth stability.

  1. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying

    2013-12-01

    Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable. Electronic supplementary information (ESI) available: Preparation process scheme; X-ray mapping images and EDX analysis for the surface of PMC/S-40; X-ray mapping images for the cross-section of PMC/S-40; thermogravimetric analysis (TGA) of PMC/S samples; T-plot results for PMC sample; and electrochemical measurements of lithium-sulfur batteries using PMC/S as cathode materials. See DOI: 10.1039/c3nr04532c

  2. One step shift towards flexible supercapacitors based on carbon nanotubes - A review

    NASA Astrophysics Data System (ADS)

    Yar, A.; Dennis, J. O.; Mohamed, N. M.; Mumtaz, A.; Irshad, M. I.; Ahmad, F.

    2014-10-01

    Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.

  3. Elongated solid electrolyte cell configurations and flexible connections therefor

    DOEpatents

    Reichner, P.

    1989-10-17

    A flexible, high temperature, solid oxide electrolyte electrochemical cell stack configuration is made, comprising a plurality of flattened, elongated, connected cell combinations, each cell combination containing an interior electrode having a top surface and a plurality of interior gas feed conduits, through its axial length, electrolyte contacting the interior electrode and exterior electrode contacting electrolyte, where a major portion of the air electrode top surface is covered by interconnection material, and where each cell has at least one axially elongated, electronically conductive, flexible, porous, metal fiber felt material in electronic connection with the air electrode through contact with a major portion of the interconnection material, the metal fiber felt being effective as a shock absorbent body between the cells. 4 figs.

  4. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  5. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  6. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  7. In situ X-ray nanotomography of metal surfaces during electropolishing

    DOE PAGES

    Nave, Maryana I.; Allen, Jason P.; Karen Chen-Wiegart, Yu-chen; ...

    2015-10-15

    A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. We show that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. We discovered that the kinetics of shell growth at the triple line,more » where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications.« less

  8. An impedimetric chemical sensor for determination of detergents residues.

    PubMed

    Bratov, Andrey; Abramova, Natalia; Ipatov, Andrey; Merlos, Angel

    2013-03-15

    A new impedimetric sensor based on an interdigitated electrode array with electrode digits located at the bottom of microcapillaries formed in silicon dioxide is presented. Microcapillaries are opened at the top, so that in contact with an electrolyte solution the ac current flows close to the surface of the capillary wall from one electrode to another and is significantly affected by changes in the surface conductance at the SiO2/electrolyte interface. Adsorption of detergents on the sensor surface affects the charge distribution in the electrical double layer and thus the surface conductance. These changes are registered by measuring impedance. Effect of surface adsorption of ionic and non-ionic surfactants on the sensor impedance is studied. The sensor is shown to be able to measure commercial detergents residues in a tap water starting from 5 ppm even in solutions with high electrolyte conductivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. In situ X-ray nanotomography of metal surfaces during electropolishing

    PubMed Central

    Nave, Maryana I.; Allen, Jason P.; Karen Chen-Wiegart, Yu-chen; Wang, Jun; Kalidindi, Surya R.; Kornev, Konstantin G.

    2015-01-01

    A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. It is shown that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. It is discovered that the kinetics of shell growth at the triple line, where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications. PMID:26469184

  10. The Influence of Electrolytes on the Mixed Micellization of Equimolar (Monomeric and Dimeric) Surfactants

    NASA Astrophysics Data System (ADS)

    Alam, Md. Sayem; Siddiq, A. Mohammed; Mandal, Asit Baran

    2018-01-01

    The influence of halide ions of (sodium salt) electrolytes on the mixed micellization of a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium) bromide (16-6-16) and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB) have been investigated. The critical micelle concentration (CMC) of the mixed (16-6-16+CTAB) surfactants was measured by the surface tension measurements. The surface properties: viz., the surfactant concentration required to reduce the surface tension by 20 mN/m ( C 20), the surface pressure at the CMC (ΠCMC), the maximum surface excess concentration at the air/water interface (Γmax), the minimum area per surfactant molecule at the air/water interface ( A min), etc. of the mixed micellar surfactant systems were evaluated. In the absence and presence of electrolytes, the thermodynamic parameters of the mixed micellar surfactant systems were also evaluated.

  11. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  12. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    NASA Astrophysics Data System (ADS)

    Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.

    2016-01-01

    The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  13. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.

  14. Nickel-hydrogen battery with oxygen and electrolyte management features

    DOEpatents

    Sindorf, John F.

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  15. Surface and interface sciences of Li-ion batteries. -Research progress in electrode-electrolyte interface-

    NASA Astrophysics Data System (ADS)

    Minato, Taketoshi; Abe, Takeshi

    2017-12-01

    The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.

  16. High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Dahbi, Mouad; Fukunishi, Mika; Horiba, Tatsuo; Yabuuchi, Naoaki; Yasuno, Satoshi; Komaba, Shinichi

    2017-09-01

    Electrochemical performance of the red phosphorus electrode was examined in ionic-liquid electrolyte, 0.25 mol dm-3 sodium bisfluorosulfonylamide (NaFSA) dissolved N-methyl-N-propylpyridinium-bisfluorosulfonylamide (MPPFSA), at room temperature. We compared its electrochemical performance to conventional EC/PC/DEC, EC/DEC, and PC solutions containing 1 mol dm-3 NaPF6. The electrode in NaFSA/MPPFSA demonstrated a reversible capacity of 1480 mAh g-1 and excellent capacity retention of 93% over 80 cycles, which is much better than those in the conventional electrolytes. The difference in capacity retention for the electrolytes correlates to the different solid electrolyte interphase (SEI) layer formed on the phosphorus electrode. To understand the SEI formation in NaFSA/MPPFSA and its evolution during cycling, we investigate the surface layer of the red phosphorus electrodes with hard X-ray photoelectron spectroscopy (HAXPES) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). A detailed analysis of HAXPES spectra demonstrates that SEI layer consists of major inorganic and minor organic species, originating from decomposition of MPP+ and FSA-. Homogenous surface layer is formed during the first cycle in NaFSA/MPPFSA while in alkyl carbonate ester electrolytes, continuous growth of surface film up to the 20th cycle is observed. Possibility of red phosphorous electrode for battery applications with pure ionic liquid is discussed.

  17. Preparation and characterization of anodic films on AZ31B Mg alloy formed in the silicate electrolytes with ethylene glycol oligomers as additives

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Wang, Jinwei; Li, Shanghua; Zhang, Jin

    2012-09-01

    Oxide coatings are prepared on AZ31B Mg alloy in an environment-friendly electrolyte with additives by plasma electrolytic anodization, and the effect of ethylene glycol oligmers on the performances of the anodized film is investigated. Under a constant current density of 10 mA cm-2, the reaction overpotential of the silicate electrolytes with additives are found higher than that of the original electrolyte as measured by potential-time test. The EIS and DC polarization results reveal that the addition of PEG increases the impedance of the film and reduces its corrosion current density (Icorr) at least by one order of magnitude. The surface morphologies are more and more compact and homogeneous with the increase in EG numbers, while a rougher surface appeared again if the PEG4000 is used as observed by SEM. As detected by XRD, the anodic films are found mainly consist of MgO, MgSiO3 and Mg2SiO4, and their relative amounts are related to the lengths of EGs, resulting in the differences in morphology and anticorrosion variations. Furthermore, the improvement in abrasive resistance of the anodic film formed in the electrolyte with PEG1000 may be attributed to its much more compact surface and the incorporation of ductile PEG chains among those oxides.

  18. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.

    PubMed

    Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L

    2010-11-25

    A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.

  19. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    PubMed

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  20. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    DOE PAGES

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; ...

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less

  1. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-02-01

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  2. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery.

  3. Elongated solid electrolyte cell configurations and flexible connections therefor

    DOEpatents

    Reichner, Philip

    1989-01-01

    A flexible, high temperature, solid oxide electrolyte electrochemical cell stack configuration is made, comprising a plurality of flattened, elongated, connected cell combinations 1, each cell combination containing an interior electrode 2 having a top surface and a plurality of interior gas feed conduits 3, through its axial length, electrolyte 5 contacting the interior electrode and exterior electrode 8 contacting electrolyte, where a major portion of the air electrode top surface 7 is covered by interconnection material 6, and where each cell has at least one axially elongated, electronically conductive, flexible, porous, metal fiber felt material 9 in electronic connection with the air electrode 2 through contact with a major portion of the interconnection material 6, the metal fiber felt being effective as a shock absorbent body between the cells.

  4. One step shift towards flexible supercapacitors based on carbon nanotubes - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yar, A., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Dennis, J. O., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com

    2014-10-24

    Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on researchmore » which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.« less

  5. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    PubMed

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi

    2014-02-01

    All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.

  7. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    PubMed Central

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  8. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOEpatents

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  9. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-04-01

    Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.

  10. Potential-specific structure at the hematite-electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe 2O 3) (110more » $$\\bar{2}$$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.« less

  11. InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.

    2013-08-01

    We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.

  12. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  13. The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance

    NASA Astrophysics Data System (ADS)

    Visbal, Heidy; Fujiki, Satoshi; Aihara, Yuichi; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2014-12-01

    The influence of selected carbonate species on LiNi0.8Co0.15Al0.05O2 (NCA) surface for all-solid-state lithium-ion battery (ASSB) with a sulfide based solid electrolyte was studied for its electrochemical properties, structural stabilities, and surface characteristics. The rated discharge performance improved with the reduction of the carbonate concentration on the NCA surface due to the decrease of the interface resistance. The species and coordination of the adsorbed carbonates on the NCA surface were analyzed by diffuse reflectance Fourier transformed infrared (DRIFT) spectroscopy. The coordination of the adsorbed carbonate anion was determined based on the degree of splitting of the ν3(CO) stretching vibrations. It is found that the surface carbonate species exists in an unidentate coordination on the surface. They react with the sulfide electrolyte to form an irreversible passivation layer. This layer obstructs the charge transfer process at the cathode/electrolyte interface, and results in the rise of the interface resistance and drop of the rated discharge capability.

  14. Electrode assembly for use in a solid polymer electrolyte fuel cell

    DOEpatents

    Raistrick, Ian D.

    1989-01-01

    A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.

  15. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel; Edström, Kristina

    2015-10-01

    The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase. Li||LTO cells with electrolytes consisting of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate:diethyl carbonate (LiPF6 in EC:DEC) were cycled in two different voltage windows of 1.0-2.0 V and 1.4-2.0 V. LTO electrodes were characterized after 5 and 100 cycles. Also the pristine electrode as such, and an electrode soaked in the electrolyte were analyzed by varying the photon energies enabling depth profiling of the outermost surface layer. The main components of the surface layer were found to be ethers, P-O containing compounds, and lithium fluoride.

  16. Aqueous gating of van der Waals materials on bilayer nanopaper.

    PubMed

    Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing

    2014-10-28

    In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors.

  17. Liquid surface skimmer apparatus for molten lithium and method

    DOEpatents

    Robinson, Samuel C.; Pollard, Roy E.; Thompson, William F.; Stark, Marshall W.; Currin, Jr., Robert T.

    1995-01-01

    This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.

  18. Electrochemical method for defect delineation in silicon-on-insulator wafers

    DOEpatents

    Guilinger, Terry R.; Jones, Howland D. T.; Kelly, Michael J.; Medernach, John W.; Stevenson, Joel O.; Tsao, Sylvia S.

    1991-01-01

    An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.

  19. Influence of solvent species on the charge-discharge characteristics of a natural graphite electrode

    NASA Astrophysics Data System (ADS)

    Fujimoto, Masahisa; Shoji, Yoshihiro; Kida, Yoshinori; Ohshita, Ryuji; Nohma, Toshiyuki; Nishio, Koji

    The charge-discharge characteristics of a natural graphite electrode are examined in a mixed solvent composed of ethylene carbonate (EC) and propylene carbonate (PC). The characteristics are influenced largely by the solvent species. Natural graphite electrode displays good charge-discharge characteristics in an electrolyte containing EC with a high volume fraction. In an electrolyte containing PC, however, the electrode cannot be charged and the solvent is decomposed. X-ray photoelectron spectroscopy is used to obtain information about the surface of natural graphite. A thin LiF layer, the decomposition product of lithium hexafluorophosphate (LiPF 6), is formed on the surface of the natural graphite charged to 0.5 V (vs. Li/Li +) in an electrolyte containing a high volume fraction of EC. On the other hand, LiF and a carbonate compound are formed in the bulk and on the surface of natural graphite when the volume fraction of PC is high. These results suggest that the thin LiF layer, which is produced at a potential higher than 0.5 V (vs. Li/Li +) on the surface of natural graphite, enables the lithium ions to intercalate into the natural graphite without further decomposition of the electrolyte.

  20. Spontaneous Ionic Polarization in Ammonia-Based Ionic Liquid [Spontaneous Ionic Polarization in Ionic Liquid

    DOE PAGES

    Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung; ...

    2018-05-24

    Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less

  1. Spontaneous Ionic Polarization in Ammonia-Based Ionic Liquid [Spontaneous Ionic Polarization in Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung

    Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less

  2. Nano-Nucleation Characteristic of Cu-Ag Alloy Directly Electrodeposited on W Diffusion Barrier for Microelectronic Device Interconnect.

    PubMed

    Kim, Kang O; Kim, Sunjung

    2016-05-01

    Cu-Ag alloy interconnect is promising for ultra-large-scale integration (ULSI) microelectronic system of which device dimension keeps shrinking. In this study, seedless electrodeposition of Cu-Ag alloy directly on W diffusion barrier as interconnect technology is presented in respect of nano-nucleation control. Chemical equilibrium state of electrolyte was fundamentally investigated according to the pH of electrolyte because direct nano-nucleation of Cu-Ag alloy on W surface is challenging. Chelation behavior of Cu2+ and Ag+ ions with citrate (Cit) and ammonia ligands was dependent on the pH of electrolyte. The amount and kind of Cu- and Ag-based complexes determine the deposition rate, size, elemental composition, and surface morphology of Cu-Ag alloy nano-nuclei formed on W surface.

  3. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.

    PubMed

    Jackson, Everett D; Prieto, Amy L

    2016-11-09

    Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.

  4. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  5. Is an electric field always a promoter of wetting? Electro-dewetting of metals by electrolytes probed by in situ X-ray nanotomography

    DOE PAGES

    Nave, Maryana I.; Gu, Yu; Karen Chen-Wiegart, Yu-Chen; ...

    2017-01-05

    We developed a special electrochemical cell enabling quantitative analysis andin situX-ray nanotomography of metal/electrolyte interfaces subject to corrosion. Using this cell and applying the nodoid model to describe menisci formed on tungsten wires during anodization, the evolution of the electrolyte surface tension, the concentration of reaction products, and the meniscus contact angle were studied. In contrast to the electrowetting effect, where the applied electric field decreases the contact angle of electrolytes, anodization of the tungsten wires increases the contact angle of the meniscus. Hence, an electric field favors dewetting rather than wetting of the newly formed surface. Finally, the discoveredmore » effect opens up new opportunities for the control of wetting phenomena and calls for the revision of existing theories of electrowetting.« less

  6. Stabilizing the Electrode/Electrolyte Interface of LiNi0.8Co0.15Al0.05O2 through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries.

    PubMed

    Hou, Peiyu; Zhang, Hongzhou; Deng, Xiaolong; Xu, Xijin; Zhang, Lianqi

    2017-09-06

    The unstable electrode/electrolyte interface of high-capacity LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) cathodes, especially at a highly delithiated state, usually leads to the transformation of layered to spinel and/or rock-salt phases, resulting in drastic capacity fade and poor thermal stability. Herein, the Al-increased and Ni-,Co-decreased electrode surface is fabricated through tailoring element distribution in micrometer-sized spherical NCA secondary particles via coprecipitation and solid-state reactions, aimed at stabilizing the electrode/electrolyte interface during continuous cycles. As expected, it shows much extended cycle life, 93.6% capacity retention within 100 cycles, compared with that of 78.5% for the normal NCA. It also delivers large reversible capacity of about 140 mAh g -1 even at 20 C, corresponding to energy density of around 480 Wh kg -1 , which is enhanced by 45% compared to that of the normal NCA (about 330 Wh kg -1 ). Besides, the delayed heat emission temperature and reduced heat generation mean remarkably improved thermal stability. These foregoing improvements are ascribed to the Al-increased spherical secondary particle surface that stabilizes the electrode/electrolyte interface by protecting inner components from directly contacting with electrolyte and suppressing the side reaction on electrode surface between high oxidizing Ni 4+ and electrolyte.

  7. Novel Paradigm Supercapacitors V: Significance of Organic Polar Solvents and Salt Identities

    DTIC Science & Technology

    2017-06-01

    CM/Baker.pdf. Accessed May 13, 2017. 156 [36] Lithium - ion battery . (n.d.). Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/ Lithium ...interested in the electrolytic components of lithium batteries and high performance non-nanotube SDM (NTSDM) capacitors. This is because these... lithium batteries and various commercial non- NTSDM capacitors. Table 3. List of Lithium Battery and Electrolytic Capacitors. Adapted from [34]–[36

  8. Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte

    DOEpatents

    Mason, David M.

    1984-01-01

    Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

  9. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Kimberly A.; Chapman, Karena W.; Zhu, Lingyang

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, 27Al and 35Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore themore » active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ–Cl)3·6THF]+ complex that is observed in the solid state structure. Additionally, conditioning creates free Cl– in the electrolyte solution, and we suggest the free Cl– adsorbs at the electrode surface to enhance Mg electrodeposition.« less

  10. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Putt, Ronald A. (Inventor); Woodruff, Glenn (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  11. Interface Engineering of Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low interfacial resistances. This opens new opportunities for garnet solid electrolyte in practical applications.

  12. Self-consistent modeling of electrochemical strain microscopy of solid electrolytes

    DOE PAGES

    Tselev, Alexander; Morozovska, Anna N.; Udod, Alexei; ...

    2014-10-10

    Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann–Planck–Nernst–Einstein theory and Vegard's law while taking account of the electromigration and diffusion. We identified the characteristic time scales involved in the formation of the ESM response and found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces canmore » be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid.« less

  13. The application of electrolytic photoetching and photopolishing to AISI 304 stainless steel and the electrolytic photoetching of amorphous cobalt alloy

    NASA Astrophysics Data System (ADS)

    Thomaz, Marita Duarte Canhao da Silva Pereira Fernandes

    The results presented cover broad aspects of a quantitative investigation into the elecrolytic etching and polishing of metals and alloys through photographically produced dielectric stencils (Photoresists). A study of the potential field generated between a cathode and relatively smaller anode sites as those defined by a dielectric stencil was carried out. Numerical, analytical and graphical methods yielded answers to the factors determining lateral dissolution (undercut) at the anode/stencil interface. A quasi steady state numerical model simulating the transient behavior of the partially masked electrodes undergoing dissolution was obtained. AISI 304 stainless steel was electrolytically photoetched in 10% w/w HCl electrolyte. The optimised process parameters were utilised for quantifying the effects of galvanostatic etching of the anode as that defined by a relatively narrow adherent resist stencil. Stainless steel was also utilised in investigating electrolytic photopolishing. A polishing electrolyte (orthophosphoric acid-glycerol) was modified by the addition of a surfactant which yielded surface texture values of 70nm (Ra) and high levels of specular reflectance. These results were used in the production of features upon the metal surface through photographically produced precision stencils. The process was applied to the production of edge filters requiring high quality surface textures in precision recesses. Some of the new amorphous material exhibited high resistance to dissolution in commercially used spray etching formulations. One of these materials is a cobalt based alloy produced by chill block spinning. This material was also investigated and electro etched in 10% w/w HCl solution. Although passivity was not overcome, by selecting suitable operating parameters the successful electro photoetching of precision magnetic recording head laminations was achieved. Similarly, a polycrystalline nickel based alloy also exhibiting passivity in commercially used etchants was successfully etched in the above electrolyte.

  14. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.

    PubMed

    He, Meinan; Su, Chi-Cheung; Peebles, Cameron; Feng, Zhenxing; Connell, Justin G; Liao, Chen; Wang, Yan; Shkrob, Ilya A; Zhang, Zhengcheng

    2016-05-11

    Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials.

  15. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode in High Voltage Li-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Meinan; Su, Chi-Cheung; Peebles, Cameron

    Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt% of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0 to 4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that preventmore » oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li+ ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li+ ion conductivity through such materials.« less

  16. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    PubMed

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  17. Understanding interaction of curcumin and metal ions on electrode surfaces using EDXRF

    NASA Astrophysics Data System (ADS)

    Joseph, Daisy; Kumar, K. Krishna; Narayanan, S. Sriman

    2018-04-01

    A chemically modified electrode was developed for determination of metal ions (Cd, Pb, Zn, Co, Hg). The modifier used for the study was Curcumin. Curcumin acts as a complexing agent at the surface of the electrode for preconcentration of metal ions from electrolyte to electrode surface and stripped back to electrolyte during analysis. EDXRF was used to analyze these electrodes and it was concluded that the PCR modified electrode favored effective chelation for lead and mercury.

  18. Negative Transference Numbers in Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Timachova, Ksenia; Balsara, Nitash

    Energy density and safety of conventional lithium-ion batteries is limited by the use of flammable organic liquids as a solvent for lithium salts. Polymer electrolytes have the potential to address both limitations. The poor performance of batteries with polymer electrolytes is generally attributed to low ionic conductivity. The purpose of our work is to show that another transport property, the cation transference number, t +, of polymer electrolytes is fundamentally different from that of conventional electrolytes. Our experimental approach, based on concentrated solution theory, indicates that t + of mixtures of poly(ethylene oxide) and LiTFSI salt are negative over most of the accessible concentration window. In contrast, approaches based on dilute solution theory suggest that t + in the same system is positive. In addition to presenting a new approach for determining t +, we also present data obtained from the steady-state current method, pulsed-field-gradient NMR, and the current-interrupt method. Discrepancies between different approaches are resolved. Our work implies that in the absence of concentration gradients, the net fluxes of both cations and anions are directed toward the positive electrode. Conventional liquid electrolytes do not suffer from this constraint.

  19. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    DOEpatents

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  20. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  1. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which aremore » anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.« less

  2. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    NASA Astrophysics Data System (ADS)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  3. Surface Charge at the Oxide/Electrolyte Interface: Toward Optimization of Electrolyte Composition for Treatment of Aluminum and Magnesium by Plasma Electrolytic Oxidation.

    PubMed

    Nominé, Alexandre; Martin, Julien; Noël, Cédric; Henrion, Gérard; Belmonte, Thierry; Bardin, Ilya V; Lukeš, Petr

    2016-02-09

    Controlling microdischarges in plasma electrolytic oxidation is of great importance in order to optimize coating quality. The present study highlights the relationship between the polarity at which breakdown occurs and the electrolyte pH as compared with the isoelectric point (IEP). It is found that working at a pH higher than the IEP of the grown oxide prevents the buildup of detrimental cathodic discharges. The addition of phosphates results in a shift in the IEP to a lower value and therefore promotes anodic discharges at the expense of cathodic ones.

  4. Portable probe to measure sensitization of stainless steel

    DOEpatents

    Park, Jang Y.

    1979-01-01

    An electrochemical cell for making field measurements of metals such as stainless steel comprises a cylinder containing a reservoir of an electrolyte, a reference electrode, a capillary tube connecting the electrolyte to the surface of the metal to be measured and another electrode in electrical contact with the electrolyte. External connections from the reference electrode, the other electrode, and the sample to a measuring device provide means for maintaining the potential of the electrolyte while sweeping the potential difference between the electrolyte and the metal. Such a sweep enables the determination of a current-voltage characteristic that is a measure of sensitization in the metal.

  5. Neural Regulation of Lacrimal Gland Secretory Processes: Relevance in Dry Eye Diseases

    PubMed Central

    Dartt, Darlene A.

    2013-01-01

    The lacrimal gland is the major contributor to the aqueous layer of the tear film which consists of water, electrolytes and proteins. The amount and composition of this layer is critical for the health, maintenance, and protection of the cells of the cornea and conjunctiva (the ocular surface). Small changes in the concentration of tear electrolytes have been correlated with dry eye syndrome. While the mechanisms of secretion of water, electrolytes and proteins from the lacrimal gland differ, all three are under tight neural control. This allows for a rapid response to meet the needs of the cells of the ocular surface in response to environmental conditions. The neural response consists of the activation of the afferent sensory nerves in the cornea and conjunctiva to stimulate efferent parasympathetic and sympathetic nerves that innervate the lacrimal gland. Neurotransmitters are released from the stimulated parasympathetic and sympathetic nerves that cause secretion of water, electrolytes, and proteins from the lacrimal gland and onto the ocular surface. This review focuses on the neural regulation of lacrimal gland secretion under normal and dry eye conditions. PMID:19376264

  6. The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air-water interface.

    PubMed

    Zhang, X L; Taylor, D J F; Thomas, R K; Penfold, J

    2011-04-15

    The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Surface-charge-governed electrolyte transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xue, Jian-Ming; Guo, Peng; Sheng, Qian

    2015-08-01

    The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes (CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid-liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results, we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375031 and 11335003).

  8. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  9. Potential of Zero Charge and Its Temperature Derivative for Au(111) Electrode|Alkanethiol SAM|1.0 M Aqueous Electrolyte Solution Interfaces: Impact of Electrolyte Solution Ionic Strength and Its Effect on the Structure of the Modified Electrode|Electrolyte Solution Interface

    DOE PAGES

    Smalley, John F.

    2017-04-06

    In this study, we demonstrate how small and rapid temperature perturbations (produced by the indirect laser-induced temperature jump (ILIT) technique) of solid metal electrode|electrolyte solution interfaces may be used to determine the potential of zero (total) charge (E pzc) and its temperature derivativemore » $$\\left(\\frac{dEpzc}{dT}\\right)$$ of Au(111) electrode surfaces modified by alkanethiol self-assembled monolayers in contact with high ionic strength (i.e., 1.0 M) aqueous electrolyte solutions. The E pzc’s measured for two different types of SAMs (made from either HS(CH 2) n-1CH 3 (5 ≤ n ≤ 12, E pzc = -(0.99 ± 0.12) V vs SSCE) or HS(CH 2) nOH (3 ≤ n ≤ 16, E pzc = (0.46 ± 0.22) V vs SSCE)) are considerably different than those measured previously at much lower electrolyte solution ionic strengths. For mixed monolayers made from both HS(CH 2) n-1CH 3 and HS(CH 2) nFc (where Fc refers to ferrocene), the difference in Epzc decreases as a function of the surface concentration of the Fc moiety (i.e., [Fc]), and it completely disappears at a surprisingly small [Fc] (~4.0 × 10 –11 mol cm –2). These observations for the Au(111)|hydrophobic (neat and mixed) SAM|aqueous electrolyte solution interfaces, along with the surface potentials (g Sml(dip)) evaluated for the contacting electrolyte solution surfaces of these interfaces, are consistent with a structure for the water molecule components of these surfaces where there is a net orientation of the dipoles of these molecules. Accordingly, the negative (oxygen) ends of these molecules point toward the SAM surface. The positive values of g Sml(dip) evaluated for hydrophilic SAM (e.g., made from HS(CH 2) nOH)|aqueous electrolyte solution interfaces) also indicate that the structure of these interfaces is similar to that of the hydrophobic interfaces. However, g Sml(dip) decreases with increasing ionic strength for the hydrophilic interfaces, while it increases with increasing ionic strength for the hydrophobic interfaces. The data (and calculations) reported in the present work and other studies of hydrophobic (and hydrophilic)|aqueous solution interfaces are as yet insufficient to support a complete explanation for the effects of ionic strength observed in the present study. Nevertheless, an analysis based upon the value of $$\\left(\\frac{dEpzc}{dT}\\right)$$ (= (0.51 ± 0.12) mV/K, essentially the same for SAMs made from both HS(CH 2) n-1CH 3 and HS(CH 2) nOH), determined in the present study provides a further indication that upon formation of the SAM there is a partial charge transfer of electrons from the relevant gold atoms on the Au(111) surface to the sulfur atoms of the alkanethiols.« less

  10. Quantitative MAS NMR characterization of the LiMn(1/2)Ni(1/2)O(2) electrode/electrolyte interphase.

    PubMed

    Cuisinier, M; Martin, J F; Moreau, P; Epicier, T; Kanno, R; Guyomard, D; Dupré, N

    2012-04-01

    The conditions in which degradation processes at the positive electrode/electrolyte interface occur are still incompletely understood and traditional surface analytical techniques struggle to characterize and depict accurately interfacial films. In the present work, information on the growth and evolution of the interphases upon storage and cycling as well as their electrochemical consequences are gathered in the case of LiNi(1/2)Mn(1/2)O(2) with commonly used LiPF(6) (1M in EC/DMC) electrolyte. The use of (7)Li, (19)F and (31)P MAS NMR, made quantitative through the implementation of empirical calibration, is combined with transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) to probe the elements involved in surface species and to unravel the inhomogenous architecture of the interphase. At room temperature, contact with the electrolyte leads to a covering of the oxide surface first by LiF and lithiated organic species are found on the outer part of the interphase. At 55°C, not only the interphase proceeds in further covering of the surface but also thickens resulting in an increase of 240% of lithiated species and the presence of -POF(2) fluorophosphates. The composition gradient within the interphase depth is also strongly affected by the temperature. In agreement with the electrochemical performance, quantitative NMR surface analyses show that the use of LiBOB-modified electrolyte results in a Li-enriched interphase, intrinsically less resistive than the standard LiPF(6)-based interphase, comprised of a mixture of resistive LiF with non lithiated species. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.

    PubMed

    Borodin, Oleg; Ren, Xiaoming; Vatamanu, Jenel; von Wald Cresce, Arthur; Knap, Jaroslaw; Xu, Kang

    2017-12-19

    Electroactive interfaces distinguish electrochemistry from chemistry and enable electrochemical energy devices like batteries, fuel cells, and electric double layer capacitors. In batteries, electrolytes should be either thermodynamically stable at the electrode interfaces or kinetically stable by forming an electronically insulating but ionically conducting interphase. In addition to a traditional optimization of electrolytes by adding cosolvents and sacrificial additives to preferentially reduce or oxidize at the electrode surfaces, knowledge of the local electrolyte composition and structure within the double layer as a function of voltage constitutes the basis of manipulating an interphase and expanding the operating windows of electrochemical devices. In this work, we focus on how the molecular-scale insight into the solvent and ion partitioning in the electrolyte double layer as a function of applied potential could predict changes in electrolyte stability and its initial oxidation and reduction reactions. In molecular dynamics (MD) simulations, highly concentrated lithium aqueous and nonaqueous electrolytes were found to exclude the solvent molecules from directly interacting with the positive electrode surface, which provides an additional mechanism for extending the electrolyte oxidation stability in addition to the well-established simple elimination of "free" solvent at high salt concentrations. We demonstrate that depending on their chemical structures, the anions could be designed to preferentially adsorb or desorb from the positive electrode with increasing electrode potential. This provides additional leverage to dictate the order of anion oxidation and to effectively select a sacrificial anion for decomposition. The opposite electrosorption behaviors of bis(trifluoromethane)sulfonimide (TFSI) and trifluoromethanesulfonate (OTF) as predicted by MD simulation in highly concentrated aqueous electrolytes were confirmed by surface enhanced infrared spectroscopy. The proton transfer (H-transfer) reactions between solvent molecules on the cathode surface coupled with solvent oxidation were found to be ubiquitous for common Li-ion electrolyte components and dependent on the local molecular environment. Quantum chemistry (QC) calculations on the representative clusters showed that the majority of solvents such as carbonates, phosphates, sulfones, and ethers have significantly lower oxidation potential when oxidation is coupled with H-transfer, while without H-transfer their oxidation potentials reside well beyond battery operating potentials. Thus, screening of the solvent oxidation limits without considering H-transfer reactions is unlikely to be relevant, except for solvents containing unsaturated functionalities (such as C═C) that oxidize without H-transfer. On the anode, the F-transfer reaction and LiF formation during anion and fluorinated solvent reduction could be enhanced or diminished depending on salt and solvent partitioning in the double layer, again giving an additional tool to manipulate the order of reductive decompositions and interphase chemistry. Combined with experimental efforts, modeling results highlight the promise of interphasial compositional control by either bringing the desired components closer to the electrode surface to facilitate redox reaction or expelling them so that they are kinetically shielded from the potential of the electrode.

  12. Conducting polymer ultracapacitor

    DOEpatents

    Shi, Steven Z.; Davey, John R.; Gottesfeld, Shimshon; Ren, Xiaoming

    2002-01-01

    A sealed ultracapacitor assembly is formed with first and second electrodes of first and second conducting polymers electrodeposited on porous carbon paper substrates, where the first and second electrodes each define first and second exterior surfaces and first and second opposing surfaces. First and second current collector plates are bonded to the first and second exterior surfaces, respectively. A porous membrane separates the first and second opposing surfaces, with a liquid electrolyte impregnating the insulating membrane. A gasket formed of a thermoplastic material surrounds the first and second electrodes and seals between the first and second current collector plates for containing the liquid electrolyte.

  13. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  14. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol

    NASA Astrophysics Data System (ADS)

    Kozak, Dmytro S.; Sergiienko, Ruslan A.; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-02-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the polarization effect of polar molecules conducting an electrical current disappears, when external high-strength electric field is induced. Because initially of the charge transfer always belongs of electroconductive additive and it does not depend on applied voltage. The polarization of ethanol molecules has been applied to conduct an electric current by surface plasma interaction for the synthesis of a copper oxide/carbon nanocomposite material.

  15. Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wang, Dapeng; Zhang, Daquan; Gao, Lixin; Lin, Tong

    2016-12-01

    The synergistic effects of carboxymethyl cellulose (CMC) and zinc oxide (ZnO) have been investigated as alkaline electrolyte additives for the AA5052 aluminium alloy anode in aluminium-air battery by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of CMC and ZnO effectively retards the self-corrosion of AA5052 alloy in 4 M NaOH solution. A complex film is formed via the interaction between CMC and Zn2+ ions on the alloy surface. The carboxyl groups adsorbed on the surface of aluminium make the protective film more stable. The cathodic reaction process is mainly suppressed significantly. AA5052 alloy electrode has a good discharge performance in the applied electrolyte containing the composite CMC/ZnO additives.

  16. Titanium surface modification by microarc oxidation in electrolyte based on wollastonite and hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yu. P.; Sedelnikova, M. B.; Komarova, E. G.; Khlusov, I. A.

    2015-11-01

    An investigation of titanium surface modification by microarc oxidation in the electrolyte based on wollastonite and hydroxyapatite was presented. The dependences of the coating properties on the microarc oxidation parameters were found. A variation of the process parameters allowed producing wollastonite-calcium phosphate coatings with aplate-like structure, thickness 25-30 µm, roughness 2.5-5.0 µm, and adhesion strength 57 MPa. The optimum microarc oxidation parameters such as the electrical voltage of 150 V, process duration of 5-10 min, and pulse duration of 100-300 µs were revealed. The wollastonite addition to the electrolyte based on the aqueous solution of phosphoric acid and hydroxyapatite allowed us to form wollastonite-calcium phosphate coatings on the titanium surface by the microarc oxidation method with enhanced strength properties and an increased ability to osseointegration.

  17. Nanoscale Seebeck effect at hot metal nanostructures

    NASA Astrophysics Data System (ADS)

    Ly, Aboubakry; Majee, Arghya; Würger, Alois

    2018-02-01

    We theoretically study the electrolyte Seebeck effect in the vicinity of a heated metal nanostructure, such as the cap of an active Janus colloid in an electrolyte, or gold-coated interfaces in optofluidic devices. The thermocharge accumulated at the surface varies with the local temperature, thus modulating the diffuse part of the electric double layer. On a conducting surface with non-uniform temperature, the isopotential condition imposes a significant polarization charge within the metal. Surprisingly, this does not affect the slip velocity, which takes the same value on insulating and conducting surfaces. Our results for specific-ion effects agree qualitatively with recent observations for Janus colloids in different electrolyte solutions. Comparing the thermal, hydrodynamic, and ion diffusion time scales, we expect a rich transient behavior at the onset of thermally powered swimming, extending to microseconds after switching on the heating.

  18. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  19. Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Xiao, Yuanhua; Cao, Yongbo; Gong, Yuyin; Zhang, Aiqin; Zhao, Jihong; Fang, Shaoming; Jia, Dianzeng; Li, Feng

    2014-01-01

    Nanocomposites of Mn3O4 nanoparticles and graphene (GR) nanosheets - Mn3O4@GR can be made by growing Mn3O4 nanoparticles directly on the surfaces of GR in solvothermal reactions. The asymmetric supercapacitors constructed with Mn3O4@GR as positive and activated carbon (AC) as negative electrodes, respectively, show highly enhanced performances in energy storage. It was found that the electrolytes employed in constructing electrodes of the devices can influence the performances of Mn3O4@GR supercapacitors dramatically. Compared to their energy density in KOH electrolyte, the devices exhibit improved charge storage performances in Na2SO4 electrolyte. Furthermore, the charge storage abilities of the devices are closely related to the amount of Mn3O4 nanoparticles loaded onto the surface of GR nanosheets. The performances of Mn3O4@GR//AC asymmetric supercapacitors can be optimized by carefully tailoring the composition of electrode materials and adjusting the electrolytes for making the devices.

  20. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE PAGES

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...

    2017-04-26

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  1. Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Tamura, Tomoyuki; Kohyama, Masanori; Ogata, Shuji

    2017-07-01

    We performed a first-principles molecular dynamics (FPMD) simulation of the interfacial reactions between a LiCoO2 electrode and a liquid ethylene carbonate (EC) electrolyte. For configurations during the FPMD simulation, we also performed first-principles Co K-edge x-ray absorption near-edge structure (XANES) simulations, which can properly reproduce the bulk and surface spectra of LiCoO2. We observed strong absorption of an EC molecule on the LiCoO2 {110} surface, involving ring opening of the molecule, bond formation between oxygen atoms in the molecule and surface Co ions, and emission of one surface Li ion, while all the surface Co ions remain Co3 +. The surface Co ions having the bond with an oxygen atom in the molecule showed remarkable changes in simulated K-edge spectra which are similar to those of the in situ observation under electrolyte soaking [D. Takamatsu et al., Angew. Chem., Int. Ed. 51, 11597 (2012), 10.1002/anie.201203910]. Thus, the local environmental changes of surface Co ions due to the reactions with an EC molecule can explain the experimental spectrum changes.

  2. Structure formation and surface chemistry of ionic liquids on model electrode surfaces—Model studies for the electrode | electrolyte interface in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Buchner, Florian; Uhl, Benedikt; Forster-Tonigold, Katrin; Bansmann, Joachim; Groß, Axel; Behm, R. Jürgen

    2018-05-01

    Ionic liquids (ILs) are considered as attractive electrolyte solvents in modern battery concepts such as Li-ion batteries. Here we present a comprehensive review of the results of previous model studies on the interaction of the battery relevant IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP]+[TFSI]-) with a series of structurally and chemically well-defined model electrode surfaces, which are increasingly complex and relevant for battery applications [Ag(111), Au(111), Cu(111), pristine and lithiated highly oriented pyrolytic graphite (HOPG), and rutile TiO2(110)]. Combining surface science techniques such as high resolution scanning tunneling microscopy and X-ray photoelectron spectroscopy for characterizing surface structure and chemical composition in deposited (sub-)monolayer adlayers with dispersion corrected density functional theory based calculations, this work aims at a molecular scale understanding of the fundamental processes at the electrode | electrolyte interface, which are crucial for the development of the so-called solid electrolyte interphase (SEI) layer in batteries. Performed under idealized conditions, in an ultrahigh vacuum environment, these model studies provide detailed insights on the structure formation in the adlayer, the substrate-adsorbate and adsorbate-adsorbate interactions responsible for this, and the tendency for chemically induced decomposition of the IL. To mimic the situation in an electrolyte, we also investigated the interaction of adsorbed IL (sub-)monolayers with coadsorbed lithium. Even at 80 K, postdeposited Li is found to react with the IL, leading to decomposition products such as LiF, Li3N, Li2S, LixSOy, and Li2O. In the absence of a [BMP]+[TFSI]- adlayer, it tends to adsorb, dissolve, or intercalate into the substrate (metals, HOPG) or to react with the substrate (TiO2) above a critical temperature, forming LiOx and Ti3+ species in the latter case. Finally, the formation of stable decomposition products was found to sensitively change the equilibrium between surface Li and Li+ intercalated in the bulk, leading to a deintercalation from lithiated HOPG in the presence of an adsorbed IL adlayer at >230 K. Overall, these results provide detailed insights into the surface chemistry at the solid | electrolyte interface and the initial stages of SEI formation at electrode surfaces in the absence of an applied potential, which is essential for the further improvement of future Li-ion batteries.

  3. Toward Eco-Friendly and Highly Efficient Solar Water Splitting Using In2S3/Anatase/Rutile TiO2 Dual-Staggered-Heterojunction Nanodendrite Array Photoanode.

    PubMed

    Yang, Jih-Sheng; Wu, Jih-Jen

    2018-01-31

    The TiO 2 -based heterojunction nanodendrite (ND) array composed of anatase nanoparticles (ANPs) on the surface of the rutile ND (RND) array is selected as the model photoanode to demonstrate the strategies toward eco-friendly and efficient solar water splitting using neutral electrolyte and seawater. Compared with the performances in alkaline electrolyte, a non-negligible potential drop across the electrolyte as well as impeded charge injection and charge separation is monitored in the ANP/RND array photoanode with neutral electrolyte, which are, respectively, ascribed to the series resistance of neutral electrolyte, the fundamentally pH-dependent water oxidation mechanism on TiO 2 surface, as well as the less band bending at the interface of TiO 2 and neutral electrolyte. Accordingly, a TiO 2 -based dual-staggered heterojunction ND array photoanode is further designed in this work to overcome the issue of less band bending with the neutral electrolyte. The improvement of charge separation efficiency is realized by the deposition of a transparent In 2 S 3 layer on the ANP/RND array photoanode for constructing additional staggered heterojunction. Under illumination of AM 1.5G (100 mW cm -2 ), the improved photocurrent densities acquired both in neutral electrolyte and seawater at 1.23 V vs reversible hydrogen electrode (RHE), which approach the theoretical value for rutile TiO 2 , are demonstrated in the dual-staggered-heterojunction ND array photoanode. Faradaic efficiencies of ∼95 and ∼32% for solar water oxidation in neutral electrolyte and solar seawater oxidation for 2 h are acquired at 1.23 V vs RHE, respectively.

  4. Fluorinated End-Groups in Electrolytes Induce Ordered Electrolyte/Anode Interface Even at Open-Circuit Potential as Revealed by Sum Frequency Generation Vibrational Spectroscopy

    DOE PAGES

    Horowitz, Yonatan; Han, Hui-Ling; Ralston, Walter T.; ...

    2017-05-12

    Fluorine-based additives have a tremendously beneficial effect on the performance of lithium-ion batteries, yet the origin of this phenomenon is unclear. This study shows that the formation of a solid-electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open-circuit potential (OCP). This study shows an anode-specific model system, the reduction of 1,2-diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2-trifluoroethoxy) ethane (BTFEOE), by summore » frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the —CF 3 end-groups of the linear ether BTFEOE change their adsorption orientation on the a-Si surface at OCP, leading to a better protective layer. Finally, supporting evidence from ex situ scanning electron microscopy and X-ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a-Si surface and enables lithium ions to intercalate deeper into the a-Si bulk.« less

  5. Fluorinated End-Groups in Electrolytes Induce Ordered Electrolyte/Anode Interface Even at Open-Circuit Potential as Revealed by Sum Frequency Generation Vibrational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Yonatan; Han, Hui-Ling; Ralston, Walter T.

    Fluorine-based additives have a tremendously beneficial effect on the performance of lithium-ion batteries, yet the origin of this phenomenon is unclear. This study shows that the formation of a solid-electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open-circuit potential (OCP). This study shows an anode-specific model system, the reduction of 1,2-diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2-trifluoroethoxy) ethane (BTFEOE), by summore » frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the —CF 3 end-groups of the linear ether BTFEOE change their adsorption orientation on the a-Si surface at OCP, leading to a better protective layer. Finally, supporting evidence from ex situ scanning electron microscopy and X-ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a-Si surface and enables lithium ions to intercalate deeper into the a-Si bulk.« less

  6. Identification and formation mechanism of individual degradation products in lithium-ion batteries studied by liquid chromatography/electrospray ionization mass spectrometry and atmospheric solid analysis probe mass spectrometry.

    PubMed

    Takeda, Sahori; Morimura, Wataru; Liu, Yi-Hung; Sakai, Tetsuo; Saito, Yuria

    2016-08-15

    Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Molten Salt Electrolysis of MgCl2 in a Cell with Rapid Chlorine Removal Feature

    NASA Astrophysics Data System (ADS)

    Demirci, Gökhan; Karakaya, İshak

    An experimental electrolytic magnesium production cell was designed to remove chlorine gas from the electrolyte rapidly and demonstrate the beneficial effects of reduced chlorine dissolution into the molten salt electrolyte. The back reaction that is the main cause of current losses in electrolytic magnesium production was reduced as a result of effective separation of electrode products and decreased contact time of chlorine gas with the electrolyte. Moreover, smaller inter electrode distances employed and lower chlorine gas present on the anode surface made it possible to work at low cell voltages. Electrolytic cell was tested at different current densities. Energy consumption of 7.0 kWh kg-1 Mg that is slightly above the theoretical minimum, 6.2 kWh kg-1 Mg, at 0.68 Acm-2 anodic current density was achieved for a MgCl2/NaCl/KCl electrolyte.

  8. Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy

    NASA Astrophysics Data System (ADS)

    Apachitei, I.; Leoni, A.; Riemslag, A. C.; Fratila-Apachitei, L. E.; Duszczyk, J.

    2011-05-01

    Biofunctional coatings are necessary to improve integration of titanium implants in the host tissue but they may be detrimental for the implant fatigue properties. This study presents an attempt towards enhancement of the in vitro fatigue strength of plasma electrolytic oxidation coated Ti6Al4V alloy by applying shot peening process prior to coating. The electrolytic oxidation was performed in calcium acetate and calcium glycerophosphate electrolytes that allowed formation of porous oxide coatings with high surface free energy and apatite like ability. A deformed surface layer coupled with induced residual compressive stresses seem to affect oxide growth rate and fatigue behavior of the titanium alloy.

  9. Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations

    DOE PAGES

    Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...

    2015-04-13

    A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less

  10. Molecular dynamics simulation of amino acid ionic liquids near a graphene electrode: effects of alkyl side-chain length.

    PubMed

    Sadeghi Moghadam, Behnoosh; Razmkhah, Mohammad; Hamed Mosavian, Mohammad Taghi; Moosavi, Fatemeh

    2016-12-07

    Electric double layer (EDL) supercapacitors, using ionic liquid electrolytes, have been receiving a great deal of attention in response to the growing demand for energy storage systems. In the present study, the nanoscopic structure of amino acid ionic liquids (AAILs) as biodegradable electrolytes near a neutral graphene surface was studied by molecular dynamics (MD) simulation. In order to explore the influence of the anion type and structure, the effect of the alkyl side-chain length of amino acids on the EDL was investigated. The results for the AAILs, composed of 1-ethyl-3-methylimidazolium ([EMIM]) cations near alanine ([ALA]) and isoleucine ([ILE]) anions, were compared to a conventional electrolyte, [EMIM][PF 6 ]. A lower mobility of AAIL compared to [EMIM][PF 6 ], with diffusions as low as 10 -11 m 2 s -1 , was observed. The structural results demonstrated a layered structure near the surface and most of the adsorbed imidazolium cation rings lay flat on the graphene surface. Both MD and quantum computations were performed to shed light on the charge behavior of AAIL electrolytes. As the current results demonstrate, an increase in the anion side-chain length leads to a decrease in both the number of adsorbed ions on the surface and the thickness of the first adsorbed layer. More impressively, it was observed that a low charge concentration in the EDL of AAILs is due to more side-side interactions. This remarkable feature could introduce AAILs as more efficient electrolyte materials than conventional [EMIM][PF 6 ].

  11. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    PubMed Central

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  12. Polymer Electrolyte Membranes for Water Photo-Electrolysis.

    PubMed

    Aricò, Antonino S; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-04-29

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion ® 115) and quaternary ammonium-based (Fumatech ® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion ® -based cell when just TiO₂ anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion.

  13. Effect of ethylene glycol bis (propionitrile) ether (EGBE) on the performance and interfacial chemistry of lithium-rich layered oxide cathode

    NASA Astrophysics Data System (ADS)

    Hong, Pengbo; Xu, Mengqing; Zheng, Xiongwen; Zhu, Yunmin; Liao, Youhao; Xing, Lidan; Huang, Qiming; Wan, Huaping; Yang, Yongjun; Li, Weishan

    2016-10-01

    Ethylene glycol bis (propionitrile) ether (EGBE) is used as an electrolyte additive to improve the cycling stability and rate capability of Li/Li1.2Mn0.54Ni0.13Co0.13O2 cells at high operating voltage (4.8 V). After 150 cycles, cells with 1.0 wt% of EGBE containing electrolyte have remarkable cycling performance, 89.0% capacity retention; while the cells with baseline electrolyte only remain 67.4% capacity retention. Linear sweep voltammetry (LSV) and computation results demonstrate that EGBE preferably oxidizes on the cathode surface compared to the LiPF6/carbonate electrolyte. In order to further understand the effects of EGBE on Li1.2Mn0.54Ni0.13Co0.13O2 cathode upon cycling at high voltage, electrochemical behaviors and ex-situ surface analysis of Li1.2Mn0.54Ni0.13Co0.13O2 are investigated via electrochemical impedance spectroscopy (EIS), scanning electron spectroscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and inductive coupled plasma spectroscopy (ICP-MS). The improved cycling performance can be attributed to more stable and robust surface layer yield via incorporation of EGBE, which mitigates the oxidation of electrolyte on the cathode electrode, and also inhibits the dissolution of bulk transition metal ions as well upon cycling at high voltage.

  14. First-Principles Modeling of Mn(II) Migration above and Dissolution from Li x Mn 2 O 4 (001) Surfaces

    DOE PAGES

    Leung, Kevin

    2016-12-10

    The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH – surface groups; and chemicalmore » reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less

  15. Tensile properties of titanium electrolytically charged with hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1971-01-01

    Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.

  16. Metallization pattern on solid electrolyte or porous support of sodium battery process

    DOEpatents

    Kim, Jin Yong; Li, Guosheng; Lu, Xiaochuan; Sprenkle, Vincent L.; Lemmon, John P.

    2016-05-31

    A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200.degree. C.

  17. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ionmore » storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.« less

  18. 1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode

    NASA Astrophysics Data System (ADS)

    Wang, Long; Ma, Yulin; Li, Qin; Zhou, Zhenxin; Cheng, Xinqun; Zuo, Pengjian; Du, Chunyu; Gao, Yunzhi; Yin, Geping

    2017-09-01

    1,3,6-Hexanetricarbonitrile (HTN) has been investigated as an electrolyte additive to improve the electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode at high operating voltage (4.8 V). Linear sweep voltammetry (LSV) results indicate that HTN can improve the oxidation potential of the electrolyte. The influences of HTN on the electrochemical behaviors and surface properties of the cathode at high voltage have been investigated by galvanostatic charge/discharge test, electrochemical impedance spectroscopy (EIS), and ex-situ physical characterizations. Charge-discharge results demonstrate that the capacity retention of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode in 1% HTN-containing electrolyte after 150 cycles at 0.5 C is improved to 92.3%, which is much higher than that in the standard electrolyte (ED). Combined with the theoretical calculation, ICP tests, XRD and XPS analysis, more stable and homogeneous interface film is confirmed to form on the cathode surface with incorporation of HTN, meanwhile, the electrolyte decomposition and the cathode structural destruction are restrained effectively upon cycling at high voltage, leading to improved electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode.

  19. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    PubMed

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  20. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.

    PubMed

    Yin, Jun; Shan, Shiyao; Ng, Mei Shan; Yang, Lefu; Mott, Derrick; Fang, Weiqin; Kang, Ning; Luo, Jin; Zhong, Chuan-Jian

    2013-07-23

    The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.

  1. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces

    NASA Astrophysics Data System (ADS)

    Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne

    2012-11-01

    In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic repulsion between the multilayered polymer coils which results in breakdown of the layer.

  2. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  3. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  4. Electrolyte-induced surface transformation and transition-metal dissolution of fully delithiated LiNi 0.8Co 0.15Al 0.05O 2

    DOE PAGES

    Faenza, Nicholas V.; Lebens-Higgins, Zachary W.; Mukherjee, Pinaki; ...

    2017-06-08

    Here, enabling practical utilization of layered Rmore » $$\\bar{3}$$ m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode–electrolyte interactions that often induce failure. Using Li[Ni 0.8Co 0.15Al 0.05]O 2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li 2CO 3 content on the magnitude and character of the dissolution reaction was studied.« less

  5. Electrolyte-Induced Surface Transformation and Transition-Metal Dissolution of Fully Delithiated LiNi0.8Co0.15Al0.05O2.

    PubMed

    Faenza, Nicholas V; Lebens-Higgins, Zachary W; Mukherjee, Pinaki; Sallis, Shawn; Pereira, Nathalie; Badway, Fadwa; Halajko, Anna; Ceder, Gerbrand; Cosandey, Frederic; Piper, Louis F J; Amatucci, Glenn G

    2017-09-19

    Enabling practical utilization of layered R3̅m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode-electrolyte interactions that often induce failure. Using Li[Ni 0.8 Co 0.15 Al 0.05 ]O 2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li 2 CO 3 content on the magnitude and character of the dissolution reaction was studied.

  6. Surface functional groups in capacitive deionization with porous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  7. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  8. Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism.

    PubMed

    Park, Sang-Won; DeYoung, Andrew D; Dhumal, Nilesh R; Shim, Youngseon; Kim, Hyung J; Jung, YounJoon

    2016-04-07

    Graphene oxide supercapacitors in the parallel plate configuration are studied via molecular dynamics (MD) simulations. The full range of electrode oxidation from 0 to 100% is examined by oxidizing the graphene surface with hydroxyl groups. Two different electrolytes, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI(+)BF4(-)) as an ionic liquid and its 1.3 M solution in acetonitrile as an organic electrolyte, are considered. While the area-specific capacitance tends to decrease with increasing electrode oxidation for both electrolytes, its details show interesting differences between the organic electrolyte and ionic liquid, including the extent of decrease. For detailed insight into these differences, the screening mechanisms of electrode charges by electrolytes and their variations with electrode oxidation are analyzed with special attention paid to the aspects shared by and the contrasts between the organic electrolyte and ionic liquid.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmaraj, O.; Satyanarayana, N., E-mail: nallanis2011@gmail.com; Venkateswarlu, M.

    A novel fibrous polymer blend [(100-x) % P(VdF-co-HFP)/x % PMMA, x = 10, 20, 30, 40, 50] electrolyte membranes were prepared by electrospinning technique. Structural, thermal and surface morphology of all the compositions of electrospun polymer blend membranes were studied by using XRD, DSC & SEM. The newly developed five different compositions of polymer blend fibrous electrolyte membranes were obtained by soaking in an electrolyte solution contains 1M LiPF{sub 6} in EC: DEC (1:1,v/v). The wet-ability and conductivity of all the compositions of polymer blend electrolyte membranes are evaluated through electrolyte uptake and impedance measurements. The polymer blend [90% P(VdF-co-HFP)/10%more » PMMA] electrolyte membrane showed good wet-ability and high conductivity (1.788 × 10{sup −3} Scm{sup −1}) at room temperature.« less

  10. Time-Dependent Changes in Morphology and Composition of Solid Particles Collected From Heavy Water Electrolyte after Electrolysis with a Palladium Cathode

    NASA Astrophysics Data System (ADS)

    Dash, John; Wang, Q.

    2009-03-01

    Recently, we have observed particles floating on the surfaces of electrolytes after electrolysis, in four cells, each of which contained a heavy water electrolyte and a Pd cathode. Solid particles were unexpected from electrolysis, so it seemed important to characterize these particles. Cu grids were used to collect particles from the electrolyte surface. Then, a scanning electron microscope ( SEM ) and an energy dispersive spectrometer ( EDS ) were used to study the surfaces of these particles and to record time-dependent changes which were occurring. The morphology and composition of the particles were determined . After storage at ambient for 11 days, there were large changes in the morphology and composition of the particles. For example, one portion of the particles contained a large number of microspheres. A typical microsphere contained mostly carbon and palladium, whereas the matrix near the microsphere contained mostly palladium with less carbon and a significant amount of silver. One day later the same microsphere had increased carbon and reduced palladium, but there was no significant change in the composition of the matrix. Results for other particles from other cells will also be presented.

  11. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    PubMed

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  12. The impact of electrolyte on the adsorption of the anionic surfactant methyl ester sulfonate at the air-solution interface: Surface multilayer formation.

    PubMed

    Xu, H; Thomas, R K; Penfold, J; Li, P X; Ma, K; Welbourne, R J L; Roberts, D W; Petkov, J T

    2018-02-15

    The methyl ester sulfonates represent a promising group of anionic surfactants which have the potential for improved performance and biocompatibility in a range of applications. Their solution properties, in particular their tolerance to hard water, suggests that surface ordering may occur in the presence of multi-valent counterion. Understanding their adsorption properties in a range of different circumstances is key to the exploitation of their potential. Neutron reflectivity and surface tension have been used to characterise the adsorption at the air-aqueous solution interface of the anionic surfactant sodium tetradecanoic 2-sulfo 1-methyl ester, C 14 MES, in the absence of electrolyte and in the presence of mono, di, and tri-valent counterions, Na + , Ca 2+ , and Al 3+ . In particular the emphasis has been on exploring the tendency to form layered structures at the interface. In the absence of electrolyte and in the presence of NaCl and CaCl 2 and AlCl 3 at low concentrations monolayer adsorption is observed, and the addition of electrolyte results in enhanced adsorption. In the presence of NaCl and CaCl 2 only monolayer adsorption is observed. However at higher AlCl 3 concentrations surface multilayer formation is observed, in which the number of bilayers at the surface depends upon the surfactant and AlCl 3 concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOEpatents

    Iverson, Eric J; Pierpont, Daniel M; Yandrasits, Michael A; Hamrock, Steven J; Obradovich, Stephan J; Peterson, Donald G

    2014-01-28

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  14. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOEpatents

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2016-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  15. Role of additives in formation of solid-electrolyte interfaces on carbon electrodes and their effect on high-voltage stability.

    PubMed

    Qu, Weiguo; Dorjpalam, Enkhtuvshin; Rajagopalan, Ramakrishnan; Randall, Clive A

    2014-04-01

    The in situ modification of a lithium hexafluorophosphate-based electrolyte using a molybdenum oxide catalyst and small amount of water (1 vol %) yields hydrolysis products such as mono-, di-, and alkylfluorophosphates. The electrochemical stability of ultrahigh-purity, high-surface-area carbon electrodes derived from polyfurfuryl alcohol was tested using the modified electrolyte. Favorable modification of the solid electrolyte interface (SEI) layer on the activated carbon electrode increased the cyclable electrochemical voltage window (4.8-1.2 V vs. Li/Li(+)). The chemical modification of the SEI layer induced by electrolyte additives was characterized by using X-ray photoelectron spectroscopy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using ⁷Li MRI.

    PubMed

    Chang, Hee Jung; Ilott, Andrew J; Trease, Nicole M; Mohammadi, Mohaddese; Jerschow, Alexej; Grey, Clare P

    2015-12-09

    Lithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ (7)Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode. For this purpose, chemical shift (CS) imaging of the metal electrodes is a particularly sensitive diagnostic method, enabling a clear distinction to be made between different types of microstructural growth occurring at the electrode surface and the eventual dendrite growth between the electrodes. The CS imaging shows that mossy types of microstructure grow close to the surface of the anode from the beginning of charge in every cell studied, while dendritic growth is triggered much later. Simple metrics have been developed to interpret the MRI data sets and to compare results from a series of cells charged at different current densities. The results show that at high charge rates, there is a strong correlation between the onset time of dendrite growth and the local depletion of the electrolyte at the surface of the electrode observed both experimentally and predicted theoretical (via the Sand's time model). A separate mechanism of dendrite growth is observed at low currents, which is not governed by salt depletion in the bulk liquid electrolyte. The MRI approach presented here allows the rate and nature of a process that occurs in the solid electrode to be correlated with the concentrations of components in the electrolyte.

  17. Effect of Dispersoid on Sulfonium Ionic Liquid Based Gel Polymer Electrolyte for Lithium Secondary Battery.

    PubMed

    Muthupradeepa, R; Sivakumar, M; Subadevi, R; Suryanarayanan, V; Liu, Wei-Ren

    2018-01-01

    The present study emphases on the effect of toting of TiO2 filler on the electrochemical enactment of polymer electrolyte containing PVdF-co-HFP(30) + SEt3TFSI(10) + EC/PC(60) + TiO2(x) wt% (Poly (vinylidene fluoride-co-hexafluoropropylene + Triethylsulfoniumbis(trifluoromethylsulfonyl)imide + Ethylene carbonate/Propylene carbonate (1:1 ratio) + Titanium dioxide) for lithium battery applications. Composite electrolytes with different weight percentages of TiO2 were prepared and characterized by different surface analytical, thermal and electrochemical techniques. With gradual increase of the amount of TiO2 upto 6 wt%, broadening of the prominent peak has been noted, suggesting a decrease in the degree of crystallinity upon the addition of TiO2, as revealed by X-ray diffraction (XRD). Raman and FT-IR studies confirm the presence of various functional groups, present in the matrix. The electrolyte with TiO2 (6 wt%) has maximum stability of 460 °C, as confirmed by thermal analysis. Conductivity of the composite polymer electrolytes increases upto 6 wt% of TiO2 (3.42 × 10-3 S/cm at 303 K) and further addition, causes a dip down in conductivity, indicating an improvement in the ionic conductivity and thermal stability with the incorporation of TiO2 filler. Surface morphologic images show the presence of surface and cavity in the polymer matrix, filled with the filler uniformly. Voltammetric studies confirm the electrochemical stability of films upto 4.62 V. Coin cell containing Li anode and LiFePO4 cathode along with polymer electrolyte/6 wt% TiO2 filler, delivers a first discharge capacity of 145 mAh/g with the working voltage of 3.4 V.

  18. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  19. Preparation of superhydrophobic titanium surfaces via electrochemical etching and fluorosilane modification

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing

    2012-12-01

    The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.

  20. Stability of the electroosmotic flow of a two-layer electrolyte-dielectric system with external pressure gradient⋆.

    PubMed

    Gorbacheva, E V; Ganchenko, G S; Demekhin, E A

    2018-03-27

    The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly important for the stability of the flow. For the DC case, the external pressure could either stabilize and destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency of the electric field increases, the one-dimensional solution of the problem becomes stable.

  1. Effects of anodic oxidation and hydrothermal treatment on surface characteristics and biocompatibility of Ti-30Nb-1Fe-1Hf alloy

    NASA Astrophysics Data System (ADS)

    Ou, Shih-Fu; Chou, Hsin-Hua; Lin, Chao-Sung; Shih, Ching-Jui; Wang, Kuang-Kuo; Pan, Yung-Ning

    2012-06-01

    Anodic oxidation followed by hydrothermal treatment has been widely applied for surface modification of titanium alloys to precipitate a crystalline hydroxyapatite (HA) layer in order to achieve improved osteoconduction. A majority of the studies in the literature imposed relatively high powers to enhance Ca and P in the anodic oxide film (AOF). However, high powers have been found to cause deterioration of the adhesive strength in one of the author's previous study. In this study, a new electrolyte comprising calcium acetate monohydrate (CA), β-glycerophosphate disodium pentahydrate (β-GP) and HA powder was developed, and the Ti-30Nb-1Fe-1Hf alloy was anodized in this HA-containing electrolyte to a relatively low voltage. Results show that the AOF anodized in the HA-containing electrolyte exhibits a better HA forming ability during hydrothermal treatment, attributing to the presence of HA powder in the electrolyte that effectively enhances both the Ca content and Ca/P ratio in the AOF. On the other hand, the adhesive strength was little affected due to the decrease in size of the craters residing in the AOF. With respect to the biological responses, not much difference in biocompatibility of the treated and untreated Ti-Nb surfaces was obtained. However, the anodized and hydrothermally treated surface promotes the attachment of cells.

  2. Direct Observation of Virtual Electrode Formation Through a Novel Electrolyte-to-Electrode Transition

    NASA Astrophysics Data System (ADS)

    Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin

    2014-03-01

    Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.

  3. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Liu, Xiao; Chang, Jiuli; Wu, Dapeng; Xu, Fang; Zhang, Lingcui; Du, Weimin; Jiang, Kai

    2017-01-01

    Graphene incorporated, N doped activated carbons (GNACs) are synthesized by alkali activation of graphene-polypyrrole composite (G-PPy) at different temperatures for application as electrode materials of supercapacitors. Under optimal activation temperature of 700 °C, the resultant samples, labeled as GNAC700, owns hierarchically porous texture with high specific surface area and efficient ions diffusion channels, N, O functionalized surface with apparent pseudocapacitance contribution and high wettability, thus can deliver a moderate capacitance, a high rate capability and a good cycleability when used as supercapacitor electrode. Additionally, the GNAC700 electrode demonstrates high catalytic activity for the redox reaction of pyrocatechol/o-quinone pair in H2SO4 electrolyte, thus enables a high pseudocapacitance from electrolyte. Under optimal pyrocatechol concentration in H2SO4 electrolyte, the electrode capacitance of GNAC700 increases by over 4 folds to 512 F g-1 at 1 A g-1, an excellent cycleability is also achieved simultaneously. Pyridinic- N is deemed to be responsible for the high catalytic activity. This work provides a promising strategy to ameliorate the capacitive performances of supercapacitors via the synergistic interaction between redox-active electrolyte and catalytic electrodes.

  4. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte.

    PubMed

    Yang, Cheng-Hsien; Huang, Po-Ling; Luo, Xu-Feng; Wang, Chueh-Han; Li, Chi; Wu, Yi-Hsuan; Chang, Jeng-Kuei

    2015-05-22

    Pores and surface functional groups are created on graphene nanosheets (GNSs) to improve supercapacitor properties in a butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL) electrolyte. The GNS electrode exhibits an optimal capacitance of 330 F g(-1) and a satisfactory rate capability within a wide potential range of 3.3 V at 25 °C. Pseudocapacitive effects are confirmed using X-ray photoelectron spectroscopy. Under the same conditions, carbon nanotube and activated carbon electrodes show capacitances of 80 and 81 F g(-1) , respectively. Increasing the operation temperature increases the conductivity and decreases the viscosity of the IL electrolyte, further improving cell performance. At 60 °C, a symmetric-electrode GNS supercapacitor with the IL electrolyte is able to deliver maximum energy and power densities of 140 Wh kg(-1) and 52.5 kW kg(-1) (based on the active material on both electrodes), respectively, which are much higher than the 20 Wh kg(-1) and 17.8 kW kg(-1) obtained for a control cell with a conventional organic electrolyte. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fluoroethylene Carbonate as a Directing Agent in Amorphous Silicon Anodes: Electrolyte Interface Structure Probed by Sum Frequency Vibrational Spectroscopy and Ab Initio Molecular Dynamics.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Soto, Fernando A; Ralston, Walter T; Balbuena, Perla B; Somorjai, Gabor A

    2018-02-14

    Fluorinated compounds are added to carbonate-based electrolyte solutions in an effort to create a stable solid electrolyte interphase (SEI). The SEI mitigates detrimental electrolyte redox reactions taking place on the anode's surface upon applying a potential in order to charge (discharge) the lithium (Li) ion battery. The need for a stable SEI is dire when the anode material is silicon as silicon cracks due to its expansion and contraction upon lithiation and delithiation (charge-discharge) cycles, consequently limiting the cyclability of a silicon-based battery. Here we show the molecular structures for ethylene carbonate (EC): fluoroethylene carbonate (FEC) solutions on silicon surfaces by sum frequency generation (SFG) vibrational spectroscopy, which yields vibrational spectra of molecules at interfaces and by ab initio molecular dynamics (AIMD) simulations at open circuit potential. Our AIMD simulations and SFG spectra indicate that both EC and FEC adsorb to the amorphous silicon (a-Si) through their carbonyl group (C═O) oxygen atom with no further desorption. We show that FEC additives induce the reorientation of EC molecules to create an ordered, up-right orientation of the electrolytes on the Si surface. We suggest that this might be helpful for Li diffusion under applied potential. Furthermore, FEC becomes the dominant species at the a-Si surface as the FEC concentration increases above 20 wt %. Our finding at open circuit potential can now initiate additive design to not only act as a sacrificial compound but also to produce a better suited SEI for the use of silicon anodes in the Li-ion vehicular industry.

  6. Zn2+ and Sr2+ Adsorption at the TiO2 (110)-Electrolyte Interface: Influence of Ionic Strength, Coverage, and Anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang,Z.; Fenter, P.; Cheng, L.

    2006-01-01

    The X-ray standing wave technique was used to probe the sensitivity of Zn{sup 2+} and Sr{sup 2+} ion adsorption to changes in both the adsorbed ion coverage and the background electrolyte species and concentrations at the rutile ({alpha}-TiO{sub 2}) (110)-aqueous interface. Measurements were made with various background electrolytes (NaCl, NaTr, RbCl, NaBr) at concentrations as high as 1 m. The results demonstrate that Zn{sub 2+} and Sr{sub 2+} reside primarily in the condensed layer and that the ion heights above the Ti-O surface plane are insensitive to ionic strength and the choice of background electrolyte (with <0.1 Angstroms changes overmore » the full compositional range). The lack of any specific anion coadsorption upon probing with Br{sup -}, coupled with the insensitivity of Zn{sup 2+} and Sr{sup 2+} cation heights to changes in the background electrolyte, implies that anions do not play a significant role in the adsorption of these divalent metal ions to the rutile (110) surface. Absolute ion coverage measurements for Zn{sup 2+} and Sr{sup 2+} show a maximum Stern-layer coverage of {approx}0.5 monolayer, with no significant variation in height as a function of Stern-layer coverage. These observations are discussed in the context of Gouy-Chapman-Stern models of the electrical double layer developed from macroscopic sorption and pH-titration studies of rutile powder suspensions. Direct comparison between these experimental observations and the MUltiSIte Complexation (MUSIC) model predictions of cation surface coverage as a function of ionic strength revealed good agreement between measured and predicted surface coverages with no adjustable parameters.« less

  7. Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators.

    PubMed

    Zahn, Raphael; Lagadec, Marie Francine; Hess, Michael; Wood, Vanessa

    2016-12-07

    The microstructure of lithium-ion battery separators plays an important role in separator performance; however, here we show that a geometrical analysis falls short in predicting the lithium-ion transport in the electrolyte-filled pore space. By systematically modifying the surface chemistry of a commercial polyethylene separator while keeping its microstructure unchanged, we demonstrate that surface chemistry, which alters separator-electrolyte interactions, influences ionic conductivity and lithium-ion transference number. Changes in separator surface chemistry, particularly those that increase lithium-ion transference numbers can reduce voltage drops across the separator and improve C-rate capability.

  8. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  9. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.

    PubMed

    Smith, Alexander M; Lee, Alpha A; Perkin, Susan

    2016-06-16

    According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.

  10. Electrolytic decontamination of conductive materials

    NASA Astrophysics Data System (ADS)

    Campbell, George M.; Nelson, Timothy O.; Parker, John L.; Getty, Richard H.; Hergert, Tom R.; Lindahl, Kirk A.; Peppers, Larry G.

    1994-10-01

    Using the electrolytic method, we have demonstrated removal of Pu and Am from contaminated conductive material. At EG and G /Rocky Flats, we electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging from greater than 1 000 000 counts per minute (cpm) down to levels ranging from 1500 to 250 cpm using the electrolytic method. More recently, the electrolytic work has continued at Los Alamos National Laboratory as a joint project with EG and G/Rocky Flats. Impressively, electrolytic decontamination of Pu /Am from U surfaces (10 sq cm per side) shows decreases in swipable contamination from 500 000-1 500 000 disintegrations per minute (dpm) down to 0-2 dpm. Moreover, the solid waste product of the electrolytic method is reduced in volume by more than 50 times compared with the liquid waste produced by the previous U decontamination method -- a hot concentrated acid spray leach process.

  11. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes.

    PubMed

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P; Steirer, K Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei

    2018-05-01

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg 2+ cannot penetrate such interphases. Here, we engineer an artificial Mg 2+ -conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V 2 O 5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

  12. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

    NASA Astrophysics Data System (ADS)

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei

    2018-05-01

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

  13. H+ diffusion and electrochemical stability of Li1+x+yAlxTi2-xSiyP3-yO12 glass in aqueous Li/air battery electrolytes

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Xu, Wu; Shao, Yuyan; Chen, Xilin; Wang, Zhiguo; Gao, Fei; Liu, Xingjiang; Zhang, Ji-Guang

    2012-09-01

    It is well known that LATP (Li1+x+yAlxTi2-xSiyP3-yO12) glass is a good lithium (Li)-ion conductor. However, the interaction between LATP glass and H+ ions in aqueous electrolytes (including the diffusion and surface adsorption of H+ ions) needs to be well understood before the long-term application of LATP glass in an aqueous electrolyte can be realized. In this work, we investigate H+-ion diffusion in LATP glass and their interactions with the glass surface using both experimental and modeling approaches. Our results indicate that the apparent H+-related current observed in the initial cyclic voltammetry scan should be attributed to the adsorption of H+ ions on the LATP glass rather than the bulk diffusion of H+ ions. Furthermore, density functional theory calculations indicate that the H+-ion diffusion energy barrier (3.21 eV) is much higher than that for Li+ ions (0.79 eV) and Na+ ions (0.79 eV) in a NASICON-type LiTi2(PO4)3 material. As a result, H+-ion conductivity in LATP glass is negligible at room temperature. However, significant surface corrosion was found after the LATP glass in a strong alkaline electrolyte. Therefore, to prevent LATP glass from corrosion, appropriate electrolytes must be developed for long-term operation of LATP in aqueous Li-air batteries.

  14. Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells

    PubMed Central

    2016-01-01

    We employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.5 mol % yttria-stabilized zirconia (YSZ) single crystal electrolyte below a La0.6Sr0.4CoO3−δ (LSC) electrode. We observe yttrium segregation toward the YSZ/LSC electrolyte/electrode interface under reducing conditions. Under oxidizing conditions, the interface becomes Y depleted. The yttrium segregation is corroborated by an enhanced outward relaxation of the YSZ interfacial metal ion layer. At the same time, an increase in point defect concentration in the electrolyte at the interface was observed, as evidenced by reduced YSZ crystallographic site occupancies for the cations as well as the oxygen ions. Such changes in composition are expected to strongly influence the oxygen ion transport through this interface which plays an important role for the performance of solid oxide fuel cells. The structure of the interface is compared to the bare YSZ(100) surface structure near the microelectrode under identical conditions and to the structure of the YSZ(100) surface prepared under ultrahigh vacuum conditions. PMID:27346923

  15. A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Hao; Xie, Yong; Xiang, Hongfa

    Reformulation of electrolyte systems and improvement of separator wettability are vital to electrochemical performances of rechargeable lithium (Li) metal batteries, especially for suppressing Li dendrites. In this work we report a bifunctional electrolyte additive that improves separator wettability and suppresses Li dendrite growth in LMBs. A triblock polyether (Pluronic P123) was introduced as an additive into a commonly used carbonate-based electrolyte. It was found that addition of 0.2~1% (by weight) P123 into the electrolyte could effectively enhance the wettability of polyethylene separator. More importantly, the adsorption of P123 on Li metal surface can act as an artificial solid electrolyte interphasemore » layer and contribute to suppress the growth of Li dendrites. A smooth and dendritic-free morphology can be achieved in the electrolyte with 0.2% P123. The Li||Li symmetric cells with the 0.2% P123 containing electrolyte exhibit a relatively stable cycling stability at high current densities of 1.0 and 3.0 mA cm-2.« less

  16. An induced current method for measuring zeta potential of electrolyte solution-air interface.

    PubMed

    Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-02-15

    This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively.more » The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.« less

  18. Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode

    NASA Astrophysics Data System (ADS)

    Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun

    A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.

  19. Design and synthesis of guest-host nanostructures to enhance ionic conductivity across nanocomposite membranes

    DOEpatents

    Hu, Michael Z [Knoxville, TN; Kosacki, Igor [Oak Ridge, TN

    2010-01-05

    An ion conducting membrane has a matrix including an ordered array of hollow channels and a nanocrystalline electrolyte contained within at least some or all of the channels. The channels have opposed open ends, and a channel width of 1000 nanometers or less, preferably 60 nanometers or less, and most preferably 10 nanometers or less. The channels may be aligned perpendicular to the matrix surface, and the length of the channels may be 10 nanometers to 1000 micrometers. The electrolyte has grain sizes of 100 nanometers or less, and preferably grain sizes of 1 to 50 nanometers. The electrolyte may include grains with a part of the grain boundaries aligned with inner walls of the channels to form a straight oriented grain-wall interface or the electrolyte may be a single crystal. In one form, the electrolyte conducts oxygen ions, the matrix is silica, and the electrolyte is yttrium doped zirconia.

  20. Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes

    NASA Astrophysics Data System (ADS)

    Basile, Andrew; Ferdousi, Shammi A.; Makhlooghiazad, Faezeh; Yunis, Ruhamah; Hilder, Matthias; Forsyth, Maria; Howlett, Patrick C.

    2018-03-01

    The plating and stripping performance of sodium metal in an ionic liquid electrolyte is improved when including water as an additive. Herein we report for the first time the trend of improved cycling behavior of Na0/+ in N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide with 500 ppm H2O. The addition of water to this ionic liquid electrolyte promotes the breakdown of the [FSI]- anion towards beneficial SEI formation. The benefits during plating and stripping of sodium is observed as lower total polarization during symmetrical cell cycling and decreased electrode/electrolyte interface impedance. Sodium metal surfaces after cycling with 500 ppm H2O are shown to be smooth in morphology in comparison to lower additive concentrations. The outcome of adventitious moisture benefiting Na0/+ cycling in an ionic liquid, contrary to conventional electrolytes, allows flexibility in ionic liquid electrolyte design to the benefit of battery manufacturers.

  1. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  2. Influence of electrical double-layer interaction on coal flotation.

    PubMed

    Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M

    2002-06-15

    In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.

  3. Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process

    NASA Astrophysics Data System (ADS)

    Subramania, A.; Kalyana Sundaram, N. T.; Sukumar, N.

    A micro-porous polymer electrolyte based on PVA was obtained from PVA-PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301-351 K. It is observed that a 2 M LiClO 4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10 -3 S cm -1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn 2O 4 cell to reveal the compatibility and electrochemical stability between electrode materials.

  4. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract: Titania nanotube powders prepared by Process 1 and Process 2 have different crystal structure and specific surface area. - Highlights: • Titania nanotube (TNT) powder is prepared in low water organic electrolyte. • Characterization of TNT powders prepared from aqueous and organic electrolyte. • TNTs prepared by Process 1 are crystalline with higher specific surface area. • TNTs obtained by Process 2 have carbonaceous impurities in the structure.« less

  5. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy

    DOE PAGES

    Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; ...

    2015-03-18

    Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm 2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. Themore » effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less

  6. First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on Li xMn 2O 4 (100) Surfaces [First principles modeling of Mn(II) migration to and dissolution from Li xMn 2O 4 (100) surfaces

    DOE PAGES

    Leung, Kevin

    2012-04-13

    Density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (100) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is necessary but far from sufficient. Key steps that facilitate Mn(II) ion migration include concerted liquid/solid-state motions, proton-induced weakening of Mn-O bonds forming mobile OH - surface groups; andmore » chemical reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI component facilitates electrochemical reduction and decomposition of LEDC. These findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less

  7. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-01-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874

  8. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Kun; Gong, Yunhui; Liu, Boyang

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

  9. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    DOE PAGES

    Fu, Kun; Gong, Yunhui; Liu, Boyang; ...

    2017-04-07

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

  10. N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Shin-Ming; Yang, Shin-Yi; Wang, Yu-Sheng; Tsai, Hsiu-Ping; Tien, Hsi-Wen; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Chang, Chien-Liang; Ma, Chen-Chi M.; Hu, Chi-Chang

    2015-03-01

    Nitrogen-doped reduced graphene oxide (N-rGO) has been synthesized using a simple, efficient method combining instant thermal exfoliation and covalent bond transformation from a melamine-graphene oxide mixture. The capacitive performance of N-rGO has been tested in both aqueous (0.5 M H2SO4) and organic (1 M tetraethyl-ammonium tetrafluoroborate (TEABF4) in propylene carbonate (PC)) electrolytes, which are compared with those obtained from thermal-reduced graphene oxide (T-rGO) and chemical-reduced graphene oxide (C-rGO). The contributions of scan-rate-independent (double-layer-like) and scan-rate-dependent (pseudo-capacitance-like) capacitance of all reduced graphene oxides in both aqueous and organic electrolytes were evaluated and compared. The results show that relatively rich oxygen-containing functional groups on C-rGO form significant ion-diffusion barrier, resulting in worse electrochemical responses in organic electrolyte. By contrast, the N-doped structures, large surface area, and lower density of oxygen-containing groups make N-rGO become a promising electrode material for organic electric double-layer capacitors (EDLCs). The capacitance rate-retention of N-rGO reaches 71.1% in 1 M TEABF4/PC electrolyte when the scan rate is elevated to 200 mVs-1, demonstrating that N-rGO improves the relatively low-power drawback of EDLCs in organic electrolytes. The specific energy and power of a symmetric N-rGO cell in the organic electrolyte reach 25 Wh kg-1 and 10 kW kg-1, respectively.

  11. Natural cellulose fiber as substrate for supercapacitor.

    PubMed

    Gui, Zhe; Zhu, Hongli; Gillette, Eleanor; Han, Xiaogang; Rubloff, Gary W; Hu, Liangbing; Lee, Sang Bok

    2013-07-23

    Cellulose fibers with porous structure and electrolyte absorption properties are considered to be a good potential substrate for the deposition of energy material for energy storage devices. Unlike traditional substrates, such as gold or stainless steel, paper prepared from cellulose fibers in this study not only functions as a substrate with large surface area but also acts as an interior electrolyte reservoir, where electrolyte can be absorbed much in the cellulose fibers and is ready to diffuse into an energy storage material. We demonstrated the value of this internal electrolyte reservoir by comparing a series of hierarchical hybrid supercapacitor electrodes based on homemade cellulose paper or polyester textile integrated with carbon nanotubes (CNTs) by simple solution dip and electrodeposited with MnO2. Atomic layer deposition of Al2O3 onto the fiber surface was used to limit electrolyte absorption into the fibers for comparison. Configurations designed with different numbers of ion diffusion pathways were compared to show that cellulose fibers in paper can act as a good interior electrolyte reservoir and provide an effective pathway for ion transport facilitation. Further optimization using an additional CNT coating resulted in an electrode of paper/CNTs/MnO2/CNTs, which has dual ion diffusion and electron transfer pathways and demonstrated superior supercapacitive performance. This paper highlights the merits of the mesoporous cellulose fibers as substrates for supercapacitor electrodes, in which the water-swelling effect of the cellulose fibers can absorb electrolyte, and the mesoporous internal structure of the fibers can provide channels for ions to diffuse to the electrochemical energy storage materials.

  12. FAST TRACK COMMUNICATION Spectral signatures of the surface reconstructions of Au(110)/electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Bowfield, A.; Almond, N. J.; Mansley, C. P.; Convery, J. H.; Weightman, P.

    2010-10-01

    It is demonstrated that the (1 × 1) structure and the (1 × 2) and (1 × 3) surface reconstructions that occur at Au(110)/electrolyte interfaces have unique optical fingerprints. The optical fingerprints are potential, pH and anion dependent and have potential for use in monitoring dynamic changes at this interface. We also observe a specific reflection anisotropy spectroscopy signature that may arise from anions adsorbed on the (1 × 1) structure of Au(110).

  13. Luminescent Photoelectrochemical Cells. 2. Doped Cadmium Sulfide Photoelectrodes as Probes of Excited-State Processes Which Influence Optical to Electrical Energy Conversion.

    DTIC Science & Technology

    1980-08-12

    evidence for electrolyte oxidation processes, and the temporalL ._4 7 variation of photocurrent and emission. 1. Stoichiometrlc Data The stoichiometric...every 48 h. The electrodes, electrolyte compositions, and light sources are given in Table I. The HP 6214A power supply was connected in series with the... series 10 or 100 S resistor. At the end of the experiment, the crystal was demounted and re-weighed. Surface Effects The surfaces of several samples

  14. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte,more » as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.« less

  15. Studies on the effect of dispersoid(ZrO2) in PVdF-co-HFP based gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Sivakumar, M.; Subadevi, R.; Muthupradeepa, R.

    2013-06-01

    Gel polymer electrolytes containing poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) / Lithium bis(trifluoromethane sulfon)imide (LiTFSI) / mixture of ethylene carbonate and propylene carbonate (EC+PC) with different concendration of ZrO2 has been prepared using the solution casting technique. The conductivity of the prepared electrolyte sample has been determined by AC impedance technique in the range 303-353K. The temperature dependent ionic conductivity plot seems to obey VTF relation. The maximum ionic conductivity value of 4.46 × 10-3S/cm has been obtained for PVdF-co-HFP(32%) - LiTFSI(8%) - EC+PC (60%) + ZrO2(6wt%) based polymer electrolyte. The surface morphology of the prepared electrolyte sample has been studied using SEM.

  16. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  17. Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries.

    PubMed

    Gomez-Ballesteros, Jose L; Balbuena, Perla B

    2017-07-20

    Surface modification of Si anodes in Li-ion batteries by deposition of a thin alucone coating has demonstrated an effective way to help maintain a stable anode/electrolyte interface and good battery performance. In this work, we investigate the interactions and reactivity of the film with electrolyte components using ab initio molecular dynamics simulations. Adsorption of solvent molecules (ethylene carbonate, EC) and salt (LiPF 6 ) and reduction by two mechanisms depending on the Li content of the film (yielding open EC adsorbed on the film or C 2 H 4 + CO 3 2- ) take place near the film/electrolyte and film/anode interfaces. Reaction products incorporate into the structure of the film and create a new kind of solid-electrolyte interphase layer.

  18. Multi-layered proton-conducting electrolyte

    DOEpatents

    Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-27

    The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).

  19. Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries

    DOE PAGES

    Gomez-Ballesteros, Jose L.; Balbuena, Perla B.

    2017-07-07

    Surface modification of Si anodes in Li-ion batteries by deposition of a thin alucone coating has demonstrated an effective way to help maintain a stable anode/electrolyte interface and good battery performance. In this paper, we investigate the interactions and reactivity of the film with electrolyte components using ab initio molecular dynamics simulations. Adsorption of solvent molecules (ethylene carbonate, EC) and salt (LiPF 6), and reduction by two mechanisms depending on the Li content of the film (yielding open EC adsorbed on the film or C 2H 4 + CO 3 2-) take place near the film/electrolyte and film/anode interfaces. Finally,more » reactions products incorporate to the structure of the film and create a new kind of solid-electrolyte interphase layer.« less

  20. Carbohydrate-electrolyte drinks exhibit risks for human enamel surface loss

    PubMed Central

    Passos, Vanara Florêncio; Lima, Juliana Paiva Marques; Santiago, Sérgio Lima; Rodrigues, Lidiany Karla Azevedo

    2016-01-01

    Objectives The aim of this investigation was to give insights into the impact of carbohydrate-electrolyte drinks on the likely capacity of enamel surface dissolution and the influence of human saliva exposure as a biological protective factor. Materials and Methods The pH, titratable acidity (TA) to pH 7.0, and buffer capacity (β) of common beverages ingested by patients under physical activity were analyzed. Then, we randomly distributed 50 specimens of human enamel into 5 groups. Processed and natural coconut water served as controls for testing three carbohydrate-electrolyte drinks. In all specimens, we measured surface microhardness (Knoop hardness numbers) and enamel loss (profilometry, µm) for baseline and after simulated intake cycling exposure model. We also prepared areas of specimens to be exposed to human saliva overnight prior to the simulated intake cycling exposure. The cycles were performed by alternated immersions in beverages and artificial saliva. ANOVA two-way and Tukey HDS tests were used. Results The range of pH, TA, and β were 2.85 - 4.81, 8.33 - 46.66 mM/L and 3.48 - 10.25 mM/L × pH, respectively. The highest capacity of enamel surface dissolution was found for commercially available sports drinks for all variables. Single time human saliva exposure failed to significantly promote protective effect for the acidic attack of beverages. Conclusions In this study, carbohydrate-electrolyte drinks usually consumed during endurance training may have a greater capacity of dissolution of enamel surface depending on their physicochemical proprieties associated with pH and titratable acidity. PMID:27847745

  1. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    NASA Astrophysics Data System (ADS)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  2. Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.

    PubMed

    Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung

    2017-04-12

    The LiFePO 4 surface is coated with AlF 3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO 4 and the aqueous electrolyte (1 M Li 2 SO 4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO 4 by 1 wt % AlF 3 has a high discharge capacity of 132 mAh g -1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO 4 has a specific capacity of 123 mAh g -1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF 3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF 3 coating material has good compatibility with the LiFePO 4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO 4 material in aqueous electrolyte solutions.

  3. Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young

    2014-10-01

    Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.

  4. Deliberate modification of the solid electrolyte interphase (SEI) during lithiation of magnetite, Fe 3O 4: impact on electrochemistry

    DOE PAGES

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; ...

    2017-11-20

    Here, magnetite is a conversion anode material displaying multi-electron transfer during lithiation and delithiation. The solid electrolyte interphase (SEI) on magnetite, Fe 3O 4, electrodes for lithium ion batteries was deliberately modified through the use of fluoroethylene carbonate (FEC) electrolyte additive, improving both capacity retention and rate capability. Analysis showed reduction of FEC at higher voltage compared to non-fluorinated solvents with formation of a modified lithium flouride containing electrode surface.

  5. Evaluation of biofouling in stainless microfluidic channels for implantable multilayered dialysis device

    NASA Astrophysics Data System (ADS)

    Ota, Takashi; To, Naoya; Kanno, Yoshihiko; Miki, Norihisa

    2017-06-01

    An implantable artificial kidney can markedly improve the quality of life of renal disease patients. Our group has developed an implantable multilayered dialysis system consisting of microfluidic channels and dialysis membranes. Long-term evaluation is necessary for implant devices where biofouling is a critical factor, culminating in the deterioration of dialysis performance. Our previous work revealed that surface conditions, which depend on the manufacturing process, determine the amount of biofouling, and that electrolytic etching is the most suitable technique for forming a channel wall free of biofouling. In this study, we investigated the electrolytic etching conditions in detail. We conducted in vitro experiments for 7 d and evaluated the adhesion of biomaterials by scanning electron microscopy. The experiments revealed that a surface mirror-finished by electrolytic etching effectively prevents biofouling.

  6. Solid electrolyte structure

    DOEpatents

    Fraioli, Anthony V.

    1984-01-01

    A solid electrolyte structure for fuel cells and other electrochemical devices providing oxygen ion transfer by a multiplicity of exposed internal surfaces made of a composition containing an oxide of a multivalent transition metal and forming small pore-like passages sized to permit oxygen ion transfer while limiting the transfer of oxygen gas.

  7. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.

    PubMed

    Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi

    2016-10-04

    Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.

  8. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  9. Localised anodic oxidation of aluminium material using a continuous electrolyte jet

    NASA Astrophysics Data System (ADS)

    Kuhn, D.; Martin, A.; Eckart, C.; Sieber, M.; Morgenstern, R.; Hackert-Oschätzchen, M.; Lampke, T.; Schubert, A.

    2017-03-01

    Anodic oxidation of aluminium and its alloys is often used as protection against material wearout and corrosion. Therefore, anodic oxidation of aluminium is applied to produce functional oxide layers. The structure and properties of the oxide layers can be influenced by various factors. These factors include for example the properties of the substrate material, like alloy elements and heat treatment or process parameters, like operating temperature, electric parameters or the type of the used electrolyte. In order to avoid damage to the work-piece surface caused by covering materials in masking applications, to minimize the use of resources and to modify the surface in a targeted manner, the anodic oxidation has to be localised to partial areas. Within this study a proper alternative without preparing the substrate by a mask is investigated for generating locally limited anodic oxidation by using a continuous electrolyte jet. Therefore aluminium material EN AW 7075 is machined by applying a continuous electrolyte jet of oxalic acid. Experiments were carried out by varying process parameters like voltage or processing time. The realised oxide spots on the aluminium surface were investigated by optical microscopy, SEM and EDX line scanning. Furthermore, the dependencies of the oxide layer properties from the process parameters are shown.

  10. Characterization of stainless steel surface processed using electrolytic oxidation and titanium complex ion solution

    NASA Astrophysics Data System (ADS)

    Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae

    2017-09-01

    This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.

  11. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  12. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    PubMed Central

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R.

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  13. Solid-state graft copolymer electrolytes for lithium battery applications.

    PubMed

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-08-12

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (< 80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

  14. Hydrophobic interaction and charge accumulation at the diamond-electrolyte interface.

    PubMed

    Dankerl, M; Lippert, A; Birner, S; Stützel, E U; Stutzmann, M; Garrido, J A

    2011-05-13

    The hydrophobic interaction of surfaces with water is a well-known phenomenon, but experimental evidence of its influence on biosensor devices has been lacking. In this work we investigate diamond field-effect devices, reporting on Hall effect experiments and complementary simulations of the interfacial potential at the hydrogen-terminated diamond/aqueous electrolyte interface. The interfacial capacitance, derived from the gate-dependent Hall carrier concentration, can be modeled only when considering the hydrophobic nature of this surface and its influence on the structure of interfacial water. Our work demonstrates how profoundly the performance of potentiometric biosensor devices can be affected by their surfaces' hydrophobicity.

  15. Synthesis and study of electrolytic materials with a high-energy defect structure and a developed surface

    NASA Astrophysics Data System (ADS)

    Gryzunova, N. N.; Vikarchuk, A. A.; Tyur'kov, M. N.

    2016-10-01

    The defect structure of the electrolytic copper coatings formed upon mechanical activation of a cathode is described. These coatings are shown to have a fragmented structure containing disclination-type defects, namely, terminating dislocation, disclination and twin boundaries; partial disclinations, misorientation bands; and twin layers. They have both growth and deformation origins. The mechanisms of formation of the structural defects are discussed. It is experimentally proved that part of the elastic energy stored in the crystal volume during electrocrystallization can be converted into surface energy. As a result, catalytically active materials with a large developed surface can be synthesized.

  16. Enzyme-modified electrolyte-gated organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Buth, Felix; Donner, Andreas; Stutzmann, Martin; Garrido, Jose A.

    2012-10-01

    Organic solution-gated field-effect transistors (SGFETs) can be operated at low voltages in aqueous environments, paving the way to the use of organic semiconductors in bio-sensing applications. However, it has been shown that these devices exhibit only a rather weak sensitivity to standard electrolyte parameters such as pH and ionic strength. In order to increase the sensitivity and to add specificity towards a given analyte, the covalent attachment of functional groups and enzymes to the device surface would be desirable. In this contribution we demonstrate that enzyme modified organic SGFETs can be used for the in-situ detection of penicillin in the low μM regime. In a first step, silane molecules with amine terminal groups are grafted to α-sexithiophene-based thin film transistors. Surface characterization techniques like X-ray photoemission confirm the modification of the surface with these functional groups, which are stable in standard aqueous electrolytes. We show that the presence of surface-bound amphoteric groups (e.g. amino or carboxylic moieties) increases the pH-sensitivity of the organic SGFETs. In addition, these groups serve as anchoring sites for the attachment of the enzyme penicillinase. The resulting enzyme-FETs are used for the detection of penicillin, enabling the study of the influence of the buffer strength and the pH of the electrolyte on the enzyme kinetics. The functionalization of the organic FETs shown here can be extended to a large variety of enzymes, allowing the specific detection of different chemical and biochemical analytes.

  17. Carboxymethylcellulose adsorption on molybdenite: the effect of electrolyte composition on adsorption, bubble-surface collisions, and flotation.

    PubMed

    Kor, Mohammad; Korczyk, Piotr M; Addai-Mensah, Jonas; Krasowska, Marta; Beattie, David A

    2014-10-14

    The adsorption of carboxymethylcellulose polymers on molybdenite was studied using spectroscopic ellipsometry and atomic force microscopy imaging with two polymers of differing degrees of carboxyl group substitution and at three different electrolyte conditions: 1 × 10(-2) M KCl, 2.76 × 10(-2) M KCl, and simulated flotation process water of multicomponent electrolyte content, with an ionic strength close to 2.76 × 10(-2) M. A higher degree of carboxyl substitution in the adsorbing polymer resulted in adsorbed layers that were thinner and with more patchy coverage; increasing the ionic strength of the electrolyte resulted in increased polymer layer thickness and coverage. The use of simulated process water resulted in the largest layer thickness and coverage for both polymers. The effect of the adsorbed polymer layer on bubble-particle attachment was studied with single bubble-surface collision experiments recorded with high-speed video capture and image processing and also with single mineral molybdenite flotation tests. The carboxymethylcellulose polymer with a lower degree of substitution resulted in almost complete prevention of wetting film rupture at the molybdenite surface under all electrolyte conditions. The polymer with a higher degree of substitution prevented rupture only when adsorbed from simulated process water. Molecular kinetic theory was used to quantify the effect of the polymer on the dewetting dynamics for collisions that resulted in wetting film rupture. Flotation experiments confirmed that adsorbed polymer layer properties, through their effect on the dynamics of bubble-particle attachment, are critical to predicting the effectiveness of polymers used to prevent mineral recovery in flotation.

  18. Measurement of electromagnetic fields over a small electrolytic tank

    NASA Astrophysics Data System (ADS)

    Caffey, T. W. H.; Morris, H. E.

    1990-12-01

    In 1986, Hart proposed a large, hemispherical electrolytic tank and the use of the Surface Electrical Potential method with which to study resistivity changes due to energy-extraction processes in the earth. A second method for the inference of underground resistivity changes, the Controlled Source Audio-MagnetoTelluric method, has been widely used in the field. This method uses measurements of the electromagnetic field from a surface dipole, rather than the surface potential distribution from a buried vertical electrode, as the basis of the technique. If both SEP and CSAMT could be applied to the same model structure in the same electrolytic tank, it would seem that the diagnostic information would be enhanced over the use of each technique separately. Accordingly, the specific objectives were: to determine to what radial extent the bowl could be used as a homogeneous half-space; and to demonstrate acceptable accuracy by measuring the effect of a conducting target immersed in the bowl and comparing the measurements with numerical modeling. Electromagnetic fields over an electrolytic tank have been measured by others, and this report begins with a comparative summary of both prior and present work. The next section presents the formulas for the electromagnetic fields, and explains the choice of a particular method of measuring apparent resistivity. The field theory is also used in the subsequent section to provide error estimates needed for design guidance. The following sections describe the measurements, and the considerations for a larger facility. The appendices include the derivatives of the fields, the electrolyte characteristics, a description of the apparatus, and calibration methods.

  19. Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance

    NASA Astrophysics Data System (ADS)

    Cebollero, J. A.; Lahoz, R.; Laguna-Bercero, M. A.; Larrea, A.

    2017-08-01

    Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.

  20. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    NASA Astrophysics Data System (ADS)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  1. [4,4‧-bi(1,3,2-dioxathiolane)] 2,2‧-dioxide: A novel cathode additive for high-voltage performance in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hyun; Yoon, Sukeun; Hwang, Eui-Hyung; Kwon, Young-Gil; Lee, Young-Gi; Cho, Kuk Young

    2018-02-01

    High-voltage operation of lithium-ion batteries (LIBs) is a facile approach to obtaining high specific energy density, especially for LiNi0·5Mn0·3Co0·2O2 (NMC532) cathodes currently used in mid- and large-sized energy storage devices. However, high-voltage charging (>4.3 V) is accompanied by a rapid capacity fade over long cycles due to severe continuous electrolyte decomposition and instability at the cathode surface. In this study, the sulfite-based compound, [4,4‧-bi(1,3,2-dioxathiolane)] 2,2‧-dioxide (BDTD) is introduced as a novel electrolyte additive to enhance electrochemical performances of alumina-coated NMC532 cathodes cycled in the voltage range of 3.0-4.6 V. X-ray photoelectron spectroscopy (XPS) and AC impedance of cells reveal that BDTD preferentially oxidizes prior to the electrolyte solvents and forms stable film layers on to the cathode surface, preventing increased impedance caused by repeated electrolyte solvent decomposition in high-voltage operation. The cycling performance of the Li/NMC532 half-cell using an electrolyte of 1.0 M LiPF6 in ethylene carbonate/ethyl methyl carbonate (3/7, in volume) can be improved by adding a small amount of BDTD into the electrolyte. BDTD enables the usage of sulfite-type additives for cathodes in high-voltage operation.

  2. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  3. (abstract) Effect of Electrolyte Composition on Carbon Electrode Performance

    NASA Technical Reports Server (NTRS)

    Huang, C-K.; Surampudi, S.; Shen, D. H.; Halpert, G.

    1993-01-01

    Rechargeable lithium cells containing lithium foil anodes are reported to have limited cycle life (at 100% DOD) performance and safety problems. These limitations are understood to be due to the high reactivity of elemental Li with the electrolyte and the formation of high surface area Li during cycling. To mitigate these problems, several lithium alloys and lithium intercalation compounds are being investigated as alternate lithium anode materials. Li(sub x)C has been identified as a promising lithium anode material due to its low equivalent weight, low voltage vs. Li, and improved stability towards various electrolytes. In this paper, we report the results of our studies on the electrolyte evaluation for the Li(sub x)C anode.

  4. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO).

    PubMed

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-06-01

    We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na 2 SiO 3 , KF and NaH 2 PO 4 ·2H 2 O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  5. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    PubMed

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  6. Characterization of Micro-arc Oxidation Coatings on 6N01 Aluminum Alloy Under Different Electrolyte Temperature Control Modes

    NASA Astrophysics Data System (ADS)

    Wang, Xuefei; Zhu, Zongtao; Li, Yuanxing; Chen, Hui

    2018-03-01

    The micro-arc oxidation coatings of 6N01 aluminum alloy produced under different control modes of the electrolyte temperature are discussed in detail. Compared to those coated by a thermostatically controlled treatment, the coatings had different surface characterizations when they were coated without controlling the electrolyte temperature, particularly after treatment involving boiling electrolytes. Scanning electron microscopy and confocal laser scanning microscopy were used to observe the morphology of the coatings. Energy-dispersive spectrometry and x-ray diffractometer were used to characterize their elemental and crystalline phase compositions. The results indicate that the treatment without a controlled electrolyte temperature ultimately led to a thicker and rougher film with a respectably thick inner barrier film, a lower content of γ-Al2O3 and better corrosion resistance.

  7. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements formore » electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.« less

  8. Interfacial Electron Transfer at Sensitized Nanocrystalline TiO2 Electrolyte Interfaces: Influence of Surface Electric Fields and Lewis-Acidic Cations

    NASA Astrophysics Data System (ADS)

    Barr, Timothy J.

    Interfacial electron transfer reactions facilitate charge separation and recombination in dye-sensitized solar cells (DSSCs). Understanding what controls these electron transfer reactions is necessary to develop efficient DSSCs. Gerischer proposed a theory for interfacial electron transfer where the rate constant was related to the energetic overlap between the donor and acceptor states. The present work focuses on understanding how the composition of the CH3CN electrolyte influenced this overlap. It was found that the identity of the electrolyte cation tuned the energetic position of TiO2 electron acceptor states, similar to how pH influences the flatband potential of bulk semiconductors in aqueous electrolytes. For example, the onset for absorption changes, that were attributed to electrons in the TiO2 thin film, were 0.5 V more positive in Mg2+ containing electrolyte than TBA+, where TBA+ is tetrabutylammonium. Similar studies performed on mesoporous, nanocrystalline SnO2 thin films reported a similar cation dependence, but also found evidence for electrons that did not absorb in the visible region that were termed ‘phantom electrons.’. Electron injection is known to generate surface electric fields on the order of 2 MV/cm. The rearrangement of cations in response to surface electric fields, termed screening, was investigated. It was found that magnitude of the electric field and the screening dynamics were dependent on the identity of the electrolyte cation. The rate of charge recombination to the anionic iodide/triiodide redox mediator correlated with the screening ability of the cation, and was initially thought to control charge recombination. However, it was difficult to determine whether electron diffusion or driving force were also cation dependent. Therefore, a in-lab built apparatus, termed STRiVE, was constructed that could disentangle the influence electron diffusion, driving force, and electric fields had on charge recombination. It was found that electron diffusion was independent of the electrolyte cation. Furthermore, charge recombination displayed the same cation-sensitivity using both anionic and cationic redox mediators, indicating electric fields did not cause the cation-dependence of charge recombination. Instead, it was found that the electrolyte cation tuned the energetic position of the TiO2 acceptor states and modulated the driving force for charge recombination.

  9. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness.

    PubMed

    Meister, Paul; Qi, Xin; Kloepsch, Richard; Krämer, Elisabeth; Streipert, Benjamin; Winter, Martin; Placke, Tobias

    2017-02-22

    The inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al 2 O 3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Estimation of energy density of Li-S batteries with liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.

    2016-09-01

    With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.

  11. Electrochemical Deburring

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1983-01-01

    Electrochemical deburring removes burrs from assembled injector tubes. Since process uses liquid anodic dissolution in liquid electrolyte to proide deburring action, smoothes surfaces and edges in otherwise inaccessible areas. Tool consists of sleeve that contains metallic ring cathode. Sleeve is placed over tube, and electrolytic solution is forced to flow between tube and sleeve. The workpiece serves an anode.

  12. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, L. Y.; Wu, C. L.; Cheng, Y. L.; Chen, G. S.

    2017-11-01

    The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

  13. Electronic Structure at Electrode/Electrolyte Interfaces in Magnesium based Batteries

    NASA Astrophysics Data System (ADS)

    Balachandran, Janakiraman; Siegel, Donald

    2015-03-01

    Magnesium is a promising multivalent element for use in next generation electrochemical energy storage systems. However, a wide range of challenges such as low coulombic efficiency, low/varying capacity and cyclability need to be resolved in order to realize Mg based batteries. Many of these issues can be related to interfacial phenomena between the Mg anode and common electrolytes. Ab-initio based computational models of these interfaces can provide insights on the interfacial interactions that can be difficult to probe experimentally. In this work we present ab-initio computations of common electrolyte solvents (THF, DME) in contact with two model electrode surfaces namely -- (i) an ``SEI-free'' electrode based on Mg metal and, (ii) a ``passivated'' electrode consisting of MgO. We perform GW calculations to predict the reorganization of the molecular orbitals (HOMO/LUMO) upon contact with the these surfaces and their alignment with respect to the Fermi energy of the electrodes. These computations are in turn compared with more efficient GGA (PBE) & Hybrid (HSE) functional calculations. The results obtained from these computations enable us to qualitatively describe the stability of these solvent molecules at electrode-electrolyte interfaces

  14. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.

    PubMed

    Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying

    2014-01-21

    Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g(-1) and capacity retention at 70.7% (904 mA h g(-1)) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.

  15. Protein Monolayer Formation at Air-Electrolyte Interface:. a Langmuir-Blodgett Study

    NASA Astrophysics Data System (ADS)

    Pal, Prabir; Kamilya, Tapanendu; Mahato, Mrityunjoy; Talapatra, G. B.

    The interfacial surface activity of a protein, ovalbumin (OVA) at bare air/water interface in presence and also in absence of electrolyte (KCl) in subphase has been investigated. The surface activity was measured as a function of time. It has been found that, the presence of KCl in aqueous subphase enhances the adsorption rate of the protein. The changes of area/molecule, compressibility, rigidity and unfolding of OVA are trivial up to 10 mM KCl concentration. These properties of OVA, above 10 mM KCl concentration are significant and have been explained in the perspective of DLVO theory and many-body ion-protein dispersion potentials. The presence of high concentration of electrolyte increases the β-structure of OVA, resulting into larger unfolding as well as larger intermolecular aggregates. The overall study indicates that KCl perturbs the OVA monolayer.

  16. High performance methanol-oxygen fuel cell with hollow fiber electrode

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)

    1983-01-01

    A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.

  17. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  18. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  19. Formation of anodic TiO2 nanotube arrays in NaOH added fluoride-ethylene glycol electrolyte for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Nyein, Nyein; Tan, Wai Kian; Kawamura, Go; Matsuda, Atsunori; Lockman, Zainovia

    2017-07-01

    TiO2 nanotube (TNT) arrays were formed by anodizing titanium foil in fluoride-ethylene glycol (EG) electrolyte added to it either water (H2O) or sodium hydroxide (NaOH) as oxidant. In NaOH added fluoride-EG electrolyte, 10 µm long TNT arrays were formed compared to 5 μm long nanotubes in H2O added fluoride-EG electrolyte. When NaOH was added to EG, the electrolyte pH was 9. As the pH of the electrolyte was rather high, surface etching of the nanotubes was reduced resulting in tubes with longer length. Moreover, the addition of NaOH into fluoride-EG resulted in the crystallization of anatase in the as-made TNT arrays. Annealing obviously improved the crystallinity of the oxide. The TNT arrays were then used as a photoanode in a dye-sensitized solar cell (DSSC). A photoconversion efficiency of 2.4 % was recorded with photocurrent of 6.9 mA/cm2.

  20. Improving halide-containing magnesium-ion electrolyte performance via sterically hindered alkoxide ligands

    NASA Astrophysics Data System (ADS)

    Nist-Lund, Carl A.; Herb, Jake T.; Arnold, Craig B.

    2017-09-01

    While homoleptic magnesium dialkoxides (MgR2, R = alkoxide) have shown promise as precursors for magnesium-ion electrolytes, the effect of ligand steric bulk on the performance of electrolytes based on these compounds is not fully understood. Increasing steric hindrance, studied via R groups with additional phenyl moieties, produces electrolytes with sequentially lower deposition overpotentials (less than -90 mV), higher purity Mg deposits (ca. 100% Mg), and lower overall cell impedances. The two largest alkoxide ligands show consistent cycling behavior and low stripping and plating overpotentials over 200 constant-current plating/stripping cycles. A deep-red visual change and the presence of large solubilized magnesium particulates above 450 nm in size is observed in an electrolyte containing magnesium bis(triphenylmethoxide) and aluminum chloride in contact with an abraded magnesium anode. Further morphological and impedance characterization show that this electrolyte system rapidly activates the magnesium metal anode surface to produce low overpotentials and, as such, is a candidate for further investigation.

  1. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Kesler, Olivera

    2012-12-01

    Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

  2. A sealed optical cell for the study of lithium-electrode|electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Howlett, P. C.; MacFarlane, D. R.; Hollenkamp, A. F.

    A sealed, symmetrical, lithium optical cell, which enables optical images of lithium surface deposits and in situ Raman spectra to be obtained simply and conveniently during charge-discharge cycling of lithium metal electrodes, has been designed and tested. A conventional aprotic liquid, 1 M lithium hexafluorophosphate in propylene carbonate, and an experimental ionic liquid, 20 mol% lithium bis(trifluoromethanesulfonyl)amide in 1-ethyl 3-methyl imidazolium bis(trifluoromethanesulfonyl)amide, are investigated as electrolyte solutions. Images obtained from the cell with the former electrolyte solution demonstrate the problems associated with cycling lithium metal electrodes. Images obtained with the latter electrolyte solution provide clear evidence that continued investigation of ionic liquids for use with lithium metal electrodes is warranted. Operation of the cell with the conventional electrolyte yields Raman spectra of good quality. The spectra display vibrational modes which arise from the electrolyte, as well as several additional modes which are associated with the deposits formed during cycling.

  3. Fast formation cycling for lithium ion batteries

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Du, Zhijia; ...

    2017-01-09

    The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li +) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li +. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fastmore » and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF 6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Finally, results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.« less

  4. Surface characteristics of anodized and hydrothermally treated titatnium with an increasing concentration of calcium ion

    NASA Astrophysics Data System (ADS)

    Park, Il Song; Bae, Tae Sung; Seol, Kyeong Won

    2006-10-01

    Titanium is widely used as an implant material due to its good mechanical properties and the excellent biocompatibility of the oxide film on the surface. To modify the unstable oxide surface of pure titanium, plasma electrolytic oxidation was applied in this study. The electrolyte used for anodizing was a mixture of GP (glycerophosphate disodium salt) and CA (calcium acetate). In addition, a hydrothermal treatment was performed to precipitate a calcium phosphate crystal on the titanium oxide layer for bioactivity. The effect of the CA concentration of the electrolyte on the surface of titanium was investigated, with CA concentrations at 0.1 M, 0.2 M, and 0.3 M. A high concentration of CA results in a low breakdown voltage; hence many large micropores were formed on the anodized surface. Moreover, the size of the HA crystals was more minute in proportion to the increasing concentration of CA. The crystal phase of titanium dioxide was mainly anatase, and a rutile phase was also observed. As the size and/or amount of HA crystals increased, the surface roughness increased. However, the surface roughness could be decreased by fully and uniformly covering the surface with HA crystals. The corrosion resistance in the saline solution was increased by anodic spark oxidation. In addition, it was slightly increased by a hydrothermal treatment. It is considered that a more stable and thicker titanium oxide layer is formed by anodic oxidation and a hydrothermal treatment.

  5. Liquid metal electric pump

    DOEpatents

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  6. METHOD OF ELECTROPOLISHING URANIUM

    DOEpatents

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  7. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  8. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration.

    PubMed

    Wang, Mei; Gao, Bin; Tang, Deshan; Yu, Congrong

    2018-04-01

    Simultaneous aggregation and retention of nanoparticles can occur during their transport in porous media. In this work, the concurrent aggregation and transport of GO in saturated porous media were investigated under the conditions of different combinations of temperature, cation type (valence), and electrolyte concentration. Increasing temperature (6-24 °C) at a relatively high electrolyte concentration (i.e., 50 mM for Na + , 1 mM for Ca 2+ , 1.75 mM for Mg 2+ , and 0.03 and 0.05 mM for Al 3+ ) resulted in enhanced GO retention in the porous media. For instance, when the temperature increased from 6 to 24 °C, GO recovery rate decreased from 31.08% to 6.53% for 0.03 mM Al 3+ and from 27.11% to 0 for 0.05 mM Al 3+ . At the same temperature, increasing cation valence and electrolyte concentration also promoted GO retention. Although GO aggregation occurred in the electrolytes during the transport, the deposition mechanisms of GO retention in the media depended on cation type (valence). For 50 mM Na + , surface deposition via secondary minima was the dominant GO retention mechanism. For multivalent cation electrolytes, GO aggregation was rapid and thus other mechanisms such as physical straining and sedimentation also played important roles in controlling GO retention in the media. After passing through the columns, the GO particles in the effluents showed better stability with lower initial aggregation rates. This was probably because less stable GO particles with lower surface charge densities in the porewater were filtered by the porous media, resulting in more stable GO particle with higher surface charge densities in the effluents. An advection-dispersion-reaction model was applied to simulate GO breakthrough curves and the simulations matched all the experimental data well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Specific effects of background electrolytes on the kinetics of step propagation during calcite growth

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Encarnación; Putnis, Christine V.; Wang, Lijun; Putnis, Andrew

    2011-07-01

    The mechanisms by which background electrolytes modify the kinetics of non-equivalent step propagation during calcite growth were investigated using Atomic Force Microscopy (AFM), at constant driving force and solution stoichiometry. Our results suggest that the acute step spreading rate is controlled by kink-site nucleation and, ultimately, by the dehydration of surface sites, while the velocity of obtuse step advancement is mainly determined by hydration of calcium ions in solution. According to our results, kink nucleation at acute steps could be promoted by carbonate-assisted calcium attachment. The different sensitivity of obtuse and acute step propagation kinetics to cation and surface hydration could be the origin of the reversed geometries of calcite growth hillocks (i.e., rate of obtuse step spreading < rate of acute step spreading) observed in concentrated (ionic strength, IS = 0.1) KCl and CsCl solutions. At low IS (0.02), ion-specific effects seem to be mainly associated with changes in the solvation environment of calcium ions in solution. With increasing electrolyte concentration, the stabilization of surface water by weakly paired salts appears to become increasingly important in determining step spreading rate. At high ionic strength (IS = 0.1), overall calcite growth rates increased with increasing hydration of calcium in solution (i.e., decreasing ion pairing of background electrolytes for sodium-bearing salts) and with decreasing hydration of the carbonate surface site (i.e., increasing ion pairing for chloride-bearing salts). Changes in growth hillock morphology were observed in the presence of Li +, F - and SO42-, and can be interpreted as the result of the stabilization of polar surfaces due to increased ion hydration. These results increase our ability to predict crystal reactivity in natural fluids which contain significant amounts of solutes.

  10. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes.

    PubMed

    Sul, Y T; Johansson, C B; Jeong, Y; Albrektsson, T

    2001-06-01

    Titanium implants have a thin oxide surface layer. The properties of this oxide layer may explain the good biocompatibility of titanium implants. Anodic oxidation results in a thickening of the oxide film, with possible improved biocompatability of anodized implants. The aim of the present study was twofold: (1) firstly, to characterize the growth behaviour of galvanostatically prepared anodic oxide films on commercially pure (c.p.) titanium and (2) secondly, to establish a better understanding of the electroche0mical growth behaviour of anodic oxide on commercially pure titanium (ASTM grade 1) after changes of the electrochemical parameters in acetic acid, phosphoric acid, calcium hydroxide, and sodium hydroxide under galvanostatic anodizing mode. The oxide thickness was measured by Ar sputter etching in Auger Electron spectroscopy (AES) and the colours were estimated by an L*a*b* system (lightness, hue and saturation) using a spectrophotometer. In the first part of our study, it was demonstrated that the interference colours were useful to identify the thickness of titanium oxide. It was also found that the anodic forming voltages with slope (dV/dt) in acid electrolytes were higher than in alkaline electrolytes. Each of the used electrolytes demonstrates an intrinsically specific growth constant (nm/V) in the range of 1.4--2.78 nm/V. In the second part of our study we found, as a general trend, that an increase of electrolyte concentration and electrolyte temperature respectively decreases the anodic forming voltage, the anodic forming rate (nm/s) and the current efficiency (nm.cm(2)/C), while an increase of the current density and the surface area ratio of the anode to cathode increase the anodic forming voltage, the anodic forming rate and the current efficiency. The effects of electrolyte concentration, electrolyte temperature, and agitation speed were explained on the basis of the model of the electrical double layer.

  11. Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration

    PubMed Central

    Moreau, P.; De Vito, E.; Quazuguel, L.; Boniface, M.; Bordes, A.; Rudisch, C.; Bayle-Guillemaud, P.; Guyomard, D.

    2016-01-01

    The failure mechanism of silicon-based electrodes has been studied only in a half-cell configuration so far. Here, a combination of 7Li, 19F MAS NMR, XPS, TOF-SIMS, and STEM-EELS, provides an in-depth characterization of the solid electrolyte interphase (SEI) formation on the surface of silicon and its evolution upon aging and cycling with LiNi1/3Mn1/3Co1/3O2 as the positive electrode in a full Li-ion cell configuration. This multiprobe approach indicates that the electrolyte degradation process observed in the case of full Li-ion cells exhibits many similarities to what has been observed in the case of half-cells in previous works, in particular during the early stages of the cycling. Like in the case of Si/Li half-cells, the development of the inorganic part of the SEI mostly occurs during the early stage of cycling while an incessant degradation of the organic solvents of the electrolyte occurs upon cycling. However, for extended cycling, all the lithium available for cycling is consumed because of parasitic reactions and is either trapped in an intermediate part of the SEI or in the electrolyte. This nevertheless does not prevent the further degradation of the organic electrolyte solvents, leading to the formation of lithium-free organic degradation products at the extreme surface of the SEI. At this point, without any available lithium left, the cell cannot function properly anymore. Cycled positive and negative electrodes do not show any sign of particles disconnection or clogging of their porosity by electrolyte degradation products and can still function in half-cell configuration. The failure mechanism for full Li-ion cells appears then very different from that known for half-cells and is clearly due to a lack of cyclable lithium because of parasitic reactions occurring before the accumulation of electrolyte degradation products clogs the porosity of the composite electrode or disconnects the active material particles. PMID:27212791

  12. Secondary lithium batteries for space applications

    NASA Technical Reports Server (NTRS)

    Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.

    1981-01-01

    Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.

  13. Electrochemical cell structure including an ionomeric barrier

    DOEpatents

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  14. Mechanical properties of PEO-coatings on the surface of magnesium alloy MA8 modified by TiN nanoparticles

    NASA Astrophysics Data System (ADS)

    Imshinetsky, Igor M.; Mashtalyar, Dmitriy V.; Sunebryukhov, Sergey L.; Gnedenkov, Sergey V.

    2017-09-01

    The methods to form protective coatings by the plasma electrolytic oxidation method (PEO) in the electrolytic system containing nanosized particles of titanium nitride has been develoted. Tribological and morfological studies of the composite coatings have been carried out. It has been established that the microhardness of the coating with nanoparticles concentration of 3 g/l increases by 2 folds, while the wear resistance - by 2.2 fold, as compared to respective values for the PEO-coating formed in the electrolyte without nanoparticles.

  15. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    NASA Astrophysics Data System (ADS)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  16. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes.

    PubMed

    Cheng, Lei; Chen, Wei; Kunz, Martin; Persson, Kristin; Tamura, Nobumichi; Chen, Guoying; Doeff, Marca

    2015-01-28

    Cubic garnet phases based on Al-substituted Li7La3Zr2O12 (LLZO) have high ionic conductivities and exhibit good stability versus metallic lithium, making them of particular interest for use in next-generation rechargeable battery systems. However, high interfacial impedances have precluded their successful utilization in such devices until the present. Careful engineering of the surface microstructure, especially the grain boundaries, is critical to achieving low interfacial resistances and enabling long-term stable cycling with lithium metal. This study presents the fabrication of LLZO heterostructured solid electrolytes, which allowed direct correlation of surface microstructure with the electrochemical characteristics of the interface. Grain orientations and grain boundary distributions of samples with differing microstructures were mapped using high-resolution synchrotron polychromatic X-ray Laue microdiffraction. The electrochemical characteristics are strongly dependent upon surface microstructure, with small grained samples exhibiting much lower interfacial resistances and better cycling behavior than those with larger grain sizes. Low area specific resistances of 37 Ω cm(2) were achieved; low enough to ensure stable cycling with minimal polarization losses, thus removing a significant obstacle toward practical implementation of solid electrolytes in high energy density batteries.

  17. Nanopipette delivery: influence of surface charge.

    PubMed

    Shi, Wenqing; Sa, Niya; Thakar, Rahul; Baker, Lane A

    2015-07-21

    In this report, transport through a nanopipette is studied and the interplay between current rectification and ion delivery for small pipettes is examined. First, surface charge dependence of concentration polarization effects in a quartz nanopipette was investigated. Electrical characterization was performed through current-potential (I-V) measurements. In addition, fluorescein (an anionic fluorescent probe) was utilized to optically map ion enrichment and ion depletion in the nanopipette tip. Bare nanopipettes and polyethylenimine (PEI)-modified nanopipettes were examined. Results confirm that concentration polarization is a surface charge dependent phenomenon and delivery can be controlled through modification of surface charge. The relationship between concentration polarization effects and voltage-driven delivery of charged electroactive species was investigated with a carbon ring/nanopore electrode fabricated from pyrolyzed parylene C (PPC). Factors such as surface charge polarity of the nanopipette, electrolyte pH, and electrolyte concentration were investigated. Results indicate that with modification of surface charge, additional control over delivery of charged species can be achieved.

  18. Fuel cell anode configuration for CO tolerance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  19. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites.

    PubMed

    Zhou, Yongsheng; Jin, Pan; Zhou, Yatong; Zhu, Yingchun

    2018-06-13

    This work reports the nanocomposites of graphitic nanofibers (GNFs) and carbon nanotubes (CNTs) as the electrode material for supercapacitors. The hybrid CNTs/GNFs was prepared via a synthesis route that involved catalytic chemical vapor deposition (CVD) method. The structure and morphology of CNTs/GNFs can be precisely controlled by adjusting the flow rates of reactant gases. The nest shape entanglement of CNTs and GNFs which could not only have high conductivity to facilitate ion transmission, but could also increase surface area for more electrolyte ions access. When assembled in a symmetric two-electrode system, the CNTs/GNFs-based supercapacitor showed a very good cycling stability of 96% after 10 000 charge/discharge cycles. Moreover, CNTs/GNFs-based symmetric device can deliver a maximum specific energy of 72.2 Wh kg -1 at a power density of 686.0 W kg -1 . The high performance of the hybrid performance can be attributed to the wheat like GNFs which provide sufficient accessible sites for charge storage, and the CNTs skeleton which provide channels for charge transport.

  20. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  1. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE PAGES

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...

    2017-12-05

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  2. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland

    2018-05-01

    A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.

  3. Modification of the surface adsorption properties of alumina-supported Pd catalysts for the electrocatalytic hydrogenation of phenol.

    PubMed

    Cirtiu, Ciprian Mihai; Hassani, Hicham Oudghiri; Bouchard, Nicolas-Alexandre; Rowntree, Paul A; Ménard, Hugues

    2006-07-04

    The electrocatalytic hydrogenation (ECH) of phenol has been studied using palladium supported on gamma-alumina (10% Pd-Al2O3) catalysts. The catalyst powders were suspended in aqueous supporting electrolyte solutions containing methanol and short-chain aliphatic acids (acetic acid, propionic acid, or butyric acid) and were dynamically circulated through a reticulated vitreous carbon cathode. The efficiency of the hydrogenation process was measured as a function of the total electrolytic charge and was compared for different types of supporting electrolyte and for various solvent compositions. Our results show that these experimental parameters strongly affect the overall ECH efficiency of phenol. The ECH efficiency and yields vary inversely with the quantity of methanol present in the electrolytic solutions, whereas the presence of aliphatic carboxylic acids increased the ECH efficiency in proportion to the chain length of the specific acids employed. In all cases, ECH efficiency was directly correlated with the adsorption properties of phenol onto the Pd-alumina catalyst in the studied electrolyte solution, as measured independently using dynamic adsorption isotherms. It is shown that the alumina surface binds the aliphatic acids via the carboxylate terminations and transforms the catalyst into an organically functionalized material. Temperature-programmed mass spectrometry analysis and diffuse-reflectance infrared spectroscopy measurements confirm that the organic acids are stably bound to the alumina surface below 200 degrees C, with coverages that are independent of the acid chain length. These reproducibly functionalized alumina surfaces control the adsorption/desorption equilibrium of the target phenol molecules and allow us to prepare new electrocatalytic materials to enhance the efficiency of the ECH process. The in situ grafting of specific aliphatic acids on general purpose Pd-alumina catalysts offers a new and flexible mechanism to control the ECH process to enhance the selectivity, efficiency, and yields according to the properties of the specific target molecule.

  4. Process for manufacturing a lithium alloy electrochemical cell

    DOEpatents

    Bennett, William R.

    1992-10-13

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  5. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  6. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    NASA Astrophysics Data System (ADS)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  7. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  8. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  9. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  10. Performance model of a recirculating stack nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1994-01-01

    A theoretical model of the nickel hydrogen battery cell has been utilized to describe the chemical and physical changes during charge and overcharge in a recirculating stack nickel hydrogen cell. In particular, the movement of gas and electrolyte have been examined as a function of the amount of electrolyte put into the cell stack during cell activation, and as a function of flooding in regions of the gas screen in this cell design. Additionally, a two-dimensional variation on this model has been utilized to describe the effects of non-uniform loading in the nickel-electrode on the movement of gas and electrolyte within the recirculating stack nickel hydrogen cell. The type of nonuniform loading that has been examined here is that associated with higher than average loading near the surface of the sintered nickel electrode, a condition present to some degree in many nickel electrodes made by electrochemical impregnation methods. The effects of high surface loading were examined primarily under conditions of overcharge, since the movement of gas and electrolyte in the overcharging condition was typically where the greatest effects of non-uniform loading were found. The results indicate that significant changes in the capillary forces between cell components occur as the percentage of free volume in the stack filled by electrolyte becomes very high. These changes create large gradients in gas-filled space and oxygen concentrations near the boundary between the separator and the hydrogen electrode when the electrolyte fill is much greater than about 95 percent of the stack free volume. At lower electrolyte fill levels, these gaseous and electrolyte gradients become less extreme, and shift through the separator towards the nickel electrode. Similarly, flooding of areas in the gas screen cause higher concentrations of oxygen gas to approach the platinum/hydrogen electrode that is opposite the back side of the nickel electrode. These results illustrate the need for appropriate pore size distributions, and the maintenance of both convective electrolyte and gas flow paths through the stack, if the recirculating stack nickel hydrogen cell design is to work properly.

  11. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy.

    PubMed

    Burgess, Mark; Hernández-Burgos, Kenneth; Cheng, Kevin J; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-06-21

    Elucidating the impact of interactions between the electrolyte and electroactive species in redox active polymers is key to designing better-performing electrodes for electrochemical energy storage and conversion. Here, we present on the improvement of the electrochemical activity of poly(para-nitrostyrene) (PNS) in solution and as a film by exploiting the ionic interactions between reduced PNS and K(+), which showed increased reactivity when compared to tetrabutylammonium (TBA(+))- and Li(+)-containing electrolytes. While cyclic voltammetry enabled the study of the effects of cations on the electrochemical reversibility and the reduction potential of PNS, scanning electrochemical microscopy (SECM) provided new tools to probe the ionic and redox reactivity of this system. Using an ion-sensitive Hg SECM tip allowed to probe the ingress of ions into PNS redox active films, while surface interrogation SECM (SI-SECM) measured the specific kinetics of PNS and a solution phase mediator in the presence of the tested electrolytes. SI-SECM measurements illustrated that the interrogation kinetics of PNS in the presence of K(+) compared to TBA(+) and Li(+) are greatly enhanced under the same surface concentration of adsorbed radical anion, exhibiting up to a 40-fold change in redox kinetics. We foresee using this new application of SECM methods for elucidating optimal interactions that enhance polymer reactivity for applications in redox flow batteries.

  12. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  13. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  14. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Sahu, Vikrant; Goel, Shubhra; Sharma, Raj Kishore; Singh, Gurmeet

    2015-12-01

    This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage.This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06083d

  15. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    NASA Astrophysics Data System (ADS)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  16. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  17. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  18. Atomistic and molecular effects in electric double layers at high surface charges

    DOE PAGES

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less

  19. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

    PubMed

    Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S

    2010-07-14

    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

  20. Interfacial behavior of polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, John; Kerr, John B.; Han, Yong Bong

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combinedmore » with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.« less

  1. Electrolyte with Low Polysulfide Solubility for Li-S Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke; Wu, Qin; Tong, Xiao

    Here, Li-S battery is one of the most promising next generation rechargeable battery technologies due to its high theoretical energy density and low material cost. While its success is impeded by the low energy efficiency and fast capacity fade primarily caused by the discharge intermediates, Li-polysulfides (PS), dissolution in the electrolyte. Mitigation of PS dissolution in electrolyte involves the search of new electrolyte solvent system that exhibits poor solvation to the PS while still have good solvation ability to the electrolyte salt for high ionic conductivity. Applying co-solvents with reduced solvating power but compatible with the state of art Li-Smore » battery’s ether-based electrolyte is one of the most promising concepts. This route is also advantageous of having a low scale-up cost. With the aids of Quantum Chemical Calculation, we have identified high carbon-to-oxygen (C/O) ratio ethers as co-solvent in the new electrolytes that effectively impede PS dissolution while still maintaining high ionic conductivity. Significantly improved cycle life and cycling Coulombic efficiency are observed for Li-S cells using the new composite electrolytes. Anode analysis with different methods also demonstrate that reducing electrolyte’s PS solubility results in less sulfur total amount on the lithium anode surface and lower ratio of the longer-chain PS, which is probably a sign of suppressed side reactions between the anode and PS in the electrolyte.« less

  2. Electrolyte with Low Polysulfide Solubility for Li-S Batteries

    DOE PAGES

    Sun, Ke; Wu, Qin; Tong, Xiao; ...

    2018-05-23

    Here, Li-S battery is one of the most promising next generation rechargeable battery technologies due to its high theoretical energy density and low material cost. While its success is impeded by the low energy efficiency and fast capacity fade primarily caused by the discharge intermediates, Li-polysulfides (PS), dissolution in the electrolyte. Mitigation of PS dissolution in electrolyte involves the search of new electrolyte solvent system that exhibits poor solvation to the PS while still have good solvation ability to the electrolyte salt for high ionic conductivity. Applying co-solvents with reduced solvating power but compatible with the state of art Li-Smore » battery’s ether-based electrolyte is one of the most promising concepts. This route is also advantageous of having a low scale-up cost. With the aids of Quantum Chemical Calculation, we have identified high carbon-to-oxygen (C/O) ratio ethers as co-solvent in the new electrolytes that effectively impede PS dissolution while still maintaining high ionic conductivity. Significantly improved cycle life and cycling Coulombic efficiency are observed for Li-S cells using the new composite electrolytes. Anode analysis with different methods also demonstrate that reducing electrolyte’s PS solubility results in less sulfur total amount on the lithium anode surface and lower ratio of the longer-chain PS, which is probably a sign of suppressed side reactions between the anode and PS in the electrolyte.« less

  3. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. Copyright © 2016. Published by Elsevier B.V.

  4. Allotropic control: How certain fluorinated carbonate electrolytes protect aluminum current collectors by promoting the formation of insoluble coordination polymers

    DOE PAGES

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.

    2016-07-28

    Here, there is a strong incentive for increasing the operation voltage of Li-ion cells above 4.5 V in order to increase the density of stored energy. Aluminum is an inexpensive, lightweight metal that is commonly used as a positive electrode current collector in these cells. Imide LiX salts, such as lithium bis(trifluoromethylsulfonyl)imide (X = TFSI), and lithium bis(fluorosulfonyl)imide (X = FSI), are chemically stable on the energized lithiated transition metal oxide electrodes, but their presence in the electrolyte causes rapid anodic dissolution and pitting of Al current collectors at potentials exceeding 4.0 V versus Li/Li +. For LiBF 4 andmore » LiPF 6, the release of HF near the energized surfaces passivates the exposed Al metal, inhibiting this pitting corrosion, but it also causes the gradual degradation of the cathode active material, negating this important advantage. Here we report that in certain electrolytes containing fluorinated carbonate solvents and LiX salts, the threshold voltage for safe operation of Al current collectors can be increased to 5.5 V versus Li/Li +. Interestingly, the most efficient solvent also facilitates the formation of an insoluble gel when AlX 3 is introduced into this solvent. We suggest that this solvent promotes the aggregation of coordination polymers of AlX 3 at the exposed Al surface that isolate this surface from the electrolyte, thereby preventing further Al dissolution and corrosion. Other examples of Al collector protection may also involve this mechanism. Our study suggests that such “allotropic control” could be a way of widening the operation window of Li-ion cells without electrode deterioration, Al current collector corrosion, and electrolyte breakdown.« less

  5. Allotropic control: How certain fluorinated carbonate electrolytes protect aluminum current collectors by promoting the formation of insoluble coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.

    Here, there is a strong incentive for increasing the operation voltage of Li-ion cells above 4.5 V in order to increase the density of stored energy. Aluminum is an inexpensive, lightweight metal that is commonly used as a positive electrode current collector in these cells. Imide LiX salts, such as lithium bis(trifluoromethylsulfonyl)imide (X = TFSI), and lithium bis(fluorosulfonyl)imide (X = FSI), are chemically stable on the energized lithiated transition metal oxide electrodes, but their presence in the electrolyte causes rapid anodic dissolution and pitting of Al current collectors at potentials exceeding 4.0 V versus Li/Li +. For LiBF 4 andmore » LiPF 6, the release of HF near the energized surfaces passivates the exposed Al metal, inhibiting this pitting corrosion, but it also causes the gradual degradation of the cathode active material, negating this important advantage. Here we report that in certain electrolytes containing fluorinated carbonate solvents and LiX salts, the threshold voltage for safe operation of Al current collectors can be increased to 5.5 V versus Li/Li +. Interestingly, the most efficient solvent also facilitates the formation of an insoluble gel when AlX 3 is introduced into this solvent. We suggest that this solvent promotes the aggregation of coordination polymers of AlX 3 at the exposed Al surface that isolate this surface from the electrolyte, thereby preventing further Al dissolution and corrosion. Other examples of Al collector protection may also involve this mechanism. Our study suggests that such “allotropic control” could be a way of widening the operation window of Li-ion cells without electrode deterioration, Al current collector corrosion, and electrolyte breakdown.« less

  6. Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures.

    PubMed

    Kwon, Taeyoung; Choi, Ilyoung; Park, Moon Jeong

    2017-07-19

    We report a unique, highly conductive, dendrite-inhibited, solid-state polymer electrolyte platform that demonstrates excellent battery performance at subzero temperatures. A design based on functionalized inorganic nanoparticles with interconnected mesopores that contain surface nitrile groups is the key to this development. Solid-state hybrid polymer electrolytes based on succinonitrile (SN) electrolytes and porous nanoparticles were fabricated via a simple UV-curing process. SN electrolytes were effectively confined within the mesopores. This stimulated favorable interactions with lithium ions, reduced leakage of SN electrolytes over time, and improved mechanical strength of membranes. Inhibition of lithium dendrite growth and improved electrochemical stability up to 5.2 V were also demonstrated. The hybrid electrolytes exhibited high ionic conductivities of 2 × 10 -3 S cm -1 at room temperature and >10 -4 S cm -1 at subzero temperatures, leading to stable and improved battery performance at subzero temperatures. Li cells made with lithium titanate anodes exhibited stable discharge capacities of 151 mAh g -1 at temperatures below -10 °C. This corresponds to 92% of the capacity achieved at room temperature (164 mAh g -1 ). Our work represents a significant advance in solid-state polymer electrolyte technology and far exceeds the performance available with conventional polymeric battery separators.

  7. An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO 2/Ni/Electrolyte Interfaces

    DOE PAGES

    Lichterman, Michael F.; Richter, Matthias H.; Hu, Shu; ...

    2015-12-05

    The electrical and spectroscopic properties of the TiO 2/Ni protection layer system, which enables stabilization of otherwise corroding photoanodes, have been investigated in contact with electrolyte solutions by scanning-probe microscopy, electrochemistry and in-situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Specifically, the energy-band relations of the p +-Si/ALD-TiO 2/Ni interface have been determined for a selected range of Ni thicknesses. AP-XPS measurements using tender X-rays were performed in a three-electrode electrochemical arrangement under potentiostatic control to obtain information from the semiconductor near-surface region, the electrochemical double layer (ECDL) and the electrolyte beyond the ECDL. The degree of conductivity depended on themore » chemical state of the Ni on the TiO 2 surface. At low loadings of Ni, the Ni was present primarily as an oxide layer and the samples were not conductive, although the TiO 2 XPS core levels nonetheless displayed behavior indicative of a metal-electrolyte junction. In contrast, as the Ni thickness increased, the Ni phase was primarily metallic and the electrochemical behavior became highly conductive, with the AP-XPS data indicative of a metal-electrolyte junction. Electrochemical and microtopographical methods have been employed to better define the nature of the TiO 2/Ni electrodes and to contextualize the AP-XPS results.« less

  8. Hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Hwang, In-Jo; Choe, Han-Cheol

    2018-02-01

    In this study, hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation were researched using various experimental instruments. The pore size is depended on the electrolyte concentration and the particle size and number of pore increase on surface part and pore part. In the case of Zn/Si sample, pore size was larger than that of Zn samples. The maximum size of pores decreased and minimum size of pores increased up to 10Zn/Si and Zn and Si affect the formation of pore shapes. As Zn ion concentration increases, the size of the particle tends to increase, the number of particles on the surface part is reduced, whereas the size of the particles and the number of particles on pore part increased. Zn is mainly detected at pore part, and Si is mainly detected at surface part. The crystallite size of anatase increased as the Zn ion concentration, whereas, in the case of Si ion added, crystallite size of anatase decreased.

  9. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis

    NASA Astrophysics Data System (ADS)

    Friesen, Alex; Horsthemke, Fabian; Mönnighoff, Xaver; Brunklaus, Gunther; Krafft, Roman; Börner, Markus; Risthaus, Tim; Winter, Martin; Schappacher, Falko M.

    2016-12-01

    The impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature.

  10. Transition metal redox and Mn disproportional reaction in LiMn0.5Fe0.5PO4 electrodes cycled with aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuo, Zengqing; Hu, Jiangtao; Duan, Yandong; Yang, Wanli; Pan, Feng

    2016-07-01

    We performed soft x-ray absorption spectroscopy (sXAS) and a quantitative analysis of the transition metal redox in the LiMn0.5Fe0.5PO4 electrodes upon electrochemical cycling. In order to circumvent the complication of the surface reactions with organic electrolyte at high potential, the LiMn0.5Fe0.5PO4 electrodes are cycled with aqueous electrolyte. The analysis of the transitional metal L-edge spectra allows a quantitative determination of the redox evolution of Mn and Fe during the electrochemical cycling. The sXAS analysis reveals the evolving Mn oxidation states in LiMn0.5Fe0.5PO4. We found that electrochemically inactive Mn2+ is formed on the electrode surface during cycling. Additionally, the signal indicates about 20% concentration of Mn4+ at the charged state, providing a strong experimental evidence of the disproportional reaction of Mn3+ to Mn2+ and Mn4+ on the surface of the charged LiMn0.5Fe0.5PO4 electrodes.

  11. Investigating anomalous transport of electrolytes in charged porous media

    NASA Astrophysics Data System (ADS)

    Skjøde Bolet, Asger Johannes; Mathiesen, Joachim

    2017-04-01

    Surface charge is know to play an important role in microfluidics devices when dealing with electrolytes and their transport properties. Similarly, surface charge could play a role for transport in porous rock with submicron pore sizes. Estimates of the streaming potentials and electro osmotic are mostly considered in simple geometries both using analytic and numerical tools, however it is unclear at present how realistic complex geometries will modify the dynamics. Our work have focused on doing numerical studies of the full three-dimensional Stokes-Poisson-Nernst-Planck problem for electrolyte transport in porous rock. As the numerical implementation, we have used a finite element solver made using the FEniCS project code base, which can both solve for a steady state configuration and the full transient. In the presentation, we will show our results on anomalous transport due to electro kinetic effects such as the streaming potential or the electro osmotic effect.

  12. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries

    PubMed Central

    Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang

    2016-01-01

    Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm−1 at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface. PMID:27146645

  13. Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: High throughput screening

    NASA Astrophysics Data System (ADS)

    Kafle, Janak; Harris, Joshua; Chang, Jeremy; Koshina, Joe; Boone, David; Qu, Deyang

    2018-07-01

    In this report, we demonstrate that the low temperature power capability of a Li-ion battery can be substantially improved not by adding commercially unavailable additives into the electrolyte, but by rational design of the composition of the most commonly used solvents. Through the detail analysis with electrochemical impedance spectroscopy, the formation of a homogenous solid electrolyte interface (SEI) layer on the carbon anode surface is found to be critical to ensure the performance of a Li-ion battery in a wide temperature range. The post mortem analysis of the negative electrode by XPS revealed that all the electrolyte compositions form similar compounds in the solid electrolyte interphase. However, the electrolytes which give higher capacities at low temperature showed higher percentage of LiF and lower percentage of carbon containing species such as lithium carbonate and lithium ethylene di-carbonate. The electrolyte compositions where cyclic carbonates make up less than 25% of the total solvent showed increased low temperature performance. The solvent composition with higher percentage of linear short chain carbonates showed an improved low temperature performance. The high temperature performances were similar in almost all the combinations.

  14. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    PubMed

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  15. Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material

    NASA Astrophysics Data System (ADS)

    Hilder, Matthias; Howlett, Patrick C.; Saurel, Damien; Gonzalo, Elena; Armand, Michel; Rojo, Teófilo; Macfarlane, Douglas R.; Forsyth, Maria

    2017-05-01

    A saturated solution of 2.3 M sodium bis(fluorosulfonyl)imide in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide ionic liquid shows a high conductivity (0.94 mScm-1 at 50 °C), low ion association, and a wide operational temperature window (-71 °C-305 °C) making it a promising electrolyte for sodium battery applications. Cycling with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode display excellent performance at 50 °C outperforming conventional organic solvent based electrolytes in terms of capacities (at C/10) and long term cycle stability (at C/2). Post analysis of the electrolyte shows no measurable changes while the sodium metal anode and the cathode surface shows the presence of electrolyte specific elements after cycling, suggesting the formation of a stabilizing solid electrolyte interface. Additionally, cycling changes the topography and particle morphology of the cathode. Thus, the electrolyte properties and cell performance match or outperform previously reported results with the additional benefit of replacing the hazardous and flammable organic solvent solutions commonly employed.

  16. Electrolyte solutions at curved electrodes. I. Mesoscopic approach

    NASA Astrophysics Data System (ADS)

    Reindl, Andreas; Bier, Markus; Dietrich, S.

    2017-04-01

    Within the Poisson-Boltzmann approach, electrolytes in contact with planar, spherical, and cylindrical electrodes are analyzed systematically. The dependences of their capacitance C on the surface charge density σ and the ionic strength I are examined as a function of the wall curvature. The surface charge density has a strong effect on the capacitance for small curvatures, whereas for large curvatures the behavior becomes independent of σ. An expansion for small curvatures gives rise to capacitance coefficients which depend only on a single parameter, allowing for a convenient analysis. The universal behavior at large curvatures can be captured by an analytic expression.

  17. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent mixture of acetonitrile (AN) and methyl formate (MF) enables double-layer capacitor cells to operate well below -40 C with a relatively low ESR. Typically, a less than twofold increase in ESR is observed at -65 C relative to room-temperature values, when these modified electrolyte blends are used in prototype cells. Double-layer capacitor coin cells filled with these electrolytes have displayed the lowest measured ESR for an organic electrolyte to date at low temperature (based on a wide range of electrolyte screening studies at JPL). The cells featured high-surface-area (approximately equal to 2,500 m/g) carbon electrodes that were 0.50 mm thick and 1.6 cm in diameter, and coated with a thin layer of platinum to reduce cell resistance. A polyethylene separator was used to electrically isolate the electrodes.

  18. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.

    2018-01-01

    This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.

  19. A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Gayatri; Rangasamy, Ezhiylmurugan; Li, Juchuan

    2014-04-16

    In lithium-ion conducting solid electrolytes the potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes is shown. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. We report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li 3AsS 4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li 3.334Ge 0.334As 0.666S 4more » has a high ionic conductivity of 1.12 mScm -1 at 27°C. Local Li + hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li + solid conductors. Finally, our study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.« less

  20. Multistage Mechanism of Lithium Intercalation into Graphite Anodes in the Presence of the Solid Electrolyte Interface.

    PubMed

    Dinkelacker, Franz; Marzak, Philipp; Yun, Jeongsik; Liang, Yunchang; Bandarenka, Aliaksandr S

    2018-04-25

    A so-called solid electrolyte interface (SEI) in a lithium-ion battery largely determines the performance of the whole system. However, it is one of the least understood objects in these types of batteries. SEIs are formed during the initial charge-discharge cycles, prevent the organic electrolytes from further decomposition, and at the same time govern lithium intercalation into the graphite anodes. In this work, we use electrochemical impedance spectroscopy and atomic force microscopy to investigate the properties of a SEI film and an electrified "graphite/SEI/electrolyte interface". We reveal a multistage mechanism of lithium intercalation and de-intercalation in the case of graphite anodes covered by SEI. On the basis of this mechanism, we propose a relatively simple model, which perfectly explains the impedance response of the "graphite/SEI/electrolyte" interface at different temperatures and states of charge. From the whole data obtained in this work, it is suggested that not only Li + but also negatively charged species, such as anions from the electrolyte or functional groups of the SEI, likely interact with the surface of the graphite anode.

  1. Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer's Physiological Solution

    NASA Astrophysics Data System (ADS)

    Roknian, Masoud; Fattah-alhosseini, Arash; Gashti, Seyed Omid

    2018-03-01

    Plasma electrolytic oxidation has been used as a relatively new method for applying ceramic coatings having different features. In the present study, commercially pure titanium is used as substrate, and effects of trisodium phosphate electrolyte concentration on the microstructure, as well as corrosion behavior of the coating in Ringer's physiological solution are investigated. The morphology and phase compositions of coatings were analyzed by using scanning electron microscopy (SEM) and x-ray diffraction patterns. The study on the corrosion behavior of samples in a Ringer's physiological solution was carried out using open-circuit potential potentiodynamic polarization and electrochemical impedance spectroscopy. The results of electrochemical analysis proved that higher concentration of phosphate electrolyte leads to increase in the corrosion resistance of applied coatings. Accordingly, obtained results revealed that the optimum electrolyte concentration for the best corrosion behavior was 20 g L-1. Furthermore, SEM images and reduction in the dielectric breakdown potential indicated that increase in the electrolyte concentration leads to morphological improvement and smoothening of the surface.

  2. Charge-induced equilibrium dynamics and structure at the Ag(001)–electrolyte interface

    DOE PAGES

    Karl Jr., Robert M.; Barbour, Andi; Komanicky, Vladimir; ...

    2015-06-08

    We have measured the applied potential dependent rate of atomic step motion of the Ag (001) surface in weak NaF electrolyte using a new extension of the technique of X-ray Photon Correlation Spectroscopy (XPCS). Furthermore, concurrent specular x-ray scattering measurements reveal how the ordering of the water layers at the interface correlates with the dynamics.

  3. Nanocatalysis for Primary and Secondary High Energy Lithium Oxygen Cells

    DTIC Science & Technology

    2011-04-01

    Synthesis of sulfoxyphenyldiazonium Chloride 2.2.3 Assessment of -COOH and –SO3H surface groups on carbon .- Attempts to prepare sulfoxyphenyl...alumina column before used for electrolyte preparation. Synthesis of the electrolyte solvent, methyl n- propyl carbonate (MPC).- The ele- ctrolyte co...2 2.0 EXPERIMENTAL APPROACH AND PROCEDURES ............................ 3 2.1 Synthesis of the Hollow Carbon Sphere

  4. Czechoslovak Journal of Physics (selected articles)

    NASA Astrophysics Data System (ADS)

    Hermoch, V.; Zitka, B. H.

    1983-01-01

    One of the most widely used methods of electroerosion treatment is the so called anode mechanical method, which uses an electrolyte rather than a dielectric medium. The effect of the short term pulsed discharge, the effect of the surrounding electrolyte on the behavior of the discharge, and the effect of electromechanical changes on the surface of the electrode on the discharge mechanism were studied.

  5. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors.

    PubMed

    Lin, Jun-Hong

    2018-02-08

    In this paper, cationic surfactant cetyltrimethylammonium bromide (CTAB) was employed to prevent the restack of the thermally reduce graphene oxide (TRG) sheets. A facile approach was demonstrated to effectively enlarge the interlayer distance of the TRG sheets through the ionic interaction between the intercalated CTAB and ionic liquids (ILs). The morphology of the composites and the interaction between the intercalated ionic species were systematically characterized by SEM, SAXS, XRD, TGA, and FTIR. In addition, the performance of the EDLC cells based on these TRG composites was evaluated. It was found that due to the increased interlayer distance (0.41 nm to 2.51 nm) that enlarges the accessible surface area for the IL electrolyte, the energy density of the cell can be significantly improved (23.1 Wh/kg to 62.5 Wh/kg).

  6. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors

    PubMed Central

    Lin, Jun-Hong

    2018-01-01

    In this paper, cationic surfactant cetyltrimethylammonium bromide (CTAB) was employed to prevent the restack of the thermally reduce graphene oxide (TRG) sheets. A facile approach was demonstrated to effectively enlarge the interlayer distance of the TRG sheets through the ionic interaction between the intercalated CTAB and ionic liquids (ILs). The morphology of the composites and the interaction between the intercalated ionic species were systematically characterized by SEM, SAXS, XRD, TGA, and FTIR. In addition, the performance of the EDLC cells based on these TRG composites was evaluated. It was found that due to the increased interlayer distance (0.41 nm to 2.51 nm) that enlarges the accessible surface area for the IL electrolyte, the energy density of the cell can be significantly improved (23.1 Wh/kg to 62.5 Wh/kg). PMID:29419773

  7. ECG-ViEW II, a freely accessible electrocardiogram database

    PubMed Central

    Park, Man Young; Lee, Sukhoon; Jeon, Min Seok; Yoon, Dukyong; Park, Rae Woong

    2017-01-01

    The Electrocardiogram Vigilance with Electronic data Warehouse II (ECG-ViEW II) is a large, single-center database comprising numeric parameter data of the surface electrocardiograms of all patients who underwent testing from 1 June 1994 to 31 July 2013. The electrocardiographic data include the test date, clinical department, RR interval, PR interval, QRS duration, QT interval, QTc interval, P axis, QRS axis, and T axis. These data are connected with patient age, sex, ethnicity, comorbidities, age-adjusted Charlson comorbidity index, prescribed drugs, and electrolyte levels. This longitudinal observational database contains 979,273 electrocardiograms from 461,178 patients over a 19-year study period. This database can provide an opportunity to study electrocardiographic changes caused by medications, disease, or other demographic variables. ECG-ViEW II is freely available at http://www.ecgview.org. PMID:28437484

  8. Effect of different electrolytes on porous GaN using photo-electrochemical etching

    NASA Astrophysics Data System (ADS)

    Al-Heuseen, K.; Hashim, M. R.; Ali, N. K.

    2011-05-01

    This article reports the properties and the behavior of GaN during the photoelectrochemical etching process using four different electrolytes. The measurements show that the porosity strongly depends on the electrolyte and highly affects the surface morphology of etched samples, which has been revealed by scanning electron microscopy (SEM) images. Peak intensity of the photoluminescence (PL) spectra of the porous GaN samples was observed to be enhanced and strongly depend on the electrolytes. Among the samples, there is a little difference in the peak position indicating that the change of porosity has little influence on the PL peak shift, while it highly affecting the peak intensity. Raman spectra of porous GaN under four different solution exhibit phonon mode E 2 (high), A 1 (LO), A 1 (TO) and E 2 (low). There was a red shift in E 2 (high) in all samples, indicating a relaxation of stress in the porous GaN surface with respect to the underlying single crystalline epitaxial GaN. Raman and PL intensities were high for samples etched in H 2SO 4:H 2O 2 and KOH followed by the samples etched in HF:HNO 3 and in HF:C 2H 5OH.

  9. Electrochemical study on the corrosion resistance of plasma nanocoated 316L stainless steel in albumin- and lysozyme-containing electrolytes

    PubMed Central

    Jones, John Eric; Chen, Meng; Chou, Ju; Yu, Qingsong

    2017-01-01

    The physiological corrosion resistance of plasma nanocoated 316L stainless steel was studied in protein-containing electrolytes using electrochemical methods. Plasma nanocoatings with thicknesses of 20–30 nm were deposited onto 316L stainless steel coupons in a glow discharge of trimethylsilane (TMS) or its mixture with oxygen gas under various gas ratios. The surface chemistries of the plasma nanocoatings were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Corrosion properties of the plasma nanocoated 316L stainless steel coupons were assessed using potentiodynamic polarization, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) in phosphate-buffered saline (PBS) electrolytes that contain bovine serum albumin (BSA) or lysozyme. It was found that BSA adsorption on the plasma nanocoated 316L coupons was heavily favored. BSA adsorption on the plasma nanocoating surfaces could block charge-transfer reactions between the electrolyte and 316L substrate, and thus stabilize the 316L substrates from further corrosion. In contrast, lysozyme adsorption on the plasma nanocoated specimens was not as pronounced and mildly influenced the corrosion properties of the plasma nanocoated 316L stainless steel. PMID:29422723

  10. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong

    2017-07-05

    Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  11. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE PAGES

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong; ...

    2017-07-05

    Here, oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type,more » and electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  12. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  13. Designing solid-liquid interphases for sodium batteries.

    PubMed

    Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin; Gunceler, Deniz; Zachman, Michael J; Tu, Zhengyuan; Shin, Jung Hwan; Nath, Pooja; Agrawal, Akanksha; Kourkoutis, Lena F; Arias, Tomas A; Archer, Lynden A

    2017-10-12

    Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid-electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.The chemistry at the interface between electrolyte and electrode plays a critical role in determining battery performance. Here, the authors show that a NaBr enriched solid-electrolyte interphase can lower the surface diffusion barrier for sodium ions, enabling stable electrodeposition.

  14. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong

    Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  15. 4-Vinyl-1,3-Dioxolane-2-One as an Additive for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2006-01-01

    Electrolyte additive 4-vinyl-1,3-dioxolane-2-one has been found to be promising for rechargeable lithium-ion electrochemical cells. This and other additives, along with advanced electrolytes comprising solutions of LiPF6 in various mixtures of carbonate solvents, have been investigated in a continuing effort to improve the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. In contrast to work by other researchers who have investigated the use of this additive to improve the high-temperature resilience of Li-ion cells, the current work involves the incorporation of 4-vinyl-1,3-dioxolane-2-one into quaternary carbonate electrolyte mixtures, previously optimized for low-temperature applications, resulting in improved low-temperature performance. The benefit afforded by 4-vinyl-1,3- dioxolane-2-one can be better understood in the light of relevant information from a number of prior NASA Tech Briefs articles about electrolytes and additives for such cells. To recapitulate: The loss of performance with decreasing temperature is attributable largely to a decrease of ionic conductivity and the increase in viscosity of the electrolyte. What is needed to extend the lower limit of operating temperature is a stable electrolyte solution with relatively small lowtemperature viscosity, a large electric permittivity, adequate coordination behavior, and appropriate ranges of solubilities of liquid and salt constituents. Whether the anode is made of graphitic or non-graphitic carbon, a film on the surface of the anode acts as a solid/electrolyte interface (SEI), the nature of which is critical to low-temperature performance. Desirably, the surface film should exert a chemically protective (passivating) effect on both the anode and the electrolyte, yet should remain conductive to lithium ions to facilitate intercalation and de-intercalation of the ions into and out of the carbon during discharging and charging, respectively. The additives investigated previously include alkyl pyrocarbonates. Those additives help to improve low-temperature performances by giving rise to the formation of SEIs having desired properties. The formation of the SEIs is believed to be facilitated by products (e.g., CO2) of the decomposition of these additives. These decomposition products are believed to react to form Li2CO3-based films on the carbon electrodes. The present additive, 4-vinyl-1,3-dioxolane-2-one, also helps to improve lowtemperature performance by contributing to the formation of SEIs having desired properties, but probably in a different manner: It is believed that, as part of the decomposition process, the compound polymerizes on the surfaces of carbon electrodes.

  16. Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions.

    PubMed

    Bourg, Ian C; Sposito, Garrison

    2011-08-15

    We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces. Published by Elsevier Inc.

  17. Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.

    PubMed

    Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang

    2016-08-22

    Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions

    NASA Astrophysics Data System (ADS)

    Boehnstedt, W.

    1980-09-01

    The paper describes the effect of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions. The dissolution is accelerated by the addition of small quantities of gallium or indium ions to the electrolyte indicated by the shift of the zero current potential by about 250 mV on the current-potential curve. Scanning electron microscope studies showed that gallium ions produce many small cracks in the aluminum electrode and collect at the grain boundary areas, increasing the electrode surface; this enlargement, in combination with increased electrolyte agitation due to greater hydrogen evolution, provides higher current densities at the same potential. It is concluded that this process will widen the possibilities of using aluminum and its alloys in high-rate batteries.

  19. Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries.

    PubMed

    Gu, Sui; Wen, Zhaoyin; Qian, Rong; Jin, Jun; Wang, Qingsong; Wu, Meifen; Zhuo, Shangjun

    2016-12-21

    Development of lithium sulfur (Li-S) batteries with high Coulombic efficiency and long cycle stability remains challenging due to the dissolution and shuttle of polysulfides in electrolyte. Here, a novel additive, carbon disulfide (CS 2 ), to the organic electrolyte is reported to improve the cycling performance of Li-S batteries. The cells with the CS 2 -additive electrolyte exhibit high Coulombic efficiency and long cycle stability, showing average Coulombic efficiency >99% and a capacity retention of 88% over the entire 300 cycles. The function of the CS 2 additive is 2-fold: (1) it inhibits the migration of long-chain polysulfides to the anode by forming complexes with polysulfides and (2) it passivates electrode surfaces by inducing the protective coatings on both the anode and the cathode.

  20. Electrochemical performance and interfacial properties of Li-metal in lithium bis(fluorosulfonyl)imide based electrolytes.

    PubMed

    Younesi, Reza; Bardé, Fanny

    2017-11-21

    Successful usage of lithium metal as the negative electrode or anode in rechargeable batteries can be an important step to increase the energy density of lithium batteries. Performance of lithium metal in a relatively promising electrolyte solution composed of lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 ; LiFSI) salt dissolved in 1,2-dimethoxyethane (DME) is here studied. The influence of the concentration of the electrolyte salt -1 M or 4 M LiFSI- is investigated by varying important electrochemical parameters such as applied current density and plating capacity. X-ray photoelectron spectroscopy analysis as a surface sensitive technique is here used to analyze that how the composition of the solid electrolyte interphase varies with the salt concentration and with the number of cycles.

  1. Electrolytic cell-free 57Co deposition for emission Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Zyabkin, Dmitry V.; Procházka, Vít; Miglierini, Marcel; Mašláň, Miroslav

    2018-05-01

    We have developed a simple, inexpensive and efficient method for an electrochemical preparation of samples for emission Mössbauer spectroscopy (EMS) and Mössbauer sources. The proposed electrolytic deposition procedure does not require any special setup, not even an electrolytic cell. It utilizes solely an electrode with a droplet of electrolyte on its surface and the second electrode sunk into the droplet. Its performance is demonstrated using two examples, a metallic glass and a Cu stripe. We present a detailed description of the deposition procedure and resulting emission Mössbauer spectra for both samples. In the case of a Cu stripe, we have performed EMS measurements at different stages of heat-treatment, which are required for the production of Mössbauer sources with the copper matrix.

  2. Electrokinetic properties of polymer colloids

    NASA Technical Reports Server (NTRS)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  3. Investigation Of The High-Voltage Discharge On The Surface Of Gas-Liquid System

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Morgunov, Aleksandr; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    This paper describes an experimental setup for study of physical processes in the high-voltage discharge on the surface of gas-liquid system at atmospheric pressure. Measurements of electrical and optical characteristics of the high-voltage discharge in gas, at the surface of the gas-liquid system and in the electrolyte are obtained. The parameters of the high-voltage discharge and the conditions for its stable operation are presented. Investigations with various electrolytes and cathode assemblies of various materials and sizes were carried out. The installation can be used for the processing and recycling of industrial and chemical liquid waste. Professor of Laboratory of Plasma Physics, National Research University MPEI, Krasnokazarmennya Str.14, 111250, Moscow, Russia.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalley, John F.

    In this study, we demonstrate how small and rapid temperature perturbations (produced by the indirect laser-induced temperature jump (ILIT) technique) of solid metal electrode|electrolyte solution interfaces may be used to determine the potential of zero (total) charge (E pzc) and its temperature derivativemore » $$\\left(\\frac{dEpzc}{dT}\\right)$$ of Au(111) electrode surfaces modified by alkanethiol self-assembled monolayers in contact with high ionic strength (i.e., 1.0 M) aqueous electrolyte solutions. The E pzc’s measured for two different types of SAMs (made from either HS(CH 2) n-1CH 3 (5 ≤ n ≤ 12, E pzc = -(0.99 ± 0.12) V vs SSCE) or HS(CH 2) nOH (3 ≤ n ≤ 16, E pzc = (0.46 ± 0.22) V vs SSCE)) are considerably different than those measured previously at much lower electrolyte solution ionic strengths. For mixed monolayers made from both HS(CH 2) n-1CH 3 and HS(CH 2) nFc (where Fc refers to ferrocene), the difference in Epzc decreases as a function of the surface concentration of the Fc moiety (i.e., [Fc]), and it completely disappears at a surprisingly small [Fc] (~4.0 × 10 –11 mol cm –2). These observations for the Au(111)|hydrophobic (neat and mixed) SAM|aqueous electrolyte solution interfaces, along with the surface potentials (g Sml(dip)) evaluated for the contacting electrolyte solution surfaces of these interfaces, are consistent with a structure for the water molecule components of these surfaces where there is a net orientation of the dipoles of these molecules. Accordingly, the negative (oxygen) ends of these molecules point toward the SAM surface. The positive values of g Sml(dip) evaluated for hydrophilic SAM (e.g., made from HS(CH 2) nOH)|aqueous electrolyte solution interfaces) also indicate that the structure of these interfaces is similar to that of the hydrophobic interfaces. However, g Sml(dip) decreases with increasing ionic strength for the hydrophilic interfaces, while it increases with increasing ionic strength for the hydrophobic interfaces. The data (and calculations) reported in the present work and other studies of hydrophobic (and hydrophilic)|aqueous solution interfaces are as yet insufficient to support a complete explanation for the effects of ionic strength observed in the present study. Nevertheless, an analysis based upon the value of $$\\left(\\frac{dEpzc}{dT}\\right)$$ (= (0.51 ± 0.12) mV/K, essentially the same for SAMs made from both HS(CH 2) n-1CH 3 and HS(CH 2) nOH), determined in the present study provides a further indication that upon formation of the SAM there is a partial charge transfer of electrons from the relevant gold atoms on the Au(111) surface to the sulfur atoms of the alkanethiols.« less

  5. Effect of Applied Current Density on Cavitation-Erosion Characteristics for Anodized Al Alloy.

    PubMed

    Lee, Seung-Jun; Kim, Seong-Jong

    2018-02-01

    Surface finishing is as important as selection of material to achieve durability. Surface finishing is a process to provide surface with the desired performance and features by applying external forces such as thermal energy or stress. This study investigated the optimum supply current density for preventing from cavitation damages by applying to an anodizing technique that artificially forms on the surface an oxide coating that has excellent mechanical characteristics, such as hardness, wear resistance. Result of hardness test, the greater hardness was associated with greater brittleness, resulting in deleterious characteristics. Consequently, under conditions such as the electrolyte concentration of 10 vol.%, the processing time of 40 min, the electrolyte temperature of 10 °C, and the current density of 20 mA/cm2 were considered to be the optimum anodizing conditions for improvement of durability in seawater.

  6. Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive

    NASA Astrophysics Data System (ADS)

    Ziyaei, E.; Atapour, M.; Edris, H.; Hakimizad, A.

    2017-07-01

    The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample's surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensilemore » resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.« less

  8. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  9. Acid-base behavior of the gaspeite (NiCO3(s)) surface in NaCl solutions.

    PubMed

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S; Schott, Jacques

    2010-08-03

    Gaspeite is a low reactivity, rhombohedral carbonate mineral and a suitable surrogate to investigate the surface properties of other more ubiquitous carbonate minerals, such as calcite, in aqueous solutions. In this study, the acid-base properties of the gaspeite surface were investigated over a pH range of 5 to 10 in NaCl solutions (0.001, 0.01, and 0.1 M) at near ambient conditions (25 +/- 3 degrees C and 1 atm) by means of conventional acidimetric and alkalimetric titration techniques and microelectrophoresis. Over the entire experimental pH range, surface protonation and electrokinetic mobility are strongly affected by the background electrolyte, leading to a significant decrease of the pH of zero net proton charge (PZNPC) and the pH of isoelectric point (pH(iep)) at increasing NaCl concentrations. This challenges the conventional idea that carbonate mineral surfaces are chemically inert to background electrolyte ions. Multiple sets of surface complexation reactions (i.e., ionization and ion adsorption) were formulated within the framework of three electrostatic models (CCM, BSM, and TLM) and their ability to simulate proton adsorption and electrokinetic data was evaluated. A one-site, 3-pK, constant capacitance surface complexation model (SCM) reproduces the proton adsorption data at all ionic strengths and qualitatively predicts the electrokinetic behavior of gaspeite suspensions. Nevertheless, the strong ionic strength dependence exhibited by the optimized SCM parameters reveals that the influence of the background electrolyte on the surface reactivity of gaspeite is not fully accounted for by conventional electrostatic and surface complexation models and suggests that future refinements to the underlying theories are warranted.

  10. Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte.

    PubMed

    Lowe, B M; Maekawa, Y; Shibuta, Y; Sakata, T; Skylaris, C-K; Green, N G

    2017-01-25

    Electronic devices are becoming increasingly used in chemical- and bio-sensing applications and therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly important. For example, field-effect biosensors (BioFETs) operate by measuring perturbations in the electric field produced by the electrical double layer due to biomolecules binding on the surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented and the structure and dynamics of the interface are investigated in different ionic strengths using molecular dynamics simulations. Novel results from simulation of the addition of DNA molecules and divalent ions are also presented, the latter of particular importance in both physiological solutions and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is known to occur experimentally for divalent electrolyte systems. A strong interaction between ions and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to experimental observations of device sensitivity in the literature. The bound DNA resulted in local changes to the electric field at the surface; however, the spatial- and temporal-mean electric field showed no significant change. This result is explained by strong screening resulting from a combination of strongly polarised water and a compact layer of counterions around the DNA and silica surface. This work suggests that the saturation of the Stern layer is an important factor in determining BioFET response to increased salt concentration and provides novel insight into the interplay between ions and the EDL.

  11. Electrolytes in a nanometer slab-confinement: Ion-specific structure and solvation forces

    NASA Astrophysics Data System (ADS)

    Kalcher, Immanuel; Schulz, Julius C. F.; Dzubiella, Joachim

    2010-10-01

    We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, CsCl, and NaI) in a nanometer slab-confinement by explicit-water molecular dynamics (MD) simulations, implicit-water Monte Carlo (MC) simulations, and modified Poisson-Boltzmann (PB) theories. In order to consistently coarse-grain and to account for specific hydration effects in the implicit methods, realistic ion-ion and ion-surface pair potentials have been derived from infinite-dilution MD simulations. The electrolyte structure calculated from MC simulations is in good agreement with the corresponding MD simulations, thereby validating the coarse-graining approach. The agreement improves if a realistic, MD-derived dielectric constant is employed, which partially corrects for (water-mediated) many-body effects. Further analysis of the ionic structure and solvation pressure demonstrates that nonlocal extensions to PB (NPB) perform well for a wide parameter range when compared to MC simulations, whereas all local extensions mostly fail. A Barker-Henderson mapping of the ions onto a charged, asymmetric, and nonadditive binary hard-sphere mixture shows that the strength of structural correlations is strongly related to the magnitude and sign of the salt-specific nonadditivity. Furthermore, a grand canonical NPB analysis shows that the Donnan effect is dominated by steric correlations, whereas solvation forces and overcharging effects are mainly governed by ion-surface interactions. However, steric corrections to solvation forces are strongly repulsive for high concentrations and low surface charges, while overcharging can also be triggered by steric interactions in strongly correlated systems. Generally, we find that ion-surface and ion-ion correlations are strongly coupled and that coarse-grained methods should include both, the latter nonlocally and nonadditive (as given by our specific ionic diameters), when studying electrolytes in highly inhomogeneous situations.

  12. Synthesis and characterization of mesoporous materials

    NASA Astrophysics Data System (ADS)

    Cheng, Wei

    Mesoporous materials are highly porous solids with pore sizes in the range of 20 to 500 A and a narrow pore size distribution. Creating a mesoporous morphology in transition metal oxides is expected to increase the kinetics of electrochemical photoelectrochemical processes due to the improved accessibility of electrolyte to electrode. The objective of the dissertation research is to prepare functional mesoporous materials based on transition metal oxides and to determine the effects of the mesoporous structure on the resulting charge transfer, electrochromism, and optical properties. In this dissertation, mesoporous tungsten oxide and niobium oxide were synthesized by incorporating tri-block copolymer surfactant templates into the sol-gel synthesis procedure. Both mesoporous materials have surface areas in the range of 130 m2/g with a narrow pore size distribution centered at ˜45A. Their electrochromic properties were characterized and found to be strongly influenced by the mesoporous morphology. Both mesoporous systems exhibit better electrochemical and optical reversibilities than the analogous sol-gel materials (without using surfactant) and the kinetics of bleaching is substantially faster. Coloration efficiencies for the mesoporous tungsten oxide and niobium oxide films are in the range of 16--37 cm 2/C and 12--16 cm2/C, respectively. Dye sensitized solar cells (DSSC) were fabricated using mesoporous niobium oxide as electrodes. Due to the higher surface area, the mesoporous electrodes have greater dye adsorption and electrolyte penetration compared to sol-gel electrodes, which leads to better electron injection, faster dye regeneration and thus, better cell performance. The mesoporous DSSC exhibits photocurrents of 2.9 mA and fill factors of 0.61. Open circuit voltages of the mesoporous DSSC are in the range of 0.6--0.83V.

  13. Organic-Silica Interactions in Saline: Elucidating the Structural Influence of Calcium in Low-Salinity Enhanced Oil Recovery.

    PubMed

    Desmond, J L; Juhl, K; Hassenkam, T; Stipp, S L S; Walsh, T R; Rodger, P M

    2017-09-08

    Enhanced oil recovery using low-salinity solutions to sweep sandstone reservoirs is a widely-practiced strategy. The mechanisms governing this remain unresolved. Here, we elucidate the role of Ca 2+ by combining chemical force microscopy (CFM) and molecular dynamics (MD) simulations. We probe the influence of electrolyte composition and concentration on the adsorption of a representative molecule, positively-charged alkylammonium, at the aqueous electrolyte/silica interface, for four electrolytes: NaCl, KCl, MgCl 2 , and CaCl 2 . CFM reveals stronger adhesion on silica in CaCl 2 compared with the other electrolytes, and shows a concentration-dependent adhesion not observed for the other electrolytes. Using MD simulations, we model the electrolytes at a negatively-charged amorphous silica substrate and predict the adsorption of methylammonium. Our simulations reveal four classes of surface adsorption site, where the prevalence of these sites depends only on CaCl 2 concentration. The sites relevant to strong adhesion feature the O - silica site and Ca 2+ in the presence of associated Cl - , which gain prevalence at higher CaCl 2 concentration. Our simulations also predict the adhesion force profile to be distinct for CaCl 2 compared with the other electrolytes. Together, these analyses explain our experimental data. Our findings indicate in general how silica wettability may be manipulated by electrolyte concentration.

  14. Liquid metal actuator driven by electrochemical manipulation of surface tension

    NASA Astrophysics Data System (ADS)

    Russell, Loren; Wissman, James; Majidi, Carmel

    2017-12-01

    We examine the electrocapillary properties of a fluidic actuator composed of a liquid metal droplet that is submerged in electrolytic solution and attached to an elastic beam. The beam deflection is controlled by electrochemically driven changes in the surface energy of the droplet. The metal is a eutectic gallium-indium alloy that is liquid at room temperature and forms an nm-thin Ga2O3 skin when oxidized. The effective surface tension of the droplet changes dramatically with oxidation and reduction, which are reversibly controlled by applying low voltage to the electrolytic bath. Wetting the droplet to two copper pads allows for a controllable tensile force to be developed between the opposing surfaces. We demonstrate the ability to reliably control force by changing the applied oxidizing voltage. Actuator forces and droplet geometries are also examined by performing a computational fluid mechanics simulation using Surface Evolver. The theoretical predictions are in qualitative agreement with the experimental measurements and provide additional confirmation that actuation is driven by surface tension.

  15. Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries

    NASA Astrophysics Data System (ADS)

    Piwko, Markus; Thieme, Sören; Weller, Christine; Althues, Holger; Kaskel, Stefan

    2017-09-01

    Columnar silicon structures are proven as high performance anodes for high energy batteries paired with low (sulfur) or high (nickel-cobalt-aluminum oxide, NCA) voltage cathodes. The introduction of a fluorinated ether/sulfolane solvent mixture drastically improves the capacity retention for both battery types due to an improved solid electrolyte interface (SEI) on the surface of the silicon electrode which reduces irreversible reactions normally causing lithium loss and rapid capacity fading. For the lithium silicide/sulfur battery cycling stability is significantly improved as compared to a frequently used reference electrolyte (DME/DOL) reaching a constant coulombic efficiency (CE) as high as 98%. For the silicon/NCA battery with higher voltage, the addition of only small amounts of fluoroethylene carbonate (FEC) to the novel electrolyte leads to a stable capacity over at least 50 cycles and a CE as high as 99.9%. A high volumetric energy density close to 1000 Wh l-1 was achieved with the new electrolyte taking all inactive components of the stack into account for the estimation.

  16. Purely electronic mechanism of electrolyte gating of indium tin oxide thin films

    DOE PAGES

    Leng, X.; Bozovic, I.; Bollinger, A. T.

    2016-08-10

    Epitaxial indium tin oxide films have been grown on both LaAlO 3 and yttria-stabilized zirconia substrates using RF magnetron sputtering. Electrolyte gating causes a large change in the film resistance that occurs immediately after the gate voltage is applied, and shows no hysteresis during the charging/discharging processes. When two devices are patterned next to one another and the first one gated through an electrolyte, the second one shows no changes in conductance, in contrast to what happens in materials (like tungsten oxide) susceptible to ionic electromigration and intercalation. These findings indicate that electrolyte gating in indium tin oxide triggers amore » pure electronic process (electron depletion or accumulation, depending on the polarity of the gate voltage), with no electrochemical reactions involved. Electron accumulation occurs in a very thin layer near the film surface, which becomes highly conductive. These results contribute to our understanding of the electrolyte gating mechanism in complex oxides and may be relevant for applications of electric double layer transistor devices.« less

  17. Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yeh, Shang-Chun; Tsai, Dah-Shyang; Guan, Sheng-Yong; Chou, Chen-Chia

    2015-11-01

    Urea and sodium nitrite are generally viewed as nitridation additives in the electrolyte for plasma electrolytic oxidation (PEO) of aluminum alloys. We study the influences of these two convenient chemicals in presence of sodium aluminate and find very different effects on film growth. Urea addition enhances the nitrogen content of PEO layer, diminishes the layer thickness, increases the porosity, interferes with the α-alumina formation, and promotes precipitation in the electrolyte. Hence, the electrolytic urea content ought to be maintained less than 45 g dm-3. On the other hand, sodium nitrite behaves like an oxidation additive, more than a nitridation additive. NaNO2 addition effectively introduces nitrogen in the PEO layer at low concentration, yet the nitrogen content of oxide layer decreases with increasing NaNO2 concentration. The effects of NaNO2, such as increasing layer thickness, reducing porosity, promoting α-alumina formation are attributed to oxidation enhancement, not because of nitridation.

  18. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?

    NASA Astrophysics Data System (ADS)

    de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano

    2018-04-01

    Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.

  19. The Poisson-Boltzmann theory for the two-plates problem: some exact results.

    PubMed

    Xing, Xiang-Jun

    2011-12-01

    The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

  20. Method of measuring interface area of activated carbons in condensed phase

    NASA Astrophysics Data System (ADS)

    Dmitriyev, D. S.; Agafonov, D. V.; Kiseleva, E. A.; Mikryukova, M. A.

    2018-01-01

    In this work, we investigated the correlation between the heat of wetting of super-capacitor electrode material (activated carbon) with condensed phases (electrolytes based on homologous series of phosphoric acid esters) and the capacity of the supercapacitor. The surface area of the electrode-electrolyte interface was calculated according to the obtained correlations using the conventional formula for calculating the capacitance of a capacitor.

  1. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak power densities as high as 520 mW/cm2 at 800 °C for YSZ and 350 mW/cm 2 at 800 °C for YSZ/GDC bilayer electrolytes.

  2. Practical high temperature (80 °C) storage study of industrially manufactured Li-ion batteries with varying electrolytes

    NASA Astrophysics Data System (ADS)

    Genieser, R.; Loveridge, M.; Bhagat, R.

    2018-05-01

    A previous study is focused on high temperature cycling of industrially manufactured Li-ion pouch cells (NMC-111/Graphite) with different electrolytes at 80 °C [JPS 373 (2018) 172-183]. Within this article the same test set-up is used, with cells stored for 30 days at different open circuit potentials and various electrolytes instead of electrochemical cycling. The most pronounced cell degradation (capacity fade and resistance increase) happens at high potentials. However appropriate electrolyte formulations are able to suppress ageing conditions by forming passivating surface films on both electrodes. Compared with electrochemical cycling at 80 °C, cells with enhanced electrolytes only show a slight resistance increase during storage and the capacity fade is much lower. Additionally it is shown for the first time, that the resistance is decreasing and capacity is regained once these cells are cycled again at room temperature. This is not the case for electrolytes without additives or just vinylene carbonate (VC) as an additive. It is further shown that the resistance increase of cells with the other electrolytes is accompanied by a reduction of the cell volume during further cycling. This behaviour is likely related to the reduction of CO2 at the anode to form additional SEI layer components.

  3. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Yan, Pengfei

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbitalmore » energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.« less

  4. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    PubMed

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    NASA Astrophysics Data System (ADS)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  6. Surface Texture-Induced Enhancement of Optical and Photoelectrochemical Activity of Cu2ZnSnS4 Photocathodes

    NASA Astrophysics Data System (ADS)

    Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan

    2017-08-01

    The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.

  7. Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties.

    PubMed

    Zheng, Xiaoyu; Luo, Jiayan; Lv, Wei; Wang, Da-Wei; Yang, Quan-Hong

    2015-09-23

    Their chemical stability, high specific surface area, and electric conductivity enable porous carbon materials to be the most commonly used electrode materials for electrochemical capacitors (also known as supercapacitors). To further increase the energy and power density, engineering of the pore structures with a higher electrochemical accessible surface area, faster ion-transport path and a more-robust interface with the electrolyte is widely investigated. Compared with traditional porous carbons, two-dimensional (2D) porous carbon sheets with an interlinked hierarchical porous structure are a good candidate for supercapacitors due to their advantages in high aspect ratio for electrode packing and electron transport, hierarchical pore structures for ion transport, and short ion-transport length. Recent progress on the synthesis of 2D porous carbons is reported here, along with the improved electrochemical behavior due to enhanced ion transport. Challenges for the controlled preparation of 2D porous carbons with desired properties are also discussed; these require precise tuning of the hierarchical structure and a clarification of the formation mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor.

    PubMed

    Fu, Qishan; Wang, Xinyu; Zhang, Na; Wen, Jing; Li, Lu; Gao, Hong; Zhang, Xitian

    2018-02-01

    Two-dimensional titanium carbide has gained considerable attention in recent years as an electrode material for supercapacitors due to its high melting point, good electrical conductivity, hydrophilicity and large electrochemically active surfaces. However, the irreversible restacking during synthesis restricts its development and practical applications. Here, Ti 3 C 2 T x /SCNT self-assembled composite electrodes were rationally designed and successfully synthesized by introducing single-walled carbon nanotubes (SCNTs) as interlayer spacers to decrease the restacking of the Ti 3 C 2 T x sheets during the synthesis process. SCNTs can not only increase the specific surface area as well as the interlayer space of the Ti 3 C 2 T x electrode, but also increase the accessible capability of electrolyte ions, and thus it improved the electrochemical performance of the electrode. The as-prepared Ti 3 C 2 T x /SCNT self-assembled composite electrode achieved a high areal capacitance of 220mF/cm 2 (314F/cm 3 ) and a remarkable capacitance retention of 95% after 10,000cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries

    DOE PAGES

    Lei, Wen; Han, Lili; Xuan, Cuijuan; ...

    2016-05-24

    Here, nitrogen-doped carbon nanofiber (NDCN) was synthesized via carbonization of polypyrrole (PPy) coated bacterial cellulose (BC) composites, where BC serves as templates as well as precursor, and PPy serves as the nitrogen source. The synthesized NDCN was employed as electrode for both supercapacitors and Li-ion batteries. The large surface area exposed to electrolyte resulting from the 3D carbon networks leads to sufficient electrode/electrolyte interface and creates shorter transport paths of electrolyte ions and Li + ion. Besides, the three types of N dopants in NDCN improve the electronic conductivity, as well as superior electrochemical performance.

  10. Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Yang, Wang; Song, Ailing; Gao, Lijun; Sun, Gang; Shao, Guangjie

    2017-04-01

    Lithium-sulfur batteries are a promising energy storage devices beyond conventional lithium ion batteries. However, the "shuttle effect" of soluble polysulfides is a major barrier between electrodes, resulting in rapid capacity fading. To address above issue, pyrrole has been investigated as an electrolyte additive to trap polysulfides. When pyrrole is added into electrolyte, a surface protective layer of polypyrrole can be formed on the sulfur cathode, which not only acts as a conductive agent to provide an effective electron conduction path but also acts as an absorbing agent and barrier layer suppressing the diffusion of polysulfide intermediates. The results demonstrate that an appropriate amount of pyrrole added into the electrolyte leads to excellent cycling stability and rate capability. Apparently, pyrrole is an effective additive for the entrapment of polysulfides of lithium-sulfur batteries.

  11. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    NASA Astrophysics Data System (ADS)

    Liu, Run; Wang, Bin; Wu, Jie; Xue, Wenbin; Jin, Xiaoyue; Du, Jiancheng; Hua, Ming

    2014-12-01

    A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000-12,000 K and 2 × 1022 m-3-1.4 × 1023 m-3. The atomic ionization degrees of iron, carbon and boron are 10-16-10-3, and 10-23-10-6, 10-19-10-4, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.

  12. High-speed detection of DNA translocation in nanopipettes.

    PubMed

    Fraccari, Raquel L; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-04-14

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.

  13. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    DOE PAGES

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    2017-07-03

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh arealmore » capacitance of 1.28 F/cm 2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.« less

  14. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh arealmore » capacitance of 1.28 F/cm 2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.« less

  15. A SERS characterization of the stability of polythionates at the gold-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Mirza, Jeff; Smith, Scott R.; Baron, Janet Y.; Choi, Yeonuk; Lipkowski, Jacek

    2015-01-01

    A gold nanorod (AuNR) array electrode was employed to record SERS spectra as a function of immersion time in electrolyte solutions of tetrathionate, trithionate, the [Au(S2O3)2]3- complex, sulfide and thiosulfate. The generalized two-dimensional correlation spectroscopy was employed to deconvolute broad bands in the SERS spectra. The results show that the polythionates, tetrathionate and trithionate, sulfide, and the [Au(S2O3)2]3- complex decompose to form cyclo-S8, polymeric and monoatomic sulfur at the gold surface. The relative amount of these different forms of sulfur in the film formed at the surface depends on the nature of the electrolyte species. The decomposition of tetrathionate leads predominantly to the formation of cyclo-S8. Comparable amounts of all three forms of sulfur are formed in the solution of the [Au(S2O3)2]3- complex. Monoatomic sulfur is formed predominantly at the gold surface in solutions of trithionate and thiosulfate. In contrast to the previous suggestions, the results of this study demonstrate that polythionates are not present in the passive layer during gold leaching from thiosulfate solutions at a prolonged leaching times.

  16. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    PubMed

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  17. Molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Smith, James L.

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  18. Molten carbonate fuel cell

    DOEpatents

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  19. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat Tripathy; Laura Wurth; Eric Dufek

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating inmore » preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.« less

  20. Surface analysis of Fe-Co-Mo electrolytic coatings

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, G. Sh; Sakhnenko, N. D.; Ved', M. V.; Yermolenko, I. Yu; Zyubanova, S. I.

    2017-06-01

    Coatings Fe-Co-Mo with a composition of 47 at.% iron, 28 at.% Cobalt and 25 at.% Molybdenum were deposited from citrate electrolyte using pulse electrolysis mode. Scanning electron and atomic force microscopy have established the surface morphology and topography. It was identified the parts with a globular structure which have an average size of 0.2-0.5μm and singly located sharp grains. Within the same scan area sites with developed surface were detected the topography of which is identical to the crystal structure of cobalt with the crystallites size of 0.2-1.75μm. The parameters Ra and Rq for parts with different morphology as well as average characteristics of coatings demonstrated the low roughness of the surface. It is found that the coercive force of Fe-Co-Mo films is 7-10 Oe, which allow us to classify the Fe-Co-Mo coatings as soft magnetic materials.

  1. Application of Response Surface Methodology (RSM) for wastewater of hospital by using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Murdani; Jakfar; Ekawati, D.; Nadira, R.; Darmadi

    2018-04-01

    Hospital wastewater is a source of potential environmental contamination. Therefore, the waste water needs to be treated before it is discharged into the landfill. Various research methods have been used to treat hospital wastewater. However, some methods that have been implemented have not achieved the effluent standards for hospitals that have been set by the government. The experiment was conducted by an electrochemical method is electrolysis using aluminum electrodes with independent variable is the voltage, contact time and concentration of electrolytes. The response optimization using response surface with optimum conditions obtained by the contact time of 34.26 min, voltage 12 V, concentration electrolyte 0.38 M can decrease of COD 65.039%. The model recommended by the response surface for the three variables, namely quadratic response.

  2. Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.

    PubMed

    Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi

    2017-10-04

    Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.

  3. Transition Metal Polypyridine Complexes: Studies of Mediation in Dye-Sensitized Solar Cells and Charge Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, C. Michael; Prieto, Amy L.

    2017-02-08

    The Elliott group has long been supported by DOE for studies of cobalt(II/III) trisbypiridine (DTB) mediator complexes in dye sensitized solar cells. Previous work demonstrated that Co(II/III) chemistry is sensitive to the environment, showing unprecedented electrode-surface and electrolyte dependant voltammetry. In electrolytes that have large lipophilic cations, voltammetry of the [Co(DTB) 3] 2+/3+ couple is nearly Nernstian in appearance on nominally oxide-free metal surfaces. In contrast, on semiconductor electrodes in electrolytes with small, hard cations such as Li +, the electron transfer rates are so slow that it is difficult to measure any Faradaic current even at overpotentials of ±1more » V. These studies are of direct relevance to the operation of cobalt-based mediators in solar cells. The research has also shown that these mediators are compatible with copper phenantroline based dyes, in contrast to I - due to the insolubility of CuI.« less

  4. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  5. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  6. Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries

    PubMed Central

    Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya

    2016-01-01

    We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4−δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4−δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn3+ from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF. PMID:27553901

  7. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  8. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte.

    PubMed

    Zhuang, Guorong V; Xu, Kang; Yang, Hui; Jow, T Richard; Ross, Philip N

    2005-09-22

    Lithium ethylene dicarbonate ((CH2OCO2Li)2) was chemically synthesized and its Fourier transform infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2 M lithium hexafluorophosphate (LiPF6)/ethylene carbonate (EC):ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in the passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established on the basis of analysis of the IR spectrum.

  9. Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi 0.5Mn 1.5O 4 Cells with Added Lithium Catechol Dimethyl Borate

    DOE PAGES

    Dong, Yingnan; Demeaux, Julien; Zhang, Yuzi; ...

    2016-12-13

    Performance of LiNi 0.5Mn 1.5O 4/graphite cells cycled to 4.8 V at 55°C with the 1.2 M LiPF 6 in EC/EMC (3/7, STD electrolyte) with and without added lithium catechol dimethyl borate (LiCDMB) has been investigated. The incorporation of 0.5 wt% LiCDMB to the STD electrolyte results in an improved capacity retention and coulombic efficiency upon cycling at 55°C. Ex-situ analysis of the electrode surfaces via a combination of SEM, TEM, and XPS reveals that oxidation of LiCDMB at high potential results in the deposition of a passivation layer on the electrode surface, preventing transition metal ion dissolution from themore » cathode and subsequent deposition on the anode. NMR investigations of the bulk electrolyte stored at 85°C reveals that added LiCDMB prevents the thermal decomposition of LiPF 6.« less

  10. Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi 0.5Mn 1.5O 4 Cells with Added Lithium Catechol Dimethyl Borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yingnan; Demeaux, Julien; Zhang, Yuzi

    Performance of LiNi 0.5Mn 1.5O 4/graphite cells cycled to 4.8 V at 55°C with the 1.2 M LiPF 6 in EC/EMC (3/7, STD electrolyte) with and without added lithium catechol dimethyl borate (LiCDMB) has been investigated. The incorporation of 0.5 wt% LiCDMB to the STD electrolyte results in an improved capacity retention and coulombic efficiency upon cycling at 55°C. Ex-situ analysis of the electrode surfaces via a combination of SEM, TEM, and XPS reveals that oxidation of LiCDMB at high potential results in the deposition of a passivation layer on the electrode surface, preventing transition metal ion dissolution from themore » cathode and subsequent deposition on the anode. NMR investigations of the bulk electrolyte stored at 85°C reveals that added LiCDMB prevents the thermal decomposition of LiPF 6.« less

  11. Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics

    NASA Astrophysics Data System (ADS)

    Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha

    2015-11-01

    Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.

  12. CoMn2O4 Spinel Hierarchical Microspheres Assembled with Porous Nanosheets as Stable Anodes for Lithium-ion Batteries

    PubMed Central

    Hu, Lin; Zhong, Hao; Zheng, Xinrui; Huang, Yimin; Zhang, Ping; Chen, Qianwang

    2012-01-01

    Herein, we report the feasibility to enhance the capacity and stability of CoMn2O4 anode materials by fabricating hierarchical mesoporous structure. The open space between neighboring nanosheets allows for easy diffusion of the electrolyte. The hierarchical microspheres assembled with nanosheets can ensure that every nanosheet participates in the electrochemical reaction, because every nanosheet is contacted with the electrolyte solution. The hierarchical structure and well interconnected pores on the surface of nanosheets will enhance the CoMn2O4/electrolyte contact area, shorten the Li+ ion diffusion length in the nanosheets, and accommodate the strain induced by the volume change during the electrochemical reaction. The last, hierarchical architecture with spherical morphology possesses relatively low surface energy, which results in less extent of self-aggregation during charge/discharge process. As a result, CoMn2O4 hierarchical microspheres can achieve a good cycle ability and high rate capability. PMID:23248749

  13. How to Enhance Gas Removal from Porous Electrodes?

    PubMed Central

    Kadyk, Thomas; Bruce, David; Eikerling, Michael

    2016-01-01

    This article presents a structure-based modeling approach to optimize gas evolution at an electrolyte-flooded porous electrode. By providing hydrophobic islands as preferential nucleation sites on the surface of the electrode, it is possible to nucleate and grow bubbles outside of the pore space, facilitating their release into the electrolyte. Bubbles that grow at preferential nucleation sites act as a sink for dissolved gas produced in electrode reactions, effectively suctioning it from the electrolyte-filled pores. According to the model, high oversaturation is necessary to nucleate bubbles inside of the pores. The high oversaturation allows establishing large concentration gradients in the pores that drive a diffusion flux towards the preferential nucleation sites. This diffusion flux keeps the pores bubble-free, avoiding deactivation of the electrochemically active surface area of the electrode as well as mechanical stress that would otherwise lead to catalyst degradation. The transport regime of the dissolved gas, viz. diffusion control vs. transfer control at the liquid-gas interface, determines the bubble growth law. PMID:28008914

  14. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors.

    PubMed

    Li, Mengya; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Muralidharan, Nitin; Boire, Timothy C; Sung, Hak-Joon; Pint, Cary L

    2016-08-03

    A key parameter in the operation of an electrochemical double-layer capacitor is the voltage window, which dictates the device energy density and power density. Here we demonstrate experimental evidence that π-π stacking at a carbon-ionic liquid interface can modify the operation voltage of a supercapacitor device by up to 30%, and this can be recovered by steric hindrance at the electrode-electrolyte interface introduced by poly(ethylene oxide) polymer electrolyte additives. This observation is supported by Raman spectroscopy, electrochemical impedance spectroscopy, and differential scanning calorimetry that each independently elucidates the signature of π-π stacking between imidazole groups in the ionic liquid and the carbon surface and the role this plays to lower the energy barrier for charge transfer at the electrode-electrolyte interface. This effect is further observed universally across two separate ionic liquid electrolyte systems and is validated by control experiments showing an invariant electrochemical window in the absence of a carbon-ionic liquid electrode-electrolyte interface. As interfacial or noncovalent interactions are usually neglected in the mechanistic picture of double-layer capacitors, this work highlights the importance of understanding chemical properties at supercapacitor interfaces to engineer voltage and energy capability.

  15. A Rapid One-Step Process for Fabrication of Biomimetic Superhydrophobic Surfaces by Pulse Electrodeposition.

    PubMed

    Jiang, Shuzhen; Guo, Zhongning; Liu, Guixian; Gyimah, Glenn Kwabena; Li, Xiaoying; Dong, Hanshan

    2017-10-25

    Inspired by some typical plants such as lotus leaves, superhydrophobic surfaces are commonly prepared by a combination of low surface energy materials and hierarchical micro/nano structures. In this work, superhydrophobic surfaces on copper substrates were prepared by a rapid, facile one-step pulse electrodepositing process, with different duty ratios in an electrolyte containing lanthanum chloride (LaCl₃·6H₂O), myristic acid (CH₃(CH₂) 12 COOH), and ethanol. The equivalent electrolytic time was only 10 min. The surface morphology, chemical composition and superhydrophobic property of the pulse electrodeposited surfaces were fully investigated with SEM, EDX, XRD, contact angle meter and time-lapse photographs of water droplets bouncing method. The results show that the as-prepared surfaces have micro/nano dual scale structures mainly consisting of La[CH₃(CH₂) 12 COO]₃ crystals. The maximum water contact angle (WCA) is about 160.9°, and the corresponding sliding angle is about 5°. This method is time-saving and can be easily extended to other conductive materials, having a great potential for future applications.

  16. A Rapid One-Step Process for Fabrication of Biomimetic Superhydrophobic Surfaces by Pulse Electrodeposition

    PubMed Central

    Jiang, Shuzhen; Guo, Zhongning; Liu, Guixian; Gyimah, Glenn Kwabena; Li, Xiaoying; Dong, Hanshan

    2017-01-01

    Inspired by some typical plants such as lotus leaves, superhydrophobic surfaces are commonly prepared by a combination of low surface energy materials and hierarchical micro/nano structures. In this work, superhydrophobic surfaces on copper substrates were prepared by a rapid, facile one-step pulse electrodepositing process, with different duty ratios in an electrolyte containing lanthanum chloride (LaCl3·6H2O), myristic acid (CH3(CH2)12COOH), and ethanol. The equivalent electrolytic time was only 10 min. The surface morphology, chemical composition and superhydrophobic property of the pulse electrodeposited surfaces were fully investigated with SEM, EDX, XRD, contact angle meter and time-lapse photographs of water droplets bouncing method. The results show that the as-prepared surfaces have micro/nano dual scale structures mainly consisting of La[CH3(CH2)12COO]3 crystals. The maximum water contact angle (WCA) is about 160.9°, and the corresponding sliding angle is about 5°. This method is time-saving and can be easily extended to other conductive materials, having a great potential for future applications. PMID:29068427

  17. Interfacial water on crystalline silica: a comparative molecular dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Tuan A.; Argyris, Dimitrios; Papavassiliou, Dimitrios V.

    2011-03-03

    All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion surface,more » water ion, and only in some cases ion ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na+ or Cs+ ions are present in the systems considered). The cations show significant ion-specific behavior. Na+ ions occupy different positions within the pore as the degree of protonation changes, while Cs+ ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs+ is always greater than that of Na+ ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.« less

  18. Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation.

    PubMed

    Goularte, Marcelo Augusto Pinto Cardoso; Barbosa, Gustavo Frainer; da Cruz, Nilson Cristino; Hirakata, Luciana Mayumi

    2016-12-01

    Search for materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material has been widely studied. As well, the search for optimum biocompatible metal surfaces remains crucial. So, the aim of this work is to develop an oxidized surface layer on tantalum using plasma electrolytic oxidation (PEO) similar to those existing on oral implants been marketed today. Cleaned tantalum samples were divided into group 1 (control) and groups 2, 3, and 4 (treated by PEO for 1, 3, and 5 min, respectively). An electrolytic solution diluted in 1-L deionized water was used for the anodizing process. Then, samples were washed with anhydrous ethyl alcohol and dried in the open air. For complete anodic treatment disposal, the samples were immersed in acetone altogether, taken to the ultrasonic tank for 10 min, washed again in distilled water, and finally air-dried. For the scanning electron microscopy (SEM) analysis, all samples were previously coated with gold; the salt deposition analysis was conducted with an energy-dispersive X-ray spectroscopy (EDS) system integrated with the SEM unit. SEM images confirmed the changes on tantalum strips surface according to different exposure times while EDS analysis confirmed increased salt deposition as exposure time to the anodizing process also increased. PEO was able to produce both surface alteration and salt deposition on tantalum strips similar to those existing on oral implants been marketed today.

  19. Electrochemically induced maskless metal deposition on micropore wall.

    PubMed

    Liu, Jie; Hébert, Clément; Pham, Pascale; Sauter-Starace, Fabien; Haguet, Vincent; Livache, Thierry; Mailley, Pascal

    2012-05-07

    By applying an external electric field across a micropore via an electrolyte, metal ions in the electrolyte can be reduced locally onto the inner wall of the micropore, which was fabricated in a silica-covered silicon membrane. This maskless metal deposition on the silica surface is a result of the pore membrane polarization in the electric field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze-Hardy Rule.

    PubMed

    Trefalt, Gregor; Szilagyi, Istvan; Téllez, Gabriel; Borkovec, Michal

    2017-02-21

    The Schulze-Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles. Both assumptions are incorrect. Symmetric electrolytes containing multivalent ions are hardly soluble, and experiments are normally carried out with the well-soluble salts of asymmetric electrolytes containing monovalent and multivalent ions. In this situation, however, the behavior is completely different whether the multivalent ions represent the counterions or co-ions. When these ions represent the counterions, meaning that the multivalent ions have the opposite sign than the charge of the particle, they adsorb strongly to the particles. Thereby, they progressively reduce the magnitude of the surface charge with increasing valence. In fact, this dependence of the charge density on the counterion valence is mainly responsible for the decrease of the CCC with the valence. In the co-ion case, where the multivalent ions have the same sign as the charge of the particle, the multivalent ions are repelled from the particles, and the surfaces remain highly charged. In this case, the inverse Schulze-Hardy rule normally applies, whereby the CCC varies inversely proportional to the co-ion valence.

  1. Electrolyte solutions at curved electrodes. II. Microscopic approach

    NASA Astrophysics Data System (ADS)

    Reindl, Andreas; Bier, Markus; Dietrich, S.

    2017-04-01

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  2. Electrolyte solutions at curved electrodes. II. Microscopic approach.

    PubMed

    Reindl, Andreas; Bier, Markus; Dietrich, S

    2017-04-21

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  3. Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Mingo, B.; Arrabal, R.; Mohedano, M.; Llamazares, Y.; Matykina, E.; Yerokhin, A.; Pardo, A.

    2018-03-01

    The effect of three different post-treatments carried out on Plasma Electrolytic Oxidation (PEO) coated magnesium alloys are evaluated in terms of characterisation and corrosion resistance. Special interest is given to the role of a common additive (NaF) to the coating properties. The post-treatments are based on immersion sealing processes in aqueous solutions of inorganic salts (cerium and stannate based salts) and alcoholic solution of an organic acid (octodecylphosphate acid, ODP). Sealing mechanisms for each post-treatment are proposed. Cerium and stannate sealings are based on filling of the pores with the products of dissolution/precipitation reactions, while the ODP acid sealing is based on the formation of a thin layer of ODP over the coating through specific interactions between the polar part of the organic acid and the coating surface. All coatings are evaluated by salt fog test and analysed by electrochemical impedance spectroscopy. All sealings show a slight increase in the corrosion resistance of the coatings formed in the NaF-free electrolyte, but their positive influence is boosted in case of the coatings obtained in the NaF-containing electrolyte. This is related to the chemical and morphological changes at the coating surface induced by the presence of NaF in the electrolyte.

  4. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-08-01

    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sowa, Maciej; Woszczak, Maja; Kazek-Kęsik, Alicja; Dercz, Grzegorz; Korotin, Danila M.; Zhidkov, Ivan S.; Kurmaev, Ernst Z.; Cholakh, Seif O.; Basiaga, Marcin; Simka, Wojciech

    2017-06-01

    This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm-2) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H2PO2)2 solution, which was then modified by the addition of 1.15 M Ca(HCOO)2 as well as 1.15 M and 1.5 M Mg(CH3COO)2. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO- and CH3COO- ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  6. Combining Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time. © The Author(s) 2014.

  7. Porous TiO₂ surface formed on nickel-titanium alloy by plasma electrolytic oxidation: a prospective polymer-free reservoir for drug eluting stent applications.

    PubMed

    Huan, Zhiguang; Fratila-Apachitei, Lidy E; Apachitei, Iulian; Duszczyk, Jurek

    2013-07-01

    In this study, a porous oxide layer was formed on the surface of nickel-titanium alloy (NiTi) by plasma electrolytic oxidation (PEO) with the aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanostatically in concentrated phosphoric acid electrolyte at low temperature. It was found that the response of NiTi substrate during the PEO process was different from that of bulk Ti, since the presence of large amount of Ni delayed the initial formation of a compact oxide layer that is essential for the PEO to take place. Under optimized PEO conditions, the resultant surface showed porosity, pore density and oxide layer thickness of 14.11%, 2.40 × 10⁵ pores/mm² and 0.8 μm, respectively. It was additionally noted that surface roughness after PEO did not significantly increase as compared with that of original NiTi substrate and the EDS analyses revealed a decrease in Ni/Ti ratio on the surface after PEO. The cross-section morphology showed no discontinuity between the PEO layer and the NiTi substrate. Furthermore, wettability and surface free energy of the NiTi substrate increased significantly after PEO treatment. The PEO process could be successfully translated to NiTi stent configuration proving for the first time its feasibility for such a medical device and offering potential for development of alternative, polymer-free drug carriers for NiTi DES. Copyright © 2013 Wiley Periodicals, Inc.

  8. Simultaneous Stabilization of LiNi0.76Mn0.14Co0.10O2 Cathode and Lithium Metal Anode by LiBOB Additive.

    PubMed

    Zhao, Wengao; Zou, Lianfeng; Zheng, Jianming; Jia, Haiping; Song, Junhua; Engelhard, Mark H; Wang, Chongmin; Xu, Wu; Yang, Yong; Zhang, Ji-Guang

    2018-05-01

    The long-term cycling performance, rate capability, and voltage stability of lithium (Li) metal batteries with LiNi0.76Mn0.14Co0.10O2 (NMC76) cathodes is greatly enhanced by lithium bis(oxalato)borate (LiBOB) additive in the LiPF6-based electrolyte. With 2% LiBOB in the electrolyte, a Li||NMC76 cell is able to achieve a high capacity retention of 96.8% after 200 cycles at C/3 rate (1C = 200 mA g-1), which is the best result reported for a Ni-rich NMC cathode coupled with Li metal anode. The significantly enhanced electrochemical performance can be ascribed to the stabilization of both the NMC76-cathode/electrolyte and Li-metal-anode/electrolyte interfaces. LiBOB-containing electrolyte not only facilitates the formation of a more compact solid electrolyte interphase on the Li metal surface, it also forms a enhanced cathode electrolyte interface layer, which efficiently prevents the corrosion of the cathode interface and mitigates the formation of disordered rock-salt phase after cycling. The fundamental findings of this work highlight the importance of recognizing the dual effects of electrolyte additives in simultaneously stabilizing both cathode and anode interfaces, so as to enhance the long-term cycle life of high-energy-density battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors.

    PubMed

    Jiang, Lili; Ren, Zhifeng; Chen, Shuo; Zhang, Qinyong; Lu, Xiong; Zhang, Hongping; Wan, Guojiang

    2018-03-13

    This paper reports a novel loofah-derived hierarchical scaffold to obtain three-dimensional biocarbon-graphene-TiO 2 (BC-G-TiO 2 ) composite materials as electrodes for supercapacitors. The loofah scaffold was first loaded with G and TiO 2 by immersing, squeezing, and loosening into the mixed solution of graphene oxide and titania, and then carbonized at 900 °C to form the BC-G-TiO 2 composite. The synergistic effects of the naturally hierarchical biocarbon structure, graphene, and TiO 2 nanoparticles on the electrochemical properties are analyzed. The biocarbon provides a high interconnection and an easy accessibility surface for the electrolyte. Graphene bridged the BC and TiO 2 nanoparticles, improved the conductivity of the BC-G-TiO 2 composite, and increased the electron transfer efficiency. TiO 2 nanoparticles also contributed to the pesudocapacitance and electrochemical stability.

  10. Porous carbon nanosheets from coal tar for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Ma, Hao; Wang, Jingxian; Xie, Yuanyang; Xiao, Nan; Qiu, Jieshan

    2017-07-01

    A hydroxide-template strategy coupled with in-situ chemical activation is reported for the first time to fabricate porous carbon nanosheets (PCNSs) from coal tar. The thin PCNSs feature abundant short pores accessible for fast ion transport and high specific surface area up to 3235 m2 g-1 for ion adsorption. As electrodes for supercapacitors, the PCNSs show a high capacitance of 296.2 F g-1 at 0.05 A g-1 in 6 M KOH electrolyte, an excellent rate performance with a capacitance of 220.7 F g-1 at 20 A g-1 and a superior cycle stability with over 97.2% capacitance retention after 11000 charge-discharge cycles at 3.5 A g-1. This work paves a new way for efficient fabrication of sheet-like carbon materials with tuned porous structure from polycyclic aromatic hydrocarbons for high performance supercapacitors.

  11. High rate capacitive performance of single-walled carbon nanotube aerogels

    DOE PAGES

    Van Aken, Katherine L.; Pérez, Carlos R.; Oh, Youngseok; ...

    2015-05-30

    Single-walled carbon nanotube (SWCNT) aerogels produced by critical-point-drying of wet-gel precursors exhibit unique properties, such as high surface-area-to-volume and strength-to-weight ratios. They are free-standing, are binder-free, and can be scaled to thicknesses of more than 1 mm. In this paper, we examine the electric double layer capacitive behavior of these materials using a common room temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI). Electrochemical performance is assessed through galvanostatic cycling, cyclic voltammetry and impedance spectroscopy. Results indicate stable capacitive performance over 10,000 cycles as well as an impressive performance at high charge and discharge rates, due to accessible pore networks andmore » enhanced electronic and ionic conductivities of SWCNT aerogels. Finally, these materials can find applications in mechanically compressible and flexible supercapacitor devices with high power requirements.« less

  12. In Situ Synthesis of Vertical Standing Nanosized NiO Encapsulated in Graphene as Electrodes for High-Performance Supercapacitors.

    PubMed

    Lin, Jinghuang; Jia, Henan; Liang, Haoyan; Chen, Shulin; Cai, Yifei; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Fei, Weidong; Feng, Jicai

    2018-03-01

    NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge the accessible surface area with electrolytes, and has the benefits of short ion diffusion path and good charge transport. Further, an interconnected graphene conductive network acts as binder to encapsulate the nanosized NiO particles as core-shell structure, which can promote the charge transport and maintain the structural stability. Consequently, the optimized G@NiO hybrid electrodes exhibit a remarkably enhanced specific capacity up to 1073 C g -1 and excellent cycling stability. This study provides a facial strategy to design and construct high-performance metal oxides for energy storage.

  13. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  14. Microstructures and Properties of Plasma Electrolytic Oxidized Ti Alloy (Ti-6Al-4V) for Bio-implant Application

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Blawert, Carsten; Majumdar, J. Dutta

    2016-02-01

    In the present study, plasma electrolytic oxidation (PEO) of Ti6Al4V has been performed in an electrolyte containing 20 g/L of Na2SiO3, 10 g/L of Na3PO4, 2 g/L of KOH, and 5 g/L of hydroxyapatite at an optimum constant potential of 430 V for 10 minutes. Followed by PEO treatment, surface roughness was measured using non-contact optical profilometer. A detailed characterization of microstructure, composition and phase analysis was carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopic analysis, Fourier-transform infrared, and X-ray diffraction study. The mechanical properties of the surface have been evaluated by measuring nano-hardness and wear resistance. The effect of surface modification on corrosion resistance property has also been evaluated in Hank's solution. Finally, wettability and bioactivity test have been also performed. PEO developed a thick (150 μm) porous (35 pct) oxide film on the surface of Ti-6Al-4V consisting of anatase, rutile, and SiO2. The nano-hardness of the PEO-treated surface is increased to 8 ± 0.5 GPa as compared to 2 ± 0.4 GPa of the as-received Ti-6Al-4V. Wear and corrosion resistance were improved following oxidation. There is an improvement in wettability in terms of decrease in contact angle from 60 ± 1.5 to 45 ± 1 deg. Total surface energy and its polar component were also increased significantly on PEO-treated surface as compared to the as-received Ti6Al4V.

  15. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.

    PubMed

    van Genuchten, Case M; Bandaru, Siva R S; Surorova, Elena; Amrose, Susan E; Gadgil, Ashok J; Peña, Jasquelin

    2016-06-01

    Extended field trials to remove arsenic (As) via Fe(0) electrocoagulation (EC) have demonstrated consistent As removal from groundwater to concentrations below 10 μg L(-1). However, the coulombic performance of long-term EC field operation is lower than that of laboratory-based systems. Although EC electrodes used over prolonged periods show distinct passivation layers, which have been linked to decreased treatment efficiency, the spatial distribution and mineralogy of such surface layers have not been investigated. In this work, we combine wet chemical measurements with sub-micron-scale chemical maps and selected area electron diffraction (SAED) to determine the chemical composition and mineral phase of surface layers formed during long-term Fe(0) EC treatment. We analyzed Fe(0) EC electrodes used for 3.5 months of daily treatment of As-contaminated groundwater in rural West Bengal, India. We found that the several mm thick layer that formed on cathodes and anodes consisted of primarily magnetite, with minor fractions of goethite. Spatially-resolved SAED patterns also revealed small quantities of CaCO3, Mn oxides, and SiO2, the source of which was the groundwater electrolyte. We propose that the formation of the surface layer contributes to decreased treatment performance by preventing the migration of EC-generated Fe(II) to the bulk electrolyte, where As removal occurs. The trapped Fe(II) subsequently increases the surface layer size at the expense of treatment efficiency. Based on these findings, we discuss several simple and affordable methods to prevent the efficiency loss due to the surface layer, including alternating polarity cycles and cleaning the Fe(0) surface mechanically or via electrolyte scouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  17. Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions.

    PubMed

    Bennett, Tyler; Niroomand, Hanieh; Pamu, Ravi; Ivanov, Ilia; Mukherjee, Dibyendu; Khomami, Bamin

    2016-03-28

    We present detailed electrochemical investigations into the role of dissolved O2 in electrolyte solutions in scavenging photoactivated electrons from a uniform photosystem I (PS I) monolayer assembled on alkanethiolate SAM (self-assembled monolayer)/Au surfaces while using methyl viologen (MV(2+)) as the redox mediator. To this end, we report results for direct measurements of light induced photocurrent from uniform monolayer assemblies of PS I on C9 alkanethiolate SAM/Au surfaces. These measurements, apart from demonstrating the ability of dissolved O2 in the electrolyte medium to act as an electron scavenger, also reveal its essential role in driving the solution-phase methyl viologen to initiate light-induced directional electron transfer from an electron donor surface (Au) via surface assembled PS I trimers. Specifically, our systematic electrochemical measurements have revealed that the dissolved O2 in aqueous electrolyte solutions form a complex intermediate species with MV that plays the essential role in mediating redox pathways for unidirectional electron transfer processes. This critical insight into the redox-mediated electron transfer pathways allows for rational design of electron scavengers through systematic tuning of mediator combinations that promote such intermediate formation. Our current findings facilitate the incorporation of PS I-based bio-hybrid constructs as photo-anodes in future photoelectrochemical cells and bio-electronic devices.

  18. Possible Mg intercalation mechanism at the Mo6 S8 cathode surface proposed by first-principles methods

    NASA Astrophysics Data System (ADS)

    Wan, Liwen; Prendergast, David

    2015-03-01

    In recent years, great attention has been paid to the development of divalent Mg-ion batteries, which can potentially double the energy density and volumetric capacity compared to monovalent Li-ion batteries. The prototype Mg-ion battery, comprising Mg(anode)/Mg(AlCl2BuEt)2.THF(electrolyte)/Mo6S8(cathode), was established in 2000 by Aurbach et al. Despite the remarkable success of this prototype system, we still lack a clear understanding of the fundamental Mg intercalation/deposition mechanism at the electrolyte/electrode interfaces that perhaps results in the observed sluggish Mg transport process. Our previous work has shown that Mg-ions are strongly coordinated in the bulk electrolyte by a combination of counterion, Cl-, and organic aprotic solvent, THF. In this work, we use first-principles methods to study Mg intercalation behavior at the Mo6S8 cathode surface with the presence of solvent molecules. It is found that the image charge, formed on this metallic cathode surface, can effectively weaken the solvent-surface interactions and facilitate Mg intercalation. A detailed Mg intercalation mechanism is proposed and the unique role of Mo6S8 as the cathode material is emphasized. This work is supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  19. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  20. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  1. Surface and interface engineering of anatase TiO2 anode for sodium-ion batteries through Al2O3 surface modification and wise electrolyte selection

    NASA Astrophysics Data System (ADS)

    Li, Tao; Gulzar, Umair; Bai, Xue; Monaco, Simone; Longoni, Gianluca; Prato, Mirko; Marras, Sergio; Dang, Zhiya; Capiglia, Claudio; Proietti Zaccaria, Remo

    2018-04-01

    In the present study, Al2O3 is utilized for the first time as coating agent on nanostructured anatase TiO2 in order to investigate its effect on sodium-ion batteries performance. Our results show that the Al2O3 coating, introduced by a facile two-step approach, provides beneficial effects to the TiO2-based anodes. However, the coated TiO2 still suffers of capacity fading upon cycling when using 1.0 M of NaClO4 in propylene carbonate (PC) as electrolyte. To address this issue, the influence of different electrolytes (NaClO4 salt in various solvents) is further studied. It is found that the modified TiO2 exhibits significant improvements in cycling performance using binary ethylene carbonate (EC) and PC solvent mixture without the need of the commonly used fluoroethylene carbonate (FEC) additive. Under the best configuration, our battery could deliver a high reversible capacity of 188.1 mAh g-1 at 0.1C after 50 cycles, good rate capability up to 5C, and remarkable long-term cycling stability at 1C rate for 650 cycles. This excellent performance can be ascribed to the synergistic effects of surface and interface engineering enabling the formation of a stable and highly ionic conductive interface layer in EC:PC based electrolyte which combines the native SEI film and an 'artificial' SEI layer of irreversibly formed Na-Al-O.

  2. Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.

    PubMed

    Zheng, Deyin; Jiang, Youhua; Yu, Wentao; Jiang, Xiufen; Zhao, Xin; Choi, Chang-Hwan; Sun, Guangyi

    2017-11-28

    Inspired by the Salvinia effect, we report the fabrication and characterization of a novel "sticky" superhydrophobic surface sustaining a Cassie-Baxter wetting state for water droplets with high contact angles but strong solid-liquid retention. Unlike superhydrophobic surfaces mimicking the lotus or petal effect, whose hydrophobicity and droplet retention are typically regulated by hierarchical micro- and nanostructures made of a homogeneous material with the same surface energy, our superhydrophobic surface merely requires singular microstructures covered with a hydrophobic coating but creatively coupled with hydrophilic tips with different surface energy. Hydrophilic tips are selectively formed by meniscus-confined electrodeposition of a metal (e.g., nickel) layer on top of hydrophobic microstructures. During the electrodeposition process, the superhydrophobic surface retains its plastron so that the electrolyte cannot penetrate into the cavity of hydrophobic microstructures, consequently making the electrochemical reaction between solid and electrolyte occur only on the tip. In contrast to typical superhydrophobic surfaces where droplets are highly mobile, the "sticky" superhydrophobic surface allows a water droplet to have strong local pinning and solid-liquid retention on the hydrophilic tips, which is of great significance in many droplet behaviors such as evaporation.

  3. Effects of adding ethanol to KOH electrolyte on electrochemical performance of titanium carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhang, Ruijun; Chen, Peng; Ge, Shanhai

    2014-01-01

    Porous carbide-derived carbons (CDCs) are synthesized from TiC at different chlorination temperatures as electrode materials for electrochemical capacitors. It is found that the microstructure of the produced CDCs has significant influence on both the hydrophilicity in aqueous KOH electrolyte and the resultant electrochemical performance. Because the TiC-CDC synthesized at higher temperature (e.g. 1000 °C) contains well-ordered graphite ribbons, it shows lower hydrophilicity and specific capacitance. It is also found that addition of a small amount of ethanol to KOH electrolyte effectively improves the wettability of the CDCs synthesized at higher temperature and the corresponding specific capacitance. Compared with the CDC synthesized at 600 °C, the CDC synthesized at 1000 °C shows fast ion transport and excellent capacitive behavior in KOH electrolyte with addition of ethanol because of the existences of mesopores and high specific surface area.

  4. Cell and method for electrolysis of water and anode

    NASA Technical Reports Server (NTRS)

    Aylward, J. R. (Inventor)

    1981-01-01

    An electrolytic cell for converting water vapor to oxygen and hydrogen include an anode comprising a foraminous conductive metal substrate with a 65-85 weight percent iridium oxide coating and 15-35 weight percent of a high temperature resin binder. A matrix member contains an electrolyte to which a cathode substantially inert. The foraminous metal member is most desirably expanded tantalum mesh, and the cell desirably includes reservoir elements of porous sintered metal in contact with the anode to receive and discharge electrolyte to the matrix member as required. Upon entry of a water vapor containing airstream into contact with the outer surface of the anode and thence into contact with iridium oxide coating, the water vapor is electrolytically converted to hydrogen ions and oxygen with the hydrogen ions migrating through the matrix to the cathode and the oxygen gas produced at the anode to enrich the air stream passing by the anode.

  5. The Role of Electrolyte Upon the SEI Formation Characteristics and Low Temperature Performance of Lithium-Ion Cells With Graphite Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Greenbaum, S.; Surampudi, S.

    2000-01-01

    Quarternary lithium-ion battery electrolyte solutions containing ester co-solvents in mixtures of carbonates have been demonstrated to have high conductivity at low temperatures (< -20C). However, in some cases the presence of such co-solvents does not directly translate into improved low temperature cell performance, presumably due to the formation of ionically resistive surface films on carbonaceous anodes. In order to understand this behavior, a number of lithium-graphite cells have been studied containing electrolytes with various ester co-solvents, including methyl acetate (MA), ethyl acetate (EA), ethyl propionate (EP), and ethyl butyrate (EB). The charge/discharge characterization of these cells indicates that the higher molecular weight esters result in electrolytes which possess superior low temperature performance in contrast to the lower molecular weight ester-containing solutions, even though these solutions display lower conductivity values.

  6. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    PubMed

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

  7. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuru; Yu, Zhaoxin; Gordin, Mikhail L.

    Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retentionmore » of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm -2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g -1 and an excellent capacity retention of >65% after 450 cycles at C/10.« less

  8. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  9. Investigation of Glutaric Anhydride as an Electrolyte Additive for Graphite/LiNi 0.5 Mn 0.3 Co 0.2 O 2 Full Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peebles, Cameron; He, Meinan; Feng, Zhenxing

    The effects of glutaric anhydride (GA) as an electrolyte additive for graphite/LiNi0.5Mn0.3Co0.2O2 full cells operating between 3.0-4.4 V were investigated. Linear scan voltammetry (LSV) revealed that GA preferentially oxidized prior to the carbonate-based electrolyte while Li/graphite half cells revealed that GA can suppress electrolyte decomposition on the graphite electrode giving rise to the bifunctional nature of this additive. The addition of both 0.5 and 1.0 wt% of GA into the carbonate-based electrolyte resulted in superior cycling performance compared to the baseline electrolyte as demonstrated by the slight increase in initial capacities and significant increases in capacity retention over 117 cyclesmore » at C/3. Electrochemical impedance spectroscopy (EIS) showed that while the overall impedance of the GA containing cells was higher than the cells with the baseline electrolyte the change in impedance between post-formation and post-cycling was smallest for the cells containing GA. Additionally, X-ray photoelectron spectroscopy (XPS) analysis confirmed that GA decomposed on the cathode surface leading to an increase in oxygen-containing species, a decrease in LiF species and a simultaneous increase in LixPOyFz species. (C) 2016 The Electrochemical Society. All rights reserved.« less

  10. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries

    DOE PAGES

    Chen, Shuru; Yu, Zhaoxin; Gordin, Mikhail L.; ...

    2017-02-03

    Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retentionmore » of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm -2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g -1 and an excellent capacity retention of >65% after 450 cycles at C/10.« less

  11. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  12. Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi 0.5Mn 1.5O 4/nano-TiO 2 Li-ion battery

    NASA Astrophysics Data System (ADS)

    Brutti, Sergio; Gentili, Valentina; Reale, Priscilla; Carbone, Lorenzo; Panero, Stefania

    Nanosized titanium oxides can achieve large reversible specific capacity (above 200 mAh g -1) and good rate capabilities, but suffer irreversible capacity losses in the first cycle. Moreover, due to the intrinsic safe operating potential (1.5 V), the use of titanium oxide requires to couple it with high-potential cathodes, such as lithium nickel manganese spinel (LNMO) in order to increase the energy density of the final cell. However the use of the 4.7 V vs. Li +/Li 0 LNMO cathode material requires to tackle the continuous electrolyte decomposition upon cycling. Coupling these two electrodes to make a lithium ion battery is thus highly appealing but also highly difficult because the cell balancing must account not only for the charge reversibly exchanged by each electrode but also for the irreversible charge losses. In this paper a LNMO-nano TiO 2 Li-ion cell with liquid electrolyte is presented: two innovative approaches on both the cathode and the anode sides were developed in order to mitigate the electrolyte decomposition upon cycling. In particular the LNMO surface was coated with ZnO in order to minimize the surface reactivity, and the TiO 2 nanoparticles where activated by incorporating nano-lithium in the electrode formulation to compensate for the irreversible capacity loss in the first cycle. With these strategies we were able to assemble balanced Li-ion coin cells thus avoiding the use of electrolyte additives and more hazardous and expensive ex-situ SEI preforming chemical or electrochemical procedures.

  13. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE PAGES

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; ...

    2017-09-07

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  14. Tris(trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: Mechanistic insights into differences during LiNi 0.5Mn 0.3Co 0.2O 2- Graphite full cell cycling

    DOE PAGES

    Peebles, Cameron; Sahore, Ritu; Gilbert, James A.; ...

    2017-05-27

    Here, tris(trimethylsilyl) phosphite (TMSPi) has emerged as an useful electrolyte additive for lithium ion cells. This work examines the use of TMSPi and a structurally analogous compound, triethyl phosphite (TEPi), in LiNi 0.5Mn 0.3Co 0.2O 2-graphite full cells, containing a (baseline) electrolyte with 1.2 M LiPF6 in EC: EMC (3:7 w/w) and operating between 3.0-4.4 V. Galvanostatic cycling data reveal a measurable difference in capacity fade between the TMSPi and TEPi cells. Furthermore, lower impedance rise is observed for the TMSPi cells, because of the formation of a P-and O-rich surface film on the positive electrode that was revealed bymore » X-ray photoelectron spectroscopy data. Elemental analysis on negative electrodes harvested from cycled cells show lower contents of transition metal (TM) elements for the TMSPi cells than for the baseline and TEPi cells. Our findings indicate that removal of TMS groups from the central P-O core of the TMSPi additive enables formation of the oxide surface film. This film is able to block the generation of reactive TM-oxygen radical species, suppress hydrogen abstraction from the electrolyte solvent, and minimize oxidation reactions at the positive electrode-electrolyte interface. In contrast, oxidation of TEPi does not yield a protective positive electrode film, which results in inferior electrochemical performance.« less

  15. Tris(trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: Mechanistic insights into differences during LiNi 0.5Mn 0.3Co 0.2O 2- Graphite full cell cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peebles, Cameron; Sahore, Ritu; Gilbert, James A.

    Here, tris(trimethylsilyl) phosphite (TMSPi) has emerged as an useful electrolyte additive for lithium ion cells. This work examines the use of TMSPi and a structurally analogous compound, triethyl phosphite (TEPi), in LiNi 0.5Mn 0.3Co 0.2O 2-graphite full cells, containing a (baseline) electrolyte with 1.2 M LiPF6 in EC: EMC (3:7 w/w) and operating between 3.0-4.4 V. Galvanostatic cycling data reveal a measurable difference in capacity fade between the TMSPi and TEPi cells. Furthermore, lower impedance rise is observed for the TMSPi cells, because of the formation of a P-and O-rich surface film on the positive electrode that was revealed bymore » X-ray photoelectron spectroscopy data. Elemental analysis on negative electrodes harvested from cycled cells show lower contents of transition metal (TM) elements for the TMSPi cells than for the baseline and TEPi cells. Our findings indicate that removal of TMS groups from the central P-O core of the TMSPi additive enables formation of the oxide surface film. This film is able to block the generation of reactive TM-oxygen radical species, suppress hydrogen abstraction from the electrolyte solvent, and minimize oxidation reactions at the positive electrode-electrolyte interface. In contrast, oxidation of TEPi does not yield a protective positive electrode film, which results in inferior electrochemical performance.« less

  16. Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2017-01-01

    We quantify the diffusiophoresis and electrophoresis of a uniformly charged, spherical colloid in a binary electrolyte using modified Poisson-Nernst-Planck equations that account for steric repulsion between finite sized ions. Specifically, we utilize the Bikerman (Bik) lattice gas model and the Carnahan-Starling (CS) and Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equations of state for monodisperse and polydisperse, respectively, hard spheres. We compute the phoretic mobility for weak applied fields using an asymptotic approach for thin diffuse layers, where ion steric effects are expected to be most prevalent. The thin diffuse layer limit requires λD/R →0 , where λD is the Debye screening length and R is the particle radius; this limit is readily attained for micron-sized colloids in concentrated electrolytic solutions. It is well known that the classic Poisson-Boltzmann (PB) model for pointlike, noninteracting ions leads to a prediction of a maximum in both the diffusiophoretic and electrophoretic mobilities with increasing particle zeta potential (at fixed λD/R ). In contrast, we find that ion sterics essentially eliminate this maximum (for reasonably attainable zeta potentials) and increase the mobility relative to PB. Next, we consider the more experimentally relevant case of a particle with a constant surface charge density and vary the electrolyte concentration, neglecting charge regulation on surface active sites. Rather surprisingly, there is little difference between the predictions of the four models (PB, Bik, CS, and BMCSL) for electrophoretic mobility in concentrated solutions, at reasonable surface charge densities (˜1 -10 μ C /cm2 ). This is because as the concentration increases, the zeta potential is reduced (to below the thermal voltage for concentrations above about 1 M) and therefore the diffuse layer structure is largely unaffected by ion sterics. For gradients of symmetric electrolytes (equal diffusivities, charge, and size) diffusiophoresis is also essentially unaffected by ion sterics, with a mobility that approaches zero with increasing concentration, just as in electrophoresis. For gradients of asymmetric electrolytes, the difference in diffusivities of the cation and anions leads to an induced electric field that acts on the charged particle. Importantly, we show that ion sterics leads to an excess contribution to the induced electric field, which increases rapidly with concentration. This increase overwhelms the accompanying decrease in zeta potential. The result is the diffusiophoretic mobility increases with concentration, rather than approaching zero. Therefore, diffusiophoresis could be an appealing alternative transport mechanism to electrophoresis in concentrated electrolyte solutions.

  17. Jumping liquid metal droplet in electrolyte triggered by solid metal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jianbo; University of Chinese Academy of Sciences, Beijing 100049; Wang, Junjie

    2016-05-30

    We report the electron discharge effect due to point contact between liquid metal and solid metal particles in electrolyte. Adding nickel particles induces drastic hydrogen generating and intermittent jumping of a sub-millimeter EGaIn droplet in NaOH solution. Observations from different orientations disclose that such jumping behavior is triggered by pressurized bubbles under the assistance of interfacial interactions. Hydrogen evolution around particles provides clear evidence that such electric instability originates from the varied electric potential and morphology between the two metallic materials. The point-contact-induced charge concentration significantly enhances the near-surface electric field intensity at the particle tips and thus causes electricmore » breakdown of the electrolyte.« less

  18. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  19. Planar Solid-Oxide Fuel Cell Research and Development

    DTIC Science & Technology

    2013-03-28

    electrolyte membrane ( PEM ) fuel cells ", Applied Surface Sei., 227 (2004) 56-72. [10] Grujicic, M., and Chittajallu, K. M., "Optimization of the...cathode geometry in polymer electrolyte membrane ( PEM ) fuel cells ", Chem. Eng. Sei., 59 (2004) 5883-5895. 36 [11] Anderson, W.K., Newman, J.C., Whitfield...M., Djilali, N, Suleman, A., "Optimization of a planar self-breathing PEM fuel cell cathode", AIAA 2006-6917, 11th AIAA/ISSMO Multidisciplinary

  20. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

Top