78 FR 1162 - Cardiovascular Devices; Reclassification of External Cardiac Compressor
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... safety and electromagnetic compatibility; For devices containing software, software verification... electromagnetic compatibility; For devices containing software, software verification, validation, and hazard... electrical components, appropriate analysis and testing must validate electrical safety and electromagnetic...
NASA Applications for Computational Electromagnetic Analysis
NASA Technical Reports Server (NTRS)
Lewis, Catherine C.; Trout, Dawn H.; Krome, Mark E.; Perry, Thomas A.
2011-01-01
Computational Electromagnetic Software is used by NASA to analyze the compatibility of systems too large or too complex for testing. Recent advances in software packages and computer capabilities have made it possible to determine the effects of a transmitter inside a launch vehicle fairing, better analyze the environment threats, and perform on-orbit replacements with assured electromagnetic compatibility.
ElectroMagnetoEncephalography Software: Overview and Integration with Other EEG/MEG Toolboxes
Peyk, Peter; De Cesarei, Andrea; Junghöfer, Markus
2011-01-01
EMEGS (electromagnetic encephalography software) is a MATLAB toolbox designed to provide novice as well as expert users in the field of neuroscience with a variety of functions to perform analysis of EEG and MEG data. The software consists of a set of graphical interfaces devoted to preprocessing, analysis, and visualization of electromagnetic data. Moreover, it can be extended using a plug-in interface. Here, an overview of the capabilities of the toolbox is provided, together with a simple tutorial for both a standard ERP analysis and a time-frequency analysis. Latest features and future directions of the software development are presented in the final section. PMID:21577273
ElectroMagnetoEncephalography software: overview and integration with other EEG/MEG toolboxes.
Peyk, Peter; De Cesarei, Andrea; Junghöfer, Markus
2011-01-01
EMEGS (electromagnetic encephalography software) is a MATLAB toolbox designed to provide novice as well as expert users in the field of neuroscience with a variety of functions to perform analysis of EEG and MEG data. The software consists of a set of graphical interfaces devoted to preprocessing, analysis, and visualization of electromagnetic data. Moreover, it can be extended using a plug-in interface. Here, an overview of the capabilities of the toolbox is provided, together with a simple tutorial for both a standard ERP analysis and a time-frequency analysis. Latest features and future directions of the software development are presented in the final section.
An Object-Oriented Approach to Writing Computational Electromagnetics Codes
NASA Technical Reports Server (NTRS)
Zimmerman, Martin; Mallasch, Paul G.
1996-01-01
Presently, most computer software development in the Computational Electromagnetics (CEM) community employs the structured programming paradigm, particularly using the Fortran language. Other segments of the software community began switching to an Object-Oriented Programming (OOP) paradigm in recent years to help ease design and development of highly complex codes. This paper examines design of a time-domain numerical analysis CEM code using the OOP paradigm, comparing OOP code and structured programming code in terms of software maintenance, portability, flexibility, and speed.
Study on magnetic force of electromagnetic levitation circular knitting machine
NASA Astrophysics Data System (ADS)
Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.
2018-06-01
The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.
The Trial Software version for DEMETER power spectrum files visualization and mapping
NASA Astrophysics Data System (ADS)
Lozbin, Anatoliy; Inchin, Alexander; Shpadi, Maxim
2010-05-01
In the frame of Kazakhstan's Scientific Space System creation for earthquakes precursors research, the hardware and software of DEMETER satellite was investigated. The data processing Software of DEMETER is based on package SWAN under IDL Virtual machine and realizes many features, but we can't find an important tool for the spectrograms analysis - space-time visualization of power spectrum files from electromagnetic devices as ICE and IMSC. For elimination of this problem we have developed Software which is offered to use. The DeSS (DEMETER Spectrogram Software) - it is Software for visualization, analysis and a mapping of power spectrum data from electromagnetic devices ICE and IMSC. The Software primary goal is to give the researcher friendly tool for the analysis of electromagnetic data from DEMETER Satellite for earthquake precursors and other ionosphere events researches. The Input data for DeSS Software is a power spectrum files: - Power spectrum of 1 component of the electric field in the VLF range (APID 1132); - Power spectrum of 1 component of the electric field in the HF range (APID 1134); - Power spectrum of 1 component of the magnetic field in the VLF range (APID 1137). The main features and operations of the software is possible: - various time and frequency filtration; - visualization of time dependence of signal intensity on fixed frequency; - spectral density visualization for fixed frequency range; - spectrogram autosize and smooth spectrogram; - the information in each point of the spectrogram: time, frequency and intensity; - the spectrum information in the separate window, consisting of 4 blocks; - data mapping with 6 range scale. On the map we can browse next information: - satellite orbit; - conjugate point at the satellite altitude; - north conjugate point at the altitude 110 km; - south conjugate point at the altitude 110 km. This is only trial software version to help the researchers and we always ready collaborate with scientists for software improvement. References: 1. D.Lagoutte, J.Y. Brochot, D. de Carvalho, L.Madrias and M. Parrot. DEMETER Microsatellite. Scientific Mission Center. Data product description. DMT-SP-9-CM-6054-LPC. 2. D.Lagoutte, J.Y. Brochot, P.Latremoliere. SWAN - Software for Waveform Analysis. LPCE/NI/003.E - Part 1 (User's guide), Part 2 (Analysis tools), Part 3 (User's project interface).
Wireless Network Simulation in Aircraft Cabins
NASA Technical Reports Server (NTRS)
Beggs, John H.; Youssef, Mennatoallah; Vahala, Linda
2004-01-01
An electromagnetic propagation prediction tool was used to predict electromagnetic field strength inside airplane cabins. A commercial software package, Wireless Insite, was used to predict power levels inside aircraft cabins and the data was compared with previously collected experimental data. It was concluded that the software could qualitatively predict electromagnetic propagation inside the aircraft cabin environment.
2016-03-14
DoD Department of Defense EMI electromagnetic induction ESTCP Environmental Security Technology Certification Program ft. foot GPS global...three primary objectives: Test and validate detection and discrimination capabilities of a currently available advanced electromagnetic induction ... induction (EMI) sensors in dynamic and static data acquisition modes and associated analysis software. To achieve these objectives, a controlled test was
NASA Astrophysics Data System (ADS)
Bogusz, Michael
1993-01-01
The need for a systematic methodology for the analysis of aircraft electromagnetic compatibility (EMC) problems is examined. The available computer aids used in aircraft EMC analysis are assessed and a theoretical basis is established for the complex algorithms which identify and quantify electromagnetic interactions. An overview is presented of one particularly well established aircraft antenna to antenna EMC analysis code, the Aircraft Inter-Antenna Propagation with Graphics (AAPG) Version 07 software. The specific new algorithms created to compute cone geodesics and their associated path losses and to graph the physical coupling path are discussed. These algorithms are validated against basic principles. Loss computations apply the uniform geometrical theory of diffraction and are subsequently compared to measurement data. The increased modelling and analysis capabilities of the newly developed AAPG Version 09 are compared to those of Version 07. Several models of real aircraft, namely the Electronic Systems Trainer Challenger, are generated and provided as a basis for this preliminary comparative assessment. Issues such as software reliability, algorithm stability, and quality of hardcopy output are also discussed.
NASA Astrophysics Data System (ADS)
Venter, M.; Bolli, P.
2018-03-01
This paper presents results from the electromagnetic analysis of the African VLBI Network shaped Ghana radio telescope at the operating frequencies of 5 and 6.7 GHz. The geometry implemented in commercial electromagnetic software provides insight into the effects of the slanted beam-waveguide, shaped reflector illumination and mechanical tolerances, which are known to be more stringent compared to a perfect paraboloid. It is shown that the theoretical maximum gain and aperture efficiency at 5 GHz are 63.80 dBi and 85.45%, respectively. The corresponding values at 6.7 GHz are 66.47 dBi and 88.00%, respectively. Comparisons to sidelobe maps produced from astronomical observations are also discussed, showing possible misalignment in the structure when utilised outside its originally intended purpose.
Giandini, Tommaso; Panaino, Costanza M V; Avuzzi, Barbara; Morlino, Sara; Villa, Sergio; Bedini, Nice; Carabelli, Gabriele; Frasca, Sarah C; Romanyukha, Anna; Rosenfeld, Anatoly; Pignoli, Emanuele; Valdagni, Riccardo; Carrara, Mauro
2017-03-24
To validate and apply a method for the quantification of breathing-induced prostate motion (BIPM) for patients treated with radiotherapy and implanted with electromagnetic transponders for prostate localization and tracking. For the analysis of electromagnetic transponder signal, dedicated software was developed and validated with a programmable breathing simulator phantom. The software was then applied to 1,132 radiotherapy fractions of 30 patients treated in supine position, and to a further 61 fractions of 2 patients treated in prone position. Application of the software in phantom demonstrated reliability of the developed method in determining simulated breathing frequencies and amplitudes. For supine patients, the in vivo analysis of BIPM resulted in median (maximum) amplitudes of 0.10 mm (0.35 mm), 0.24 mm (0.66 mm), and 0.17 mm (0.61 mm) in the left-right (LR), cranio-caudal (CC), and anterior-posterior (AP) directions, respectively. Breathing frequency ranged between 7.73 and 29.43 breaths per minute. For prone patients, the ranges of the BIPM amplitudes were 0.1-0.5 mm, 0.5-1.3 mm, and 0.7-1.7 mm in the LR, CC, and AP directions, respectively. The developed method was able to detect the BIPM with sub-millimeter accuracy. While for patients treated in supine position the BIPM represents a reduced source of treatment uncertainty, for patients treated in prone position, it can be higher than 3 mm.
Using EIGER for Antenna Design and Analysis
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Khayat, Michael; Kennedy, Timothy F.; Fink, Patrick W.
2007-01-01
EIGER (Electromagnetic Interactions GenERalized) is a frequency-domain electromagnetics software package that is built upon a flexible framework, designed using object-oriented techniques. The analysis methods used include moment method solutions of integral equations, finite element solutions of partial differential equations, and combinations thereof. The framework design permits new analysis techniques (boundary conditions, Green#s functions, etc.) to be added to the software suite with a sensible effort. The code has been designed to execute (in serial or parallel) on a wide variety of platforms from Intel-based PCs and Unix-based workstations. Recently, new potential integration scheme s that avoid singularity extraction techniques have been added for integral equation analysis. These new integration schemes are required for facilitating the use of higher-order elements and basis functions. Higher-order elements are better able to model geometrical curvature using fewer elements than when using linear elements. Higher-order basis functions are beneficial for simulating structures with rapidly varying fields or currents. Results presented here will demonstrate curren t and future capabilities of EIGER with respect to analysis of installed antenna system performance in support of NASA#s mission of exploration. Examples include antenna coupling within an enclosed environment and antenna analysis on electrically large manned space vehicles.
Electromagnetic Field Effects in Semiconductor Crystal Growth
NASA Technical Reports Server (NTRS)
Dulikravich, George S.
1996-01-01
This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.
NASA Astrophysics Data System (ADS)
Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.
2017-08-01
This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.
NASA Astrophysics Data System (ADS)
Leukhin, R. I.; Shaykhutdinov, D. V.; Shirokov, K. M.; Narakidze, N. D.; Vlasov, A. S.
2017-02-01
Developing the experimental design of new electromagnetic constructions types in engineering industry enterprises requires solutions of two major problems: regulator’s parameters setup and comprehensive testing of electromagnets. A weber-ampere characteristic as a data source for electromagnet condition identification was selected. Present article focuses on development and implementation of the software for electromagnetic drive control system based on the weber-ampere characteristic measuring. The software for weber-ampere characteristic data processing based on artificial neural network is developed. Results of the design have been integrated into the program code in LabVIEW environment. The license package of LabVIEW graphic programming was used. The hardware is chosen and possibility of its use for control system implementation was proved. The trained artificial neural network defines electromagnetic drive effector position with minimal error. Developed system allows to control the electromagnetic drive powered by the voltage source, the current source and hybrid sources.
ULFEM time series analysis package
Karl, Susan M.; McPhee, Darcy K.; Glen, Jonathan M. G.; Klemperer, Simon L.
2013-01-01
This manual describes how to use the Ultra-Low-Frequency ElectroMagnetic (ULFEM) software package. Casual users can read the quick-start guide and will probably not need any more information than this. For users who may wish to modify the code, we provide further description of the routines.
The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)
2002-01-01
NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.
Design and analysis of magneto rheological fluid brake for an all terrain vehicle
NASA Astrophysics Data System (ADS)
George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.
2018-02-01
This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.
Small Portable Analyzer Diagnostic Equipment (SPADE) Program -- Diagnostic Software Validation
1984-07-01
Electronic Equipment Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference Electromagnetic...ONLY. ORIENTATION OF DEFECT LOOKING HHO QIlILL: t -ed’-o· Significant efforts were expended to simulate spalling failures associated with naturally
Spectral and Spatial Coherent Emission of Thermal Radiation from Metal-Semiconductor Nanostructures
2012-03-01
Coupled Wave Analysis (RCWA) numerical technique and Computer Simulation Technology (CST) electromagnetic modeling software, two structures were...Stephanie Gray, IR-VASE and modeling Dr. Kevin Gross, FTIR Mr. Richard Johnston, Cleanroom and Photolithography Ms. Abbey Juhl, Nanoscribe...Appendix B. Supplemental IR-VASE Measurements and Modeling .............................114 Bibliography
NASA Astrophysics Data System (ADS)
Gordeev, V. F.; Malyshkov, S. Yu.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.
2017-11-01
The general trend of modern ecological geophysics is changing priorities towards rapid assessment, management and prediction of ecological and engineering soil stability as well as developing brand new geophysical technologies. The article describes researches conducted by using multi-canal geophysical logger MGR-01 (developed by IMCES SB RAS), which allows to measure flux density of very low-frequency electromagnetic radiation. It is shown that natural pulsed electromagnetic fields of the earthen lithosphere can be a source of new information on Earth's crust and processes in it, including earthquakes. The device is intended for logging electromagnetic processes in Earth's crust, geophysical exploration, finding structural and lithological inhomogeneities, monitoring the geodynamic movement of Earth's crust, express assessment of seismic hazards. The data is gathered automatically from observation point network in Siberia
Developing open-source codes for electromagnetic geophysics using industry support
NASA Astrophysics Data System (ADS)
Key, K.
2017-12-01
Funding for open-source software development in academia often takes the form of grants and fellowships awarded by government bodies and foundations where there is no conflict-of-interest between the funding entity and the free dissemination of the open-source software products. Conversely, funding for open-source projects in the geophysics industry presents challenges to conventional business models where proprietary licensing offers value that is not present in open-source software. Such proprietary constraints make it easier to convince companies to fund academic software development under exclusive software distribution agreements. A major challenge for obtaining commercial funding for open-source projects is to offer a value proposition that overcomes the criticism that such funding is a give-away to the competition. This work draws upon a decade of experience developing open-source electromagnetic geophysics software for the oil, gas and minerals exploration industry, and examines various approaches that have been effective for sustaining industry sponsorship.
Software System Architecture Modeling Methodology for Naval Gun Weapon Systems
2010-12-01
Weapon System HAR Hazard Action Report HERO Hazards of Electromagnetic Radiation to Ordnance IOC Initial Operational Capability... radiation to ordnance ; and combinations therein. Equipment, systems, or procedures and processes whose malfunction would hazard the safe manufacturing...NDI Non-Development Item OPEVAL Operational Evaluation ORDALTS Ordnance Alterations O&SHA Operating and Support Hazard Analysis PDA
AESOP 3.0 Highlights: Afloat Electromagnetic Spectrum Operations Program
2011-03-01
Restricted Frequency List (JRFL) MCEB Pub 8, Version 2.0.1 (1 July 2010); Tactical Information - JRFL Enhanced Mapping Capability 2-D and 3-D maps with...includes Joint Restricted Frequency List (JRFL) frequencies UNCLASSIFIED 14 Satellite Availability & Analysis (SA2) AESOP 3.0 – SA2 v5.7.2 Software
Development of software for geodynamic processes monitoring system
NASA Astrophysics Data System (ADS)
Kabanov, M. M.; Kapustin, S. N.; Gordeev, V. F.; Botygin, I. A.; Tartakovsky, V. A.
2017-11-01
This article justifies the usage of natural pulsed electromagnetic Earth's noises logging method for mapping anomalies of strain-stress state of Earth's crust. The methods and technologies for gathering, processing and systematization of data gathered by ground multi-channel geophysical loggers for monitoring geomagnetic situation have been experimentally tested, and software had been developed. The data was consolidated in a network storage and can be accessed without using any specialized client software. The article proposes ways to distinguish global and regional small-scale time-space variations of Earth's natural electromagnetic field. For research purposes, the software provides a way to export data for any given period of time for any loggers and displays measurement data charts for selected set of stations.
Integrated analysis of large space systems
NASA Technical Reports Server (NTRS)
Young, J. P.
1980-01-01
Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.
Motion Law Analysis and Structural Optimization of the Ejection Device of Tray Seeder
NASA Astrophysics Data System (ADS)
Luo, Xin; Hu, Bin; Dong, Chunwang; Huang, Lili
An ejection mechanism consisting four reset springs, an electromagnet and a seed disk was designed for tray seeder. The motion conditions of seeds in the seed disk were theoretical analyzed and intensity and height of seed ejection were calculated. The motions of the seeds and seed disk were multi-body dynamic simulated using Cosmos modules plug-in SolidWorks software package. The simulation results showed the consistence with the theoretical analysis.
Electromagnetic Imaging Methods for Nondestructive Evaluation Applications
Deng, Yiming; Liu, Xin
2011-01-01
Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693
MNE software for processing MEG and EEG data
Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.
2013-01-01
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals originating from neural currents in the brain. Using these signals to characterize and locate brain activity is a challenging task, as evidenced by several decades of methodological contributions. MNE, whose name stems from its capability to compute cortically-constrained minimum-norm current estimates from M/EEG data, is a software package that provides comprehensive analysis tools and workflows including preprocessing, source estimation, time–frequency analysis, statistical analysis, and several methods to estimate functional connectivity between distributed brain regions. The present paper gives detailed information about the MNE package and describes typical use cases while also warning about potential caveats in analysis. The MNE package is a collaborative effort of multiple institutes striving to implement and share best methods and to facilitate distribution of analysis pipelines to advance reproducibility of research. Full documentation is available at http://martinos.org/mne. PMID:24161808
2016-01-22
Numerical electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna...and are not necessarily endorsed by the United States Government. numerical simulations with the multilevel fast multipole method (MLFMM...and optimized using numerical simulations conducted with the multilevel fast multipole method (MLFMM) using FEKO software (www.feko.info). The
Modeling Electromagnetic Scattering From Complex Inhomogeneous Objects
NASA Technical Reports Server (NTRS)
Deshpande, Manohar; Reddy, C. J.
2011-01-01
This software innovation is designed to develop a mathematical formulation to estimate the electromagnetic scattering characteristics of complex, inhomogeneous objects using the finite-element-method (FEM) and method-of-moments (MoM) concepts, as well as to develop a FORTRAN code called FEMOM3DS (Finite Element Method and Method of Moments for 3-Dimensional Scattering), which will implement the steps that are described in the mathematical formulation. Very complex objects can be easily modeled, and the operator of the code is not required to know the details of electromagnetic theory to study electromagnetic scattering.
NASA Astrophysics Data System (ADS)
Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.
2015-07-01
A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.
Intraoperative visualization and assessment of electromagnetic tracking error
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor
2015-03-01
Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.
NASA Astrophysics Data System (ADS)
Mochalov, V. A.; Firstov, P. P.; Cherneva, N. V.; Sannikov, D. V.; Akbashev, R. R.; Uvarov, V. N.; Shevtsov, B. M.; Druzhin, G. I.; Mochalova, A. V.
2017-11-01
In the region of the Northern group of volcanoes in Kamchatka peninsula, a distributed network is being planned to monitor the VLF range electromagnetic radiation and to locate the lightning strokes. It will allow the researchers to register weaker electromagnetic pulses from lightning strokes in comparison to the World Wide Lightning Location Network. The hardware-software complex of the network under construction is presented. The capabilities of the available and the developing hardware and software to investigate natural phenomena associated with lightning activity are described.
Implementation of interconnect simulation tools in spice
NASA Technical Reports Server (NTRS)
Satsangi, H.; Schutt-Aine, J. E.
1993-01-01
Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.
Numerical simulation of the early-time high altitude electromagnetic pulse
NASA Astrophysics Data System (ADS)
Meng, Cui; Chen, Yu-Sheng; Liu, Shun-Kun; Xie, Qin-Chuan; Chen, Xiang-Yue; Gong, Jian-Cheng
2003-12-01
In this paper, the finite difference method is used to develop the Fortran software MCHII. The physical process in which the electromagnetic signal is generated by the interaction of nuclear-explosion-induced Compton currents with the geomagnetic field is numerically simulated. The electromagnetic pulse waveforms below the burst point are investigated. The effects of the height of burst, yield and the time-dependence of gamma-rays are calculated by using the MCHII code. The results agree well with those obtained by using the code CHAP.
NASA Astrophysics Data System (ADS)
Kropf, M.; Pedrick, M.; Wang, X.; Tittmann, B. R.
2005-05-01
As per the recent advances in remote in situ monitoring of industrial equipment using long wire waveguides (~10m), novel applications of existing wave generation techniques and new acoustic modeling software have been used to advance waveguide technology. The amount of attainable information from an acoustic signal in such a system is limited by transmission through the waveguide along with frequency content of the generated waves. Magnetostrictive, and Electromagnetic generation techniques were investigated in order to maximize acoustic transmission along the waveguide and broaden the range of usable frequencies. Commercial EMAT, Magnetostrictive and piezoelectric disc transducers (through the innovative use of an acoustic horn) were utilized to generate waves in the wire waveguide. Insertion loss, frequency bandwidth and frequency range were examined for each technique. Electromagnetic techniques are shown to allow for higher frequency wave generation. This increases accessibility of dispersion curves providing further versatility in the selection of guided wave modes, thus increasing the sensitivity to physical characteristics of the specimen. Both electromagnetic and magnetostrictive transducers require the use of a ferromagnetic waveguide, typically coupled to a steel wire when considering long transmission lines (>2m). The interface between these wires introduces an acoustic transmission loss. Coupling designs were examined with acoustic finite element software (Coupled-Acoustic Piezoelectric Analysis). Simulations along with experimental results aided in the design of a novel joint which minimizes transmission loss. These advances result in the increased capability of remote sensing using wire waveguides.
A Comparison of Science and Technology Funding for DoD’s Space and Nonspace Programs
2008-01-15
Artificial intelligence for HAARP Multispectral signature libraries Environmental conditions that Ionospheric prediction HAARP Weather software for...Hardware and software for solar HAARP Electromagnetic interference for Plasma theory in the space Subproject details were not available Subproject
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
NASA Tech Briefs, December 2004
NASA Technical Reports Server (NTRS)
2004-01-01
opics include: High-Rate Digital Receiver Board; Signal Design for Improved Ranging Among Multiple Transceivers; Automated Analysis, Classification, and Display of Waveforms; Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO; Format for Interchange and Display of 3D Terrain Data; Program Analyzes Radar Altimeter Data; Indoor Navigation using Direction Sensor and Beacons; Software Assists in Responding to Anomalous Conditions; Software for Autonomous Spacecraft Maneuvers; WinPlot; Software for Automated Testing of Mission-Control Displays; Nanocarpets for Trapping Microscopic Particles; Precious-Metal Salt Coatings for Detecting Hydrazines; Amplifying Electrochemical Indicators; Better End-Cap Processing for Oxidation-Resistant Polyimides; Carbon-Fiber Brush Heat Exchangers; Solar-Powered Airplane with Cameras and WLAN; A Resonator for Low-Threshold Frequency Conversion; Masked Proportional Routing; Algorithm Determines Wind Speed and Direction from Venturi-Sensor Data; Feature-Identification and Data-Compression Software; Alternative Attitude Commanding and Control for Precise Spacecraft Landing; Inspecting Friction Stir Welding using Electromagnetic Probes; and Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers.
Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Freudlsperger, Christian; Eisenmann, Urs; Dickhaus, Hartmut; Engel, Michael; Hoffmann, Jürgen; Seeberger, Robin
2017-10-01
Because of the inaccuracy of intermaxillary splints in orthognathic surgery, intraoperative guidance via a real time navigation system might represent a suitable method for enhancing the precision of maxillary positioning. Therefore, in this clinical trial, maxillary repositioning after Le Fort I osteotomy was guided splintless by an electromagnetic navigation system. Conservatively planned maxillary reposition in each of 5 patients was transferred to a novel software module of the electromagnetic navigation system. Intraoperatively, after Le Fort I osteotomy, the software guided the maxilla to the targeted position. Accuracy was evaluated by pre- and postoperative cone beam computer tomography imaging (the vectorial distance of the incisal marker points was measured in three dimensions) and compared with that of a splint transposed control group. The repositioning of the maxilla guided by the electromagnetic navigation system was intuitive and simple to accomplish. The achieved maxillary position with a deviation of 0.7 mm on average to the planned position was equally accurate compared with that of the splint transposed control group of 0.5 mm (p > 0.05). The data of this clinical study display good accuracy for splintless electromagnetic-navigated maxillary positioning. Nevertheless, this method does not surpass the splint-encoded gold standard with regard to accuracy. Future investigations will be necessary to show the full potential of electromagnetic navigation in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Rosetta CONSERT operations and data analysis preparation: simulation software tools.
NASA Astrophysics Data System (ADS)
Rogez, Yves; Hérique, Alain; Cardiet, Maël; Zine, Sonia; Westphal, Mathieu; Micallef, Mickael; Berquin, Yann; Kofman, Wlodek
2014-05-01
The CONSERT experiment onboard Rosetta and Philae will perform the tomography of the 67P/CG comet nucleus by measuring radio waves transmission from the Rosetta S/C to the Philae Lander. The accurate analysis of travel time measurements will deliver unique knowledge of the nucleus interior dielectric properties. The challenging complexity of CONSERT operations requirements, combining both Rosetta and Philae, allows only a few set of opportunities to acquire data. Thus, we need a fine analysis of the impact of Rosetta trajectory, Philae position and comet shape on CONSERT measurements, in order to take optimal decisions in a short time. The integration of simulation results and mission parameters provides synthetic information to evaluate performances and risks for each opportunity. The preparation of CONSERT measurements before space operations is a key to achieve the best science return of the experiment. In addition, during Rosetta space operations, these software tools will allow a "real-time" first analysis of the latest measurements to improve the next acquisition sequences. The software tools themselves are built around a 3D electromagnetic radio wave simulation, taking into account the signal polarization. It is based on ray-tracing algorithms specifically designed for quick orbit analysis and radar signal generation. This allows computation on big domains relatively to the wavelength. The extensive use of 3D visualization tools provides comprehensive and synthetic views of the results. The software suite is designed to be extended, after Rosetta operations, to the full 3D measurement data analysis using inversion methods.
Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Jeff
2012-11-30
Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have beenmore » the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.« less
Evaluation of Honeywell Recoverable Computer System (RCS) in Presence of Electromagnetic Effects
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar
1997-01-01
The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time critical communication of data and commands between the RCS and flight simulation code in real-time, while meeting the stringent hard deadlines is also presented. The performance results of the RCS while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields is also discussed.
The difference of detecting water mist and smoke by electromagnetic wave in simulation experiments
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; Cui, Bing; Xiao, Si
2015-10-01
Although mist is similar to smoke in morphology, their compositions are very different. Therefore there is a significant difference between mist and smoke when detected by electromagnetic wave. This paper puts forward a kind of feasible solution based on Ansoft HFSS software about how to determine the forest fire by distinguishing mist and smoke above the forest. The experiments simulate the difference between mist and smoke model when detected by electromagnetic wave in different wavelengths. We find the mist and smoke model cannot absorb or reflect electromagnetic wave efficiently in Megahertz band. While in Gigahertz band mist model began to absorb and reflect electromagnetic wave above 650 Gigahertz band, but no change in smoke model. And the biggest difference appears in Terahertz band.
An application of LOTEM around salt dome near Houston, Texas
NASA Astrophysics Data System (ADS)
Paembonan, Andri Yadi; Arjwech, Rungroj; Davydycheva, Sofia; Smirnov, Maxim; Strack, Kurt M.
2017-07-01
A salt dome is an important large geologic structure for hydrocarbon exploration. It may seal a porous reservoir of rocks that form petroleum reservoirs. Several techniques such as seismic, gravity, and electromagnetic including magnetotelluric have successfully yielded salt dome interpretation. Seismic has difficulties seeing through the salt because the seismic energy gets trapped by the salt due to its high velocity. Gravity and electromagnetics are more ideal methods. Long Offset Transient Electromagnetic (LOTEM) and Focused Source Electromagnetic (FSEM) were tested over a salt dome near Houston, Texas. LOTEM data were recorded at several stations with varying offset, and the FSEM tests were also made at some receiver locations near a suspected salt overhang. The data were processed using KMS's processing software: First, for assurance, including calibration and header checking; then transmitter and receiver data are merged and microseismic data is separated; Finally, data analysis and processing follows. LOTEM processing leads to inversion or in the FSEM case 3D modeling. Various 3D models verify the sensitivity under the salt dome. In addition, the processing was conducted pre-stack, stack, and post-stack. After pre-stacking, the noise was reduced, but showed the ringing effect due to a low-pass filter. Stacking and post-stacking with applying recursive average could reduce the Gibbs effect and produce smooth data.
Data acquisition, processing and firing aid software for multichannel EMP simulation
NASA Astrophysics Data System (ADS)
Eumurian, Gregoire; Arbaud, Bruno
1986-08-01
Electromagnetic compatibility testing yields a large quantity of data for systematic analysis. An automated data acquisition system has been developed. It is based on standard EMP instrumentation which allows a pre-established program to be followed whilst orientating the measurements according to the results obtained. The system is controlled by a computer running interactive programs (multitask windows, scrollable menus, mouse, etc.) which handle the measurement channels, files, displays and process data in addition to providing an aid to firing.
Antenna analysis using properties of metamaterials
NASA Astrophysics Data System (ADS)
Mitra, Atindra K.; Hu, Colin; Maxwell, Kasandra
2010-04-01
As part of the Student Internship Programs at Wright-Patterson Air Force Base, including the AFRL Wright Scholar Program for High School Students and the AFRL STEP Program, sample results from preliminary investigation and analysis of integrated antenna structures are reported. Investigation of these novel integrated antenna geometries can be interpreted as a continuation of systems analysis under the general topic area of potential integrated apertures for future software radar/radio solutions [1] [2]. Specifically, the categories of novel integrated aperture geometries investigated in this paper include slotted-fractal structures on microstrip rectangular patch antenna models in tandem with the analysis of exotic substrate materials comprised of a type of synthesized electromagnetic structure known as metamaterials [8] - [10].
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong
2017-11-01
Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.
Program Analyzes Radar Altimeter Data
NASA Technical Reports Server (NTRS)
Vandemark, Doug; Hancock, David; Tran, Ngan
2004-01-01
A computer program has been written to perform several analyses of radar altimeter data. The program was designed to improve on previous methods of analysis of altimeter engineering data by (1) facilitating and accelerating the analysis of large amounts of data in a more direct manner and (2) improving the ability to estimate performance of radar-altimeter instrumentation and provide data corrections. The data in question are openly available to the international scientific community and can be downloaded from anonymous file-transfer- protocol (FTP) locations that are accessible via links from altimetry Web sites. The software estimates noise in range measurements, estimates corrections for electromagnetic bias, and performs statistical analyses on various parameters for comparison of different altimeters. Whereas prior techniques used to perform similar analyses of altimeter range noise require comparison of data from repetitions of satellite ground tracks, the present software uses a high-pass filtering technique to obtain similar results from single satellite passes. Elimination of the requirement for repeat-track analysis facilitates the analysis of large amounts of satellite data to assess subtle variations in range noise.
6.7 radio sky mapping from satellites at very low frequencies
NASA Technical Reports Server (NTRS)
Storey, L. R. O.
1991-01-01
Wave Distribution Function (WDF) analysis is a procedure for making sky maps of the sources of natural electromagnetic waves in space plasmas, given local measurements of some or all of the three magnetic and three electric field components. The work that still needs to be done on this subject includes solving basic methodological problems, translating the solution into efficient algorithms, and embodying the algorithms in computer software. One important scientific use of WDF analysis is to identify the mode of origin of plasmaspheric hiss. Some of the data from the Japanese satellite Akebono (EXOS D) are likely to be suitable for this purpose.
Radio sky mapping from satellites at very low frequencies
NASA Technical Reports Server (NTRS)
Storey, L. R. O.
1991-01-01
Wave Distribution Function (WDF) analysis is a procedure for making sky maps of the sources of natural electromagnetic waves in space plasmas, given local measurements of some or all of the three magnetic and three electric field components. The work that still needs to be done on this subject includes solving basic methodological problems, translating the solution into efficient algorithms, and embodying the algorithms in computer software. One important scientific use of WDF analysis is to identify the mode of origin of plasmaspheric hiss. Some of the data from the Japanese satellite Akebono (EXOS D) are likely to be suitable for this purpose.
Energy reconstruction of hadrons in highly granular combined ECAL and HCAL systems
NASA Astrophysics Data System (ADS)
Israeli, Y.
2018-05-01
This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for data with showers starting only in the AHCAL and therefore demonstrate the success of the inter-calibration of the different sub-systems, despite of their different geometries and different readout technologies.
Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos
2015-02-01
A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.
Motion of a Charged Particle in a Constant and Uniform Electromagnetic Field
ERIC Educational Resources Information Center
Ladino, L. A.; Rondón, S. H.; Orduz, P.
2015-01-01
This paper focuses on the use of software developed by the authors that allows the visualization of the motion of a charged particle under the influence of magnetic and electric fields in 3D, at a level suitable for introductory physics courses. The software offers the possibility of studying a great number of physical situations that can…
NASA Astrophysics Data System (ADS)
Moon, Hongsik
What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.
Automation of electromagnetic compatability (EMC) test facilities
NASA Technical Reports Server (NTRS)
Harrison, C. A.
1986-01-01
Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.
Design and development of conformal antenna composite structure
NASA Astrophysics Data System (ADS)
Xie, Zonghong; Zhao, Wei; Zhang, Peng; Li, Xiang
2017-09-01
In the manufacturing process of the common smart skin antenna, the adhesive covered on the radiating elements of the antenna led to severe deviation of the resonant frequency, which degraded the electromagnetic performance of the antenna. In this paper, a new component called package cover was adopted to prevent the adhesive from covering on the radiating elements of the microstrip antenna array. The package cover and the microstrip antenna array were bonded together as packaged antenna which was then embedded into the composite sandwich structure to develop a new structure called conformal antenna composite structure (CACS). The geometric parameters of the microstrip antenna array and the CACS were optimized by the commercial software CST microwave studio. According to the optimal results, the microstrip antenna array and the CACS were manufactured and tested. The experimental and numerical results of electromagnetic performance showed that the resonant frequency of the CACS was close to that of the microstrip antenna array (with error less than 1%) and the CACS had a higher gain (about 2 dB) than the microstrip antenna array. The package system would increase the electromagnetic radiating energy at the design frequency nearly 66%. The numerical model generated by CST microwave studio in this study could successfully predict the electromagnetic performance of the microstrip antenna array and the CACS with relatively good accuracy. The mechanical analysis results showed that the CACS had better flexural property than the composite sandwich structure without the embedment of packaged antenna. The comparison of the electromagnetic performance for the CACS and the MECSSA showed that the package system was useful and effective.
Measurement of electromagnetic tracking error in a navigated breast surgery setup
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor
2016-03-01
PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.
SIGKit: a New Data-based Software for Learning Introductory Geophysics
NASA Astrophysics Data System (ADS)
Zhang, Y.; Kruse, S.; George, O.; Esmaeili, S.; Papadimitrios, K. S.; Bank, C. G.; Cadmus, A.; Kenneally, N.; Patton, K.; Brusher, J.
2016-12-01
Students of diverse academic backgrounds take introductory geophysics courses to learn the theory of a variety of measurement and analysis methods with the expectation to be able to apply their basic knowledge to real data. Ideally, such data is collected in field courses and also used in lecture-based courses because they provide a critical context for better learning and understanding of geophysical methods. Each method requires a separate software package for the data processing steps, and the complexity and variety of professional software makes the path through data processing to data interpretation a strenuous learning process for students and a challenging teaching task for instructors. SIGKit (Student Investigation of Geophysics Toolkit) being developed as a collaboration between the University of South Florida, the University of Toronto, and MathWorks intends to address these shortcomings by showing the most essential processing steps and allowing students to visualize the underlying physics of the various methods. It is based on MATLAB software and offered as an easy-to-use graphical user interface and packaged so it can run as an executable in the classroom and the field even on computers without MATLAB licenses. An evaluation of the software based on student feedback from focus-group interviews and think-aloud observations helps drive its development and refinement. The toolkit provides a logical gateway into the more sophisticated and costly software students will encounter later in their training and careers by combining essential visualization, modeling, processing, and analysis steps for seismic, GPR, magnetics, gravity, resistivity, and electromagnetic data.
Design and Optimization of a Telemetric system for appliance in earthquake prediction
NASA Astrophysics Data System (ADS)
Bogdos, G.; Tassoulas, E.; Vereses, A.; Papapanagiotou, A.; Filippi, K.; Koulouras, G.; Nomicos, C.
2009-04-01
This project's aim is to design a telemetric system which will be able to collect data from a digitizer, transform it into appropriate form and transfer this data to a central system where an on-line data elaboration will take place. On-line mathematical elaboration (fractal analysis) of pre-seismic electromagnetic signals and instant display may lead to safe earthquake prediction methodologies. Ad-hoc connections and heterogeneous topologies are the core network, while wired and wireless means cooperate for an accurate and on-time transmission. The nature of data is considered very sensitive so the transmission needs to be instant. All stations are situated in rural places in order to prevent electromagnetic interferences; this imposes continuous monitoring and provision of backup data links. The central stations collect the data of every station and allocate them properly in a predefined database. Special software is designed to elaborate mathematically the incoming data and export it graphically. The developing part included digitizer design, workstation software design, transmission protocol study and simulation on OPNET, database programming, mathematical data elaborations and software development for graphical representation. All the package was tested under lab conditions and tested in real conditions. The main aspect that this project serves is the very big interest for the scientific community in case this platform will eventually be implemented and then installed in Greek countryside in large scale. The platform is designed in such a way that techniques of data mining and mathematical elaboration are possible and any extension can be adapted. The main specialization of this project is that these mechanisms and mathematical transformations can be applied on live data. This can help to rapid exploitation of the real meaning of the measured and stored data. The elaboration of this study has as primary intention to help and alleviate the analysis process while triggering the scientific community to pay attention on seismic activities in Greece watching it on-line.
Unmanned Systems Safety Guide for DoD Acquisition
2007-06-27
Weapons release authorization validation. • Weapons release verification . • Weapons release abort/back-out, including clean -up or reset of weapons...conditions, clean room, stress) and other environments (e.g. software engineering environment, electromagnetic) related to system utilization. Error 22 (1...A solid or liquid energetic substance (or a mixture of substances) which is in itself capable, OUSD (AT&L) Systems and Software Engineering
Electromagnetic flat sheet forming by spiral type actuator coil
NASA Astrophysics Data System (ADS)
Akbar, S.; Aleem, M. A.; Sarwar, M. N.; Zillohu, A. U.; Awan, M. S.; Haider, A.; Ahmad, Z.; Akhtar, S.; Farooque, M.
2016-08-01
Focus of present work is to develop a setup for high strain rate electromagnetic forming of thin aluminum sheets (0.5, 1.0, 1.5 and 2.0 mm) and optimization of forming parameters. Flat spiral coil of 99.9% pure Cu strip (2.5x8.0 mm) with self-inductance 11 μH, 13 no. of turns and resultant outer diameter of 130mm has been fabricated and was coupled to a capacitor bank of energy, voltage and capacitance of 9 kJ, 900 V and 22.8 mF, respectively. To optimize the coil design, a commercially available software FEMM-4.2 was used to simulate the electromagnetic field profile generated by the coils of different pitch but same number of turns. Results of electromagnetic field intensity proposed by simulation agree in close proximity with those of theoretical as well as experimental data. The calculation of electromagnetic force and magnetic couplings between the coil and metal sheet are made. Forming parameters were optimized for different sheet thicknesses. Electromagnetic field intensity's profile plays a principal role in forming of typical shapes and patterns in sheets.
Kassiopeia: a modern, extensible C++ particle tracking package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furse, Daniel; Groh, Stefan; Trost, Nikolaus
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less
Kassiopeia: a modern, extensible C++ particle tracking package
Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...
2017-05-16
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less
Kassiopeia: a modern, extensible C++ particle tracking package
NASA Astrophysics Data System (ADS)
Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael
2017-05-01
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.
The Data Analysis in Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Wang, Xiao-ge; Lebigot, Eric; Du, Zhi-hui; Cao, Jun-wei; Wang, Yun-yong; Zhang, Fan; Cai, Yong-zhi; Li, Mu-zi; Zhu, Zong-hong; Qian, Jin; Yin, Cong; Wang, Jian-bo; Zhao, Wen; Zhang, Yang; Blair, David; Ju, Li; Zhao, Chun-nong; Wen, Lin-qing
2017-01-01
Gravitational wave (GW) astronomy based on the GW detection is a rising interdisciplinary field, and a new window for humanity to observe the universe, followed after the traditional astronomy with the electromagnetic waves as the detection means, it has a quite important significance for studying the origin and evolution of the universe, and for extending the astronomical research field. The appearance of laser interferometer GW detector has opened a new era of GW detection, and the data processing and analysis of GWs have already been developed quickly around the world, to provide a sharp weapon for the GW astronomy. This paper introduces systematically the tool software that commonly used for the data analysis of GWs, and discusses in detail the basic methods used in the data analysis of GWs, such as the time-frequency analysis, composite analysis, pulsar timing analysis, matched filter, template, χ2 test, and Monte-Carlo simulation, etc.
A few categories of electromagnetic field problems treated through Fuzzy Logic
NASA Astrophysics Data System (ADS)
Lolea, M. S.; Dzitac, S.
2018-01-01
The paper deals with the problems of fuzzy logic applied in the field of electromagnetism. In the first part, there are presented some theoretical aspects regarding the characteristics and the application of the fuzzy logic in the general case. Are presented then, some categories of electromagnetic field problems treated by fuzzy logic. The accent is on the effects of exposure to the electromagnetic field on the human body. For this approach is dedicated a paragraph at the end of the paper. There is an application on how to treat by fuzzy logic the effects of electric field exposure. For this purpose, the fuzzy toolbox existing in the Matlab software and the results of some electric field strength measurements into a power substation are used. The results of the study and its conclusions are analyzed and exposed at the end of the paper.
GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Dykes, Katherine L
This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with themore » exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.« less
Magnetostriction measurement by four probe method
NASA Astrophysics Data System (ADS)
Dange, S. N.; Radha, S.
2018-04-01
The present paper describes the design and setting up of an indigenouslydevelopedmagnetostriction(MS) measurement setup using four probe method atroom temperature.A standard strain gauge is pasted with a special glue on the sample and its change in resistance with applied magnetic field is measured using KeithleyNanovoltmeter and Current source. An electromagnet with field upto 1.2 tesla is used to source the magnetic field. The sample is placed between the magnet poles using self designed and developed wooden probe stand, capable of moving in three mutually perpendicular directions. The nanovoltmeter and current source are interfaced with PC using RS232 serial interface. A software has been developed in for logging and processing of data. Proper optimization of measurement has been done through software to reduce the noise due to thermal emf and electromagnetic induction. The data acquired for some standard magnetic samples are presented. The sensitivity of the setup is 1microstrain with an error in measurement upto 5%.
NASA Technical Reports Server (NTRS)
Roth, Donald J (Inventor)
2011-01-01
A computer implemented process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. Utilizing interactive software the process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
NASA Astrophysics Data System (ADS)
Wang, Yue'e.; Li, Zhi; Hu, Fangrong
2018-01-01
We designed a bilayer-double-H-metamaterials (BDHM) composed of two layers of metal and two layers of dielectric to analog a spectral response of electromagnetically induced transparency (EIT) at terahertz frequency. By changing the incident angle, the BDHM exhibits an EIT-like spectral response. The tunable spectral performances and modulation mechanism of the transparent peak are theoretically investigated using full-wave electromagnetic simulation software. The physical mechanism of the EIT-like effect is based on the constructive and destructive interference between the induced electrical dipoles. Our work provides a new way to realize the EIT-like effect only by changing the incident angles of the metamaterials. The potential applications include tunable filters, sensors, attenuators, switches, and so on.
[Effects of extremely low frequency electromagnetic radiation on cardiovascular system of workers].
Zhao, Long-yu; Song, Chun-xiao; Yu, Duo; Liu, Xiao-liang; Guo, Jian-qiu; Wang, Chuan; Ding, Yuan-wei; Zhou, Hong-xia; Ma, Shu-mei; Liu, Xiao-dong; Liu, Xin
2012-03-01
To observe the exposure levels of extremely low frequency electromagnetic fields in workplaces and to analyze the effects of extremely low frequency electromagnetic radiation on cardiovascular system of occupationally exposed people. Intensity of electromagnetic fields in two workplaces (control and exposure groups) was detected with EFA-300 frequency electromagnetic field strength tester, and intensity of the noise was detected with AWA5610D integral sound level. The information of health physical indicators of 188 controls and 642 occupationally exposed workers was collected. Data were analyzed by SPSS17.0 statistic software. The intensity of electric fields and the magnetic fields in exposure groups was significantly higher than that in control group (P < 0.05), but there was no significant difference of noise between two workplaces (P > 0.05). The results of physical examination showed that the abnormal rates of HCY, ALT, AST, GGT, ECG in the exposure group were significantly higher than those in control group (P < 0.05). There were no differences of sex, age, height, weight between two groups (P > 0.05). Exposure to extremely low frequency electromagnetic radiation may have some effects on the cardiovascular system of workers.
NASA Astrophysics Data System (ADS)
Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei
2018-05-01
In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe
1992-01-01
This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyne, G.; Magnin, H.; Berliat, G.
A supervisor has been developed so as to allow successive 3D computations of different quantities by different softwares on the same physical problem. Noise of a given power oil transformer can be deduced from the surface vibrations of the tank. These vibrations are obtained through a mechanic computation whose Inputs are the electromagnetic forces provided . by an electromagnetic computation. Magnetic, mechanic and acoustic experimental data are compared with the results of the 3D computations. Stress Is put on the main characteristics of the supervisor such as the transfer of a given quantity from one mesh to the other.
NASA Astrophysics Data System (ADS)
Abrudean, C.
2017-05-01
Due to multiple reflexions on walls, the electromagnetic field in a multimode microwave oven is difficult to estimate analytically. This paper presents a C++ program that calculates the electromagnetic field in a resonating cavity with an absorbing payload, uses the result to calculate heating in the payload taking its properties into account and then repeats. This results in a simulation of microwave heating, including phenomena like thermal runaway. The program is multithreaded to make use of today’s common multiprocessor/multicore computers.
Parallel-Processing Test Bed For Simulation Software
NASA Technical Reports Server (NTRS)
Blech, Richard; Cole, Gary; Townsend, Scott
1996-01-01
Second-generation Hypercluster computing system is multiprocessor test bed for research on parallel algorithms for simulation in fluid dynamics, electromagnetics, chemistry, and other fields with large computational requirements but relatively low input/output requirements. Built from standard, off-shelf hardware readily upgraded as improved technology becomes available. System used for experiments with such parallel-processing concepts as message-passing algorithms, debugging software tools, and computational steering. First-generation Hypercluster system described in "Hypercluster Parallel Processor" (LEW-15283).
Multimedia Modules for Electromagnetics Education.
ERIC Educational Resources Information Center
De Los Santos Vidal, Oriol; Iskander, Magdy F.
1997-01-01
Multimedia technology is an invaluable teaching and learning resource. One advantage of technology based education is the ability to combine practical applications, visualization of complex mathematical and abstract subjects, virtual labs, and guided use of simulation software. This article describes several multimedia tutorials for…
COSMIC monthly progress report
NASA Technical Reports Server (NTRS)
1993-01-01
Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of August, 1993. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Ten articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) MOM3D - A Method of Moments Code for Electromagnetic Scattering (UNIX Version); (2) EM-Animate - Computer Program for Displaying and Animating the Steady-State Time-Harmonic Electromagnetic Near Field and Surface-Current Solutions; (3) MOM3D - A Method of Moments Code for Electromagnetic Scattering (IBM PC Version); (4) M414 - MIL-STD-414 Variable Sampling Procedures Computer Program; (5) MEDOF - Minimum Euclidean Distance Optimal Filter; (6) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (Macintosh Version); (7) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (IBM PC Version); (8) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (UNIX Version); (9) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (DEC VAX VMS Version); and (10) TFSSRA - Thick Frequency Selective Surface with Rectangular Apertures. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.
Electromagnetically induced transparency in sinusoidal modulated ring resonator
NASA Astrophysics Data System (ADS)
Malik, Jagannath; Oruganti, Sai Kiran; Song, Seongkyu; Ko, Nak Young; Bien, Franklin
2018-06-01
In the present work, we demonstrate controlling the excitation of bright mode (continuum mode) resonance and dark mode (discrete mode) resonance in a planar metasurface made of sinusoidal modulation inside a closed rectangular metallic ring placed over a dielectric substrate. Unlike asymmetrical breaking of a meta-atom (often referred to as the unit cell) to achieve the dark mode response in regular metamaterials, in the present structure, the bright or dark mode resonance is achieved using even or odd half cycle modulation. The achieved dark-mode shows a sharp resonance for a particular polarization of the incident electric field, which results in an electromagnetically induced transparency like spectrum. The electromagnetic behavior of the proposed meta-atom has been investigated in the frequency domain using commercially available software and validated through experiments in the gigahertz regime.
NASA Astrophysics Data System (ADS)
Taflove, Allen; Umashankar, Korada R.
1993-08-01
This project introduced radiation boundary condition (RBC) and absorbing boundary condition (ABC) theory to the engineering electromagnetics community. An approximate method for obtaining the scattering of 2-D and 3-D bodies, the on-surface radiation condition (OSRC) method, was formulated and validated. RBC's and ABC's were shown to work well at points closer to scatterers than anyone had expected. Finite-difference time domain (FD-TD) methods exploiting these ABC's were pursued for applications in scattering, radiation, penetration, biomedical studies, and nonlinear optics. Multiprocessing supercomputer software was developed for FD-TD, leading to the largest scale detailed electromagnetic wave interaction models ever conducted, including entire jet fighter aircraft modeled for radar cross section (RCS) at UHF frequencies up to 500 MHz.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1989-01-01
Control systems for advanced aircraft, especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met for adverse as well as nominal operating conditions. Adverse conditions can result from electromagnetic disturbances caused by lightning, high energy radio frequency transmitters, and nuclear electromagnetic pulses. Tools and techniques must be developed to verify the integrity of the control system in adverse operating conditions. The most difficult and illusive perturbations to computer based control systems caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. A methodology is presented for performing upset tests on a multichannel control system and considerations are discussed for the design of upset tests to be conducted in the lab on fault tolerant control systems operating in a closed loop with a simulated plant.
Data Analysis of Airborne Electromagnetic Bathymetry.
1985-04-01
7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Eric M.
2004-05-20
The YAP software library computes (1) electromagnetic modes, (2) electrostatic fields, (3) magnetostatic fields and (4) particle trajectories in 2d and 3d models. The code employs finite element methods on unstructured grids of tetrahedral, hexahedral, prism and pyramid elements, with linear through cubic element shapes and basis functions to provide high accuracy. The novel particle tracker is robust, accurate and efficient, even on unstructured grids with discontinuous fields. This software library is a component of the MICHELLE 3d finite element gun code.
Navigation with Electromagnetic Tracking for Interventional Radiology Procedures
Wood, Bradford J.; Zhang, Hui; Durrani, Amir; Glossop, Neil; Ranjan, Sohan; Lindisch, David; Levy, Eliott; Banovac, Filip; Borgert, Joern; Krueger, Sascha; Kruecker, Jochen; Viswanathan, Anand; Cleary, Kevin
2008-01-01
PURPOSE To assess the feasibility of the use of preprocedural imaging for guide wire, catheter, and needle navigation with electromagnetic tracking in phantom and animal models. MATERIALS AND METHODS An image-guided intervention software system was developed based on open-source software components. Catheters, needles, and guide wires were constructed with small position and orientation sensors in the tips. A tetrahedral-shaped weak electromagnetic field generator was placed in proximity to an abdominal vascular phantom or three pigs on the angiography table. Preprocedural computed tomographic (CT) images of the phantom or pig were loaded into custom-developed tracking, registration, navigation, and rendering software. Devices were manipulated within the phantom or pig with guidance from the previously acquired CT scan and simultaneous real-time angiography. Navigation within positron emission tomography (PET) and magnetic resonance (MR) volumetric datasets was also performed. External and endovascular fiducials were used for registration in the phantom, and registration error and tracking error were estimated. RESULTS The CT scan position of the devices within phantoms and pigs was accurately determined during angiography and biopsy procedures, with manageable error for some applications. Preprocedural CT depicted the anatomy in the region of the devices with real-time position updating and minimal registration error and tracking error (<5 mm). PET can also be used with this system to guide percutaneous biopsies to the most metabolically active region of a tumor. CONCLUSIONS Previously acquired CT, MR, or PET data can be accurately codisplayed during procedures with reconstructed imaging based on the position and orientation of catheters, guide wires, or needles. Multimodality interventions are feasible by allowing the real-time updated display of previously acquired functional or morphologic imaging during angiography, biopsy, and ablation. PMID:15802449
The Liquid Argon Software Toolkit (LArSoft): Goals, Status and Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pordes, Rush; Snider, Erica
LArSoft is a toolkit that provides a software infrastructure and algorithms for the simulation, reconstruction and analysis of events in Liquid Argon Time Projection Chambers (LArTPCs). It is used by the ArgoNeuT, LArIAT, MicroBooNE, DUNE (including 35ton prototype and ProtoDUNE) and SBND experiments. The LArSoft collaboration provides an environment for the development, use, and sharing of code across experiments. The ultimate goal is to develop fully automatic processes for reconstruction and analysis of LArTPC events. The toolkit is based on the art framework and has a well-defined architecture to interface to other packages, including to GEANT4 and GENIE simulation softwaremore » and the Pandora software development kit for pattern recognition. It is designed to facilitate and support the evolution of algorithms including their transition to new computing platforms. The development of the toolkit is driven by the scientific stakeholders involved. The core infrastructure includes standard definitions of types and constants, means to input experiment geometries as well as meta and event- data in several formats, and relevant general utilities. Examples of algorithms experiments have contributed to date are: photon-propagation; particle identification; hit finding, track finding and fitting; electromagnetic shower identification and reconstruction. We report on the status of the toolkit and plans for future work.« less
High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects
NASA Technical Reports Server (NTRS)
Schutt-Aine, Jose E.
1996-01-01
The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.
Characterization of a Recoverable Flight Control Computer System
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar; Torres, Wilfredo
1999-01-01
The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time-critical communication of data and commands between the RCS and flight simulation code in real-time while meeting the stringent hard deadlines is also submitted. The performance results of the RCS and characteristics of its upset recovery scheme while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields are also discussed.
Design of electromagnetic bearing for vibration control of flexible transmission shaft
NASA Technical Reports Server (NTRS)
Gondhalekar, V.; Holmes, R.
1984-01-01
Recently magnetic bearings were proposed by several researchers and shown to be viable on a variety of rotor assemblies. The design and construction of such a bearing, which employs features hitherto not used by other workers is examined. These include an original approach to the design of the electromagnets and their amplifiers, and to software in a digital control system, to condition the control signals so as to make the magnets appear to be linear and uncoupled. The resulting system is used to control a rotor-bearing assembly, whose speed range covers two flexural-critical speeds.
Framing the structural role of mathematics in physics lectures: A case study on electromagnetism
NASA Astrophysics Data System (ADS)
Karam, Ricardo
2014-06-01
Physics education research has shown that students tend to struggle when trying to use mathematics in a meaningful way in physics (e.g., mathematizing a physical situation or making sense of equations). Concerning the possible reasons for these difficulties, little attention has been paid to the way mathematics is treated in physics instruction. Starting from an overall distinction between a technical approach, which involves an instrumental (tool-like) use of mathematics, and a structural one, focused on reasoning about the physical world mathematically, the goal of this study is to characterize the development of the latter in didactic contexts. For this purpose, a case study was conducted on the electromagnetism course given by a distinguished physics professor. The analysis of selected teaching episodes with the software Videograph led to the identification of a set of categories that describe different strategies used by the professor to emphasize the structural role of mathematics in his lectures. As a consequence of this research, an analytic tool to enable future comparative studies between didactic approaches regarding the way mathematics is treated in physics teaching is provided.
de Miguel-Bilbao, Silvia; Martín, Miguel Angel; Del Pozo, Alejandro; Febles, Victor; Hernández, José A; de Aldecoa, José C Fernández; Ramos, Victoria
2013-11-01
Recent advances in wireless technologies have lead to an increase in wireless instrumentation present in healthcare centers. This paper presents an analytical method for characterizing electric field (E-field) exposure within these environments. The E-field levels of the different wireless communications systems have been measured in two floors of the Canary University Hospital Consortium (CUHC). The electromagnetic (EM) conditions detected with the experimental measures have been estimated using the software EFC-400-Telecommunications (Narda Safety Test Solutions, Sandwiesenstrasse 7, 72793 Pfullingen, Germany). The experimental and simulated results are represented through 2D contour maps, and have been compared with the recommended safety and exposure thresholds. The maximum value obtained is much lower than the 3 V m(-1) that is established in the International Electrotechnical Commission Standard of Electromedical Devices. Results show a high correlation in terms of E-field cumulative distribution function (CDF) between the experimental and simulation results. In general, the CDFs of each pair of experimental and simulated samples follow a lognormal distribution with the same mean.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the third years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) structural analysis capability specialized for graded composite structures including large deformation and deformation position eigenanalysis technologies; (2) a thermal analyzer specialized for graded composite structures; (3) absorption of electromagnetic waves by graded composite structures; and (4) coupled structural thermal/electromagnetic analysis of graded composite structures.
NASA Technical Reports Server (NTRS)
Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.
2008-01-01
The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.
A Measurement of Neutral B Mixing using Di-Lepton Events with the BaBar Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunawardane, Naveen
This thesis reports on a measurement of the neutral B meson mixing parameter, Δm d, at the BABAR experiment and the work carried out on the electromagnetic calorimeter (EMC) data acquisition (DAQ) system and simulation software.
Numerical simulation of electromagnetic surface treatment
NASA Astrophysics Data System (ADS)
Sonde, Emmanuel; Chaise, Thibaut; Nelias, Daniel; Robin, Vincent
2018-01-01
Surface treatment methods, such as shot peening or laser shock peening, are generally used to introduce superficial compressive residual stresses in mechanical parts. These processes are carried out during the manufacturing steps or for the purpose of repairing. The compressive residual stresses prevent the initiation and growth of cracks and thus improve the fatigue life of mechanical components. Electromagnetic pulse peening (EMP) is an innovative process that could be used to introduce compressive residual stresses in conductive materials. It acts by generating a high transient electromagnetic field near the working surface. In this paper, the EMP process is presented and a sequentially coupled electromagnetic and mechanical model is developed for its simulation. This 2D axisymmetric model is set up with the commercial finite element software SYSWELD. After description and validation, the numerical model is used to simulate a case of introducing residual stresses of compression in a nickel-based alloy 690 thick sample, by the means of electromagnetic pulses. The results are presented in terms of effective plastic strain and residual mean stress. The influence of the process parameters, such as current intensity and frequency, on the results is analyzed. Finally, the predictability of the process is shown by several correlation studies.
Servat, Juan J; Elia, Maxwell Dominic; Gong, Dan; Manes, R Peter; Black, Evan H; Levin, Flora
2014-12-01
To assess the feasibility of routine use of electromagnetic image guidance systems in orbital decompression. Six consecutive patients underwent stereotactic-guided three wall orbital decompression using the novel Fusion ENT Navigation System (Medtronic), a portable and expandable electromagnetic guidance system with multi-instrument tracking capabilities. The system consists of the Medtronic LandmarX System software-enabled computer station, signal generator, field-generating magnet, head-mounted marker coil, and surgical tracking instruments. In preparation for use of the LandmarX/Fusion protocol, all patients underwent preoperative non-contrast CT scan from the superior aspect of the frontal sinuses to the inferior aspect of the maxillary sinuses that includes the nasal tip. The Fusion ENT Navigation System (Medtronic™) was used in 6 patients undergoing maximal 3-wall orbital decompression for Graves' orbitopthy after a minimum of six months of disease inactivity. Preoperative Hertel exophthalmometry measured more than 27 mm in all patients. The navigation system proved to be no more difficult technically than the traditional orbital decompression approach. Electromagnetic image guidance is a stereotactic surgical navigation system that provides additional intraoperative flexibility in orbital surgery. Electromagnetic image-guidance offers the ability to perform more aggressive orbital decompressions with reduced risk.
Electromagnetic Simulations for Aerospace Application Final Report CRADA No. TC-0376-92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, N.; Meredith, S.
Electromagnetic (EM) simulation tools play an important role in the design cycle, allowing optimization of a design before it is fabricated for testing. The purpose of this cooperative project was to provide Lockheed with state-of-the-art electromagnetic (EM) simulation software that will enable the optimal design of the next generation of low-observable (LO) military aircraft through the VHF regime. More particularly, the project was principally code development and validation, its goal to produce a 3-D, conforming grid,time-domain (TD) EM simulation tool, consisting of a mesh generator, a DS13D-based simulation kernel, and an RCS postprocessor, which was useful in the optimization ofmore » LO aircraft, both for full-aircraft simulations run on a massively parallel computer and for small scale problems run on a UNIX workstation.« less
A Digital Control Algorithm for Magnetic Suspension Systems
NASA Technical Reports Server (NTRS)
Britton, Thomas C.
1996-01-01
An ongoing program exists to investigate and develop magnetic suspension technologies and modelling techniques at NASA Langley Research Center. Presently, there is a laboratory-scale large air-gap suspension system capable of five degree-of-freedom (DOF) control that is operational and a six DOF system that is under development. Those systems levitate a cylindrical element containing a permanent magnet core above a planar array of electromagnets, which are used for levitation and control purposes. In order to evaluate various control approaches with those systems, the Generic Real-Time State-Space Controller (GRTSSC) software package was developed. That control software package allows the user to implement multiple control methods and allows for varied input/output commands. The development of the control algorithm is presented. The desired functionality of the software is discussed, including the ability to inject noise on sensor inputs and/or actuator outputs. Various limitations, common issues, and trade-offs are discussed including data format precision; the drawbacks of using either Direct Memory Access (DMA), interrupts, or program control techniques for data acquisition; and platform dependent concerns related to the portability of the software, such as memory addressing formats. Efforts to minimize overall controller loop-rate and a comparison of achievable controller sample rates are discussed. The implementation of a modular code structure is presented. The format for the controller input data file and the noise information file is presented. Controller input vector information is available for post-processing by mathematical analysis software such as MATLAB1.
Radical Software. Number Two. The Electromagnetic Spectrum.
ERIC Educational Resources Information Center
Korot, Beryl, Ed.; Gershuny, Phyllis, Ed.
1970-01-01
In an effort to foster the innovative uses of television technology, this tabloid format periodical details social, educational, and artistic experiments with television and lists a large number of experimental videotapes available from various television-centered groups and individuals. The principal areas explored in this issue include cable…
Using a free software tool for the visualization of complicated electromagnetic fields
NASA Astrophysics Data System (ADS)
Murello, A.; Milotti, E.
2014-01-01
Here, we show how a readily available and free scientific visualization program—ParaView—can be used to display electric fields in interesting situations. We give a few examples and specify the individual steps that lead to highly educational representations of the fields.
Hofstad, Erlend Fagertun; Amundsen, Tore; Langø, Thomas; Bakeng, Janne Beate Lervik; Leira, Håkon Olav
2017-01-01
Background Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation. PMID:28182758
Design and analysis of planar spiral resonator bandstop filter for microwave frequency
NASA Astrophysics Data System (ADS)
Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad
2017-11-01
In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Nguyen, Truong X.; Mielnik, John J.
2010-01-01
The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed.
Parameters assessment of the inductively-coupled circuit for wireless power transfer
NASA Astrophysics Data System (ADS)
Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.
2017-02-01
In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.
Thickness Measurement of Surface Attachment on Plate with Lamb Wave
NASA Astrophysics Data System (ADS)
Ma, Xianglong; Zhang, Yinghong; Wen, Lichao; He, Yehu
2017-12-01
Aiming at the thickness detection of the plate surface attachment, a nondestructive testing method based on the Lamb wave is presented. This method utilizes Lamb wave propagation characteristics of signals in a bi-layer medium to measure the surface attachment plate thickness. Propagation of Lamb wave in bi-layer elastic is modeled and analyzed. The two-dimensional simulation model of electromagnetic ultrasonic plate - scale is established. The simulation is conducted by software COMSOL for simulation analysis under different boiler scale thickness wave form curve. Through this study, the thickness of the attached material can be judged by analyzing the characteristics of the received signal when the thickness of the surface of the plate is measured.
Computation of tightly-focused laser beams in the FDTD method
Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim
2013-01-01
We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software (“Angora”). PMID:23388899
Computation of tightly-focused laser beams in the FDTD method.
Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim
2013-01-14
We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software ("Angora").
Use of a resistance meter to locate manure suitable for energy recovery in beef cattle feedyards
USDA-ARS?s Scientific Manuscript database
Mineral constituents, i.e., salts, contained in beef feedlot manure alter inherent soil conductivity. Researchers at USMARC have adapted tools such as electromagnetic soil conductivity meters and mapping/modeling software to identify areas where by manure accumulates on beef cattle feedlots. These t...
ERIC Educational Resources Information Center
Dori, Yehudit Judy; Belcher, John
2005-01-01
Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…
Geophysical Analysis of an Urban Region in Southwestern Pennsylvania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harbert, W.P.; Lipinski, B.A.; Kaminski, V.
2006-12-01
The goal of this project was to categorize the subsurface beneath an urban region of Southwestern Pennsylvania and to determine geological structure and attempt to image pathways for gas migration in this area. Natural gas had been commercially produced from this region at the turn of the century but this field, with more than 100 wells drilled, was closed approximately eighty years ago. There are surface expressions of gas migration visible in the study region. We applied geophysical methods to determine geological structure in this region, which included multi frequency electromagnetic survey performed using Geophex Gem-2 system, portable reflection seismicmore » and a System I/O-based reflection seismic survey. Processing and interpretation of EM data included filtering 10 raw channels (inphase and quadrature components measured at 5 frequencies), inverting the data for apparent conductivity using EM1DFM software by University of British Columbia, Canada and further interpretation in terms of nearsurface features at a maximum depth of up to 20 meters. Analysis of the collected seismic data included standard seismic processing and the use of the SurfSeis software package developed by the Kansas Geological Survey. Standard reflection processing of these data were completed using the LandMark ProMAX 2D/3D and Parallel Geoscience Corporations software. Final stacked sections were then imported into a Seismic Micro Technologies Kingdom Suite+ geodatabase for visualization and analysis. Interpretation of these data was successful in identifying and confirming a region of unmined Freeport coal, determining regional stratigraphic structure and identifying possible S-wave lower velocity anomalies in the shallow subsurface.« less
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Huang, H.
1992-01-01
Accomplishments are described for the first year effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) the results of the selective literature survey; (2) 8-, 16-, and 20-noded isoparametric plate and shell elements; (3) large deformation structural analysis; (4) eigenanalysis; (5) anisotropic heat transfer analysis; and (6) anisotropic electromagnetic analysis.
[Apoptosis of human lung carcinoma cell line GLC-82 induced by high power electromagnetic pulse].
Cao, Xiao-zhe; Zhao, Mei-lan; Wang, De-wen; Dong, Bo
2002-09-01
Electromagnetic pulse (EMP) could be used for sterilization of food and the efficiency is higher than 2450 MHz continuous microwave done. This study was designed to evaluate the effect of electromagnetic pulse (EMP) on apoptosis of human lung carcinoma cell line GLC-82, so that to explore and develop therapeutic means for cancer. The injury changes in GLC-82 cells after irradiated with EMP (electric field intensity was 60 kV/m, 5 pulses/2 min) were analyzed by cytometry, MTT chronometry, and flow cytometry. The immunohistochemical SP staining was used to determine the expressions of bcl-2 protein and p53 protein. The stained positive cells were analyzed by CMIAS-II image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. EMP could obviously inhibited proliferation and activity of lung carcinoma cell line GLC-82. The absorbance value (A570) of MTT decreased immediately, at 0 h, 1 h, and 6 h after the GLC-82 cells irradiated by EMP as compared with control group. The highest apoptosis rate was found to reach 13.38% by flow cytometry at 6 h after EMP irradiation. Down-regulation of bcl-2 expression and up-regulation of p53 expression were induced by EMP. EMP promotes apoptosis of GLC-82 cells. At same time, EMP can down-regulate bcl-2 expression and up-regulate p53 expression in GLC-82 cells. The bcl-2 and the p53 protein may involve the apoptotic process.
Smart reconfigurable parabolic space antenna for variable electromagnetic patterns
NASA Astrophysics Data System (ADS)
Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh
2018-02-01
An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor
NASA Astrophysics Data System (ADS)
Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi
2018-01-01
The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.
Concurrent electromagnetic scattering analysis
NASA Technical Reports Server (NTRS)
Patterson, Jean E.; Cwik, Tom; Ferraro, Robert D.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Parker, Jay
1989-01-01
The computational power of the hypercube parallel computing architecture is applied to the solution of large-scale electromagnetic scattering and radiation problems. Three analysis codes have been implemented. A Hypercube Electromagnetic Interactive Analysis Workstation was developed to aid in the design and analysis of metallic structures such as antennas and to facilitate the use of these analysis codes. The workstation provides a general user environment for specification of the structure to be analyzed and graphical representations of the results.
Electromagnetic simulators for Ground Penetrating Radar applications developed in COST Action TU1208
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Giannopoulos, Antonios; Warren, Craig; Antonijevic, Sinisa; Doric, Vicko; Poljak, Dragan
2017-04-01
Founded in 1971, COST (European COoperation in Science and Technology) is the first and widest European framework for the transnational coordination of research activities. It operates through Actions, science and technology networks with a duration of four years. The main objective of the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (4 April 2013 - 3 October 2017) is to exchange and increase knowledge and experience on Ground-Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe a wider use of this technique. Research activities carried out in TU1208 include all aspects of the GPR technology and methodology: design, realization and testing of radar systems and antennas; development and testing of surveying procedures for the monitoring and inspection of structures; integration of GPR with other non-destructive testing approaches; advancement of electromagnetic-modelling, inversion and data-processing techniques for radargram analysis and interpretation. GPR radargrams often have no resemblance to the subsurface or structures over which the profiles were recorded. Various factors, including the innate design of the survey equipment and the complexity of electromagnetic propagation in composite scenarios, can disguise complex structures recorded on reflection profiles. Electromagnetic simulators can help to understand how target structures get translated into radargrams. They can show the limitations of GPR technique, highlight its capabilities, and support the user in understanding where and in what environment GPR can be effectively used. Furthermore, electromagnetic modelling can aid the choice of the most proper GPR equipment for a survey, facilitate the interpretation of complex datasets and be used for the design of new antennas. Electromagnetic simulators can be employed to produce synthetic radargrams with the purposes of testing new data-processing, imaging and inversion algorithms, or assess the effectiveness of existing ones. A fast and accurate forward solver can also be used as part of an inverse solver. This contribution aims at presenting two electromagnetic simulators based on the Finite-Difference Time Domain (FDTD) technique and Boundary Element Method (BEM), for Ground Penetrating Radar applications. These tools have been developed by Members of the COST Action TU1208. The first simulator is the new open-source version of the software gprMax (www.GPRadar.eu), which employs Yee's algorithm to solve Maxwell's equations by using the FDTD method and includes advanced features allowing the accurate analysis of realistic scenarios. For example, a library of antennas is available and these can be directly included in the models. Moreover, it is possible to build heterogeneous media using fractals, as well as objects with rough surfaces. Anisotropic media can be defined and this allows materials such as wood and fibre-reinforced concrete to be accurately modelled. Media with arbitrary frequency-dispersive properties can be also defined and this paves the way to the use of gprMax in new areas, such as the modelling of human tissues. Optimisation of parameters based on Taguchi's method can be performed: this feature can be useful to optimise material properties based on experimental data, or to design new antennas. Additionally, a freeware and very useful CAD package was developed, conceived to ease the use of gprMax: such tool assists in the creation, modification and analysis of two-dimensional gprMax models and can also be used to plot results. The second simulator is TWiNS-II: this is free software for the analysis of multiple thin wires in the presence of two media, implementing the Galerkin-Bubnov Indirect BEM; calculations can be undertaken in the frequency or time domain. The time-domain code is focused on the assessment of current distributions along thin wire structures. The configuration that can be analyzed is a set of parallel thin wires placed in free space above a perfect ground, or above a dielectric lossless half-space. The wire array resides in a plane parallel to the interface. Within this basic geometry, the user is allowed to arbitrarily change the number, size and position of wires, their excitation characteristics and the dielectric constant of the half-space. The frequency-domain code can be used for the frequency analysis of the same wire configuration as in the time domain counterpart. In addition, the effects of losses in the ground can be taken into account. Acknowledgement: The Authors are deeply grateful to COST (European Cooperation in Science and Technology, www.cost.eu), for funding and supporting the COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu).
Efficient Model Posing and Morphing Software
2014-04-01
disclosure of contents or reconstruction of this document. Air Force Research Laboratory 711th Human Performance Wing Human ...Command, Air Force Research Laboratory 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency...13. SUPPLEMENTARY NOTES 14. ABSTRACT The absorption of electromagnetic energy within human tissue depends upon anatomical posture and body
Digital avionics: A cornerstone of aviation
NASA Technical Reports Server (NTRS)
Spitzer, Cary R.
1990-01-01
Digital avionics is continually expanding its role in communication (HF and VHF, satellite, data links), navigation (ground-based systems, inertial and satellite-based systems), and flight-by-wire control. Examples of electronic flight control system architecture, pitch, roll, and yaw control are presented. Modeling of complex hardware systems, electromagnetic interference, and software are discussed.
Relay Sequence Generation Software
NASA Technical Reports Server (NTRS)
Gladden, Roy E.; Khanampompan, Teerapat
2009-01-01
Due to thermal and electromagnetic interactivity between the UHF (ultrahigh frequency) radio onboard the Mars Reconnaissance Orbiter (MRO), which performs relay sessions with the Martian landers, and the remainder of the MRO payloads, it is required to integrate and de-conflict relay sessions with the MRO science plan. The MRO relay SASF/PTF (spacecraft activity sequence file/ payload target file) generation software facilitates this process by generating a PTF that is needed to integrate the periods of time during which MRO supports relay activities with the rest of the MRO science plans. The software also generates the needed command products that initiate the relay sessions, some features of which are provided by the lander team, some are managed by MRO internally, and some being derived.
Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara
2004-01-01
Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... Toxicology Testing. Labeling (dose limits). Electromagnetic incompatibility........ Electromagnetic... analysis and nonclinical testing must validate electromagnetic compatibility performance, wireless... electromagnetic compatibility performance, wireless performance, and electrical safety; and (4) Labeling must...
Radio characterization for ISM 2.4 GHz Wireless Sensor Networks for judo monitoring applications.
Lopez-Iturri, Peio; Aguirre, Erik; Azpilicueta, Leire; Astrain, José J; Villadangos, Jesús; Falcone, Francisco
2014-12-12
In this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs) for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club's facilities with a contest area with the dimensions specified by the International Judo Federation (IJF) for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt). The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.
Design and Simulation of Horn Antenna Using CST Software for GPR System
NASA Astrophysics Data System (ADS)
Joret, Ariffuddin; Sulong, M. S.; Abdullah, M. F. L.; Madun, Aziman; Haimi Dahlan, Samsul
2018-04-01
Detection of underground object can be made using a GPR system. This system is classified as a non-destructive technique (NDT) where the ground areas need not to be excavated. The technique used by the GPR system is by measuring the reflection of electromagnetic wave signal produced and detected by antenna which is known as the transmitter and the receiver antenna. In this study, a GPR system was studied by means of simulation using a Horn antenna as a transceiver antenna. The electromagnetic wave signal in this simulation is produced by current signal of an antenna which having a shape of modulation of Gaussian pulse which is having spectrum from 8 GHz until 12 GHz. CST and MATLAB Software are used in this GPR system simulation. A model of a Horn antenna has been designed using the CST software before the GPR’s system simulation modeled by adding a model of background in front of the Horn antenna. The simulation results show that the output signal of the Horn antenna can be used in detecting embedded object which are made from material of wood and iron. In addition, the simulation result has successfully developed a 3D model image of the GPR system using output signal of the Horn antenna. The embedded iron object in the GPR system simulation can be seen clearly by using this 3D image.
Advanced Composite Aircraft Electromagnetic Design and Synthesis
1980-05-01
Naval Air Systems Command, July 1978. 9. J.L. Bogdanor , R.A. Pearlman, and M.D. Siegel, Intrasystem Electromagnetic Compatibility Analysis Program...F30602-72-C-0277, RADC-TR-74-342, December 1974. 11. J.L. Bogdanor , R.A. Pearlman, and M.D. Siegel, Intrasystem Electromagnetic Comptibility Analysis
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Woo, A. C.; Wang, H. T. G.
1993-01-01
This is the final report on this project which was concerned with the analysis of cavity-backed antennas and more specifically spiral antennas. The project was a continuation of a previous analysis, which employed rectangular brick elements, and was, thus, restricted to planar rectangular patch antennas. A total of five reports were submitted under this project and we expect that at least four journal papers will result from the research described in these reports. The abstracts of the four previous reports are included. The first of the reports (028918-1-T) is over 75 pages and describes the general formulation using tetrahedral elements and the computer program. Report 028918-2-T was written after the completion of the computer program and reviews the capability of the analysis and associated software for planar circular rectangular patches and for a rectangular planar spiral. Measurements were also done at the University of Michigan and at Mission Research Corp. for the purpose of validating the software. We are pleased to acknowledge a partial support from Mission Research Corp. in carrying out the work described in this report. The third report (028918-3-T) describes the formulation and partial validation (using 2D data) for patch antennas on a circular platform. The 3D validation and development of the formulation for patch antennas on circular platforms is still in progress. The fourth report (028918-4-T) is basically an invited journal paper which will appear in the 'J. Electromagnetic Waves and Applications' in early 1994. It describes the application of the finite element method in electromagnetics and is primarily based on our work here at U-M. This final report describes the culmination of our efforts in characterizing complex cavity-backed antennas on planar platforms. The report describes for the first time the analysis of non-planar spirals and non-rectangular slot antennas as well as traditional planar patch antennas. The comparisons between measurements and calculations are truly impressive. Another unique aspect of this work is the incorporation of the FFT as part of the BiCG solver by overlaying a structured triangular mesh over the unstructured mesh. The implementation of this BiCG-FFT solution algorithm is important in minimizing the CPU and storage requirements. This final report will be submitted for publication in a refereed journal.
NASA Astrophysics Data System (ADS)
Woo, Byung-Chul; Hong, Do-Kwan; Lee, Ji-Young
The most distinctive advantage of transverse flux motor(TFM) is high torque density which has prompted many researches into studying various design variants. TFM is well suited for low speed direct drive applications due to its high torque density. This paper deals with simulation based comparisons between a surface permanent magnet transverse flux motor(SPM-TFM) and an interior permanent magnet transverse flux motor(IPM-TFM). A commercial finite element analysis(FEA) software Maxwell 3D is used for electromagnetic field computation to fully analyze complex geometry of the TFMs. General characteristics, such as cogging torque, rated torque and torque ripple characteristics of the two TFMs are analyzed and compared by extensive 3D FEA.
Simulation Analysis of DC and Switching Impulse Superposition Circuit
NASA Astrophysics Data System (ADS)
Zhang, Chenmeng; Xie, Shijun; Zhang, Yu; Mao, Yuxiang
2018-03-01
Surge capacitors running between the natural bus and the ground are affected by DC and impulse superposition voltage during operation in the converter station. This paper analyses the simulation aging circuit of surge capacitors by PSCAD electromagnetic transient simulation software. This paper also analyses the effect of the DC voltage to the waveform of the impulse voltage generation. The effect of coupling capacitor to the test voltage waveform is also studied. Testing results prove that the DC voltage has little effect on the waveform of the output of the surge voltage generator, and the value of the coupling capacitor has little effect on the voltage waveform of the sample. Simulation results show that surge capacitor DC and impulse superimposed aging test is feasible.
[ANSYS simulation of subcutaneous pustule electrical characteristics].
Liu, Baohua; Wang, Xuan; Zhu, Honglian; Wang, Guoyong
2011-12-01
With the growing number of clinical surgery, post-operative surgical wound infection has become a very difficult clinical problem. In the treatments of it, non-invasive test of wound infection and healing status has a significance in clinical medicine practice. In this paper, beginning with the electrical properties of skin tissue structure and on the basis of the electromagnetism and the human anatomy, using the finite element analysis software, we applied safe voltage on the 3D skin model, performed the subcutaneous pustule simulation study and gained the relational curve between depth and radius of the pustule model. The simulation results suggested that the method we put forward could be feasible, and it could provide basis for non-invasive detection of wound healing and wound infection status.
Multilayered tissues model for wave propagation loss assessment in cochlear implants
NASA Astrophysics Data System (ADS)
Paun, Maria-Alexandra; Dehollain, Catherine
2017-05-01
In this paper, a study of the power loss attenuation of the plane wave travelling through the tissue layers, from the outside to the inside of the skull within a cochlear implant, is performed. Different implantation depths of the internal antenna from 10 to 30 mm are considered. To this purpose, the gain and attenuation in dB are studied. A multilayer tissue model is developed, consisting of mainly skin, mastoid bone and brain. An s-parameter analysis is also carried out, using loop antennas and simulated head tissue. Ansoft Ansys® HFSS software is used for electro-magnetic simulations of the antennas, placed in different types of human tissues. Smith charts for antenna placed in both skin and multi-tissue model are included.
Muscle Motion Solenoid Actuator
NASA Astrophysics Data System (ADS)
Obata, Shuji
It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.
ATLAS event display: Virtual Point-1 visualization software
NASA Astrophysics Data System (ADS)
Seeley, Kaelyn; Dimond, David; Bianchi, R. M.; Boudreau, Joseph; Hong, Tae Min; Atlas Collaboration
2017-01-01
Virtual Point-1 (VP1) is an event display visualization software for the ATLAS Experiment. VP1 is a software framework that makes use of ATHENA, the ATLAS software infrastructure, to access the complete detector geometry. This information is used to draw graphics representing the components of the detector at any scale. Two new features are added to VP1. The first is a traditional ``lego'' plot, displaying the calorimeter energy deposits in eta-phi space. The second is another lego plot focusing on the forward endcap region, displaying the energy deposits in r-phi space. Currently, these new additions display the energy deposits based on the granularity of the middle layer of the liquid-Argon electromagnetic calorimeter. Since VP1 accesses the complete detector geometry and all experimental data, future developments are outlined for a more detailed display involving multiple layers of the calorimeter along with their distinct granularities.
NASA Astrophysics Data System (ADS)
Bardar, Erin M.
Electromagnetic radiation is the fundamental carrier of astronomical information. Spectral features serve as the fingerprints of the universe, revealing many important properties of objects in the cosmos such as temperature, elemental compositions, and relative motion. Because of its importance to astronomical research, the nature of light and the electromagnetic spectrum is by far the most universally covered topic in astronomy education. Yet, to the surprise and disappointment of instructors, many students struggle to understand underlying fundamental concepts related to light and spectroscopic phenomena. This dissertation describes research into introductory college astronomy students' understanding of light and spectroscopy concepts, through the development and analysis of both instructional materials and an assessment instrument. The purpose of this research was two-fold: (1) to develop a novel suite of spectroscopic learning tools that enhance student understanding of light and spectroscopy and (2) to design and validate a Light and Spectroscopy Concept Inventory (LSCI) with the sensitivity to distinguish the relative effectiveness of various teaching interventions within the context of introductory college astronomy. Through a systematic investigation that included multiple rounds of clinical interviews, open-ended written surveys, and multiple-choice testing, introductory college astronomy students' commonly held misconceptions and reasoning difficulties were explored for concepts relating to: (1) The nature of the electromagnetic spectrum, including the interrelationships of wavelength, frequency, energy, and speed; (2) interpretation of Doppler shift; (3) properties of blackbody radiation; and (4) the connection between spectral features and underlying physical processes. These difficulties guided the development of instructional materials including six unique "homelab" exercises, a binocular spectrometer, a spectral analysis software tool, and the 26-question Light and Spectroscopy Concept Inventory (LSCI). In the fall of 2005, a multi-institution field-test of the LSCI was conducted with student examinees from 14 course sections at 11 colleges and universities employing various instructional techniques. Through statistical analysis, the inventory was proven to be a reliable (Cronbach's alpha = 0.77) and valid assessment instrument that was able to illustrate statistically significant learning gains (p < 0.05) for most course sections, with students utilizing our suite of instructional materials exhibiting among the highest performance gains (Effect Size = 1.31).
Litzenberg, Dale W; Gallagher, Ian; Masi, Kathryn J; Lee, Choonik; Prisciandaro, Joann I; Hamstra, Daniel A; Ritter, Timothy; Lam, Kwok L
2013-08-01
To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm. The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.
Prospects for Finite-Difference Time-Domain (FDTD) Computational Electrodynamics
NASA Astrophysics Data System (ADS)
Taflove, Allen
2002-08-01
FDTD is the most powerful numerical solution of Maxwell's equations for structures having internal details. Relative to moment-method and finite-element techniques, FDTD can accurately model such problems with 100-times more field unknowns and with nonlinear and/or time-variable parameters. Hundreds of FDTD theory and applications papers are published each year. Currently, there are at least 18 commercial FDTD software packages for solving problems in: defense (especially vulnerability to electromagnetic pulse and high-power microwaves); design of antennas and microwave devices/circuits; electromagnetic compatibility; bioelectromagnetics (especially assessment of cellphone-generated RF absorption in human tissues); signal integrity in computer interconnects; and design of micro-photonic devices (especially photonic bandgap waveguides, microcavities; and lasers). This paper explores emerging prospects for FDTD computational electromagnetics brought about by continuing advances in computer capabilities and FDTD algorithms. We conclude that advances already in place point toward the usage by 2015 of ultralarge-scale (up to 1E11 field unknowns) FDTD electromagnetic wave models covering the frequency range from about 0.1 Hz to 1E17 Hz. We expect that this will yield significant benefits for our society in areas as diverse as computing, telecommunications, defense, and public health and safety.
NASA Astrophysics Data System (ADS)
Kalyankar-Narwade, Supriya; Kumar, C. Ramesh; Patil, Sanjay A.
2017-11-01
Engine Management ECU plays a vital role in controlling different important features related to the engine performance. ECU is an embedded system which includes hardware and firmware platform for control logics. However, it is necessary to verify its smooth performance by its functionality testing in the Electromagnetic environment for approval. If these requirements are not known at earlier stages, then ECU may not fulfil functional requirements during required automotive electronic test standards. Hence, focusing on EMS ECU, this paper highlights hardware, layout and software guidelines for solving problems related with Electromagnetic Interference (EMI) to comply ISO 7637, CISPR 25 standard, Electromagnetic Compatibility (EMC) to comply ISO 11452-4,5 standard, Electrostatic Discharge (ESD) to comply ISO 10605 standard and Environmental Testing to comply standards as per IEC standards. This paper specifies initially the importance, need and guidelines for reducing the EMI effect on PCB i.e. making ECU more electromagnetically compatible as per automotive standards. The guidelines are useful for the designers to avoid pitfalls at the later stage. After mentioned modifications in the paper, ECU successfully passed the requirements for all standard tests.
Formulation of a strategy for monitoring control integrity in critical digital control systems
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe
1991-01-01
Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.
2014-09-30
software devel- oped with this project support. S1 Cork School 2013: I. UPPEcore Simulator design and usage, Simulation examples II. Nonlinear pulse...pulse propagation 08/28/13 — 08/02/13, University College Cork , Ireland S2 ACMS MURI School 2012: Computational Methods for Nonlinear PDEs describing
MEG and EEG data analysis with MNE-Python.
Gramfort, Alexandre; Luessi, Martin; Larson, Eric; Engemann, Denis A; Strohmeier, Daniel; Brodbeck, Christian; Goj, Roman; Jas, Mainak; Brooks, Teon; Parkkonen, Lauri; Hämäläinen, Matti
2013-12-26
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.
MEG and EEG data analysis with MNE-Python
Gramfort, Alexandre; Luessi, Martin; Larson, Eric; Engemann, Denis A.; Strohmeier, Daniel; Brodbeck, Christian; Goj, Roman; Jas, Mainak; Brooks, Teon; Parkkonen, Lauri; Hämäläinen, Matti
2013-01-01
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne. PMID:24431986
Standard design for National Ignition Facility x-ray streak and framing cameras.
Kimbrough, J R; Bell, P M; Bradley, D K; Holder, J P; Kalantar, D K; MacPhee, A G; Telford, S
2010-10-01
The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.
Research on modeling and conduction disturbance simulation of secondary power system in a device
NASA Astrophysics Data System (ADS)
Ding, Xu; Yu, Zhi-Yong; Jin, Rui
2017-06-01
To find electromagnetic interference (EMI) and other problems in the secondary power supply system design quickly and effectively, simulations are carried out under the Saber simulation software platform. The DC/DC converter model with complete performance and electromagnetic characteristics is established by combining parametric modeling with Mast language. By using the method of macro modeling, the hall current sensor and power supply filter model are established respectively based on the function, schematic diagram of the components. Also the simulation of the component model and the whole secondary power supply system are carried out. The simulation results show that the proposed model satisfies the functional requirements of the system and has high accuracy. At the same time, due to the ripple characteristics in the DC/DC converter modeling, it can be used as a conducted interference model to simulate the power bus conducted emission CE102 project under the condition that the simulated load is full, which provides a useful reference for the electromagnetic interference suppression of the system.
NASA Astrophysics Data System (ADS)
Dinh, Thanh Vu; Cabon, Béatrice; Daoud, Nahla; Chilo, Jean
1992-11-01
This paper presents a simple and efficient method for calculating the propagating line parameters (actually, a microstrip one) and its magnetic fields, by simulating an original equivalent circuit with an electrical nodal simulator (SPICE). The losses in the normal conducting line (due to DC losses and to skin effect losses) and also in the superconducting one can be investigated. This allows us to integrate the electromagnetic solutions to the CAD softwares. Dans ce papier, une méthode simple et efficace pour calculer les paramètres de propagation d'une ligne microruban et les champs magnétiques qu'elle engendre est présentée; pour cela, nous simulons un circuit original équivalent à l'aide du simulateur nodal SPICE. Les pertes dans une ligne conductrice (pertes continues et par effet de peau) ainsi que dans une ligne supraconductrice peuvent être considérées. Les solutions électromagnétiques peuvent être intégrées dans les simulateurs de CAO.
Rispoli, Joseph V; Wright, Steven M; Malloy, Craig R; McDougall, Mary P
2017-01-01
Human voxel models incorporating detailed anatomical features are vital tools for the computational evaluation of electromagnetic (EM) fields within the body. Besides whole-body human voxel models, phantoms representing smaller heterogeneous anatomical features are often employed; for example, localized breast voxel models incorporating fatty and fibroglandular tissues have been developed for a variety of EM applications including mammography simulation and dosimetry, magnetic resonance imaging (MRI), and ultra-wideband microwave imaging. However, considering wavelength effects, electromagnetic modeling of the breast at sub-microwave frequencies necessitates detailed breast phantoms in conjunction with whole-body voxel models. Heterogeneous breast phantoms are sized to fit within radiofrequency coil hardware, modified by voxel-wise extrusion, and fused to whole-body models using voxel-wise, tissue-dependent logical operators. To illustrate the utility of this method, finite-difference time-domain simulations are performed using a whole-body model integrated with a variety of available breast phantoms spanning the standard four tissue density classifications representing the majority of the population. The software library uses a combination of voxel operations to seamlessly size, modify, and fuse eleven breast phantoms to whole-body voxel models. The software is publicly available on GitHub and is linked to the file exchange at MATLAB ® Central. Simulations confirm the proportions of fatty and fibroglandular tissues in breast phantoms have significant yet predictable implications on projected power deposition in tissue. Breast phantoms may be modified and fused to whole-body voxel models using the software presented in this work; user considerations for the open-source software and resultant phantoms are discussed. Furthermore, results indicate simulating breast models as predominantly fatty tissue can considerably underestimate the potential for tissue heating in women with substantial fibroglandular tissue.
Rispoli, Joseph V.; Wright, Steven M.; Malloy, Craig R.; McDougall, Mary P.
2017-01-01
Background Human voxel models incorporating detailed anatomical features are vital tools for the computational evaluation of electromagnetic (EM) fields within the body. Besides whole-body human voxel models, phantoms representing smaller heterogeneous anatomical features are often employed; for example, localized breast voxel models incorporating fatty and fibroglandular tissues have been developed for a variety of EM applications including mammography simulation and dosimetry, magnetic resonance imaging (MRI), and ultra-wideband microwave imaging. However, considering wavelength effects, electromagnetic modeling of the breast at sub-microwave frequencies necessitates detailed breast phantoms in conjunction with whole-body voxel models. Methods Heterogeneous breast phantoms are sized to fit within radiofrequency coil hardware, modified by voxel-wise extrusion, and fused to whole-body models using voxel-wise, tissue-dependent logical operators. To illustrate the utility of this method, finite-difference time-domain simulations are performed using a whole-body model integrated with a variety of available breast phantoms spanning the standard four tissue density classifications representing the majority of the population. Results The software library uses a combination of voxel operations to seamlessly size, modify, and fuse eleven breast phantoms to whole-body voxel models. The software is publicly available on GitHub and is linked to the file exchange at MATLAB® Central. Simulations confirm the proportions of fatty and fibroglandular tissues in breast phantoms have significant yet predictable implications on projected power deposition in tissue. Conclusions Breast phantoms may be modified and fused to whole-body voxel models using the software presented in this work; user considerations for the open-source software and resultant phantoms are discussed. Furthermore, results indicate simulating breast models as predominantly fatty tissue can considerably underestimate the potential for tissue heating in women with substantial fibroglandular tissue. PMID:28798837
ERIC Educational Resources Information Center
Shi, Wei-Zhao
2015-01-01
Here the paper provides a historical and philosophical analysis of the development of electromagnetic theory in physics teaching for the benefit of scientific literacy. The analysis is described by the paradigms offered by Kuhn. A number of scientists' work in electromagnetic theory which is embedded in the tension between engaging in…
Computational Electronics and Electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeFord, J.F.
The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust areamore » fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.« less
Juszczak, K; Kaszuba-Zwoinska, J; Thor, P J
2012-08-01
The evidence of electromagnetic therapy (EMT) efficacy in stress and/or urge urinary incontinence, as well as in detrusor overactivity is generally lacking in the literature. The potential EMT action of neuromuscular tissue depolarization has been described. Because there is no data on the influence of pulsating electromagnetic fields (PEMF) on the urothelium, we evaluated the effect of PEMF stimulation on rat urothelial cultured cells (RUCC). In our study 15 Wistar rats were used for RUCC preparation. RUCC were exposed to PEMF (50 Hz, 45±5 mT) three times for 4 hours each with 24-hour intervals. The unexposed RUCC was in the same incubator, but in a distance of 35 cm from the PEMF generator. Annexin V-APC (AnV+) labelled was used to determine the percentage of apoptotic cells and propidium iodide (PI+), as standard flow cytometric viability probe to distinguish necrotic cells from viable ones. The results are presented in percentage values. The flow cytometric analysis was carried out on a FACS calibur flow cytometer using Cell-Quest software. In PEMF-unstimulated RUCC, the percentage of AnV+, PI+, and AnV+PI+ positive cells were 1.24±0.34%, 11.03±1.55%, and 12.43±1.96%, respectively. The percentages of AnV+, PI+, and AnV+PI+ positive cells obtained after PEMF stimulation were 1.45±0.16% (p=0.027), 7.03±1.76% (p<0.001), and 9.48±3.40% (p=0.003), respectively. The PEMF stimulation of RUCC induces apoptosis (increase of AnV+ cells) and inhibits necrosis (decrease of PI+ cells) of urothelial cells. This leads us to the conclusion that a low-frequency pulsating electromagnetic field stimulation induces apoptosis and diminishes necrosis of rat urothelial cells in culture.
Narayanan, Shrikanth; Toutios, Asterios; Ramanarayanan, Vikram; Lammert, Adam; Kim, Jangwon; Lee, Sungbok; Nayak, Krishna; Kim, Yoon-Chul; Zhu, Yinghua; Goldstein, Louis; Byrd, Dani; Bresch, Erik; Ghosh, Prasanta; Katsamanis, Athanasios; Proctor, Michael
2014-01-01
USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community. PMID:25190403
Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.
Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M
2010-01-01
Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.
Mazzucchi, Edoardo; Vollono, Catello; Losurdo, Anna; Testani, Elisa; Gnoni, Valentina; Di Blasi, Chiara; Giannantoni, Nadia M; Lapenta, Leonardo; Brunetti, Valerio; Della Marca, Giacomo
2017-01-01
Hyperventilation (HV) is a commonly used electroencephalogram activation method. We analyzed EEG recordings in 22 normal subjects and 22 patients with focal epilepsy of unknown cause. We selected segments before (PRE), during (HYPER), and 5 minutes after (POST) HV. To analyze the neural generators of EEG signal, we used standard low-resolution electromagnetic tomography (sLORETA software). We then computed EEG lagged coherence, an index of functional connectivity, between 19 regions of interest. A weighted graph was built for each band in every subject, and characteristic path length (L) and clustering coefficient (C) have been computed. Statistical comparisons were performed by means of analysis of variance (Group X Condition X Band) for mean lagged coherence, L and C. Hyperventilation significantly increases EEG neural generators (P < 0.001); the effect is particularly evident in cingulate cortex. Functional connectivity was increased by HV in delta, theta, alpha, and beta bands in the Epileptic group (P < 0.01) and only in theta band in Control group. Intergroup analysis of mean lagged coherence, C and L, showed significant differences for Group (P < 0.001), Condition (P < 0.001), and Band (P < 0.001). Analysis of variance for L also showed significant interactions: Group X Condition (P = 0.003) and Group X Band (P < 0.001). In our relatively small group of epileptic patients, HV is associated with activation of cingulate cortex; moreover, it modifies brain connectivity. The significant differences in mean lagged coherence, path length, and clustering coefficient permit to hypothesize that this activation method leads to different brain connectivity patterns in patients with epilepsy when compared with normal subjects. If confirmed by other studies involving larger populations, this analysis could become a diagnostic tool in epilepsy.
NASA Technical Reports Server (NTRS)
Parker, Jay W.; Cwik, Tom; Ferraro, Robert D.; Liewer, Paulett C.; Patterson, Jean E.
1991-01-01
The JPL designed MARKIII hypercube supercomputer has been in application service since June 1988 and has had successful application to a broad problem set including electromagnetic scattering, discrete event simulation, plasma transport, matrix algorithms, neural network simulation, image processing, and graphics. Currently, problems that are not homogeneous are being attempted, and, through this involvement with real world applications, the software is evolving to handle the heterogeneous class problems efficiently.
Tensor Basis Neural Network v. 1.0 (beta)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Julia; Templeton, Jeremy
This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.
40 CFR 85.2225 - Steady state test exhaust analysis system-EPA 91.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment may... instrument design must ensure that readings do not vary as a result of electromagnetic radiation and...
40 CFR 85.2225 - Steady state test exhaust analysis system-EPA 91.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment may... instrument design must ensure that readings do not vary as a result of electromagnetic radiation and...
40 CFR 85.2225 - Steady state test exhaust analysis system-EPA 91.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment may... instrument design must ensure that readings do not vary as a result of electromagnetic radiation and...
40 CFR 85.2225 - Steady state test exhaust analysis system-EPA 91.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment may... instrument design must ensure that readings do not vary as a result of electromagnetic radiation and...
Electromagnetic Compatibility Design of the Computer Circuits
NASA Astrophysics Data System (ADS)
Zitai, Hong
2018-02-01
Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.
Auger Prime the new stage of the Pierre Auger Observatory, using Universality
NASA Astrophysics Data System (ADS)
Parra, Alejandra; Martínez, Oscar; Salazar, Humberto
2016-10-01
The Pierre Auger Observatory is currently in an update stage denominated AugerPrime. The Observatory will have scintillator detectors on top of each of the surface stations (WCD). The main goal of AugerPrime is to improve the studies on mass composition for ultra high energy cosmic rays, for this purpose AugerPrime will use Universality. The model will parameterize the signal in four principal components, the objective is an adequate discrimination of the muonic and electromagnetic components. We are interested in the discrimination of these two components using simulations. To do that, we are working with OfflineTrunk (the official software of the Collaboration). Our work is focused on the development of some modules for analysis and study of the signal from AugerPrime.
NASA Astrophysics Data System (ADS)
Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.
2018-03-01
Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.
1974-12-01
AD-A008 526 INTRASYSTEM ELECTROMAGNETIC COMPATI- BILITY ANALYSIS PROGRAM. VOLUME I. USER’S MANUAL ENGINEERING SECTION J. L. Bogdanor , et al McDonnell...e) 8 CONTRACT OR GRANT NUMBERfs) J.L. Bogdanor F30602-72-C-0277 R.A. Pearlman M.D. Siegel PERFORMING ORGANIZATION NAME AND ADDRESS I0 PROGRAM ELEMENT...June 1968. 14. J. L. Bogdanor , M. D. Siegel, G. L. Weinstock, "Intra-Vehicle Electromagnetic Compatibility Analysis," AFAL-TR-71-155, July 1971. 15
Surface electrical properties experiment, Part 3
NASA Technical Reports Server (NTRS)
1974-01-01
A complete unified discussion of the electromagnetic response of a plane stratified structure is reported. A detailed and comprehensive analysis of the theoretical parts of the electromagnetic is given. The numerical problem of computing numbers of the electromagnetic field strengths is discussed. It is shown that the analysis of the conductive media is not very far removed from the theoretical analysis and the numerical difficulties are not as accute as for the low-loss problem. For Vol. 1, see N75-15570; for Vol. 2 see N75-15571.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the fourth years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded component structures. These accomplishments include: (1) demonstration of coupled solution capability; (2) alternate CSTEM electromagnetic technology; (3) CSTEM acoustic capability; (4) CSTEM tailoring; (5) CSTEM composite micromechanics using ICAN; and (6) multiple layer elements in CSTEM.
Electromagnetic field radiation model for lightning strokes to tall structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motoyama, H.; Janischewskyj, W.; Hussein, A.M.
1996-07-01
This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.
GEANT4 Simulation of Neutron Detector for DAMPE
NASA Astrophysics Data System (ADS)
He, M.; Ma, T.; Chang, J.; Zhang, Y.; Huang, Y. Y.; Zang, J. J.; Wu, J.; Dong, T. K.
2016-01-01
During recent tens of years dark matter has gradually become a hot topic in astronomical research field, and related theory researches and experiment projects change with each passing day. The Dark Matter Particle Explorer (DAMPE) of our country is proposed under this background. As the probing object involves high energy electrons, appropriate methods must be taken to distinguish them from protons in order to reduce the event probability of other charged particles (e.g. a proton) being mistaken as electrons. The experiments show that, the hadronic shower of high energy proton in BGO electromagnetic calorimeter, which is usually accompanied by the emitting of large number of secondary neutrons, is significantly different from the electromagnetic shower of high energy electron. Through the detection of secondary neutron signal emitting from the bottom of BGO electromagnetic calorimeter and the shower shape of incident particles in BGO electromagnetic calorimeter, we can effectively distinguish whether the incident particles are high energy protons or electrons. This paper introduces the structure and detecting principle of DAMPE neutron detector. We use Monte-Carlo method with GEANT4 software to simulate the signal emitting from protons and electrons at characteristic energy in the neutron detector, and finally summarize the neutron detector's ability to distinguish protons and electrons under different electron acception efficiencies.
Magnetostatic simulation on a novel design of axially multi-coiled magnetorheological brakes
NASA Astrophysics Data System (ADS)
Ubaidillah, Permata, A. N. S.; Wibowo, A.; Budiana, E. P.; Yahya, I.; Mazlan, S. A.
2016-03-01
This paper describes the 3D magnetostatic simulation of a novel design axially multi-coiled magnetorheological (MRB). The proposed model is expected to produce a concentrated magnetic flux on the surface of the rotor disk brake. Thus, the braking torque enhancement is expected to be higher than that of conventional big size single-coil-equipped disk-type MRB. The axially multi-coiled MRB design features multiple electromagnetic poles from by several coils placed in the axial direction outside the MRB body. The magnetostatic analysis was developed utilizing finite element software namely ANSOFT-MAXWELL in 3D environment. The distribution of magnetic flux was investigated in a pair of the coil that represents the other pairs of electromagnetic parts. The simulation was done in 0.5 mm gap filled by magnetorheological fluids (MRFs) (MRF-132DG). The simulation was performed in various applied currents i.e. 0.25, 0.5, 0.75, 1, 1.5, and 2 Amperes. The results showed that the axially multi-coiled MRB provides a considerable magnetic flux (maximum of 337 mT/area). The active energizing areas of the MRB are proven to be more intensive than the conventional MRB. The proposed MRB exhibited a compact and robust design for achieving high torque MRB.
NASA Astrophysics Data System (ADS)
Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.
NASA Astrophysics Data System (ADS)
Prudêncio, Filipa R.; Matos, Sérgio A.; Paiva, Carlos R.
2014-11-01
The concept of a perfect electromagnetic conductor (PEMC) was introduced to generalize and unify two well-known and apparently disjoint concepts in electromagnetics: the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC). Although the PEMC has proven a fertile tool in electromagnetic analyses dealing with new and complex boundaries, its corresponding definition as a medium has, nevertheless, raised several problems. In fact, according to its initial 3D definition, the PEMC cannot be considered a unique and well-defined medium: it leads to extraneous fields without physical meaning. By using a previously published generalization of a PEMC that regards this concept both as a boundary and as a medium - which was dubbed an MIM (Minkowskian isotropic medium) and acts, in practice, as an actual electromagnetic conductor (EMC) - it is herein presented a straightforward analysis of waveguides containing PEMCs that readily and systematically follows from the general framework of waveguides containing EMCs.
NASA Astrophysics Data System (ADS)
Takeuchi, Toshie; Nakagawa, Takafumi; Tsukima, Mitsuru; Koyama, Kenichi; Tohya, Nobumoto; Yano, Tomotaka
A new electromagnetically actuated vacuum circuit breaker (VCB) has been designed and developed on the basis of the transient electromagnetic analysis coupled with motion. The VCB has three advanced bi-stable electromagnetic actuators, which control each phase independently. The VCB serves as a synchronous circuit breaker as well as a standard circuit breaker. In this work, the flux delay due to the eddy current is analytically formulated using the delay time constant of the actuator coil current, thereby leading to accurate driving behavior. With this analytical method, the electromagnetic mechanism for a 24kV rated VCB has been optimized; and as a result, the driving energy is reduced to one fifth of that of a conventional VCB employing spring mechanism, and the number of parts is significantly decreased. Therefore, the developed VCB becomes compact, highly reliable and highly durable.
Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method
NASA Astrophysics Data System (ADS)
Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng
2017-03-01
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
Analyzing high school students' reasoning about electromagnetic induction
NASA Astrophysics Data System (ADS)
Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd
2017-06-01
Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students' explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
Fly-by-light technology development plan
NASA Technical Reports Server (NTRS)
Todd, J. R.; Williams, T.; Goldthorpe, S.; Hay, J.; Brennan, M.; Sherman, B.; Chen, J.; Yount, Larry J.; Hess, Richard F.; Kravetz, J.
1990-01-01
The driving factors and developments which make a fly-by-light (FBL) viable are discussed. Documentation, analyses, and recommendations are provided on the major issues pertinent to facilitating the U.S. implementation of commercial FBL aircraft before the turn of the century. Areas of particular concern include ultra-reliable computing (hardware/software); electromagnetic environment (EME); verification and validation; optical techniques; life-cycle maintenance; and basis and procedures for certification.
2015-07-01
integrated with the commercial electromagnetic software for accurate extraction of propagation constant of substrate integrated waveguide ( SIW ) with...respectively. After three distinctive equivalent circuit networks are described for SOC de-embedding procedure. The propagation constants of SIW with...final, the phase and attenuation constants of SIW are derived to demonstrate the propagation and leakage characteristics of SIW . Index Terms
Intrasystem Analysis Program (IAP) code summaries
NASA Astrophysics Data System (ADS)
Dobmeier, J. J.; Drozd, A. L. S.; Surace, J. A.
1983-05-01
This report contains detailed descriptions and capabilities of the codes that comprise the Intrasystem Analysis Program. The four codes are: Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP), General Electromagnetic Model for the Analysis of Complex Systems (GEMACS), Nonlinear Circuit Analysis Program (NCAP), and Wire Coupling Prediction Models (WIRE). IEMCAP is used for computer-aided evaluation of electromagnetic compatibility (ECM) at all stages of an Air Force system's life cycle, applicable to aircraft, space/missile, and ground-based systems. GEMACS utilizes a Method of Moments (MOM) formalism with the Electric Field Integral Equation (EFIE) for the solution of electromagnetic radiation and scattering problems. The code employs both full matrix decomposition and Banded Matrix Iteration solution techniques and is expressly designed for large problems. NCAP is a circuit analysis code which uses the Volterra approach to solve for the transfer functions and node voltage of weakly nonlinear circuits. The Wire Programs deal with the Application of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling for specific classes of problems.
Development of an electromechanical principle for wet and dry milling
NASA Astrophysics Data System (ADS)
Halbedel, Bernd; Kazak, Oleg
2018-05-01
The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.
NASA Astrophysics Data System (ADS)
Sun, Qingyang; Shu, Ting; Tang, Bin; Yu, Wenxian
2018-01-01
A method is proposed to perform target deception jamming against spaceborne synthetic aperture radar. Compared with the traditional jamming methods using deception templates to cover the target or region of interest, the proposed method aims to generate a verisimilar deceptive target in various attitude with high fidelity using the electromagnetic (EM) scattering. Based on the geometrical model for target deception jamming, the EM scattering data from the deceptive target was first simulated by applying an EM calculation software. Then, the proposed jamming frequency response (JFR) is calculated offline by further processing. Finally, the deception jamming is achieved in real time by a multiplication between the proposed JFR and the spectrum of intercepted radar signals. The practical implementation is presented. The simulation results prove the validity of the proposed method.
Thin-film spectroscopic sensor
Burgess, Jr., Lloyd W.; Goldman, Don S.
1992-01-01
There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1989-01-01
Digital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test, analog data acquisition, and digital data acquisition from fault tolerant systems. In addition, a case study of an upset test methodology for a fault tolerant electromagnetic aircraft engine control system is presented.
[A new information technology for system diagnosis of functional activity of human organs].
Avshalumov, A Sh; Sudakov, K V; Filaretov, G F
2006-01-01
The goal of this work was to consider a new diagnostic technology based on analysis of objective information parameters of functional activity and interaction of normal and pathologically changed human organs. The technology is based on the use of very low power millimeter (EHF) radiation emitted by human body and other biological objects in the process of vital activity. The importance of consideration of the information aspect of vital activity from the standpoint of the theory of functional systems suggested by P. K. Anokhin is emphasized. The suggested information technology is theoretically substantiated. The capabilities of the suggested technology for diagnosis, as well as the difficulties of its practical implementation caused by very low power of electromagnetic fields generated by human body, are discussed. It is noted that only use of modern radiophysical equipment together with new software based on specially developed algorithms made it possible to construct a medical EHF diagnostic system for effective implementation of the suggested technology. The system structure, functions of its components, the examination procedure, and the form of representation of diagnostic information are described together with the specific features of applied software based on the principle of maximal objectivity of analysis and interpretation of the results of diagnosis on the basis of artificial intelligence algorithms. The diagnostic capabilities of the system are illustrated by several examples.
Map of low-frequency electromagnetic noise in the sky
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Smith, Nathan; Evans, Adrian
2015-06-01
The Earth's natural electromagnetic environment is disturbed by anthropogenic electromagnetic noise. Here we report the first results from an electromagnetic noise survey of the sky. The locations of electromagnetic noise sources are mapped on the hemisphere above a distributed array of wideband receivers that operate in a small aperture configuration. It is found that the noise sources can be localized at elevation angles up to ˜60° in the sky, well above the horizon. The sky also exhibits zones with little or no noise that are found toward the local zenith and the southwest of the array. These results are obtained by a rigorous analysis of the residuals from the classic dispersion relation for electromagnetic waves using an array analysis of electric field measurements in the frequency range from ˜20 to 250 kHz. The observed locations of the noise sources enable detailed observations of ionospheric modification, for example, caused by particle precipitation and lightning discharges, while the observed exclusion zones enable the detection of weak natural electromagnetic emissions, for example, from streamers in transient luminous events above thunderclouds.
Analysis of Transient Electromagnetic Scattering from Three Dimensional Cavities
2014-01-01
New York, 2002. [24] J. Jin and J. L. Volakis, A hybrid finite element method for scattering and radiation by micro strip patch antennas and arrays...applications such as the design of cavity-backed conformal antennas and the deliberate control in the form of enhancement or reduction of radar cross...electromagnetic scattering analysis, IEEE Trans. Antennas Propagat., 50 (2002), pp. 1192–1202. [22] J. Jin, Electromagnetic scattering from large, deep, and
Thermally emissive sensing materials for chemical spectroscopy analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Zsolt; Ohodnicki, Paul R.
A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less
Comparative analysis of linear motor geometries for Stirling coolers
NASA Astrophysics Data System (ADS)
R, Rajesh V.; Kuzhiveli, Biju T.
2017-12-01
Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.
Analysis of Raman lasing without inversion
NASA Astrophysics Data System (ADS)
Sheldon, Paul Martin
1999-12-01
Properties of lasing without inversion were studied analytically and numerically using Maple computer assisted algebra software. Gain for probe electromagnetic field without population inversion in detuned three level atomic schemes has been found. Matter density matrix dynamics and coherence is explored using Pauli matrices in 2-level systems and Gell-Mann matrices in 3-level systems. It is shown that extreme inversion produces no coherence and hence no lasing. Unitary transformation from the strict field-matter Hamiltonian to an effective two-photon Raman Hamiltonian for multilevel systems has been derived. Feynman diagrams inherent in the derivation show interesting physics. An additional picture change was achieved and showed cw gain possible. Properties of a Raman-like laser based on injection of 3- level coherently driven Λ-type atoms whose Hamiltonian contains the Raman Hamiltonian and microwave coupling the two bottom states have been studied in the limits of small and big photon numbers in the drive field. Another picture change removed the microwave coupler to all orders and simplified analysis. New possibilities of inversionless generation were found.
NASA Astrophysics Data System (ADS)
Delgado, Carlos; Cátedra, Manuel Felipe
2018-05-01
This work presents a technique that allows a very noticeable relaxation of the computational requirements for full-wave electromagnetic simulations based on the Method of Moments. A ray-tracing analysis of the geometry is performed in order to extract the critical points with significant contributions. These points are then used to generate a reduced mesh, considering the regions of the geometry that surround each critical point and taking into account the electrical path followed from the source. The electromagnetic analysis of the reduced mesh produces very accurate results, requiring a fraction of the resources that the conventional analysis would utilize.
Multilayer solar cell waveguide structures containing metamaterials
NASA Astrophysics Data System (ADS)
Hamouche, Houria.; Shabat, Mohammed. M.; Schaadt, Daniel M.
2017-01-01
Multilayer antireflection coating structures made from silicon and metamaterials are designed and investigated using the Transfer Matrix Method (TMM). The Transfer Matrix Method is a very useful algorithm for the analysis of periodic structures. We investigate in this paper two anti-reflection coating structures for silicon solar cells with a metamaterial film layer. In the first structure, the metamaterial film layer is sandwiched between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The second structure consists of a four layers, a pair of metamaterial-dielectric layer with opposite real part of refractive indices, is placed between the two semi-infinite cover and substrate. We have simulated the absorptivity property of the structures for adjustable thicknesses by using MAPLE software. The absorptivity of the structures achieves greater than 80% for incident electromagnetic wave of transverse magnetic (TM) polarization.
Research and design progress of the Jinping Neutrino Experiment
NASA Astrophysics Data System (ADS)
Wang, Zhe
2018-01-01
Thanks to the 2400 m overburden and the long distance to commercial reactors, the China Jinping Underground Laboratory (CJPL) is an ideal site for low background neutrino experiments. The Jinping Neutrino Experiment will perform an in-depth research on solar neutrinos, geo-neutrinos and supernova relic neutrinos. Many efforts were devoted to the R&D of the experimental proposal. A new type of liquid scintillator, with high light-yield and Cherenkov and scintillation separation capability, is being developed. The assay and selection of low radioactive stainless-steel (SST) was carried out. A wide field-of-view of 90 degree and high-geometry-efficiency of 98% light concentrator is developed. At the same time, a 1-ton prototype is constructed and placed underground at Jinping laboratory. The simulation and analysis software, electromagnetic calorimeter function, rock damage zone simulation will also be introduced briefly.
Hybrid finite element/waveguide mode analysis of passive RF devices
NASA Astrophysics Data System (ADS)
McGrath, Daniel T.
1993-07-01
A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.
Electromagnetic Modeling of the Passive Stabilization Loop at EAST
NASA Astrophysics Data System (ADS)
Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao
2012-09-01
A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
Development and evaluation of an instrumented linkage system for total knee surgery.
Walker, Peter S; Wei, Chih-Shing; Forman, Rachel E; Balicki, M A
2007-10-01
The principles and application of total knee surgery using optical tracking have been well demonstrated, but electromagnetic tracking may offer further advantages. We asked whether an instrumented linkage that attaches directly to the bone can maintain the accuracy of the optical and electromagnetic systems but be quicker, more convenient, and less expensive to use. Initial testing using a table-mounted digitizer to navigate a drill guide for placing pins to mount a cutting guide demonstrated the feasibility in terms of access and availability. A first version (called the Mark 1) instrumented linkage designed to fix directly to the bone was constructed and software was written to carry out a complete total knee replacement procedure. The results showed the system largely fulfilled these goals, but some surgeons found that using a visual display for pin placement was difficult and time consuming. As a result, a second version of a linkage system (called the K-Link) was designed to further develop the concept. User-friendly flexible software was developed for facilitating each step quickly and accurately while the placement of cutting guides was facilitated. We concluded that an instrumented linkage system could be a useful and potentially lower-cost option to the current systems for total knee replacement and could possibly have application to other surgical procedures.
MAC/GMC Code Enhanced for Coupled Electromagnetothermoelastic Analysis of Smart Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Aboudi, Jacob
2002-01-01
Intelligent materials are those that exhibit coupling between their electromagnetic response and their thermomechanical response. This coupling allows smart materials to react mechanically (e.g., an induced displacement) to applied electrical or magnetic fields (for instance). These materials find many important applications in sensors, actuators, and transducers. Recently interest has arisen in the development of smart composites that are formed via the combination of two or more phases, one or more of which is a smart material. To design with and utilize smart composites, designers need theories that predict the coupled smart behavior of these materials from the electromagnetothermoelastic properties of the individual phases. The micromechanics model known as the generalized method of cells (GMC) has recently been extended to provide this important capability. This coupled electromagnetothermoelastic theory has recently been incorporated within NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). This software package is user friendly and has many additional features that render it useful as a design and analysis tool for composite materials in general, and with its new capabilities, for smart composites as well.
Electromagnetic navigation diagnostic bronchoscopy for small peripheral lung lesions.
Makris, D; Scherpereel, A; Leroy, S; Bouchindhomme, B; Faivre, J-B; Remy, J; Ramon, P; Marquette, C-H
2007-06-01
The present study prospectively evaluated the diagnostic yield and safety of electromagnetic navigation-guided bronchoscopy biopsy, for small peripheral lung lesions in patients where standard techniques were nondiagnostic. The study was conducted in a tertiary medical centre on 40 consecutive patients considered unsuitable for straightforward surgery or computed tomography (CT)-guided transthoracic needle aspiration biopsy, due to comorbidities. The lung lesion diameter was mean+/-sem 23.5+/-1.5 mm and the depth from the visceral-costal pleura was 14.9+/-2 mm. Navigation was facilitated by an electromagnetic tracking system which could detect a position sensor incorporated into a flexible catheter advanced through a bronchoscope. Information obtained during bronchoscopy was superimposed on previously acquired CT data. Divergence between CT data and data obtained during bronchoscopy was calculated by the system's software as a measure of navigational accuracy. All but one of the target lesions was reached and the overall diagnostic yield was 62.5% (25-40). Diagnostic yield was significantly affected by CT-to-body divergence; yield was 77.2% when estimated divergence was
Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser
2012-08-27
ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less
Energy and technology review: Engineering modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.
1986-10-01
This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.
Study of plasma environments for the integrated Space Station electromagnetic analysis system
NASA Technical Reports Server (NTRS)
Singh, Nagendra
1992-01-01
The final report includes an analysis of various plasma effects on the electromagnetic environment of the Space Station Freedom. Effects of arcing are presented. Concerns of control of arcing by a plasma contactor are highlighted. Generation of waves by contaminant ions are studied and amplitude levels of the waves are estimated. Generation of electromagnetic waves by currents in the structure of the space station, driven by motional EMF, is analyzed and the radiation level is estimated.
Electromagnetic Compatibility Analysis Group VA-H3
NASA Technical Reports Server (NTRS)
Armanda, Carlos A.
2008-01-01
During the eight weeks working at NASA, I was fortunate enough to work with the Expendable Launch Vehicle's (ELV) Electromagnetic Compatibility (EMC) Team, who is responsible for the evaluation and analysis of any EMI risk an ELV mission might face. This group of people concern themselves with practically any form of electromagnetic interference that may risk the safety of a rocket, a mission, or even people. Taking this into consideration, the group investigates natural forms of interference, such as lightning, to manmade interferences, such as antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanescu, C.
1990-08-01
Complex software for shower reconstruction in DELPHI barrel electromagnetic calorimeter which deals, for each event, with great amounts of information, due to the high spatial resolution of this detector, needs powerful verification tools. An interactive graphics program, running on high performance graphics display system Whizzard 7555 from Megatek, was developed to display the logical steps in showers and their axes reconstruction. The program allows both operations on the image in real-time (rotation, translation and zoom) and the use of non-geometrical criteria to modify it (as the use of energy) thresholds for the representation of the elements that compound the showersmore » (or of the associated lego plots). For this purpose graphics objects associated to user parameters were defined. Instancing and modelling features of the native graphics library were extensively used.« less
Tong, Shu-Hui; Liu, Yi-Ting; Liu, Yang
2013-02-01
To investigate the association between paternal exposure to occupational electromagnetic radiation and the sex ratio of the offspring. We searched various databases, including PubMed, Embase, Cochrane Library, OVID, Bioscience Information Service (BIOSIS), China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals and Wanfang Database, for the literature relevant to the association of paternal exposure to occupational electromagnetic radiation with the sex ratio of the offspring. We conducted a meta-analysis on their correlation using Stata 11.0. There was no statistically significant difference in the sex ratio between the offspring with paternal exposure to occupational electromagnetic radiation and those without (pooled OR = 1.00 [95% CI: 0.95 -1.05], P = 0.875). Subgroup analysis of both case-control and cohort studies revealed no significant difference (pooled OR = 1.03 [95% CI: 0.99 -1.08], P = 0.104 and pooled OR = 0.98 [95% CI: 0.99 -1.08], P = 0.186, respectively). Paternal exposure to occupational electromagnetic radiation is not correlated with the sex ratio of the offspring.
Experiments and Demonstrations in Physics: Bar-Ilan Physics Laboratory (2nd Edition)
NASA Astrophysics Data System (ADS)
Kraftmakher, Yaakov
2014-08-01
The following sections are included: * Data-acquisition systems from PASCO * ScienceWorkshop 750 Interface and DataStudio software * 850 Universal Interface and Capstone software * Mass on spring * Torsional pendulum * Hooke's law * Characteristics of DC source * Digital storage oscilloscope * Charging and discharging a capacitor * Charge and energy stored in a capacitor * Speed of sound in air * Lissajous patterns * I-V characteristics * Light bulb * Short time intervals * Temperature measurements * Oersted's great discovery * Magnetic field measurements * Magnetic force * Magnetic braking * Curie's point I * Electric power in AC circuits * Faraday's law of induction I * Self-inductance and mutual inductance * Electromagnetic screening * LCR circuit I * Coupled LCR circuits * Probability functions * Photometric laws * Kirchhoff's rule for thermal radiation * Malus' law * Infrared radiation * Irradiance and illuminance
Advancement of Analysis Method for Electromagnetic Screening Effect of Mountain Tunnel
NASA Astrophysics Data System (ADS)
Okutani, Tamio; Nakamura, Nobuyuki; Terada, Natsuki; Fukuda, Mitsuyoshi; Tate, Yutaka; Inada, Satoshi; Itoh, Hidenori; Wakao, Shinji
In this paper we report advancement of an analysis method for electromagnetic screening effect of mountain tunnel with a multiple conductor circuit model. On A.C. electrified railways it is a great issue to manage the influence of electromagnetic induction caused by feeding circuits. Tunnels are said to have a screening effect to reduce the electromagnetic induction because a large amount of steel is used in the tunnels. But recently the screening effect is less expected because New Austrian Tunneling Method (NATM), in which the amount of steel used is less than in conventional methods, is adopted as the standard tunneling method for constructing mountain tunnels. So we measured and analyzed the actual screening effect of mountain tunnels constructed with NATM. In the process of the analysis we have advanced a method to analyze the screening effect more precisely. In this method we can adequately model tunnel structure as a part of multiple conductor circuit.
ERIC Educational Resources Information Center
Almudi, Jose Manuel; Ceberio, Mikel
2015-01-01
This study explored the quality of arguments used by first-year engineering university students enrolled in a traditional physics course dealing with electromagnetic induction and related problem solving where they had to assess whether the electromagnetic induction phenomenon would occur. Their conclusions were analyzed for the relevance of the…
Narrow Band Susceptibility Prediction from the Impulse Scatter Response of a Pseudomissile (Case I),
1998-04-01
antenna used to generate the data for this report; and William Cooper of Syndetix, Inc., for his acquisition software programming, expertise in...electromagnetics, and many insightful discussions. In addition to these good individuals, the work of Mr. William F. Collins has literally been...Collins, W F. et. al., SEMVAF Level II Facility Documentation, SLCVA-TM- 87-11, October 1986. 7. White, Patricia and William Cooper, Enhancements to
2013-01-08
hazard due to enemy attack or accident (e.g. Insensitive Munitions (IM) and Electromagnetic Environmental Effects (E3)) and the explosive materials...of mitigating potential explosive remnants of war hazards , particularly from unexploded ordnance , should be conducted. 6.5 Munition Software System...TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Joint Ordnance Test Procedure (JOTP)-001 Allied Ammunition Safety and
Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y
2014-03-03
ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less
Development and optimization of hardware for delta relaxation enhanced MRI.
Harris, Chad T; Handler, William B; Araya, Yonathan; Martínez-Santiesteban, Francisco; Alford, Jamu K; Dalrymple, Brian; Van Sas, Frank; Chronik, Blaine A; Scholl, Timothy J
2014-10-01
Delta relaxation enhanced magnetic resonance (dreMR) imaging requires an auxiliary B0 electromagnet capable of shifting the main magnetic field within a clinical 1.5 Tesla (T) MR system. In this work, the main causes of interaction between an actively shielded, insertable resistive B0 electromagnet and a 1.5T superconducting system are systematically identified and mitigated. The effects of nonideal fabrication of the field-shifting magnet are taken into consideration through careful measurement during winding and improved accuracy in the design of the associated active shield. The shielding performance of the resultant electromagnet is compared against a previously built system in which the shield design was based on an ideal primary coil model. Hardware and software approaches implemented to eliminate residual image artifacts are presented in detail. The eddy currents produced by the newly constructed dreMR system are shown to have a significantly smaller "long-time-constant" component, consistent with the hypothesis that less energy is deposited into the cryostat of the MR system. With active compensation, the dreMR imaging system is capable of 0.22T field shifts within a clinical 1.5T MRI with no significant residual eddy-current fields. Copyright © 2013 Wiley Periodicals, Inc.
An automatic target recognition system based on SAR image
NASA Astrophysics Data System (ADS)
Li, Qinfu; Wang, Jinquan; Zhao, Bo; Luo, Furen; Xu, Xiaojian
2009-10-01
In this paper, an automatic target recognition (ATR) system based on synthetic aperture radar (SAR) is proposed. This ATR system can play an important role in the simulation of up-to-data battlefield environment and be used in ATR research. To establish an integral and available system, the processing of SAR image was divided into four main stages which are de-noise, detection, cluster-discrimination and segment-recognition, respectively. The first three stages are used for searching region of interest (ROI). Once the ROIs are extracted, the recognition stage will be taken to compute the similarity between the ROIs and the templates in the electromagnetic simulation software National Electromagnetic Scattering Code (NESC). Due to the lack of the SAR raw data, the electromagnetic simulated images are added to the measured SAR background to simulate the battlefield environment8. The purpose of the system is to find the ROIs which can be the artificial military targets such as tanks, armored cars and so on and to categorize the ROIs into the right classes according to the existing templates. From the results we can see that the proposed system achieves a satisfactory result.
NASA Astrophysics Data System (ADS)
Newman, Gregory A.
2014-01-01
Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.
Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin
2016-01-01
The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.
NASA Astrophysics Data System (ADS)
Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu
2016-04-01
The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).
Coupled multi-disciplinary composites behavior simulation
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.
1993-01-01
The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.
High-Temperature Switched-Reluctance Electric Motor
NASA Technical Reports Server (NTRS)
Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan
2003-01-01
An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has been modified to enable the simultaneous operation of the prototype motor or another, similar apparatus as both a motor and a magnetic bearing. Combined bearing/motor operation has been demonstrated at room temperature but had not yet been demonstrated at high temperature at the time of reporting the information for this article.
Broad band waveguide spectrometer
Goldman, Don S.
1995-01-01
A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.
Advantages and Challenges of 10-Gbps Transmission on High-Density Interconnect Boards
NASA Astrophysics Data System (ADS)
Yee, Chang Fei; Jambek, Asral Bahari; Al-Hadi, Azremi Abdullah
2016-06-01
This paper provides a brief introduction to high-density interconnect (HDI) technology and its implementation on printed circuit boards (PCBs). The advantages and challenges of implementing 10-Gbps signal transmission on high-density interconnect boards are discussed in detail. The advantages (e.g., smaller via dimension and via stub removal) and challenges (e.g., crosstalk due to smaller interpair separation) of HDI are studied by analyzing the S-parameter, time-domain reflectometry (TDR), and transmission-line eye diagrams obtained by three-dimensional electromagnetic modeling (3DEM) and two-dimensional electromagnetic modeling (2DEM) using Mentor Graphics HyperLynx and Keysight Advanced Design System (ADS) electronic computer-aided design (ECAD) software. HDI outperforms conventional PCB technology in terms of signal integrity, but proper routing topology should be applied to overcome the challenge posed by crosstalk due to the tight spacing between traces.
Status of the Electromagnetic Calorimeter Trigger system at the Belle II experiment
NASA Astrophysics Data System (ADS)
Kim, S. H.; Lee, I. S.; Unno, Y.; Cheon, B. G.
2017-09-01
The Belle II experiment at the SuperKEKB collider in Japan has been under the construction toward a physics run in 2018 with an ultimate target of 40 times higher instantaneous luminosity than the KEKB collider. The main physics motivation is to search for the New Physics from heavy quark/lepton flavor decays. In order to select an event of interest efficiently under much higher luminosity and beam background environment than the KEKB, we have upgraded the Electromagnetic Calorimeter (ECL) hardware trigger system. It would be realized by the improvement of ECL trigger logic based on two main triggers, the total energy and the number of clusters, with an FPGA-based flexible architecture and a high speed serial link for the data transfer. We report the current status of hardware, firmware, and software that has been achieved so far. The overall scheme of the system will be presented as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, B.; Erni, W.; Krusche, B.
Simulation results for future measurements of electromagnetic proton form factors atmore » $$\\overline{\\rm P}$$ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p → e +e – is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p → π +π –, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. Furthermore, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.« less
Singh, B.; Erni, W.; Krusche, B.; ...
2016-10-28
Simulation results for future measurements of electromagnetic proton form factors atmore » $$\\overline{\\rm P}$$ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p → e +e – is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p → π +π –, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. Furthermore, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.« less
Microcomputer control soft tube measuring-testing instrument
NASA Astrophysics Data System (ADS)
Zhou, Yanzhou; Jiang, Xiu-Zhen; Wang, Wen-Yi
1993-09-01
Soft tube are key and easily spoiled parts used by the vehicles in the transportation with large numbers. Measuring and testing of the tubes were made by hands for a long time. Cooperating with Harbin Railway Bureau recently we have developed a new kind of automatical measuring and testing instrument In the paper the instrument structure property and measuring principle are presented in details. Centre of the system is a singlechip processor INTEL 80C31 . It can collect deal with data and display the results on LED. Furthermore it brings electromagnetic valves and motors under control. Five soft tubes are measured and tested in the same time all the process is finished automatically. On the hardware and software counter-electromagnetic disturbance methods is adopted efficiently so the performance of the instrument is improved significantly. In the long run the instrument is reliable and practical It solves a quite difficult problem in the railway transportation.
Eldridge-Thomas, Buffy; Rubin, G James
2013-01-01
Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged with the media to counteract this effect.
Risk analysis with a fuzzy-logic approach of a complex installation
NASA Astrophysics Data System (ADS)
Peikert, Tim; Garbe, Heyno; Potthast, Stefan
2016-09-01
This paper introduces a procedural method based on fuzzy logic to analyze systematic the risk of an electronic system in an intentional electromagnetic environment (IEME). The method analyzes the susceptibility of a complex electronic installation with respect to intentional electromagnetic interference (IEMI). It combines the advantages of well-known techniques as fault tree analysis (FTA), electromagnetic topology (EMT) and Bayesian networks (BN) and extends the techniques with an approach to handle uncertainty. This approach uses fuzzy sets, membership functions and fuzzy logic to handle the uncertainty with probability functions and linguistic terms. The linguistic terms add to the risk analysis the knowledge from experts of the investigated system or environment.
NASA Astrophysics Data System (ADS)
Dong, Yanwu; Hou, Zhiwen; Jiang, Zhouhua; Cao, Haibo; Feng, Qianlong; Cao, Yulong
2018-02-01
A novel single-power two-circuit ESR process (ESR-STCCM) with current-carrying mold has been investigated via numerical simulation and experimental research in this paper. A 2D quasi-steady-state mathematical model is developed to describe ESR-STCCM. The electromagnetic field, flow field, slag pool temperature distribution, and the shape of a molten steel pool in ESR-STCCM have been investigated by FLUENT software as well as user-defined functions (UDF). The results indicate that ESR-STCCM is different from the conventional ESR process. The maximum electromagnetic force, current density, Joule heat, and slag pool flow velocity are located in the lower part of the conductor in the ESR-STCCM process. The direction of the maximum electromagnetic force inclines upward. There are two distinct vortices in the slag pool. The larger swirl rotates counterclockwise near the conductor, with a value of 0.0263 m s-1 due to the interaction of the electromagnetic force and gravity. The maximum temperature of the slag pool is 2070 K (1797 °C) and is located in the center of the swirl with a filling ratio of 0.6 and a 20 mm electrode immersion depth. The depth of a molten steel pool is shallower, which is conducive to improving solidification quality. In addition, the filling ratio of 0.6 is conducive to controlling steel solidification quality. Some experiments have been done, and the numerical model is confirmed by experimental results.
21st Century Military Operations in a Complex Electromagnetic Environment
2015-07-01
critically important, should not be viewed as complete. More is likely needed and it is hoped, as a result of improvements in governance of EW enterprise...strategy and take away the U.S. advantage. A commitment of $2.3 billion per year is viewed by this study as a relatively small down payment to...Mr. Al Munson Potomac Institue for Policy Studies Maj. Gen. Paul Nielsen, USAF (ret) Software Engineering Institute, Carnegie Mellon University Mr
2017-02-01
because of a variety of challenging conditions including (but not limited to) dense woods, long travel times to and from the site, and TEMTADS software...the following reasons: • Approximately 1.5 hours of travel time was needed after reaching the site each day to access the collection grids. • Daily...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
Comparison of Fiber Optic Strain Demodulation Implementations
NASA Technical Reports Server (NTRS)
Quach, Cuong C.; Vazquez, Sixto L.
2005-01-01
NASA Langley Research Center is developing instrumentation based upon principles of Optical Frequency-Domain Reflectometry (OFDR) for the provision of large-scale, dense distribution of strain sensors using fiber optics embedded with Bragg gratings. Fiber Optic Bragg Grating technology enables the distribution of thousands of sensors immune to moisture and electromagnetic interference with negligible weight penalty. At Langley, this technology provides a key component for research and development relevant to comprehensive aerospace vehicle structural health monitoring. A prototype system is under development that includes hardware and software necessary for the acquisition of data from an optical network and conversion of the data into strain measurements. This report documents the steps taken to verify the software that implements the algorithm for calculating the fiber strain. Brief descriptions of the strain measurement system and the test article are given. The scope of this report is the verification of software implementations as compared to a reference model. The algorithm will be detailed along with comparison results.
NASA Technical Reports Server (NTRS)
2001-01-01
Analytical Mechanics Associates, Inc. (AMA), of Hampton, Virginia, created the EZopt software application through Small Business Innovation Research (SBIR) funding from NASA's Langley Research Center. The new software is a user-friendly tool kit that provides quick and logical solutions to complex optimal control problems. In its most basic form, EZopt converts process data into math equations and then proceeds to utilize those equations to solve problems within control systems. EZopt successfully proved its advantage when applied to short-term mission planning and onboard flight computer implementation. The technology has also solved multiple real-life engineering problems faced in numerous commercial operations. For instance, mechanical engineers use EZopt to solve control problems with robots, while chemical plants implement the application to overcome situations with batch reactors and temperature control. In the emerging field of commercial aerospace, EZopt is able to optimize trajectories for launch vehicles and perform potential space station- keeping tasks. Furthermore, the software also helps control electromagnetic devices in the automotive industry.
A cognitive mobile BTS solution with software-defined radioelectric sensing.
Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Sergio; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel García; Valcarce, Roberto López; Bravo, Cristina López
2013-02-05
Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals.
A Cognitive Mobile BTS Solution with Software-Defined Radioelectric Sensing
Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Secundino; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel Garćia; Valcarce, Roberto López; Bravo, Cristina López
2013-01-01
Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals. PMID:23385417
1984-10-01
8217:- . . . .:- . . . * *. . - . . -’" - *. - . " . * - -A REFERENCES [1] J. L. Bogdanor , et. al., Intrasystem Electromagnetic Compatibility Analy- sis Program, Technical Report, RADC-TR-74...286, Vol. IV A, Rome Air -.- Development Center, Griffiss AFB, NY, November 1982. [30] J0 B. Bogdanor , M. D. Siegel, G. L. Weinstock, Intra-Vehicle
Wang, Yudan; Wen, Guojun; Chen, Han
2017-04-27
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.
Wang, Yudan; Wen, Guojun; Chen, Han
2017-01-01
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445
Software and hardware complex for research and management of the separation process
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Electromagnetic fields from mobile phone base station - variability analysis.
Bienkowski, Pawel; Zubrzak, Bartlomiej
2015-09-01
The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.
Array analysis of electromagnetic radiation from radio transmitters for submarine communication
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Evans, Adrian
2014-12-01
The array analyses used for seismic and infrasound research are adapted and applied here to the electromagnetic radiation from radio transmitters for submarine communication. It is found that the array analysis enables a determination of the slowness and the arrival azimuth of the wave number vectors associated with the electromagnetic radiation. The array analysis is applied to measurements of ˜20-24 kHz radio waves from transmitters for submarine communication with an array of 10 radio receivers distributed over an area of ˜1 km ×1 km. The observed slowness of the observed wave number vectors range from ˜2.7 ns/m to ˜4.1 ns/m, and the deviations between the expected arrival azimuths and the observed arrival azimuths range from ˜-9.7° to ˜14.5°. The experimental results suggest that it is possible to determine the locations of radio sources from transient luminous events above thunderclouds with an array of radio receivers toward detailed investigations of the electromagnetic radiation from sprites.
NASA Astrophysics Data System (ADS)
Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu
This paper presents a design and testing of a new high-speed electromagnetic driving mechanism for a high-voltage vacuum circuit breaker (VCB). This mechanism is based on a high-speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3d non-linear finite-elements magnetic field analysis and investigated its internal friction and eddy-current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics—contact velocity, response time and so on, required for the high-speed VCB. A prototype VCB, which was built based on the above analysis shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance.
Development of a polarized neutron beam line at Algerian research reactors using McStas software
NASA Astrophysics Data System (ADS)
Makhloufi, M.; Salah, H.
2017-02-01
Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.
NASA Astrophysics Data System (ADS)
Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao
2017-05-01
In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.
Tong, Jun; Chen, Su; Liu, Xiang-Ming; Hao, Dong-Mei
2013-09-01
In order to explore effect of electromagnetic radiation on learning and memory ability of hippocampus neuron in rats, the changes in discharge patterns and overall electrical activity of hippocampus neuron after electromagnetic radiation were observed. Rat neurons discharge was recorded with glass electrode extracellular recording technology and a polygraph respectively. Radiation frequency of electromagnetic wave was 900 MHZ and the power was 10 W/m2. In glass electrode extracellular recording, the rats were separately irradiated for 10, 20, 30, 40, 50 and 60 min, every points repeated 10 times and updated interval of 1h, observing the changes in neuron discharge and spontaneous discharge patterns after electromagnetic radiation. In polygraph recording experiments, irradiation group rats for five days a week, 6 hours per day, repeatedly for 10 weeks, memory electrical changes in control group and irradiation group rats when they were feeding were repeatedly monitored by the implanted electrodes, observing the changes in peak electric digits and the largest amplitude in hippocampal CA1 area, and taking some electromagnetic radiation sampling sequence for correlation analysis. (1) Electromagnetic radiation had an inhibitory role on discharge frequency of the hippocampus CA1 region neurons. After electromagnetic radiation, discharge frequency of the hippocampus CA1 region neurons was reduced, but the changes in scale was not obvious. (2) Electromagnetic radiation might change the spontaneous discharge patterns of hippocampus CA1 region neurons, which made the explosive discharge pattern increased obviously. (3) Peak potential total number within 5 min in irradiation group was significantly reduced, the largest amplitude was less than that of control group. (4) Using mathematical method to make the correlation analysis of the electromagnetic radiation sampling sequence, that of irradiation group was less than that of control group, indicating that there was a tending to be inhibitory connection between neurons in irradiation group after electromagnetic radiation. Electromagnetic radiation may cause structure and function changes of transfer synaptic in global, make hippocampal CA1 area neurons change in the overall discharge characteristic and discharge patterns, thus lead to decrease in the ability of learning and memory.
Estimation of the interference coupling into cables within electrically large multiroom structures
NASA Astrophysics Data System (ADS)
Keghie, J.; Kanyou Nana, R.; Schetelig, B.; Potthast, S.; Dickmann, S.
2010-10-01
Communication cables are used to transfer data between components of a system. As a part of the EMC analysis of complex systems, it is necessary to determine which level of interference can be expected at the input of connected devices due to the coupling into the irradiated cable. For electrically large systems consisting of several rooms with cables connecting components located in different rooms, an estimation of the coupled disturbances inside cables using commercial field computation software is often not feasible without several restrictions. In many cases, this is related to the non-availability of computing memory and processing power needed for the computation. In this paper, we are going to show that, starting from a topological analysis of the entire system, weak coupling paths within the system can be can be identified. By neglecting these coupling paths and using the transmission line approach, the original system will be simplified so that a simpler estimation is possible. Using the example of a system which is composed of two rooms, multiple apertures, and a network cable located in both chambers, it is shown that an estimation of the coupled disturbances due to external electromagnetic sources is feasible with this approach. Starting from an incident electromagnetic field, we determine transfer functions describing the coupling means (apertures, cables). Using these transfer functions and the knowledge of the weak coupling paths above, a decision is taken regarding the means for paths that can be neglected during the estimation. The estimation of the coupling into the cable is then made while taking only paths with strong coupling into account. The remaining part of the wiring harness in areas with weak coupling is represented by its input impedance. A comparison with the original network shows a good agreement.
NASA Astrophysics Data System (ADS)
Palanisamy, S.; Tunakova, V.; Karthik, D.; Ali, A.; Militky, J.
2017-10-01
In this study, the different proportion of conductive component blended with polypropylene yarn were taken for making conductive textile samples for analysis of electromagnetic shielding effectiveness, fabric bending moment and air permeability. The ASTM D4935 coaxial transmission line method was used to study the electromagnetic shielding. Electromagnetic shielding effectiveness of textile structures containing different percentage of metal content ranges from 1 to 50 dB at high frequency range. Breathability of structures, more precisely air permeability was considered as one of important parameters for designing of electromagnetic radiation protective fabrics for certain applications. The bending moment of samples is decreases with increasing metal component percent.
Laser Spiderweb Sensor Used with Portable Handheld Devices
NASA Technical Reports Server (NTRS)
Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)
2017-01-01
A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.
Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure,more » interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.« less
Hovnanyan, K; Kalantaryan, V; Trchounian, A
2017-09-01
A low-intensity electromagnetic field of extremely high frequency has inhibitory and stimulatory effects on bacteria, including Enterococcus hirae. It was shown that the low-intensity (the incident power density of 0·06 mW cm -2 ) electromagnetic field at the frequencies of 51·8 GHz and 53 GHz inhibited E. hirae ATCC 9790 bacterial growth rate; a stronger effect was observed with 53 GHz, regardless of exposure duration (0·5 h, 1 h or 2 h). Scanning electron microscopy analysis of these effects has been done; the cells were of spherical shape. Electromagnetic field at 53 GHz, but not 51·8 GHz, changed the cell size-the diameter was enlarged 1·3 fold at 53 GHz. These results suggest the difference in mechanisms of action on bacteria for electromagnetic fields at 51·8 GHz and 53 GHz. A stronger inhibitory effect of low-intensity electromagnetic field on Enterococcus hirae ATCC 9790 bacterial growth rate was observed with 53 GHz vs 51·8 GHz, regardless of exposure duration. Scanning electron microscopy analysis showed that almost all irradiated cells in the population have spherical shapes similar to nonirradiated ones, but they have increased diameters in case of irradiated cells at 53 GHz, but not 51·8 GHz. The results are novel, showing distinguishing effects of low-intensity electromagnetic field of different frequencies. They could be applied in treatment of food and different products in medicine and veterinary, where E. hirae plays an important role. © 2017 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Suarez, J.; Ochoa, L.; Saavedra, F.
2017-07-01
Remote sensing has always been the best investigation tool for planetary sciences. In this research have been used data of Surface albedo, electromagnetic spectra and satelital imagery in search of understanding glacier dynamics in some bodies of the solar system, and how it's related to their compositions and associated geological processes, this methodology is very common in icy moons studies. Through analytic software's some albedos map's and geomorphological analysis were made that allow interpretation of different types of ice in the glacier's and it's interaction with other materials, almost all the images were worked in the visible and infrared ranges of the spectrum; spectral data were later used to connect the reflectance whit chemical and reologic properties of the compounds studied. It have been concluded that the albedo analysis is an effective tool to differentiate materials in the bodies surfaces, but the application of spectral data is necessary to know the exact compounds of the glaciers and to have a better understanding of the icy bodies.
2015-07-01
electromagnetic induction (EMI) sensor. A total of 2,116 targets were selected from the dynamic data for cued investigation, and 1,398 targets were...geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction ESTCP Environmental Security...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former Southwestern
2007-11-07
with the International Science and Technology Center ( ISTC ), Moscow. ISTC Project No. 3629 Incidental/absorbed exposure electromagnetic field...5a. CONTRACT NUMBER ISTC Registration No: 3629 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Incidental/absorbed exposure electromagnetic field...REPORT NUMBER(S) ISTC 06-7005 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13
Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits
2017-03-01
real-time an IC device. This non-invasive solution is cost effective, with a small form factor. Keywords: Electromagnetic radiation; Near-Field...solicitation was to design, develop and fabricate a low cost electromagnetic probe array for ICs counterfeit. The probe array should operate in the near...Our overall effort was focus on modeling, designing, fabricating, and utilizing novel electromagnetic probes for the analysis, characterization
Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder
2017-03-09
generate electromagnetic effects which can disrupt the electronic components contained inside the round. Finite element analyses were conducted to...which affect the magnetic field inside the cylinder were analyzed by varying the angular velocities and the electromagnetic properties (permeability and...the magnetic field distribution inside the cylinder was affected by angular velocity and the electromagnetic properties of the cylinder. 15
Classification Demonstration at Former Camp George West Artillery Range, CO
2013-06-01
Prescribed by ANSI Std Z39-18 1 1. Introduction Classification using the Man-portable Vector (MPV) advanced electromagnetic sensor was...was left just past the analyst’s threshold. 2 built advanced electromagnetic sensors and associated analysis methods for classification. Following...and program managers in the Services. The physics governing the electromagnetic response of a metal object is well understood and predictable
Gravitational scattering of electromagnetic radiation
NASA Technical Reports Server (NTRS)
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Design and analysis of an electromagnetic turnout for the superconducting Maglev system
NASA Astrophysics Data System (ADS)
Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.
2016-09-01
Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.
The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-01-01
This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and Ku-band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation. PMID:28788116
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-07-02
This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and K u -band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation.
Sensing network for electromagnetic fields generated by seismic activities
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.
2014-06-01
The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.
Design and Fabrication of Interdigital Nanocapacitors Coated with HfO2
González, Gabriel; Kolosovas-Machuca, Eleazar Samuel; López-Luna, Edgar; Hernández-Arriaga, Heber; González, Francisco Javier
2015-01-01
In this article nickel interdigital capacitors were fabricated on top of silicon substrates. The capacitance of the interdigital capacitor was optimized by coating the electrodes with a 60 nm layer of HfO2. An analytical solution of the capacitance was compared to electromagnetic simulations using COMSOL and with experimental measurements. Results show that modeling interdigital capacitors using Finite Element Method software such as COMSOL is effective in the design and electrical characterization of these transducers. PMID:25602271
The Effects of High-Altitude Electromagnetic Pulse (HEMP) on Telecommunications Assets
1988-06-01
common to a whole class of switches. 5ESS switch software controls the operating system, call processing, and system administration andgmaintenance...LEVEL (ky/rn)3 (a). Mean Fraction of Preset Calls Dropped Due to Induced Transients3 1.0 W -o35kVhM (36 EVENTS) 5-40 kV/M (13 EVENTS) IAUTOMATIC ...eel PERIPHRAL UNIT BUS,IMNA The entire 4ESS system is controlled by the 1A processor. The processor monitors and controls the operation of the
Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic
2014-01-01
This paper introduce a fast and efficient solver for simulating the induced (eddy) current distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show eddy current in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.
Zradziński, Patryk
2015-01-01
Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781
Lisi, Antonella; Foletti, Alberto; Ledda, Mario; Rosola, Emanuela; Giuliani, Livio; D'Emilia, Enrico; Grimaldi, Settimio
2006-01-01
Electromagnetic therapy is a treatment method in which an electromagnetic or magnetic stimulus is used to achieve physiological changes in the body. The specific aim of the present work concerns the effectiveness of low frequency electromagnetic fields to modify the biochemical properties of human keratinocytes (HaCaT). Cells exposed to a 7 Hz 100 microT electromagnetic field for one hour (twice daily), indicated modification in shape and morphology. These modifications were also associated with different actin distribution as revealed by phalloidin fluorescence analysis. Indirect immunofluorescence with fluorescent antibodies against involucrin and beta-Catenin, both differentiation and adhesion markers, revealed an increase in involucrin and beta-Catenin expression, supporting the conclusion that exposure to electromagnetic field carries keratinocytes to an upper differentiation level. This study confirms our previous observation and supports the hypothesis that 7 Hz electromagnetic field, may modify cell biochemistry interfering in the differentiation and cellular adhesion of normal keratinocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timpson, Erik J.; Engel, T. G.
A pulse forming network (PFN), helical electromagnetic launcher (HEML), command module (CM), and calibration table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored nergy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass reinforced epoxy and is designed to accelerate a mass of 600 grams to a velocity of 10 meters per second. The CM is microcontroller-based running Arduino Software. The CM has a keypad input and 7 segment outputs of the PFNmore » voltage and desired charging voltage. After entering a desired PFN voltage, the CM controls the charging of the PFN. When the two voltages are equal it sends a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile’s tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocimeter and catch pot. The target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely so that the velocimeter can accurately read. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.« less
Bowling, Mark R; Kohan, Matthew W; Walker, Paul; Efird, Jimmy; Ben Or, Sharon
2015-01-01
Navigational bronchoscopy is utilized to guide biopsies of peripheral lung nodules and place fiducial markers for treatment of limited stage lung cancer with stereotactic body radiotherapy. The type of sedation used for this procedure remains controversial. We performed a retrospective chart review to evaluate the differences of diagnostic yield and overall success of the procedure based on anesthesia type. Electromagnetic navigational bronchoscopy was performed using the superDimension software system. Once the targeted lesion was within reach, multiple tissue samples were obtained. Statistical analysis was used to correlate the yield with the type of sedation among other factors. A successful procedure was defined if a diagnosis was made or a fiducial marker was adequately placed. Navigational bronchoscopy was performed on a total of 120 targeted lesions. The overall complication rate of the procedure was 4.1%. The diagnostic yield and success of the procedure was 74% and 87%, respectively. Duration of the procedure was the only significant difference between the general anesthesia and IV sedation groups (mean, 58 vs. 43 min, P=0.0005). A larger tumor size was associated with a higher diagnostic yield (P=0.032). All other variables in terms of effect on diagnostic yield and an unsuccessful procedure did not meet statistical significance. Navigational bronchoscopy is a safe and effective pulmonary diagnostic tool with relatively low complication rate. The diagnostic yield and overall success of the procedure does not seem to be affected by the type of sedation used.
2015-07-01
concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction (EMI) sensor. A total of...centimeter DGM digital geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former
Vertical Electromagnetic Pulse (VEMP) Testing
2009-09-11
3) MIL-STD-2169B: High Altitude Electromagnetic Pulse ( HEMP ) Environment. The final survivability analysis of the baseline system...Electromagnetic Pulse ( HEMP ). The first EMP situation, SREMP, occurs within the atmosphere at an altitude of less than 40 km above sea level, and possesses an...The second EMP situation, HEMP , occurs at an altitude greater than 40 km above sea level, and possesses a large electric and magnetic field over a
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
NASA Technical Reports Server (NTRS)
Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron
1994-01-01
This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.
A Near Zero Refractive Index Metamaterial for Electromagnetic Invisibility Cloaking Operation
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2015-01-01
The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such a way that forms a near-pi-shape structure on epoxy resin fiber (FR-4) substrate material. The reflection and transmission characteristics of the unit cell were achieved by utilizing finite integration technique based simulation software. Measured results were presented, which complied well with simulated results. The unit cell was then applied to build a single layer rectangular-shaped cloak that operates in the C-band region where a metal cylinder was perfectly hidden electromagnetically by reducing the scattering width below zero. Moreover, the unit cell shows NZRI property there. The experimental result for the cloak operation was presented in terms of S-parameters as well. In addition, the same metamaterial shell was also adopted for designing an eye-shaped and triangular-shaped cloak structure to cloak the same object, and cloaking operation is achieved in the C-band, as well with slightly better cloaking performance. The novel design, NZRI property, and single layer C-band cloaking operation has made the design a promising one in the electromagnetic paradigm. PMID:28793472
A Near Zero Refractive Index Metamaterial for Electromagnetic Invisibility Cloaking Operation.
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2015-07-29
The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such a way that forms a near-pi-shape structure on epoxy resin fiber (FR-4) substrate material. The reflection and transmission characteristics of the unit cell were achieved by utilizing finite integration technique based simulation software. Measured results were presented, which complied well with simulated results. The unit cell was then applied to build a single layer rectangular-shaped cloak that operates in the C-band region where a metal cylinder was perfectly hidden electromagnetically by reducing the scattering width below zero. Moreover, the unit cell shows NZRI property there. The experimental result for the cloak operation was presented in terms of S-parameters as well. In addition, the same metamaterial shell was also adopted for designing an eye-shaped and triangular-shaped cloak structure to cloak the same object, and cloaking operation is achieved in the C-band, as well with slightly better cloaking performance. The novel design, NZRI property, and single layer C-band cloaking operation has made the design a promising one in the electromagnetic paradigm.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Hartle, M. S.; Mcknight, R. L.; Huang, H.; Holt, R.
1992-01-01
Described here are the accomplishments of a 5-year program to develop a methodology for coupled structural, thermal, electromagnetic analysis tailoring of graded component structures. The capabilities developed over the course of the program are the analyzer module and the tailoring module for the modeling of graded materials. Highlighted accomplishments for the past year include the addition of a buckling analysis capability, the addition of mode shape slope calculation for flutter analysis, verification of the analysis modules using simulated components, and verification of the tailoring module.
Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
NASA Astrophysics Data System (ADS)
Ciurys, Marek Pawel
2017-12-01
Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.
Intrasystem Electromagnetic Compatibility Analysis Program. Volume 2. User’s Manual Usage Section
1974-12-01
AD-A008 527 INTRASYSTEM ELECTROMAGNETIC COMPATI- BILITY ANALYSIS PROGRAM. VOLUME II.USER’S MANUAL USAGE SECTION J. L. Bogdanor , et al McDonnell...NUMBERVolume II - User’s Manual Usage Section None 7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(s) J.L. Bogdanor F30602-72-C-0277 R.A. Pearlman M.D. Siegel
Constraints and stability in vector theories with spontaneous Lorentz violation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus
2008-06-15
Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stabilitymore » of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.« less
Measurement of Electromagnetic Properties of Lightning with 10 Nanosecond Resolution
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Oneill, J. P.; Moore, C. B.; Hall, D. L.
1980-01-01
Electromagnetic data recorded from lightning strikes are presented. The data analysis reveals general characteristics of fast electromagnetic fields measured at the ground including rise times, amplitudes, and time patterns. A look at the electromagnetic structure of lightning shows that the shortest rise times in the vicinity of 30 ns are associated with leader leader streamers. Lightning location is based on electromagnetic field characteristics and is compared to a nearby sky camera. The fields from both leaders and return strokes were measured and are discussed. The data were obtained during 1978 and 1979 from lightning strikes occuring within 5 kilometers of an underground metal instrumentation room located on South Baldy peak near Langmuir Laboratory, New Mexico. The computer controlled instrumentation consisted of sensors previously used for measuring the nuclear electromagnetic pulse (EMP) and analog-digital recorders with 10 ns sampling, 256 levels of resolution, and 2 kilobytes of internal memory.
NASA Astrophysics Data System (ADS)
Wang, Siqi; Li, Decai
2015-09-01
This paper describes the design and characterization of a plane vibration-based electromagnetic generator that is capable of converting low-frequency vibration energy into electrical energy. A magnetic spring is formed by a magnetic attractive force between fixed and movable permanent magnets. The ferrofluid is employed on the bottom of the movable permanent magnet to suspend it and reduce the mechanical damping as a fluid lubricant. When the electromagnetic generator with a ferrofluid of 0.3 g was operated under a resonance condition, the output power reached 0.27 mW, and the power density of the electromagnetic generator was 5.68 µW/cm2. The electromagnetic generator was also used to harvest energy from human motion. The measured average load powers of the electromagnetic generator from human waist motion were 0.835 mW and 1.3 mW during walking and jogging, respectively.
NASA Astrophysics Data System (ADS)
Quebedeaux, James Edward
The focus of this study was to identify major conceptual difficulties that selected public high school physical science students encounter in understanding a standard electromagnetic spectrum diagram. A research-driven, modified version of that standard diagram was used in this study to determine the value added to student understanding of electromagnetic waves. A content analysis was performed on electromagnetic spectrum diagrams found in US textbooks from the 1950s through the present. A class of public high school physical science students participated in a study consisting of four activities conducted during a three-week unit. Students were given a pre- and post-achievement test and a pre- and post-survey on the regions of the electromagnetic spectrum. At the conclusion of each activity, selected students were interviewed and each co-constructed a concept map with the researcher. The Electromagnetic Spectrum Literacy Rubric (ESLR) was designed and used to assess students' conceptual understanding periodically as they proceeded through the unit study. A mixed methods analysis was performed, employing both qualitative and quantitative data. A paired t-test determined that there was a statistically significant difference (p = 0.014) between the pre- and post-achievement test scores for the class of students participating in the unit study. Effect sizes also determined that students have difficulties with mathematical calculations and wave properties. These topics present conceptual challenges which must be overcome to understand and use an electromagnetic spectrum diagram effectively.
Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells
2014-01-01
Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758
A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment
Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.
2013-01-01
Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C C
The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less
NASA Astrophysics Data System (ADS)
Thompson, James H.; Apel, Thomas R.
1990-07-01
A technique for modeling microstrip discontinuities is presented which is derived from the transmission line matrix method of solving three-dimensional electromagnetic problems. In this technique the microstrip patch under investigation is divided into an integer number of square and half-square (triangle) subsections. An equivalent lumped-element model is calculated for each subsection. These individual models are then interconnected as dictated by the geometry of the patch. The matrix of lumped elements is then solved using either of two microwave CAD software interfaces with each port properly defined. Closed-form expressions for the lumped-element representation of the individual subsections is presented and experimentally verified through the X-band frequency range. A model demonstrating the use of symmetry and block construction of a circuit element is discussed, along with computer program development and CAD software interface.
Automating the deconfliction of jamming and spectrum management
NASA Astrophysics Data System (ADS)
Segner, Samuel M.
1988-12-01
Powerful airborne and ground based jammers are being fielded by all services and nations as part of their intelligence/electronic warfare (I/EW) combat capability. For their survivability, these I/EW systems operate far from the FLOT; this creates rather large denial areas to friendly forces when they jam. Manual coordination between IE/W managers and spectrum managers is not practical to take on targets of opportunities or track the intended enemy victims when these victims counter by frequency maneuvers. Two possible architectures, one centralized, the other decentralized, are explored as is the applicability of the electromagnetic compatibility (EMC) software developed for the U.S. Army Automatic Tactical Frequency Engineering System (ATFES) pilot program. The proposed approach is to apply the principles of the Joint Commanders EW Staff (JCEWS). The initial simplified software to demonstrate the computer aided coordination at VHF is explained.
Toward the Kelvin’s Formula Paradox
2016-09-01
at rest no matter what its constitutive equation will be. 15. SUBJECT TERMS thermodynamics , electromagnetism, ponderomotive forces, Kelvin’s...a novel, mostly thermodynamic , analysis of the electromagnetic forces, acting in polarizable materials. When fulfilling those V&V studies of
Inductive interference in rapid transit signaling systems. volume 2. suggested test procedures.
DOT National Transportation Integrated Search
1987-03-31
These suggested test procedures have been prepared in order to develop standard methods of analysis and testing to quantify and resolve issues of electromagnetic compatibility in rail transit operations. Electromagnetic interference, generated by rai...
Current status of the real-time processing of complex radar signatures
NASA Astrophysics Data System (ADS)
Clay, E.
The real-time processing technique developed by ONERA to characterize radar signatures at the Brahms station is described. This technique is used for the real-time analysis of the RCS of airframes and rotating parts, the one-dimensional tomography of aircraft, and the RCS of electromagnetic decoys. Using this technique, it is also possible to optimize the experimental parameters, i.e., the analysis band, the microwave-network gain, and the electromagnetic window of the analysis.
NASA Astrophysics Data System (ADS)
Malyshevsky, V. S.; Fomin, G. V.
2017-01-01
On the basis of the analytical model "PARMA" (PHITS-based Analytical Radiation Model in the Atmosphere), developed to model particle fluxes of secondary cosmic radiation in the Earth's atmosphere, we have calculated the characteristics of radio waves emitted by excess negative charge in an electromagnetic cascade. The results may be of use in an analysis of experimental data on radio emission of electron-photon showers in the atmosphere.
Multistage Magnetic Separator of Cells and Proteins
NASA Technical Reports Server (NTRS)
Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce
2005-01-01
The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to position the capture magnet above the upper cuvette into which a fraction of the sample is collected. The electronic unit includes a power switch, power-supply circuitry that accepts 110-Vac input power, an RS-232 interface, and status lights. The personal computer runs the MAGSEP software and controls the operation of the MAGSEP through the RS-232 interface. The status of the power, the translating electromagnet, the capture magnet, and the rotation of the upper plate are indicated in a graphical user interface on the computer screen.
NASA Astrophysics Data System (ADS)
Bernard, J.
2012-12-01
The Manufacturers of geophysical instruments have been facing these past decades the fast evolution of the electronics and of the computer sciences. More automatisms have been introduced into the equipment and into the processing and interpretation software which may let believe that conducting geophysical surveys requires less understanding of the method and less experience than in the past. Hence some misunderstandings in the skills that are needed to make the geophysical results well integrated among the global information which the applied geologist needs to acquire to be successful in his applications. Globally, the demand in geophysical investigation goes towards more penetration depth, requiring more powerful transmitters, and towards a better resolution, requiring more data such as in 3D analysis. Budgets aspects strongly suggest a high efficiency in the field associated to high speed data processing. The innovation is required in all aspects of geophysics to fit with the market needs, including new technological (instruments, software) and methodological (methods, procedures, arrays) developments. The structures in charge of the geophysical work can be public organisations (institutes, ministries, geological surveys,…) or can come from the private sector (large companies, sub-contractors, consultants, …), each one of them getting their own constraints in the field work and in the processing and interpretation phases. In the applications concerning Groundwater investigations, Mining Exploration, Environmental and Engineering surveys, examples of data and their interpretation presently carried out all around the world will be presented for DC Resistivity (Vertical Electrical Sounding, 2D, 3D Resistivity Imaging, Resistivity Monitoring), Induced Polarisation (Time Domain 2D, 3D arrays for mining and environmental), Magnetic Resonance Sounding (direct detection and characterisation of groundwater) and Electromagnetic (multi-component and multi-spacing Frequency Domain Sounding and Profiling technique). The place that Geophysics takes in the market among the other investigation techniques is, and will remain, dependant on the quality of the results obtained, despite the uncertainties linked to the field (noise aspects) and to the interpretation (equivalence aspects), under the control of budget decisions.Resistivity Imaging measurements for groundwater investigations
Towards a 3D modelling of the microwave photo-induced load in CPW technology
NASA Astrophysics Data System (ADS)
Gary, Rene; Arnould, Jean-Daniel; Vilcot, Anne
2005-09-01
The optical control study works on both the optical and the microwave behaviours of the plasma photo-induced in the semiconductor enlightened by a laser beam. The presented study is based on the necessity to be able to foresee the microwave response of CPW microwave devices versus different optical powers and different kinds of optical fibers, single-mode or multimode. The optical part has been achieved analytically by solving the diffusion equation of photo-induced carriers using the Hankel transform in 3-Dimensions. The added value of this technique is its precision and fastness. For the electromagnetic part we have chosen to use CST Microwave Studio software, which solves numerically Maxwell's equations with a Finite Integration Technique (FIT). For this aim we have had to model the photo-induced load using the locally changed conductivity directly depending of the excess carriers distribution. In the final paper, the first part will deal with the analytical computation of the photo-induced excess carrier in silicon substrate using the Hankel transform under permanent enlightening. Then the explanation of the model will be based on the need of a 3-Dimension model that may be described in an electromagnetic software. Finally simulation results of simple CPW devices as stub will be compared to measurements. In conclusion, we will show that the model is suitable for designing more complex devices and that it can be simplified in case of low precision needs.
Radio Tracking Fish with Small Unmanned Aircraft Systems (sUAS).
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Anderson, K. R.; Hanson, L.; Pinsker, E. A.; Jonsson, J.; Chapman, D. C.; Witten, D. M.; O'Connor, K. A.
2017-12-01
Tracking radio tagged fish by boat or on foot in riverine systems is difficult and time consuming, particularly in large braided island complexes, shallow wetlands, and rocky reaches. Invasive Asian carp are commonly found in these hard to reach areas, but their near-surface feeding behavior makes radio tracking possible. To identify new methods of fish tracking that could same time and money, this study tested the feasibility of tracking Asian carp with Small Unmanned Aerial Systems (sUAS) in areas generally inaccessible to traditional tracking equipment. The U.S. Geological Survey worked with NanoElectromagnetics LLC and WWR Development to create and integrate a lightweight custom radio receiver, directional antenna, and accompanying software into a sUAS platform. The receiver includes independent GPS, software defined radio, and compass. The NASA Ames Research Center (ARC) completed payload integration, electromagnetic-interference and airworthiness testing, and provided a DJI Matrice 600 sUAS for this study. Additionally, ARC provided subject matter experts, airworthiness and flight readiness evaluation, and flight test facilities during preparation; and a pilot, range safety officer, and aircraft engineer during field deployment. Results demonstrate that this custom sUAS and sensor combination can detect radio tags at 100m above ground level and at horizontal ranges of 100m and 300m, with operators in either onshore or offshore locations. With this combination of sUAS and radio receiver, fish can be tracked in areas previously inaccessible and during flooding, providing new insights into riverine fish movement and habitat utilization.
GP Workbench Manual: Technical Manual, User's Guide, and Software Guide
Oden, Charles P.; Moulton, Craig W.
2006-01-01
GP Workbench is an open-source general-purpose geophysical data processing software package written primarily for ground penetrating radar (GPR) data. It also includes support for several USGS prototype electromagnetic instruments such as the VETEM and ALLTEM. The two main programs in the package are GP Workbench and GP Wave Utilities. GP Workbench has routines for filtering, gridding, and migrating GPR data; as well as an inversion routine for characterizing UXO (unexploded ordinance) using ALLTEM data. GP Workbench provides two-dimensional (section view) and three-dimensional (plan view or time slice view) processing for GPR data. GP Workbench can produce high-quality graphics for reports when Surfer 8 or higher (Golden Software) is installed. GP Wave Utilities provides a wide range of processing algorithms for single waveforms, such as filtering, correlation, deconvolution, and calculating GPR waveforms. GP Wave Utilities is used primarily for calibrating radar systems and processing individual traces. Both programs also contain research features related to the calibration of GPR systems and calculating subsurface waveforms. The software is written to run on the Windows operating systems. GP Workbench can import GPR data file formats used by major commercial instrument manufacturers including Sensors and Software, GSSI, and Mala. The GP Workbench native file format is SU (Seismic Unix), and subsequently, files generated by GP Workbench can be read by Seismic Unix as well as many other data processing packages.
NASA Astrophysics Data System (ADS)
Lucia, Umberto; Ponzetto, Antonio
2017-02-01
Cell membranes are the reason of the cell energy transfer. In cells energy transfer, thermo-electro-chemical processes and transports phenomena occur through their membranes. Cells can actively modify their behaviours in relation to any change of their environment. They waste heat into their environment. The analysis of irreversibility related to this wasted heat, to the ions transport and the related cell-environment pH changes represents a new useful approach to the study of the cells behaviour. This analysis allows also the explanation of the effects of electromagnetic fields on the cell behaviour, and to suggest how low intensity electromagnetic fields could represent a useful support to the present anticancer therapies.
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2012-01-01
Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.
Kadoury, Samuel; Abi-Jaoudeh, Nadine; Levy, Elliot B.; Maass-Moreno, Roberto; Krücker, Jochen; Dalal, Sandeep; Xu, Sheng; Glossop, Neil; Wood, Bradford J.
2011-01-01
Purpose: To assess the feasibility of combined electromagnetic device tracking and computed tomography (CT)/ultrasonography (US)/fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) fusion for real-time feedback during percutaneous and intraoperative biopsies and hepatic radiofrequency (RF) ablation. Materials and Methods: In this HIPAA-compliant, institutional review board–approved prospective study with written informed consent, 25 patients (17 men, eight women) underwent 33 percutaneous and three intraoperative biopsies of 36 FDG-avid targets between November 2007 and August 2010. One patient underwent biopsy and RF ablation of an FDG-avid hepatic focus. Targets demonstrated heterogeneous FDG uptake or were not well seen or were totally inapparent at conventional imaging. Preprocedural FDG PET scans were rigidly registered through a semiautomatic method to intraprocedural CT scans. Coaxial biopsy needle introducer tips and RF ablation electrode guider needle tips containing electromagnetic sensor coils were spatially tracked through an electromagnetic field generator. Real-time US scans were registered through a fiducial-based method, allowing US scans to be fused with intraprocedural CT and preacquired FDG PET scans. A visual display of US/CT image fusion with overlaid coregistered FDG PET targets was used for guidance; navigation software enabled real-time biopsy needle and needle electrode navigation and feedback. Results: Successful fusion of real-time US to coregistered CT and FDG PET scans was achieved in all patients. Thirty-one of 36 biopsies were diagnostic (malignancy in 18 cases, benign processes in 13 cases). RF ablation resulted in resolution of targeted FDG avidity, with no local treatment failure during short follow-up (56 days). Conclusion: Combined electromagnetic device tracking and image fusion with real-time feedback may facilitate biopsies and ablations of focal FDG PET abnormalities that would be challenging with conventional image guidance. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101985/-/DC1 PMID:21734159
Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection
Meaney, Paul M.; Kaufman, Peter A.; diFlorio-Alexander, Roberta M.; Paulsen, Keith D.
2013-01-01
Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring. PMID:22562726
3-D Electromagnetic field analysis of wireless power transfer system using K computer
NASA Astrophysics Data System (ADS)
Kawase, Yoshihiro; Yamaguchi, Tadashi; Murashita, Masaya; Tsukada, Shota; Ota, Tomohiro; Yamamoto, Takeshi
2018-05-01
We analyze the electromagnetic field of a wireless power transfer system using the 3-D parallel finite element method on K computer, which is a super computer in Japan. It is clarified that the electromagnetic field of the wireless power transfer system can be analyzed in a practical time using the parallel computation on K computer, moreover, the accuracy of the loss calculation becomes better as the mesh division of the shield becomes fine.
Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Eisenmann, Urs; Freudlsperger, Christian; Seeberger, Robin; Hoffmann, Jürgen; Dickhaus, Hartmut
2017-03-01
Inaccuracies in orthognathic surgery can be caused during face-bow registration, model surgery on plaster models, and intermaxillary splint manufacturing. Electromagnetic (EM) navigation is a promising method for splintless digitized maxillary positioning. After performing Le Fort I osteotomy on 10 plastic skulls, the target position of the maxilla was guided by an EM navigation system. Specially implemented software illustrated the target position by real-time multistage colored three-dimensional imaging. Accuracy was determined by using pre- and postoperative cone beam computed tomography. The high accuracy of the EM system was underlined by the fact that it had a navigated maxilla position discrepancy of only 0.4 mm, which was verified by postoperative cone beam computed tomography. This preclinical study demonstrates a precise digitized approach for splintless maxillary repositioning after Le Fort I osteotomy. The accuracy and intuitive illustration of the introduced EM navigation system is promising for potential daily use in orthognathic surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel
2013-07-01
Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.
Coupled Structural, Thermal, Phase-Change and Electromagnetic Analysis for Superconductors. Volume 1
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. This volume, Volume 1, describes mostly formulations for specific problems. Volume 2 describes generalization of those formulations.
Photon - electron identification in the PHENIX Electromagnetic Calorimeter
NASA Astrophysics Data System (ADS)
Edouard, Kistenev; Gabor, David; Sebastian, White; Craig, Woody; Alexander, Bazilevsky; Vladimir, Kochetkov; Valeriy, Onuchin
1998-10-01
The results on the electron/hadron descrimination based upon analysis of the data collected from PHENIX electromagnetic calorimeter are presented. Two configurations are considered: (a) stand alone calorimeter; (b) calorimeter assisted by tracking devices to provide an independent estimates for particle momenta.
Nonlinear analysis and characteristics of inductive galloping energy harvesters
NASA Astrophysics Data System (ADS)
Dai, H. L.; Yang, Y. W.; Abdelkefi, A.; Wang, L.
2018-06-01
This paper presents an investigation on analysis and characteristics of aerodynamic electromagnetic energy harvesters. The source of aeroelastic oscillations results from galloping of a prismatic structure. A nonlinear distributed-parameter model is developed representing the dynamics of the transverse degree of freedom and the electric current induced in the coil. Firstly, we perform a linear analysis to study the impacts of the external electrical resistance, magnet placement, electromagnetic coupling coefficient, and internal resistance in the coil on the cut-in speed of instability of the coupled electroaeroelastic system. It is demonstrated that these parameters have significant impacts on cut-in speed of instability of the harvester system. Subsequently, a nonlinear analysis is implemented to explore the influences of these parameters on the output property of the energy harvester. The results show that there exists an optimal external electrical resistance which maximizes the output power of the harvester, and this optimal value varies with the magnet's placement, wind speed, electromagnetic coupling coefficient and internal resistance of the coil. It is also demonstrated that an increase in the distance between the clamped end and the magnet, an increase in the electromagnetic coupling coefficient, and/or a decrease in the internal resistance of the coil are accompanied by an increase in the level of the harvested power and a decrease in the tip displacement of the bluff body which is associated with a resistive-shunt damping effect in the harvester. The implemented studies give a constructive guidance to design and enhance the output performance of aerodynamic electromagnetic energy harvesters.
NASA Astrophysics Data System (ADS)
Smith-Boughner, Lindsay
Many Earth systems cannot be studied directly. One cannot measure the velocities of convecting fluid in the Earth's core but can measure the magnetic field generated by these motions on the surface. Examining how the magnetic field changes over long periods of time, using power spectral density estimation provides insight into the dynamics driving the system. The changes in the magnetic field can also be used to study Earth properties - variations in magnetic fields outside of Earth like the ring-current induce currents to flow in the Earth, generating magnetic fields. Estimating the transfer function between the external changes and the induced response characterizes the electromagnetic response of the Earth. From this response inferences can be made about the electrical conductivity of the Earth. However, these types of time series, and many others have long breaks in the record with no samples available and limit the analysis. Standard methods require interpolation or section averaging, with associated problems of introducing bias or reducing the frequency resolution. Extending the methods of Fodor and Stark (2000), who adapt a set of orthogonal multi-tapers to compensate for breaks in sampling- an algorithm and software package for applying these techniques is developed. Methods of empirically estimating the average transfer function of a set of tapers and confidence intervals are also tested. These methods are extended for cross-spectral, coherence and transfer function estimation in the presence of noise. With these methods, new analysis of a highly interrupted ocean sediment core from the Oligocene (Hartl et al., 1993) reveals a quasi-periodic signal in the calibrated paleointensity time series at 2.5 cpMy. The power in the magnetic field during this period appears to be dominated by reversal rate processes with less overall power than the early Oligocene. Previous analysis of the early Oligocene by Constable et al. (1998) detected a signal near 8 cpMy. These results suggest that a strong magnetic field inhibits reversals and has more variability in shorter term field changes. Using over 9 years of data from the CHAMP low-Earth orbiting magnetic satellite and the techniques developed here, more robust estimates of the electromagnetic response of the Earth can be made. The tapers adapted for gaps provide flexibility to study the effects of local time, storm conditions on Earth's 1-D electromagnetic response as well as providing robust estimates of the C-response at longer periods than previous satellite studies.
Faraday's first dynamo: A retrospective
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
2013-12-01
In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.
Apollo 12, 15, and 16 lunar surface magnetometer experiment data analysis
NASA Technical Reports Server (NTRS)
Sonett, C. P.
1975-01-01
The polarization of magnetometer signals detected at the Apollo 15 Hadley site by the lunar surface magnetometer has been studied to determine the source of the signal anisotropy which is observed and caused by the polarization. Instrument and data chain malfunction (cross-talk) seems ruled out. The source appears real and apparently connected with the Imbrium basin using reasonable inferences regarding the electromagnetic structure of the Moon. A theory is developed using moons with holes and conducting caps where the Imbrium basin is; results of calculations are consistent, though not unique, in specifying an anomaly in the electrical conductivity underlying Mare Imbrium. Distinct differences are noted from plasma sheet and diamagnetic cavity transfer functions, but the lobes appear, as for all other data, not to be vacuum for study of the moon. A discussion is given of problems connected with transfer of data, software, and theoretical programs from NASA Ames Research Center to the University of Arizona, and a summary is given of the conversion from IBM to CDC formats.
Microprocessors as a tool in determining correlation between sferics and tornado genesis: an update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, D.R.
1980-09-01
Sferics - atmospheric electromagnetic radiation - can be directly correlated, it is believed, to the genesis of tornadoes and other severe weather. Sferics are generated by lightning and other atmospheric disturbances that are not yet entirely understood. The recording and analysis of the patterns in which sferics events occur, it is hoped, will lead to accurate real-time prediction of tornadoes and other severe weather. Collection of the tremendous amount of sferics data generated by one storm system becomes cumbersome when correlation between at least two stations is necessary for triangulation. Microprocessor-based computing systems have made the task of data collectionmore » and manipulation inexpensive and manageable. The original paper on this subject delivered at MAECON '78 dealt with hardware interfacing. Presented were hardware and software tradeoffs, as well as design and construction techniques to yield a cost effective system. This updated paper presents an overview of where the data comes from, how it is collected, and some current manipulation and interpretation techniques used.« less
NASA Astrophysics Data System (ADS)
Boudjema, Zinelaabidine; Taleb, Rachid; Bounadja, Elhadj
2017-02-01
Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu
2017-01-01
Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.
Distributed and Collaborative Software Analysis
NASA Astrophysics Data System (ADS)
Ghezzi, Giacomo; Gall, Harald C.
Throughout the years software engineers have come up with a myriad of specialized tools and techniques that focus on a certain type of
NASA Technical Reports Server (NTRS)
1975-01-01
A data simulation is presented for instruments and associated control and display functions required to perform controlled active experiments of the atmosphere. A comprehensive user's guide is given for the data requirements and software developed for the following experiments: (1) electromagnetic wave transmission; (2) passive observation of ambient plasmas; (3) ionospheric measurements with a subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustic gravity waves in the sodium layer using lasers. A complete description of each experiment is given.
Research on the honeycomb restrain layer application to the high power microwave dielectric window
NASA Astrophysics Data System (ADS)
Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian
2018-01-01
Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.
Transcranial magnetic stimulation: Improved coil design for deep brain investigation
NASA Astrophysics Data System (ADS)
Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.
2011-04-01
This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.
Research on the honeycomb restrain layer application to the high power microwave dielectric window.
Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian
2018-01-01
Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.
2012-03-05
Alarm button. Under the GPS frame are two smaller frames. On the left is a frame with buttons labeled Tractor Guidance and Acquisition Error... GPS ) and the Attitude Heading Reference System (AHRS) data. 5.2 Using the Data Acquisition Simulator Software The simulator and a practice set... acquisition for one polarity of the TX (33ms dead band for relay switching + 33 ms of waveforms). When the GPS is being used this is usually “1”, but may be
Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments
NASA Technical Reports Server (NTRS)
Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa
2017-01-01
Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.
Sensors Locate Radio Interference
NASA Technical Reports Server (NTRS)
2009-01-01
After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.
NASA Astrophysics Data System (ADS)
Pholele, T. M.; Chuma, J. M.
2016-03-01
The effects of conductor disc in a dielectric loaded combline resonator on its spurious performance, unloaded quality factor (Qu), and coupling coefficients are analysed using a commercial electromagnetic software package CST Microwave Studio (CST MWS). The disc improves the spurious free band but simultaneously deteriorates the Qu. The presence of the disc substantially improves the electric coupling by a factor of 1.891 for an aperture opening of 12 mm, while it has insignificant effect on the magnetic coupling.
A sophisticated cad tool for the creation of complex models for electromagnetic interaction analysis
NASA Astrophysics Data System (ADS)
Dion, Marc; Kashyap, Satish; Louie, Aloisius
1991-06-01
This report describes the essential features of the MS-DOS version of DIDEC-DREO, an interactive program for creating wire grid, surface patch, and cell models of complex structures for electromagnetic interaction analysis. It uses the device-independent graphics library DIGRAF and the graphics kernel system HALO, and can be executed on systems with various graphics devices. Complicated structures can be created by direct alphanumeric keyboard entry, digitization of blueprints, conversion form existing geometric structure files, and merging of simple geometric shapes. A completed DIDEC geometric file may then be converted to the format required for input to a variety of time domain and frequency domain electromagnetic interaction codes. This report gives a detailed description of the program DIDEC-DREO, its installation, and its theoretical background. Each available interactive command is described. The associated program HEDRON which generates simple geometric shapes, and other programs that extract the current amplitude data from electromagnetic interaction code outputs, are also discussed.
Preliminary analysis of space mission applications for electromagnetic launchers
NASA Technical Reports Server (NTRS)
Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.
1984-01-01
The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.
NASA Astrophysics Data System (ADS)
Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.
2011-11-01
A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).
Effects of chronic exposure to electromagnetic waves on the auditory system.
Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin
2015-08-01
The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
Effect of geometrical parameters on pressure distributions of impulse manufacturing technologies
NASA Astrophysics Data System (ADS)
Brune, Ryan Carl
Impulse manufacturing techniques constitute a growing field of methods that utilize high-intensity pressure events to conduct useful mechanical operations. As interest in applying this technology continues to grow, greater understanding must be achieved with respect to output pressure events in both magnitude and distribution. In order to address this need, a novel pressure measurement has been developed called the Profile Indentation Pressure Evaluation (PIPE) method that systematically analyzes indentation patterns created with impulse events. Correlation with quasi-static test data and use of software-assisted analysis techniques allows for colorized pressure maps to be generated for both electromagnetic and vaporizing foil actuator (VFA) impulse forming events. Development of this technique aided introduction of a design method for electromagnetic path actuator systems, where key geometrical variables are considered using a newly developed analysis method, which is called the Path Actuator Proximal Array (PAPA) pressure model. This model considers key current distribution and proximity effects and interprets generated pressure by considering the adjacent conductor surfaces as proximal arrays of individual conductors. According to PIPE output pressure analysis, the PAPA model provides a reliable prediction of generated pressure for path actuator systems as local geometry is changed. Associated mechanical calculations allow for pressure requirements to be calculated for shearing, flanging, and hemming operations, providing a design process for such cases. Additionally, geometry effect is investigated through a formability enhancement study using VFA metalworking techniques. A conical die assembly is utilized with both VFA high velocity and traditional quasi-static test methods on varied Hasek-type sample geometries to elicit strain states consistent with different locations on a forming limit diagram. Digital image correlation techniques are utilized to measure major and minor strains for each sample type to compare limit strain results. Overall testing indicated decreased formability at high velocity for 304 DDQ stainless steel and increased formability at high velocity for 3003-H14 aluminum. Microstructural and fractographic analysis helped dissect and analyze the observed differences in these cases. Overall, these studies comprehensively explore the effects of geometrical parameters on magnitude and distribution of impulse manufacturing generated pressure, establishing key guidelines and models for continued development and implementation in commercial applications.
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.
2007-01-01
Analysis and experimental measurement of the electromagnet force loads on the hybrid rotor in a novel bearingless switched-reluctance motor (BSRM) have been performed. A BSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The BSRM has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of stator poles. A second set of stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Analysis was done for nonrotating rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental results and the theoretical predictions was obtained with typical magnetic bearing derating factors applied to the predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendes, Albert C.R., E-mail: albert@fisica.ufjf.br; Takakura, Flavio I., E-mail: takakura@fisica.ufjf.br; Abreu, Everton M.C., E-mail: evertonabreu@ufrrj.br
In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac’s constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition were obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev–Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan–Boltzmann type law was obtained. - Highlights: • Higher-derivative Lagrangian for a charged fluid. • Electromagnetic coupling and Dirac’s constraint analysis. • Partition function through path integral formalism. • Stefan–Boltzmann-kind lawmore » through the partition function.« less
FIER: Software for analytical modeling of delayed gamma-ray spectra
NASA Astrophysics Data System (ADS)
Matthews, E. F.; Goldblum, B. L.; Bernstein, L. A.; Quiter, B. J.; Brown, J. A.; Younes, W.; Burke, J. T.; Padgett, S. W.; Ressler, J. J.; Tonchev, A. P.
2018-05-01
A new software package, the Fission Induced Electromagnetic Response (FIER) code, has been developed to analytically predict delayed γ-ray spectra following fission. FIER uses evaluated nuclear data and solutions to the Bateman equations to calculate the time-dependent populations of fission products and their decay daughters resulting from irradiation of a fissionable isotope. These populations are then used in the calculation of γ-ray emission rates to obtain the corresponding delayed γ-ray spectra. FIER output was compared to experimental data obtained by irradiation of a 235U sample in the Godiva critical assembly. This investigation illuminated discrepancies in the input nuclear data libraries, showcasing the usefulness of FIER as a tool to address nuclear data deficiencies through comparison with experimental data. FIER provides traceability between γ-ray emissions and their contributing nuclear species, decay chains, and parent fission fragments, yielding a new capability for the nuclear science community.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Raghuwanshi, Sanjeev Kumar
2016-06-01
The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.
NASA Astrophysics Data System (ADS)
Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.
2011-06-01
Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.
NASA Astrophysics Data System (ADS)
Chen, Xiaowei; Wang, Wenping; Wan, Min
2013-12-01
It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.
Application of postured human model for SAR measurements
NASA Astrophysics Data System (ADS)
Vuchkovikj, M.; Munteanu, I.; Weiland, T.
2013-07-01
In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.
NASA Astrophysics Data System (ADS)
Mullen, Christopher
Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with multiple case studies including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.
Döring, Michael; Sommer, Philipp; Rolf, Sascha; Lucas, Johannes; Breithardt, Ole A; Hindricks, Gerhard; Richter, Sergio
2015-02-01
Implantation of cardiac resynchronization therapy (CRT) devices can be challenging, time consuming, and fluoroscopy intense. To facilitate placement of left ventricular (LV) leads, a novel electromagnetic navigation system (MediGuide™, St. Jude Medical, St. Paul, MN, USA) has been developed, displaying real-time 3-D location of sensor-embedded delivery tools superimposed on prerecorded X-ray cine-loops of coronary sinus venograms. We report our experience and advanced progress in the use of this new electromagnetic tracking system to guide LV lead implantation. Between January 2012 and December 2013, 71 consecutive patients (69 ± 9 years, 76% male) were implanted with a CRT device using the new electromagnetic tracking system. Demographics, procedural data, and periprocedural adverse events were gathered. The impact of the operator's experience, optimized workflow, and improved software technology on procedural data were analyzed. LV lead implantation was successfully achieved in all patients without severe adverse events. Total procedure time measured 87 ± 37 minutes and the median total fluoroscopy time (skin-to-skin) was 4.9 (2.5-7.8) minutes with a median dose-area-product of 476 (260-1056) cGy*cm(2) . An additional comparison with conventional CRT device implantations showed a significant reduction in fluoroscopy time from 8.0 (5.8; 11.5) to 4.5 (2.8; 7.3) minutes (P = 0.016) and radiation dose from 603 (330; 969) to 338 (176; 680) cGy*cm(2) , respectively (P = 0.044 ). Use of the new navigation system enables safe and successful LV lead placement with improved orientation and significantly reduced radiation exposure during CRT implantation. © 2014 Wiley Periodicals, Inc.
Experimental verification and optimization of a linear electromagnetic energy harvesting device
NASA Astrophysics Data System (ADS)
Mullen, Christopher; Lee, Soobum
2017-04-01
Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with a case study including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.
NASA Astrophysics Data System (ADS)
Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping
2018-06-01
As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.
Measurement and Analysis of L-Band (1535-1660 MHz) Electromagnetic (EM) Noise on Ships
DOT National Transportation Integrated Search
1974-12-01
A program of L-band (1535-1660 MHz) electromagnetic (EM) noise measurements conducted on ships is described. The magnitude and duration of EM noise on ships is of particular significance in terms of potential radio frequency interference (RFI) to fut...
Muley, Pranjali D; Boldor, Dorin
2012-01-01
Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.
Using a PC and external media to quantitatively investigate electromagnetic induction
NASA Astrophysics Data System (ADS)
Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.
2011-07-01
In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to quantitatively study the Faraday-Neumann-Lenz law, while the second configuration (falling through a copper pipe) permits learners to investigate the complex phenomena of induction by quantifying the amount of electric power dissipated through the pipe as a result of Foucault eddy currents, when the magnet travels through the pipe. The magnet's fall acceleration can be set by adjusting the counterweight of the Atwood machine so that both the kinematic quantities associated with it and the electromotive force induced within the coil are continuously and quantitatively monitored (respectively, by a common personal computer (PC) equipped with a webcam and by freely available software that makes it possible to use the audio card to convert the PC into an oscilloscope). Measurements carried out when the various experimental parameters are changed provide a useful framework for a thorough understanding and clarification of the conceptual nodes related to electromagnetic induction. The proposed learning path is under evaluation in various high schools participating in the project 'Lauree Scientifiche' promoted by the Italian Department of Education.
Torsional Vibration Analysis of Reciprocating Compressor Trains driven by Induction Motors
NASA Astrophysics Data System (ADS)
Brunelli, M.; Fusi, A.; Grasso, F.; Pasteur, F.; Ussi, A.
2015-08-01
The dynamic study of electric motor driven compressors, for Oil&Gas (O&G) applications, are traditionally performed in two steps separating the mechanical and the electrical systems. The packager conducts a Torsional Vibration Analysis (TVA) modeling the mechanical system with a lumped parameter scheme, without taking into account the electrical part. The electric motor supplier later performs a source current pulsation analysis on the electric motor system, based on the TVA results. The mechanical and the electrical systems are actually linked by the electromagnetic effect. The effect of the motor air-gap on TVA has only recently been taken into account by adding a spring and a damper between motor and ground in the model. This model is more accurate than the traditional one, but is applicable only to the steady-state condition and still fails to consider the reciprocal effects between the two parts of the system. In this paper the torsional natural frequencies calculated using both the traditional and the new model have been compared. Furthermore, simulation of the complete system has been achieved through the use of LMS AMESim, multi-physics, one-dimensional simulation software that simultaneously solves the shafts rotation and electric motor voltage equation. Finally, the transient phenomena that occur during start-up have been studied.
Design of photonic crystal based ring resonator for detection of different blood constituents
NASA Astrophysics Data System (ADS)
Sharma, Poonam; Sharan, Preeta
2015-08-01
In this paper a photonic crystal based ring resonator structure (PCRR) which can sense different bio-constituents in blood in the wavelength range of 1530-1565 nm for biomedical applications has been successfully demonstrated. Simulation and analysis has been done for Biotin-Streptavidin, Bovine Serum Albumin, Cytop (polymer), Ethanol, Glucose solution (40gm/100 ml), Hemoglobin, Blood Plasma, Polyacrylamide and Sylgard184. Finite Difference Time Domain (FDTD) method has been used for the analysis. MEEP (MIT Electromagnetic Equation Propagation) and MPB (MIT Photonic Bands) simulation tools have been used for modeling and designing of PCRR and IPKISS software framework has been used for generation of mask design which can be used for the fabrication of the PCRR sensor. The optical properties of different bio-constituents are studied and the normalized transmitted output power, transmission wavelength and Q factor have been observed for different blood-constituents which can be used for blood analysis.It has been observed that for little change in dielectric constant (ɛ) according to the blood-constituent taken there will be a moderate shift in the transmitted output power, transmission wavelength and quality factor and hence it acts as a sensor. This indicates that it is highly sensitive even for little change in refractive index. Our designed sensor has achieved sensitivity of 343 nm/RIU.
Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications
Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang
2010-01-01
This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572
Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong
2012-12-01
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
Noise and LPI radar as part of counter-drone mitigation system measures
NASA Astrophysics Data System (ADS)
Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles
2017-05-01
With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.
Specific Electromagnetic Effects of Microwave Radiation on Escherichia coli▿
Shamis, Yury; Taube, Alex; Mitik-Dineva, Natasa; Croft, Rodney; Crawford, Russell J.; Ivanova, Elena P.
2011-01-01
The present study investigated the effects of microwave (MW) radiation applied under a sublethal temperature on Escherichia coli. The experiments were conducted at a frequency of 18 GHz and at a temperature below 40°C to avoid the thermal degradation of bacterial cells during exposure. The absorbed power was calculated to be 1,500 kW/m3, and the electric field was determined to be 300 V/m. Both values were theoretically confirmed using CST Microwave Studio 3D Electromagnetic Simulation Software. As a negative control, E. coli cells were also thermally heated to temperatures up to 40°C using Peltier plate heating. Scanning electron microscopy (SEM) analysis performed immediately after MW exposure revealed that the E. coli cells exhibited a cell morphology significantly different from that of the negative controls. This MW effect, however, appeared to be temporary, as following a further 10-min elapsed period, the cell morphology appeared to revert to a state that was identical to that of the untreated controls. Confocal laser scanning microscopy (CLSM) revealed that fluorescein isothiocyanate (FITC)-conjugated dextran (150 kDa) was taken up by the MW-treated cells, suggesting that pores had formed within the cell membrane. Cell viability experiments revealed that the MW treatment was not bactericidal, since 88% of the cells were recovered after radiation. It is proposed that one of the effects of exposing E. coli cells to MW radiation under sublethal temperature conditions is that the cell surface undergoes a modification that is electrokinetic in nature, resulting in a reversible MW-induced poration of the cell membrane. PMID:21378041
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun
2018-07-01
Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.
Accuracy of lesion boundary tracking in navigated breast tumor excision
NASA Astrophysics Data System (ADS)
Heffernan, Emily; Ungi, Tamas; Vaughan, Thomas; Pezeshki, Padina; Lasso, Andras; Gauvin, Gabrielle; Rudan, John; Engel, C. Jay; Morin, Evelyn; Fichtinger, Gabor
2016-03-01
PURPOSE: An electromagnetic navigation system for tumor excision in breast conserving surgery has recently been developed. Preoperatively, a hooked needle is positioned in the tumor and the tumor boundaries are defined in the needle coordinate system. The needle is tracked electromagnetically throughout the procedure to localize the tumor. However, the needle may move and the tissue may deform, leading to errors in maintaining a correct excision boundary. It is imperative to quantify these errors so the surgeon can choose an appropriate resection margin. METHODS: A commercial breast biopsy phantom with several inclusions was used. Location and shape of a lesion before and after mechanical deformation were determined using 3D ultrasound volumes. Tumor location and shape were estimated from initial contours and tracking data. The difference in estimated and actual location and shape of the lesion after deformation was quantified using the Hausdorff distance. Data collection and analysis were done using our 3D Slicer software application and PLUS toolkit. RESULTS: The deformation of the breast resulted in 3.72 mm (STD 0.67 mm) average boundary displacement for an isoelastic lesion and 3.88 mm (STD 0.43 mm) for a hyperelastic lesion. The difference between the actual and estimated tracked tumor boundary was 0.88 mm (STD 0.20 mm) for the isoelastic and 1.78 mm (STD 0.18 mm) for the hyperelastic lesion. CONCLUSION: The average lesion boundary tracking error was below 2mm, which is clinically acceptable. We suspect that stiffness of the phantom tissue affected the error measurements. Results will be validated in patient studies.
Specific electromagnetic effects of microwave radiation on Escherichia coli.
Shamis, Yury; Taube, Alex; Mitik-Dineva, Natasa; Croft, Rodney; Crawford, Russell J; Ivanova, Elena P
2011-05-01
The present study investigated the effects of microwave (MW) radiation applied under a sublethal temperature on Escherichia coli. The experiments were conducted at a frequency of 18 GHz and at a temperature below 40°C to avoid the thermal degradation of bacterial cells during exposure. The absorbed power was calculated to be 1,500 kW/m(3), and the electric field was determined to be 300 V/m. Both values were theoretically confirmed using CST Microwave Studio 3D Electromagnetic Simulation Software. As a negative control, E. coli cells were also thermally heated to temperatures up to 40°C using Peltier plate heating. Scanning electron microscopy (SEM) analysis performed immediately after MW exposure revealed that the E. coli cells exhibited a cell morphology significantly different from that of the negative controls. This MW effect, however, appeared to be temporary, as following a further 10-min elapsed period, the cell morphology appeared to revert to a state that was identical to that of the untreated controls. Confocal laser scanning microscopy (CLSM) revealed that fluorescein isothiocyanate (FITC)-conjugated dextran (150 kDa) was taken up by the MW-treated cells, suggesting that pores had formed within the cell membrane. Cell viability experiments revealed that the MW treatment was not bactericidal, since 88% of the cells were recovered after radiation. It is proposed that one of the effects of exposing E. coli cells to MW radiation under sublethal temperature conditions is that the cell surface undergoes a modification that is electrokinetic in nature, resulting in a reversible MW-induced poration of the cell membrane.
Çeliker, Metin; Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Yılmaz, Mustafa; Kalkan, Yıldıray; Erdoğan, Ender
The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. In this study, we aimed to evaluate the effects of 2100MHz Global System for Mobile communication (GSM-like) electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30days to a 2100MHz electromagnetic fields with a signal level (power) of 5.4dBm (3.47mW) to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p=0.007). In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p=0.002). The results support that long-term exposure to a GSM-like 2100MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Numerical analysis of electromagnetic cascades in emulsion chambers
NASA Technical Reports Server (NTRS)
Plyasheshnikov, A. V.; Vorobyev, K. V.
1985-01-01
A new calculational scheme of the Monte Carlo method assigned for the investigation of the development of high and extremely high energy electromagnetic cascades (EMC) in the matter was elaborated. The scheme was applied to the analysis of angular and radial distributions of EMC electrons in the atmosphere. By means of this scheme the EMC development in dense medium is investigated and some preliminary data are presented on the behavior of EMC in emulsion chambers. The results of more detailed theoretical analysis of the EMC development in emulsion chambers are discussed.
1983-09-01
6ENFRAL. ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS **%(GEMA CS) Computer Code Documentation ii( Version 3 ). A the BDM Corporation Dr...ANALYSIS FnlTcnclRpr F COMPLEX SYSTEM (GmCS) February 81 - July 83- I TR CODE DOCUMENTATION (Version 3 ) 6.PROMN N.REPORT NUMBER 5. CONTRACT ORGAT97...the ti and t2 directions on the source patch. 3 . METHOD: The electric field at a segment observation point due to the source patch j is given by 1-- lnA
Dimensionless Analysis and Mathematical Modeling of Electromagnetic Levitation (EML) of Metals
NASA Astrophysics Data System (ADS)
Gao, Lei; Shi, Zhe; Li, Donghui; Yang, Yindong; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor
2016-02-01
Electromagnetic levitation (EML), a contactless metal melting method, can be used to produce ultra-pure metals and alloys. In the EML process, the levitation force exerted on the droplet is of paramount importance and is affected by many parameters. In this paper, the relationship between levitation force and parameters affecting the levitation process were investigated by dimensionless analysis. The general formula developed by dimensionless analysis was tested and evaluated by numerical modeling. This technique can be employed to design levitation systems for a variety of materials.
NASA Astrophysics Data System (ADS)
Ishizawa, Y.; Abe, K.; Shirako, G.; Takai, T.; Kato, H.
The electromagnetic compatibility (EMC) control method, system EMC analysis method, and system test method which have been applied to test the components of the MOS-1 satellite are described. The merits and demerits of the problem solving, specification, and system approaches to EMC control are summarized, and the data requirements of the SEMCAP (specification and electromagnetic compatibility analysis program) computer program for verifying the EMI safety margin of the components are sumamrized. Examples of EMC design are mentioned, and the EMC design process and selection method for EMC critical points are shown along with sample EMC test results.
NASA Technical Reports Server (NTRS)
Metscher, Jonathan F.; Lewandowski, Edward J.
2013-01-01
A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.
Influence of the arc plasma parameters on the weld pool profile in TIG welding
NASA Astrophysics Data System (ADS)
Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.
2014-11-01
Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.
NASA Astrophysics Data System (ADS)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin
2015-09-01
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less
Research of glass fibre used in the electromagnetic wave shielding and absorption composite material
NASA Astrophysics Data System (ADS)
Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.
2016-07-01
Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.
NASA Astrophysics Data System (ADS)
Moldovan, Iren-Adelina; Petruta Constantin, Angela; Emilian Toader, Victorin; Toma-Danila, Dragos; Biagi, Pier Francesco; Maggipinto, Tommaso; Dolea, Paul; Septimiu Moldovan, Adrian
2014-05-01
Based on scientific evidences supporting the causality between earthquake preparatory stages, space weather and solar activity and different types of electromagnetic (EM) disturbances together with the benefit of having full access at ground and space based EM data, INFREP proposes a complex and cross correlated investigation of phenomena that occur in the coupled system Lithosphere-Atmosphere-Ionsophere in order to identify possible causes responsible for anomalous effects observed in the propagation characteristics of radio waves, especially at low (LF) and very low frequency (VLF). INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe in 2009, having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. The Romanian NIEP VLF / LF monitoring system consisting in a radio receiver -made by Elettronika S.R.L. (Italy) and provided by the Bari University- and the infrastructure that is necessary to record and transmit the collected data, is a part of the international initiative INFREP. The NIEP VLF / LF receiver installed in Romania was put into operation in February 2009 in Bucharest and relocated to the Black-Sea shore (Dobruja Seismologic Observatory) in December 2009. The first development of the Romanian EM monitoring system was needed because after changing the receiving site from Bucharest to Eforie we obtained unsatisfactory monitoring data, characterized by large fluctuations of the received signals' intensities. Trying to understand this behavior has led to the conclusion that the electric component of the electromagnetic field was possibly influenced by the local conditions. Starting from this observation we have run some tests and changed the vertical antenna with a loop-type antenna that is more appropriate in highly electric-field polluted environments. Since the amount of recorded data is huge, for streamlining the research process we have realized the automation of the transfer, storage and initial processing of data using the LabView software platform. The special designed LabVIEW application, which accesses the VLF/LF receiver through internet, opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D color-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. The next step in developing the Romanian EM recording system is to enlarge the INFREP network with new VLF/LF receivers for a better coverage and separation of European seismogenic zones. This will be done in the future by using national resources. The unitary seismotectonic zoning of Romania and the whole Europe is a very important step for this goal.
Proton and neutron electromagnetic form factors and uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Zhihong; Arrington, John; Hill, Richard J.
We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.
An Electromagnetic Resonance Circuit for Liquid Level Detection
ERIC Educational Resources Information Center
Hauge, B. L.; Helseth, L. E.
2012-01-01
Electromagnetic resonators are often used to detect foreign materials. Here we present a simple experiment for the measurement of liquid level. The resonator, consisting of a coil and a capacitor, is brought to resonance by an external magnetic field source, and the corresponding resonance frequency is determined using Fourier analysis combined…
The authors have demonstrated that a comparative analysis of the physiological effects of exposure of laboratory mammals to radiofrequency electromagnetic radiation (RFR) may be useful in predicting exposure thresholds for humans if the effect is assumed to be due only to heating...
Proton and neutron electromagnetic form factors and uncertainties
Ye, Zhihong; Arrington, John; Hill, Richard J.; ...
2017-12-06
We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.
First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-05-01
Aims: The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods: During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results: Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.
Electrodynamics in cylindrical symmetry in the magnetic plasma state
NASA Astrophysics Data System (ADS)
López-Bara, F. I.; López-Aguilar, F.
2018-05-01
Excited states in magnetic structures of the so-called spin-ices and in some artificial magnetic materials present a behaviour as being a magnetic neutral plasma. In this state the electromagnetic waves in confined systems (waveguides) filled with materials with magnetic charges are able to transmit information and energy. In the natural spin-ices, the difficulty is the very low temperature for which these magnetic entities appear, whose phenomenology under the electromagnetic interaction is that of solids containing magnetic charges. However, similar behaviour may be present in other compounds at higher temperatures, even at room temperature and they are named artificial spin-ice compounds. This analysis is addressed to obtain theoretical results about magnetic responses and frequency-dependent magnetricity. The key physical magnitudes are the plasmon frequency () which is related to the cut-off frequency in a wave guide and the effective inertial masses () of these magnetic charges. All properties of the electromagnetic propagation in these compounds with effective magnetic monopoles depend on and m. This is carried out including the dissipative forces among magnetic charges which give new characteristic features to the electromagnetic propagation. The main goal of this work is the analysis of these electromagnetic properties in order to find possible circuital applications of these materials to be utilized by devices.
Data acquisition and analysis of the UNCOSS underwater explosive neutron sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carasco, C.; Eleon, C.; Perot, B.
2011-07-01
The purpose of the FP7 UNCOSS project (Underwater Coastal Sea Surveyor, http://www.uncoss-project.org) is to develop a neutron-based underwater explosive sensor to detect unexploded ordnance lying on the sea bottom. The Associated Particle Technique is used to focus the inspection on a suspicious object located by optical and electromagnetic sensors and to determine if there is an explosive charge inside. This paper presents the data acquisition electronics and data analysis software which have been developed for this project. The electronics digitize and process the signal in real-time based on a field programmable gate array structure to perform precise time-of-flight and gamma-raymore » energy measurements. UNCOSS software offers the basic tools to analyze the time-of-flight and energy spectra of the interrogated object. It allows to unfold the gamma-ray spectrum into pure elemental count proportions, mainly C, N, O, Fe, Al, Si, and Ca. The C, N, and O count fractions are converted into chemical proportions by taking into account the gamma-ray production cross sections, as well as neutron and photon attenuation in the different shields between the ROV (Remotely Operated Vehicle) and the explosive, such as the explosive iron shell, seawater, and ROV envelop. These chemical ratios are plotted in a two-dimensional (2D) barycentric representation to position the measured point with respect to common explosives. The systematic uncertainty due to the above attenuation effects and counting statistical fluctuations are combined with a Monte Carlo method to provide a 3D uncertainty area in a barycentric plot, which allows to determine the most probable detected materials in view to make a decision about the presence of explosive. (authors)« less
BRAVO (Brazilian Astrophysical Virtual Observatory): data mining development
NASA Astrophysics Data System (ADS)
De Carvalho, R. R.; Capelato, H. V.; Velho, H. C.
2007-08-01
The primary goal of the BRAVO project is to generate investment in information technology, with particular emphasis on datamining and statistical analysis. From a scientific standpoint, the participants assembled to date are engaged in several scientific projects in various fields of cosmology, astrophysics, and data analysis, with significant contributions from international partners. These scientists conduct research on clusters of galaxies, small groups of galaxies, elliptical galaxies, population synthesis, N-body simulations, and a variety of studies in stellar astrophysics. One of the main aspects of this project is the incorporation of these disparate areas of astrophysical research within the context of the coherent development of database technology.Observational cosmology is one of the branches of science experiencing the largest growth in the past few decades. large photometric and spectroscopic surveys have been carried out in both hemispheres. As a result, an extraordinary amount of data in all portions of the electromagnetic spectrum exists, but without standard techniques for storage and distribution. This project will utilize several specific astronomical databases, created to store data generated by several instruments (including SOAR, Gemini, BDA, etc), uniting them within a common framework and with standard interfaces. We are inviting members of the entire Brazilian astronomical community to partake in this effort. This will certainly impact both education and outreach efforts, as well as the future development of astrophysical research. Finally, this project will provide a constant investment in human resources. First, it will do so by stimulating ongoing short technical visits to Johns Hopkins University and Caltech. These will allow us to bring software technology and expertise in datamining back to Brazil. Second, we will organize the Summer School on Software Technology in Astrophysics, which will be designed to ensure that the Brazilian scientific community can take full advantage of the benefits offered by the VO project
Radar cross section studies/compact range research
NASA Technical Reports Server (NTRS)
Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.
1989-01-01
Achievements in advancing the state-of-the-art in the measurement, control, and analysis of electromagnetic scattering from general aerodynamic targets are summarized. The major topics associated with this study include: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of standard targets; and (7) antenna studies. Progress in each of these areas is reported and related publications are listed.
Electromagnetic finite elements based on a four-potential variational principle
NASA Technical Reports Server (NTRS)
Schuler, James J.; Felippa, Carlos A.
1991-01-01
Electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as a primary variable are derived. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are that the number of degrees of freedom per node remains modest as the problem dimensionally increases, that jump discontinuities on interfaces are naturally accommodated, and that statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady state forcing conditions. The results are in excellent agreement with analytical solutions.
Modeling 3-D objects with planar surfaces for prediction of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Koch, M. B.; Beck, F. B.; Cockrell, C. R.
1992-01-01
Electromagnetic scattering analysis of objects at resonance is difficult because low frequency techniques are slow and computer intensive, and high frequency techniques may not be reliable. A new technique for predicting the electromagnetic backscatter from electrically conducting objects at resonance is studied. This technique is based on modeling three dimensional objects as a combination of flat plates where some of the plates are blocking the scattering from others. A cube is analyzed as a simple example. The preliminary results compare well with the Geometrical Theory of Diffraction and with measured data.
NASA Astrophysics Data System (ADS)
Psyk, Verena; Scheffler, Christian; Linnemann, Maik; Landgrebe, Dirk
2017-10-01
Compared to conventional joining techniques, electromagnetic pulse welding offers important advantages especially when it comes to dissimilar material connections as e.g. copper aluminum welds. However, due to missing guidelines and tools for process design, the process has not been widely implemented in industrial production, yet. In order to contribute to overcoming this obstacle, a combined numerical and experimental process analysis for electromagnetic pulse welding of Cu-DHP and EN AW-1050 was carried out and the results were consolidated in a quantitative collision parameter based process window.
1987-12-01
0 00 I DTIC"ELECTE. ~FEB 0 911988< " H VALIDATION OF GEMACS FOR MODELING ’LIGHTNING-INDUCED ELECTROMAGNETIC FIELDS THESIS David S. Mabee Captain...THESIS David S. Mabee . Captain, USAFD T C ’::, AFIT/GE/ENG/87D-39 ELECTFE r C:’., ~FEB 0 91988 J Approved for public release; distribution unlimited...Electrical Engineering David S. Mabee , B.S. ’- ,. . Captain, USAF December 1987 A o fr p.. ’ Approved for public release; distribution unlimited ,12
Electromagnetic fields in curved spacetimes
NASA Astrophysics Data System (ADS)
Tsagas, Christos G.
2005-01-01
We consider the evolution of electromagnetic fields in curved spacetimes and calculate the exact wave equations for the associated electric and magnetic components. Our analysis is fully covariant, applies to a general spacetime and isolates all the sources that affect the propagation of these waves. Among others, we explicitly show how the different components of the gravitational field act as driving sources of electromagnetic disturbances. When applied to perturbed Friedmann Robertson Walker cosmologies, our results argue for a superadiabatic-type amplification of large-scale cosmological magnetic fields in Friedmann models with open spatial curvature.
Bianchi class B spacetimes with electromagnetic fields
NASA Astrophysics Data System (ADS)
Yamamoto, Kei
2012-02-01
We carry out a thorough analysis on a class of cosmological space-times which admit three spacelike Killing vectors of Bianchi class B and contain electromagnetic fields. Using dynamical system analysis, we show that a family of electro-vacuum plane-wave solutions of the Einstein-Maxwell equations is the stable attractor for expanding universes. Phase dynamics are investigated in detail for particular symmetric models. We integrate the system exactly for some special cases to confirm the qualitative features. Some of the obtained solutions have not been presented previously to the best of our knowledge. Finally, based on those analyses, we discuss the relation between those homogeneous models and perturbations of open Friedmann-Lemaitre-Robertson-Walker universes. We argue that the electro-vacuum plane-wave modes correspond to a certain long-wavelength limit of electromagnetic perturbations.
A comparison of lightning and nuclear electromagnetic pulse response of a helicopter
NASA Technical Reports Server (NTRS)
Easterbrook, C. C.; Perala, R. A.
1984-01-01
A numerical modeling technique is utilized to investigate the response of a UH-60A helicopter to both lightning and nuclear electromagnetic pulses (NEMP). The analytical approach involves the three-dimensional time domain finite-difference solutions of Maxwell's equations. Both the external currents and charges as well as the internal electromagnetic fields and cable responses are computed. Results of the analysis indicate that, in general, the short circuit current on internal cables is larger for lightning, whereas the open-circuit voltages are slightly higher for NEMP. The lightning response is highly dependent upon the rise time of the injected current as was expected. The analysis shows that a coupling levels to cables in a helicopter are 20 to 30 dB larger than those observed in fixed-wing aircraft.
Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems
NASA Astrophysics Data System (ADS)
Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long
2017-07-01
According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.
Geesink, J H; Meijer, D K F
2017-01-01
Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organization. A soliton model is able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by endogenous and exogenous electromagnetic fields and is compatible with quantum coherence. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave eigen-frequencies of one-tenth of a Hertz till Peta Hertz that show a pattern of 12 bands, and can be positioned on an acoustic reference frequency scale. The model was substantiated by a meta-analysis of 240 published articles of biological electromagnetic experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnetic states in living organisms and the theories of Fröhlich, Davydov and Pang. It is envisioned that a rational control of shape by soliton-waves and related to a morphogenetic field and parametric resonance provides positional information and cues to regulate organism-wide systems properties like anatomy, control of reproduction and repair.
Nguyen, Anh-Dung; Boling, Michelle C; Slye, Carrie A; Hartley, Emily M; Parisi, Gina L
2013-01-01
Accurate, efficient, and reliable measurement methods are essential to prospectively identify risk factors for knee injuries in large cohorts. To determine tester reliability using digital photographs for the measurement of static lower extremity alignment (LEA) and whether values quantified with an electromagnetic motion-tracking system are in agreement with those quantified with clinical methods and digital photographs. Descriptive laboratory study. Laboratory. Thirty-three individuals participated and included 17 (10 women, 7 men; age = 21.7 ± 2.7 years, height = 163.4 ± 6.4 cm, mass = 59.7 ± 7.8 kg, body mass index = 23.7 ± 2.6 kg/m2) in study 1, in which we examined the reliability between clinical measures and digital photographs in 1 trained and 1 novice investigator, and 16 (11 women, 5 men; age = 22.3 ± 1.6 years, height = 170.3 ± 6.9 cm, mass = 72.9 ± 16.4 kg, body mass index = 25.2 ± 5.4 kg/m2) in study 2, in which we examined the agreement among clinical measures, digital photographs, and an electromagnetic tracking system. We evaluated measures of pelvic angle, quadriceps angle, tibiofemoral angle, genu recurvatum, femur length, and tibia length. Clinical measures were assessed using clinically accepted methods. Frontal- and sagittal-plane digital images were captured and imported into a computer software program. Anatomic landmarks were digitized using an electromagnetic tracking system to calculate static LEA. Intraclass correlation coefficients and standard errors of measurement were calculated to examine tester reliability. We calculated 95% limits of agreement and used Bland-Altman plots to examine agreement among clinical measures, digital photographs, and an electromagnetic tracking system. Using digital photographs, fair to excellent intratester (intraclass correlation coefficient range = 0.70-0.99) and intertester (intraclass correlation coefficient range = 0.75-0.97) reliability were observed for static knee alignment and limb-length measures. An acceptable level of agreement was observed between clinical measures and digital pictures for limb-length measures. When comparing clinical measures and digital photographs with the electromagnetic tracking system, an acceptable level of agreement was observed in measures of static knee angles and limb-length measures. The use of digital photographs and an electromagnetic tracking system appears to be an efficient and reliable method to assess static knee alignment and limb-length measurements.
Multidisciplinary analysis and design of printed wiring boards
NASA Astrophysics Data System (ADS)
Fulton, Robert E.; Hughes, Joseph L.; Scott, Waymond R., Jr.; Umeagukwu, Charles; Yeh, Chao-Pin
1991-04-01
Modern printed wiring board design depends on electronic prototyping using computer-based simulation and design tools. Existing electrical computer-aided design (ECAD) tools emphasize circuit connectivity with only rudimentary analysis capabilities. This paper describes a prototype integrated PWB design environment denoted Thermal Structural Electromagnetic Testability (TSET) being developed at Georgia Tech in collaboration with companies in the electronics industry. TSET provides design guidance based on enhanced electrical and mechanical CAD capabilities including electromagnetic modeling testability analysis thermal management and solid mechanics analysis. TSET development is based on a strong analytical and theoretical science base and incorporates an integrated information framework and a common database design based on a systematic structured methodology.
Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.
Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook
2014-05-01
In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones. © 2014 Wiley Periodicals, Inc.
The Electromagnetic Force between Two Moving Charges
ERIC Educational Resources Information Center
Minkin, Leonid; Shapovalov, Alexander S.
2018-01-01
A simple model of parallel motion of two point charges and the subsequent analysis of the electromagnetic field transformation invariant quantity are considered. It is shown that ignoring the coupling of electric and magnetic fields, as is done in some introductory physics books, can lead to miscalculations of the force between moving charges.…
Coupled Structural, Thermal, Phase-change and Electromagnetic Analysis for Superconductors, Volume 2
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromag subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermel and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. Volume 1 describes mostly formulation specific problems. Volume 2 describes generalization of those formulations.
An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings
Ren, Yuan; Pan, Mengchun; Chen, Dixiang; Tian, Wugang
2018-01-01
Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved. PMID:29783746
Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.
2008-01-01
Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.
NASA Astrophysics Data System (ADS)
Moldovan, Iren Adelina; Emilian Toader, Victorin; Nenovski, Petko; Biagi, Pier Francesco; Maggipinto, Tommaso; Septimiu Moldovan, Adrian; Ionescu, Constantin
2013-04-01
In 2009, INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. On May 22nd, 2012 an earthquake with Mw=567 occurred in Bulgaria, near Sofia, inside the "sensitive" area of the INFREP VLF/LF electromagnetic network. The data collected on different frequencies, during April-May 2012 were studied using different methods of analysis: daily correlation methods, spectral approaches and terminator time techniques, in order to find out possible connections between the seismic activity and the subionospheric propagation properties of radio waves. The studies were performed with the help of a specially designed LabVIEW application, which accesses the VLF/LF receiver through internet. This program opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D colour-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. Data are individually processed (spectral power, correlations, differentiation, filtered using bandpass, lowpass, highpass). JTFA spectrograms (Cone-Shaped Distribution CSD, Gabor, Wavelet, short-time Fourier transform STFT, Wigner-Ville Distribution WVD, Choi-Williams Distribution CWD) are used, too.
Improved methods for nightside time domain Lunar Electromagnetic Sounding
NASA Astrophysics Data System (ADS)
Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.
2017-12-01
Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to any driving transient event for any specified 3D conductivity profile. Our models fit the analytic solutions to a Root-Mean-Square Error of better than 1%. Solutions are non-unique, however, serve to better understand and constrain the global interior composition and 3D structure of the Moon. [1] Dyal & Parkin (1971) JGR; [2] Fatemi et al. (2013) GRL.
A computer program to evaluate optical systems
NASA Technical Reports Server (NTRS)
Innes, D.
1972-01-01
A computer program is used to evaluate a 25.4 cm X-ray telescope at a field angle of 20 minutes of arc by geometrical analysis. The object is regarded as a point source of electromagnetic radiation, and the optical surfaces are treated as boundary conditions in the solution of the electromagnetic wave propagation equation. The electric field distribution is then determined in the region of the image and the intensity distribution inferred. A comparison of wave analysis results and photographs taken through the telescope shows excellent agreement.
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.
Computer-aided navigation in dental implantology: 7 years of clinical experience.
Ewers, Rolf; Schicho, Kurt; Truppe, Michael; Seemann, Rudolf; Reichwein, Astrid; Figl, Michael; Wagner, Arne
2004-03-01
This long-term study gives a review over 7 years of research, development, and routine clinical application of computer-aided navigation technology in dental implantology. Benefits and disadvantages of up-to-date technologies are discussed. In the course of the current advancement, various hardware and software configurations are used. In the initial phase, universally applicable navigation software is adapted for implantology. Since 2001, a special software module for dental implantology is available. Preoperative planning is performed on the basis of prosthetic aspects and requirements. In clinical routine use, patient and drill positions are intraoperatively registered by means of optoelectronic tracking systems; during preclinical tests, electromagnetic trackers are also used. In 7 years (1995 to 2002), 55 patients with 327 dental implants were successfully positioned with computer-aided navigation technology. The mean number of implants per patient was 6 (minimum, 1; maximum, 11). No complications were observed; the preoperative planning could be exactly realized. The average expenditure of time for the preparation of a surgical intervention with navigation decreased from 2 to 3 days in the initial phase to one-half day in clinical routine use with software that is optimized for dental implantology. The use of computer-aided navigation technology can contribute to considerable quality improvement. Preoperative planning is exactly realized and intraoperative safety is increased, because damage to nerves or neighboring teeth can be avoided.
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Herrmann, Kimberly A.; Kory, Carol L.; Wilson, Jeffrey D.; Cross, Andrew W.; Santana , Samuel
2003-01-01
The electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS) was used to compute the cold-test parameters - frequency-phase dispersion, on-axis impedance, and attenuation - for a traveling-wave tube (TWT) slow-wave circuit. The results were compared to experimental data, as well as to results from MAFIA, another three-dimensional simulation code from CST currently used at the NASA Glenn Research Center (GRC). The strong agreement between cold-test parameters simulated with MWS and those measured experimentally demonstrates the potential of this code to reduce the time and cost of TWT development.
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Mueller, Carl H.; Griner, James H., Jr.
2009-01-01
This paper describes the efforts in modeling and simulating electromagnetic transmission and reception as in a wireless sensor network through a realistic wing model for the Integrated Vehicle Health Management project at the Glenn Research Center. A computer model in a standard format for an S-3 Viking aircraft was obtained, converted to a Microwave Studio software format, and scaled to proper dimensions in Microwave Studio. The left wing portion of the model was used with two antenna models, one transmitting and one receiving, to simulate radio frequency transmission through the wing. Transmission and reception results were inconclusive.
NASA Technical Reports Server (NTRS)
Harper, Warren
1989-01-01
Two electromagnetic scattering codes, NEC-BSC and ESP3, were delivered and installed on a NASA VAX computer for use by Marshall Space Flight Center antenna design personnel. The existing codes and certain supplementary software were updated, the codes installed on a computer that will be delivered to the customer, to provide capability for graphic display of the data to be computed by the use of the codes and to assist the customer in the solution of specific problems that demonstrate the use of the codes. With the exception of one code revision, all of these tasks were performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Nichols
2002-05-03
In this quarter we continued the processing of the Safford IP survey data. The processing identified a time shift problem between the sites that was caused by a GPS firmware error. A software procedure was developed to identify and correct the shift, and this was applied to the data. Preliminary estimates were made of the remote referenced MT parameters, and initial data quality assessment showed the data quality was good for most of the line. The multi-site robust processing code of Egbert was linked to the new data and processing initiated.
Visualizing staggered fields and analyzing electromagnetic data with PerceptEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shasharina, Svetlana
This project resulted in VSimSP: a software for simulating large photonic devices of high-performance computers. It includes: GUI for Photonics Simulations; High-Performance Meshing Algorithm; 2d Order Multimaterials Algorithm; Mode Solver for Waveguides; 2d Order Material Dispersion Algorithm; S Parameters Calculation; High-Performance Workflow at NERSC ; and Large Photonic Devices Simulation Setups We believe we became the only company in the world which can simulate large photonics devices in 3D on modern supercomputers without the need to split them into subparts or do low-fidelity modeling. We started commercial engagement with a manufacturing company.
Kinetic stability analysis on electromagnetic filamentary structure
NASA Astrophysics Data System (ADS)
Lee, Wonjae; Krasheninnikov, Sergei
2014-10-01
A coherent radial transport of filamentary structures in SOL region is important for its characteristics that can increase unwanted high fluxes to plasma facing components. In the course of propagation in radial direction, the coherency of the filaments is significantly limited by electrostatic resistive drift instability (Angus et al., 2012). Considering higher plasma pressure, which would have more large impact in heat fluxes, electromagnetic effects will reduce the growth rate of the drift wave instability and increase the instabilities from electron inertial effects. According to a linear stability analysis on equations with fluid approximation, the maximum growth rate of the instability from the electron inertia is higher than that of drift-Alfvén wave instability in high beta filaments such as ELMs. However, the analysis on the high beta filaments requires kinetic approach, since the decreased collisionality will make the fluid approximation broken. Therefore, the kinetic analysis will be presented for the electromagnetic effects on the dynamics of filamentary structures. This work was supported by the USDOE Grants DE-FG02-04ER54739 and DE-SC0010413 at UCSD and also by the Kwanjeong Educational Foundation.
Readiness of the ATLAS liquid argon calorimeter for LHC collisions
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Bathe, S.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, S. V.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. B.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.
2010-12-01
The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.
NASA Astrophysics Data System (ADS)
Lv, Hongkui; He, Huihai; Sheng, Xiangdong; Liu, Jia; Chen, Songzhan; Liu, Ye; Hou, Chao; Zhao, Jing; Zhang, Zhongquan; Wu, Sha; Wang, Yaping; Lhaaso Collaboration
2018-07-01
In the Large High Altitude Air Shower Observatory (LHAASO), one square kilometer array (KM2A), with 5242 electromagnetic particle detectors (EDs) and 1171 muon detectors (MDs), is designed to study ultra-high energy gamma-ray astronomy and cosmic ray physics. The remoteness and numerous detectors extremely demand a robust and automatic calibration procedure. In this paper, a self-calibration method which relies on the measurement of charged particles within the extensive air showers is proposed. The method is fully validated by Monte Carlo simulation and successfully applied in a KM2A prototype array experiment. Experimental results show that the self-calibration method can be used to determine the detector time offset constants at the sub-nanosecond level and the number density of particles collected by each ED with an accuracy of a few percents, which are adequate to meet the physical requirements of LHAASO experiment. This software calibration also offers an ideal method to realtime monitor the detector performances for next generation ground-based EAS experiments covering an area above square kilometers scale.
Borehole geophysical logs at Naval Weapons Industrial Reserve Plant, Dallas, Texas
Braun, Christopher L.; Anaya, Roberto; Kuniansky, Eve L.
2000-01-01
A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction borehole geophysical logs were obtained from 162 poly vinyl-chloride-cased wells at the plant and were integrated with existing lithologic data to improve site characterization of the subsurface alluvium. Software was developed for filtering and classifying the log data and for processing, analyzing, and creating graphical output of the digital data. The alluvium consists of mostly fine-grained low-permeability sediments; however for this study, the alluvium was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. The low clay-content sediments were interpreted as being relatively permeable, whereas the high clay-content sediments were interpreted as being relatively impermeable. Simple statistics were used to identify zones of potentially contaminated sediments on the basis of the gamma-ray log classifications and the electromagnetic-induction log conductivity data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; et al.
An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less
NASA Astrophysics Data System (ADS)
Spirou, S. V.; Tsialios, P.; Loudos, G.
2015-09-01
In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.
Readiness of the ATLAS liquid argon calorimeter for LHC collisions
Aad, G.; Abbott, B.; Abdallah, J.; ...
2010-08-20
The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsicmore » constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over Φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.« less
Simulation of π 0-γ separation study for proposed CMS forward electromagnetic calorimeter
Roy, Ashim; Jain, Shilpi; Banerjee, Sunanda; ...
2016-11-11
The Forward Electromagnetic Calorimeter of the CMS detector is going to be upgraded in the high luminosity running as the energy of the present Electromagnetic Calorimeter (PbWO4) will degrade in the high luminosity (luminosity 10 34 cm -2 s -1) running due to extensive radiation (hadron flux 10 13 neutrons cm, -2). Shashlik Electromagnetic Calorimeter which consists of alternate layers of 1.5 mm LYSO(Ce) crystal plates and 2.5 mm Tungsten absorbers, was a proposal for high luminosity running. One of the performance points for any electromagnetic calorimeter is the ability to separate π 0 s from true photons, since finalmore » states with photons are a clean and one of the most important final states in proton-proton collisions at the LHC. As a result, the objective of this project is to study the possibility of π 0 and γ separation in the Shashlik detector using Multivariate Analysis (MVA) technique.« less
Simulation of π 0-γ separation study for proposed CMS forward electromagnetic calorimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Ashim; Jain, Shilpi; Banerjee, Sunanda
The Forward Electromagnetic Calorimeter of the CMS detector is going to be upgraded in the high luminosity running as the energy of the present Electromagnetic Calorimeter (PbWO4) will degrade in the high luminosity (luminosity 10 34 cm -2 s -1) running due to extensive radiation (hadron flux 10 13 neutrons cm, -2). Shashlik Electromagnetic Calorimeter which consists of alternate layers of 1.5 mm LYSO(Ce) crystal plates and 2.5 mm Tungsten absorbers, was a proposal for high luminosity running. One of the performance points for any electromagnetic calorimeter is the ability to separate π 0 s from true photons, since finalmore » states with photons are a clean and one of the most important final states in proton-proton collisions at the LHC. As a result, the objective of this project is to study the possibility of π 0 and γ separation in the Shashlik detector using Multivariate Analysis (MVA) technique.« less
Four applications of a software data collection and analysis methodology
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Selby, Richard W., Jr.
1985-01-01
The evaluation of software technologies suffers because of the lack of quantitative assessment of their effect on software development and modification. A seven-step data collection and analysis methodology couples software technology evaluation with software measurement. Four in-depth applications of the methodology are presented. The four studies represent each of the general categories of analyses on the software product and development process: blocked subject-project studies, replicated project studies, multi-project variation studies, and single project strategies. The four applications are in the areas of, respectively, software testing, cleanroom software development, characteristic software metric sets, and software error analysis.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
Jekova, Irena; Krasteva, Vessela; Ménétré, Sarah; Stoyanov, Todor; Christov, Ivaylo; Fleischhackl, Roman; Schmid, Johann-Jakob; Didon, Jean-Philippe
2009-07-01
This paper presents a bench study on a commercial automated external defibrillator (AED). The objective was to evaluate the performance of the defibrillation advisory system and its robustness against electromagnetic interferences (EMI) with central frequencies of 16.7, 50 and 60 Hz. The shock advisory system uses two 50 and 60 Hz band-pass filters, an adaptive filter to identify and suppress 16.7 Hz interference, and a software technique for arrhythmia analysis based on morphology and frequency ECG parameters. The testing process includes noise-free ECG strips from the internationally recognized MIT-VFDB ECG database that were superimposed with simulated EMI artifacts and supplied to the shock advisory system embedded in a real AED. Measurements under special consideration of the allowed variation of EMI frequency (15.7-17.4, 47-52, 58-62 Hz) and amplitude (1 and 8 mV) were performed to optimize external validity. The accuracy was reported using the American Heart Association (AHA) recommendations for arrhythmia analysis performance. In the case of artifact-free signals, the AHA performance goals were exceeded for both sensitivity and specificity: 99% for ventricular fibrillation (VF), 98% for rapid ventricular tachycardia (VT), 90% for slow VT, 100% for normal sinus rhythm, 100% for asystole and 99% for other non-shockable rhythms. In the presence of EMI, the specificity for some non-shockable rhythms (NSR, N) may be affected in some specific cases of a low signal-to-noise ratio and extreme frequencies, leading to a drop in the specificity with no more than 7% point. The specificity for asystole and the sensitivity for VF and rapid VT in the presence of any kind of 16.7, 50 or 60 Hz EMI simulated artifact were shown to reach the equivalence of sensitivity required for non-noisy signals. In conclusion, we proved that the shock advisory system working in a real AED operates accurately according to the AHA recommendations without artifacts and in the presence of EMI. The results may be affected for specificity in the case of a low signal-to-noise ratio or in some extreme frequency setting.
Long-range monostatic remote sensing of geomaterial structure weak vibrations
NASA Astrophysics Data System (ADS)
Heifetz, Alexander; Bakhtiari, Sasan; Gopalsami, Nachappa; Elmer, Thomas W.; Mukherjee, Souvik
2018-04-01
We study analytically and numerically signal sensitivity in remote sensing measurements of weak mechanical vibration of structures made of typical construction geomaterials, such as concrete. The analysis includes considerations of electromagnetic beam atmospheric absorption, reflection, scattering, diffraction and losses. Comparison is made between electromagnetic frequencies of 35GHz (Ka-band), 94GHz (W-band) and 260GHz (WR-3 waveguide band), corresponding to atmospheric transparency windows of the electromagnetic spectrum. Numerical simulations indicate that 94GHz frequency is optimal in terms of signal sensitivity and specificity for long-distance (>1.5km) sensing of weak multi-mode vibrations.
Kopyt, Paweł; Celuch, Małgorzata
2007-01-01
A practical implementation of a hybrid simulation system capable of modeling coupled electromagnetic-thermodynamic problems typical in microwave heating is described. The paper presents two approaches to modeling such problems. Both are based on an FDTD-based commercial electromagnetic solver coupled to an external thermodynamic analysis tool required for calculations of heat diffusion. The first approach utilizes a simple FDTD-based thermal solver while in the second it is replaced by a universal commercial CFD solver. The accuracy of the two modeling systems is verified against the original experimental data as well as the measurement results available in literature.
Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Analysis and interpretation
NASA Technical Reports Server (NTRS)
Neubauer, Fritz M.; Glassmeier, Karl-Heinz; Coates, A. J.; Johnstone, A. D.
1993-01-01
The propagation and polarization characteristic of low-frequency electromagnetic wave fields near comet P/Grigg-Skjellerup (P/GS) are analyzed using magnetic field and plasma observations obtained by the Giotto magnetometer experiment and the Johnstone plasma analyzer during the encounter at the comet on July 10, 1992. The results have been physically interpreted.
ERIC Educational Resources Information Center
Rowland, D. R.
2007-01-01
The physical analysis of a uniformly accelerating point charge provides a rich problem to explore in advanced courses in electrodynamics and relativity since it brings together fundamental concepts in relation to electromagnetic radiation, Einstein's equivalence principle and the inertial mass of field energy in ways that reveal subtleties in each…
Booth, Jeremy T; Caillet, Vincent; Hardcastle, Nicholas; O'Brien, Ricky; Szymura, Kathryn; Crasta, Charlene; Harris, Benjamin; Haddad, Carol; Eade, Thomas; Keall, Paul J
2016-10-01
Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm 3 ) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bates, Alan
2015-12-01
Instruments or digital meters with data values visible on a seven-segment display can easily be found in the physics lab. Examples include multimeters, sound level meters, Geiger-Müller counters and electromagnetic field meters, where the display is used to show numerical data. Such instruments, without the ability to connect to computers or data loggers, can measure and display data at a particular instant in time. The user should be present to read the display and to record the data. Unlike these digital meters, the sensor-data logger system has the advantage of automatically measuring and recording data at selectable sample rates over a desired sample time. The process of adding data logging features to a digital meter with a seven-segment display can be achieved with Seven Segment Optical Character Recognition (SSOCR) software. One might ask, why not just purchase a field meter with data logging features? They are relatively inexpensive, reliable, available online, and can be delivered within a few days. But then there is the challenge of making your own instrument, the excitement of implementing a design, the pleasure of experiencing an entire process from concept to product, and the satisfaction of avoiding costs by taking advantage of available technology. This experiment makes use of an electromagnetic field meter with a seven-segment liquid crystal display to measure background electromagnetic field intensity. Images of the meter display are automatically captured with a camera and analyzed using SSOCR to produce a text file containing meter display values.
Modulated wave formation in myocardial cells under electromagnetic radiation
NASA Astrophysics Data System (ADS)
Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.
2018-06-01
We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.
Nouri, Mahtab; Hamidiaval, Shadi; Akbarzadeh Baghban, Alireza; Basafa, Mohammad; Fahim, Mohammad
2015-01-01
Cephalometric norms of McNamara analysis have been studied in various populations due to their optimal efficiency. Dolphin cephalometric software greatly enhances the conduction of this analysis for orthodontic measurements. However, Dolphin is very expensive and cannot be afforded by many clinicians in developing countries. A suitable alternative software program in Farsi/English will greatly help Farsi speaking clinicians. The present study aimed to develop an affordable Iranian cephalometric analysis software program and compare it with Dolphin, the standard software available on the market for cephalometric analysis. In this diagnostic, descriptive study, 150 lateral cephalograms of normal occlusion individuals were selected in Mashhad and Qazvin, two major cities of Iran mainly populated with Fars ethnicity, the main Iranian ethnic group. After tracing the cephalograms, the McNamara analysis standards were measured both with Dolphin and the new software. The cephalometric software was designed using Microsoft Visual C++ program in Windows XP. Measurements made with the new software were compared with those of Dolphin software on both series of cephalograms. The validity and reliability were tested using intra-class correlation coefficient. Calculations showed a very high correlation between the results of the Iranian cephalometric analysis software and Dolphin. This confirms the validity and optimal efficacy of the newly designed software (ICC 0.570-1.0). According to our results, the newly designed software has acceptable validity and reliability and can be used for orthodontic diagnosis, treatment planning and assessment of treatment outcome.
NASA Astrophysics Data System (ADS)
Alkhateeb, Abualkair M. Khair
Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on a Bombardier Global 5000 commercial full aircraft was studied. This was achieved via CAD-based modeling with a full-wave electromagnetic software simulation package (FEKO). It is important because the aircraft comes in approach on a 3° glideslope angle. Elevation relative to PPD jammer is changing.
Two-port network analysis and modeling of a balanced armature receiver.
Kim, Noori; Allen, Jont B
2013-07-01
Models for acoustic transducers, such as loudspeakers, mastoid bone-drivers, hearing-aid receivers, etc., are critical elements in many acoustic applications. Acoustic transducers employ two-port models to convert between acoustic and electromagnetic signals. This study analyzes a widely-used commercial hearing-aid receiver ED series, manufactured by Knowles Electronics, Inc. Electromagnetic transducer modeling must consider two key elements: a semi-inductor and a gyrator. The semi-inductor accounts for electromagnetic eddy-currents, the 'skin effect' of a conductor (Vanderkooy, 1989), while the gyrator (McMillan, 1946; Tellegen, 1948) accounts for the anti-reciprocity characteristic [Lenz's law (Hunt, 1954, p. 113)]. Aside from Hunt (1954), no publications we know of have included the gyrator element in their electromagnetic transducer models. The most prevalent method of transducer modeling evokes the mobility method, an ideal transformer instead of a gyrator followed by the dual of the mechanical circuit (Beranek, 1954). The mobility approach greatly complicates the analysis. The present study proposes a novel, simplified and rigorous receiver model. Hunt's two-port parameters, the electrical impedance Ze(s), acoustic impedance Za(s) and electro-acoustic transduction coefficient Ta(s), are calculated using ABCD and impedance matrix methods (Van Valkenburg, 1964). The results from electrical input impedance measurements Zin(s), which vary with given acoustical loads, are used in the calculation (Weece and Allen, 2010). The hearing-aid receiver transducer model is designed based on energy transformation flow [electric→ mechanic→ acoustic]. The model has been verified with electrical input impedance, diaphragm velocity in vacuo, and output pressure measurements. This receiver model is suitable for designing most electromagnetic transducers and it can ultimately improve the design of hearing-aid devices by providing a simplified yet accurate, physically motivated analysis. This article is part of a special issue entitled "MEMRO 2012". Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijun, E-mail: lijunwang@mail.xjtu.edu.cn; Deng, Jie; Wang, Haijing
In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just asmore » the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.« less
Electromagnetic induction sensor for dynamic testing of coagulation process.
Wang, Zhe; Yu, Yuanhua; Yu, Zhanjiang; Chen, Qimeng
2018-03-01
With the increasing demand for coagulation POCT for patients in the surgery department or the ICU, rapid coagulation testing techniques and methods have drawn widespread attention from scholars and businessmen. This paper proposes the use of electromagnetic induction sensor probe for detection of dynamic process causing changes in the blood viscosity and density before and after coagulation based on the damped vibration principle, in order to evaluate the coagulation status. Utilizing the dynamic principle, the differential equation of vibration system comprising elastic support and electromagnetic induction device is established through sensor dynamic modeling. The structural parameters of elastic support are optimized, and the circular sheet spring is designed. Furthermore, harmonic response analysis and vibration fatigue coupling analysis are performed on the elastic support of the sensor by considering the natural frequency of the system, and the electromagnetic induction sensor testing device is set up. Using the device and coagulation reagent, the standard curve for coagulation POCT is plotted, and the blood sample application in clinical patients is established, which are methodologically compared with the imported POCT coagulation analyzer. The results show that the sensor designed in this paper has a first-order natural frequency of 11.368 Hz, which can withstand 5.295 × 10 2 million times of compressions and rebounds. Its correlation with the results of SONOCLOT analyzer reaches 0.996, and the reproducibility 0.002. The electromagnetic induction coagulation testing sensor designed has good elasticity and anti-fatigue, which can meet the accuracy requirement of clinical detection. This study provides the core technology for developing the electromagnetic induction POCT instrument for dynamic testing of coagulation process.
Broadband electromagnetic analysis of compacted kaolin
NASA Astrophysics Data System (ADS)
Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander
2017-01-01
The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.
Debugging and Performance Analysis Software Tools for Peregrine System |
High-Performance Computing | NREL Debugging and Performance Analysis Software Tools for Peregrine System Debugging and Performance Analysis Software Tools for Peregrine System Learn about debugging and performance analysis software tools available to use with the Peregrine system. Allinea
ASTRO-2 Spacelab Instrument Pointing System mission performance
NASA Technical Reports Server (NTRS)
Wessling, Francis C., III; Singh, S. P.
1995-01-01
This paper reports the performance of the Instrument Pointing System (IPS) that flew on the National Aeronautics and Space Administration (NASA) ASTRO-2 Spacelab mission aboard the Space Shuttle Endeavour in March 1995. The IPS provides a stabilizing platform for the ASTRO-2 instrument payload complement that consists of three main experiments (telescopes). The telescopes observe stellar targets in the universe within the ultraviolet portion of the electromagnetic spectrum that must be observed from beyond the earth's atmospheric filtering effects. The three main experiments for observation are the Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The HUT uses spectroscopy to obtain the structure and chemical makeup of ultraviolet targets. UIT is responsible for wide field photographing to capture the hidden view of the ultraviolet universe. The WUPPE gathers data on the polarization of the ultraviolet electromagnetic energy coming from the astronomical targets. The capability of IPS enables the experiments to 'see' faint celestial objects. A brief explanation of the IPS is given followed by a review of engineering efforts to improve IPS performance over the ASTRO-1 mission. The main focus of improvements was on enhancing the star acquisition capability through improved guide star selection, lab simulations, computer upgrades, data display systems improvements, and software modifications. A star simulator was developed in the lab to enable IPS to be simulated on the ground pre-mission with flight hardware and software in the loop. The paper concludes with results from the ASTRO-2 mission. The number of targets acquired and the IPS pointing accuracy/stability is reported along with recommendations for the future use of the Instrument Pointing System.
NASA Astrophysics Data System (ADS)
Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo
2018-05-01
Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.
Li, Mengfei; Hansen, Christian; Rose, Georg
2017-09-01
Electromagnetic tracking systems (EMTS) have achieved a high level of acceptance in clinical settings, e.g., to support tracking of medical instruments in image-guided interventions. However, tracking errors caused by movable metallic medical instruments and electronic devices are a critical problem which prevents the wider application of EMTS for clinical applications. We plan to introduce a method to dynamically reduce tracking errors caused by metallic objects in proximity to the magnetic sensor coil of the EMTS. We propose a method using ramp waveform excitation based on modeling the conductive distorter as a resistance-inductance circuit. Additionally, a fast data acquisition method is presented to speed up the refresh rate. With the current approach, the sensor's positioning mean error is estimated to be 3.4, 1.3 and 0.7 mm, corresponding to a distance between the sensor and center of the transmitter coils' array of up to 200, 150 and 100 mm, respectively. The sensor pose error caused by different medical instruments placed in proximity was reduced by the proposed method to a level lower than 0.5 mm in position and [Formula: see text] in orientation. By applying the newly developed fast data acquisition method, we achieved a system refresh rate up to approximately 12.7 frames per second. Our software-based approach can be integrated into existing medical EMTS seamlessly with no change in hardware. It improves the tracking accuracy of clinical EMTS when there is a metallic object placed near the sensor coil and has the potential to improve the safety and outcome of image-guided interventions.
Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A
2017-09-01
Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.
Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.
Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John
2015-01-01
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise. © 2014, National Ground Water Association.
Van Buyten, Jean-Pierre; Smet, Iris; Van de Kelft, Erik
2009-07-01
Introduction. Interventional pain management techniques require precise positioning of needles or electrodes, therefore fluoroscopic control is mandatory. This imaging technique does however not visualize soft tissues such as blood vessels. Moreover, patient and physician are exposed to a considerable dose of radiation. Computed tomography (CT)-scans give a better view of soft tissues, but there use requires presence of a radiologist and has proven to be laborious and time consuming. Objectives. This study is to develop a technique using electromagnetic (EM) navigation as a guidance technique for interventional pain management, using CT and/or magnetic resonance (MRI) images uploaded on the navigation station. Methods. One of the best documented interventional procedures for the management of trigeminal neuralgia is percutaneous radiofrequency treatment of the Gasserian ganglion. EM navigation software for intracranial applications already exists. We developed a technique using a stylet with two magnetic coils suitable for EM navigation. The procedure is followed in real time on a computer screen where the patient's multislice CT-scan images and three-dimensional reconstruction of his face are uploaded. Virtual landmarks on the screen are matched with those on the patient's face, calculating the precision of the needle placement. Discussion. The experience with EM navigation acquired with the radiofrequency technique can be transferred to other interventional pain management techniques, for instance, for the placement of a neuromodulation electrode close to the Gasserian ganglion. Currently, research is ongoing to extend the software of the navigation station for spinal application, and to adapt neurostimulation hardware to the EM navigation technology. This technology will allow neuromodulation techniques to be performed without x-ray exposure for the patient and the physician, and this with the precision of CT/MR imaging guidance. © 2009 International Neuromodulation Society.
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
NASA Technical Reports Server (NTRS)
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, L. K., E-mail: lan.jian@nasa.gov; Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771; Moya, P. S.
2016-03-25
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
[Investigation of sleep disorders in the vicinity of high frequency transmitters].
Leitgeb, N; Schröttner, J; Cech, R; Kerbl, R
2004-08-01
To investigate the potential impact of RF electromagnetic fields of transmitters on the sleep quality of nearby residents, a new study design is presented. In a double-blind crossover field study the effect of on-site shielding, rather than of additional exposure, is investigated. For improved sleep quality differentiation the polysomnographic parameters are expanded by additional parameters. The feasibility study showed that checking the raw data and correcting the software-generated results by visual reading of the polysomnographic recordings is essential. Long-term RF measurement showed that exposure may vary considerably throughout the night, as well as from one night to the next. This variation may be greater than the GSM contribution itself. Mostly, the contributions of USW radio frequency fields dominated over GSM. Thus, continuous broadband RF recording is required for reliable interpretation of the results, in particular with regard to the potential role of mobile telephony emissions. Results show that simple sleep monitoring systems based on single-channel EEG analysis without acces to original biosignals are not adequate for sleep studies.
The 64 Mpixel wide field imager for the Wendelstein 2m telescope: design and calibration
NASA Astrophysics Data System (ADS)
Kosyra, Ralf; Gössl, Claus; Hopp, Ulrich; Lang-Bardl, Florian; Riffeser, Arno; Bender, Ralf; Seitz, Stella
2014-11-01
The Wendelstein Observatory of Ludwig Maximilians University of Munich has recently been upgraded with a modern 2m robotic telescope. One Nasmyth port of the telescope has been equipped with a wide-field corrector which preserves the excellent image quality (<0.8 " median seeing) of the site (Hopp et al. 2008) over a field of view of 0.7 degrees diameter. The available field is imaged by an optical imager (WWFI, the Wendelstein Wide Field Imager) built around a customized 2×2 mosaic of 4 k×4 k 15 μm e2v CCDs from Spectral Instruments. This paper provides an overview of the design and the WWFI's performance. We summarize the system mechanics (including a structural analysis), the electronics (and its electromagnetic interference (EMI) protection) and the control software. We discuss in detail detector system parameters, i.e. gain and readout noise, quantum efficiency as well as charge transfer efficiency (CTE) and persistent charges. First on sky tests yield overall good predictability of system throughput based on lab measurements.
Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena
2013-01-01
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804
Computational burden resulting from image recognition of high resolution radar sensors.
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena
2013-04-22
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.
Partial discharge measurements on 110kV current transformers. Setting the control value. Case study
NASA Astrophysics Data System (ADS)
Dan, C.; Morar, R.
2017-05-01
The case study presents a series of partial discharge measurements, reflecting the state of insulation of 110kV CURRENT TRANSFORMERS located in Sibiu county substations. Measurements were performed based on electrical method, using MPD600: an acquisition and analysis toolkit for detecting, recording, and analyzing partial discharges. MPD600 consists of one acquisition unit, an optical interface and a computer with dedicated software. The system allows measurements of partial discharge on site, even in presence of strong electromagnetic interferences because it provides synchronous acquisition from all measurement points. Therefore, measurements, with the ability to be calibrated, do render: - a value subject to interpretation according to IEC 61869-1:2007 + IEC 61869-2:2012 + IEC 61869-3:2011 + IEC 61869-5:2011 and IEC 60270: 2000; - the possibility to determine the quantitative limit of PD (a certain control value) to which the equipment can be operated safely and repaired with minimal costs (relative to the high costs implied by eliminating the consequences of a failure) identified empirically (process in which the instrument transformer subjected to the tests was completely destroyed).
NASA Astrophysics Data System (ADS)
Podesto, B.; Lapointe, A.; Larose, G.; Robichaud, Y.; Vaillancourt, C.
1981-03-01
The design and construction of a Real-Time Digital Data Acquisition System (RTDDAS) to be used in substations for on-site recording and preprocessing load response data were included. The gathered data can be partially processed on site to compute the apparent, active and reactive powers, voltage and current rms values, and instantaneous values of phase voltages and currents. On-site processing capability is provided for rapid monitoring of the field data to ensure that the test setup is suitable. Production analysis of field data is accomplished off-line on a central computer from data recorded on a dual-density (800/1600) magnetic tape which is IBM-compatible. Parallel channels of data can be recorded at a variable rate from 480 to 9000 samples per second per channel. The RTDDAS is housed in a 9.1 m (30-ft) trailer which is shielded from electromagnetic interference and protected by isolators from switching surges. The test must sometimes be performed. Information pertaining to the installation, software operation, and maintenance is presented.
electromagnetics, eddy current, computer codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, David
TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.
Computer modeling of electromagnetic problems using the geometrical theory of diffraction
NASA Technical Reports Server (NTRS)
Burnside, W. D.
1976-01-01
Some applications of the geometrical theory of diffraction (GTD), a high frequency ray optical solution to electromagnetic problems, are presented. GTD extends geometric optics, which does not take into account the diffractions occurring at edges, vertices, and various other discontinuities. Diffraction solutions, analysis of basic structures, construction of more complex structures, and coupling using GTD are discussed.
Gender Gap or Program Gap? Students' Negotiations of Study Practice in a Course in Electromagnetism
ERIC Educational Resources Information Center
Andersson, Staffan; Johansson, Anders
2016-01-01
This study of achievement differences, as reflected by course grades, on a third-semester electromagnetism course at a Swedish research university was motivated by instructor concerns about gender inequalities. Quantitative analysis showed a gender gap in course grades between female and male students for the period of fall 2007 to spring 2013.…
EMC (Electromagnetic Compatibility) Standards Handbook. Revision 4,
1982-11-01
report was prepared by the lIT Research Institute as part of AF Project 649E under Contract F-19628-80-C-0042 with the Electronic Systems Division of...the Air Pbrce Systems Command in support of the DoD Electromagnetic Compatibility Analysis Center, Annapolis, Maryland. This report has been reviewed...3-1 "JVDE Organizations .. .0 . . . . . . . . . . . . . . . . . . . . . 3 1 VDE Testing Station
Bashashati, Ali; Noureddin, Borna; Ward, Rabab K; Lawrence, Peter D; Birch, Gary E
2006-03-01
A power spectral analysis study was conducted to investigate the effects of using an electromagnetic motion tracking sensor on an electroencephalogram (EEG) recording system. The results showed that the sensors do not generate any consistent frequency component(s) in the power spectrum of the EEG in the frequencies of interest (0.1-55 Hz).
Harne, Ryan L
2012-07-01
Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.
Koprivica, Mladen; Neskovic, Natasa; Neskovic, Aleksandar; Paunovic, George
2014-01-01
As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m(-1), which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were <1 and 2 V m(-1), respectively.
Electromagnetic energy harvesting from a dual-mass pendulum oscillator
NASA Astrophysics Data System (ADS)
Wang, Hongyan; Tang, Jiong
2016-04-01
This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.
Analysis of eddy current induced in track on medium-low speed maglev train
NASA Astrophysics Data System (ADS)
Li, Guanchun; Jia, Zhen; He, Guang; Li, Jie
2017-06-01
Electromagnetic levitation (EMS) maglev train relies on the attraction between the electromagnets and rails which are mounted on the train to achieve suspension. During the movement, the magnetic field generated by the electromagnet will induce the eddy current in the orbit and the eddy current will weaken the suspended magnetic field. Which leads to the attenuation of the levitation force, the increases of suspension current and the degradation the suspension performance. In this paper, the influence of eddy current on the air gap magnetic field is solved by theoretical analysis, and the correction coefficient of air gap magnetic field is fitted according to the finite element data. The levitation force and current are calculated by the modified formula, and the velocity curves of the levitation force and current are obtained. The results show that the eddy current effect increases the load power by 61.9% in the case of heavy loads.
Evaluation of Information Leakage from Cryptographic Hardware via Common-Mode Current
NASA Astrophysics Data System (ADS)
Hayashi, Yu-Ichi; Homma, Naofumi; Mizuki, Takaaki; Sugawara, Takeshi; Kayano, Yoshiki; Aoki, Takafumi; Minegishi, Shigeki; Satoh, Akashi; Sone, Hideaki; Inoue, Hiroshi
This paper presents a possibility of Electromagnetic (EM) analysis against cryptographic modules outside their security boundaries. The mechanism behind the information leakage is explained from the view point of Electromagnetic Compatibility: electric fluctuation released from cryptographic modules can conduct to peripheral circuits based on ground bounce, resulting in radiation. We demonstrate the consequence of the mechanism through experiments where the ISO/IEC standard block cipher AES (Advanced Encryption Standard) is implemented on an FPGA board and EM radiations from power and communication cables are measured. Correlation Electromagnetic Analysis (CEMA) is conducted in order to evaluate the information leakage. The experimental results show that secret keys are revealed even though there are various disturbing factors such as voltage regulators and AC/DC converters between the target module and the measurement points. We also discuss information-suppression techniques as electrical-level countermeasures against such CEMAs.
Changes in metal properties after thermal and electric impulse processing
NASA Astrophysics Data System (ADS)
Shaburova, N. A.
2015-04-01
The results of the experiments on processing metal melts by powerful electromagnetic impulses are given. The generator used in the experiments has the following characteristics: pulse height - 10KV, duration - 1ns, leading edge - 0.1ns, repetition rate - 1KHz, the output - 100KWt. The duration of the processing is 10-15min. The comparative analysis of the processed and unprocessed samples results in the changes of structure, increase of density, solidity, plasticity and resilience of cast metal. The result analysis of different external physical processing methods on alloys shows full agreement with the results of the ultrasonic processing of metals. The hypothesis of ultrasonic shock wave formation at the pulse front was adopted as the main mechanism of the electromagnetic impulse impact on alloys. The theoretical part of the research describes the transformation process of electromagnetic impulses into acoustic ones.
Testing for EMC (electromagnetic compatibility) in the clinical environment.
Paperman, D; David, Y; Martinez, M
1996-01-01
Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.
Ahm, Malte; Thorndahl, Søren; Nielsen, Jesper E; Rasmussen, Michael R
2016-12-01
Combined sewer overflow (CSO) structures are constructed to effectively discharge excess water during heavy rainfall, to protect the urban drainage system from hydraulic overload. Consequently, most CSO structures are not constructed according to basic hydraulic principles for ideal measurement weirs. It can, therefore, be a challenge to quantify the discharges from CSOs. Quantification of CSO discharges are important in relation to the increased environmental awareness of the receiving water bodies. Furthermore, CSO discharge quantification is essential for closing the rainfall-runoff mass-balance in combined sewer catchments. A closed mass-balance is an advantage for calibration of all urban drainage models based on mass-balance principles. This study presents three different software sensor concepts based on local water level sensors, which can be used to estimate CSO discharge volumes from hydraulic complex CSO structures. The three concepts were tested and verified under real practical conditions. All three concepts were accurate when compared to electromagnetic flow measurements.
Building an infrastructure at PICKSC for the educational use of kinetic software tools
NASA Astrophysics Data System (ADS)
Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; Amorim, L. D.; An, W.; Dalichaouch, T. N.; Davidson, A.; Joglekar, A.; Li, F.; May, J.; Touati, M.; Xu, X. L.; Yu, P.
2016-10-01
One aim of the Particle-In-Cell and Kinetic Simulation Center (PICKSC) at UCLA is to coordinate a community development of educational software for undergraduate and graduate courses in plasma physics and computer science. The rich array of physical behaviors exhibited by plasmas can be difficult to grasp by students. If they are given the ability to quickly and easily explore plasma physics through kinetic simulations, and to make illustrative visualizations of plasma waves, particle motion in electromagnetic fields, instabilities, or other phenomena, then they can be equipped with first-hand experiences that inform and contextualize conventional texts and lectures. We are developing an infrastructure for any interested persons to take our kinetic codes, run them without any prerequisite knowledge, and explore desired scenarios. Furthermore, we are actively interested in any ideas or input from other plasma physicists. This poster aims to illustrate what we have developed and gather a community of interested users and developers. Supported by NSF under Grant ACI-1339893.
JDFTx: Software for joint density-functional theory
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...
2017-11-14
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
JDFTx: Software for joint density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
Advances in PET/MR instrumentation and image reconstruction.
Cabello, Jorge; Ziegler, Sibylle I
2018-01-01
The combination of positron emission tomography (PET) and MRI has attracted the attention of researchers in the past approximately 20 years in small-animal imaging and more recently in clinical research. The combination of PET/MRI allows researchers to explore clinical and research questions in a wide number of fields, some of which are briefly mentioned here. An important number of groups have developed different concepts to tackle the problems that PET instrumentation poses to the exposition of electromagnetic fields. We have described most of these research developments in preclinical and clinical experiments, including the few commercial scanners available. From the software perspective, an important number of algorithms have been developed to address the attenuation correction issue and to exploit the possibility that MRI provides for motion correction and quantitative image reconstruction, especially parametric modelling of radiopharmaceutical kinetics. In this work, we give an overview of some exemplar applications of simultaneous PET/MRI, together with technological hardware and software developments.
Higher-Order Mixed Finite Element Methods for Time Domain Electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D; Stowell, M; Koning, J
This is the final report for LDRD 01-ERD-005. The Principal Investigator was Niel Madsen of the Defense Sciences Engineering Division (DSED). Collaborators included Daniel White, Joe Koning and Nathan Champagne of DSED, Mark Stowell of Center for Applications Development and Software Engineering (CADSE), and Ph.D. students Rob Rieben and Aaron Fisher at the UC Davis Department of Applied Science. It should be noted that the students were partially supported by the LLNL Student-Employee Graduate Research Fellow program. We begin with an Introduction which provides background and motivation for this research effort. Section II contains high-level description of our Approach, andmore » Section III summarizes our key research Accomplishments. A description of the Software deliverables is provided in Section IV, and Section V includes simulation Validation and Results. It should be noted we do not get into the mathematical details in this report, rather these can be found in our publications which are listed in Section III.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subir_ghosh2@rediffmail.com; Pal, Probir, E-mail: probirkumarpal@rediffmail.com
In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative κ-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of κ-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac frameworkmore » of Hamiltonian constraint analysis.« less
NASA Technical Reports Server (NTRS)
Singh, S. P.
1979-01-01
The computer software developed to set up a method for Wiener spectrum analysis of photographic films is presented. This method is used for the quantitative analysis of the autoradiographic enhancement process. The software requirements and design for the autoradiographic enhancement process are given along with the program listings and the users manual. A software description and program listings modification of the data analysis software are included.
Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 1
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.
1993-01-01
This research program has dealt with the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements; (2) finite element modeling of the electromagnetic problem; (3) coupling of thermal and mechanical effects; and (4) computer implementation and solution of the superconductivity transition problem. The research was carried out over the period September 1988 through March 1993. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles; (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements; and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects; and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The grant has fully supported the thesis work of one doctoral student (James Schuler, who started on January 1989 and completed on January 1993), and partly supported another thesis (Carmelo Militello, who started graduate work on January 1988 completing on August 1991). Twenty-three publications have acknowledged full or part support from this grant, with 16 having appeared in archival journals and 3 in edited books or proceedings.
Bartolino, James R.; Sterling, Joseph M.
2000-01-01
Information on the presence of clay-rich layers in the inner-valley alluvium is essential for quantifying the amount of water transmitted between the Rio Grande and the Santa Fe Group aquifer system. This report describes a study that used electromagnetic surveys to provide this information. In the first phase of the study, electromagnetic soundings were made using time-domain and frequency-domain electro- magnetic methods. On the basis of these initial results, the time- domain method was judged ineffective because of cultural noise in the study area, so subsequent surveys were made using the frequency-domain method. For the second phase of the study, 31 frequency-domain electromagnetic surveys were conducted along the inner valley and parallel to the Rio Grande in the Albuquerque area in the spring and summer of 1997 to determine the presence of hydrologically significant clay-rich layers buried in the inner-valley alluvium. For this report, the 31 survey sections were combined into 10 composite sections for ease of interpretation. Terrain-conductivity data from the surveys were modeled using interpretation software to produce geoelectric cross sections along the survey lines. This modeling used lithologic logs from two wells installed near the survey lines: the Bosque South and Rio Bravo 5 wells. Because of cultural interference, location of the wells and soundings, complex stratigraphy, and difficulty interpreting lithology, such interpretation was inconclusive. Instead, a decision process based on modeling results was developed using vertical and horizontal dipole 40-meter intercoil spacing terrain-conductivity values. Values larger than or equal to 20 millisiemens per meter were interpreted to contain a hydrologically significant thickness of clay-rich sediment. Thus, clay-rich sediment was interpreted to underlie seven segments of the 10 composited survey lines, totaling at least 2,660 meters of the Rio Grande inner valley. The longest of these clay-rich segments is a 940-meter reach between Bridge and Rio Bravo Boulevards.
NASA Astrophysics Data System (ADS)
Bhargava, Samarth; Yablonovitch, Eli
2014-09-01
We report using Inverse Electromagnetic Design to computationally optimize the geometric shapes of metallic optical antennas or near-field transducers (NFTs) and dielectric waveguide structures that comprise a sub-wavelength optical focusing system for practical use in Heat Assisted Magnetic Recording (HAMR). This magnetic data-recording scheme relies on focusing optical energy to locally heat the area of a single bit, several hundred square nanometers on a hard disk, to the Curie temperature of the magnetic storage layer. There are three specifications of the optical system that must be met to enable HAMR as a commercial technology. First, to heat the media at scan rates upward of 10 m/s, ~1mW of light (<1% of typical laser diode output power) must be focused to a 30nm×30nm spot on the media. Second, the required lifetime of many years necessitates that the nano-scale NFT must not over-heat from optical absorption. Third, to avoid undesired erasing or interference of adjacent tracks on the media, there must be minimal stray optical radiation away from the hotspot on the hard disk. One cannot design the light delivery system by tackling each of these challenges independently, because they are governed by coupled electromagnetic phenomena. Instead, we propose multiobjective optimization using Inverse Electromagnetic Design in conjunction with a commercial 3D FDTD Maxwell's equations solver. We computationally generated designs of a metallic NFT and a high-index waveguide grating that meet the HAMR specifications simultaneously. Compared to a mock industry design, our proposed design has a similar optical coupling efficiency, ~3x improved suppression of stray optical radiation, and a 60% (280°C) reduction in NFT temperature rise. We also distributed the Inverse Electromagnetic Design software online so that industry partners can use it as a repeatable design process.
NASA Astrophysics Data System (ADS)
Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu
2018-03-01
Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.
Susceptibility study of audio recording devices to electromagnetic stimulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.
2014-02-01
Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less
Novel methodology to characterize electromagnetic exposure of the brain
NASA Astrophysics Data System (ADS)
Crespo-Valero, Pedro; Christopoulou, Maria; Zefferer, Marcel; Christ, Andreas; Achermann, Peter; Nikita, Konstantina S.; Kuster, Niels
2011-01-01
Due to the greatly non-uniform field distribution induced in brain tissues by radio frequency electromagnetic sources, the exposure of anatomical and functional regions of the brain may be a key issue in interpreting laboratory findings and epidemiological studies concerning endpoints related to the central nervous system. This paper introduces the Talairach atlas in characterization of the electromagnetic exposure of the brain. A hierarchical labeling scheme is mapped onto high-resolution human models. This procedure is fully automatic and allows identification of over a thousand different sites all over the brain. The electromagnetic absorption can then be extracted and interpreted in every region or combination of regions in the brain, depending on the characterization goals. The application examples show how this methodology enhances the dosimetry assessment of the brain based on results obtained by either finite difference time domain simulations or measurements delivered by test compliance dosimetry systems. Applications include, among others, the detailed dosimetric analysis of the exposure of the brain during cell phone use, improved design of exposure setups for human studies or medical diagnostic and therapeutic devices using electromagnetic fields or ultrasound.
Spin-1 Particles and Perturbative QCD
NASA Astrophysics Data System (ADS)
de Melo, J. P. B. C.; Frederico, T.; Ji, Chueng-Ryong
2018-07-01
Due to the angular condition in the light-front dynamics (LFD), the extraction of the electromagnetic form factors for spin-1 particles can be uniquely determined taking into account implicitly non-valence and/or the zero-mode contributions to the matrix elements of the electromagnetic current. No matter which matrix elements of the electromagnetic current is used to extract the electromagnetic form factors, the same unique result is obtained. As physical observables, the electromagnetic form factors obtained from matrix elements of the current in LFD must be equal to those obtained in the instant form calculations. Recently, the Babar collaboration (Phys Rev D 78:071103, 2008) has analyzed the reaction e^+ + e^-→ ρ ^+ + ρ ^- at √{s}=10.58 GeV to measure the cross section as well as the ratios of the helicity amplitudes F_{λ 'λ }. We present our recent analysis of the Babar data for the rho meson considering the angular condition in LFD to put a stringent test on the onset of asymptotic perturbative QCD and predict the energy regime where the subleading contributions are still considerable.
Electromagnetic effects on dynamics of high-beta filamentary structures
Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; ...
2015-01-12
The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation,more » it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.« less
Infusing Reliability Techniques into Software Safety Analysis
NASA Technical Reports Server (NTRS)
Shi, Ying
2015-01-01
Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Lighting the Way for Quicker, Safer Healing; Discovering New Drugs on the Cellular Level; Hydrogen Sensors Boost Hybrids; Today s Models Losing Gas?; 3-D Highway in the Sky; Popping a Hole in High-Speed Pursuits; Monitoring Wake Vortices for More Efficient Airports; From Rockets to Racecars; All-Terrain Intelligent Robot Braves Battlefront to Save Lives; Keeping the Air Clean and Safe--An Anthrax Smoke Detector; Lightning Often Strikes Twice; Technology That's Ready and Able to Inspect Those Cables; Secure Networks for First Responders and Special Forces; Space Suit Spins; Cooking Dinner at Home--From the Office; Nanoscale Materials Make for Large-Scale Applications; NASA s Growing Commitment: The Space Garden; Bringing Thunder and Lightning Indoors; Forty-Year-Old Foam Springs Back With New Benefits; Experiments With Small Animals Rarely Go This Well; NASA, the Fisherman's Friend; Crystal-Clear Communication a Sweet-Sounding Success; Inertial Motion-Tracking Technology for Virtual 3-D; Then Why Do They Call Earth the Blue Planet?; Valiant 'Zero-Valent' Effort Restores Contaminated Grounds; Harnessing the Power of the Sun; Water and Air Measures That Make 'PureSense'; Remote Sensing for Farmers and Flood Watching; Pesticide-Free Device a Fatal Attraction for Mosquitoes Making the Most of Waste Energy Washing Away the Worries About Germs Celestial Software Scratches More Than the Surface A Search Engine That's Aware of Your Needs Fault-Detection Tool Has Companies 'Mining' Own Business; Software to Manage the Unmanageable; Tracking Electromagnetic Energy With SQUIDs; Taking the Risk Out of Risk Assessment; Satellite and Ground System Solutions at Your Fingertips; Structural Analysis Made 'NESSUSary'; Software of Seismic Proportions Promotes Enjoyable Learning; Making a Reliable Actuator Faster and More Affordable; Cost-Cutting Powdered Lubricant NASA s Radio Frequency Bolt Monitor: A Lifetime of Spinoffs Going End to End to Deliver High-Speed Data; Advanced Joining Technology: Simple, Strong, and Secure; Big Results From a Smaller Gearbox; Low-Pressure Generator Makes Cleanrooms Cleaner; and The Space Laser Business Model.
Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.
Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.
1992-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.
Enhanced transmission by a grating composed of left-handed materials
NASA Astrophysics Data System (ADS)
Premlal, Prabhakaran Letha; Tiwari, Dinesh Chandra; Chaturvedi, Vandana
2018-04-01
We present a detailed theoretical analysis about the influence of surface polaritons on the transmission properties of electromagnetic waves at the periodically corrugated interface between the vacuum and left-handed material by using nonlinear boundary condition approach. The principle behind this approach is to match the wave fields across the grating interface by using a set of linear wave equation with nonlinear boundary conditions. The resonant transmission of the incident electromagnetic radiation in this structure is feasible within a certain frequency band, where there is a range of frequency over which both the electric permittivity and the magnetic permeability are simultaneously negative. The enhanced transmission is attributed to the coupling of the incident electromagnetic wave with the excited surface polaritons on grating interface. Finally, we present the numerical results illustrating the effect of the structural parameters and angle of incidence on the transmission spectra of a TM polarized electromagnetic wave.
A comparison of lightning and nuclear electromagnetic pulse response of tactical shelters
NASA Technical Reports Server (NTRS)
Perala, R. A.; Rudolph, T. H.; Mckenna, P. M.
1984-01-01
The internal response (electromagnetic fields and cable responses) of tactical shelters is addressed. Tactical shelters are usually well-shielded systems. Apart from penetrations by signal and power lines, the main leakage paths to the interior are via seams and the environment control unit (ECU) honeycomb filter. The time domain in three-dimensional finite-difference technique is employed to determine the external and internal coupling to a shelter excited by nuclear electromagnetic pulses (NEMP) and attached lightning. The responses of interest are the internal electromagnetic fields and the voltage, current, power, and energy coupled to internal cables. Leakage through the seams and ECU filter is accomplished by their transfer impedances which relate internal electric fields to external current densities. Transfer impedances which were experimentally measured are used in the analysis. The internal numerical results are favorably compared to actual shelter test data under simulated NEMP illumination.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionlessmore » and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.« less
Electromagnetic free suspension system for space manufacturing. Volume 1: Technology department
NASA Technical Reports Server (NTRS)
Buerger, E. H.; Frost, R. T.; Lambert, R. H.; Oconnor, M. F.; Odell, E. L. G.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.
1972-01-01
The technology developed in defining a facility to be used on the Skylab mission for electromagnetic suspension of small, molten spheres in the weightless space environment is described. The technologies discussed include: four-coil optimization, four-coil versus six-coil configuration comparison, four-coil position servocontrol, four-coil breadboard, position sensing and servosystem, two-color pyrometer, and specimen toration mode analysis.
NASA Technical Reports Server (NTRS)
Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.
1991-01-01
The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.
Electromagnetic Environment Due To A Pulsed Moving Conductor
1999-06-01
ELECTROMAGNETIC ENVIRONMENT DUE TO A PULSED MOVING CONDUCTOR Ira Kohlberg Kohl berg Associates, Inc., 11308 South Shore Road, Reston, VA 20190...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Kohlberg Associates, Inc., 11308 South Shore Road, Reston, VA 20190 8. PERFORMING ORGANIZATION REPORT...in this analysis but can readily be computed using the techniques developed in this study. REFERENCES I. I. Kohlberg , A. Zielinski, and C. Le
Strong coupling in electromechanical computation
NASA Astrophysics Data System (ADS)
Füzi, János
2000-06-01
A method is presented to carry out simultaneously electromagnetic field and force computation, electrical circuit analysis and mechanical computation to simulate the dynamic operation of electromagnetic actuators. The equation system is solved by a predictor-corrector scheme containing a Powell error minimization algorithm which ensures that every differential equation (coil current, field strength rate, flux rate, speed of the keeper) is fulfilled within the same time step.
A Simple and Accurate Analysis of Conductivity Loss in Millimeter-Wave Helical Slow-Wave Structures
NASA Astrophysics Data System (ADS)
Datta, S. K.; Kumar, Lalit; Basu, B. N.
2009-04-01
Electromagnetic field analysis of a helix slow-wave structure was carried out and a closed form expression was derived for the inductance per unit length of the transmission-line equivalent circuit of the structure, taking into account the actual helix tape dimensions and surface current on the helix over the actual metallic area of the tape. The expression of the inductance per unit length, thus obtained, was used for estimating the increment in the inductance per unit length caused due to penetration of the magnetic flux into the conducting surfaces following Wheeler’s incremental inductance rule, which was subsequently interpreted for the attenuation constant of the propagating structure. The analysis was computationally simple and accurate, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The approach was benchmarked against measurement for two practical structures, and excellent agreement was observed. The analysis was subsequently applied to demonstrate the effects of conductivity on the attenuation constant of a typical broadband millimeter-wave helical slow-wave structure with respect to helix materials and copper plating on the helix, surface finish of the helix, dielectric loading effect and effect of high temperature operation - a comparative study of various such aspects are covered.
Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface
NASA Astrophysics Data System (ADS)
Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai
2016-07-01
A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.
A Holistic Approach to Systems Development
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2008-01-01
Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9
Shielded-Twisted-Pair Cable Model for Chafe Fault Detection via Time-Domain Reflectometry
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.
2012-01-01
This report details the development, verification, and validation of an innovative physics-based model of electrical signal propagation through shielded-twisted-pair cable, which is commonly found on aircraft and offers an ideal proving ground for detection of small holes in a shield well before catastrophic damage occurs. The accuracy of this model is verified through numerical electromagnetic simulations using a commercially available software tool. The model is shown to be representative of more realistic (analytically intractable) cable configurations as well. A probabilistic framework is developed for validating the model accuracy with reflectometry data obtained from real aircraft-grade cables chafed in the laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Archana, E-mail: anju.archana@gmail.com; Murugesan, Dr V., E-mail: murugesh@serc.iisc.in
The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations.
Two-dimensional QR-coded metamaterial absorber
NASA Astrophysics Data System (ADS)
Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zhang, Jieqiu; Qu, Shaobo
2016-01-01
In this paper, the design of metamaterial absorbers is proposed based on QR coding and topology optimization. Such absorbers look like QR codes and can be recognized by decoding softwares as well as mobile phones. To verify the design, two lightweight wideband absorbers are designed, which can achieve wideband absorption above 90 % in 6.68-19.30 and 7.00-19.70 GHz, respectively. More importantly, polarization-independent absorption over 90 % can be maintained under incident angle within 55°. The QR code absorber not only can achieve wideband absorption, but also can carry information such as texts and Web sites. They are of important values in applications such identification and electromagnetic protection.
Worldwide Emerging Environmental Issues Affecting the U.S. Military. May 2005 Report
2005-05-01
to Monitor Environmental Pollution ………………………………………1 2.1 Software “Toolkit” for Control of Hazardous Chemicals……………………………..1 2.2 New Web Site On...System for Cleaning Water and Produce Electricity……...……….8 Item 6. Conviction in Transborder Electromagnetic Pollution Case………………...………8 Item 7 New...10 8.1 Gothenburg Air Pollution Protocol Entered into Force on May 17, 2005…………...10 8.2 New Chemicals Proposed to be Added to
Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide
NASA Technical Reports Server (NTRS)
Khayat, Michael A.
2011-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut
2008-09-25
Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.
Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut
2008-01-01
Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854
Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility
NASA Astrophysics Data System (ADS)
Oussena, Baya; Annand, John
2013-10-01
Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.
Inertial Upper Stage (IUS) software analysis
NASA Technical Reports Server (NTRS)
Grayson, W. L.; Nickel, C. E.; Rose, P. L.; Singh, R. P.
1979-01-01
The Inertial Upper Stage (IUS) System, an extension of the Space Transportation System (STS) operating regime to include higher orbits, orbital plane changes, geosynchronous orbits, and interplanetary trajectories is presented. The IUS software design, the IUS software interfaces with other systems, and the cost effectiveness in software verification are described. Tasks of the IUS discussed include: (1) design analysis; (2) validation requirements analysis; (3) interface analysis; and (4) requirements analysis.
Coupled oscillators: interesting experiments for high school students
NASA Astrophysics Data System (ADS)
Kodejška, Č.; Lepil, O.; Sedláčková, H.
2018-07-01
This work deals with the experimental demonstration of coupled oscillators using simple tools in the form of mechanical coupled pendulums, magnetically coupled elastic strings or electromagnetic oscillators. For the evaluation of results the data logger Lab Quest Vernier and video analysis in the Tracker program were used. In the first part of this work, coupled mechanical oscillators of different types are shown and the data analysis by the Tracker or Vernier Logger Pro programs. The second part describes a measurement using two LC circuits with inductively or capacitive coupled electromagnetic oscillators and the obtained experimental results.
Methods for Human Dehydration Measurement
NASA Astrophysics Data System (ADS)
Trenz, Florian; Weigel, Robert; Hagelauer, Amelie
2018-03-01
The aim of this article is to give a broad overview of current methods for the identification and quantification of the human dehydration level. Starting off from most common clinical setups, including vital parameters and general patients' appearance, more quantifiable results from chemical laboratory and electromagnetic measurement methods will be reviewed. Different analysis methods throughout the electromagnetic spectrum, ranging from direct current (DC) conductivity measurements up to neutron activation analysis (NAA), are discussed on the base of published results. Finally, promising technologies, which allow for an integration of a dehydration assessment system in a compact and portable way, will be spotted.
Analysis of the electromagnetic wave resistivity tool in deviated well drilling
NASA Astrophysics Data System (ADS)
Zhang, Yumei; Xu, Lijun; Cao, Zhang
2014-04-01
Electromagnetic wave resistivity (EWR) tools are used to provide real-time measurements of resistivity in the formation around the tool in Logging While Drilling (LWD). In this paper, the acquired resistivity information in the formation is analyzed to extract more information, including dipping angle and azimuth direction of the drill. A finite element (FM) model of EWR tool working in layered earth formations is established. Numerical analysis and FM simulations are employed to analyze the amplitude ratio and phase difference between the voltages measured at the two receivers of the EWR tool in deviated well drilling.
Rigorous Electromagnetic Analysis of the Focusing Action of Refractive Cylindrical Microlens
NASA Astrophysics Data System (ADS)
Liu, Juan; Gu, Ben-Yuan; Dong, Bi-Zhen; Yang, Guo-Zhen
The focusing action of refractive cylindrical microlens is investigated based on the rigorous electromagnetic theory with the use of the boundary element method. The focusing behaviors of these refractive microlenses with continuous and multilevel surface-envelope are characterized in terms of total electric-field patterns, the electric-field intensity distributions on the focal plane, and their diffractive efficiencies at the focal spots. The obtained results are also compared with the ones obtained by Kirchhoff's scalar diffraction theory. The present numerical and graphical results may provide useful information for the analysis and design of refractive elements in micro-optics.
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1993-01-01
The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.
Software Safety Progress in NASA
NASA Technical Reports Server (NTRS)
Radley, Charles F.
1995-01-01
NASA has developed guidelines for development and analysis of safety-critical software. These guidelines have been documented in a Guidebook for Safety Critical Software Development and Analysis. The guidelines represent a practical 'how to' approach, to assist software developers and safety analysts in cost effective methods for software safety. They provide guidance in the implementation of the recent NASA Software Safety Standard NSS-1740.13 which was released as 'Interim' version in June 1994, scheduled for formal adoption late 1995. This paper is a survey of the methods in general use, resulting in the NASA guidelines for safety critical software development and analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehe, Remi
Many simulation software produce data in the form of a set of field values or of a set of particle positions. (one such example is that of particle-in-cell codes, which produce data on the electromagnetic fields that they simulate.) However, each particular software uses its own particular format and layout, for the output data. This makes it difficult to compare the results of different simulation software, or to have a common visualization tool for these results. However, a standardized layout for fields and particles has recently been developed: the openPMD format ( HYPERLINK "http://www.openpmd.org/"www.openpmd.org) This format is open- source, andmore » specifies a standard way in which field data and particle data should be written. The openPMD format is already implemented in the particle-in-cell code Warp (developed at LBL) and in PIConGPU (developed at HZDR, Germany). In this context, the proposed software (openPMD-viewer) is a Python package, which allows to access and visualize any data which has been formatted according to the openPMD standard. This package contains two main components: - a Python API, which allows to read and extract the data from a openPMD file, so as to be able to work with it within the Python environment. (e.g. plot the data and reprocess it with particular Python functions) - a graphical interface, which works with the ipython notebook, and allows to quickly visualize the data and browse through a set of openPMD files. The proposed software will be typically used when analyzing the results of numerical simulations. It will be useful to quickly extract scientific meaning from a set of numerical data.« less
Lahham, Adnan; Alkbash, Jehad Abu; ALMasri, Hussien
2017-04-20
Theoretical assessments of power density in far-field conditions were used to evaluate the levels of environmental electromagnetic frequencies from selected GSM900 macrocell base stations in the West Bank and Gaza Strip. Assessments were based on calculating the power densities using commercially available software (RF-Map from Telstra Research Laboratories-Australia). Calculations were carried out for single base stations with multiantenna systems and also for multiple base stations with multiantenna systems at 1.7 m above the ground level. More than 100 power density levels were calculated at different locations around the investigated base stations. These locations include areas accessible to the general public (schools, parks, residential areas, streets and areas around kindergartens). The maximum calculated electromagnetic emission level resulted from a single site was 0.413 μW cm-2 and found at Hizma town near Jerusalem. Average maximum power density from all single sites was 0.16 μW cm-2. The results of all calculated power density levels in 100 locations distributed over the West Bank and Gaza were nearly normally distributed with a peak value of ~0.01% of the International Commission on Non-Ionizing Radiation Protection's limit recommended for general public. Comparison between calculated and experimentally measured value of maximum power density from a base station showed that calculations overestimate the actual measured power density by ~27%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Gaina, Alex
1996-08-01
Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.
Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer
NASA Astrophysics Data System (ADS)
Zhou, Ying; Wen, Quan; Wen, Zhiyu; Yang, Tingyan
2016-02-01
In this paper, the mathematical model is developed for researching the detailed electromagnetic mechanism of MOEMS scanning mirror. We present the relationship between spectral range and optical scanning angle. Furthermore, the variation tendencies of resonant frequency and maximal torsional angle are studied in detail under different aspect ratios of MOEMS scanning mirror and varied dimensions of torsional bar. The numerical results and Finite Element Analysis simulations both indicate that the thickness of torsional bar is the most important factor. The maximal torsional angle appears when the aspect ratio equals to 1. This mathematical model is an effective way for designing the MOEMS electromagnetic scanning grating mirror in actual fabrication.
Design and Analysis of an Electromagnetic Thrust Bearing
NASA Technical Reports Server (NTRS)
Banerjee, Bibhuti; Rao, Dantam K.
1996-01-01
A double-acting electromagnetic thrust bearing is normally used to counter the axial loads in many rotating machines that employ magnetic bearings. It essentially consists of an actuator and drive electronics. Existing thrust bearing design programs are based on several assumptions. These assumptions, however, are often violated in practice. For example, no distinction is made between maximum external loads and maximum bearing forces, which are assumed to be identical. Furthermore, it is assumed that the maximum flux density in the air gap occurs at the nominal gap position of the thrust runner. The purpose of this paper is to present a clear theoretical basis for the design of the electromagnetic thrust bearing which obviates such assumptions.
Electromagnetic field of a bunch intersecting a dielectric plate in a waveguide
NASA Astrophysics Data System (ADS)
Alekhina, Tatiana Yu; Tyukhtin, Andrey V.
2014-05-01
The electromagnetic field (EMF) of a bunch moving uniformly and traversing a dielectric plate located in a waveguide is investigated. The main attention is focused on the case when Cherenkov radiation is generated in the plate. Analysis of the field components of the mode is performed with methods of the complex variable function theory. An algorithm of computation using the exact expressions for the EMF is also presented. Consideration of the EMF structure for different time moments is given. It is shown that Cherenkov-transition radiation (CTR) is generated in the vacuum area after the plate under certain conditions. Results obtained might be of interest for development of new methods of generation of electromagnetic radiation.
Wound diagnostics with microwaves.
Schertlen, Ralph; Pivit, Florian; Wiesbeck, Werner
2002-01-01
The reflection of electromagnetic waves on material surfaces is very depending on the electric and magnetic properties of these materials, on their structure and on the surface texture. Therefore the different layers and dielectric properties of healthy and unsound body tissue also show different reflection behavior towards incidentating electromagnetic waves. By analyzing the reflected signals of incident electromagnetic waves, it is possible to get information about the inner structure of the reflecting body tissue. This effect could then be used for a contactless analysis of body tissue e.g. to gain crucial medical information about healing processes. In this paper the results of several full wave simulations of various tissue structures are presented and the significance and usability of this method is shown.
NASA Technical Reports Server (NTRS)
Norbury, John W.
1989-01-01
Previous analyses of the comparison of Weizsacker-Williams (WW) theory to experiment for nucleon emission via electromagnetic (EM) excitations in nucleus-nucleus collisions were not definitive because of different assumptions concerning the value of the minimum impact parameter. This situation is corrected by providing criteria that allows definitive statements to be made concerning agreement or disagreement between WW theory and experiment.
Simulation Analysis of a Strip Dipole Excited Electromagnetic Band-Gap (EBG) Structure
2015-07-01
unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The design of an Electromagnetic Band-Gap (EBG) for a particular antenna application is...summarized. Discussion is provided on interpretation of the EBG reflection coefficient phase for antenna applications and on the range of the EBG bandwidth...It is determined for antenna applications that the reflection phase and current design methods may be misleading. Instead, it is opinioned and shown
Evaluation of Time Domain EM Coupling Techniques. Volume II.
1980-08-01
tool for the analysis of elec- tromangetic coupling and shielding problems: the finite-difference, time-domain (FD- TD ) solution of Maxwell’s equations...The objective of the program was to evaluate the suitability of the FD- TD method to determine the amount of electromagnetic coupling through an...specific questfiowwere addressed during this program: 1. Can the FD- TD method accurately model electromagnetic coupling into a conducting structure for
Characterization of Microstructure with Low Frequency Electromagnetic Techniques (Preprint)
2014-02-01
654. 2. G. T. Meaden, Electrical Resistance of Metals, Plenum, New York 1965. 3. G. A. Sargent, K. T. Kinsel, A. L. Pilchak, A. A. Salem , S. L...effect on materials properties. Cambridge university press . 5. Theodoulidis, T., & Kriezis, E. (2005). Series expansions in eddy current nondestructive...analysis, J. Appl . Phys. 89, 2473 (2001). 8. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wiley Publishing Company, Inc., 1989. 9