Science.gov

Sample records for electromagnetic calorimeter detectors

  1. The Electromagnetic Calorimeter of the future PANDA Detector

    SciTech Connect

    Novotny, Rainer

    2006-10-27

    Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.

  2. Geometric calibration of the SND detector electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Korol, A. A.; Melnikova, N. A.

    2017-03-01

    This paper presents the design, implementation and validation of the software alignment procedure used to perform geometric calibration of the electromagnetic calorimeter with respect to the tracking system of the SND detector which is taking data at the VEPP-2000 e+e- collider (BINP, Novosibirsk). This procedure is based on the mathematical model describing the relative calorimeter position. The parameter values are determined by minimizing a χ2 function using the difference between particle directions reconstructed in these two subdetectors for e+e- →e+e- scattering events. The results of the calibration applied to data and MC simulation fit the model well and give an improvement in particle reconstruction. They are used in data reconstruction and MC simulation.

  3. A fast and compact electromagnetic calorimeter for the PANDA detector at FAIR

    SciTech Connect

    Wilms, Andrea

    2005-10-26

    In this presentation we report on the electromagnetic calorimeter of the 4{pi} detector PANDA to be installed at the antiproton storage ring of the proposed Facility for Antiproton and Ion Research (FAIR). We present details of the R and D work with two scintillator materials, PbWO4 (PWO) and BGO, and the new developed large area avalanche photodiodes (LAAPDs) as detector readout.

  4. New electronics of the spectrometric channel for the SND detector electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Aulchenko, V. M.; Bogdanchikov, A. G.; Druzhinin, V. P.; Golubev, V. B.; Korol, A. A.; Koshuba, S. V.; Kovrizhin, D. P.; Serednyakov, S. I.; Surin, I. K.; Tekut`ev, A. I.; Usov, Yu. V.

    2016-07-01

    The Spherical Neutral Detector (SND) is intended for study of electron-positron annihilation at the VEPP-2000 e+e- collider (BINP, Novosibirsk) in the center-of-mass energy region below 2 GeV. The main part of the detector is a three-layer electromagnetic calorimeter based on NaI(Tl) crystals. The physics program of the SND experiment includes a high statistics study of neutron-antineutron production near threshold, for which time measurements in the calorimeter are required. In this paper we describe new shaping and digitizing calorimeter electronics, which allow to reach a time resolution of about 1 ns for 100 MeV signal and an amplitude resolution of about 250 keV.

  5. Electromagnetic calorimeter for Belle II

    NASA Astrophysics Data System (ADS)

    Belle-ECL; Aulchenko, V.; Bobrov, A.; Bondar, A.; Cheon, B. G.; Eidelman, S.; Epifanov, D.; Garmash, Yu; Goh, Y. M.; Kim, S. H.; Krokovny, P.; Kuzmin, A.; Lee, I. S.; Matvienko, D.; Miyabayashi, K.; Nakamura, I.; Shebalin, V.; Shwartz, B.; Unno, Y.; Usov, Yu; Vinokurova, A.; Vorobjev, V.; Zhilich, V.; Zhulanov, V.

    2015-02-01

    The electromagnetic calorimeter of the BELLE II detector for experiments at Super B-factory SuperKEKB is briefly described. The project of the calorimeter upgrade to meet severe background conditions expected at the upgraded KEK B factory is presented.

  6. The HPS electromagnetic calorimeter

    DOE PAGES

    Balossino, I.; Baltzell, N.; Battaglieri, M.; ...

    2017-02-22

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  7. The electromagnetic calorimeter for the T2K near detector ND280

    NASA Astrophysics Data System (ADS)

    Allan, D.; Andreopoulos, C.; Angelsen, C.; Barker, G. J.; Barr, G.; Bentham, S.; Bertram, I.; Boyd, S.; Briggs, K.; Calland, R. G.; Carroll, J.; Cartwright, S. L.; Carver, A.; Chavez, C.; Christodoulou, G.; Coleman, J.; Cooke, P.; Davies, G.; Densham, C.; Di Lodovico, F.; Dobson, J.; Duboyski, T.; Durkin, T.; Evans, D. L.; Finch, A.; Fitton, M.; Gannaway, F. C.; Grant, A.; Grant, N.; Grenwood, S.; Guzowski, P.; Hadley, D.; Haigh, M.; Harrison, P. F.; Hatzikoutelis, A.; Haycock, T. D. J.; Hyndman, A.; Ilic, J.; Ives, S.; Kaboth, A. C.; Kasey, V.; Kellet, L.; Khaleeq, M.; Kogan, G.; Kormos, L. L.; Lawe, M.; Lawson, T. B.; Lister, C.; Litchfield, R. P.; Lockwood, M.; Malek, M.; Maryon, T.; Masliah, P.; Mavrokoridis, K.; McCauley, N.; Mercer, I.; Metelko, C.; Morgan, B.; Morris, J.; Muir, A.; Murdoch, M.; Nicholls, T.; Noy, M.; O'Keeffe, H. M.; Owen, R. A.; Payne, D.; Pearce, G. F.; Perkin, J. D.; Poplawska, E.; Preece, R.; Qian, W.; Ratoff, P.; Raufer, T.; Raymond, M.; Reeves, M.; Richards, D.; Rooney, M.; Sacco, R.; Sadler, S.; Schaack, P.; Scott, M.; Scully, D. I.; Short, S.; Siyad, M.; Smith, R.; Still, B.; Sutcliffe, P.; Taylor, I. J.; Terri, R.; Thompson, L. F.; Thorley, A.; Thorpe, M.; Timis, C.; Touramanis, C.; Uchida, M. A.; Uchida, Y.; Vacheret, A.; Van Schalkwyk, J. F.; Veledar, O.; Waldron, A. V.; Ward, M. A.; Ward, G. P.; Wark, D.; Wascko, M. O.; Weber, A.; West, N.; Whitehead, L. H.; Wilkinson, C.; Wilson, J. R.

    2013-10-01

    The T2K experiment studies oscillations of an off-axis muon neutrino beam between the J-PARC accelerator complex and the Super-Kamiokande detector. Special emphasis is placed on measuring the mixing angle θ13 by observing νe appearance via the sub-dominant νμ → νe oscillation and searching for CP violation in the lepton sector. The experiment includes a sophisticated, off-axis, near detector, the ND280, situated 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to understand better neutrino interactions at the energy scale below a few GeV. The data collected with the ND280 are used to study charged- and neutral-current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. A key element of the near detector is the ND280 electromagnetic calorimeter (ECal), consisting of active scintillator bars sandwiched between lead sheets and read out with multi-pixel photon counters (MPPCs). The ECal is vital to the reconstruction of neutral particles, and the identification of charged particle species. The ECal surrounds the Pi-0 detector (PØD) and the tracking region of the ND280, and is enclosed in the former UA1/NOMAD dipole magnet. This paper describes the design, construction and assembly of the ECal, as well as the materials from which it is composed. The electronic and data acquisition (DAQ) systems are discussed, and performance of the ECal modules, as deduced from measurements with particle beams, cosmic rays, the calibration system, and T2K data, is described.

  8. High-pT hadronic trigger using electromagnetic calorimeter with the STAR detector

    NASA Astrophysics Data System (ADS)

    Da, Hongyu; Cui, Xiangli; Xu, Yichun; Dong, Xin; Dunlop, James C.; Ruan, Lijuan; Tang, Zebo; Timmins, Anthony; Van Buren, Gene; Wang, Xiaolian; Xu, Zhangbu

    2013-01-01

    We derive a new method to improve the statistics of identified particles at high transverse momentum (pT) using online-triggered events by the STAR Barrel electro-magnetic-calorimeter (BEMC) detector. The BEMC is used to select charged hadrons (π± ,K±, and p (p bar)) via hadronic shower energy deposited in the BEMC. With this trigger, the statistics of the high pT particles are significantly enhanced (by a factor of up to ∼ 100 for STAR) with trigger efficiency up to 20%. In addition, weak-decay V0s (KS0 and Λ (Λ bar)) can be reconstructed by selecting the BEMC-trigger hadron as one of the decay daughters. We also show that the trigger efficiency can be obtained reliably in simulation and data-driven approaches, and final results from new method are compared with previous published results.

  9. The PHENIX electromagnetic calorimeter

    SciTech Connect

    Kistenev, E.; White, S.; Belikov, S.; Kochetkov, V.

    1993-12-31

    The main features of the Phenix EM calorimeter are presented. This a Pb/scintillator calorimeter with ``shish-kebab`` fiber readout, designed for low energy electron and photon measurements. Prototype calorimeters have been built with longitudinal segmentation, {approximately} 100 psec time of flight resolution and 8% energy resolution at 1GeV/c. The laser based monitoring system which has been incorporated into large scale prototypes is described. The dependence of light yield on fiber choice and scintillator surface preparation has been studied.

  10. Electromagnetic Calorimeter for Hades Experiment

    NASA Astrophysics Data System (ADS)

    Kugler, A.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Tlusty, P.; Traxler, M.

    2014-06-01

    Electromagnetic calorimeter (ECAL) is being developed to complement the dilepton spectrometer HADES currently operating at GSI Darmstadt, Germany. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeV on the beam of future accelerator SIS100@FAIR. The calorimeter will also improve the electron-hadron separation and will as well be used for the detection of photons from strange resonances in elementary and heavy ion reactions. Calorimeter modules constructed of lead glass Cherenkov counter, photomultiplier, HV divider and optical fiber are described in the detail. Two prototypes of novel front-end electronics based on TRB3 are presented. A dedicated LED based system being developed to monitor the stability of the calorimeter during beamtime is introduced as well.

  11. The simulation of the CMS electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Cossutti, F.

    2008-07-01

    The CMS Collaboration has developed a detailed simulation of the electromagnetic calorimeter (ECAL), which has been fully integrated in the collaboration software framework CMSSW. The simulation is based on the Geant4 detector simulation toolkit for the modelling of the passage of particles through matter and magnetic field. The geometrical description of the detector is being re-implemented using the DetectorDescription language, combining an XML based description with the algorithmic definition of the position of the elements. The ECAL simulation software is fully operational and has been validated using real data from the ECAL test beam experiment that took place in summer 2006.

  12. Improvement of the technique of identification of electrons and positrons with use of electromagnetic calorimeter of the CLAS detector

    SciTech Connect

    Gevorgyan, N. E.; Dashyan, N. B.; Paremuzyan, R. G.; Stepanyan, S. G.

    2010-01-01

    We study the dependence of the sensitivity of response of the electromagnetic calorimeter of CLAS plant on the momenta of electrons and positrons. We made calculation of this dependence and elaborated a method for its employment in identification of e- and e+. We have shown that the new method of selection of e- and e+ improves the quality of identification by about 10%. We used the experimental data obtained with the plant CLAS of linear accelerator at Jefferson laboratory (USA).

  13. Electromagnetic Calorimeter for HADES Experiment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, P.; Chlad, L.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Korcyl, G.; Kugler, A.; Lapidus, K.; Linev, S.; Lisowski, E.; Neiser, A.; Ott, O.; Otte, O.; Pethukov, O.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Thomas, A.; Tlusty, P.; Traxler, M.

    2014-11-01

    Electromagnetic calorimeter (ECAL) is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  14. The CLAS Forward Electromagnetic Calorimeter

    SciTech Connect

    M. Amarian; Geram Asryan; Kevin Beard; Will Brooks; Volker Burkert; Tom Carstens; Alan Coleman; Raphael Demirchyan; Yuri Efremenko; Hovanes Egiyan; Kim Egiyan; Herb Funsten; Vladimir Gavrilov; Kevin L. Giovanetti; R.M. Marshall; Berhard Mecking; R.C. Minehart; H. Mkrtchan; Mavrik Ohandjanyan; Youri Sharabian; L.C. Smith; Stepan Stepanyan; W.A. Stephens; T.Y. Tung; Carl Zorn

    2001-05-01

    The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8deg < (theta) < 45deg) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi-0 and eta decays and detect neutrons, This paper treats the design, construction and performance of the calorimeter.

  15. Current Status and Performance of the BESIII Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Feldbauer, Florian; BESIII Collaboration

    2015-02-01

    The BESIII experiment is located at the Beijing Electron Positron Collider (BEPCII) in China. Its electromagnetic calorimeter (EMC) consists of 6240 CsI(TI) crystals, each read out by two Photodiodes (PD) at the end of the crystal. Changes in the response of the calorimeter due to radiation damage in the crystals or changes in the photo detector output are monitored with a light pulser system.

  16. The BaBar electromagnetic calorimeter

    SciTech Connect

    Stahl, A.

    1997-07-01

    The progress on the design and construction of the BaBar electromagnetic calorimeter including its mechanical structure, the readout system, the mechanical and optical properties of the crystals, and the schedule for the final assembly and testing is summarized.

  17. Trigger circuits for the PHENIX electromagnetic calorimeter

    SciTech Connect

    Frank, S.S.; Britton, C.L. Jr.; Winterberg, A.L.; Young, G.R.

    1997-11-01

    Monolithic and discrete circuits have been developed to provide trigger signals for the PHENIX electromagnetic calorimeter detector. These trigger circuits are deadtimeless and create overlapping 4 by 4 energy sums, a cosmic muon trigger, and a 144 channel energy sum. The front end electronics of the PHENIX system sample the energy and timing channels at each bunch crossing (BC) but it is not known immediately if this data is of interest. The information from the trigger circuits is used to determine if the data collected is of interest and should be digitized and stored or discarded. This paper presents details of the design, issues affecting circuit performance, characterization of prototypes fabricated in 1.2 {micro}m Orbit CMOS, and integration of the circuits into the EMCal electronics system.

  18. Barrel calorimeter of the CMD-3 detector

    SciTech Connect

    Shebalin, V. E. Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  19. The lead-glass electromagnetic calorimeter for the SELEX experiment

    SciTech Connect

    M. Y. Balatz et al.

    2004-07-19

    A large-acceptance, highly segmented electromagnetic lead glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from few GeV up to 500 GeV in the collisions of the 650 GeV {Sigma}{sup -} hyperons and {pi}{sup -} mesons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and {pi}{sup 0} mesons reconstructed in 650 GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated.

  20. Determination of the total absorption peak in an electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Cheng, Jia-Hua; Wang, Zhe; Lebanowski, Logan; Lin, Guey-Lin; Chen, Shaomin

    2016-08-01

    A physically motivated function was developed to accurately determine the total absorption peak in an electromagnetic calorimeter and to overcome biases present in many commonly used methods. The function is the convolution of a detector resolution function with the sum of a delta function, which represents the complete absorption of energy, and a tail function, which describes the partial absorption of energy and depends on the detector materials and structures. Its performance was tested with the simulation of three typical cases. The accuracy of the extracted peak value, resolution, and peak area was improved by an order of magnitude on average, relative to the Crystal Ball function.

  1. Simulation of π0-γ Separation Study for Proposed CMS Forward Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Roy, Ashim; Jain, Shilpi; Banerjee, Sunanda; Bhattacharya, Satyaki; Majumder, Gobinda

    2016-10-01

    The Forward Electromagnetic Calorimeter of the CMS detector is going to be upgraded in the high luminosity running as the energy of the present Electromagnetic Calorimeter (PbWO4) will degrade in the high luminosity (luminosity 1034 cm -2 s -1) running due to extensive radiation (hadron flux 1013neutrons cm,-2). Shashlik Electromagnetic Calorimeter which consists of alternate layers of 1.5 mm LYSO(Ce) crystal plates and 2.5 mm Tungsten absorbers, was a proposal for high luminosity running. One of the performance points for any electromagnetic calorimeter is the ability to separate π0 s from true photons, since final states with photons are a clean and one of the most important final states in proton-proton collisions at the LHC. The objective of this project is to study the possibility of π0 and γ separation in the Shashlik detector using Multivariate Analysis (MVA) technique.

  2. Boronated Scintillator Detector for Use in Space with Ionization Calorimeters

    NASA Astrophysics Data System (ADS)

    Britvich, G. I.; Chernichenko, S. K.; Demichev, M. A.; Gnezdilov, I. I.; Mukhin, V. I.; Soukhih, A. V.

    2016-02-01

    Boronated Scintillator Detector (BSD) for use in space with ionization calorimeters was suggested. BSD improved e/h showers separation, which are initiated in the ionization calorimeter in interaction it with high energy particles. Improve the rejection is based on the hadron-induced showers tend to be accompanied by significantly more neutron activity than electromagnetic showers. The detector is composed of natural boron-loaded (5%) castable plastic scintillation plates. To collect light using wavelength-shifting (WLS) fibers. The experiment showed that the photoelectron yield is ∼ 40 ph.el./MeV with using PMT EMI 9954KB. Simulation on GEANT4 was obtained neutron detection efficiency. The simulation was conducted in the assumption that neutrons have the spectrum 252Cf and fall plane-parallel on the entry surface of the detector.

  3. Electromagnetic calorimeter for the HADES@FAIR experiment

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Kugler, A.; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Tlusty, P.; Traxler, M.

    2014-05-01

    An electromagnetic calorimeter (ECAL) is being developed to complement the dilepton spectrometer HADES currently operating on the beam of the SIS18 heavy-ion synchrotron at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. The ECAL will allow the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions in the energy range of 2-10 AGeV with the beam of the future accelerator SIS100@FAIR. The calorimeter will also improve the electron-hadron separation of the spectrometer, and will be used for the detection of photons from strange resonances in elementary and heavy ion reactions as well. The calorimeter will consist of 978 modules divided into 6 sectors, and it will cover forward angles of 16° < Θ < 45° and almost full azimuthal angle. Each module consists of a lead glass Cherenkov counter, photomultiplier, HV divider and an optical fiber. A dedicated LED based system being developed to monitor the stability of the calorimeter is discussed. Various prototypes of front-end electronics are presented and the achieved energy and time resolution determined using pulses from a pulse generator and a real detector signal induced by LED pulses and cosmic muons is shown as well.

  4. Monitoring the stability of the CMS electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Ferri, Federico

    2011-04-01

    The lead tungstate electromagnetic calorimeter of the CMS experiment has been proved to achieve an excellent energy resolution during the commissioning phase of the detector. The uniformity of the relative response of individual channels and the energy scale for electrons and photons are constrained by the several calibration procedures. The stability of the detector in time is constantly monitored throughout the LHC operation by means of dedicated runs and data taken at 100 Hz in the 3 μs abort gap at the end of each 89 μs beam cycle. A laser monitoring system is used to track the single channel response variations with time, as changes of the crystal transparency caused by irradiation. The stability of crucial detector parameters such as high voltage, temperature and electronic noise and the performance of the operation of the light monitoring system are shown to fulfill the requirements needed to achieve the target resolution of 0.5% at high energies.

  5. The backward end-cap for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Capozza, L.; Maas, F. E.; Noll, O.; Rodriguez Pineiro, D.; Valente, R.

    2015-02-01

    The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yield. With the exception of the very forward section, the light will be detected by large area avalanche photodiodes (APDs). The current pulses from the APDs will be integrated, amplified and shaped by ASIC chips which were developed for this purpose. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). In this contribution, a status report on the development of the BWEC is presented.

  6. High energy γ-ray detection with the AMS-02 electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Bigongiari, G.; Cervelli, F.; Coignet, G.; Goy, C.; Di Falco, S.; Guerri, I.; Incagli, M.; Morescalchi, L.; Pilo, F.; Rosier-Lees, S.; Vialle, J. P.; Vitillo, S.

    2017-04-01

    The electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a fine grained lead-scintillating fibers sampling calorimeter that allows for a precise 3-dimensional imaging of the longitudinal and lateral developement of electromagnetic showers. With a total thickness of 17X0 , electromagnetic showers are well contained and the energy resolution is 2% up to 1 TeV. ECAL provides a high discrimination between electromagnetic and hadronic showers; furthermore, together with the rest of the AMS-02 detector, it is able to identify the subdominant (≃10-6) photon flux from GeV up to TeV energies. Thanks to its high granularity ECAL has an excellent pointing capability (0 .5o at high energies) that offers an unusual possibility of drawing sky maps with the calorimeter standalone.

  7. Estimation of radiation effects in the front-end electronics of an ILC electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Bartsch, V.; Postranecky, M.; Targett-Adams, C.; Warren, M.; Wing, M.

    2008-08-01

    The front-end electronics of the electromagnetic calorimeter of an International Linear Collider detector are situated in a radiation environment. This requires the effect of the radiation on the performance of the electronics, specifically FPGAs, to be examined. In this paper we study the flux, particle spectra and deposited doses at the front-end electronics of the electromagnetic calorimeter of a detector at the ILC. We also study the occupancy of the electromagnetic calorimeter. These estimates are compared with measurements, e.g. of the radiation damage of FPGAs, done elsewhere. The outcome of the study shows that the radiation doses and the annual flux is low enough to allow today's FPGAs to operate. The Single Event Upset rate, however, lies between 14 min and 12 h depending on the FPGA used and therefore needs to be considered in the design of the data acquisition system of the electromagnetic calorimeter. The occupancy is about 0.002 per bunch train not taking into account the effect of noise which depends on the choice of the detector.

  8. Calibration and Monitoring of the CMS Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    La Licata, C.

    2014-06-01

    The CMS Electromagnetic Calorimeter (ECAL) is a homogeneous and hermetic calorimeter with high granularity and fast response, designed to provide high resolution measurements of electron and photon energy. Precise calibration of the ECAL must be performed in situ at the LHC, in order to achieve and maintain its design performance and to fully exploit the physics reach of CMS. Several techniques have been developed for the intercalibration of ECAL using collision data. These methods are based on the reconstruction of the invariant mass peak of unconverted photons from low mass particle decays (π0and η) and on the azimuthal symmetry of the average energy deposition at a given pseudorapidity. Further intercalibration is carried out by using isolated electrons from W and Z bosons decays to compare the energy measured in ECAL to the momentum of the reconstructed tracks. The absolute calibration of the energy scale is performed using Z decays into electron-positron pairs. Changes in the ECAL response due to crystal radiation damage and changes in photo-detector output must be monitored. A system based on the injection of laser light into each crystal is used to track and correct for these variations during LHC operations.

  9. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  10. Simulation of π0-γ separation study for proposed CMS forward electromagnetic calorimeter

    DOE PAGES

    Roy, Ashim; Jain, Shilpi; Banerjee, Sunanda; ...

    2016-11-11

    The Forward Electromagnetic Calorimeter of the CMS detector is going to be upgraded in the high luminosity running as the energy of the present Electromagnetic Calorimeter (PbWO4) will degrade in the high luminosity (luminosity 1034 cm-2 s-1) running due to extensive radiation (hadron flux 1013 neutrons cm,-2). Shashlik Electromagnetic Calorimeter which consists of alternate layers of 1.5 mm LYSO(Ce) crystal plates and 2.5 mm Tungsten absorbers, was a proposal for high luminosity running. One of the performance points for any electromagnetic calorimeter is the ability to separate π0 s from true photons, since final states with photons are a cleanmore » and one of the most important final states in proton-proton collisions at the LHC. As a result, the objective of this project is to study the possibility of π0 and γ separation in the Shashlik detector using Multivariate Analysis (MVA) technique.« less

  11. GEANT SIMULATIONS OF PRESHOWER CALORIMETER FOR CLAS12 UPGRADE OF THE FORWARD ELECTROMAGNETIC CALORIMETER

    SciTech Connect

    Whitlow, K.; Stepanyan, S.

    2007-01-01

    Hall B at the Thomas Jefferson National Accelerator Facility uses the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS) to study the structure of the nucleon. An upgrade from a 6 GeV beam to a 12GeV beam is currently planned. With the beam energy upgrade, more high-energy pions will be created from the interaction of the beam and the target. Above 6GeV, the angle between the two-decay photons of high-energy pions becomes too small for the current electromagnetic calorimeter (EC) of CLAS to differentiate between two photon clusters and single photon events. Thus, a preshower calorimeter will be added in front of the EC to enable fi ner granularity and ensure better cluster separation for all CLAS experiments at higher energies. In order to optimize cost without compromising the calorimeter’s performance, three versions of the preshower, varying in number of scintillator and lead layers, were compared by their resolution and effi ciency. Using GSIM, a GEANT detector simulation program for CLAS, the passage of neutral pions and single photons through CLAS and the new preshower calorimeter (CLAS12 EC) was studied. The resolution of the CLAS12 EC was calculated from the Gaussian fi t of the sampling fraction, the energy CLAS12 EC detected over the Monte Carlo simulated energy. The single photon detection effi ciency was determined from the energy and position of the photon hits. The fractional energy resolution measured was ΔE/E = 0.0972 in the fi ve-module version, 0.111 in the four-module version, and 0.149 in the three-module version. Both the fi ve- and four-module versions had 99% single photon detection effi ciency above 0.5GeV while the 3 module version had 99% effi ciency above 1.5GeV. Based on these results, the suggested preshower confi guration is the four-module version containing twelve layers of scintillator and fi fteen layers of lead. This version provides a reasonable balance of resolution, effi ciency, and

  12. Optical System of the STAR Barrel Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Grachov, O. A.

    2000-04-01

    The STAR Barrel Electromagnetic Calorimeter(BEMC) is a sampling calorimeter and the core of structure consist of a lead-scintillator plate stack. The plastic scintillator in the form of Mega-tile with 40 optically isolated tiles in each layer. The tile/fiber system uses a wavelength shifting fiber to read out the signal of a tile and a optical clear fiber carry the light through the magnet structure to the electronic-PMT box. A discription of the Optical system of BEMC is presented along with a current status of the quality control program of the calorimeter production.

  13. Optical electromagnetic radiation detector

    NASA Astrophysics Data System (ADS)

    Miceli, W. J.; Ludman, J. E.

    1985-08-01

    An optical electromagnetic radiation detector is invented having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as its is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna.

  14. High precision, low disturbance calibration system for the CMS Barrel Electromagnetic Calorimeter High Voltage apparatus

    NASA Astrophysics Data System (ADS)

    Fasanella, G.

    2017-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillation lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3%/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  15. The electromagnetic calorimeter in JLab Real Compton Scattering Experiment

    SciTech Connect

    Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski

    2007-04-16

    A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.

  16. The BaBar cesium iodide electromagnetic calorimeter

    SciTech Connect

    Wuest, C.R.

    1994-12-01

    The BABAR Cesium Iodide Electromagnetic Calorimeter is currently in the technical design stage. The calorimeter consists of approximately 10,000 individual thallium-doped cesium iodide crystals arranged in a near-hermetic barrel and endcap structure. Taking previous cesium iodide calorimeters as a benchmark, we hope to build a system with roughly two times better energy resolution. This will be achieved by a combination of high quality crystal growing, precision mechanical processing of crystals and support structure, highly efficient light collection and low noise readout electronics. The calorimeter described here represents the current state of the design and we are undertaking an active period of optimization before this design is finalized. We discuss here the physics motivation, the current design and options for optimization.

  17. Performance of the GEM electromagnetic calorimeter

    SciTech Connect

    Hong Ma

    1993-06-25

    The GEM EM calorimeter is optimized for the best energy, position, angular resolution and jet rejection. The detailed simulation results are presented. In the barrel with LKr, an energy resolution of about 6%/{radical}{direct_sum}0.4%, pointing resolution of 40mrad/{radical}E + 0.5mrad, and jet rejection of a factor of 5 are expected.

  18. Method and system for improved resolution of a compensated calorimeter detector

    DOEpatents

    Dawson, John W.

    1991-01-01

    An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.

  19. FoCal - A high granularity electromagnetic calorimeter for forward direct photon measurements

    NASA Astrophysics Data System (ADS)

    Zhang, C.

    2017-02-01

    The measurement of direct photon production at forward rapidity (y ∼ 3 - 5) at the LHC provides access to the structure of protons and nuclei at very small values of fractional momentum (x ∼10-5) . FoCal, an extremely-high-granularity Forward Calorimeter covering 3.3 < η < 5.3 is proposed as a detector upgrade to the ALICE experiment. To facilitate the design of the upgrade and to perform generic R&D necessary for such a novel calorimeter, a compact high-granularity electromagnetic calorimeter prototype has been built. The corresponding R&D studies are the focus of this paper. The prototype is a Si/W sampling calorimeter. It was instrumented with 24 layers of Monolithic Active Pixel Sensors, a total of 39 M pixels. We report on performance studies of the prototype with test beams at DESY and CERN in a broad energy range. The results of the measurements demonstrate a very small Molière radius (∼ 11 mm) and good linearity of the response. Unique results on the detailed lateral shower shape, which are crucial for the two-shower separation capabilities, are presented. We compare the measurements to GEANT-based MC simulations, which additionally include a modeling of charge diffusion. The studies demonstrate the feasibility of this high-granularity technology for use in the proposed detector upgrade. They also show the extremely high potential of this technology for future calorimeter development.

  20. Development of shashlik electromagnetic calorimeter prototype for SoLID

    NASA Astrophysics Data System (ADS)

    Shen, C.; Wang, Y.; Xiao, D.; Han, D.; Zou, Z.; Li, Y.; Zheng, X.; Chen, J.

    2017-03-01

    A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light is read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. A prototype of that module will be tested soon with an electron beam at JLab.

  1. An electromagnetic calorimeter for the JLab real compton scattering experiment

    NASA Astrophysics Data System (ADS)

    Hamilton, D. J.; Shahinyan, A.; Wojtsekhowski, B.; Annand, J. R. M.; Chang, T.-H.; Chudakov, E.; Danagoulian, A.; Degtyarenko, P.; Egiyan, K.; Gilman, R.; Gorbenko, V.; Hines, J.; Hovhannisyan, E.; Hyde-Wright, C. E.; de Jager, C. W.; Ketikyan, A.; Mamyan, V. H.; Michaels, R.; Nathan, A. M.; Nelyubin, V.; Rachek, I.; Roedelbrom, M.; Petrosyan, A.; Pomatsalyuk, R.; Popov, V.; Segal, J.; Shestakov, Y.; Templon, J.; Voskanyan, H.

    2011-07-01

    A lead-glass hodoscope calorimeter that was constructed for use in the Jefferson Lab Real Compton Scattering experiment is described. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6%/ √{Eγ GeV}. Features of both the detector design and its performance in the high luminosity environment during the experiment are presented.

  2. Preparing the hardware of the CMS Electromagnetic Calorimeter control and safety systems for LHC Run 2

    NASA Astrophysics Data System (ADS)

    Holme, O.; Adzic, P.; Di Calafiori, D.; Cirkovic, P.; Dissertori, G.; Djambazov, L.; Jovanovic, D.; Lustermann, W.; Zelepoukine, S.

    2016-01-01

    The Detector Control System of the CMS Electromagnetic Calorimeter has undergone significant improvements during the first LHC Long Shutdown. Based on the experience acquired during the first period of physics data taking of the LHC, several hardware projects were carried out to improve data accuracy, to minimise the impact of failures and to extend remote control possibilities in order to accelerate recovery from problematic situations. This paper outlines the hardware of the detector control and safety systems and explains in detail the requirements, design and commissioning of the new hardware projects.

  3. Design studies for the Phase II upgrade of the CMS Barrel Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Bornheim, A.

    2017-03-01

    The High Luminosity LHC (HL-LHC) aims to reach the unprecedented integrated luminosity of 3 ab‑1 with an instantaneous luminosity up to 5 × 1034 cm‑2 s‑1. This poses stringent requirements on the radiation resistance of detector components and on the latency of the trigger system. The barrel region of the CMS Electromagnetic Calorimeter will be able to retain the current lead tungstate crystals and avalanche photo diode detectors which will meet the performance requirements throughout the operational lifetime of the HL-LHC. The new front-end electronics and very front-end system required at high luminosities will be described.

  4. Investigation of the dynamic range of calorimeter scintillation detector for space gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Runtso, M. F.; Naumov, P. Yu; Naumov, P. P.; Solodovnikov, A. A.

    2016-02-01

    An arrangement of the GAMMA-400 space gamma-ray telescope that currently is under the ground testing, suggests implementation of fast two-layer calorimeter scintillation detector system S3 with large dynamic range for electromagnetic showers detection in the main operation mode of the device. The S3 constructive features are demonstrated. The experimental method and basic diagram of the ground prototype dynamic range investigation are described.

  5. Design and development of the SDC barrel electromagnetic calorimeter

    SciTech Connect

    Ambats, I.; Balka, L.; Blair, R.

    1994-04-01

    In fulfillment of contract SSC92-W-17743, Argonne National Laboratory is required to closeout and document all work performed in the design and development of the central calorimeter for the Solenoidal Detector Collaboration (SDC) Detector at the Superconducting Super Collider Laboratory (SSCL). This report will summarize the work performed, and identify all documents (technical reports, memo`s, drawings, etc.) that resulted from that effort. The work under this contract was shared in collaboration with the Westinghouse Science and Technology Center (WSTC) of Pittsburgh, Pennsylvania. It is the intent of this report to provide information that can be useful in the development of future detectors for high energy physics particle research.

  6. Radiation hardness study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    NASA Astrophysics Data System (ADS)

    Currás, E.; Mannelli, M.; Moll, M.; Nourbakhsh, S.; Steinbrueck, G.; Vila, I.

    2017-02-01

    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering 0~25 fb ‑1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many detector components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 40 layers of silicon detectors totalling 600 m2. The sensors will be realized as pad detectors with cell size between 0.5 and 1.0 cm2 and an active thickness between 100 μm and 300 μm depending on their location in the endcaps. The thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fb ‑1, the electromagnetic calorimeter will have to sustain a maximum integrated dose of 1.5 MGy and neutron fluences of 1.0×1016 neq/cm2. A tolerance study after neutron irradiation of 300 μm, 200 μm, 100 μm and 50 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The main properties of these diodes have been studied before and after irradiation: leakage current, capacitance, charge collection efficiency with laser and sensitivity to minimum ionizing particles with radioactive source (90Sr). The results show a good performance even after the most extreme irradiation.

  7. DETECTORS AND EXPERIMENTAL METHODS: Monte Carlo study on the low momentum μ-π identification of the BESIII EM calorimeter

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Lü, Jun-Guang; He, Kang-Lin; An, Zheng-Hua; Cai, Xiao; Dong, Ming-Yi; Fang, Jian; Hu, Tao; Liu, Wan-Jin; Lu, Qi-Wen; Ning, Fei-Peng; Sun, Li-Jun; Sun, Xi-Lei; Wang, Xiao-Dong; Xue, Zhen; Yu, Bo-Xiang; Zhang, Ai-Wu; Zhou, Li

    2009-10-01

    The BESIII detector has a high-resolution electromagnetic calorimeter which can be used for low momentum μ-π identification. Based on Monte Carlo simulations, μ-π separation was studied. A multilayer perceptron neural network making use of the defined variables was used to do the identification and a good μ-π separation result was obtained.

  8. Verification of Electromagnetic Calorimeter Concept for the HADES spectrometer

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Kugler, A.; Lapidus, K.; Linev, S.; Lisowski, E.; Ott, P.; Otte, P.; Petukhov; Pietraszko, J.; Reshetin, A.; Rodríguez-Ramos, P.; Rost, A.; Salabura, P.; Skott, P.; Sobolev, Y. G.; Steffen, O.; Thomas, A.; Tlustý, P.; Traxler, M.

    2015-04-01

    The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules with three different types of photomultipliers. Two types of developed front-end electronics as well as energy leakage between neighbouring modules under parallel and declined gamma beams were studied in detail.

  9. Simulation of π0-γ separation study for proposed CMS forward electromagnetic calorimeter

    SciTech Connect

    Roy, Ashim; Jain, Shilpi; Banerjee, Sunanda; Bhattacharya, Satyaki; Majumder, Gobinda

    2016-11-11

    The Forward Electromagnetic Calorimeter of the CMS detector is going to be upgraded in the high luminosity running as the energy of the present Electromagnetic Calorimeter (PbWO4) will degrade in the high luminosity (luminosity 1034 cm-2 s-1) running due to extensive radiation (hadron flux 1013 neutrons cm,-2). Shashlik Electromagnetic Calorimeter which consists of alternate layers of 1.5 mm LYSO(Ce) crystal plates and 2.5 mm Tungsten absorbers, was a proposal for high luminosity running. One of the performance points for any electromagnetic calorimeter is the ability to separate π0 s from true photons, since final states with photons are a clean and one of the most important final states in proton-proton collisions at the LHC. As a result, the objective of this project is to study the possibility of π0 and γ separation in the Shashlik detector using Multivariate Analysis (MVA) technique.

  10. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    SciTech Connect

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G.R.; Zutshi, V.; Hostachy, J. -Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J. -C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M. -C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J. -C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  11. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    DOE PAGES

    Francis, K.; Repond, J.; Schlereth, J.; ...

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of thismore » type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.« less

  12. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    SciTech Connect

    Beddo, M.E.; Bielick, E.; Dawson, J.W.; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  13. The CMS Electromagnetic Calorimeter: overview, lessons learned during Run 1 and future projections

    NASA Astrophysics Data System (ADS)

    Biino, Cristina

    2015-02-01

    The Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the LHC is a hermetic, fine grained, homogeneous calorimeter, containing 75,848 lead tungstate scintillating crystals. We highlight the key role of the ECAL in the discovery and elucidation of the Standard Model Higgs boson during LHC Run I. We discuss, with reference to specific examples from LHC Run I, the challenges of operating a crystal calorimeter at a hadron collider. Particular successes, chiefly in terms of achieving and maintaining the required detector energy resolution in the harsh radiation environment of the LHC, are described. The prospects for LHC Run II (starting in 2015) are discussed, building upon the experience gained from Run I. The high luminosity upgrade of the LHC (HL-LHC) is expected to be operational from about 2025 to 2035 and will provide instantaneous and integrated luminosities of around 5 × 1034/cm2/s and 3000/fb respectively. We outline the challenges that ECAL will face and motivate the evolution of the detector that is thought to be necessary to maintain its performance throughout LHC and High-Luminosity LHC operation.

  14. Performance prospects for the CMS electromagnetic calorimeter barrel avalanche photodiodes for LHC phase I and phase II: Radiation hardness and longevity

    NASA Astrophysics Data System (ADS)

    Addesa, F.; Cavallari, F.

    2015-07-01

    The electromagnetic calorimeter of the Compact Muon Solenoid (CMS) experiment at the LHC is a hermetic, fine-grained, homogeneous calorimeter, comprising 75,848 lead tungstate scintillating crystals. Avalanche photodiodes produced by Hamamatsu are used as sensors for the electromagnetic barrel calorimeter. These devices were tested for radiation hardness assuming an integrated luminosity of 500 fb-1, which corresponds to a neutron fluence of 2- 4 ×1013 n /cm2, depending on the detector location. Beginning in 2022, a new phase of the LHC is foreseen to exploit the full potential of the accelerator, which will deliver 3000 fb-1 of integrated luminosity. Irradiation studies up to a fluence of 1.5 ×1014 n /cm2 have been performed to qualify the avalanche photodiodes for radiation hardness. We present measurements of gain, quantum efficiency and noise, and discuss the implications for the CMS electromagnetic barrel calorimeter performance.

  15. Dead cell and side leakage correction for a lead-scintillating fiber electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Zu-Hao; Tang, Zhi-Cheng; Basegmez du Pree, Suzan; Zhang, Shao-Wen; Wang, Xue-Qiang; Yang, Min; Chen, Guo-Ming; Chen, He-Sheng

    2016-09-01

    The electromagnetic calorimeter (ECAL) of the Alpha Magnetic Spectrometer (AMS-02) is one of the key detectors for dark matter searches. It measures the energies of electrons, positrons and photons and seperates them from hadrons. Currently, there are 5 dead cells in the ECAL, which affect the reconstructed energy of 4.2% of total events in the ECAL acceptance. When an electromagnetic shower axis is close to the ECAL border, due to the side leakage, the reconstructed energy is affected as well. In this paper, methods for dead cells and side leakage corrections for the ECAL energy reconstruction are presented. For events with the shower axis crossing dead cells, applying dead cell correction improves the difference in the reconstructed energy from 12% to 1%, while for events near the ECAL border, with side leakage correction it is improved from 4% to 1%. Supported by National Natural Science Foundation of China(11220101004)

  16. Sum and buffer amplifier for lead-glass barrel calorimeter in the TOPAZ detector

    SciTech Connect

    Ujiie, N.; Ikeda, M.; Inaba, S.

    1988-02-01

    Analog sum and buffer amplifiers have been developed to provide a fast trigger signal from the lead-glass electromagnetic calorimeter in the TOPAZ detector for TRISTAN e/sup +/e/sup -/ collider experiments at KEK. The total kick-back noise from the 4300 channel gate signals of the LeCroy FASTBUS ADC 1885N has been suppressed to less than 40 mV (equivalent to a 0.4 GeV electron signal). The performances of the analog sum and buffer amplifiers that have been developed are described.

  17. Performance of the ATLAS electromagnetic calorimeter barrel module 0

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Ballansat, J.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Chollet, F.; Colas, J.; Delebecque, P.; di Ciaccio, L.; Dumont-Dayot, N.; El Kacimi, M.; Gaumer, O.; Ghez, P.; Girard, C.; Gouanère, M.; Kambara, H.; Jérémie, A.; Jézéquel, S.; Lafaye, R.; Leflour, T.; Le Maner, C.; Lesueur, J.; Massol, N.; Moynot, M.; Neukermans, L.; Perrodo, P.; Perrot, G.; Poggioli, L.; Prast, J.; Przysiezniak, H.; Riccadona, X.; Sauvage, G.; Thion, J.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.; Chen, H.; Citterio, M.; Farrell, J.; Gordon, H.; Hackenburg, B.; Hoffman, A.; Kierstead, J.; Lanni, F.; Leite, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Rescia, S.; Stumer, I.; Takai, H.; Yip, K.; Benchekroun, D.; Driouichi, C.; Hoummada, A.; Hakimi, M.; Stroynowski, R.; Ye, J.; Beck Hansen, J.; Belymam, A.; Bremer, J.; Chevalley, J. L.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Marin, C. P.; Pailler, P.; Schilly, P.; Seidl, W.; Vossebeld, J.; Vuillemin, V.; Clark, A.; Efthymiopoulos, I.; Moneta, L.; Belhorma, B.; Collot, J.; de Saintignon, P.; Dzahini, D.; Ferrari, A.; Gallin-Martel, M. L.; Hostachy, J. Y.; Martin, P.; Muraz, J. F.; Ohlsson-Malek, F.; Saboumazrag, S.; Ban, J.; Cartiglia, N.; Cunitz, H.; Dodd, J.; Gara, A.; Leltchouk, M.; Negroni, S.; Parsons, J. A.; Seman, M.; Simion, S.; Sippach, W.; Willis, W.; Barreiro, F.; Garcia, G.; Labarga, L.; Rodier, S.; Del Peso, J.; Alexa, C.; Barrillon, P.; Benchouk, C.; Chekhtman, A.; Dinkespiler, B.; Djama, F.; Duval, P. Y.; Henry-Couannier, F.; Hinz, L.; Jevaud, M.; Karst, P.; Le van Suu, A.; Martin, L.; Martin, O.; Mirea, A.; Monnier, E.; Nagy, E.; Nicod, D.; Olivier, C.; Pralavorio, P.; Repetti, B.; Raymond, M.; Sauvage, D.; Tisserant, S.; Toth, J.; Wielers, M.; Battistoni, G.; Bonivento, W.; Carminati, L.; Cavalli, D.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Perini, L.; Resconi, S.; Tartarelli, G. F.; Aulchenko, V.; Kazanin, V.; Kolachev, G.; Malyshev, V.; Maslennikov, A.; Pospelov, G.; Snopkov, R.; Shousharo, A.; Talyshev, A.; Tikhonov, Yu.; Augé, E.; Bourdarios, C.; Breton, D.; Cros, P.; de La Taille, C.; Falleau, I.; Fournier, D.; Guilhem, G.; Hassani, S.; Jacquier, Y.; Kordas, K.; Macé, G.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Puzo, P.; Richer, J. P.; Rousseau, D.; Seguin-Moreau, N.; Serin, L.; Tocut, V.; Veillet, J. J.; Zerwas, D.; Astesan, F.; Bertoli, W.; Camard, A.; Canton, B.; Fichet, S.; Hubaut, F.; Imbault, D.; Lacour, D.; Laforge, B.; Le Dortz, O.; Martin, D.; Nikolic-Audit, I.; Orsini, F.; Rossel, F.; Schwemling, P.; Cleland, W.; McDonald, J.; Abouelouafa, E. M.; Ben Mansour, A.; Cherkaoui, R.; El Mouahhidi, Y.; Ghazlane, H.; Idrissi, A.; Belorgey, J.; Bernard, R.; Chalifour, M.; Le Coroller, A.; Ernwein, J.; Mansoulié, B.; Renardy, J. F.; Schwindling, J.; Taguet, J.-P.; Teiger, J.; Clément, C.; Lund-Jensen, B.; Lundqvist, J.; Megner, L.; Pearce, M.; Rydstrom, S.; Egdemir, J.; Engelmann, R.; Hoffman, J.; McCarthy, R.; Rijssenbeek, M.; Steffens, J.; Atlas Electromagnetic Liquid Argon Calorimeter Group

    2003-03-01

    The construction and performance of the barrel pre-series module 0 of the future ATLAS electromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be 7.11±0.07. An energy resolution of better than 9.5% GeV1/2/ E (sampling term) has been obtained with electron beams of up to 245 GeV. The uniformity of the response to electrons in an area of Δ η×Δ φ=1.2×0.075 has been measured to be better than 0.8%.

  18. Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC)

    NASA Astrophysics Data System (ADS)

    Currás, Esteban; Fernández, Marcos; Gallrapp, Christian; Gray, Lindsey; Mannelli, Marcello; Meridiani, Paolo; Moll, Michael; Nourbakhsh, Shervin; Scharf, Christian; Silva, Pedro; Steinbrueck, Georg; Fatis, Tommaso Tabarelli de; Vila, Iván

    2017-02-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb-1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb-1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 1016 neq/cm2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The properties of these diodes studied before and after irradiation were leakage current, capacitance, charge collection efficiency, annealing effects and timing capability. The results of these measurements validate these sensors as candidates for the HGC system.

  19. Characterization of a prototype for the electromagnetic calorimeter of the Mu2e experiment

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Yu. I.; Flood, K.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Ott, P.; Pezzullo, G.; Saputi, A.; Sarra, I.; Soleti, S. R.; Tassielli, G.; Tereshchenko, V.; Thomas, A.

    2016-01-01

    The Mu2e experiment at Fermilab searches the neutrinoless conversion of the muon into electron in the field of an Aluminum nucleus. The observation of this process would be a proof of the Charged Lepton Flavor Violation (CLFV). In case of no observation, the upper limit will be set to R_{μ e}<6× 10^{-17} @ 90% CL, improving by a factor of 4 the previous best determination. The Mu2e detector apparatus consists of a straw tubes tracker that will measure the electrons momentum, and an electromagnetic calorimeter that provides a tracking-independent measurement of the electron energy, time and position. In this paper, we describe the baseline project of the EMC and present results in terms of performances and R&D.

  20. Calibration of the CMS electromagnetic calorimeter with LHC collision data

    NASA Astrophysics Data System (ADS)

    Obertino, M. M.; CMS Collaboration

    2013-08-01

    The CMS ECAL is a high resolution electromagnetic calorimeter which relies upon precision calibration in order to achieve and maintain its design performance. Variations in light collected from the lead tungstate crystals, due to intrinsic differences in crystals/photodetectors, as well as variations with time due to radiation damage for example, need to be taken into account. Sophisticated and effective methods of inter-crystal and absolute calibration have been devised, using collision data from the 2011 LHC run and a dedicated light injection system. For inter-calibration, low mass particle (π0 and η) decays to two photons are exploited, as well as the azimuthal symmetry of the average energy deposition at a given pseudorapidity. The light injection system monitors the channel response in real-time and enables the re-calibration of the measured energies over time. This is cross-checked by the comparison of E/p measurements of electrons from W decays (where the momentum is measured in the CMS tracker) with/without these re-calibrations applied. Absolute calibration has been performed using Z decays into electron-positron pairs.

  1. [Calorimeter based detectors for high energy hadron colliders]. [Progress report

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  2. The Electromagnetic Calorimetry of the PANDA Detector at FAIR

    NASA Astrophysics Data System (ADS)

    Novotny, R. W.; PANDA Collaboration

    2012-12-01

    The PANDA collaboration at FAIR, Germany, will focus on undiscovered charm-meson states and glueballs in antiproton annihilations to study QCD phenomena in the non-perturbative regime. For fixed target experiments at the storage ring HESR a 4π-detector for tracking, particle ID and calorimetry is under development and construction to operate at high annihilation rates up to 20 MHz. The electromagnetic calorimeters are composed of a target spectrometer (EMC) based on PbWO4 crystals and a shashlyk-type sampling calorimeter at the most forward region. The EMC, comprising more than 15,000 crystals, is operated at a temperature of -25°C and read-out via large-area avalanche photo-diodes or vacuum phototriodes/tetrodes. The photo sensor signals are continuously digitized by sampling ADCs. More than 50% of the high quality PWO-II crystals are delivered and tested. The excellent performance with respect to energy, time and position information was determined over a shower energy range from 10 MeV up to 15 GeV by operating several prototype detectors. In addition, the concept of stimulated recovery has been investigated to recover radiation damage on- and off-line during the calorimeter operation. Besides the overall concept of the target spectrometer the response function of the shashlyk spectrometer down to photon energies even below 100 MeV is presented.

  3. PbWO4 crystals for the CMS electro-magnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Organtini, Giovanni

    1997-02-01

    In this paper results obtained by the CMS collaboration in the study of the properties of PbWO4 crystals chosen to construct the electro-magnetic calorimeter for the CMS experiment at LHC are reported. The main activities carried out by the collaboration during 1995/1996 were devoted to the definition of the properties of the crystals needed to fully characterise them for the final calorimeter assembly.

  4. PbWO 4 crystals for the CMS electro-magnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Organtini, Giovanni; CMS Collaboration

    1998-02-01

    In this paper results obtained by the CMS collaboration in the study of the properties of PbWO 4 crystals chosen to construct the electro-magnetic calorimeter for the CMS experiment at LHC are reported. The main activities carried out by the collaboration during 1995/1996 were devoted to the definition of the properties of the crystals needed to fully characterise them for the final calorimeter assembly.

  5. Beam test results of a high-granularity tile/fiber electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Ono, H.; Miyata, H.; Iba, S.; Nakajima, N.; Sanchez, A. L. C.; Fujii, Y.; Itoh, S.; Kajino, F.; Kanzaki, J.; Kawagoe, K.; Kim, S.; Kishimoto, S.; Matsumoto, T.; Matsunaga, H.; Nagano, A.; Nakamura, R.; Takeshita, T.; Tamura, Y.; Yamauchi, S.

    2009-03-01

    A prototype sampling electromagnetic calorimeter (17.1 radiation lengths) for future linear collider experiments was built, using 4 cm×4 cm×1 mm plastic scintillator tiles and 4 mm-thick lead absorber. Wavelength-shifting fibers were used to guide the scintillation light into multi-anode photo-multiplier tubes. The calorimeter was tested at the beam test facility of the High Energy Accelerator Research Organization (KEK) in 2004. In this article we present our beam test results for the tile/fiber calorimeter focusing on the linearity in energy response, the energy resolution, position resolution and uniformity across the tile front face.

  6. Results from a prototype Lead-Scintillating Fiber Calorimeter for use as a STAR Forward Detector

    NASA Astrophysics Data System (ADS)

    Shanmuganathan, Prashanth; STAR Collaboration

    2016-09-01

    Forward instrumentation consisting of hadronic as well as electromagnetic calorimeters will achieve several physics goals at RHIC. Examples include studying the internal structure of nucleons and properties of nuclear matter through measurement of forward jets and long-range correlations. Earlier studies that pixelized AGS E864 lead-scintillating fiber calorimeter cells (10 cm2x117 cm) into a three by three array of 3.3 cm2 pixels showed that neutral pions can be reconstructed to E >15 GeV and hadronic shower shapes can be distinguished from EM shower shapes with 90% confidence. In this contribution, we compare the light collection efficiency from total internal reflective light guides with that of a Fresnel lens system; light signals for both guide types are recorded using photomultiplier tubes (PMT) and silicon photomultipliers (SiPM). The Fresnel lens system allows better magnetic shielding of PMTs from the STAR magnet fringe field and focuses light into the small sensitive area of the SiPM. A prototype of these designs consisting of a two by three array of cells (54 pixels) was mounted on the east side of the STAR detector during Run16 and 80 million events from Au+Au collisions at √{sNN} =200 GeV were recorded. In this talk, we will present comparisons

  7. Design and status of the Mu2e electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Yu. I.; Di Falco, S.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pasciuto, D.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Soleti, S. R.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2016-07-01

    The Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5 ×10-17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.

  8. Design and status of the Mu2e electromagnetic calorimeter

    SciTech Connect

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dane, E.; Davydov, Yu. I.; Di Falco, S.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, Stefano; Miyashita, T.; Morescalchi, L.; Murat, P.; Pasciuto, D.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Soleti, S. R.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2015-10-02

    Here, the Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5×10–17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D; studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.

  9. Design and status of the Mu2e electromagnetic calorimeter

    DOE PAGES

    Atanov, N.; Baranov, V.; Budagov, J.; ...

    2015-10-02

    Here, the Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5×10–17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to matchmore » these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D; studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.« less

  10. Radiation damage studies for the SDC electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fazely, A. R.; Gunasingha, R.; Imlay, R. L.; Khosravi, E. S.; Lim, Jit-Ning; Lyndon, C.; McMills, G.; McNeil, R. R.; Metcalf, W. J.; Courtney, J. C.; Tashakkori, R.; Vegara, B. J.

    1993-01-01

    We report the results from a year long study aimed at radiation resistance and optical performance of scintillator tile with green wave shifter fiber readout. A careful investigation of several rad-hard plastic scintillators from Bicron and Kuraray, studies indicate that for a specific rad-hard Bicron scintillator, it is possible to build a tile/fiber EM calorimeter that can operate in the design luminosity of SSC. This calorimeter with excellent optical response would only have a light loss of about 5% after being exposed to 1 Mrad.

  11. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    SciTech Connect

    Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

    2012-12-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/√E, and pion/electron (π/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting

  12. Tungsten and Scintillating Fiber Electromagnetic Calorimeter for sPHENIX

    NASA Astrophysics Data System (ADS)

    Higdon, Michael

    2016-09-01

    Utilizing the products of relativistic heavy ion collisions, one can shed light on the physics behind the earliest stages of the universe. Consisted of unbounded quarks and gluons, the Quark Gluon Plasma (QGP) results from the collisions of heavy ions. The use of electromagnetic and hadronic calorimetry is an option for studying the strong interactions which govern the QGP. The sPHENIX detector is planned for use at the Relativistic Heavy Ion Collider (RHIC) which detects jets from the collisions of large nuclei. The sPHENIX EMCal will consist of a tungsten absorber and scintillating fibers and will be read out with silicon photomultipliers. Made up of many individual towers, the EMCal covers full ϕ and large η. We will discuss the production process of these towers as well as the projectivity of the towers. Towers projective in one dimension (ϕ) have been produced and tested in beam at Fermilab. We will present recent developments in the first two dimensionally projective towers and future plans.

  13. An electromagnetic calorimeter for the solenoidal tracker at the Relativistic Heavy Ion Collider

    SciTech Connect

    Westfall, G.D.; Llope, W.J.; Underwood, D.G.

    1993-10-01

    In this document, we outline a proposal to the National Science Foundation (NSF) for the construction of an electromagnetic calorimeter for STAR that fulfills these requirements. This proposal creates the opportunity for the NSF to make a major impact on the experimental program at RHIC by providing a crucial, but defensibly omitted, component of the STAR experiment as approved.

  14. Maintaining and improving the control and safety systems for the Electromagnetic Calorimeter of the CMS experiment

    NASA Astrophysics Data System (ADS)

    Di Calafiori, D.; Adzic, P.; Dissertori, G.; Holme, O.; Jovanovic, D.; Lustermann, W.; Zelepoukine, S.

    2012-12-01

    This paper presents the current architecture of the control and safety systems designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An evaluation of system performance during all CMS physics data taking periods is reported, with emphasis on how software and hardware solutions are used to overcome limitations, whilst maintaining and improving reliability and robustness. The outcomes of the CMS ECAL Detector Control System (DCS) Software Analysis Project were a fundamental step towards the integration of all control system applications and the consequent piece-by-piece software improvements allowed a smooth transition to the latest revision of the system. The ongoing task of keeping the system in-line with new hardware technologies and software platforms specified by the CMS DCS Group is discussed. The structure of the comprehensive support service with detailed incident logging is presented in addition to a complete test setup for reproducing failures and for testing solutions prior to deployment into production. A correlation between the acquired experience, the development of new software tools and a reduction in the DCS support load is highlighted.

  15. A Calibration Technique for the ALICE Electromagnetic Calorimeter at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Cossyleon, Karen; Thomas, Chaan; Garcia-Solis, Edmundo; Ploskon, Mateusz; Jacobs, Peter

    2011-10-01

    The Large Hadron Collider at CERN is the world's largest and highest energy, particle and heavy ion collider. The LHC explores the frontiers of particle physics using high energy proton + proton collisions and the properties of the Quark-Gluon Plasma through the collision of heavy nuclei. ALICE is one of the four LHC experiments, specialized for the study of heavy ion collisions. This study presents our work on a detector of ALICE, the Electromagnetic Calorimeter. We are analyzing the proton-proton collision data recorded at 2.76 TeV. The ALICE TPC is used to isolate the tracks of eee- pairs that originate from the decay of J/ Ψ particle and that fall within the EMCal's acceptance. The TPC measures the momentum of these electron tracks, which is compared to the energy deposited by them in the EMCal. We therefore use the precise measurement of TPC momentum as the reference to calibrate the EMCal energy measurement. In this presentation we will show the steps taken to analyze the data, how we performed the matching of electron tracks from the J/ Ψ decay with the energy deposited in the EMCal and some preliminary results. Research funded by NSF grant PHY-0968903.

  16. Monitoring and Correcting for Response Changes in the CMS Lead-tungstate Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Ferri, Federico

    2012-12-01

    The CMS Electromagnetic Calorimeter (ECAL) comprises 75848 lead-tungstate scintillating crystals. Changes in the ECAL response, due to crystal radiation damage or changes in photo-detector output, are monitored in real time with a sophisticated system of lasers to allow corrections to the energy measurements to be calculated and used. The excellent intrinsic resolution of the CMS ECAL requires the monitoring system itself to be calibrated to a high precision and its stability to be controlled and understood. The components of the CMS ECAL monitoring system, and how it has evolved to include modern solid-state lasers, are described. Several physics channels are exploited to normalise the ECAL response to the changes measured by the monitoring system. These include low energy diphoton resonances, electrons from W and Z decays (using shower energy versus track momentum measurements), and the azimuthal symmetry of low energy deposits in minimum bias events. This paper describes how the monitoring system is operated, how the corrections are obtained, and the resulting ECAL performance.

  17. Electromagnetic Calorimeter studies for the GEp(5) experiment

    NASA Astrophysics Data System (ADS)

    Ayerbe Gayoso, Carlos

    2013-10-01

    The GEp(5) experiment, part of the SBS collaboration, will be the fourth measurement of the GEp /GMp ratio using the proton recoil polarization technique. The current data suggests that the GEp /GMp ratio obtained with this technique, might cross zero near Q2 ~ 10 GeV2 , now reachable with the CEBAF upgrade to 12 GeV energy beam. This measurement technique requires a precise measurement of the energy and angles of the scattered electron in coincidence with the recoil proton. The electron's measured energy and crude position will be used in the trigger, while the offline position measurement will be used in kinematic cuts to separate the elastic process from the background. A lead-glass calorimeter, which was used in the previous experiments, is not optimal for the planned experiment due to the rapid radiation damage in the experiment's running conditions. A sampling calorimeter, made of lead and plastic scintillators, is under consideration. Results from a test beam and Monte Carlo simulations of this kind of calorimeter will be presented. Supported from a NSF grant, PHY-1066374.

  18. Test beam results from the D0 liquid argon end calorimeter electromagnetic module

    SciTech Connect

    Spadafora, A.L.

    1991-08-01

    Results are presented from a test beam study of the D0 liquid argon end calorimeter electromagnetic module prior to its installation at the Fermilab Tevatron Collider. Using electron beams with energies ranging from 10--150 GeV we have obtained an energy resolution of 15.7%/{radical}E(GeV) with a small constant term of 0.3% and a linearity of better than {plus minus}0.5%. The position resolution of the calorimeter is found to approximately 1 mm for 100 GeV electrons. 7 refs., 8 figs., 3 tabs.

  19. Electromagnetic calorimeter for the Heavy Photon Search Experiment at Jefferson Lab

    SciTech Connect

    Buchanan, Emma

    2014-11-01

    The Heavy Photon Search Experiment (HPS) seeks to detect a hypothesised hidden sector boson, the A', predicted to be produced in dark matter decay or annihilation. Theories suggest that the A' couples weakly to electric charge through kinetic mixing, allowing it, as a result, to decay to Standard Matter (SM) lepton pair, which may explain the electron and positron excess recently observed in cosmic rays. Measuring the lepton pair decay of the A' could lead to indirect detection of dark matter. The HPS experiment is a fixed target experiment that will utilize the electron beam produced at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The detector set-up includes a silicon vertex tracker (SVT) and an Electromagnetic Calorimeter (ECal). The ECal will provide the trigger and detect e+e- pairs and its construction and testing forms the focus of this thesis. The ECal consists of 442 PbWO4- tapered crystals with a length 16cm and a 1.6x1.6cm2 cross-section, stacked into a rectangular array and are coupled to Large Area APDs and corresponding pre-amplifiers. Supplementary to the ECal is a Light Monitoring System (LMS) consisting of bi-coloured LEDs that will monitor changes in APD gain and crystal transparency due to radiation damage. Before construction of the ECal each of the components were required to be individually tested to determine a number of different characteristics. Irradiation tests were performed on PbWO4 ECal crystals and, as a comparison, one grown by a different manufacturer to determine their radiation hardness. A technique for annealing the radiation damage by optical bleaching, which involves injecting light of various wavelengths into the crystal, was tested using the blue LED from the LMS as a potential candidate. The light yield dependence on temperature was also measured for one of the PbWO4 crystal types. Each APD was individually tested to determine if they functioned correctly and

  20. Multiple-neutral-meson decays of the /tau/ lepton and electromagnetic calorimeter requirements at Tau-Charm Factory

    SciTech Connect

    Gan, K.K.

    1989-08-01

    This is a study of the physics sensitivity to the multiple-neutral-meson decays of the /tau/ lepton at the Tau-Charm Factory. The sensitivity is compared for a moderate and an ultimate electromagnetic calorimeter. With the high luminosity of the Tau- Charm Factory, a very large sample of the decays /tau//sup /minus// /yields/ /pi//sup /minus//2/pi//sup 0//nu//sub /tau// and /tau//sup /minus// /yields/ /pi//sup /minus//3/pi//sup 0//nu//sub /tau// can be collected with both detectors. However, with the ultimate detector, 2/pi//sup 0/ and 3/pi//sup 0/ can be unambiguously reconstructed with very little background. For the suppressed decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//pi//sup 0//nu//sub /tau//, only the ultimate detector has the sensitivity. The ultimate detector is also sensitive to the more suppressed decay /tau//sup /minus// /yields/ K/sup /minus///eta//nu//sub /tau// and the moderate detector may have the sensitivity if the hadronic background is not significantly larger than that predicted by Lund. In the case of the highly suppressed second-class-current decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//nu//sub /tau//, only the ultimate detector has sensitivity. The sensitivity can be greatly enhanced with a small-angle photon veto. 16 refs., 9 figs., 2 tabs.

  1. The SOUDAN 2 detector The design and construction of the tracking calorimeter modules

    NASA Astrophysics Data System (ADS)

    Allison, W. W. M.; Alner, G. J.; Ambats, I.; Ayres, D. S.; Balka, L. J.; Barr, G. D.; Barrett, W. L.; Benjamin, D.; Bode, C.; Border, P. M.; Brooks, C. B.; Cobb, J. H.; Cockerill, D. J. A.; Coover, K.; Cotton, R. J.; Courant, H.; Dahlin, B. B.; DasGupta, U.; Dawson, J. W.; Demuth, D. M.; Edwards, V. W.; Ewen, B.; Fields, T. H.; Garcia-Garcia, C.; Gallagher, H. M.; Giles, R. H.; Giller, G. L.; Goodman, M. C.; Gray, R. N.; Heppelmann, S.; Hill, N.; Hoftiezer, J. H.; Jankowski, D. J.; Johns, K.; Joyce, T.; Kafka, T.; Kasahara, S. M. S.; Kirby-Gallagher, L. M.; Kochocki, J.; Leeson, W.; Litchfield, P. J.; Longley, N. P.; Lopez, F. V.; Lowe, M. J.; Mann, W. A.; Marshak, M. L.; May, E. N.; Maxam, D.; McMaster, L.; Milburn, R.; Miller, W. H.; Minor, C. P.; Mondal, N.; Mualem, L.; Napier, A.; Nelson, E. M.; Nickson, R.; Oliver, W.; Pearce, G. F.; Perkins, D. H.; Peterson, E. A.; Price, L. E.; Roback, D. M.; Rosen, D. B.; Ruddick, K.; Saitta, B.; Schmid, D. J.; Schlereth, J.; Schneps, J.; Schub, M. H.; Seidlein, R. V.; Shield, P. D.; Shupe, M. A.; Spear, S.; Stassinakis, A.; Sundaralingam, N.; Thomson, M. A.; Thron, J. L.; Vassiliev, V.; Villaume, G.; Wakely, S. P.; Wall, D.; Wallis, E. W. G.; Weems, L.; Werkema, S. J.; West, N.; Wielgosz, U.; Woods, C. A.; Yarker, S.

    1996-02-01

    SOUDAN 2 is a 960-ton tracking calorimeter which has been constructed to search for nucleon decay and other phenomena. The full detector consists of 224 calorimeter modules each weighing 4.3 tons. The design and construction of the modules are described. The modules consist of finely segmented iron instrumented with 1 m long drift tubes of 15 mm internal diameter. The tubes enable three spatial coordinates and d E/d x to be recorded for charged particles traversing the tubes.

  2. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    NASA Astrophysics Data System (ADS)

    Ødegaard, Trygve; Tafjord, Harald; Buran, Torleiv

    1995-02-01

    As part of the luminosity monitor, SAT, in the DELPHI [1] experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beans. The tracking detector reconstructs from the interaction point and the calorimeter measures the corresponding particles' energies. The SAT Tracker [2] consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder [3,4]. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. We describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques.

  3. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    SciTech Connect

    CHASE,B.CITTERIO,M.LANNI,F.MAKOWIECKI,D.RADEKA,S.RESCIA,S.TAKAI,H.ET AL.

    1999-09-20

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail.

  4. Performance of CDF calorimeter simulation for Tevatron Run II

    SciTech Connect

    C. Currat

    2002-09-19

    The upgraded CDF II detector has collected first data during the initial operation of the Tevatron accelerator in Run II. The simulation of the CDF electromagnetic and hadronic central and upgraded plug (forward) calorimeter is based on the Gflash calorimeter parameterization package used within the GEANT based detector simulation of the Run II CDF detector. We present the results of tuning the central and plug calorimeter response to test beam data.

  5. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    SciTech Connect

    Mkrtchyan, Hamlet; Carlini, Roger D.; Tadevosyan, Vardan H.; Arrington, John Robert; Asaturyan, Arshak Razmik; Christy, Michael Eric; Dutta, Dipangkar; Ent, Rolf; Fenker, Howard C.; Gaskell, David J.; Horn, Tanja; Jones, Mark K.; Keppel, Cynthia; Mack, David J.; Malace, Simona P.; Mkrtchyan, Arthur; Niculescu, Maria-Ioana; Seely, Charles Jason; Tvaskis, Vladas; Wood, Stephen A.; Zhamkochyan, Simon

    2013-08-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  6. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  7. MAC calorimeters and applications

    SciTech Connect

    MAC Collaboration

    1982-03-01

    The MAC detector at PEP features a large solid-angle electromagnetic/hadronic calorimeter system, augmented by magnetic charged-particle tracking, muon analysis and scintillator triggering. Its implementation in the context of electron-positron annihilation physics is described, with emphasis on the utilization of calorimetry.

  8. Performance of the ATLAS electromagnetic calorimeter end-cap module 0

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Ballansat, J.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Chollet, F.; Colas, J.; Delebecque, P.; Di Ciaccio, L.; Dumont-Dayot, N.; El Kacimi, M.; Gaumer, O.; Ghez, P.; Girard, C.; Gouanère, M.; Kambara, H.; Jérémie, A.; Jézéquel, S.; Lafaye, R.; Leflour, T.; Le Maner, C.; Lesueur, J.; Massol, N.; Moynot, M.; Neukermans, L.; Perrodo, P.; Perrot, G.; Poggioli, L.; Prast, J.; Przysiezniak, H.; Riccadona, X.; Sauvage, G.; Thion, J.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.; Chen, H.; Citterio, M.; Farrell, J.; Gordon, H.; Hackenburg, B.; Hoffman, A.; Kierstead, J.; Lanni, F.; Leite, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Rescia, S.; Stumer, I.; Takai, H.; Yip, K.; Benchekroun, D.; Driouichi, C.; Hoummada, A.; Hakimi, M.; Stroynowski, R.; Ye, J.; Beck Hansen, J.; Belymam, A.; Bremer, J.; Chevalley, J. L.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Marin, C. P.; Pailler, P.; Schilly, P.; Seidl, W.; Vossebeld, J.; Vuillemin, V.; Clark, A.; Efthymiopoulos, I.; Moneta, L.; Belhorma, B.; Collot, J.; Ferrari, A.; Gallin-Martel, M. L.; Hostachy, J. Y.; Martin, P.; Ohlsson-Malek, F.; Saboumazrag, S.; Ban, J.; Cartiglia, N.; Cunitz, H.; Dodd, J.; Gara, A.; Leltchouk, M.; Negroni, S.; Parsons, J. A.; Seman, M.; Simion, S.; Sippach, W.; Willis, W.; Barreiro, F.; Garcia, G.; Labarga, L.; Rodier, S.; del Peso, J.; Alexa, C.; Barrillon, P.; Benchouk, C.; Chekhtman, A.; Dinkespiler, B.; Djama, F.; Duval, P. Y.; Henry-Couannier, F.; Hinz, L.; Jevaud, M.; Karst, P.; Le Van Suu, A.; Martin, L.; Martin, O.; Mirea, A.; Monnier, E.; Nagy, E.; Nicod, D.; Olivier, C.; Pralavorio, P.; Repetti, B.; Raymond, M.; Sauvage, D.; Tisserant, S.; Toth, J.; Wielers, M.; Battistoni, G.; Carminati, L.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Tartarelli, G. F.; Aulchenko, V.; Kazanin, V.; Kolachev, G.; Malyshev, V.; Maslennikov, A.; Pospelov, G.; Snopkov, R.; Shousharo, A.; Talyshev, A.; Tikhonov, Yu; Augé, E.; Bourdarios, C.; Breton, D.; Bonivento, W.; Cros, P.; de La Taille, C.; Falleau, I.; Fournier, D.; Guilhem, G.; Hassani, S.; Jacquier, Y.; Kordas, K.; Macé, G.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Puzo, P.; Richer, J. P.; Rousseau, D.; Seguin-Moreau, N.; Serin, L.; Tocut, V.; Veillet, J. J.; Zerwas, D.; Astesan, F.; Bertoli, W.; Camard, A.; Canton, B.; Fichet, S.; Hubaut, F.; Imbault, D.; Lacour, D.; Laforge, B.; Le Dortz, O.; Martin, D.; Nikolic-Audit, I.; Orsini, F.; Rossel, F.; Schwemling, P.; Cleland, W.; McDonald, J.; Abouelouafa, E. M.; Ben Mansour, A.; Cherkaoui, R.; El Mouahhidi, Y.; Ghazlane, H.; Idrissi, A.; Belorgey, J.; Bernard, R.; Chalifour, M.; Le Coroller, A.; Ernwein, J.; Mansoulié, B.; Renardy, J. F.; Schwindling, J.; Taguet, J.-P.; Teiger, J.; Clément, C.; Lund-Jensen, B.; Lundqvist, J.; Megner, L.; Pearce, M.; Rydstrom, S.; Egdemir, J.; Engelmann, R.; Hoffman, J.; McCarthy, R.; Rijssenbeek, M.; Steffens, J.; This paper is dedicated to the memory of our colleague Dominique Sauvage, actively involved in the detector construction; beam test activities, who died accidentaly on March 16, 2002.

    2003-03-01

    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% and 12.5% GeV1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5< η<3.2 (inner wheel).

  9. Resonant tuning fork detector for electromagnetic radiation.

    PubMed

    Pohlkötter, Andreas; Willer, Ulrike; Bauer, Christoph; Schade, Wolfgang

    2009-02-01

    A mechanical quartz microresonator (tuning fork) is used to detect electromagnetic radiation. The detection scheme is based on forces created due to the incident electromagnetic radiation on the piezoelectric tuning fork. A force can be created due to the transfer of the photon momentum of the incident electromagnetic radiation. If the surfaces of the tuning fork are nonuniformly heated, a second force acts on it, the so-called photophoretic force. These processes occur for all wavelengths of the incident radiation, making the detector suitable for sensing of ultraviolet, visible, and mid-infrared light, even THz-radiation. Here the detector is characterized in the visible range; noise analysis is performed for 650 nm and 5.26 microm. A linear power characteristic and the dependence on pulse lengths of the incoming light are shown. Examples for applications for the visible and mid-infrared spectral region are given by 2f and absorption spectroscopy of oxygen and nitric oxide, respectively.

  10. A fast calorimeter simulation for SSC (Superconducting Super Collider) detector design

    SciTech Connect

    Newman-Holmes, C.; Freeman, J.

    1987-12-01

    We have developed a fast and easily varied simulation of a ''generic'' 4..pi.. calorimeter. The program enables one to study the gross features of detector response for various physics processes. The simulation program is described and some examples of its use are presented. 3 refs., 6 figs.

  11. A Scintillator tile-fiber preshower detector for the CDF Central Calorimeter

    SciTech Connect

    S. Lami

    2004-08-12

    The front face of the CDF central calorimeter is being equipped with a new Preshower detector, based on scintillator tiles read out by WLS fibers. A light yield of about 40 pe/MIP at the tile exit was obtained, exceeding the design requirements.

  12. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  13. The SOUDAN 2 detector The operation and performance of the tracking calorimeter modules

    NASA Astrophysics Data System (ADS)

    Allison, W. W. M.; Alner, G. J.; Ambats, I.; Ayres, D. S.; Balka, L. J.; Barr, G. D.; Barrett, W. L.; Benjamin, D.; Bode, C.; Border, P. M.; Brooks, C. B.; Cobb, J. H.; Cockerill, D. J. A.; Coover, K.; Cotton, R. J.; Courant, H.; Dahlin, B. B.; DasGupta, U.; Dawson, J. W.; Demuth, D. M.; Edwards, V. W.; Ewen, B.; Fields, T. H.; Garcia-Garcia, C.; Gallagher, H. M.; Giles, R. H.; Giller, G. L.; Goodman, M. C.; Gray, R. N.; Heppelmann, S.; Hill, N.; Hoftiezer, J. H.; Jankowski, D. J.; Johns, K.; Joyce, T.; Kafka, T.; Kasahara, S. M. S.; Kirby-Gallagher, L. M.; Kochocki, J.; Leeson, W.; Litchfield, P. J.; Longley, N. P.; Lopez, F. V.; Lowe, M. J.; Mann, W. A.; Marshak, M. L.; May, E. N.; Maxam, D.; McMaster, L.; Milburn, R.; Miller, W. H.; Minor, C. P.; Mondal, N.; Mualem, L.; Napier, A.; Nelson, E. M.; Nickson, R.; Oliver, W.; Pearce, G. F.; Perkins, D. H.; Peterson, E. A.; Price, L. E.; Roback, D. M.; Rosen, D. B.; Ruddick, K.; Saitta, B.; Schmid, D. J.; Schlereth, J.; Schneps, J.; Schub, M. H.; Seidlein, R. V.; Shield, P. D.; Shupe, M. A.; Spear, S.; Stassinakis, A.; Sundaralingam, N.; Thomson, M. A.; Thron, J. L.; Vassiliev, V.; Villaume, G.; Wakely, S. P.; Wall, D.; Wallis, E. W. G.; Weems, L.; Werkema, S. J.; West, N.; Wielgosz, U.; Woods, C. A.; Yarker, S.

    1996-02-01

    SOUDAN 2 is a 960-ton tracking calorimeter which has been constructed to search for nucleon decay and other phenomena. The full detector consists of 224 calorimeter modules each weighing 4.3 tons. The modules consist of finely segmented iron instrumented with 1 m long drift tubes of 15 mm internal diameter. The tubes enable three spatial coordinates and {dE }/{dx } to be recorded for charged particles traversing the tubes. The spatial resolution is 0.38 cm in the x- y plane and 0.65 cm in the z, or drift, direction. The operation and performance of the modules are discussed.

  14. GLD Calorimeter

    NASA Astrophysics Data System (ADS)

    Takeshita, Tohru

    2006-10-01

    The GLD calorimeter, which is under study to aim as the calorimeter of ILC detector with an idea of Particle Flow, is described and discussed. The calorimeter consists of ECAL and HCAL. Both calorimeters are composed of plastic scintillator as the active medium. Fine granularity is required to achieve Particle Flow, so a small scintillator tile technique is developed with wavelength shifting fiber of MPPC read out. The requirements and our solutions for them are discussed and presented.

  15. A New scintillator tile / fiber preshower detector for the CDF central calorimeter

    SciTech Connect

    Gallinaro, Michele; Artikov, A.; Bromberg, C.; Budagov, J.; Byrum, K.; Chang, S.; Chlachidze, G.; Goulianos, K.; Huston, J.; Iori, M.; Kim, M.; Kuhlmann, S.; Lami, S.; Lindgren, M.; Lytken, E.; Miller, R.; Nodulman, L.; Pauletta, G.; Penzo, A.; Proudfoot, J.; Roser, R.; /Argonne /Dubna, JINR /Fermilab /Kyungpook Natl. U. /Michigan State U. /INFN, Siena /Rockefeller U. /INFN, Rome /INFN, Trieste /INFN, Udine /Tsukuba U.

    2004-11-01

    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multianode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and is expected to start collecting colliding beam data by the end of 2004. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.

  16. Study of requirements and performances of the electromagnetic calorimeter for the Mu2e experiment at Fermilab

    SciTech Connect

    Soleti, S.

    2015-06-15

    In this thesis we discuss the simulation and tests carried out for the optimization and design of the electromagnetic calorimeter for the Mu2e (Muon to electron conversion) experiment, which is a proposed experiment part of the Muon Campus hosted at Fermi National Accelerator Laboratory (FNAL) in Batavia, United States.

  17. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wolf, T M H; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L

    2017-01-01

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb[Formula: see text] of proton-proton collision data at [Formula: see text] [Formula: see text] from 2010 and 0.1 nb[Formula: see text] of data at [Formula: see text] [Formula: see text] from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 [Formula: see text], where this method provides the jet energy scale uncertainty for ATLAS.

  18. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zwalinski, L.

    2017-01-01

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb^{-1} of proton-proton collision data at √{s}=7 TeV from 2010 and 0.1 nb^{-1} of data at √{s}=8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.

  19. Electromagnetic modeling and resonant detectors and arrays

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Sun, J.; DeCuir, E. A.; Olver, K. A.; Wijewarnasuriya, P.

    2015-05-01

    We recently developed a finite element three-dimensional electromagnetic model for quantum efficiency (QE) computation. It is applicable to any arbitrary detector geometry and materials. Using this model, we can accurately account for the open literature experimental results that we have investigated, which include those from GaAs solar cells, GaSb type-II superlattices, and GaAs quantum wells. We applied the model to design a photon trap to increase detector QE. By accumulating and storing incident light in the resonator-QWIP structure, we observed experimental QE as high as 71%. This improvement shows that we are now able to fully determine the optical properties of QWIPs. For example, we can design QWIPs to detect at certain wavelengths with certain bandwidths. To illustrate this capability, we designed QWIPs with its QE spectrum matching well with the transmission spectrum of a medium. We subsequently produced several focal plane arrays according to these designs with 640 × 512 and 1 K × 1 K formats. In this paper, we will compare the modeled QE and the experimental results obtained from single detectors as well as FPAs.

  20. Test of AN Electromagnetic Calorimeter Using BaF2 Scintillators and Photosensitive Wire Chambers Between 1 and 9 GeV

    NASA Astrophysics Data System (ADS)

    Bouclier, R.; Charpak, G.; Gao, W.; Million, G.; MinÉ, P.; Paul, S.; Santiard, J. C.; Scigocki, D.; Solomey, N.; Suffert, M.

    We describe an electromagnetic calorimeter constructed from layers of BaF2 crystals, coupled to low pressure MWPCs with hot TMAE gas as the photosensitive constituent. By making use of the fast component from the BaF2 scintillation, this detector is well suited for a high rale, intense radiation environment. We present the results of a test performed with our prototype in a 1-9 GeV/c beam, which gives an energy resolution better than 4%/√{E}. a position resolution of 1 mm. and a time resolution better than 1 ns. The detector is highly segmented, with tracking capabilities and good e/π rejection. We discuss the possible application to experiments with intense colliders.

  1. Status of the Level 0 Trigger Processor of the NA62 Liquid Krypton Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Bonaiuto, V.; de Simone, N.; Federici, L.; Sargeni, F.; Badoni, D.; Fucci, A.; Paoluzzi, G.; Salamon, A.; Salina, G.; Santovetti, E.; Checcucci, B.; Papi, A.; Piccini, M.; Bizzarri, M.; Venditti, S.

    2014-06-01

    The NA62 experiment at the CERN SPS aims to measure the Branching Ratio of the ultra-rare decay K^+ rightarrow π^+νbarν, collecting about 100 events in two years of data taking with a signal to background ratio of 10:1. A hermetic photon veto system has been designed to efficiently reject the π0 background, one of the main background sources, and the 20-ton liquid krypton calorimeter is a fundamental component of such system in the angular acceptance region 1-10 mrad. In this paper, we present the design of the Level 0 trigger processor that is able to identify electromagnetic clusters in the calorimeter providing information on time, position and energy reconstruction for each cluster. In particular, it is composed of 36 readout boards (TEL62), organized in a three layer parallel system, 108 mezzanines and 215 high-performance FPGAs. The system has been designed to sustain an instantaneous hit rate of 40 MHz, to process data with a latency of about 100 μs, and to achieve a time resolution of 1.5 ns on the single cluster. Performance and functionality test results of a trigger slice, together with an updated status report of the whole level 0 trigger project, will be presented.

  2. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration

    2012-02-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  3. Heavy Photon Search Commissioning Run and Performance of the Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Szumila-Vance, Holly; Heavy Photon Search Collaboration Collaboration

    2015-04-01

    The Heavy Photon Search (HPS) experiment at Jefferson Lab will search for a possible new heavy vector boson that couples weakly to electric charge and can decay to e+e- pairs. HPS utilizes an Electromagnetic Calorimeter (ECal) for fast triggering and complementary energy information in the reconstruction of the e+e- invariant mass. The ECal is composed of 442 PbWO4 crystals readout through large area avalanche photo-diodes and digitized using flash ADCs. The initial testing and calibration of the ECal began in the fall of 2014 using a light monitoring system, cosmic muons, and 2 GeV beam electrons. Proper performance of the ECal is crucial for optimizing the trigger selection for potential Heavy Photon events and eliminating background from accidentals. This talk covers the design, calibration, and performance of the HPS ECal during the commissioning run.

  4. sPHENIX Calorimeter Design and Jet Performance

    NASA Astrophysics Data System (ADS)

    Haggerty, John S.

    2016-12-01

    The PHENIX collaboration is planning a detector upgrade, sPHENIX, which consists of large acceptance calorimetry and tracking detectors built around the superconducting solenoid recently shipped to Brookhaven from the decommissioned BaBar experiment at SLAC. The sPHENIX calorimeter system includes three radial layers of sampling calorimeters, a tungsten-scintillating fiber electromagnetic calorimeter, and two longitudinally segmented sampling hadron calorimeters that are made of scintillator tiles and steel plates. Together, they provide hermetic coverage in | η | < 1 for calorimetry based jet measurements as well as minimal bias jet trigger capability, which coupled with high resolution tracking, enable an extremely rich jet physics program at RHIC.

  5. R&D Studies of a Lead-Scintillating Fiber Calorimeter as a STAR Forward Detector

    NASA Astrophysics Data System (ADS)

    Shanmuganathan, Prashanth; STAR Collaboration

    2015-10-01

    A forward upgrade of the STAR detector will achieve several physics goals. Examples are studying the internal structure of nucleons and nuclei through measurement of di-jets and Drell-Yan and improvements in the resolution of energy weighted event plane determination for study of more central and more peripheral events in heavy-ion collisions. The AGS E864 lead-scintillating fiber calorimeter cells ((10 cm) 2 × 117 cm) were repurposed by pixelizing their readout into a three by three array of (3 . 3 cm) 2 pixels. A prototype six by six array of these cells (324 pixels) was mounted on the west side of the STAR detector during Run14 and events from 3He+Au collisions at √{sNN} = 200 GeV were recorded. The detector response was simulated by a GEANT model using HIJING particle production. Further tests of the pixelized cells were conducted at the Fermilab Test Beam Facility. In this talk, we will present the calorimeter response in 3He+Au collisions using reconstructed π0 from clusters formed from energy deposition by π0 decay gammas. Energy resolution and shower shapes from pixelization are also discussed using test beam data and simulations.

  6. The CMS electromagnetic calorimeter calibration during Run I: progress achieved and expectations for Run II

    NASA Astrophysics Data System (ADS)

    Ghezzi, Alessio; CMS Collaboration

    2015-02-01

    The CMS ECAL is a high-resolution, hermetic, and homogeneous electromagnetic calorimeter made of 75,848 scintillating lead tungstate crystals. It relies on precision calibration in order to achieve and maintain its design performance. A set of inter-calibration procedures is carried out to normalize the differences in crystal light yield and photodetector response between channels. Different physics channels such as low mass di-photon resonances, electrons from W and Z decays and the azimuthal symmetry of low energy deposits from minimum bias events are used. A laser monitoring system is used to measure and correct for response changes, which arise mainly from the harsh radiation environment at the LHC. The challenges of the different calibration techniques are discussed along with the performance evolution during Run I. The impact on physics performance is illustrated through the successful quest for the Higgs boson via its electromagnetic decays, and the subsequent mass measurement of the newly discovered particle. Conclusions are drawn for the performance to be expected from 2015 onwards, following the start of the LHC Run II.

  7. High density fluoride glass calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  8. Local Polarimetry at STAR Using the Zero Degree Calorimeter Shower Maximum Detector

    NASA Astrophysics Data System (ADS)

    Bridgeman, Alice

    2010-02-01

    The polarized proton program at the Relativistic Heavy Ion Collider (RHIC) began colliding beams at a center of mass energy of 500 GeV in 2009, after successful running at a center of mass energy of 200 GeV in previous years. The polarized beams are monitored locally at STAR using various local polarimeters. At 200 GeV, the Beam Beam Counter (BBC) detectors have a sufficiently large analyzing power to work effectively as local polarimeters. At 500 GeV, the BBCs showed a decreased analyzing power. In 2009 the STAR collaboration successfully commissioned the Zero Degree Calorimeter (ZDC) with Shower Maximum Detector (SMD) for use as a local polarimeter at 500 GeV. I will review the work done in this run and discuss plans for the ZDC SMD in future polarized proton running at 500 GeV at STAR. )

  9. (Calorimeter based detectors for high energy hadron colliders). [State Univ. of New York

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  10. The High Energy Particle Detector on Board of the China Seismo-Electromagnetic Satellite

    NASA Astrophysics Data System (ADS)

    Sparvoli, Roberta; Palma, Francesco; Panico, Beatrice; Sotgiu, Alessandro; Vitale, Vincenzo

    2016-08-01

    The study of the Van Allen belts temporal stability is among the main objectives of the China Seismo- Electromagnetic Satellite (CSES) space mission, as well as the study of other electromagnetic disturbances with possible seismic origin. In parallel to this, the CSES mission will address issues of heliospheric and magnetospheric physics, by measuring the cosmic radiation around the Earth.The CSES satellite, developed by a Chinese-Italian collaboration, will be launched in the first half of 2017 and inserted into a circular Sun-synchronous orbit with 98° inclination and 500 km altitude. The expected lifetime is 5 years. CSES hosts several instruments on board: 2 magnetometers, an electric field detector, a plasma analyser, a Langmuir probe and a High-Energy Particle Detector (HEPD). The HEPD detector, responsibility of the Italian side of the CSES collaboration, will measure electrons (3 - 100 MeV) and protons (30 - 300 MeV) along CSES orbit. It consists of a segmented layer of plastic scintillators for the trigger and a calorimeter constituted by a tower of plastic scintillator counters and a LYSO plane. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger. Topic of this talk is the technical description of the HEPD and its main characteristics.

  11. Performance of Prototypes for the Barrel Part of the ANDA Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Christoph; Diehl, S.; Dormenev, V.; Drexler, P.; Kavatsyuk, M.; Kuske, T.; Nazarenko, S.; Novotny, R.; Rosier, P.; Ryazantsev, A.; Wieczorek, P.; Wilms, A.; Zaunick, H.-G.; P¯ANDA Collaboration

    2016-08-01

    The performance of the most recent prototypes of the ANDA barrel electromagnetic calorimeter (EMC) will be compared. The first large scale prototype PROTO60 was designed to test the performance of the improved tapered lead tungstate crystals (PWO-II). The PROTO60 which consists of 6 × 10 crystals was tested at various accelerator facilities over the complete envisaged energy range fulfilling the requirements of the TDR of the ANDA EMC in terms of energy, position and time resolution. To realize the final barrel geometry and to test the final front end electronics, a second prototype PROTO120 has been constructed. It represents a larger section of a barrel slice, containing the most tapered crystals and the close to final components for the ANDA EMC. The performance of both prototypes will be compared with a focus on the analysis procedure including the signal extraction, noise rejection, calibration and the energy resolution. In addition, the influence of the non-uniformity of the crystal on the energy resolution will be discussed.

  12. Kali: The framework for fine calibration of the LHCb Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Belyaev, Ivan; Savrina, Daria; Graciani, Ricardo; Puig, Albert; LHCb Collaboration

    2011-12-01

    The precise calibration (at a level of below 1%) of the electromagnetic calorimeter (ECAL) of the LHCb experiment is an essential task for the fulfilment of the LHCb physics program. The final step of this task is performed with two calibration methods using the real data from the experimental setup. It is a very CPU-consuming procedure as both methods require processing of Script O(108) events which must be selected, reconstructed and analyzed. In this document we present the Kali framework developed within the LHCb software framework, which implements these two final calibration methods. It is integrated with Grid middleware and makes use of parallelism tools, such as python parallel processing modules, to provide an efficient way, both time and disk wise, for the final ECAL calibration. The results of the fine calibration with the very first data collected by the LHCb experiment will also be presented. With the use of the Kali framework it took only two days of processing and allowed to achieve a calibration accuracy of 2-2.5% for the different ECAL areas.

  13. Direct Detection of Pu-242 with a Metallic Magnetic Calorimeter Gamma-Ray Detector

    NASA Astrophysics Data System (ADS)

    Bates, C.; Pies, C.; Kempf, S.; Hengstler, D.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Friedrich, S.

    2016-07-01

    Cryogenic high-resolution γ -ray detectors can improve the accuracy of non-destructive assay (NDA) of nuclear materials in cases where conventional high-purity germanium detectors are limited by line overlap or by the Compton background. We have improved the performance of gamma detectors based on metallic magnetic calorimeters (MMCs) by separating the 0.5 × 2 × 0.25 mm3 Au absorber from the Au:Er sensor with sixteen 30-\\upmu m-diameter Au posts. This ensures that the entire γ -ray energy thermalizes in the absorber before heating the Au:Er sensor, and improves the energy resolution at 35 mK to as low as 90 eV FWHM at 60 keV. This energy resolution enables the direct detection of γ -rays from Pu-242, an isotope that cannot be measured by traditional NDA and whose concentration is therefore inferred through correlations with other Pu isotopes. The Pu-242 concentration of 11.11 ± 0.42 % measured by NDA with MMCs agrees with mass spectrometry results and exceeds the accuracy of correlation measurements.

  14. sPHENIX Calorimeter Design and Jet Performance

    SciTech Connect

    Haggerty J. S.

    2016-09-27

    The PHENIX collaboration is planning a detector upgrade, sPHENIX, which consists of large acceptance calorimetry and tracking detectors built around the superconducting solenoid recently shipped to Brookhaven from the decommissioned BaBar experiment at SLAC. The sPHENIX calorimeter system includes three radial layers of samplingcalorimeters, a tungsten-scintillating fiber electromagnetic calorimeter, and two longitudinally segmented samplinghadron calorimeters that are made of scintillator tiles and steel plates. Together, they provide hermetic coverage in n < 1 for calorimetry based jet measurements as well as minimal bias jet trigger capability, which coupled with high resolution tracking, enable an extremely rich jet physics program at RHIC.

  15. Secondary Emission Calorimeter (SEC)

    SciTech Connect

    Schmidt, J. J.; Northrop, Richard; Frisch, Henry; Elagin, Andrey; Ronzhin, Anatoly; Ramberg, Erik; Spiropulu, Maria; Apresyan, Artur; Xie, Si

    2014-06-25

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) the experimenters of University of Chicago and California Institute of Technology, who have committed to participate in beam tests to be carried out during the 2014-2015 Fermilab Test Beam Facility program. The TSW is intended primarily for the purpose of recording expectations for budget estimates and work allocations. The experimenters propose using large-area micro-channel plates assembled without the usual bialkali photocathodes as the active element in sampling calorimeters, Modules without photocathodes can be economically assembled in a glove box and then pumped and sealed using the process to construct photomultipliers, This electromagnetic calorimeter is based on W and Pb absorber plates sandwiched with detectors. Measurements can be made with bare plates and absorber inside the vacuum vessel.

  16. A photon calorimeter using lead tungstate crystals for the CEBAF HAll A Compton polarimeter

    SciTech Connect

    D. Neyret; T. Pussieux; T. Auger; M. Baylac; E. Burtin; C. Cavata; R. Chipaux; S. Escoffier; N. Falletto; J. Jardillier; S. Kerhoas; D. Lhuillier; F. Marie; C. Veyssiere; J. Ahrens; R. Beck; M. Lang

    2000-05-01

    A new Compton polarimeter is built on the CEBAF Hall A electron beam line. Performances of 10% resolution and 1% calibration are required for the photon calorimeter of this polarimeter. This calorimeter is built with lead tungstate scintillators coming from the CMS electromagnetic calorimeter R&D. Beam tests of this detector have been made using the tagged photon beam line at MAMI, Mainz, and a resolution of 1.76%+2.75%/v+0.41%/E has been measured.

  17. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    DOE PAGES

    Adams, T.; Adzic, P.; Ahuja, S.; ...

    2016-04-11

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 1013 and 1.3 × 1014 cm–2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb–1 and 3000 fb–1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. Themore » irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.« less

  18. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Adams, T.; Adzic, P.; Ahuja, S.; Anderson, D.; Andrews, M. B.; Antropov, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Argirò, S.; Askew, A.; Attikis, A.; Auffray, E.; Baccaro, S.; Baffioni, S.; Bailleux, D.; Baillon, P.; Barney, D.; Barone, L.; Bartoloni, A.; Bartosik, N.; Becheva, E.; Bein, S.; Silva, C. Beirāo Da Cruz E.; Bell, K. W.; Benaglia, A.; Bendavid, J.; Berry, D.; Besancon, M.; Betev, B.; Bialas, W.; Bianchini, L.; Biino, C.; Bitioukov, S.; Bornheim, A.; Brianza, L.; Brinkerhoff, A.; Brown, R. M.; Brummitt, A.; Busson, P.; Candelise, V.; Carrillo Montoya, C. A.; Cartiglia, N.; Cavallari, F.; Chang, Y. W.; Chen, K. F.; Chevenier, G.; Chipaux, R.; Clement, E.; Cockerill, D. J. A.; Corpe, L.; Couderc, F.; Courbon, B.; Cox, B.; Cucciati, G.; Cussans, D.; D'imperio, G.; Da Silva Di Calafiori, D. R.; Dafinei, I.; Daguin, J.; Daskalakis, G.; Tinoco Mendes, A. D.; De Guio, F.; Degano, A.; Dejardin, M.; Del Re, D.; Della Ricca, G.; Denegri, D.; Depasse, P.; Dev, N.; Deyrail, D.; Di Marco, E.; Diamond, B.; Diemoz, M.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Doan, T. H.; Dobrzynski, L.; Dolgopolov, A.; Donegà, M.; Dordevic, M.; Dröge, M.; Durkin, T.; Dutta, D.; El Mamouni, H.; Elliott-Peisert, A.; Elmalis, E.; Fabbro, B.; Fasanella, G.; Faure, J.; Fay, J.; Fedorov, A.; Ferri, F.; Francis, B.; Frank, N.; Franzoni, G.; Funk, W.; Ganjour, S.; Gascon, S.; Gastal, M.; Geerebaert, Y.; Gelli, S.; Gerosa, R.; Ghezzi, A.; Giakoumopoulou, V. A.; Givernaud, A.; Gninenko, S.; Godinovic, N.; Goeckner-Wald, N.; Golubev, N.; Govoni, P.; Gras, P.; Guilloux, F.; Haller, C.; Hamel de Monchenault, G.; Hansen, M.; Hansen, P.; Hardenbrook, J.; Heath, H. F.; Hill, J.; Hirosky, R.; Hobson, P. R.; Holme, O.; Honma, A.; Hou, W.-S.; Hsiung, Y.; Iiyama, Y.; Ille, B.; Ingram, Q.; Jain, S.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kachanov, V.; Kalafut, S.; Kao, K. Y.; Kellams, N.; Kesisoglou, S.; Khatiwada, A.; Konoplyannikov, A.; Konstantinov, D.; Korzhik, M.; Kovac, M.; Kubota, Y.; Kucher, I.; Kumar, A.; Kumar, A.; Kuo, C.; Kyberd, P.; Kyriakis, A.; Latyshev, G.; Lecoq, P.; Ledovskoy, A.; Lei, Y. J.; Lelas, D.; Lethuillier, M.; Li, H.; Lin, W.; Liu, Y. F.; Locci, E.; Longo, E.; Loukas, D.; Lu, R.-S.; Lucchini, M. T.; Lustermann, W.; Mackay, C. K.; Magniette, F.; Malcles, J.; Malhotra, S.; Mandjavidze, I.; Maravin, Y.; Margaroli, F.; Marinelli, N.; Marini, A. C.; Martelli, A.; Marzocchi, B.; Massironi, A.; Matveev, V.; Mechinsky, V.; Meng, F.; Meridiani, P.; Micheli, F.; Milosevic, J.; Mousa, J.; Musella, P.; Nessi-Tedaldi, F.; Neu, C.; Newman, H.; Nicolaou, C.; Nourbakhsh, S.; Obertino, M. M.; Organtini, G.; Orimoto, T.; Paganini, P.; Paganis, E.; Paganoni, M.; Pandolfi, F.; Panov, V.; Paramatti, R.; Parracho, P.; Pastrone, N.; Paulini, M.; Pauss, F.; Pauwels, K.; Pellegrino, F.; Pena, C.; Perniè, L.; Peruzzi, M.; Petrakou, E.; Petyt, D.; Pigazzini, S.; Piroué, P.; Planer, M.; Plestina, R.; Polic, D.; Prosper, H.; Ptochos, F.; Puljak, I.; Quittnat, M.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Ranjan, K.; Rasteiro Da Silva, J.; Razis, P. A.; Romanteau, T.; Rosowsky, A.; Rovelli, C.; Rusack, R.; Salerno, R.; Santanastasio, F.; Santra, A.; Schönenberger, M.; Seez, C.; Sharma, V.; Shepherd-Themistocleous, C.; Shiu, J. G.; Shivpuri, R. K.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Smiljkovic, N.; Soffi, L.; Sun, M.; Symonds, P.; Tabarelli de Fatis, T.; Tambe, N.; Tarasov, I.; Taroni, S.; Teixeira De Lima, R.; Thea, A.; Theofilatos, K.; Thiant, F.; Titov, M.; Torbet, M.; Trapani, P. P.; Tropea, P.; Tsai, J. f.; Tsirou, A.; Turkewitz, J.; Tyurin, N.; Tzeng, Y. M.; Uzunian, A.; Valls, N.; Varela, J.; Veeraraghavan, V.; Verdini, P. G.; Vichoudis, P.; Vlassov, E.; Wang, J.; Wang, T.; Weinberg, M.; Wolfe, E.; Wood, J.; Zabi, A.; Zahid, S.; Zelepoukine, S.; Zghiche, A.; Zhang, L.; Zhu, K.; Zhu, R.; Zuyeuski, R.

    2016-04-01

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1× 1013 and 1.3× 1014 cm-2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb-1 and 3000 fb-1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. The experimental results obtained can be used to estimate the long term performance of the CMS ECAL.

  19. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Mellado, B.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Solvyanov, O.

    2015-06-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs but a breakdown in the light transfer between base and fluor dopants is observed. For doses of 8 MGy to 80 MGy, structural damage leads to hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss as dose is increased.

  20. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Sekonya, K.; Solvyanov, O.

    2015-10-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy and light yield analysis whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs and light loss can be attributed to a breakdown in the light transfer between base and fluor dopants. For doses of 8 MGy to 80 MGy, structural damage leads to possible hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss and light yield loss with increasing dose.

  1. CDF End Plug calorimeter Upgrade Project

    SciTech Connect

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R&D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R&D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, {gamma} and {pi}{sup 0} has been designed. Its performance requirements, R&D results and mechanical design are discussed.

  2. The design, implementation, and performance of the Atro-H SXS calorimeter array and anti-coincidence detector

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Massimiliano; Grein, Christoph; Jhabvala, Christine A.; Kelley, Richard L.; Kelly, Daniel P.; Leutenegger, Maurice A.; McCammon, Dan; Porter, F. S.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2016-07-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistorbearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  3. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelley, Richard L.; Leutenegger, Maurice A.; McCammon, Dan; Porter, F. Scott; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  4. Use of FPGA embedded processors for fast cluster reconstruction in the NA62 liquid krypton electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Badoni, D.; Bizzarri, M.; Bonaiuto, V.; Checcucci, B.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Papi, A.; Piccini, M.; Salamon, A.; Salina, G.; Santovetti, E.; Sargeni, F.; Venditti, S.

    2014-01-01

    The goal of the NA62 experiment at the CERN SPS is the measurement of the Branching Ratio of the very rare kaon decay K+→π+ ν bar nu with a 10% accuracy by collecting 100 events in two years of data taking. An efficient photon veto system is needed to reject the K+→π+ π0 background and a liquid krypton electromagnetic calorimeter will be used for this purpose in the 1-10 mrad angular region. The L0 trigger system for the calorimeter consists of a peak reconstruction algorithm implemented on FPGA by using a mixed parallel architecture based on soft core Altera NIOS II embedded processors together with custom VHDL modules. This solution allows an efficient and flexible reconstruction of the energy-deposition peak. The system will be totally composed of 36 TEL62 boards, 108 mezzanine cards and 215 high-performance FPGAs. We describe the design, current status and the results of the first performance tests.

  5. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    SciTech Connect

    Adams, T.; Adzic, P.; Ahuja, S.; Anderson, D.; Andrews, M. B.; Antropov, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Argirò, S.; Askew, A.; Attikis, A.; Auffray, E.; Baccaro, S.; Baffioni, S.; Bailleux, D.; Baillon, P.; Barney, D.; Barone, L.; Bartoloni, A.; Bartosik, N.; Becheva, E.; Bein, S.; Beirāo Da Cruz E Silva, C.; Bell, K. W.; Benaglia, A.; Bendavid, J.; Berry, D.; Besancon, M.; Betev, B.; Bialas, W.; Bianchini, L.; Biino, C.; Bitioukov, S.; Bornheim, A.; Brianza, L.; Brinkerhoff, A.; Brown, R. M.; Brummitt, A.; Busson, P.; Candelise, V.; Montoya, C. A. Carrillo; Cartiglia, N.; Cavallari, F.; Chang, Y. W.; Chen, K. F.; Chevenier, G.; Chipaux, R.; Clement, E.; Cockerill, D. J. A.; Corpe, L.; Couderc, F.; Courbon, B.; Cox, B.; Cucciati, G.; Cussans, D.; D'imperio, G.; Calafiori, D. R. Da Silva Di; Dafinei, I.; Daguin, J.; Daskalakis, G.; Mendes, A. D. Tinoco; Guio, F. De; Degano, A.; Dejardin, M.; Re, D. Del; Ricca, G. Della; Denegri, D.; Depasse, P.; Dev, N.; Deyrail, D.; Marco, E. Di; Diamond, B.; Diemoz, M.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Doan, T. H.; Dobrzynski, L.; Dolgopolov, A.; Donegà, M.; Dordevic, M.; Dröge, M.; Durkin, T.; Dutta, D.; Mamouni, H. El; Elliott-Peisert, A.; Elmalis, E.; Fabbro, B.; Fasanella, G.; Faure, J.; Fay, J.; Fedorov, A.; Ferri, F.; Francis, B.; Frank, N.; Franzoni, G.; Funk, W.; Ganjour, S.; Gascon, S.; Gastal, M.; Geerebaert, Y.; Gelli, S.; Gerosa, R.; Ghezzi, A.; Giakoumopoulou, V. A.; Givernaud, A.; Gninenko, S.; Godinovic, N.; Goeckner-Wald, N.; Golubev, N.; Govoni, P.; Gras, P.; Guilloux, F.; Haller, C.; de Monchenault, G. Hamel; Hansen, M.; Hansen, P.; Hardenbrook, J.; Heath, H. F.; Hill, J.; Hirosky, R.; Hobson, P. R.; Holme, O.; Honma, A.; Hou, W. -S.; Hsiung, Y.; Iiyama, Y.; Ille, B.; Ingram, Q.; Jain, S.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kachanov, V.; Kalafut, S.; Kao, K. Y.; Kellams, N.; Kesisoglou, S.; Khatiwada, A.; Konoplyannikov, A.; Konstantinov, D.; Korzhik, M.; Kovac, M.; Kubota, Y.; Kucher, I.; Kumar, A.; Kumar, A.; Kuo, C.; Kyberd, P.; Kyriakis, A.; Latyshev, G.; Lecoq, P.; Ledovskoy, A.; Lei, Y. J.; Lelas, D.; Lethuillier, M.; Li, H.; Lin, W.; Liu, Y. F.; Locci, E.; Longo, E.; Loukas, D.; Lu, R. -S.; Lucchini, M. T.; Lustermann, W.; Mackay, C. K.; Magniette, F.; Malcles, J.; Malhotra, S.; Mandjavidze, I.; Maravin, Y.; Margaroli, F.; Marinelli, N.; Marini, A. C.; Martelli, A.; Marzocchi, B.; Massironi, A.; Matveev, V.; Mechinsky, V.; Meng, F.; Meridiani, P.; Micheli, F.; Milosevic, J.; Mousa, J.; Musella, P.; Nessi-Tedaldi, F.; Neu, C.; Newman, H.; Nicolaou, C.; Nourbakhsh, S.; Obertino, M. M.; Organtini, G.; Orimoto, T.; Paganini, P.; Paganis, E.; Paganoni, M.; Pandolfi, F.; Panov, V.; Paramatti, R.; Parracho, P.; Pastrone, N.; Paulini, M.; Pauss, F.; Pauwels, K.; Pellegrino, F.; Pena, C.; Perniè, L.; Peruzzi, M.; Petrakou, E.; Petyt, D.; Pigazzini, S.; Piroué, P.; Planer, M.; Plestina, R.; Polic, D.; Prosper, H.; Ptochos, F.; Puljak, I.; Quittnat, M.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Ranjan, K.; Silva, J. Rasteiro Da; Razis, P. A.; Romanteau, T.; Rosowsky, A.; Rovelli, C.; Rusack, R.; Salerno, R.; Santanastasio, F.; Santra, A.; Schönenberger, M.; Seez, C.; Sharma, V.; Shepherd-Themistocleous, C.; Shiu, J. G.; Shivpuri, R. K.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Smiljkovic, N.; Soffi, L.; Sun, M.; Symonds, P.; de Fatis, T. Tabarelli; Tambe, N.; Tarasov, I.; Taroni, S.; Lima, R. Teixeira De; Thea, A.; Theofilatos, K.; Thiant, F.; Titov, M.; Torbet, M.; Trapani, P. P.; Tropea, P.; Tsai, J. f.; Tsirou, A.; Turkewitz, J.; Tyurin, N.; Tzeng, Y. M.; Uzunian, A.; Valls, N.; Varela, J.; Veeraraghavan, V.; Verdini, P. G.; Vichoudis, P.; Vlassov, E.; Wang, J.; Wang, T.; Weinberg, M.; Wolfe, E.; Wood, J.; Zabi, A.; Zahid, S.; Zelepoukine, S.; Zghiche, A.; Zhang, L.; Zhu, K.; Zhu, R.; Zuyeuski, R.

    2016-04-11

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 1013 and 1.3 × 1014 cm–2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb–1 and 3000 fb–1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.

  6. A high-granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Cvach, J.; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.-D.; Janata, M.; Kacl, I.; Korbel, V.; Kozlov, V.; Meyer, H.; Morgunov, V.; Němeček, S.; Pöschl, R.; Polák, I.; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, J.; Zálešák, J.

    2006-08-01

    We report upon the performance of an analog hadron calorimeter prototype, where plastic scintillator tiles are read out with wavelength-shifting fibers coupled to avalanche photodiodes. This prototype configuration has been tested using a positron beam at DESY with energies between 1 and 6 GeV. We present different detector calibration methods, show measurements for noise, linearity, and energy resolution and discuss gain monitoring with an LED system. The results are in good agreement with our simulation studies and previous measurements using silicon photomultiplier readout.

  7. Electromagnetic Compatibility Testing of Implantable Neurostimulators Exposed to Metal Detectors

    PubMed Central

    Seidman, Seth J; Kainz, Wolfgang; Casamento, Jon; Witters, Donald

    2010-01-01

    This paper presents results of electromagnetic compatibility (EMC) testing of three implantable neurostimulators exposed to the magnetic fields emitted from several walk-through and hand-held metal detectors. The motivation behind this testing comes from numerous adverse event reports involving active implantable medical devices (AIMDs) and security systems that have been received by the Food and Drug Administration (FDA). EMC testing was performed using three neurostimulators exposed to the emissions from 12 walk-through metal detectors (WTMDs) and 32 hand-held metal detectors (HHMDs). Emission measurements were performed on all HHMDs and WTMDs and summary data is presented. Results from the EMC testing indicate possible electromagnetic interference (EMI) between one of the neurostimulators and one WTMD and indicate that EMI between the three neurostimulators and HHMDs is unlikely. The results suggest that worst case situations for EMC testing are hard to predict and testing all major medical device modes and setting parameters are necessary to understand and characterize the EMC of AIMDs. PMID:20448818

  8. Response of a close to final prototype for the P bar ANDA Electromagnetic Calorimeter to photons at energies below 1 GeV

    NASA Astrophysics Data System (ADS)

    Rosenbaum, C.; Diehl, S.; Dormenev, V.; Drexler, Peter; Kavatsyuk, M.; Kuske, T.; Nazarenko, S.; Novotny, R. W.; Rosier, P.; Ryazantsev, A.; Wieczorek, P.; Wilms, A.; Wohlfahrt, B.; Zaunick, H.-G.

    2016-07-01

    The response of two generations of prototypes of the P bar ANDA Electromagnetic Calorimeter (EMC), PROTO60 and PROT120, to photons in the energy range between 50 MeV and 800 MeV was obtained. Furthermore, the performance of the pre-amplifier ASIC (APFEL) under real experimental conditions, the position dependence of the energy resolution within the crystal and the implementation of higher order energy correction algorithms with a 15 GeV/c positron beam were studied.

  9. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  10. Calibrating the Muon Piston Calorimeter (MPC)

    NASA Astrophysics Data System (ADS)

    Skolnik, Marianne

    2012-10-01

    The Muon Piston Calorimeter (MPC) is a subsystem of the PHENIX detector. The MPC, an electromagnetic calorimeter, is effective at measuring the energy of photons and electrons produced from collisions at the Relativistic Heavy Ion Collider (RHIC). The MPC outputs a voltage signal that we then convert into an energy reading. One common way to calibrate electromagnetic calorimeters is to use photons from π^0 decays. Since many of the photons that enter the detector are the result of natural pion decay, we can pair up the photons and create π^0 candidates. We then plot their masses tower by tower and with the correct cuts a mass peak will appear close to the position predicted by the simulation PISA of the PHENIX detector. Then, we relate the mass peaks from the measured data to mass peaks from simulated data to adjust the gains. Once the MPC is calibrated we can use it to study Au+Au collisions. Previously, the detector has been used to study spin physics using data collected from p+p collisions, and cold nuclear matter effects using d+Au collisions. These new calibrations will allow us to measure new global variables such as transverse energy in both the forward and backward kinematic regions, 3.1< |η| < 3.9.

  11. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  12. First experience of vectorizing electromagnetic physics models for detector simulation

    SciTech Connect

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; Licht, J.de Fine; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  13. FPGA based implementation of hardware diagnostic layer for local trigger of BAC calorimeter for ZEUS detector

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2004-07-01

    The paper describes design and construction of hardware diagnostics layer dedicated to the local trigger of the Backing Calorimeter (BAC). The BAC is a part of the ZEUS experiment in DESY, Hamburg. A general characteristic of the hardware of BAC trigger was presented. The design of hardware diagnostic and calibration sub-systems for BAC trigger bases on the continuous monitoring of consecutive electronic and photonic blocks. The monitoring process is performed via the specialized tests. The standardized diagnostic components were realized in the algorithmic and parameterized description in AHDL. There were presented the implementation results in ALTERA ACEX chips.

  14. The Forward Calorimeter of the GlueX Experiment

    NASA Astrophysics Data System (ADS)

    Bennett, Daniel; GlueX Collaboration

    2013-10-01

    The Forward Calorimeter (FCAL) of the GlueX experiment is a lead glass electromagnetic calorimeter currently being built in Hall D of Jefferson Lab. The GlueX experiment is a photoproduction experiment that will utilize coherent bremsstrahlung radiation to map out the light meson spectrum, including a search for hybrid mesons with exotic quantum numbers (JPC). The FCAL will detect photons between 1° and 10 .8° downstream from the target. The calorimeter is built out of 2800 elements, each of which consists of a lead glass block, an FEU 84-3 PMT, and a custom Cockcroft-Walton electronic base. In the Fall of 2011, a 25 element prototype detector was installed in Hall B of Jefferson Lab to measure the energy and timing resolution of the calorimeter using electrons between 100 and 250 MeV. The design and construction of FCAL and the results from the prototype test will be discussed.

  15. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    SciTech Connect

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and

  16. Preliminary conceptual design about the CEPC calorimeters

    NASA Astrophysics Data System (ADS)

    Yang, Haijun

    2016-11-01

    The Circular Electron Positron Collider (CEPC) as a Higgs factory was proposed in September 2013. The preliminary conceptual design report was completed in 2015.1 The CEPC detector design was using International Linear Collider Detector — ILD2 as an initial baseline. The CEPC calorimeters, including the high granularity electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL), are designed for precise energy measurements of electrons, photons, taus and hadronic jets. The basic resolution requirements for the ECAL and HCAL are about 16%E (GeV) and 50%E (GeV), respectively. To fully exploit the physics potential of the Higgs, W, Z and related Standard Model processes, the jet energy resolution is required to reach 3%-4%, or 30%/E (GeV) at energies below about 100 GeV. To achieve the required performance, a Particle Flow Algorithm (PFA) — oriented calorimetry system is being considered as the baseline design. The CEPC ECAL detector options include silicon-tungsten or scintillator-tungsten structures with analog readout, while the HCAL detector options have scintillator or gaseous detector as the active sensor and iron as the absorber. Some latest R&D studies about ECAL and HCAL within the CEPC working group is also presented.

  17. Characterization of plastic scintillators using magnetic resonance techniques for the upgrade of the Tile Calorimeter in the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Pelwan, C.; Jivan, H.; Joubert, D.; Keartland, J.; Liao, S.; Peters, G.; Sideras-Haddad, E.

    2015-10-01

    In this study we look at radiation damage and its adverse effects on plastic scintillators housed within the Tile Calorimeter (TileCal) of the ATLAS detector. The study focuses on determining how the interaction of ionizing radiation with plastic scintillators effects their efficacy and desired properties such as high light output and fast decay time. Plastic scintillators form an integral part of the ATLAS trigger system and their optimal functionality is paramount to the success of ATLAS. Electron paramagnetic resonance (EPR) provides insight into the electronic structure of the plastics and can characterize the damage caused by ionizing radiation. Density functional theory (DFT) calculations will be performed in order to simulate the EPR signal. Preliminary EPR results investigate four different types of plastic scintillators. These include three polyvinyl-toluene based Eljen technologies: EJ200, EJ208 and EJ260, and one polystyrene based Dubna sample. It has been observed that the Dubna sample, identical on the current scintillator used in the ATLAS detector, undergoes more structural damage when compared to the Eljen samples.

  18. Design of a new front-end electronics test-bench for the upgraded ATLAS detector's Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Kureba, C. O.; Govender, M.; Hofsajer, I.; Ruan, X.; Sandrock, C.; Spoor, M.

    2015-10-01

    The year 2022 has been scheduled to see an upgrade of the Large Hadron Collider (LHC), in order to increase its instantaneous luminosity. The High Luminosity LHC, also referred to as the upgrade Phase-II, means an inevitable complete re-design of the read-out electronics in the Tile Calorimeter (TileCal) of the A Toroidal LHC Apparatus (ATLAS) detector. Here, the new read-out architecture is expected to have the front-end electronics transmit fully digitized information of the detector to the back-end electronics system. Fully digitized signals will allow more sophisticated reconstruction algorithms which will contribute to the required improved triggers at high pile-up. In Phase II, the current Mobile Drawer Integrity ChecKing (MobiDICK) test-bench will be replaced by the next generation test-bench for the TileCal superdrawers, the new Prometeo (A Portable ReadOut ModulE for Tilecal ElectrOnics). Prometeo is a portable, high-throughput electronic system for full certification of the front-end electronics of the ATLAS TileCal. It is designed to interface to the fast links and perform a series of tests on the data to assess the certification of the electronics. The Prometeo's prototype is being assembled by the University of the Witwatersrand and installed at CERN for further developing, tuning and tests. This article describes the overall design of the new Prometeo, and how it fits into the TileCal electronics upgrade.

  19. Secondary Emission Calorimeter Sensor Development

    NASA Astrophysics Data System (ADS)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  20. Fiber and crystals dual readout calorimeters

    NASA Astrophysics Data System (ADS)

    Cascella, Michele; Franchino, Silvia; Lee, Sehwook

    2016-11-01

    The RD52 (DREAM) collaboration is performing R&D on dual readout calorimetry techniques with the aim of improving hadronic energy resolution for future high energy physics experiments. The simultaneous detection of Cherenkov and scintillation light enables us to measure the electromagnetic fraction of hadron shower event-by-event. As a result, we could eliminate the main fluctuation which prevented from achieving precision energy measurement for hadrons. We have tested the performance of the lead and copper fiber prototypes calorimeters with various energies of electromagnetic particles and hadrons. During the beam test, we investigated the energy resolutions for electrons and pions as well as the identification of those particles in a longitudinally unsegmented calorimeter. Measurements were also performed on pure and doped PbWO4 crystals, as well as BGO and BSO, with the aim of realizing a crystal based dual readout detector. We will describe our results, focusing on the more promising properties of homogeneous media for the technique. Guidelines for additional developments on crystals will be also given. Finally we discuss the construction techniques that we have used to assemble our prototypes and give an overview of the ones that could be industrialized for the construction of a full hermetic calorimeter.

  1. A Neutron Detector for the Electron Calorimeter (ECAL) Long Duration Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bashindzhagyan, G. L.; Binns, W. R.; Chang, J.; Cherry, M. L.; Christl, M. J.; Guzik, t. G.; Isbert, J.; Israel, M. H.; Korotkova, N.; Panasyuk, M. I.; Panov, A.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Zatsepin, V.

    2007-01-01

    The highest energy measurements of cosmic ray electrons extend just beyond 1 TeV. High energy electrons are of particular interest because energy losses during interstellar propagation insure that they arrive primarily from nearby sources. This may produce observable structure in their spectrum. Further, it is predicted that electrons and positrons result from the annihilation of many exotic particles deposited as dark matter candidates. These electrons may appear as excesses in the cosmic ray electron spectrum from 200 GeV to 1000 GeV. A new long duration balloon experiment, ECAL, is being planned to provide direct cosmic ray electron measurements from approx.50 GeV to >1 TeV. To make these measurements ECAL must discriminate strongly against showers from protons and heavier ions. One of the techniques used to make this discrimination may be based on measuring the secondary neutrons produced by events in the instrument. The neutron detector configuration and technique will be discussed along with its expected performance based on Monte Carlo simulations.

  2. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.

    2013-03-01

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt{s} = 900 {GeV} and 7 TeV collected during 2009 and 2010. Then, using the decay of K s and Λ particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.

  3. The Zeus calorimeter first level trigger

    SciTech Connect

    Smith, W.J.

    1989-04-01

    The design of the Zeus Detector Calorimeter Level Trigger is presented. The Zeus detector is being built for operation at HERA, a new storage ring that will provide collisions between 820 GeV protons and 30 GeV electrons in 1990. The calorimeter is made of depleted uranium plates and plastic scintillator read out by wavelength shifter bars into 12,864 photomultiplier tubes. These signals are combined into 974 trigger towers with separate electromagnetic and hadronic sums. The calorimeter first level trigger is pipelined with a decision provided 5 {mu}sec after each beam crossing, occurring every 96 nsec. The trigger determines the total energy, the total transverse energy, the missing energy, and the energy and number of isolated electrons and muons. It also provides information on the number and energy of clusters. The trigger rate needs to be held to 1 kHz against a rate of proton-beam gas interactions of approximately 500 kHz. The summed trigger tower pulseheights are digitized by flash ADC`s. The digital values are linearized, stored and used for sums and pattern tests.

  4. Separation of e+e- → e+e- and e+e- → π+π- events using SND detector calorimeter

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Beloborodov, K. I.; Kupich, A. S.

    2017-01-01

    The technique of discrimination of the e+e- → e+e- and e+e- → π+π- events in energy range 0.5 < √s < 1 GeV by energy deposition in the calorimeter of SND detector was developed by applying machine learning method. Identification efficiency for e+e- → e+e- and e+e- → π+π- events in the range from 99.3 to 99.8% has been achived.

  5. A comparative study of the radiation hardness of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Liao, S.; Erasmus, R.; Jivan, H.; Pelwan, C.; Peters, G.; Sideras-Haddad, E.

    2015-10-01

    The influence of radiation on the light transmittance of plastic scintillators was studied experimentally. The high optical transmittance property of plastic scintillators makes them essential in the effective functioning of the Tile calorimeter of the ATLAS detector at CERN. This significant role played by the scintillators makes this research imperative in the movement towards the upgrade of the tile calorimeter. The radiation damage of polyvinyl toluene (PVT) based plastic scintillators was studied, namely, EJ-200, EJ-208 and EJ-260, all manufactured and provided to us by ELJEN technology. In addition, in order to compare to scintillator brands actually in use at the ATLAS detector currently, two polystyrene (PS) based scintillators and an additional PVT based scintillator were also scrutinized in this study, namely, Dubna, Protvino and Bicron, respectively. All the samples were irradiated using a 6 MeV proton beam at different doses at iThemba LABS Gauteng. The radiation process was planned and mimicked by doing simulations using a SRIM program. In addition, transmission spectra for the irradiated and unirradiated samples of each grade were obtained, observed and analyzed.

  6. The First Tests of a Large-Area Light Detector Equipped with Metallic Magnetic Calorimeters for Scintillating Bolometers for the LUMINEU Neutrinoless Double Beta Decay Search

    NASA Astrophysics Data System (ADS)

    Gray, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Hassel, C.; Hengstler, D.; Kempf, S.; Loidl, M.; Navick, X. F.; Rodrigues, M.

    2016-08-01

    Future rare-event searches using scintillating crystals need very low background levels for high sensitivity; however, unresolved pile-up can limit this. We present the design and fabrication of large-area photon detectors based on metallic magnetic calorimeters (MMCs), optimized for fast rise times to resolve close pile-up. The first prototypes have been characterized using Fe-55 X-rays and ZnMoO4 crystal scintillation light. A fast intrinsic rise time of 25-30 \\upmu s has been measured and has been compared to the 250 \\upmu s scintillation light pulse rise time constant. The difference indicates that the scintillation process limits the light pulse rise time. The fast rise time allows for a reduction of background due to close pile-up events as well as the study of the inherent crystal scintillation process. MMC-based photon detectors are shown to be a promising tool for scintillating crystal based rare event searches.

  7. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  8. Electromagnetic Compatibility Assessment of CCD Detector Acquisition Chains not Synchronized

    NASA Astrophysics Data System (ADS)

    Nicoletto, M.; Boschetti, D.; Ciancetta, E.; Maiorano, E.; Stagnaro, L.

    2016-05-01

    Euclid is a space observatory managed by the European Space Agency; it is the second medium class mission (see Figure 1) in the frame of Cosmic Vision 2015-2025 program.In the frame of this project, the electromagnetic interference between two different and not synchronized Charge Coupled Device (CCD) (see Figure 2) acquisition chains has been evaluated. The key parameter used for this assessment is the electromagnetic noise induced on each other. Taking into account the specificity of the issue, radiation coupling at relative low frequency and in near field conditions, classical approach based on simulations and testing on qualification model cannot be directly applied. Based on that, it has been decided to investigate the issue by test in an incremental way.

  9. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J. P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J. P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  10. Detector limitations, STAR

    SciTech Connect

    Underwood, D. G.

    1998-07-13

    Every detector has limitations in terms of solid angle, particular technologies chosen, cracks due to mechanical structure, etc. If all of the presently planned parts of STAR [Solenoidal Tracker At RHIC] were in place, these factors would not seriously limit our ability to exploit the spin physics possible in RHIC. What is of greater concern at the moment is the construction schedule for components such as the Electromagnetic Calorimeters, and the limited funding for various levels of triggers.

  11. Sky Localization and Electromagnetic Follow-up with Third-Generation Detectors

    NASA Astrophysics Data System (ADS)

    Anand, Shreya; Singer, Leo; Miller, Cole

    2017-01-01

    We present a preliminary investigation of the potential of third-generation gravitational-wave (GW) detectors for multi-messenger astronomy, from the standpoint of electromagnetic follow-up and identification of host galaxies. Using approximate sky localization inferred from GW observations, we intend to plan their electromagnetic follow-up in order to pinpoint the host galaxies. This involves simulating GW data, matching it with electromagnetic observations, and converting it into a sky-map used to chart locations of host galaxies of known sources. We aim to understand whether there are identifiable trends for host galaxies of transients in order to address whether a strategy that focuses on individual host galaxies is more optimal than one that locates them based on a statistical trend. Our project also concerns the configuration and calibration of a next generation detector network. Questions we focus on include: at what redshift will sky localization accuracy be limited by detector calibration? Using different combinations of detectors, what sky localization can be achieved? Our research motivates why third generation GW detector networks are crucial in enhancing signals detected and in providing insight into the sources and their physical environments. University of Maryland-College Park.

  12. Analysis of Performance of a Radiation-Hard, Highly-Segmented Shashlik Electromagnetic Calorimeter in the CERN H4 Testbeam

    NASA Astrophysics Data System (ADS)

    Culbertson, Eric; Neu, Chris; Dezoort, Gage; Ledovskoy, Alexander; Sinthuprasith, Tutanon

    2017-01-01

    A shashlik style calorimeter with alternating tungsten and LYSO crystal plates underwent testbeam analysis to determine its energy resolution. A single shashlik module is a tiny rectangular prism composed of 28 2.5 mm thick tungsten plates alternating with 29 1.5 mm thick LYSO crystals, which each have a length and width of 14 mm. The expected stochastic energy resolution of this design was predicted to be 10%/√{ E } by standalone GEANT4 simulations and subsequent beam tests. A 4x4 array of shashlik modules has been tested using the H4 beamline at CERN. Following a correction to the nonlinearity of SiPM response, the energy resolution was determined.

  13. Analysis of Performance of a Radiation-Hard, Highly-Segmented Shashlik Electromagnetic Calorimeter in the CERN H4 Testbeam

    NASA Astrophysics Data System (ADS)

    Culbertson, Eric; Neu, Chris; Dezoort, Gage; Ledovskoy, Alexander; Sinthuprasith, Tutanon

    2017-01-01

    A shashlik style calorimeter with alternating tungsten and LYSO crystal plates underwent testbeam analysis to determine its energy resolution. A single shashlik module is a tiny rectangular prism composed of 28 2.5 mm thick tungsten plates alternating with 29 1.5 mm thick LYSO crystals, which each have a length and width of 14 mm. The expected stochastic energy resolution of this design was predicted to be 10%/√{ E} by standalone GEANT4 simulations and subsequent beam tests. A 4x4 array of shashlik modules has been tested using the H4 beamline at CERN. Following a correction to the nonlinearity of SiPM response, the energy resolution was determined.

  14. Precision timing calorimeter for high energy physics

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  15. Use of a superconductive gradiometer in an ultrasensitive electromagnetic metal detector

    SciTech Connect

    Czipott, P.V.; Podney, W.N.

    1989-03-01

    The authors present a new instrument that we call an electromagnetic gradiometer. It uses a SQUID sensor as the receiver in an active, electromagnetic detector of nonferrous as well as ferrous objects. The gradiometer pickup loops sit in the center of magnet coils that generate a time-varying magnetic field inducing eddy currents in conductive bodies. The gradiometer measures the secondary magnetic field of the eddy currents. The SQUID's sensitivity at frequencies below 1 kHz makes electromagnetic metal detectors practical in the marine environment, where the electrical conductivity of seawater precludes conventional systems. The authors describe a prototype system that attains a detection range of 10 m in seawater for targets 50 cm in diameter. It operates at frequencies from 1 Hz to a few hundred Hz. Uses of the electromagnetic gradiometer include locating naval mines and undersea treasure. The system's response to seawater enables application to airborne electromagnetic bathymetry. On land, its sensitivity to crustal conductivity contrasts suits it to mineral exploration.

  16. Stability of the Gains of the STAR Endcap Calorimeter from 2006 to 2011

    NASA Astrophysics Data System (ADS)

    Kutz, Kayla

    2012-10-01

    The Solenoid Tracker at RHIC (STAR) experiment, based at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC), uses polarized-proton collisions to investigate sea quark and gluon contributions to the known proton spin. The STAR detector's Endcap Electromagnetic Calorimeter (EEMC) measures the energy of particles produced by those collisions using a lead-scintillator sampling calorimeter, consisting of several layers that include pre-shower, shower maximum, tower, and post-shower detectors. In these detectors, the energy gains, which convert a measured pulse into an energy deposition, have been determined using data taken from the years, 2006, 2009 and 2011. Changes in the gains over time may result from known high voltage changes or deterioration of the detector, such as from radiation damage. A comparison of the gains from the three years will be presented.

  17. The ATLAS Tile Calorimeter

    SciTech Connect

    Henriques, A.

    2015-07-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  18. Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  19. Beam test of a prototype fine-granularity scintillator tile EM calorimeter

    NASA Astrophysics Data System (ADS)

    Sanchez, A. L. C.; Miyata, H.; Nakajima, N.; Ono, H.; Fujii, Y.; Itoh, S.; Kajino, F.; Kanzaki, J.; Kawagoe, K.; Kim, S.; Kishimoto, S.; Matsumoto, T.; Matsunaga, H.; Nagano, A.; Nakamura, R.; Sekiguchi, K.; Takeshita, T.; Uchida, N.; Yamada, Y.; Yamamoto, S.; Yamauchi, S.

    2005-07-01

    We are studying the performance of an electromagnetic calorimeter for the linear collider detector that uses 4 cm×4 cm×1 mm plastic scintillator tiles as active media. To establish fabrication technique we built a thin test module. We then studied the uniformity of the module response as well as its position resolution at a test beam facility at the High-Energy Accelerator Research Organization.

  20. Mechanical Design of the DAMPE BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Hu, Yiming; Wu, Jian; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin

    The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the CASs new Innovation 2020 program. As the main component of DAMPE, the new designed BGO calorimeter consists of 308 BGO Crystals coupled with photomultiplier tube.The reliability and safety of the BGO Calorimeter structure play a very important role in the operation of whole detector. During the rocket launch, the calorimeter structure should be stable against vibration and environmental factors to ensure detector works in good conditions. In this article, we make the BGO calorimeter structure design, and then prove that it will work in the environments of rocket launch and flight.

  1. Fine Grained Silicon-Tungsten Calorimetry for a Linear Collider Detector

    SciTech Connect

    Strom, D.; Frey, R.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; Radeka, V.; /Brookhaven

    2006-02-08

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector optimized for particle-flow reconstruction. We are designing a calorimeter that is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Moliere radius, an important figure of merit for particle-flow detectors. Tests of the silicon detectors to be used in a test beam prototype as well as timing measurements based on similar silicon detectors are discussed.

  2. ADC common noise correction and zero suppression in the PIBETA detector

    NASA Astrophysics Data System (ADS)

    Frlež, E.; Počanić, D.; Ritt, S.

    2001-05-01

    We describe a simple procedure for reducing Analog-to-Digital Converter (ADC) common noise in modular detectors that does not require additional hardware. A method using detector noise groups should work well for modular particle detectors such as segmented electromagnetic calorimeters, plastic scintillator hodoscopes, cathode strip wire chambers, segmented active targets, and the like. We demonstrate a "second pedestal noise correction" method by comparing representative ADC pedestal spectra for various elements of the PIBETA detector before and after the applied correction.

  3. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multipurpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 47{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February--May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run. We have compared the shapes of the experimentally-obtained pulse height spectra to the Landau prediction for the ionization loss in a continuous thin absorber in the four electromagnetic and four hadronic layers of the calorimeter, and find good agreement after experimental effects are folded in. We have also determined an absolute energy calibration using two independent methods: one which measures the response of the electronics to a known amount of charge injected at the preamplifiers, and one which uses a carry-over of the calibration from a beam test of central calorimeter modules. Both absolute energy conversion factors agree with one another, within their errors. The calibration determined from the test beam carryover, relevant for use with collider physics data, has an error of 2.3%. We believe that, with further study, a final error of {approx}1% will be achieved. The theory-to-experiment comparison of the peaks (or most probable values) of the muon spectra was used to determine the layer-to-layer consistency of the muon signal. We find that the mean response in the 3 fine hadronic layers is (12 {plus_minus} 2%) higher than that in the 4 electromagnetic layers. These same comparisons have been used to verify the absolute energy conversion factors. The conversion factors work well for the electromagnetic sections.

  4. Study on the performance of electromagnetic particle detectors of LHAASO-KM2A

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongquan; Hou, Chao; Cao, Zhen; Chang, Jingfan; Feng, Cunfeng; Hanapia, Erlan; Gong, Guanghua; Liu, Jia; Lv, Hongkui; Sheng, Xiangdong; Zhang, Shaoru; Zhu, Chengguang

    2017-02-01

    The electromagnetic particle detectors (EDs) for one square kilometer detector array (KM2A) of large high altitude air shower observation (LHAASO) are designed to measure the densities and arrival times of secondary particles in extensive air showers (EASs). ED is a type of plastic scintillator detector with an active area of 1 m2. This study investigates the design and performance of prototype ED. Approximately 20 photoelectrons are collected by the 1st dynode of a photomultiplier tube (PMT). The prototype ED exhibited good detection efficiency and time resolution. The detection for the wide dynamic particle density varying from 1 to 10 000 particles/m2 is realized with the design of the PMT divider for the readout of both the anode and 6th dynode.

  5. Electromagnetic induction detector for capillary electrophoresis and its application in pharmaceutical analysis.

    PubMed

    Yang, Xiu-Juan; Chen, Zuan-Guang; Liu, Cui; Li, Ou-Lian

    2010-10-15

    A new electromagnetic induction detector for capillary electrophoresis and its application are described. The detector is consisted of an inductor, a resistor, a high-frequency signal generator and a high-frequency millivoltmeter. The conditions affecting the response of the detector, including dimension of the magnetic ring, position of the capillary, number of coil turns, frequency, excitation voltage and value of the resistor were examined and optimized. The feasibility of the proposed detector was evaluated by detection of inorganic ions and separation of amino aids. Its quantification applicability was investigated by determination of aspirin and paracetamol in pharmaceutical preparation (Akafen powder). The primary factors affecting separation efficiency, which include variety of buffer, buffer concentration, injection time and injection height and separation voltage, were researched. Experimental results demonstrated that this new detector showed a well-defined correlation between sample concentrations and responses (r=0.997-0.999), with detection limits of 30 μmol L(-1) for aspirin and 10 μmol L(-1) for paracetamol, as well as good reproducibility and stability. Compared with currently available detection techniques, this new detector has several advantages, such as simple construction, no complicated elements, ease of assembly and operation, and potential for universal applications. It can be an alternative to the traditional methods in the quality control of the pharmaceutical preparations.

  6. T-1018 UCLA Spacordion Tungsten Powder Calorimeter

    SciTech Connect

    Trentalange, Stephen; Tsai, Oleg; Igo, George; Huang, Huan; Pan, Yu Xi; Dunkelberger, Jay; Xu, Wen Qin; Soha, Aria; Heppelmann, Steven; Gagliardi, Carl; /Texas A-M

    2011-11-16

    The present experiments at the BNL-RHIC facility are evolving towards physics goals which require the detection of medium energy electromagnetic particles (photons, electrons, neutral pions, eta mesons, etc.), especially at forward angles. New detectors will place increasing demands on energy resolution, hadron rejection and two-photon resolution and will require large area, high performance electromagnetic calorimeters in a variety of geometries. In the immediate future, either RHIC or JLAB will propose a facility upgrade (Electron-Ion Collider, or EIC) with physics goals such as electron-heavy ion collisions (or p-A collisions) with a wide range of calorimeter requirements. An R and D program based at Brookhaven National Laboratory has awarded the group funding of approximately $110,000 to develop new types of calorimeters for EIC experiments. The UCLA group is developing a method to manufacture very flexible and cost-effective, yet high quality calorimeters based on scintillating fibers and tungsten powder. The design and features of the calorimeter can be briefly stated as follows: an arbitrarily large number of small diameter fibers (< 0.5 mm) are assembled as a matrix and held rigidly in place by a set of precision screens inside an empty container. The container is then back-filled with tungsten powder, compacted on a vibrating table and infused with epoxy under vacuum. The container is then removed. The resulting sub-modules are extremely uniform and achieve roughly the density of pure Lead. The sub-modules are stacked together to achieve a final detector of the desired shape. There is no dead space between sub-modules and the fibers can be in an accordion geometry bent to prevent 'channeling' of the particles due to accidental alignment of their track with the module axis. This technology has the advantage of being modular and inexpensive to the point where the construction work may be divided among groups the size of typical university physics departments

  7. ATLAS liquid argon calorimeter front end electronics

    NASA Astrophysics Data System (ADS)

    Buchanan, N. J.; Chen, L.; Gingrich, D. M.; Liu, S.; Chen, H.; Damazio, D.; Densing, F.; Duffin, S.; Farrell, J.; Kandasamy, S.; Kierstead, J.; Lanni, F.; Lissauer, D.; Ma, H.; Makowiecki, D.; Muller, T.; Radeka, V.; Rescia, S.; Ruggiero, R.; Takai, H.; Wolniewicz, K.; Ghazlane, H.; Hoummada, A.; Hervas, L.; Hott, T.; Wilkens, H. G.; Ban, J.; Boettcher, S.; Brooijmans, G.; Chi, C.-Y.; Caughron, S.; Cooke, M.; Copic, K.; Dannheim, D.; Gara, A.; Haas, A.; Katsanos, I.; Parsons, J. A.; Simion, S.; Sippach, W.; Zhang, L.; Zhou, N.; Eckstein, P.; Kobel, M.; Ladygin, E.; Auge, E.; Bernier, R.; Bouchel, M.; Bozzone, A.; Breton, D.; de la Taille, C.; Falleau, I.; Fournier, D.; Imbert, P.; Martin-Chassard, G.; Perus, A.; Richer, J. P.; Seguin Moreau, N.; Serin, L.; Tocut, V.; Veillet, J.-J.; Zerwas, D.; Colas, J.; Dumont-Dayot, N.; Massol, N.; Perrodo, P.; Perrot, G.; Wingerter-Seez, I.; Escalier, M.; Hubaut, F.; Laforge, B.; LeDortz, O.; Schwemling, Ph; Collot, J.; Dzahini, D.; Gallin-Martel, M.-L.; Martin, P.; Cwienk, W. D.; Fent, J.; Kurchaninov, L.; Citterio, M.; Mazzanti, M.; Tartarelli, F.; Bansal, V.; Boulahouache, C.; Cleland, W.; Liu, B.; McDonald, J.; Paolone, V.; Rabel, J.; Savinov, V.; Zuk, G.; Benslama, K.; Borgeaud, P.; de la Broïse, X.; Delagnes, E.; LeCoguie, A.; Mansoulié, B.; Pascual, J.; Teiger, J.; Dinkespiler, B.; Liu, T.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.; Grahn, K.-J.; Hansson, P.; Lund-Jensen, B.; Chu, M. L.; Lee, S.-C.; Su, D. S.; Teng, P. K.; Braun, H. M.

    2008-09-01

    The ATLAS detector has been designed for operation at CERN's Large Hadron Collider. ATLAS includes a complex system of liquid argon calorimeters. This paper describes the architecture and implementation of the system of custom front end electronics developed for the readout of the ATLAS liquid argon calorimeters.

  8. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  9. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  10. Study of Electromagnetic Interactions with the MicroBooNE Detector

    NASA Astrophysics Data System (ADS)

    Caratelli, David; MicroBooNE Collaboration

    2017-01-01

    MicroBooNE is an experiment which employs the Liquid Argon Time Projection Chamber (LArTPC) detector technology to study neutrinos produced with the Fermilab Booster Neutrino Beam. As for any accelerator-based detector interested in studying neutrino oscillations, it is essential to be able to identify and reconstruct the kinematic properties of electrons and photons produced in μν and νe interactions. We report current progress in reconstructing electron and photon electromagnetic (EM) showers using data from the MicroBooNE LArTPC. These studies cover EM showers in the tens to hundreds of MeV energy range; they lay the foundation for MicroBooNE's investigation of the excess of low-energy EM events reported by MiniBooNE, and are of interest to the wider LArTPC neutrino community.

  11. Design studies of the PWO Forward End-cap calorimeter for P¯ANDA

    NASA Astrophysics Data System (ADS)

    Moeini, H.; Al-Turany, M.; Babai, M.; Biegun, A.; Bondarenko, O.; Götzen, K.; Kavatsyuk, M.; Lindemulder, M. F.; Löhner, H.; Melnychuk, D.; Messchendorp, J. G.; Smit, H. A. J.; Spataro, S.; Veenstra, R.

    2013-11-01

    The P¯ANDA detection system at FAIR, Germany, is designed to study antiproton-proton annihilations, in order to investigate, among others, the realm of charm-meson states and glueballs, which has still much to reveal. The yet unknown properties of this field are to be unraveled through studying QCD phenomena in the non-perturbative regime. The multipurpose P¯ANDA detector will be capable of tracking, calorimetry, and particle identification, and is planned to run at high luminosities providing average reaction rates up to 2 · 107 interactions/s. The envisaged physics program requires measurements of photons and charged particles with excellent energy, position, and time resolutions. The electromagnetic calorimeter (EMC) will serve as one of the basic components of the detector setup and comprises cooled lead-tungstate (PbWO4) crystals. This paper presents the mechanical design of the Forward End-cap calorimeter and analyzes the response of the Forward End-cap calorimeter in conjunction with the full EMC and the complete P¯ANDA detector. The simulation studies are focused on the performance of the planned EMC with respect to the energy and spatial resolution of the reconstructed photons. Results of the Monte Carlo simulations, excluding very low-energy photons, have been validated by data obtained from a prototype calorimeter and shown to fulfil the requirements imposed by the P¯ANDA physics program.

  12. Stability of the Tower Gains of the STAR Endcap Calorimeter in 2012 Data

    NASA Astrophysics Data System (ADS)

    Amarasinghe, Chamindu; STAR Collaboration

    2016-09-01

    The Solenoid Tracker at RHIC (STAR) experiment, based at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC), uses polarized-proton collisions to investigate sea quark and gluon contributions to the proton spin. The STAR detector's Endcap Electromagnetic Calorimeter (EEMC) is of particular interest in this experiment because it covers a kinematic region that is sensitive to gluons carrying a low fraction of the proton momentum, where the gluon's contribution to the spin of the proton is poorly constrained. The EEMC is located in the intermediate pseudorapidity range, 1 < η <2, and as a lead-scintillator sampling calorimeter, measures the electromagnetic energy of particles produced in the polarized-proton collisions. The calorimeter consists of several layers that include pre-shower, shower maximum, tower, and post-shower detectors. In these detectors, the energy gains, which convert a measured signal into an energy deposition, have been determined using data taken from the year 2012. The sensitivities of the tower energy gains to beam intensity and running time were studied. The results from these sensitivity studies will be reported. Funded by the US Department of Energy.

  13. Building a Test Stand for Silicon Photomultiplies for sPHENIX Calorimeter Readout

    NASA Astrophysics Data System (ADS)

    Zhou, Geyang; Sphenix Collaboration

    2016-09-01

    The sPHENIX detector is a second-generation heavy ion collision experiment planned to be built at Brookhaven National Laboratory's (BNL) Relativistic Heavy Ion Collider (RHIC). The read-out of the electromagnetic and hadronic calorimeters will be via silicon photomultipliers (SiPMs). In preparation for characterizing the approximately 125,000 SiPMs that will be used in the detector, a test stand has been built at Augustana University. In this poster we give the details of the test stand and example tests that have and can be done. National Science Foundation.

  14. Development of Readout Interconnections for the Si-W Calorimeter of SiD

    SciTech Connect

    Woods, M.; Fields, R.G.; Holbrook, B.; Lander, R.L.; Moskaleva, A.; Neher, C.; Pasner, J.; Tripathi, M.; Brau, J.E.; Frey, R.E.; Strom, D.; Breidenbach, M.; Freytag, D.; Haller, G.; Herbst, R.; Nelson, T.; Schier, S.; Schumm, B.; /UC, Santa Cruz

    2012-09-14

    The SiD collaboration is developing a Si-W sampling electromagnetic calorimeter, with anticipated application for the International Linear Collider. Assembling the modules for such a detector will involve special bonding technologies for the interconnections, especially for attaching a silicon detector wafer to a flex cable readout bus. We review the interconnect technologies involved, including oxidation removal processes, pad surface preparation, solder ball selection and placement, and bond quality assurance. Our results show that solder ball bonding is a promising technique for the Si-W ECAL, and unresolved issues are being addressed.

  15. Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Busch, S. E.; Yoon, W. S.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2016-07-01

    For future X-ray observatories utilizing transition-edge sensor (TES) microcalorimeters, an anti-coincidence detector (anti-co) is required to discriminate X-ray (˜ 0.1-10 keV) signals from non-X-ray background events, such as ionizing particles. We have developed a prototype anti-co that utilizes TESs, which will be compatible with the TES focal-plane arrays planned for future X-ray observatories. This anti-co is based upon the cryogenic dark matter search II detector design. It is a silicon wafer covered with superconducting collection fins and TES microcalorimeters. Minimum ionizing particles deposit energy while passing through the silicon. The athermal phonons produced by these events are absorbed in the superconducting fins, breaking Cooper pairs. The resulting quasiparticles diffuse along the superconducting fin, producing a signal when they reach the TES. By determining a correlation between detections in the anti-co and the X-ray detector one can identify and flag these background events. We have fabricated and tested a single-channel prototype anti-co device on a 1.5 × 1.9 cm^2 chip. We have measured the signals in this device from photons of several energies between 1.5 and 60 keV, as well as laboratory background events, demonstrating a threshold ˜ 100 times lower than is needed to detect minimum ionizing particles.

  16. Cerenkov fiber sampling calorimeters

    SciTech Connect

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R. ); Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W. ); Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E. )

    1994-08-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1[degree]--7[degree]). The 7 [lambda] deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented.

  17. Calibrating the PHENIX Muon Piston Calorimeter Using Fits to ADC Distributions

    NASA Astrophysics Data System (ADS)

    Silva, James; Phenix Collaboration

    2016-09-01

    The PHENIX Muon Piston Calorimeter (MPC), a homogeneous electromagnetic calorimeter located in the forward and backward directions (3.1 < η < 3.9) is being used to measure transverse energy from RHIC Au+Au collisions obtained in 2010. While the detector has been partially calibrated using the reconstruction of neutral pions in an iterative procedure, the calibration constants for some areas of the detector are not converging. In order to improve the initial set of calibration constants, a parameterization of the energy distributions as a function of distance from the beamline (obtained using well calibrated towers) is used to provide initial values to problem towers in the iterative procedure. The work done to produce this parameterization and its effects on the calibration process will be described. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  18. Prototype of readout electronics for the LHAASO KM2A electromagnetic particle detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Chang, Jing-Fan; Wang, Zheng; Fan, Lei

    2016-07-01

    The KM2A (one kilometer square extensive air shower array) is the largest detector array in the LHAASO (Large High Altitude Air Shower Observatory) project. The KM2A consists of 5242 EDs (Electromagnetic particle Detectors) and 1221 MDs (Muon Detectors). The EDs are distributed and exposed in the wild. Two channels, anode and dynode, are employed for the PMT (photomultiplier tube) signal readout. The readout electronics designed in this paper aims at accurate charge and arrival time measurement of the PMT signals, which cover a large amplitude range from 20 P.E. (photoelectrons) to 2 × 105 P.E. By using a “trigger-less” architecture, we digitize signals close to the PMTs. All digitized data is transmitted to DAQ (Data Acquisition) via a simplified White Rabbit protocol. Compared with traditional high energy experiments, high precision of time measurement over such a large area and suppression of temperature effects in the wild become the key techniques. Experiments show that the design has fulfilled the requirements in this project. Supported by National Natural Science Foundation of China (11375210) and the Knowledge Innovation Fund of IHEP, Beijing

  19. Upgrading the ATLAS fast calorimeter simulation

    NASA Astrophysics Data System (ADS)

    Hubacek, Z.; ATLAS Collaboration

    2016-10-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full Geant4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software and can be tuned to data more easily than Geant4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis and a neural network parametrization to optimise the amount of information to store in the ATLAS simulation infrastructure.

  20. Can a PB / SCIFI Calorimeter Survive the SSC?

    SciTech Connect

    D. W. Hertzog; S. A. Hughes; P. E. Reimer; R. L. Tayloe; K. F. Johnson; S. Majewski; C. Zorn; M. Zorn

    1990-03-01

    A scintillating fiber based electromagnetic calorimeter module built from radiation-hard materials has been tested in a beam capable of delivering both low and high currents of monoenergetic electrons. Energy resolution and light output measurements were made following high-dose exposures. The procedure was repeated until the resolution of the detector decreased from an initial value of 6.9%/sqrt E to 14.0%/sqrt E and the pulse height dropped by a factor of 11. After four weeks, the detector was retested. Partial recovery was observed in the light output which returned to approximately 52% of its original value. The resolution recovered to a value of 8.8%/sqrt E. The tests are described.

  1. Can a Pb/SCIFI calorimeter survive the SSC

    SciTech Connect

    Hertzog, D.W.; Hughes, S.A.; Reimer, P.E.; Tayloe, R.L. ); Johnson, K.F. ); Majewski, S.; Zorn, C.; Zorn, M. )

    1990-01-01

    A scintillating fiber based electromagnetic calorimeter module built from radiation-hard materials has been tested in a beam capable of delivering both low and high currents of monoenergetic electrons. Energy resolution and light output measurements were made following high-dose exposures. The procedure was repeated until the resolution of the detector decreased from an initial value of 6.9%{radical}E to 14.0%{radical}E and the pulse height dropped by a factor of 11. After four weeks, the detector was retested. Partial recovery was observed in the light output which returned to approximately 52% of its original value. The resolution recovered to a value of 8.8%{radical}E. The tests are described. 9 refs., 4 figs.

  2. Compensation effects in hadron calorimeters

    SciTech Connect

    Gabriel, T.A.; Bishop, B.L.; Brau, J.; Di Ciaccio, A.; Goodman, M.; Wilson, R.

    1984-01-01

    The pros and cons of utilizing a fissionable material such as /sup 238/U to compensate for the nuclear binding energy losses in a hadron calorimeter are discussed. Fissionable material can return some lost energy to the particle cascade in terms of low-energy neutrons and gamma rays, but electromagnetic sampling inefficiencies (often called transition effects) and the detection medium which tries to convert this energy to a useable signal are just as important. 12 references.

  3. Double beta decay: Calorimeters

    NASA Astrophysics Data System (ADS)

    Brofferio, Chiara

    2008-11-01

    Calorimeters or, with a more specific definition, low temperature detectors, have been used by now for more than 15 years in Double Beta Decay (DBD) searches, with excellent results: they compete with Ge diodes for the rank of detectors with the highest sensitivity to the effective neutrino mass, which is defined as a linear combination of the neutrino mass eigenvalues. After a brief introduction to the argument, with some notes on DBD and on bolometers, an update on the now closed experiment CUORICINO and on its successor, CUORE, is given. The fundamental role of background is then revealed and commented, introducing in this way the importance of the specific experiment now under construction, CUORE-0, that will precede CUORE to help optimizing the struggle against surface background. The possible future of this technique is then commented, quoting important R&D studies that are going on, for active shielding bolometers and for scintillating bolometers coupled with light detecting bolometers.

  4. A hadron calorimeter with scintillators parallel to the beam

    NASA Astrophysics Data System (ADS)

    Abramov, V.; Goncharov, P.; Gorin, A.; Gurzhiev, A.; Dyshkant, A.; Evdokimov, V.; Kolosov, V.; Korablev, A.; Korneev, Yu.; Kostritskii, A.; Krinitsyn, A.; Kryshkin, V.; Podstavkov, V.; Polyakov, V.; Shtannikov, A.; Tereschenko, S.; Turchanovich, L.; Zaichenko, A.

    1997-02-01

    A hadron calorimeter in which scintillators are arranged nearly parallel to the incident particle direction and light is collected by optical fibres with WLS, has been built. The iron absorber plates are of the tapered shape to fit a barrel structure of the collider geometry. The performance of the calorimeter studied with hadron beam is presented as a function of tilt angle without and with electromagnetic calorimeter in front of the hadron one.

  5. Test beam performance of the CDF plug upgrade hadron calorimeter

    SciTech Connect

    de Barbaro, P.; CDF Plug Upgrade Group

    1998-01-13

    We report on the performance of the CDF End Plug Hadron Calorimeter in a test beam. The sampling calorimeter is constructed using 2 inch iron absorber plates and scintillator planes with wavelength shifting fibers for readout. The linearity and energy resolution of the calorimeter response to pions, and the transverse uniformity of the response to muons and pions are presented. The parameter e/h, representing the ratio of the electromagnetic to hadronic response, is extracted from the data.

  6. The Multi-Purpose Detector for NICA heavy-Ion Collider at JINR

    SciTech Connect

    Rogachevsky, O. V.

    2012-05-15

    The Multi-Purpose Detector (MPD) is designed to study heavy-ion collisions at the Nuclotron-based heavy Ion Collider fAcility (NICA) at JINR, Dubna. Its main components located inside a superconducting solenoid are a tracking system composed of a silicon microstrip vertex detector followed by a large volume time-projection chamber, a time-of-flight system for particle identification and a barrel electromagnetic calorimeter. A zero degree hadron calorimeter is designed specifically to measure the energy of spectators. In this paper, all parts of the apparatus are described and their tracking and particle identification parameters are discussed in some detail.

  7. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    NASA Astrophysics Data System (ADS)

    Wuest, C. R.; Fuchs, B. A.; Holdener, F. R.; Heck, J. L., Jr.

    1994-04-01

    New machining and polishing techniques have been developed for large scintillating crystal arrays such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the Crystal Clear Collaboration's cerium fluoride or lead tungstenate calorimeter at the proposed LHC and CERN, the PHENIX Detector at RHIC (barium fluoride), and the cesium iodide Calorimeter for the BaBar Detector at PEP-2 B Factory at SLAC. The machining and polishing methods to be presented in this paper provide crystalline surfaces without sub-surface damage or deformation as verified by Rutherford Back-scattering (RBS) analysis. Surface roughness of about 10-20 A and sub-micron mechanical tolerances have been demonstrated on large barium fluoride crystal samples. Mass production techniques have also been developed for machining the proper angled surfaces and polishing up to five 50 cm long crystals at one time. These techniques utilize kinematic mount technology developed at LLNL to allow precision machining and polishing of complex surfaces. They will present this technology along with detailed surface studies of barium fluoride and cerium fluoride crystals polished with this technique.

  8. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes. Revision 1

    SciTech Connect

    Wuest, C.R.; Fuchs, B.A.; Holdener, F.R.; Heck, J.L. Jr.

    1994-04-01

    New machining and polishing techniques have been developed for large scintillating crystal arrays such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the Crystal Clear Collaboration`s cerium fluoride or lead tungstenate calorimeter at the proposed LHC and CERN, the PHENIX Detector at RHIC (barium fluoride), and the cesium iodide Calorimeter for the BaBar Detector at PEP-2 B Factory at SLAC. The machining and polishing methods to be presented in this paper provide crystalline surfaces without sub-surface damage or deformation as verified by Rutherford Back-scattering (RBS) analysis. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large barium fluoride crystal samples. Mass production techniques have also been developed for machining the proper angled surfaces and polishing up to five 50 cm long crystals at one time. These techniques utilize kinematic mount technology developed at LLNL to allow precision machining and polishing of complex surfaces. They will present this technology along with detailed surface studies of barium fluoride and cerium fluoride crystals polished with this technique.

  9. GEANT4 Simulation of Neutron Detector for DAMPE

    NASA Astrophysics Data System (ADS)

    He, M.; Ma, T.; Chang, J.; Zhang, Y.; Huang, Y. Y.; Zang, J. J.; Wu, J.; Dong, T. K.

    2016-01-01

    During recent tens of years dark matter has gradually become a hot topic in astronomical research field, and related theory researches and experiment projects change with each passing day. The Dark Matter Particle Explorer (DAMPE) of our country is proposed under this background. As the probing object involves high energy electrons, appropriate methods must be taken to distinguish them from protons in order to reduce the event probability of other charged particles (e.g. a proton) being mistaken as electrons. The experiments show that, the hadronic shower of high energy proton in BGO electromagnetic calorimeter, which is usually accompanied by the emitting of large number of secondary neutrons, is significantly different from the electromagnetic shower of high energy electron. Through the detection of secondary neutron signal emitting from the bottom of BGO electromagnetic calorimeter and the shower shape of incident particles in BGO electromagnetic calorimeter, we can effectively distinguish whether the incident particles are high energy protons or electrons. This paper introduces the structure and detecting principle of DAMPE neutron detector. We use Monte-Carlo method with GEANT4 software to simulate the signal emitting from protons and electrons at characteristic energy in the neutron detector, and finally summarize the neutron detector's ability to distinguish protons and electrons under different electron acception efficiencies.

  10. MARK II end cap calorimeter electronics

    SciTech Connect

    Jared, R.C.; Haggerty, J.S.; Herrup, D.A.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wood, D.R.

    1985-10-01

    An end cap calorimeter system has been added to the MARK II detector in preparation for its use at the SLAC Linear Collider. The calorimeter uses 8744 rectangular proportional counter tubes. This paper describes the design features of the data acquisition electronics that has been installed on the calorimeter. The design and use of computer-based test stands for the amplification and signal-shaping components is also covered. A portion of the complete system has been tested in a beam at SLAC. In these initial tests, using only the calibration provided by the test stands, a resolution of 18%/..sqrt..E was achieved.

  11. ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS

    SciTech Connect

    Kasliwal, Mansi M.; Nissanke, Samaya

    2014-07-01

    We present the first simulation addressing the prospects of finding an electromagnetic (EM) counterpart to gravitational wave (GW) detections during the early years of only two advanced detectors. The perils of such a search may have appeared insurmountable when considering the coarse ring-shaped GW localizations spanning thousands of square degrees using time-of-arrival information alone. Leveraging the amplitude and phase information of the predicted GW signal narrows the localization to arcs with a median area of only a few hundred square degrees, thereby making an EM search tractable. Based on the locations and orientations of the two LIGO detectors, we find that the GW sensitivity is limited to only two of the four sky quadrants. Thus, the rates of GW events with two interferometers is only ≈40% of the rate with three interferometers of similar sensitivity. Another important implication of the sky quadrant bias is that EM observatories in North America and Southern Africa would be able to systematically respond to GW triggers several hours sooner than Russia and Chile. Given the larger sky areas and the relative proximity of detected mergers, 1 m class telescopes with very wide-field cameras are well-positioned for the challenge of finding an EM counterpart. Identification of the EM counterpart amidst the larger numbers of false positives further underscores the importance of building a comprehensive catalog of foreground stellar sources, background active galactic nucleus and potential host galaxies in the local universe. This initial study is based on a small sample of 17 detected mergers; future works will expand this sample.

  12. The CDF miniplug calorimeters

    SciTech Connect

    Lami, Stefano

    2002-06-28

    Two MiniPlug calorimeters, designed to measure the energy and lateral position of particles in the (forward) pseudorapidity region of 3.6 < |{nu}| < 5.2 of the CDF detector, have been recently installed as part of the Run II CDF upgrade at the Tevatron {bar p}p collider. They consist of lead/liquid scintillator read out by wavelength shifting fibers arranged in a pixel-type towerless geometry suitable for ''calorimetric tracking''. The design concept, the prototype performance and the final design of the MiniPlugs are here described. A recent cosmic ray test resulted in a light yield of approximately 100 pe/MIP, which exceeds our design requirements.

  13. The LYSO crystal calorimeter for the Mu2e experiment

    NASA Astrophysics Data System (ADS)

    Pezzullo, G.; Budagov, J.; Carosi, R.; Cervelli, F.; Cheng, C.; Cordelli, M.; Corradi, G.; Davydov, Yu; Echenard, B.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D.; Luca, A.; Martini, M.; Miscetti, S.; Murat, P.; Ongmonkolkul, P.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Stomaci, V.; Tassielli, G.

    2014-03-01

    The Mu2e experiment at Fermilab searches the neutrino-less conversion of the muon into electron in the field of an Aluminum nucleus. If such a process will be observed, it will be a proof of the charged-lepton-flavor-violation (cLFV), otherwise Mu2e will set an upper limit of Rμe < 6 × 10-17 @ 90% C.L. (which represents an improvement by 3-4 order of magnitude over the existing limit). The Mu2e detector apparatus consists of a magnetic spectrometer, devoted to the measurement of the electrons momentum, and an electromagnetic calorimeter (EMC) which provides an independent measurement of the electron energy, time and position, used for validating or rejecting candidate tracks selected by the tracking system. In this paper, we describe the baseline project of the EMC and present results in terms of performances and R&D.

  14. The DAMPE Neutron Detector

    NASA Astrophysics Data System (ADS)

    Yan, Zhang; Tao, Ma; Yongyi, Huang

    2016-07-01

    The first Chinese space observatory DAMPE (DArk Matter Particle Explorer) was successfully launched on Dec. 17th, 2015. One major scientific object of DAMPE is to measure electrons between 5GeV to 10TeV with excellent energy resolution (1.5% at 800GeV) to search for possible dark matter signatures. The detector consists of four subsystems: a plastic scintillator detector (PSD), a silicon-tungsten tracker (STK), a BGO calorimeter (BGO), and a neutron detector (NUD). The NUD on board DAMPE is designed to detect moderated neutrons via the boron capture of thermal neutrons in boron-doped plastics. Given the fact that hadron showers initiated in the BGO calorimeter by incident nuclei tend to be followed by significantly more neutron activities comparing to electromagnetic cascades triggered by electrons, the NUD provides an additional order of magnitude hadron rejection capability to improve the overall e/p discrimination of DAMPE up to 10 ^{5}. Preliminary analysis of the in-orbit data is given, together with comparisons to the results obtained by a detailed GEANT4 simulation of the NUD instrument.

  15. Study of the performance of a compact sandwich calorimeter for the instrumentation of the very forward region of a future linear collider detector

    NASA Astrophysics Data System (ADS)

    Ghenescu, V.; Benhammou, Y.

    2017-02-01

    The FCAL collaboration is preparing large scale prototypes of special calorimeters to be used in the very forward region at a future linear electron positron collider for a precise and fast luminosity measurement and beam-tuning. These calorimeters are designed as sensor-tungsten calorimeters with very thin sensor planes to keep the Moliere radius small and dedicated FE electronics to match the timing and dynamic range requirements. A partially instrumented prototype was investigated in the CERN PS T9 beam in 2014 and at the DESY-II Synchrotron in 2015. It was operated in a mixed particle beam (electrons, muons and hadrons) of 5 GeV from PS facilities and with secondary electrons of 5 GeV energy from DESY-II. The results demonstrated a very good performance of the full readout chain. The high statistics data were used to study the response to different particles, perform sensor alignment and measure the longitudinal shower development in the sandwich. In addition, Geant4 MC simulations were done, and compared to the data.

  16. LED Monitoring System of the Phenix Muon Piston Calorimeter

    NASA Astrophysics Data System (ADS)

    Motschwiller, Steven

    2010-11-01

    The Muon Piston Calorimeter in the PHENIX experiment at RHIC has a monitoring system consisting of LEDs and PIN diodes to calibrate out the time dependent changes to the detector. The LEDs track the temperature and radiation-damage changes to the response of the MPC, while the absolute calibration can be done using 0̂ decays. To execute this, LEDs flash light through the PbWO4 crystal to the Avalanche Photo Diodes The MPC is made up of 416 independent electromagnetic calorimeter towers. By using the LEDs we can correct for changes in the gains of each tower in the MPC, on a run by run basis. Because the LED value only gives a relative measurement of the gain over time, this method of calibration can only be used in conjunction with absolute calibrations provided by 0̂ decays or by minimum ionizing peaks . This work will be used to make a final measurement on Transverse energy at √sNN = 200 GV in Au+Au collisions.

  17. ATLAS Tile Calorimeter performance with Run 1 data

    NASA Astrophysics Data System (ADS)

    Cerdá Alberich, L.

    2016-07-01

    The performance of the central hadronic calorimeter, TileCal, in the ATLAS Experiment at the Large Hadron Collider is studied using cosmic-ray muons and the large sample of proton-proton collisions acquired during the Run 1 of LHC (2010-2012). Results are presented for the precision of the absolute energy scale and timing, noise characterization, and time-stability of the detector. The results show that the Tile Calorimeter performance is within the design requirements of the detector.

  18. Detector Noise Susceptibility Issues for the Future Generation of High Energy Physics Experiments

    SciTech Connect

    Arteche, F.; Esteban, C.; Iglesias, M.; Rivetta, C.; Arcega, F.J.; /Zaragoza U.

    2011-11-22

    The front-end electronics (FEE) noise characterization to electromagnetic interference and the compatibility of the different subsystems are important topics to consider for the LHC calorimeter upgrades. A new power distribution scheme based on switching power converters is under study and will define a noticeable noise source very close to the detector's FEE. Knowledge and experience with both FFE noise and electromagnetic compatibility (EMC) issues from previous detectors are important conditions to guarantee the design goals and the good functionality of the upgraded LHC detectors. This paper shows an overview of the noise susceptibility studies performed in different CMS subdetectors. The impact of different FEE topologies in the final sensitivity to electromagnetic interference of the subsystem is analyzed and design recommendations are presented to increase the EMC of the detectors to the future challenging power distribution topologies.

  19. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  20. Recent developments on the STAR detector system at RHIC

    SciTech Connect

    Wieman, H.; Adams, D.L.; Added, N.

    1997-12-01

    The STAR detector system is designed to provide tracking, momentum analysis and particle identification for many of the mid-rapidity charged particles produced in collisions at the RHIC collider. A silicon vertex detector (SVT) provides three layers of tracking near the interaction point. This is followed by the main time projection chamber (TPC), which continues tracking out to 200 cm radial distance from the interaction region. The detector design also includes an electromagnetic calorimeter, various trigger detectors, and radial TPCs in the forward region. The entire system is enclosed in a 0.5 T solenoid magnet. A progress report is given for the various components of the STAR detector system. The authors report on the recent developments in the detector proto-typing and construction, with an emphasis on the main TPC, recent TPC cosmic ray testing and shipping to Brookhaven National Laboratory.

  1. The next generation of crystal detectors

    NASA Astrophysics Data System (ADS)

    Zhu, Ren-Yuan

    2015-09-01

    Crystal detectors have been used widely in high energy and nuclear physics experiments, medical instruments and homeland security applications. Novel crystal detectors are continuously being discovered and developed in academia and in industry. In high energy and nuclear physics experiments, total absorption electromagnetic calorimeters (ECAL) made of inorganic crystals are known for their superb energy resolution and detection efficiency for photon and electron measurements. A crystal ECAL is thus the choice for those experiments where precision measurements of photons and electrons are crucial for their physics missions. For future HEP experiments at the energy and intensity frontiers, however, the crystal detectors used in the above mentioned ECALs are either not bright and fast enough, or not radiation hard enough. Crystal detectors have also been proposed to build a Homogeneous Hadron Calorimeter (HHCAL) to achieve unprecedented jet mass resolution by duel readout of both Cherenkov and scintillation light, where development of cost-effective crystal detectors is a crucial issue because of the huge crystal volume required. This paper discusses several R&D directions for the next generation of crystal detectors for future HEP experiments.

  2. Photodetectors for the CMS hadron calorimeters

    NASA Astrophysics Data System (ADS)

    Elias, J. E.; CMS Hadron Calorimeter Readout Group

    1997-02-01

    Hadronic energy measurements in the central and end cap regions of the Compact Muon Solenoid (CMS) detector will be made using sampling calorimeter techniques with plastic scintillator tiles as the sensitive layers. Plastic fibers doped with wavelength shifting fluors embedded in each tile are used to extract the scintillation light. Clear plastic wave guide fibers carry the shifted light to photodetectors located on the outer surface of the calorimeter structure. Environmental constraints and physics performance requirements for these photodetectors are presented. Candidate photodetector technologies are discussed, and the hybrid photomultiplier tube technology is identified as most promising.

  3. Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    1997-01-01

    The scintillating optical fiber calorimeter is a hybrid instrument with both active and passive components for measuring the proton and helium cosmic ray spectra from 0.2 to IO TeV kinetic energy. A thin emulsion/x-ray film chamber is situated between a cerenkov counter and an imaging calorimeter. Scintillating optical fibers sample the electromagnetic showers that develop in the calorimeter and identify the trajectory of cosmic rays that interact in SOFCAL. The emulsion/x-ray film data provide an in flight calibration for SOFCAL. The data reduction techniques used will be discussed and interim results of the analysis from a 20 hour balloon flight will be presented.

  4. Construction and testing of a Top Counting Detector and a Bottom Counting Detector for the Cosmic Ray Energetics And Mass experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Hwang, Y. S.; Kim, H. J.; Anderson, T.; Angelaszek, D.; Copley, M.; Coutu, S.; Han, J. H.; Huh, H. G.; Kah, D. H.; Kim, K. C.; Kwashnak, K.; Lee, M. H.; Link, J. T.; Lutz, L.; Malinin, A.; Mitchell, J. W.; Nutter, S.; Ofoha, O.; Jeon, H. B.; Hyun, H. J.; Park, H.; Park, J. M.; Patterson, P.; Seo, E. S.; Wu, J.; Yoon, Y. S.

    2015-07-01

    The Cosmic Ray Energetics And Mass (CREAM) mission is planned for launch in 2015 to the International Space Station (ISS) to research high-energy cosmic rays. Its aim is to understand the acceleration and propagation mechanism of high-energy cosmic rays by measuring their compositions. The Top Counting Detector and Bottom Counting Detector (T/BCD) were built to discriminate electrons from protons by using the difference in cascade shapes between electromagnetic and hadronic showers. The T/BCD provides a redundant instrument trigger in flight as well as a low-energy calibration trigger for ground testing. Each detector consists of a plastic scintillator and two-dimensional silicon photodiode array with readout electronics. The TCD is located between the carbon target and the calorimeter, and the BCD is located below the calorimeter. In this paper, we present the design, assembly, and performance of the T/BCD.

  5. Tests of the D0 calorimeter response in 2--150 GeV beams

    SciTech Connect

    De, K. . Dept. of Physics)

    1992-10-01

    At the heart of the D0 detector, which recently started its maiden data run at the Fermilab Tevatron p[bar p] collider, is a finely segmented hermetic large angle liquid argon calorimeter. We present here results from the latest test beam studies of the calorimeter in 1991. Modules from the central calorimeter, end calorimeter and the inter-cryostat detector were included in this run. New results on resolution, uniformity and linearity will be presented with electron and pion beams of various energies. Special emphasis will be placed on first results from the innovative technique of using scintillator sampling in the intermediate rapidity region to improve uniformity and hermeticity.

  6. Tests of the D0 calorimeter response in 2--150 GeV beams

    SciTech Connect

    De, K.; D0 Collaboration

    1992-10-01

    At the heart of the D0 detector, which recently started its maiden data run at the Fermilab Tevatron p{bar p} collider, is a finely segmented hermetic large angle liquid argon calorimeter. We present here results from the latest test beam studies of the calorimeter in 1991. Modules from the central calorimeter, end calorimeter and the inter-cryostat detector were included in this run. New results on resolution, uniformity and linearity will be presented with electron and pion beams of various energies. Special emphasis will be placed on first results from the innovative technique of using scintillator sampling in the intermediate rapidity region to improve uniformity and hermeticity.

  7. The pad readout electronics of the SLD Warm Iron Calorimeter

    SciTech Connect

    Burrows, P.N.; Busza, W.; Cartwright, S.L.; Friedman, J.I.; Fuess, S.; Gonzalez, S.; Hansl-Kozanecka, T.; Kendall, H.W.; Lath, A.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Schneekloth, U.; Taylor, F.E.; Verdier, R.; Wadsworth, B.; Williams, D.C.; Yamartino, J.M. ); Byers, B.L.; Escalera, J.; Gioumousis, A.; Gray, R.; Horelick, D.; Kharakh, D.; Messner, R.L.; Moss, J.; Zdark

    1990-08-01

    The design of the pad readout electronics of the Warm Iron Calorimeter for the SLD detector at SLAC, consisting of about 9000 analog channels, is described. Results of various tests performed during the construction, installation and commissioning of the electronics mounted on the detector are presented. 10 refs., 12 figs.

  8. D0 Silicon Upgrade: End Calorimeter Transfer Bridge Modification

    SciTech Connect

    Stredde, H.J.; /Fermilab

    1996-07-10

    During the assembly of major components into the D0 Detector, a transfer bridge was required to move the North-End Calorimeter from the clean room,over the cable bridge and onto the north sidewalk of the assembly hall. This experiment is now at the beginning stages of the next phase, namely the upgrade of this Detector for future physics research. A major piece of this upgrade is the installation of a solenoid magnet into the Central Calorimeter. In order to accomplish this, the South End Calorimeter has to be removed from the detector and the North End Calorimeter must be moved an additional 20-inch from its nominal open position (total 60-inch movement). The South End Calorimeter will be removed from the detector using the equipment designed for its installation. The calorimeter will be staged on the south sidewalk during the installation of the solenoid magnet and the central tracking systems. The North End Calorimeter is moved 60-inch to give more space between calorimeters during magnet, tracker and cable installation work. This movement will allow the calorimeter to remain coupled to the cryo system. However, this movement requires an extension be added to the center beam. This extension will support the rear wheels of the calorimeter and in the case of the end calorimeters, carry the majority of the weight. The extension is to be a modification of the transfer bridge. This modification, basically has T1 steel blocks added to one end and legs to the sidewalk supports at the other. The T1 steel blocks are notched to fit into the center beam porches and are welded to bridge rails. This design is the same as that for the installation bridge (3740.312-ME-273456), including the welds and weld procedures which are identical in both cases. Since load testing is impractical, the critical welds will be non-destructive tested by ultrasonic means. The laboratory, through the FESS Department, has a contract with M.Q.S. Inspection Inc. The results of this testing will be

  9. Electro-magnetic physics studies at RHIC: Neutral pion production, direct photon HBT, photon elliptic flow in gold-gold collisions at sqrt(s_NN) = 200 GeV and the Muon Telescope Detector simulation

    NASA Astrophysics Data System (ADS)

    Lin, Guoji

    Electro-magnetic (E&M) probes such as direct photons and muons (mu) are important tools to study the properties of the extremely hot and dense matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). In this thesis, several topics of E&M physics will be addressed, including neutral pion (pi0) production, direct photon HBT, and photon elliptic flow (v2) in Au+Au collisions at sNN = 200 GeV. A discussion on the simulation study of the new Muon Telescope Detector (MTD) will also be presented. The pi0 production is a fundamental measurement of hadron production and prerequisite for the background study of direct photons. Neutral pions are reconstructed using the photons detected by the STAR Barrel Electro-magnetic Calorimeter (BEMC) and the Time Projection Chamber (TPC). Spectra of pi 0 are measured at transverse momentum 1 < pT < 12 GeV/c near mid-rapidity (0 < eta < 0.8) in 200 GeV Au+Au collisions. The spectra and nuclear modification factors RCP and RAA are compared to earlier pi+/- and pi0 results. Direct photon Hanbury-Brown and Twiss (HBT) correlations can reveal information of the system size throughout the whole collision. A first attempt of direct photon HBT study at RHIC in 200 GeV Au+Au collisions is done using photons detected by the STAR BEMC and TPC. All unknown correlation at small Qinv is observed, whose magnitude is much larger than the expected HBT signal, and possible causes of the correlation will be discussed. Direct photon elliptic flow (v2) at intermediate to high pT is sensitive to the source of direct photon production. Results of inclusive photon v2 in 200 GeV Au+Au collisions are presented. The v2 of pi0 decay photons is calculated from the previously published pi results. The comparison between inclusive and decay photon v 2 indicates that direct photon v2 is small. A new large-area Muon Telescope Detector at mid-rapidity at RHIC is proposed and under investigation, using the Long-strip Multi-Gap Resistive Plate

  10. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  11. TECHNICAL DESIGN REPORT FOR A NOSECONE CALORIMETER (NCC) FOR THE PHENIX EXPERIMENT.

    SciTech Connect

    PHENIX EXPERIMENT; OBRIEN,E.; BOOSE, S.; CHIU, M.; JOHNSON, B.M.; KISTENEV, E.P.; LYNCH, D.; NOUICER, R.; PAK, R.; PISANI, R.; STOLL, S.P.; SUKHANOV, A.; WOODY, C.L.; LI, Z.; RADEKA, V.; RESCIA, S.

    2007-08-01

    A remarkable result has emerged from the first several years of data taking at RHIC--the high temperature and density phase of QCD matter created in heavy ion collisions at RHIC is best described as a near perfect fluid--the strongly interacting Quark-Gluon-Plasma (sQGP). This state is characterized by a small viscosity to entropy ratio, and a high density of color charges which induces huge energy losses of partons transversing the medium. The task for the future is to understand the characteristics of the sQGP, and perhaps more importantly--to gain some insight into how and why such a medium is created. The PHENIX detector has been one of the primary experimental tools at RHIC; in particular the electromagnetic calorimeter has been a critical component of many of the measurements leading to this discovery. The coverage of the present PHENIX electromagnetic calorimeter is rather limited, covering half the azimuth and -0.35< {eta} <0.35 Further progress requires larger coverage of electromagnetic calorimetry, both to increase the rate for low cross section phenomena, and to cover a broader range of pseudorapidity to study the rapidity dependence of the medium. A pair of Nosecone Calorimeters (NCC) has been designed covering both positive and negative rapidity regions 1< |{eta}| <3 of the PHENIX detector. The NCC will make it possible to perform tomographic studies of the jet energy dependence of energy loss and medium response, by using direct photons as trigger particles over a large rapidity range. The technique of correlating trigger hadrons with low momentum hadrons has been powerfully exploited at RHIC to study the evolution of back to back jets [1, 2] and hence the response of the medium. The NCC will make it possible to do such studies using direct photons as the trigger particles. The direct photon in such ''photon-jet'' events tags the transverse momentum of outgoing parton which then fragments into lower energy particles. Together with the Forward Silicon

  12. An Imaging Calorimeter for Access-Concept Study

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Adams, James H.; Binns, R. W.; Christl, M. J.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" was sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains a transition radiation detector and an ionization calorimeter to measure tile spectrum of protons, helium, and heavier nuclei up to approximately 10(exp 15) eV to search for the limit of S/N shock wave acceleration, or evidence for other explanations of the spectra. Several calorimeter configurations have been studied, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The Imaging Calorimeter for ACCESS (ICA) concept comprises a carbon target and a calorimeter using a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features and options of the ICA instrument configuration are described in this paper. Since direct calibration is not possible over most of the energy range, the best approach must be decided from simulations of calorimeter performance extrapolated from CERN calibrations at 0.375 TeV. This paper presents results from the ICA simulations study.

  13. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Tile Calorimeter System, ATLAS

    2015-02-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (1034 cm-2s-1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year.

  14. Performance of the DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1996-06-01

    The DELPHI STIC detector is a lead-scintillator sampling calorimeter with wave length shifting optical fibers used for light collection. The main goal of the calorimeter at LEP100 is to measure the luminosity with an accuracy better than 0.1%. The detector has been in operation since the 1994 LEP run. Presented here is the performance measured during the 1994--1995 LEP runs, with the emphasis on the achieved energy and space resolution, the long-term stability and the efficiency of the detector. The new bunchtrains mode of LEP requires a rather sophisticated trigger and timing scheme which is also presented. To control the trigger efficiency and stability of the calorimeter channels, a LED-based monitoring system has been developed.

  15. Simulations of a Thin Sampling Calorimeter with GEANT/FLUKA

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will investigate the origin, composition and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays up to 10(exp 15) eV. These measurements will be made with a thin ionization calorimeter and a transition radiation detector. This paper reports studies of a thin sampling calorimeter concept for the ACCESS thin ionization calorimeter. For the past year, a Monte Carlo simulation study of a Thin Sampling Calorimeter (TSC) design has been conducted to predict the detector performance and to design the system for achieving the ACCESS scientific objectives. Simulation results show that the detector energy resolution function resembles a Gaussian distribution and the energy resolution of TSC is about 40%. In addition, simulations of the detector's response to an assumed broken power law cosmic ray spectra in the region where the 'knee' of the cosmic ray spectrum occurs have been conducted and clearly show that a thin sampling calorimeter can provide sufficiently accurate estimates of the spectral parameters to meet the science requirements of ACCESS. n

  16. Sources of compensation in hadronic calorimeters

    SciTech Connect

    Goodman, M.S.; Gabriel, T.A.; Di Ciaccio, A.; Wilson, R.

    1988-12-01

    Monte Carlo simulations are presented using the CALOR code system to study the design of a large hybrid hadron calorimeter system employing a warm liquid active medium (tetramethylsilane, Si(CH/sub 3/)/sub 4/) and uranium plates in addition to a conventional Fe/plastic system. In the system described here, the uranium provides partial compensation by suppressing the electromagnetic cascade produced by incident electrons due to sampling inefficiencies. The results of the simulations also indicate that significant compensation is achieved (given small enough saturation) due to low energy recoil protons produced in collisions with low energy (1--20 MeV) cascade and fission neutrons in the active medium. Both compensation mechanisms are important to help balance the response of a calorimeter to incident electrons and hadrons, that is, to achieve a ratio of pulse heights (e/h approx. 1) which will lead to the best energy resolution. 17 refs., 4 figs., 2 tabs.

  17. In-flight second order correction of PAMELA calorimeter characteristics (for simulation in Geant4)

    NASA Astrophysics Data System (ADS)

    Dunaeva, O. A.; Alekseev, V. V.; Bogomolov, Yu V.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Rodenko, S. A.

    2017-01-01

    Simulation of the PAMELA spectrometer characteristics is performed with the special program accepted by the PAMELA collaboration based on Geant4 package, which needs a detailed information about geometry, materials etc. of scientific equipment. This data is taken from manufactures or obtained from different ground-based tests including accelerators. We propose a method of in-flight verification of calorimeter characteristics. To calculate them we select relativistic protons passing through all the spectrometer without interactions. We obtain correction values from a comparison of experimental data and simulation in assumption that electromagnetic processes are performed in Geant4 with high precision. As a result, characteristics of silicon detectors (the sensitive part) are verified. Correction factor is 2.0 ± 0.3% with respect to original value.

  18. Energy correction for the BGO calorimeter of DAMPE using an electron beam

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Ying; Zhang, Zhi-Yong; Wei, Yi-Feng; Wang, Chi; Zhang, Yun-Long; Wen, Si-Cheng; Wang, Xiao-Lian; Xu, Zi-Zong; Huang, Guang-Shun

    2016-08-01

    The DArk Matter Particle Explorer is an orbital indirect dark matter search experiment which measures the spectra of photons, electrons and positrons originating from deep space. The electromagnetic calorimeter (ECAL), made of bismuth germinate (BGO), is one of the key sub-detectors of DAMPE, and is designed for energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, methods for energy correction are discussed, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The correction results of Geant4 simulation and beam test data (at CERN) are presented. Supported by the Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (XDA04040202-4) and 100 Talents Program of CAS

  19. GEANT4 Simulation of Neutron Detector for DAMPE

    NASA Astrophysics Data System (ADS)

    Ming, He; Tao, Ma; Jin, Chang; Yan, Zhang; Yong-yi, Huang; Jing-jing, Zang; Jian, Wu; Tie-kuang, Dong

    2016-10-01

    In recent decades, dark matter has gradually become a hot topic in astronomical research, and the related theoretical research and experimental project are updated with each passing day. The Dark Matter Particle Explorer (DAMPE) of our country was proposed under this background. As the detected object involves high-energy electrons, appropriate methods must be taken to distinguish them from protons, in order to reduce the event probability of other charged particles (for example protons) being mistaken as electrons. The experiments show that the hadron shower of high-energy proton in BGO (Bismuth Germanium Oxide) calorimeter, which is usually accompanied with the emitting of a large number of secondary neutrons, is significantly different from the electromagnetic shower of high-energy electron. Through the detection of secondary neutron signals emerging from the bottom of BGO calorimeter, and the shower shape of incident particles in the BGO calorimeter, we can effectively distinguish whether the incident particles are high-energy protons or electrons. This paper introduces the structure and detection principle of the DAMPE neutron detector. We use the Monte-Carlo method and the GEANT4 software to simulate the signals produced by protons and electrons at the characteristic energy in the neutron detector, and finally summarize the neutron detector's ability to distinguish protons and electrons under different electron acceptabilities.

  20. Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-03-01

    Detailed measurements of the electron performance of the ATLAS detector at the LHC are reported, using decays of the Z, W and J/ ψ particles. Data collected in 2010 at sqrt{s}=7{ TeV} are used, corresponding to an integrated luminosity of almost 40 pb-1. The inter-alignment of the inner detector and the electromagnetic calorimeter, the determination of the electron energy scale and resolution, and the performance in terms of response uniformity and linearity are discussed. The electron identification, reconstruction and trigger efficiencies, as well as the charge misidentification probability, are also presented.

  1. Studies of hadron-electron separators for the ZEUS barrel calorimeter

    SciTech Connect

    Ambats, I.; Bortz, D.; Connolly, A.

    1995-05-25

    Two possible upgrades, a shower maximum detector and a presampler, designed to improve the low energy electron/hadron separation capabilities of the ZEUS barrel calorimeter are described and test-beam results are reported. The presampler can also be used to correct for energy loss of particles traversing the dead material in front of the calorimeter.

  2. Calorimeter Simulation with Hadrons in CMS

    SciTech Connect

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-11-01

    CMS is using Geant4 to simulate the detector setup for the forthcoming data from the LHC. Validation of physics processes inside Geant4 is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions using the same framework that is used for the entire CMS detector. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c. The tuned Monte Carlo predictions match many of these measurements within systematic uncertainties.

  3. Optimization of the Neutron Detector Design Based on the 6LiF/ZnS(Ag) Scintillation Screens for the GAMMA-400 Space Observatory

    NASA Astrophysics Data System (ADS)

    Gnezdilov, I. I.; Dedenko, G. L.; Ibragimov, R. F.; Idalov, V. A.; Kadilin, V. V.; Kaplun, A. A.; Klemetiev, A. V.; Mukhin, V. I.; Taraskin, A. A.; Turin, E. M.; Zaripov, R. N.

    The Neutron Detector (ND) is a new detector sub-system for the future GAMMA-400 space observatory. It aims to complement the instrument's GAMMA-400 electromagnetic calorimeter (CsI(Tl), total depth is 25.0 X0) in identifying cosmic-ray electrons from ∼ 100 MeV up to 3 TeV. Such electrons are of significant scientific interest, but their identification is complicated by the overwhelmingly more abundant hadronic cosmic rays, hence making significant hadronic rejection power of paramount importance. Particle showers initiated by nuclei in the GAMMA-400 calorimeter have a profile different from an electron-induced electromagnetic cascade, and the hadron rejection power deriving from this difference can be significantly enhanced by making use of the thermal neutron activity at late (>100 ns) times relative to the start of the shower. Indeed hadron-induced showers tend to be accompanied by significantly more neutron activity than electromagnetic showers. In the described ND for capturing thermalized neutrons applied isotope 6Li, which is part of the scintillation screen 6LiF/ZnS(Ag). ND placed are under the electromagnetic calorimeter. The results GEANT4 simulation of the ND shows that ND has high neutron detection efficiency.

  4. An Inexpensive Solution Calorimeter

    ERIC Educational Resources Information Center

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  5. Improving calorimeter resolution using temperature compensation calculations

    NASA Astrophysics Data System (ADS)

    Smiga, Joseph; Purschke, Martin

    2017-01-01

    The sPHENIX experiment is an upgrade of the existing PHENIX apparatus at the Relativistic Heavy-Ion Collider (RHIC). The new detector improves upon measurements of various physical processes, such as jets of particles created during heavy-ion collisions. Prototypes of various calorimeter components were tested at the Fermilab Test Beam Facility (FTBF). This analysis tries to compensate the effects of temperature drifts in the silicon photomultipliers (SiPMs). Temperature data were used to calculate an appropriate compensation factor. This analysis will improve the achievable resolution and will also determine how accurately the temperature must be controlled in the final experiment. This will improve the performance of the calorimeters in the sPHENIX experiment. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  6. The CLAS12 Forward Tagger Detector at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Rehman, Talha; de Vita, Raffaella; Battaglieri, Marco; Forward Tagger-CLAS12 Collaboration

    2016-09-01

    The CLAS12-Forward Tagger is designed to detect electrons produced by the interaction of CEBAF 11 GeV electron beam with the target. This detector is composed by an electromagnetic calorimeter (FT-Cal), based on lead tungstate scintillating crystals, a hodoscope (FT-Hodo), based on plastic scintillator tiles and two layers of Micromegas trackers (FT-Trck). The Forward Tagger is designed to measure electrons scattered between 2.5 and 5 degrees. Before the installation in the Hall-B of Jefferson Lab, the FT has been assembled in laboratory and is currently tested with cosmic rays. The calorimeter response is being measured to perform the energy calibration of the system. Cosmic rays crossing the calorimeter crystals release on average a fixed amount of energy that can be used to determine the absolute calibration of the system. The stability of system response can be monitored by studying the variation of calibration constants as a function of time. The results obtained in a few weeks of operation indicates that the energy response of the calorimeter is consistent with expectations and does not show significant time dependence.

  7. The CLAS12 Forward Tagger Detector at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Rehman, Talha; de Vita, Raffaella, , Dr.; Battaglieri, Marco, , Dr.; Clas12 Collaboration Collaboration

    2017-01-01

    The CLAS12-Forward Tagger is designed to detect electrons produced by the interaction of CEBAF 11 GeV electron beam with the target. This detector is composed by an electromagnetic calorimeter (FT-Cal), based on lead tungstate scintillating crystals, a hodoscope (FT-Hodo), based on plastic scintillator tiles and two layers of Micromegas trackers (FT-Trck). The Forward Tagger is designed to measure electrons scattered between 2.5 and 5 degrees. Before the installation in the Hall-B of Jefferson Lab, the FT has been assembled in laboratory and is currently tested with cosmic rays. The calorimeter response is being measured to perform the energy calibration of the system. Cosmic rays crossing the calorimeter crystals release on average a fixed amount of energy that can be used to determine the absolute calibration of the system. The stability of system response can be monitored by studying the variation of calibration constants as a function of time. The results obtained in a few weeks of operation indicates that the energy response of the calorimeter is consistent with expectations and does not show significant time dependence.

  8. Semiconductor detectors for the ATLAS inner tracker

    NASA Astrophysics Data System (ADS)

    Morgan, Debbie

    1998-02-01

    The ATLAS experiment currently under design for the CERN LHC contains an inner detector which tracks charged particles from the LHC beam-pipe to the electromagnetic calorimeter system. The main task is to reconstruct event tracks with high efficiency, to assist electron, photon and muon recognition and to reconstruct signatures of short-lived particles. Track densities at the LHC will be extremely large, and hence high precision measurements are required. This will be achieved using semiconductor tracking detectors, making use of silicon microstrip and pixel technology. For detectors closest to the beam interaction point the radiation levels are extremely high-up to 10 MRad. At the time of the ATLAS technical proposal, it was envisaged that gallium arsenide detectors could withstand such an environment. However, it has since become clear that GaAs is not as radiation hard as first expected, and that detectors would not perform sufficiently for the required time. In addition, progress on silicon detectors has indicated that they are able to withstand harsh radiation environments, and hence further work on silicon detectors now continues.

  9. A merged quadrupole-calorimeter for CEPC

    NASA Astrophysics Data System (ADS)

    Talman, Richard; Hauptman, John

    2016-11-01

    The luminosity ℒ of colliding beams in a storage ring such as CEPC depends strongly on l∗, the half-length of the free space centered on the intersection point (IP). l∗ is also the length from the IP to the front edges of the two near-in quadrupoles that are focusing the counter-circulating beams to the IP spot. The detector length cannot, therefore, exceed 2l∗. Since ℒ increases strongly with decreasing l∗, there is incentive for reducing l∗; but this requires the detector to be shorter than desirable. This paper proposes a method for integrating these adjacent quadrupoles into the particle detector to retain (admittedly degraded) active particle detection of those forward going particles that would otherwise be obscured by the quadrupole. A gently conical quadrupole shape is more natural for merging the quadrupole into the particle detector than is the analytically exact cylindrical shape. This is true whether or not the calorimeter is integrated. It will be the task of accelerator physicists to determine the extent to which deviation from the pure quadrupole field compromises (or improves) accelerator performance. Superficially, both the presence of strongest gradient close to the IP and largest aperture farther from the IP seem to be advantageous. A tentative design for this merged, quadrupole-calorimeter is given.

  10. Noise dependence with pile-up in the ATLAS Tile Calorimeter. Pile-up noise studies in the ATLAS TileCal calorimeter

    SciTech Connect

    Araque, J.P.

    2015-07-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions, which are difficult to distinguish from the interesting one, will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described. (author)

  11. Hadron calorimeter performance with a PbWO4 EM compartment

    SciTech Connect

    Green, D.

    1996-01-01

    The CMS detector[1] at the LHC has chosen PbWO4 in order to achieve the superior photon energy resolution which is crucial in searching for the 2 photon decay of low mass Higgs bosons. The hadronic compartment is thought to be Cu absorber, since one is immersed in a 4 T magnetic field, read out by scintillator tiles coupled to wavelength shifter (WLS) fibers. The combined performance of this calorimeter is of interest in the study of jets and missing transverse energy (neutrino, SUSY signatures). For this reason, a test was made of the electromagnetic (EM) compartment combined with a reasonable approximation to the baseline HCAL ``barrel`` calorimeter. Data was taken in the H4 CERN beamline. The EM compartment was a 7 {times} 7 square array of PbWO4 crystals, which for the purposes of this study are considered as a single readout in depth (or ``compartment``) [2]. The HCAL module consisted of large scintillator plates with 24 individual longitudinal readout channels. The EM compartment was followed by 10 Cu plates each 3 cm thick, followed by 9 Cu plates each 6 cm thick. This set of absorber plates represented the HCAL compartments inside the coil. The coil itself [1] was approximated as Al and Fe plates, of a total thickness of about 1.4 absorption lengths. The coil mockup was sampled and then followed by 4 plates of 8 cm thick Cu, each with an individual readout which represented a test of the ``Tailcatcher`` concept.

  12. A flexible FPGA based QDC and TDC for the HADES and the CBM calorimeters

    NASA Astrophysics Data System (ADS)

    Rost, A.; Galatyuk, T.; Koenig, W.; Michel, J.; Pietraszko, J.; Skott, P.; Traxler, M.

    2017-02-01

    A Charge-to-Digital-Converter (QDC) and Time-to-Digital-Converter (TDC) based on a commercial FPGA (Field Programmable Gate Array) was developed to read out PMT signals of the planned HADES electromagnetic calorimeter (ECAL) at GSI Helmholtzzentrum für Schwerionenforschung GmbH (Darmstadt, Germany). The main idea is to convert the charge measurement of a detector signal into a time measurement, where the charge is encoded in the width of a digital pulse, while the arrival time information is encoded in the leading edge time of the pulse. The PaDiWa-AMPS prototype front-end board for the TRB3 (General Purpose Trigger and Readout Board—version 3) which implements this conversion method was developed and qualified. The already well established TRB3 platform provides the needed precise time measurements and serves as a data acquisition system. We present the read-out concept and the performance of the prototype boards in laboratory and also under beam conditions. First steps have been completed in order to adapt this concept to SiPM signals of the hadron calorimeter in the CBM experiment at the planned FAIR facility (Darmstadt).

  13. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Marino, C. P.

    2014-06-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| =1.5 to |η| =4.9. The ATLAS LAr calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums to the Level-1 trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 ×1034cm-2s-1 is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is proposed to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For these purposes, a new LAr Trigger Digitizer Board (LTDB) is being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the Level-1 trigger system to extract improved trigger signatures.

  14. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    SciTech Connect

    Strother, Philip David; /Imperial Coll., London

    2006-07-07

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e{sup +}e{sup -} collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B{sup 0} {yields} J/{Psi}K{sub S}{sup 0} has been studied in the two lepton, two {pi}{sup 0} final state. The contribution of this channel to the evaluation of the angle sin 2{beta} of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity.

  15. Radionuclide calorimeter system

    DOEpatents

    Donohoue, Thomas P.; Oertel, Christopher P.; Tyree, William H.; Valdez, Joe L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated.

  16. Radionuclide calorimeter system

    DOEpatents

    Donohoue, T.P.; Oertel, C.P.; Tyree, W.H.; Valdez, J.L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a Wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated. 7 figures.

  17. DSWA calorimeter bomb experiments

    SciTech Connect

    Cunningham, B

    1998-10-01

    Two experiments were performed in which 25 grams of TNT were detonated inside an expended detonation calorimeter bomb. The bomb had a contained volume of approximately 5.28 liters. In the first experiment, the bomb was charged with 3 atmospheres of nitrogen. In the second, it was charged with 2.58 atmospheres (23.1 psi gage) of oxygen. In each experiment pressure was monitored over a period of approximately 1200 microseconds after the pulse to the CDU. Monitoring was performed via two 10,000 psi 102AO3 PCB high frequency pressure transducers mounted symmetrically in the lid of the calorimeter bomb. Conditioners used were PCB 482As. The signals from the transducers were recorded in digital format on a multi channel Tektronix scope. The sampling frequency was 10 Mhz (10 samples per microsecond). After a period of cooling following detonation, gas samples were taken and were subsequently submitted for analysis using gas mass spectrometry. Due to a late request for post shot measurement, it was only possible to make a rough estimate of the weight of debris (carbon) remaining in the calorimeter bomb following the second experiment.

  18. End Calorimeter Warm Tube Heater

    SciTech Connect

    Primdahl, K.; /Fermilab

    1991-08-06

    The Tevatron accelerator beam tube must pass through the End Calorimeter cryostats of the D-Zero Collider Detector. Furthermore, the End Calorimeter cryostats must be allowed to roll back forty inches without interruption of the vacuum system; hence, the Tev tube must slide through the End Calorimeter cryostat as it is rolled back. The Tev pass through the End Calorimeter can actually be thought of as a cluster of concentric tubes: Tev tube, warm (vacuum vessel) tube, IS layers of superinsulation, cold tube (argon vessel), and Inner Hadronic center support tube. M. Foley generated an ANSYS model to study the heat load. to the cryostat. during collider physics studies; that is, without operation of the heater. A sketch of the model is included in the appendix. The vacuum space and superinsulation was modeled as a thermal solid, with conductivity derived from tests performed at Fermilab. An additional estimate was done. by this author, using data supplied by NR-2. a superinsulation manufacturer. The ANSYS result and hand calculation are in close agreement. The ANSYS model was modified. by this author. to incorporate the effect of the heater. Whereas the earlier model studied steady state operation only. the revised model considers the heater-off steady state mode as the initial condition. then performs a transient analysis with a final load step for time tending towards infinity. Results show the thermal gradient as a function of time and applied voltage. It should be noted that M. Foley's model was generated for one half the warm tube. implying the tube to be symmetric. In reality. the downstream connection (relative to the collision point) attachment to the vacuum shell is via several convolutions of a 0.020-inch wall bellows; hence. a nearly adiabatic boundary condition. Accordingly. the results reported in the table reflect extrapolation of the curves to the downstream end of the tube. Using results from the ANSYS analysis, that is, tube temperature and

  19. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    NASA Astrophysics Data System (ADS)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 1034cm-2s-1, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm × 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  20. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  1. Calorimetry of the CMD-3 detector

    NASA Astrophysics Data System (ADS)

    Shebalin, V. E.; Akhmetshin, R. R.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Grebenuk, A. A.; Grigoriev, D. N.; Ignatov, F. V.; Kazanin, V. F.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Okhapkin, V. S.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Titov, V. M.; Talyshev, A. A.; Yudin, Yu. V.

    2016-07-01

    CMD-3 is a general purpose detector designed to study e+e- annihilation into hadrons. It is mounted at VEPP-2000 collider which operates in the wide energy range, E c . m . s = 0.32 - 2 GeV. The calorimetry at the detector is based on three subsystems: closest to the beam pipe barrel Liquid Xenon calorimeter, outer barrel calorimeter based on CsI scintillation crystals and the endcap calorimeter made of BGO scintillation crystals. We describe the structure of the calorimeters, their electronics and the energy calibration procedures.

  2. The Scintillating Optical Fiber Calorimeter Instrument Performance (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Benson, C. M.; Berry, F. A.; Fountain, W. F.; Gregory, J. C.; Johnson, J. S.; Munroe, R. B.; Parnell, T. A.; Takahashi, Y.; Watts, J. W.

    1999-01-01

    SOFCAL is a balloon-borne instrument designed to measure the P-He cosmic ray spectra from about 200 GeV/amu - 20 TeV/amu. SOFCAL uses a thin lead and scintillating-fiber ionization calorimeter to measure the cascades produced by cosmic rays interacting in the hybrid detector system. Above the fiber calorimeter is an emulsion chamber that provides the interaction target, primary particle identification and in-flight energy calibration for the scintillating fiber data. The energy measurement technique and its calibration are described, and the present results from the analysis of a 1 day balloon flight will be presented.

  3. Design and Prototyping of a High Granularity Scintillator Calorimeter

    SciTech Connect

    Zutshi, Vishnu

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  4. Readout Electronics for BGO Calorimeter of DAMPE: Status during the First Half-year after Launching

    NASA Astrophysics Data System (ADS)

    Ma, Siyuan; Feng, Changqing; Zhang, Deliang; Wang, Qi

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientic satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objective of DAMPE mission is indirect searching for dark matter by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO (Bismuth Germanate Oxide) calorimeter, which is a critical sub-detector of DAMPE payload, was developed for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It is composed of 308 BGO crystal logs, with the size of 2.5cm*2.5cm*60cm for each log to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. Each PMT incorporates a three dynode pick off to achieve a large dynamic range, which results in 616 PMTs and 1848 signal channels. The main function of readout electronics system, which consists of 16 FEE(Front End Electronics) modules, is to precisely measure the charge of PMT signals and providing "hit" signals. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) to generate triggers for the payload. The calibration of the BGO calorimeter is composed of pedestal testing and electronic linear scale, which are executed frequently in the space after launching. The data of the testing is transmitted to ground station in the form of scientific data. The monitor status consists of temperature, current and status words of the FEE, which are measured and recorded every 16 seconds and packed in the engineering data, then transmitted to ground station. The status of the BGO calorimeter can be evaluated by the calibration

  5. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    SciTech Connect

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  6. Measurement of the total spectrum of electrons and positrons in the energy range of 300–1500 GeV in the PAMELA experiment with the aid of a sampling calorimeter and a neutron detector

    SciTech Connect

    Karelin, A. V. Voronov, S. A.; Galper, A. M.; Koldobskiy, S. A.; Collaboration: on behalf of the PAMELA Collaboration

    2015-03-15

    A method based on the use of a sampling calorimeter was developed for measuring the total energy spectrum of electrons and positrons from high-energy cosmic rays in the PAMELA satellite-borne experiment. This made it possible to extend the range of energies accessible to measurements by the magnetic system of the PAMELA spectrometer. Themethod involves a procedure for selecting electrons on the basis of features of a secondary-particle shower in the calorimeter. The results obtained by measuring the total spectrum of cosmic-ray electrons and positrons in the energy range of 300–1500 GeV by the method in question are presented on the basis of data accumulated over a period spanning 2006 and 2013.

  7. Measurement of the total spectrum of electrons and positrons in the energy range of 300-1500 GeV in the PAMELA experiment with the aid of a sampling calorimeter and a neutron detector

    NASA Astrophysics Data System (ADS)

    Karelin, A. V.; Voronov, S. A.; Galper, A. M.; Koldobskiy, S. A.

    2015-03-01

    A method based on the use of a sampling calorimeter was developed for measuring the total energy spectrum of electrons and positrons from high-energy cosmic rays in the PAMELA satellite-borne experiment. This made it possible to extend the range of energies accessible to measurements by the magnetic system of the PAMELA spectrometer. Themethod involves a procedure for selecting electrons on the basis of features of a secondary-particle shower in the calorimeter. The results obtained by measuring the total spectrum of cosmic-ray electrons and positrons in the energy range of 300-1500 GeV by the method in question are presented on the basis of data accumulated over a period spanning 2006 and 2013.

  8. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multi-purpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 4{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February - May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run.

  9. Data acquisition system for the CALICE AHCAL calorimeter

    NASA Astrophysics Data System (ADS)

    Kvasnicka, J.

    2017-03-01

    The data acquisition system (DAQ) for a highly granular analogue hadron calorimeter (AHCAL) for the future International Linear Collider is presented. The developed DAQ chain has several stages of aggregation and scales up to 8 million channels foreseen for the AHCAL detector design. The largest aggregation device, Link Data Aggregator, has 96 HDMI connectors, four Kintex7 FPGAs and a central Zynq System-On-Chip. Architecture and performance results are shown in detail. Experience from DESY testbeams with a small detector prototype consisting of 15 detector layers are shown.

  10. Optimization of light collection scheme for forward hadronic calorimeter for STAR experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Sergeeva, Maria

    2013-10-01

    We present the results of the optimization of a light collection scheme for a prototype of a sampling compensated hadronic calorimeter for upgrade of the STAR detector at RHIC (BNL). The absolute light yield and uniformity of light collection were measured with the full scale calorimeter tower for different types of reflecting materials, realistic mechanical tolerances for tower assembly and type of coupling between WLS bars and photo detectors. Measurements were performed with conventional PMTs and silicone photo multipliers. The results of these measurements were used to evaluate the influence of the optical collection scheme on the response of the calorimeter using GEANT4 MC. A large prototype of this calorimeter is presently under construction with the beam test scheduled early next year at FNAL.

  11. Prototype tests for a highly granular scintillator-based hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Krüger, K.; CALICE Collaboration

    2015-02-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in"technological prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers as active material. In the AHCAL technological prototype, the front-end chips are integrated into the active layers of the calorimeter and are designed for minimal power consumption. The versatile electronics allows the prototype to be equipped with different types of scintillator tiles and SiPMs. The current status of the AHCAL engineering prototype is shown and recent beam test measurements as well as plans for future hadron beam tests with a larger prototype will be discussed.

  12. The sPHENIX Detector: Design and Performance Requirements

    NASA Astrophysics Data System (ADS)

    Mannel, Eric; Sphenix Collaboration

    2016-09-01

    A new detector, sPHENIX, is being proposed to explore the quark-gluon plasma through measurements of jet properties in heavy ion collisions at the Relativistic Heavy Ion Collider, RHIC, at Brookhaven National Laboratory. The detector is based on the 1.5T super conducting solenoid magnet formerly used for the BaBar experiment and provides charged particle tracking, electromagnetic and hadronic calorimetry with a high speed data acquisition system capable of recording data at rates up to 15 KHz. In this talk we will present the performance requirements of the calorimeters and tracking systems, along with preliminary results from prototype tests at the Fermilab Test Beam Facility and future prospects for sPHENIX.

  13. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2017-03-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5–01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.

  14. Design and Performance Tests of Ultra-Compact Calorimeters for High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Salgado, Carlos W.

    2003-01-01

    This R&D project had two goals: a) the study of general-application ultra-compact calorimetry technologies for use in High Energy Astrophysics and, b) contribute to the design of an efficient calorimeter for the ACCESS mission. The direct measurement of galactic cosmic ray fluxes is performed from space or from balloon-borne detectors. Detectors used in those studies are limited in size and, specially, in weight. Since galactic cosmic ray fluxes are very small, detectors with high geometrical acceptances and long exposures are usually required for collecting enough statistics. We have studied calorimeter techniques that could produce large geometrical acceptance per unit of mass (G/w) and that may be used to study galactic cosmic rays at intermediate energies (knee energies).-The most important asset for detection of primary cosmic rays at and about the knee is large acceptance. To construct a large acceptance calorimeter (this term is used here in its most general accepted meaning of calorimeter as a device to measure particle energies ) the detector needs to be verv liaht or verv shallow . We studied two possible technologies to built compact calorimeters: the use of lead-tungstate crystals (PWO) and the use of sampling calorimetry using scintillating fibers embedded in a matrix of powder tungsten. For a very light detector, we considered the possibility of using Optical Transition Radiation (OTR) to measure the energy (and perhaps also direction and identity) of VHE cosmic rays.

  15. Fast Detector Simulation Using Lelaps, Detector Descriptions in GODL

    SciTech Connect

    Langeveld, Willy; /SLAC

    2005-07-06

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays. In addition to three built-in detector configurations, detector descriptions can also be read from files in the new GODL file format.

  16. The iMPACT project tracker and calorimeter

    NASA Astrophysics Data System (ADS)

    Mattiazzo, S.; Bisello, D.; Giubilato, P.; Pantano, D.; Pozzobon, N.; Snoeys, W.

    2017-02-01

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. While traditional X-ray Computed Tomography (xCT) fails in providing 3D images with the precision required for hadrons treatment guidance, Proton Computer Tomography (pCT) scanners, currently in their R&D phase, can. A pCT scanner consists of a tracker system, to track protons, and of a calorimeter, to measure their residual energy. In this paper we will present the iMPACT project, which foresees a novel proton tracking detector with higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. The tracker will be matched to a fast, highly segmented proton range calorimeter.

  17. Observation and Simulations of the Backsplash Effects in High-Energy Gamma-Ray Telescopes Containing a Massive Calorimeter

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander A.; Ormes, Jonathan F.; Hartman, Robert C.; Johnson, Thomas E.; Mitchell, John W.; Thompson, David J.

    1999-01-01

    Beam test and simulation results are presented for a study of the backsplash effects produced in a high-energy gamma-ray detector containing a massive calorimeter. An empirical formula is developed to estimate the probability (per unit area) of backsplash for different calorimeter materials and thicknesses, different incident particle energies, and at different distances from the calorimeter. The results obtained are applied to the design of Anti-Coincidence Detector (ACD) for the Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST).

  18. Study of collisons of supersymmetric top Quark in the channel $\\tilde{t}$1$\\tilde{t}$1 -> e±μ$\\tilde{v}$$\\tilde{v}$b$\\bar{b}$ with the experience of D0 at the Tevatron. Callibration of the electromagnetic calorimeter at D0.

    SciTech Connect

    Mendes, Aurelien

    2006-10-02

    Supersymmetry is one of the most natural extensions of the Standard Model. At low energy it may consist in the Minimal Supersymmetric Standard Model which is the framework chosen to perform the search of the stop with 350 pb-1 of data collected by D0 during the RunIIa period of the TeVatron. They selected the events with an electron, a muon, missing transverse energy and non-isolated tracks, signature for the stop decay in 3-body ($\\bar{t}$ → bl$\\bar{v}$). Since no significant excess of signal is seen, the results are interpreted in terms of limit on the stop production cross-sections, in such a way that they extend the existing exclusion region in the parameter space (m$\\bar{t}$,m$\\bar{v}$) up to stop masses of 168 (140) GeV for sneutrino masses of 50 (94) GeV. Finally because of the crucial role of the electromagnetic calorimeter, a fine calibration was performed using Z → e+e- events, which improved significantly the energy resolution.

  19. Application of the silicon photomultipliers for detectors in the GlueX experiment

    SciTech Connect

    Somov, Sergey V.; Tolstukhin, Ivan; Somov, Alexander S.

    2015-11-01

    The GlueX detector in Hall D at Jefferson Lab is instrumented with about 5000 Silicon Photomultipliers (SiPM) manufactured by Hamamatsu Corporation [2]. These photo sensors have properties similar to conventional photomultipliers but can be operated at high magnetic fields. Silicon photomultipliers with a sensitive area of 3x3 mm2 are used to detect light from the following GlueX scintillator detectors: the tagger microscope, pair spectrometer, and start counter. Arrays of 4x4 SiPMs sensors were chosen for the instrumentation of the barrel electromagnetic calorimeter. The tagger microscope must operate at high rates (up to 2.5 MHz) and provide time measurements with a resolution better than 0.3 ns. The paper will describe some results of the characterization of SiPMs for various GlueX sub-detectors.

  20. Heavy-ion physics prospects with the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Grau, N.; ATLAS Collaboration

    2008-10-01

    The next great energy frontier in relativistic heavy-ion collisions is quickly approaching with the completion of the large hadron collider and the ATLAS experiment is poised to make important contributions in understanding QCD matter in extreme conditions. While designed for high-pT measurements in high-energy p+p collisions, the detector is well suited to study many aspects of heavy-ion collisions from bulk phenomena to high-pT and heavy-flavor physics. With its large and finely segmented electromagnetic and hadronic calorimeters, the ATLAS detector excels in measurements of photons and jets, observables of great interest at the LHC. In this paper, we highlight the performance of the ATLAS detector for Pb+Pb collisions at the LHC with special emphasis on a key feature of the ATLAS physics program: jet and direct photon measurements.

  1. Application of the Silicon Photomultipliers for Detectors in the GlueX Experiment

    NASA Astrophysics Data System (ADS)

    Somov, S. V.; Tolstukhin, I. A.; Somov, A. S.

    The GlueX detector in Hall D at Jefferson Lab [1]is instrumented with about 5000 Silicon Photomultipliers (SiPM) manufactured by Hamamatsu Corporation [2]. These photo sensors have properties similar to conventional photomultipliers but can be operated at high magnetic fields. Silicon photomultipliers with a sensitive area of 3x3 mm2 are used to detect light from the following GlueX scintillator detectors: the tagger microscope, pair spectrometer, and start counter. Arrays of 4x4 SiPMs sensors were chosen for the instrumentation of the barrel electromagnetic calorimeter. The tagger microscope must operate at high rates (up to 2.5 MHz) and provide time measurements with a resolution better than 0.3 ns. The paper will describe some results of the characterization of SiPMs for various GlueX sub-detectors.

  2. The magnetized steel and scintillator calorimeters of the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Minos Collaboration; Michael, D. G.; Adamson, P.; Alexopoulos, T.; Allison, W. W. M.; Alner, G. J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Arroyo, C.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barker, M. A.; Barnes, P. D.; Barr, G.; Barrett, W. L.; Beall, E.; Bechtol, K.; Becker, B. R.; Belias, A.; Bergfeld, T.; Bernstein, R. H.; Bhattacharya, D.; Bishai, M.; Blake, A.; Bocean, V.; Bock, B.; Bock, G. J.; Boehm, J.; Boehnlein, D. J.; Bogert, D.; Border, P. M.; Bower, C.; Boyd, S.; Buckley-Geer, E.; Byon-Wagner, A.; Cabrera, A.; Chapman, J. D.; Chase, T. R.; Chernichenko, S. K.; Childress, S.; Choudhary, B. C.; Cobb, J. H.; Coleman, S. J.; Cossairt, J. D.; Courant, H.; Crane, D. A.; Culling, A. J.; Damiani, D.; Dawson, J. W.; de Jong, J. K.; Demuth, D. M.; de Santo, A.; Dierckxsens, M.; Diwan, M. V.; Dorman, M.; Drake, G.; Ducar, R.; Durkin, T.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Fackler, O. D.; Falk Harris, E.; Feldman, G. J.; Felt, N.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Gebhard, M.; Godley, A.; Gogos, J.; Goodman, M. C.; Gornushkin, Yu.; Gouffon, P.; Grashorn, E. W.; Grossman, N.; Grudzinski, J. J.; Grzelak, K.; Guarino, V.; Habig, A.; Halsall, R.; Hanson, J.; Harris, D.; Harris, P. G.; Hartnell, J.; Hartouni, E. P.; Hatcher, R.; Heller, K.; Hill, N.; Ho, Y.; Howcroft, C.; Hylen, J.; Ignatenko, M.; Indurthy, D.; Irwin, G. M.; James, C.; Jenner, L.; Jensen, D.; Joffe-Minor, T.; Kafka, T.; Kang, H. J.; Kasahara, S. M. S.; Kilmer, J.; Kim, H.; Kim, M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Koskinen, D. J.; Kostin, M.; Kotelnikov, S. K.; Krakauer, D. A.; Kumaratunga, S.; Ladran, A. S.; Lang, K.; Laughton, C.; Lebedev, A.; Lee, R.; Lee, W. Y.; Libkind, M. A.; Liu, J.; Litchfield, P. J.; Litchfield, R. P.; Longley, N. P.; Lucas, P.; Luebke, W.; Madani, S.; Maher, E.; Makeev, V.; Mann, W. A.; Marchionni, A.; Marino, A. D.; Marshak, M. L.; Marshall, J. S.; McDonald, J.; McGowan, A. M.; Meier, J. R.; Merzon, G. I.; Messier, M. D.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Miyagawa, P. S.; Moore, C. D.; Morfín, J.; Morse, R.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M. J.; Musser, J.; Naples, D.; Nelson, C.; Nelson, J. K.; Newman, H. B.; Nezrick, F.; Nichol, R. J.; Nicholls, T. C.; Ochoa-Ricoux, J. P.; Oliver, J.; Oliver, W. P.; Onuchin, V. A.; Osiecki, T.; Ospanov, R.; Paley, J.; Paolone, V.; Para, A.; Patzak, T.; Pavlović, Ž.; Pearce, G. F.; Pearson, N.; Peck, C. W.; Perry, C.; Peterson, E. A.; Petyt, D. A.; Ping, H.; Piteira, R.; Pla-Dalmau, A.; Plunkett, R. K.; Price, L. E.; Proga, M.; Pushka, D. R.; Rahman, D.; Rameika, R. A.; Raufer, T. M.; Read, A. L.; Rebel, B.; Reyna, D. E.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Ryabov, V. A.; Saakyan, R.; Sanchez, M. C.; Saoulidou, N.; Schneps, J.; Schoessow, P. V.; Schreiner, P.; Schwienhorst, R.; Semenov, V. K.; Seun, S.-M.; Shanahan, P.; Shield, P. D.; Shivane, R.; Smart, W.; Smirnitsky, V.; Smith, C.; Smith, P. N.; Sousa, A.; Speakman, B.; Stamoulis, P.; Stefanik, A.; Sullivan, P.; Swan, J. M.; Symes, P. A.; Tagg, N.; Talaga, R. L.; Terekhov, A.; Tetteh-Lartey, E.; Thomas, J.; Thompson, J.; Thomson, M. A.; Thron, J. L.; Trendler, R.; Trevor, J.; Trostin, I.; Tsarev, V. A.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vakili, M.; Vaziri, K.; Velissaris, C.; Verebryusov, V.; Viren, B.; Wai, L.; Ward, C. P.; Ward, D. R.; Watabe, M.; Weber, A.; Webb, R. C.; Wehmann, A.; West, N.; White, C.; White, R. F.; Wojcicki, S. G.; Wright, D. M.; Wu, Q. K.; Yan, W. G.; Yang, T.; Yumiceva, F. X.; Yun, J. C.; Zheng, H.; Zois, M.; Zwaska, R.; MINOS Collaboration

    2008-11-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  3. The magnetized steel and scintillator calorimeters of the MINOS experiment

    SciTech Connect

    Michael, : D.G.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the 'atmospheric neutrino' sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  4. The Development of a 3D Imaging Calorimeter of DAMPE for Cosmic Ray Physics

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlong; Hu, Yiming; Feng, Changqing; Liu, Shubin; Wang, Chi; Zhang, Zhiyong; Wei, Yifeng; Huang, Guangshun

    2016-07-01

    The DArk Matter Particle Explorer (DAMPE) experiment began its on-orbit operations on December 17, 2015. The BGO Electromagnetic Calorimeter (BGO ECAL) of the DAMPE is a total absorption calorimeter that allows for a precise three-dimensional imaging of the shower shape. It provides a good energy resolution (<1%@200GeV) and high electron/hadron discrimination (>10^5). The calorimeter also provides a trigger capability to DAMPE. The BGO ECAL light collection system and electronics are designed to measure electromagnetic particles over a wide energy range, from 5 GeV to 10 TeV. An Engineering qualified model was built and tested using high energy electron and proton beams with energy ranging from 1 GeV to 250GeV. Some pre results will be introduced in this talk.

  5. Search for the production of a long lived neutral particle which decays hadronically in association with a Z boson in pp collisions at √{ s} = 13 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Werner, Michael; Atlas Collaboration

    2017-01-01

    Despite the increasing luminosity of the LHC, no new particles beyond the standard model have yet been found by conventional searches. This has led to interest in more exotic signatures of potential new particles. One such exotic signature is a jet without tracks and almost all of its energy deposited in the hadronic calorimeter vs the electromagnetic calorimeter (which lies closer to the beam). A long lived neutral particle that traverses the detector into the HCal before decaying hadronically would produce such a signature. In this talk, I will present a search for such a particle recoiling against a standard model Z boson in pp collisions at √{ s} = 13 TeV with the ATLAS detector.

  6. Silicon Photomultiplier Characterization for sPHENIX Calorimeters

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Skoby, Michael; Aidala, Christine; Sphenix Collaboration

    2016-09-01

    Silicon photomultipliers (SiPMs) are preferable to photomultiplier tubes due to their small size, insensitivity to magnetic fields, low operating voltage, and capability of detecting single photons. The sPHENIX collaboration at RHIC will use SiPMs in their proposed electromagnetic and hadronic calorimeters. The University of Michigan is assembling and implementing a test stand to characterize the dark count rate, temperature dependence, gain, and photon detection efficiency of SiPMs. To more accurately determine the dark count rate, we have constructed a light tight box to isolate the SiPM, which surrounds an electronics enclosure that protects the SiPM circuitry, and installed software to record the output signals. With this system, we will begin to collect data and optimize the system to test arrays of SiPMs instead of single devices as the proposed calorimeters will require testing approximately 115,000 SiPMs.

  7. Silicon photomultiplier characterization for the GlueX barrel calorimeter

    SciTech Connect

    F. Barbosa, J.E. McKisson, J. McKisson, Y. Qiang, E. Smith, C. Zorn

    2012-12-01

    GlueX is a new detector being constructed at Jefferson Laboratory to study gluonic excitations and confinement via the detection of exotic meson states. The hermetic detector includes a barrel calorimeter where the photodetectors must operate in a high magnetic field exceeding 0.5 T. After extensive tests with a variety of sensors, the chosen photodetector will be a custom silicon photomultiplier (SiPM) array manufactured by Hamamatsu Corporation. This paper will focus on the characterization of the first 80 production samples of these SiPMs, including dark rate, photodetection efficiency (PDE), crosstalk, response uniformity and radiation tolerance.

  8. Handling Difficult Towers in the Calibration of the PHENIX Muon Piston Calorimeter (MPC) for Analysis of RHIC Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Lallow, Emran; Phenix Collaboration

    2015-10-01

    The PHENIX Muon Piston Calorimeter (MPC) is an electromagnetic detector with a kinematic coverage of (3 . 1 < | η | < 3 . 9). This allows for measurements at high forward and backward pseudorapidity and will be used to measure transverse energy in √{SNN} = 200, 62.4, 39, and 7.7 GeV RHIC Au+Au collisions in this kinematic region. The towers will be calibrated by using an iterative procedure in which neutral pions are reconstructed from their decay photons. To augment the iterative process, rough calibrations of individual towers can be obtained by direct examination of ADC distributions. These rough calibrations serve as input to the more rigorous neutral pion reconstruction method and will be described in this poster. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  9. A first look at reconstructed data from the GlueX detector

    NASA Astrophysics Data System (ADS)

    Taylor, Simon; GlueX Collaboration

    2015-10-01

    Construction of the GlueX detector in Hall D at the Thomas Jefferson National Accelerator Facility has recently been completed as part of the 12 GeV Upgrade to the facility. The detector consists of a barrel region containing devices for tracking charged particles and a lead-scintillator calorimeter for detecting photons, and a forward region consisting of two layers of scintillator paddles for time-of-flight measurements and a lead-glass electromagnetic calorimeter. The electron beam from the accelerator is converted into a photon beam by inserting a diamond radiator, thereby producing a coherent bremsstrahlung spectrum of photons impinging on a 30 cm-long LH2 target. The energy of the photon beam is determined using a tagging spectrometer. A commissioning run took place in Spring of 2015 during which all of the detector components were read out. Preliminary calibrations have been determined to a level sufficient to allow reconstruction of final states with several charged tracks and neutral particles. A first look at results of reconstruction of events using the GlueX detector will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.

  10. A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector

    NASA Technical Reports Server (NTRS)

    Munroe, Ray B., Jr.

    1998-01-01

    Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.

  11. Room-temperature calorimeter for x-ray free-electron lasers

    SciTech Connect

    Tanaka, T. Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-15

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%)

  12. Room-temperature calorimeter for x-ray free-electron lasers.

    PubMed

    Tanaka, T; Kato, M; Saito, N; Tono, K; Yabashi, M; Ishikawa, T

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  13. Room-temperature calorimeter for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (˜4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  14. Space-time development of electromagnetic and hadronic showers and perspectives for novel calorimetric techniques

    SciTech Connect

    Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; Wenzel, Hans; Para, Adam

    2016-04-20

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time development of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. Lastly, these studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.

  15. Space-time development of electromagnetic and hadronic showers and perspectives for novel calorimetric techniques

    DOE PAGES

    Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; ...

    2016-04-20

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time developmentmore » of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. Lastly, these studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.« less

  16. The segmentation of hadron calorimeters

    NASA Astrophysics Data System (ADS)

    Chen, He Sheng

    1987-05-01

    Optimization of the segmentation of large hadron calorimeters is important in order to obtain good resolution for jet physics at minimum construction cost for the next generation of high energy experiments. The principles of the segmentation of hadron calorimeters are discussed. As an example, the Monte Carlo optimization of the segmentation of the L3 hadron calorimeter barrel at CERN is described. Comparisons of results for the reconstructed jet shapes show that the optimum number ADC channels is about 20K for the readout of 450K wires of the proportional chambers. The matching between the sandwiched φ towers and Z towers is the dominant factor for angular resolution. Based on these Monte Carlo simulations, an optimized tower structure is obtained.

  17. Precision Timing Calorimeter for High Energy Physics

    DOE PAGES

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; ...

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  18. Characterization of 1800 Hamamatsu R7600-M4 PMTs for CMS HF Calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Akgun, U.; Funk, G.; Corso, J.; Jia, Z.; Southwick, D.; Adams, L.; Kingyon, J.; Tiras, E.; Munhollon, T.; Troendle, E.; Bruecken, P.; Khristenko, V.; Onel, Y.

    2014-06-01

    The Hadronic Forward calorimeters of the CMS experiment are Cherenkov calorimeters that use quartz fibers and 1728 photomultiplier tubes (PMTs) for readout. The CMS detector upgrade project requires the current Hamamatsu R7525 PMTs to be replaced with 4-anode, high quantum efficiency R7600-M4 PMTs. The new PMTs will improve the detector resolution, as well as the capability of removing fake events due to signal created in the glass window of the PMT. Here, we report the dark current, anode gain, transit time, transit time spread, pulse width, rise time, and linearity measurements performed on 1800 Hamamatsu R7600-200-M4 PMTs.

  19. CsI Calorimeter for a Compton-Pair Telescope

    NASA Astrophysics Data System (ADS)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase – and corresponding scientific return– that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  20. The Upgraded D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  1. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.

    2014-10-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal. These partially overlapping systems are described in detail, their individual performance is discussed as well as the comparative results from measurements of the evolution of the calorimeter response with time during the full LHC data-taking period. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals will be directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. For the off-detector electronics a special pre-processor board is being developed, which will take care of the initial trigger processing, while the main data are temporarily stored in the pipeline and de-randomiser memories.

  2. The High-Energy Particle Detector on board of the CSES mission

    NASA Astrophysics Data System (ADS)

    Vitale, Vincenzo; Palma, Francesco; Sotgiu, Alessandro

    2017-03-01

    The High-Energy Particle Detector (HEPD) is a range-calorimeter for the near-Earth measurement of electrons, protons and light nuclei fluxes up to few hundreds of MeV. HEPD will fly on board of the China Seismo-Electromagnetic Satellite (CSES), scheduled to be launched in July/August 2017. This mission will investigate possible correlations between geomagnetic properties (electromagnetic wave emissions, plasma properties and particle fluxes in the ionosphere and magnetosphere) and seismic events. The study of the solar-terrestrial environment, Coronal Mass Ejections (CMEs), Solar Energetic Particles (SEPS) events and low-energy cosmic rays are also within the scientific objectives of this mission. A detailed description of the HEPD and its characteristics will be reported.

  3. COE1 Calorimeter Operations Manual

    SciTech Connect

    Santi, Peter Angelo

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium-bearing materials for the purposes of assaying the amount of plutonium within the material.

  4. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Ilias

    2001-04-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs.

  5. Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Guzik, T. Gregory

    2001-01-01

    During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.

  6. Observing soft X-ray line emission from the interstellar medium with X-ray calorimeter on a sounding rocket

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Edwards, B.; Juda, M.; Mccammon, D.; Skinner, M.; Kelley, R.; Moseley, H.; Schoelkopf, R.; Szymkowiak, A.

    1990-01-01

    For an X-ray calorimeter working at 0.1 K, the energy resolution ideally can be as good as one eV for a practical detector. A detector with a resolution of 17 eV FWHM at 6 keV has been constructed. It is expected that this can be improved by a factor of two or more. With X-ray calorimeters flown on a sounding rocket, it should be possible to observe soft X-ray line emission from the interstellar medium over the energy range 0.07 to 1 keV. Here, a preliminary design for an X-ray calorimeter rocket experiment and the spectrum which might be observed from an equilibrium plasma are presented. For later X-ray calorimeter sounding rocket experiments, it is planned to add an aluminum foil mirror with collecting area of about 400 sq cm to observe line features from bright supernova remnants.

  7. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    SciTech Connect

    Amos, N.A.; Anderson, D.F.

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/[pi] ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the D[phi] uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/[pi] ratio.

  8. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    SciTech Connect

    Amos, N.A.; Anderson, D.F.; The D0 Collaboration

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/{pi} ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the D{phi} uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/{pi} ratio.

  9. CALORIC: A readout chip for high granularity calorimeter

    SciTech Connect

    Royer, L.; Bonnard, J.; Manen, S.; Gay, P.; Soumpholphakdy, X.

    2011-07-01

    A very-front-end electronics has been developed to fulfil requirements for the next generation of electromagnetic calorimeters. The compactness of this kind of detector and its large number of channels (up to several millions) impose a drastic limitation of the power consumption and a high level of integration. The electronic channel proposed is first of all composed of a low-noise Charge Sensitive Amplifier (CSA) able to amplify the charge delivered by a silicon diode up to 10 pC. Next, a two-gain shaping, based on a Gated Integration (G.I.), is implemented to cover the 15 bits dynamic range required: a high gain shaper processes signals from 4 fC (charge corresponding to the MIP) up to 1 pC, and a low gain filter handles charges up to 10 pC. The G.I. performs also the analog memorization of the signal until it is digitalized. Hence, the analog-to-digital conversion is carried out through a low-power 12-bit cyclic ADC. If the signal overloads the high-gain channel dynamic range, a comparator selects the low-gain channel instead. Moreover, an auto-trigger channel has been implemented in order to select and store a valid event over the noise. The timing sequence of the channel is managed by a digital IP. It controls the G.I. switches, generates all needed clocks, drives the ADC and delivers the final result over 12 bits. The whole readout channel is power controlled, which permits to reduce the consumption according to the duty cycle of the beam collider. Simulations have been performed with Spectre simulator on the prototype chip designed with the 0.35 {mu}m CMOS technology from Austriamicrosystems. Results show a non-linearity better than 0.1% for the high-gain channel, and a non-linearity limited to 1% for the low-gain channel. The Equivalent Noise Charge referred to the input of the channel is evaluated to 0.4 fC complying with the MIP/10 limit. With the timing sequence of the International Linear Collider, which presents a duty cycle of 1%, the power

  10. Geant4 validation with CMS calorimeters test-beam data

    SciTech Connect

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-08-01

    CMS experiment is using Geant4 for Monte-Carlo simulation of the detector setup. Validation of physics processes describing hadronic showers is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c.

  11. Cesium Iodide Crystal Calorimeter of the Proton Computed Tomography (pCT) Imager

    NASA Astrophysics Data System (ADS)

    Missaghian, Jessica; Sadrozinski, Hartmut; Colby, Brian; Rykalin, Victor; Hurley, Ford

    2009-11-01

    Researchers at SCIPP, LLMU and NIU have collaborated to make a functioning proton imager. Proton Computed Tomography (pCT) is designated to be applied in proton therapy of human cancer systems. It will image head-sized phantom objects and provide excellent space and energy resolution using a silicon microstrip tracker and crystal calorimetry. The residual energy could be measured with precision of a few percent using a Cesium Iodide crystal calorimeter. A single element of the CsI(TI) calorimeter was tested in order to understand the behavior of the future calorimeter system. We present test results on a CsI(TI) calorimeter element with proton beams of 35, 100 and 200MeV. The detector element was designed to comply with the demands of high energy resolution of a few percent and a dynamic range of two orders of magnitude (1-300MeV) under a counting rate of 10 kHz per channel. We also report on cosmic measurement results of each crystal of the future calorimeter matrix. A detailed description of the calorimeter data acquisition system will be given.

  12. SiD Linear Collider Detector R&D, DOE Final Report

    SciTech Connect

    Brau, James E.; Demarteau, Marcel

    2015-05-15

    The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Silicon detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been made and

  13. An elevated temperature titration calorimeter

    SciTech Connect

    Smith, J.R.; Zanonato, P.L.; Choppin, G.R. . Dept. of Chemistry)

    1991-06-01

    A variable-temperature (313 K to 353 K) titration calorimeter of high sensitivity has been constructed. The purpose of the calorimeter is to study temperature effects on the enthalpies of complex formation and of other reactions of metal cations such as hydrolysis and precipitation. Operation of the calorimetric system, including that final calculation of the heat released during titration, is automatic via computer control. Calibration tests of the calorimeter using 2-amino-2-hydroxymethyl-1,3-propanediol gave -(46.0 {plus minus} 0.3) kJ mol{sup {minus}1} and -(46.2 {plus minus} 0.2) kJ mol{sup {minus}1} for the enthalpy of protonation, at 318 K and at 343 K, respectively. For titrations of 2-bis(2-hydroxyethyl) amino-2-hydroxymethyl-1,3-propanediol, enthalpy of protonation values of -(28.4 {plus minus} 0.3) kJ mol{sup {minus}1} and -(29.3 {plus minus} 0.2) kJ mol{sup {minus}1} were obtained at 318 K and at 343 K, respectively. 6 refs., 3 figs., 2 tabs.

  14. Cryogenic Tests of the ATLAS Liquid Argon Calorimeter

    NASA Astrophysics Data System (ADS)

    Bremer, J.; Chalifour, M.; Fabre, C.; Gonidec, A.; Passardi, G.

    2006-04-01

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature uniformity of the argon bath of less than 0.4 K was achieved.

  15. Classification of high-energy antiprotons on electrons background based on calorimeter data in PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Dunaeva, O. A.; Alekseev, V. V.; Bogomolov, Yu V.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Rodenko, S. A.

    2017-01-01

    In modern experimental physics a heterogeneous coordinate-sensitive calorimeters are widely used due to their good characteristics and possibilities to obtain a three-dimensional information of particles interactions. Especially it is important at high-energies when electromagnetic or hadron showers are arise. We propose a quit efficient method to identify antiprotons (positrons) with energies more than 10 GeV on electron (proton) background by calorimeter of such kind. We construct the AdaBoost classifier and SVM to separate particles into two classes, different combinations of energy release along reconstructed particle trajectory were used as feature vector. We test a preliminary version of the method on a calorimeter of the PAMELA magnetic spectrometer. For high-energy particles we got a good quality of classification: it lost about 5 · 10‑2 of antiprotons, and less than 4 · 10‑4 of electrons were classified to antiproton class.

  16. Performance of the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Adams, J. H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The ATIC instrument is a balloon-borne experiment capable of measuring cosmic ray elemental spectra from 50 GeV to 100 TeV for nuclei from H to Fe with a fully active Bismuth Germanate calorimeter. Several Long Duration Balloon flights from McMurdo station, Antarctica are scheduled. The detector was tested with high energy electron, proton, and pion beams at CERN. We present results for 150 and 375 GeV protons, and 150 GeV pions and comparison with a GEANT Monte Carlo.

  17. Development of ATLAS Liquid Argon Calorimeter front-end electronics for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Liu, T.

    2017-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5–7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter cells at 40–80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented in this paper.

  18. HARDROC3, a 3rd generation ASIC with zero suppress for ILC Semi Digital Hadronic Calorimeter

    NASA Astrophysics Data System (ADS)

    Dulucq, F.; Callier, S.; de La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N.; Zoccarato, Y.

    2017-02-01

    HARDROC is the front end chip designed to read out the Resistive Plate Chambers foreseen for the Digital HAdronic CALorimeter (DHCAL) of the future International Linear Collider. The very fine granularity of the calorimeter implies thousands of electronics channels per cubic meter which is a new feature of "imaging" calorimetry. Moreover, for compactness, chips must be embedded inside the detector making crucial the reduction of the power consumption down to 12 μ W per channel. This is achieved using power-pulsing and online zero-suppression. Around 800 HARDROC3 were produced in 2015. The overall performance and production tests will be detailed.

  19. Performance of a compensating lead/plastic scintillator tile/fiber calorimeter

    NASA Astrophysics Data System (ADS)

    Uozumi, S.; Asakawa, T.; Done, J. P.; Fujii, Y.; Furukawa, K.; Hara, K.; Ishizaki, T.; Kaga, S.; Kajino, F.; Kamon, T.; Kanaya, N.; Kanzaki, J.; Kawagoe, K.; Kim, S.; Miyajima, A.; Nakagawa, A.; Nozaki, M.; Oishi, R.; Ota, T.; Sendai, K.; Sugimoto, Y.; Sugimoto, Y.; Suzuki, T.; Takeda, H.; Takeshita, T.; Takeuchi, A.; Toeda, T.; Yamada, Y.

    2002-07-01

    We have measured performance of a lead/plastic scintillator sampling calorimeter in two separate beam tests at low (1- 4 GeV) and high (10- 200 GeV) energies. The calorimeter is composed of 8-mm-thick lead plates and 2-mm-thick plastic scintillator plates for hardware compensation, where responses to electromagnetic and hadronic showers of the same energy are identical. We find the linearity to be better than 1% in the energy range between 2 and 150 GeV for both pions and electrons. The energy resolutions are obtained to be (46.7±0.6)%/ E⊕(0.9±0.9)% for pions, where the energy E is given in GeV. The response ratio of electromagnetic showers to hadronic showers is measured to be 1.04±0.01 at low energies, and 0.99±0.01 at high energies.

  20. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Eigen, G.; Price, T.; Watson, N. K.; Marshall, J. S.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Bonnevaux, A.; Combaret, C.; Caponetto, L.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Markin, O.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Ilyin, A.; Mironov, D.; Mizuk, R.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cizel, J.-B.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Mora de Freitas, P.; Musat, G.; Pavy, S.; Rubio-Roy, M.; Ruan, M.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; Raux, L.; Seguin-Moreau, N.; de la Taille, Ch.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-06-01

    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range of 10-80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from GEANT4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.

  1. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Yoon, W. S.; Kang, C. S.; Kim, S. R.; Kim, G. B.; Lee, H. J.; Lee, M. K.; Lee, J. H.; So, J. H.; Kim, Y. H.

    2015-06-01

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an 241Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed.

  2. The calorimeter system of the new muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2016-07-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Čerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0-4.5 GeV electrons with a 28-element prototype array.

  3. The calorimeter system of the new muon g-2 experiment at Fermilab

    DOE PAGES

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; ...

    2015-12-02

    The electromagnetic calorimeter for the new muon (g–2) experiment at Fermilab will consist of arrays of PbF2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  4. The calorimeter system of the new muon g-2 experiment at Fermilab

    SciTech Connect

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Pocanic, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2015-12-02

    The electromagnetic calorimeter for the new muon (g–2) experiment at Fermilab will consist of arrays of PbF2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  5. Electrons in the d0 Central Calorimeter: a Study of the Systematic Biases in the Measurement of the W Mass

    NASA Astrophysics Data System (ADS)

    Heuring, Terry Charles

    The DO detector at Fermilab is a general purpose collider detector designed for the study of proton-antiproton collisions at a center of mass energy of 1.8 TeV. The detector consists of an inner tracking volume, a hermetic uranium/liquid argon calorimeter, and an outer muon detection system. Since the detector lacks a central magnetic field, it relies on energy measurements from the calorimeter as opposed to momentum measurements using the tracking chambers. To provide the necessary understanding of the calorimeter, a testbeam was conducted at Fermilab during the second half of 1991 featuring detector modules from the central calorimeter. Detailed simulations of the detector apparatus were also written. This thesis will present the results of this test-beam and simulation effort and relate them to the measurement of the W^ {+/-} intermediate vector boson mass in the full DO detector. In the testbeam, an energy resolution that scaled as 14% divided by the square root of the beam energy was found. The uniformity of response of the detector as a function of angle of incidence was investigated. We found that the response increased by 4% over the range investigated. The results were compared to a simulation written using the CERN package GEANT. Although GEANT was able to reproduce the energy resolution, it was not able to reproduce the uniformity of response function. A second simulation utilizing the EGS4 package from SLAC was successful in reproducing the behavior of the detector as a function of angle. The biases induced by the discrepancies between the detector and GEANT response functions in the W^{ +/-} mass measurement are studied. We find that using GEANT as a detector simulation will cause a bias of between 460 and 680 MeV in the W^ {+/-} mass determination.

  6. Electrons in the D0 central calorimeter: A study of the systematic biases in the measurement of the W mass

    SciTech Connect

    Heuring, T.C.

    1993-08-01

    The D0 detector at Fermilab is a general purpose collider detector designed for the study of proton-antiproton collisions at a center of mass energy of 1.8 TeV. The detector consists of an inner tracking volume, a hermetic uranium/liquid argon calorimeter, and an outer muon detection system. Since the detector lacks a central magnetic field, it relies on energy measurements from the calorimeter as opposed to momentum measurements using the tracking chambers. To provide the necessary understanding of the calorimeter, a testbeam was conducted at Fermilab during the second half of 1991 featuring detector modules from the central calorimeter. Detailed simulations of the detector apparatus were also written. This thesis will present the results of this testbeam and simulation effort and relate them to the measurement of the W{sup {plus_minus}} intermediate vector boson mass in the full D0 detector. In the testbeam, an energy resolution that scaled as 14% divided by the square root of the beam energy was found. The uniformity of response of the detector as a function of angle of incidence was investigated. We found that the response increased by 4% over the range investigated. The results were compared to a simulation written using the CERN package GEANT. Although GEANT was able to reproduce the energy resolution, it was not able to reproduce the uniformity of response function. A second simulation utilizing the EGS4 package from SLAC was successful in reproducing the behavior of the detector as a function of angle. The biases induced by the discrepancies between the detector and GEANT response functions in the W{sup {plus_minus}} mass measurement are studied. We find that using GEANT as a detector simulation will cause a bias of between 460 and 680 MeV in the W{sup {plus_minus}} mass determination.

  7. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  8. Energy reconstruction in a highly granularity semi-digital hadronic calorimeter

    SciTech Connect

    Sameh Mannai

    2015-07-01

    A semi-digital hadronic calorimeter using Glass Resistive Plate Chambers (GRPCs) is one of the calorimeters candidates proposed for particle physics experiments at the future electrons collider. It is a high granular calorimeter which is required for application of the particle flow algorithm in order to improve the jet energy resolution as one of the goals of this experiments. We discussed the energy reconstruction, based on digital and semi-Digital methods, to study the effect on the improvement of the single particle energy resolution and the linearity of the detector response. This study was performed with the GEANT4 simulation. Results on the energy resolution and linearity, for negative pions over an energy range from 1 to 100 GeV are presented and compared with different energy reconstruction methods including Artificial Neural Networks. (authors)

  9. π0 Reconstruction using the Muon Piston Calorimeter Extension

    NASA Astrophysics Data System (ADS)

    Dixit, Dhruv; Phenix Collaboration

    2015-10-01

    The Muon-Piston Calorimeter Extension (MPC-EX) is a new detector in the PHENIX experiment at the Relativistic Heavy Ion Collider that was installed for the recent Run 15 of the experiment. In polarized p+p and polarized p+A collisions, an important measurement is the yield and momentum distribution of direct photons. Unaffected by the strong force, direct photons traverse the dense medium in the collision zone mostly unchanged, thereby providing information about the initial stages of the collision. However, there is a huge background of photons from other sources, primarily π0 which decay into two photons. The opening angle between the decay photons becomes smaller with higher energies of the original π0. For energies greater than ~20 GeV, the Muon Piston Calorimeter (MPC) cannot distinguish the two decay photons from a single photon, as their showers merge. The MPC-EX, an 8-layer tungsten and silicon sensor sandwich in front of the MPC, can measure and image the shower development, and help distinguish between direct photons and π0 decay photons up to higher energies than the MPC alone. We will describe the MPC-EX detector and its readout, and present the calibration procedures applied to the data in order to obtain the π0 spectrum. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  10. A hadronic calorimeter with Glass RPC as sensitive medium

    NASA Astrophysics Data System (ADS)

    Grenier, G.

    2014-09-01

    The SDHCAL technological prototype is a 1 × 1 × 1.3 m3 high-granularity Semi-Digital Hadronic CALorimeter using Glass Resistive Plate Chambers as sensitive medium. It is one of the two HCAL options considered by the ILD Collaboration to be proposed for the detector of the future International Linear Collider project. The prototype is made of up to 50 GRPC detectors of 1 m2 size and 3 mm thickness each with an embedded semi-digital electronics readout that is autotriggering and power-pulsed. The GRPC readout is finely segmented into pads of 1 cm2. Measured performances of the GRPC and the full SDHCAL prototype in terms of homogeneity, low noise and energy resolution are presented in this proceeding.

  11. The upgrade of the Belle II forward calorimeter

    NASA Astrophysics Data System (ADS)

    Manoni, E.; Aloisio, A.; Baccaro, S.; Branchini, P.; Cecchi, C.; Cemmi, A.; De Lucia, E.; De Nardo, G.; de Sangro, R.; Felici, G.; Finocchiaro, G.; Fiore, S.; Giordano, R.; Merola, M.; Oberhof, B.; Passeri, A.; Peruzzi, I. M.; Piccolo, M.; Rossi, A.; Sciacca, C.

    2017-02-01

    The new facility SuperKEKB will be an upgrade of the existing KEKB electron-positron asymmetric collider, with a target luminosity of 8 ×1035cm-2s-1, about 40 times greater than that of KEKB. The detector will also be upgraded to cope with the higher luminosity, pile-up and occupancy. We report here on the design and development of the new pure CsI calorimeter for the forward region. An intensive R&D is being carried on to study the performance of pure CsI crystals with Avalanche Photodiodes readout. Results about the relative energy resolution of this detector, along with radiation hardness studies of all the components, are presented. A matrix of 16 crystals has been put on an electron beam at the BTF facility in Frascati and results in terms of energy resolution of this prototype are also discussed.

  12. A high precision calorimeter for the SOX experiment

    NASA Astrophysics Data System (ADS)

    Papp, L.; Agostini, M.; Altenmüller, K.; Appel, S.; Caminata, A.; Cereseto, R.; Di Noto, L.; Farinon, S.; Musenich, R.; Neumair, B.; Oberauer, L.; Pallavicini, M.; Schönert, S.; Testera, G.; Zavatarelli, S.

    2016-07-01

    The SOX (Short distance neutrino Oscillations with BoreXino) experiment is being built to discover or reject eV-scale sterile neutrinos by observing short baseline oscillations of active-to-sterile neutrinos [1]. For this purpose, a 100 kCi 144Ce-144Pr antineutrino generator (CeSOX) will be placed under the BOREXINO detector at the Laboratori Nazionali del Gran Sasso. Thanks to its large size and very low background, BOREXINO is an ideal detector to discover or reject eV-scale sterile neutrinos. To reach the maximal sensitivity, we aim at determining the neutrino flux emitted by the antineutrino generator with a < 1 % accuracy. With this goal, TU München and INFN Genova are developing a vacuum calorimeter, which is designed to measure the source-generated heat with high accuracy.

  13. Very high Momentum Particle Identification detector for ALICE at the LHC

    SciTech Connect

    Garcia, Edmundo

    2009-04-20

    The anomalies observed at RHIC for the baryon-meson ratios have prompted a number of theoretical works on the nature of the hadrochemistry in the hadronisation stage of the pp collisions and in the evolution of the dense system formed in heavy ion collisions. Although the predictions differ in the theoretical approach, generally a substantial increase in the baryon production is predicted in the range 10-30 GeV/c. This raises the problem of baryon identification to much higher momenta than originally planned in the LHC experiments. After a review of the present status of theoretical predictions we will present the possibilities of a gas ring imaging Cherenkov detector of limited acceptance which would be able to identify track-by-track protons until 26 GeV/c. The physics capabilities of such a detector in conjunction with the ALICE experiment will be contemplated as well as the triggering options to enrich the sample of interesting events with a dedicated trigger or/and using the ALICE Electromagnetic Calorimeter. The use of the electromagnetic calorimeter opens interesting possibility to distinguish quark and gluon jets in gamma--jet events and subsequently the study of the probability of fragmentation in proton, kaon and pion or triggering on jets in the EMCAL. Such a detector would be identify pions until 14 GeV/c kaons from 9 till 14 GeV/c and protons from 18 till 24/GeV/c in a positive way and by absence of signal from 9-18 GeV/c.

  14. Structure design and enviromental test of BGO calorimeter for satellite DAMPE

    NASA Astrophysics Data System (ADS)

    Hu, Yiming; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin

    2016-07-01

    The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the new Innovation 2020 program of Chinese Academy of Sciences. As the most important payload of China's first scientific satellite for detecting dark matter, the primary purposes of BGO calorimeter is to measure the energy of incident high energy electrons and gamma rays (5GeV-10TeV) and to identify hadron and electronics. BGO calorimeter also provides an important background discriminator by measuring the energy deposition due to the particle shower that produced by the e^{±}, γ and imaging their shower development profile. Structure design of BGO calorimeter is described in this paper. The new designed BGO calorimeter consists of 308 BGO crystals coupled with photomultiplier tubes on its two ends. The envelop size of the BGO calorimeter is 907.5mm×907.5mm×494.5mm,and the weight of which is 1051.4Kg. The most important purpose of mechanical design is how to package so heavy crystals into a detector as required arrangement and to make sure reliability and safety. This paper describes the results of vibration tests using the Flight Module of the BGO Calorimeter for the DAMPE satellite. During the vibration tests, no degradation of the mechanical assembly was observed. After random or sinusoidal vibrations, there was no significant changes of the frequency signatures observed during the modal surveys. The comparison of results of cosmic ray tests before and after the vibration shows no change in the performance of the BGO calorimeter.

  15. SUITABILITY OF A NEW CALORIMETER FOR EXOTIC MESON SEARCHES

    SciTech Connect

    Bookwalter, C.; Ostrovidov, A.; Eugenio, P.

    2007-01-01

    Exotic mesons, particles that have quantum numbers that are inaccessible to conventional quark-model mesons, are predicted by quantum chromodynamics (QCD), but past experiments seeking to identify exotic candidates have produced controversial results. The HyCLAS experiment (E04005) at Thomas Jefferson National Accelerator Facility (TJNAF) proposes the use of the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) in Hall B to study the photoproduction of exotic mesons. However, the base detector package at CLAS is not ideal for observing and measuring neutral particles, particularly at forward angles. The Deeply Virtual Compton Scattering (DVCS) experiment at TJNAF has commissioned a new calorimeter for detecting small-angle photons, but studies must be performed to determine its suitability for a meson spectroscopy experiment. The ηπ system has been under especial scrutiny in the community as a source for potential exotics, so the new calorimeter’s ability at reconstructing these resonances must be evaluated. To achieve this, the invariant mass of showers in the calorimeter are reconstructed. Also, two electroproduction reaction channels analogous to photoproduction channels of interest to HyCLAS are examined in DVCS data. It is found that, while not ideal, the new calorimeter will allow access to additional reaction channels, and its inclusion in HyCLAS is warranted. Results in basic shower reconstruction show that the calorimeter has good effi ciency in resolving π° decays, but its η reconstruction is not as strong. When examining ep → epπ°η, preliminary reconstruction of the ηπ° system shows faint signals in the a0(980) region. In the ep → e n π+ η channel, preliminary reconstruction of the ηπ+ system gave good signals in the a0(980) and a2(1320) regions, but statistics were poor. While more analyses are necessary to improve statistics and remove background, these preliminary results support the claim

  16. CALIFA Barrel prototype detector characterisation

    NASA Astrophysics Data System (ADS)

    Pietras, B.; Gascón, M.; Álvarez-Pol, H.; Bendel, M.; Bloch, T.; Casarejos, E.; Cortina-Gil, D.; Durán, I.; Fiori, E.; Gernhäuser, R.; González, D.; Kröll, T.; Le Bleis, T.; Montes, N.; Nácher, E.; Robles, M.; Perea, A.; Vilán, J. A.; Winkel, M.

    2013-11-01

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R3B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300 MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator - photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma-ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations.

  17. The Silicon Detector (SiD) And Linear Collider Detector R&D in Asia And North America

    SciTech Connect

    Brau, J.E.; Breidenbach, M.; Fujii, Y.; /KEK, Tsukuba

    2005-08-11

    In Asia and North America research and development on a linear collider detector has followed complementary paths to that in Europe. Among the developments in the US has been the conception of a detector built around silicon tracking, which relies heavily on a pixel (CCD) vertex detector, and employs a silicon tungsten calorimeter. Since this detector is quite different from the TESLA detector, we describe it here, along with some of the sub-system specific R&D in these regions.

  18. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    SciTech Connect

    Fatyga, M.; Moskowitz, B.

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4{pi} tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/{psi} detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector.

  19. New calorimeters for space experiments: physics requirements and technological challenges

    NASA Astrophysics Data System (ADS)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  20. The FOREST detector for meson photoproduction experiments at ELPH

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Fukasawa, H.; Hashimoto, R.; Ishida, T.; Kaida, S.; Kasagi, J.; Kawano, A.; Kuwasaki, S.; Maeda, K.; Miyahara, F.; Mochizuki, K.; Nakabayashi, T.; Nakamura, A.; Nawa, K.; Ogushi, S.; Okada, Y.; Okamura, K.; Onodera, Y.; Saito, Y.; Sakamoto, Y.; Sato, M.; Shimizu, H.; Sugai, H.; Suzuki, K.; Takahashi, S.; Tsuchikawa, Y.; Yamazaki, H.; Yonemura, H.

    2016-10-01

    An electromagnetic calorimeter complex, FOREST, has been constructed for meson photoproduction experiments at the Research Center for Electron Photon Science, Tohoku University. It consists of three types of calorimeters, which are made of pure cesium-iodide crystals, lead scintillating-fiber modules, and lead glass Cherenkov counters. Each calorimeter is equipped with a plastic scintillator hodoscope to identify charged particles. The design and performance of FOREST are described. The energy responses of test calorimeters have been investigated by using 100-800 MeV positron beams. The energy resolutions of the three calorimeters are found to be approximately 3%, 7%, and 5% for 1-GeV photons, respectively. A cryogenic hydrogen/deuterium target system fitted to the FOREST experiments and a newly developed data acquisition system are also presented.

  1. First results from the SLD silicon calorimeters

    NASA Astrophysics Data System (ADS)

    Berridge, S. C.; Bugg, W. M.; Kroeger, R. S.; Weidemann, A. W.; White, S. L.; Brau, J. E.; Frey, R.; Furuno, K.; Huber, J.; Hwang, H.

    1992-07-01

    The small-angle calorimeters of the SLD were successfully operated during the recent SLC engineering run. The Luminosity Monitor and Small-Angle Tagger (LMSAT) covers the angular region between 28 and 68 milliradians from the beam axis, while the Medium-Angle Silicon Calorimeter (MASC) covers the 68-190 milliradian region. Both are silicon-tungsten sampling calorimeters; the LMSAT employs 23 layers of 0.86 X(sub 0) sampling, while the MASC has 10 layers of 1.74 X(sub 0) sampling. We present results from the first run of the SLC with the SLD on beamline.

  2. First results from the SLD silicon calorimeters

    SciTech Connect

    Berridge, S.C.; Bugg, W.M.; Kroeger, R.S.; Weidemann, A.W.; White, S.L.; Brau, J.E.; Frey, R.; Furuno, K.; Huber, J.; Hwang, H.; Park, H.; Pitts, K.T.; Zeitlin, C.J.; Gioumousis, A.; Haller, G.; Seward, P.

    1992-07-01

    The small-angle calorimeters of the SLD were successfully operated during the recent SLC engineering run. The Luminosity Monitor and Small-Angle Tagger (LMSAT) covers the angular region between 28 and 68 milliradians from the beam axis, while the Medium-Angle Silicon Calorimeter (MASC) covers the 68--190 milliradian region. Both are silicon-tungsten sampling calorimeters; the LMSAT employs 23 layers of 0.86 X{sub 0} sampling, while the MASC has 10 layers of 1.74 X{sub 0} sampling. We present results from the first run of the SLC with the SLD on beamline.

  3. The D0 inter-cryostat detector, massless gaps and missing E{sub T} resolution

    SciTech Connect

    Streets, K.; D0 Collaboration

    1992-12-01

    The inter-cryostat detector and massless gaps are located in the intermediate rapidity regions between the central and end calorimeters of the D0 detector and are designed to improve energy measurements in those regions. Results are presented from test beam and collider data showing the improvement of single particle and jet energy resolutions with the inclusion of the inter-cryostat detector and massless gaps. The calorimeter missing E{sub T} resolution in collider data is presented.

  4. The D0 inter-cryostat detector, massless gaps and missing E[sub T] resolution

    SciTech Connect

    Streets, K. )

    1992-12-01

    The inter-cryostat detector and massless gaps are located in the intermediate rapidity regions between the central and end calorimeters of the D0 detector and are designed to improve energy measurements in those regions. Results are presented from test beam and collider data showing the improvement of single particle and jet energy resolutions with the inclusion of the inter-cryostat detector and massless gaps. The calorimeter missing E[sub T] resolution in collider data is presented.

  5. Calibration of BGO Calorimeter of the DAMPE in Space

    NASA Astrophysics Data System (ADS)

    Wang, Chi

    2016-07-01

    The Dark Matter Particle Explore (DAMPE) is a satellite based experiment which launched on December 2015 and aims at indirect searching for dark matter by measuring the spectra of high energy e±, γ from 5GeV up to 10TeV originating from deep space. The 3D imaging BGO calorimeter of DAMPE was designed to precisely measurement the primary energy of the electromagnetic particle and provides a highly efficient rejection of the hadronic background by reconstruct the longitudinal and lateral profiles of showers. To achieve the expected accuracy on the energy measurement, each signal channel has to be calibrated. The energy equalization is performed using the signal that Minimum Ionizing Particles (MIP) leave in each BGO bar, the MIPs measurement method with orbit data and, data quality, time stability using MIPs data will be presented, too.

  6. The High Energy Particle Detector (HEPD) for the CSES satellite

    NASA Astrophysics Data System (ADS)

    Sparvoli, Roberta

    2016-04-01

    of precipitating particles). The East-West or West-East drift direction is an essential information to retrieve the longitude of the starting point of the burst precipitation and then to reconstruct the geographical area where the interaction between particles and seismo-electromagnetic emissions occurred. HEPD has been designed to provide good energy resolution and high angular resolution for electrons (3 - 100 MeV) and proton (30 - 200 MeV). The detector consists of two layers of segmented plastic scintillators and a calorimeter, constituted by a tower of scintillator counters. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger scintillator planes to limit the effect of Coulomb multiple scattering on the direction measurement. The electron angular resolution varies between 13° at 2.5 MeV and ≤ 1° for energies above 35 MeV. The detector has a wide angular acceptance (>60°) over the full energy range 2.5-100 MeV. The angle-integrated, total acceptance is larger than 100 cm2sr between 2.5 and 35 MeV, decreasing at higher energies (about 40 cm2sr at 100 MeV). The proton angular resolution is ≤1° over the full detection range. The proton integrated-angle, total acceptance is larger than 100 cm2sr between 30 MeV and 150 MeV, decreasing to 60 cm2sr at 200 MeV. The good energy-loss measurement of the silicon track, combined with the energy resolution of the scintillators and calorimeter, allows identifying electrons with acceptable proton background levels (10-5-10-3).

  7. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  8. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Moreno, P.; Valero, A.

    2016-03-01

    The Tile Calorimeter PreProcessor demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter Demonstrator project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived to receive and process the data coming from the front-end electronics of the TileCal Demonstrator module, as well as to configure it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the front-end electronics. The TilePPr demonstrator represents 1/8 of the final TilePPr that will be designed and installed into the detector for the ATLAS Phase II Upgrade.

  9. Upgrade of the ATLAS Tile hadronic calorimeter for high-luminosity LHC run

    NASA Astrophysics Data System (ADS)

    Spoor, Matthew

    2017-02-01

    The ATLAS Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics for the Long Shutdown 3 that is planned for 2024 and 2025. All signals will be digitised and transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade and will be chosen after extensive test beam studies. A Hybrid Demonstrator module has been developed. The demonstrator is undergoing extensive testing and is planned for insertion in ATLAS.

  10. Calibration Studies and the Investigation of Track Segments within Showers with an Imaging Hadronic Calorimeter

    NASA Astrophysics Data System (ADS)

    Lu, Shaojun

    2010-04-01

    The CALICE collaboration has constructed a highly granular hadronic sampling calorimeter prototype with small scintillator tiles individually read out by silicon photomultipliers (SiPM) to evaluate technologies for the ILC. The imaging capability of the detector allows detailed studies of the substructure of hadronic events, such as the identification of minimum ionizing track segments within the hadronic shower. These track segments are of high quality, so that they can be used for calibration, as an additional tool to Muons and to the built-in LED system used to monitor the SiPMs. These track segments also help to constrain hadronic shower models used in Geant4. Detailed MC studies with a realistic model of an ILC detector were performed to study the calibration requirements of a complete calorimeter system. The calibration strategy was tested on real data by transporting calibration constants from a Fermilab beam test to data recorded at CERN under different conditions.

  11. Transportable high sensitivity small sample radiometric calorimeter

    SciTech Connect

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-12-31

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most {sup 238}Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size.

  12. Monte Carlo simulation of an actual segmented calorimeter: a study of calorimeter performance at high energies

    SciTech Connect

    Gabriel, T.A.; Bishop, B.L.; Goodman, M.S.; Sessoms, A.L.; Eisenstein, B.; Wright, S.C.; Kephart, R.D.

    1981-01-01

    The calculated responses including energy resolution, angular resolution, and spatial energy deposition of a segmented iron and liquid-argon calorimeter to incident pions in the energy range of 10- to 250-GeV are presented. Experimental data for this calorimeter have been obtained in the 10- to 40- GeV energy range and these results compare favorably with the calculated data.

  13. Overview of the data acquisition electronics system design for the SLAC Linear Collider Detector (SLD)

    SciTech Connect

    Larsen, R.S.

    1985-09-01

    The SLD Detector will contain five major electronics subsystems: Vertex, Drift, Liquid Argon Calorimeter, Cerenkov Ring Imaging, and Warm Iron Calorimeter. To implement the approximately 170,000 channels of electronics, extensive miniaturization and heavy use of multiplexing techniques are required. Design criteria for each subsystem, overall system architecture, and the R and D program are described.

  14. A Measurement of Neutral B Mixing using Di-Lepton Events with the BaBar Detector

    SciTech Connect

    Gunawardane, Naveen

    2000-12-01

    This thesis reports on a measurement of the neutral B meson mixing parameter, Δmd, at the BABAR experiment and the work carried out on the electromagnetic calorimeter (EMC) data acquisition (DAQ) system and simulation software.

  15. Simulation of Energy Response of the ATIC Calorimeter

    NASA Technical Reports Server (NTRS)

    Batkov, K. E.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Granger, D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. For reconstruction of primary spectra from spectra of energy deposits measured in the experiment, correlations between kinetic energy of a primary particle E(sub kin) and energy deposit in the calorimeter E(sub d) should be known. For this purpose, simulations of energy response of the calorimeter on energy spectra of different nuclei were done. The simulations were performed by GEANT-3.21 code with QGSM generator for nucleus - nucleus interactions. The incident flux was taken as isotropic in the ATIC aperture. Primary spectra power-law by momentum were used as inputs according to standard models of cosmic ray acceleration. These spectra become power-law by kinetic energy at E(sub kin) higher than approx.20Mc(sup 2), where M is primary nucleus mass. It should be noted that energy deposit spectra measured by ATIC illustrate similar behavior. Distributions of ratio E(sub kin)/E(sub d) are presented for different energy deposits and for a set of primaries. For power-law regions of energy spectra at E(sub d)> or equal to 20Mc(sup 2) the obtained mean value of E(sub kin)/E(sub d) increases from approx.2.4 for protons to approx.3.1 for iron, while rms/ decreases from 50% for protons to about 15% for iron. These values were obtained for the spectral index gamma=1.6

  16. A new-concept gamma calorimeter at ELI-NP

    NASA Astrophysics Data System (ADS)

    Lenzi, M.; Adriani, O.; Albergo, S.; Andreotti, M.; Berto, D.; Borgheresi, R.; Cappello, G.; Cardarelli, P.; Ciaranfi, R.; Consoli, E.; Di Domenico, G.; Evangelisti, F.; Gambaccini, M.; Graziani, G.; Marziani, M.; Palumbo, L.; Passaleva, G.; Pellegriti, M. G.; Serban, A.; Starodubtsev, O.; Statera, M.; Tricomi, A.; Variola, A.; Veltri, M.

    2017-02-01

    ELI-NP is an European Research Infrastructure that will provide a monochromatic, high brilliance gamma beam with tunable energy up to 19.5 MeV. The time structure of the beam consists of 32 high intensity gamma bunches separated by a time interval of 16 ns and delivered at a repetition rate of 100 Hz. In order to match such unprecedented beam specifications, specific devices and techniques have been developed to measure and monitor the beam parameters during the commissioning and the operational phase. This paper presents an overview of the gamma beam characterization system, with particular focus on a new-concept sampling calorimeter made of silicon detectors and polyethylene absorbers.

  17. The Electron Calorimeter (ECAL) Long Duration Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Adams, J. H.; Bashindzhagyan, G.; Binns, W. R.; Chang, J.; Cherry, M. L.; Christl, M.; Dowkontt, P.; Ellison, B.; Isbert, J. B.; Israel, M. H.; Korotkova, N.; Panasyuk, M.; Panov, A.; Sokolskaya, N.; Stewart, M.; Watts, J.; Wefel, P.; Zatsepin, V.

    2007-01-01

    Accurate measurements of the cosmic ray electron energy spectrum in the energy region 50 GeV to greater than 1 TeV may reveal structure caused by the annihilation of exotic dark matter particles and/or individual cosmic ray sources. Here we describe a new long duration balloon (LDB) experiment, ECAL, optimized to directly measure cosmic ray electrons up to several TeV. ECAL includes a double layer silicon matrix, a scintillating optical fiber track imager, a neutron detector and a fully active calorimeter to identify more than 90% of the incident electrons with an energy resolution of about 1.7% while misidentifying only 1 in 200,000 protons and 0.8% of secondary gamma rays as electrons. Two ECAL flights in Antarctica are planned for a total exposure of 50 days with the first flight anticipate for December 2009.

  18. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    SciTech Connect

    Abdullin, S.; Abramov, V.; Acharya, B.; Adam, N.; Adams, M.; Adzic, P.; Akchurin, N.; Akgun, U.; Albayrak, E.; Alemany-Fernandez, R.; Almeida, N.; /Lisbon, LIFEP /Democritos Nucl. Res. Ctr. /Virginia U. /Iowa State U.

    2009-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7 {+-} 1.6% and the constant term is 7.4 {+-} 0.8%. The corrected mean response remains constant within 1.3% rms.

  19. Study on Radiation Condition in DAMPE Orbit by Analyzing the Engineering Data of BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Feng, Changqing; Liu, Shubin; Zhang, Yunlong; Ma, Siyuan

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientific satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objectives of the DAMPE mission are primary cosmic ray, gamma ray astronomy and dark matter particles, by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO calorimeter is a critical sub-detector of DAMPE payload, for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It utilizes 308 BGO (Bismuth Germanate Oxide) crystal logs with the size of 2.5cm*2.5cm*60cm for each log, to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. In order to achieve a large dynamic range, each PMT base incorporates a three dynode (2, 5, 8) pick off, which results in 616 PMTs and 1848 signal channels. The readout electronics system, which consists of 16 FEE (Front End Electronics) modules, was developed. Its main functions are based on the Flash-based FPGA (Field Programmable Gate Array) chip and low power, 32-channel VA160 and VATA160 ASICs (Application Specific Integrated Circuits) for precisely measuring the charge of PMT signals and providing "hit" signals as well. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) and the hit rates of each layer is real-timely recorded by counters and packed into the engineering data, which directly reflect the flux of particles which fly into or pass through the detectors. In order to mitigate the SEU (Single Event Upset) effect in radioactive space environment, certain protecting methods, such as TMR

  20. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  1. Processing of the signals from the Liquid Xenon Calorimeter for timing measurements

    NASA Astrophysics Data System (ADS)

    Epshteyn, L. B.; Grebenuyk, A. A.; Kozyrev, A. N.; Logashenko, I. B.; Mikhaylov, K. Yu.; Ruban, A. A.; Yudin, Yu. V.

    2017-02-01

    One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of hadron production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs about 5 ns or later after the beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with an accuracy of about a few nanoseconds. The LXe-calorimeter consists of 14 layers of ionization chambers with two readout: anode and cathode. The duration of charge collection to the anodes is about 4.5 μs, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that (i.e. 4.5 ns). Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. In the paper we describ the development of the special electronics which performs waveform digitization and the on-line measurement of signals' arrival times and amplitudes.

  2. Vacuum-jacketed hydrofluoric acid solution calorimeter

    USGS Publications Warehouse

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  3. Temperature Effects in the ATIC BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Adams, J. H.; Ahn, H.; Bashindzhagyan, G.; Batkov, K.; Chang, J.; Christl, M. J.; Fazely, A.; Ganel, O.; Gunasigha, R.

    2006-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals (18 radiation lengths deep) to determine the particle energy. Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal. ATIC had successful flights in 2000/2001 and 2002/2003 from McMurdo, Antarctica. The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded. In order to determine the temperature sensitivity of the ATIC calorimeter it was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine, TX. The temperature dependence is derived from the pulse height response to cosmic ray muons at various temperatures.

  4. Central Calorimeter Thermal Gradient Module Connection Analysis

    SciTech Connect

    Rudland, D.L.; /Fermilab

    1987-08-07

    Two 20 kW condensing and one 10 kW steady state cooling coils will be used to cool and condense gaseous argon in the Central Calorimeter (CC) Cryostat. Since this cool down (300K to 90K) will inevitably cause shrinkage in the modules contained inside the cryostat, the connections between the modules have to be designed to withstand the increase in forces and moments induced by this contraction. This paper presents finite element analysis (ANSYS{reg_sign}) results to aid in the design or modification of the Central Calorimeter module connections.

  5. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2016-07-12

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal’s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  6. Concept of Metallic Magnetic Calorimeters for Rare Event Search in the LUMINEU Project

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Rodrigues, M.; Navick, X.-F.; Fleischmann, A.; Gastaldo, L.; Enss, C.

    2014-09-01

    The project LUMINEU is mainly aiming at the search for neutrinoless double-beta decay of the candidate nuclide Mo using cryogenic ZnMoO detectors with simultaneous heat and scintillation light detection for radioactive background rejection. It also includes some development for dark matter search using cryogenic Ge detectors with simultaneous heat and ionization detection for background rejection. For both cases, metallic magnetic calorimeters (MMCs) are studied among several thermometer types. In double-beta decay search, the intrinsically fast response of MMCs reading out the light detector may allow for a very fast signal rise time and help to reduce the potential background due to pile-up of two-neutrino double beta decay events. In dark matter search, MMCs reading out the heat channel may improve the energy resolution with respect to the standard NTD Ge thermistor readout and hence the sensitivity of the detectors for low-mass WIMPs.

  7. Simulations for the PHENIX Muon Piston Calorimeter Measurement of Transverse Energy

    NASA Astrophysics Data System (ADS)

    Zumberge, Christopher

    2012-10-01

    The PHENIX detector's Muon Piston Calorimeter measures the energies of photons (most of which are the products of pion decay) in the collisions of particles at the Relativistic Heavy Ion Collider (RHIC). The data acquired from the collisions of gold ions at √sNN=200 GeV will be used to measure the transverse energy over the kinematic acceptance of the detector. Corrections for the detector's hadronic response are needed to complete a measurement of the transverse energy and estimate systematic error. The PHENIX Integrated Simulation Application (PISA) is a software package that integrates both a GEANT3 simulation of the entire PHENIX detector and an event generator. In this case HIJING is being used as the event generator. Progress on the production of these simulations will be reported.

  8. Determination of x-ray free electron laser power using a room-temperature calorimeter

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2016-02-01

    A room-temperature calorimeter was developed for the absolute laser power measurement of x-ray free electron lasers (XFELs) at the SPring-8 Angstrom Compact free electron LAser facility in Japan. In the photon energy range from 4.5 keV to 15 keV, this calorimeter was demonstrated to accurately measure laser powers of XFEL up to 6.9 mW. In addition, an online beam monitor, based on the detection of backscattered x-rays from a thin diamond film, was calibrated with the room-temperature calorimeter. The calibration results were compared with those obtained previously with a cryogenic radiometer (the primary standard detector for synchrotron radiations in Japan). The calibration results obtained with the two detectors agreed well within 1.2%, which is well below their combined relative standard uncertainty. Moreover, the spectral responsivity of the beam monitor was found to show a strong photon energy dependence owing to Debye-Scherrer diffraction patterns from the thin-film.

  9. Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.

  10. Mechanical and thermal design of the CEBAF Hall a beam calorimeter

    SciTech Connect

    M. Bevins; A. Day; P. Degtiarenko; L.A. Dillon-Townes; A. Freyberger; R. Gilman; A. Saha; S. Slachtouski

    2005-05-16

    A calorimeter is being fabricated to provide 0.5% - 1.0% absolute measurement of the beam current in the Hall A end station of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB). Modern powder metallurgy processes have produced high density, high thermal conductivity tungsten-copper composite materials that minimize electromagnetic and hadronic energy loss while maintaining a rapid thermal response time. Heat leaks are minimized by mounting the mass in vacuum on glass ceramic mounts. A conduction cooling scheme utilizes an advanced carbon fiber compliant thermal interface material. Transient finite difference and finite element models were developed to estimate heat leaks and thermal response times.

  11. Influence of radiation damage on the performance of a lead/scintillator calorimeter investigated with 1-6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Bohnet, I.; Kummerow, D.; Wick, K.

    2002-09-01

    The influence of radiation damage on energy resolution, linearity and uniformity of an electromagnetic lead/scintillator calorimeter was studied experimentally with 1-6 GeV electrons. Plastic scintillators and wavelength shifter bars were irradiated uniformly with γ rays. Both were identical with those of the ZEUS uranium calorimeter. The attenuation length of the scintillators was determined from bench tests of single scintillator tiles and from beam tests of the whole calorimeter. After exposure to a dose of 10 kGy the attenuation length of the scintillators decreased by a factor of 2. The experimental results show that the irradiation of the nearly 2 m long wavelength shifter bars affects the calorimeter much more than the damage of the scintillators which were only 19 cm long. Damaged and undamaged sections of the calorimeter were scanned with a moving radioactive γ source ( 60Co). The results demonstrate that the 60Co monitor system is a very precise tool to detect radiation damage in a sampling calorimeter.

  12. Silicon Detector Letter of Intent

    SciTech Connect

    Aihara, H.; Burrows, P.; Oreglia, M.

    2010-05-26

    This document presents the current status of SiD's effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R&D needed to provide the technical basis for an optimised SiD.

  13. Commissioning of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Cooke, Mark S.

    2009-12-17

    A selection of ATLAS liquid argon (LAr) calorimeter commissioning studies is presented. It includes a coherent noise study, a measurement of the quality of the ionization pulse shape prediction, and energy and time reconstruction analyses with cosmic and single beam signals.

  14. Steel specification for the Atlas calorimeter

    SciTech Connect

    Guarino, V.

    1998-02-10

    As part of a collaborative experimental High Energy Physics experiment at the LHC Facility, CERN Laboratory, Geneva Switzerland, a group of US institutions has accepted the responsibility for constructing a large portion of the calorimeter for this experiment. This device is referred to as the Tile Calorimeter. The Tile Calorimeter has three major elements, a large center section (Barrel), and two end sections (Extended Barrel). The US group will be responsible for the construction of one of these extended barrel sections. All of the components that are required to construct this device will be fabricated in the US over a period of three years commencing in 1998. Another similar element and the barrel element will be constructed in both eastern and western Europe by parallel groups. The extended barrel is a cylindrical device approximately 8.5 meters (28 ft.) OD x 4.5 meters (14 ft.) ID, made up of 64 wedges. Each of these wedges (see Attachment 1) is constructed by bolting submodules to a strongback girder. Each submodule is constructed of a series of sheets that are welded and glued together. This document summarizes the characteristics and specifications of these steel sheets. The Tile Calorimeter is the return path for the magnet flux of the ATLAS internal superconducting 2T solenoid, therefore its steel magnetic properties are important.

  15. SLD liquid argon calorimeter prototype test results

    SciTech Connect

    Dubois, R.; Eigen, G.; Au, Y.; Sleeman, J.; Breidenbach, M.; Brau, J.; Ludgate, G.A.; Oram, C.J.; Cook, V.; Johnson, J.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses.

  16. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  17. Design and Implementation of the New D0 Level-1 Calorimeter Trigger

    SciTech Connect

    Abolins, M.; Adams, M.; Adams, T.; Aguilo, E.; Anderson, J.; Bagby, L.; Ban, J.; Barberis, E.; Beale, S.; Benitez, J.; Biehl, J.; /Columbia U. /DAPNIA, Saclay /Delhi U. /Fermilab /Florida State U. /Indiana U. /Michigan State U. /Northeastern U. /Rice U. /Southern Methodist U. /University Coll., Dublin

    2007-09-01

    Increasing luminosity at the Fermilab Tevatron collider has led the D0 collaboration to make improvements to its detector beyond those already in place for Run IIa, which began in March 2001. One of the cornerstones of this Run IIb upgrade is a completely redesigned level-1 calorimeter trigger system. The new system employs novel architecture and algorithms to retain high efficiency for interesting events while substantially increasing rejection of background. We describe the design and implementation of the new level-1 calorimeter trigger hardware and discuss its performance during Run IIb data taking. In addition to strengthening the physics capabilities of D0, this trigger system will provide valuable insight into the operation of analogous devices to be used at LHC experiments.

  18. The Level-1 Tile-Muon Trigger in the Tile Calorimeter upgrade program

    NASA Astrophysics Data System (ADS)

    Ryzhov, A.

    2016-12-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers due to slow charged particles (typically protons) without degrading the efficiency of the trigger. The main activity of the Tile-Muon Trigger in the ATLAS Phase-0 upgrade program was to install and to activate the TileCal signal processor module for providing trigger inputs to the Level-1 Muon Trigger. This report describes the Tile-Muon Trigger, focusing on the new detector electronics such as the Tile Muon Digitizer Board (TMDB) that receives, digitizes and then provides the signal from eight TileCal modules to three Level-1 muon endcap Sector-Logic Boards.

  19. Speed of response, pile-up, and signal to noise ratio in liquid ionization calorimeters

    NASA Astrophysics Data System (ADS)

    Colas, J.

    1989-06-01

    Although liquid ionization calorimeters have been mostly used up to now with slow readout, their signals have a fast rise time. However, it is not easy to get this fast component of the pulse out of the calorimeter. For this purpose a new connection scheme of the electrodes, the electrostatic transformer, is presented. This technique reduces the detector capacitance while keeping the number of channels at an acceptable level. Also it allows the use of transmission lines to bring signals from the electrodes to the preamplifiers which could be located in an accessible area. With room temperature liquids the length of these cables can be short, keeping the added noise at a reasonable level. Contributions to the error on the energy measurement from pile up and electronics noise are studied in detail. Even on this issue, room temperature liquids (TMP/TMS) are found to be competitive with cold liquid argon at the expense of a moderately higher gap voltage.

  20. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  1. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Milic, A.

    2015-07-01

    The high luminosities of L > 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-l trigger processors. New trigger readout electronics have been designed for this purpose, which will withstand the radiation dose levels expected for an integrated luminosity of 3000 fb{sup -1} during the high luminosity LHC (HL-LHC), which is well above the original LHC design qualifications. (authors)

  2. Performance study for the photon measurements of the upgraded LHCf calorimeters with Gd2SiO5 (GSO) scintillators

    NASA Astrophysics Data System (ADS)

    Makino, Y.; Tiberio, A.; Adriani, O.; Berti, E.; Bonechi, L.; Bongi, M.; Caccia, Z.; D'Alessandro, R.; Del Prete, M.; Detti, S.; Haguenauer, M.; Itow, Y.; Iwata, T.; Kasahara, K.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Papini, P.; Ricciarini, S.; Sako, T.; Sakurai, N.; Suzuki, T.; Tamura, T.; Torii, S.; Tricomi, A.; Turner, W. C.; Ueno, M.; Zhou, Q. D.

    2017-03-01

    The Large Hadron Collider forward (LHCf) experiment was motivated to understand the hadronic interaction processes relevant to cosmic-ray air shower development. We have developed radiation-hard detectors with the use of Gd2SiO5 (GSO) scintillators for proton-proton √s = 13 TeV collisions. Calibration of such detectors for photon measurement has been completed at the CERN SPS T2-H4 line in 2015 using electron beams of 100–250 GeV and muon beams of 150–250 GeV . After the channel-by-channel absolute energy calibration, the energy resolution of the calorimeters is confirmed to be better than 3% for electrons with energy above 100 GeV . The position dependence of the energy scale of the calorimeters was reduced to the level of 1% after the corrections for scintillator nonuniformity and the shower leakage effect. The position resolution of the new shower imaging detector, a GSO-bar hodoscope interleaved in the calorimeter, was 100 μm for 200 GeV electrons. The experimental results are well explained by Monte Carlo simulations. We have confirmed that the new detectors meet the requirement of the LHCf experiment at √s = 13 TeV.

  3. Electronics development for the ATLAS liquid argon calorimeter trigger and readout for future LHC running

    NASA Astrophysics Data System (ADS)

    Hopkins, Walter

    2017-02-01

    The upgrade of the LHC will provide 7 times greater instantaneous and 10 times greater total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters. Radiation tolerance criteria and an improved trigger system with higher acceptance rate and longer latency require an upgrade of the LAr readout electronics. In the first upgrade phase in 2019-2020, a trigger readout with up to 10 times higher granularity will be implemented. This allows an improved reconstruction of electromagnetic and hadronic showers and will reduce the background for electron, photon and energy-flow signals at the first trigger level. The analog and digital signal processing components are currently in their final design stages and a fully functional demonstrator system is operated and tested on the LAr Calorimeters. In a second upgrade stage in 2024-2026, the readout of all 183,000 LAr Calorimeter cells will be performed without trigger selection at 40 MHz sampling rate and 16 bit dynamic range. Calibrated energies of all cells will be available at the second trigger level operating at 1 MHz, in order to allow further mitigation of pile-up effects in energy reconstruction. Radiation tolerant, low-power front-end electronics optimized for high pile-up conditions are currently being developed, including pre-amplifier, ADC and serializer components in 65-180 nm technology. This contribution will give an overview of the future LAr readout electronics and present research results from the two upgrade programs.

  4. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  5. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Read-out Upgrade of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Milic, A.

    2015-07-01

    The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above

  6. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  7. Nuclear-nuclear collision centrality determination by the spectators calorimeter for the MPD setup at the NICA facility

    SciTech Connect

    Golubeva, M. B.; Guber, F. F.; Ivashkin, A. P.; Isupov, A. Yu.; Kurepin, A. B.; Litvinenko, A. G. Litvinenko, E. I.; Migulina, I. I.; Peresedov, V. F.

    2013-01-15

    The work conditions of the hadron calorimeter for spectators registration (Zero Degree Calorimeter, ZDC) were studied for the heavy nuclei collisions with the several GeV invariant energy. The ZDC simulations were performed for the MPD (Multi-Purpose Detector) at the NICA (Nuclotron-based Ion Collider fAcility) collider, which are under developement at the Joint Institute for Nuclear Research (JINR, Dubna). Taking into account the spectator nuclear fragments leads to a nonmonotonic dependence of the ZDC response on the impact parameter. The reason for this dependence studied with several event generators is the primary beam hole in the ZDC center. It is shown, that the ZDC signal should be combined with a data from other MPD-NICA detector subsystems to determine centrality.

  8. Missing Transverse Momentum Trigger Performance Studies for the ATLAS Calorimeter Trigger Upgrades

    NASA Astrophysics Data System (ADS)

    Stamas, Brianna; Parrish, Elliot; Lisi, Luc; Dudley, Christopher; Majewski, Stephanie

    2016-03-01

    The ATLAS Experiment is one of two general purpose detectors at the Large Hadron Collider at CERN in Geneva, Switzerland. In anticipation of discovering new physics, the detector will undergo numerous hardware upgrades including improvements to the Liquid Argon Calorimeter trigger electronics. For the upgrade, one component of the Level-1 trigger system will be the global feature extractor, gFEX, which will house three field programmable gate arrays (FPGAs). Specifically, in order to improve the missing transverse energy (ETmiss)trigger, an adapted topological clustering algorithm is being investigated for implementation on the FPGAs for reconstruction of proton-proton interactions in the ATLAS detector. Using simulated data, this study analyzes the performance of the adapted algorithm in software.

  9. Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2007-01-01

    We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.

  10. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  11. Effect of dead material in a calorimeter

    SciTech Connect

    Green, D.

    1995-10-01

    The existence of dead material in any practical calorimeter system is simply a fact of life. The task for the designer, then, is to understand the impact on the Physics in question, and strive to minimize it. The aim of this note is to use the ``Hanging File`` test data, which has fined grained individual readout of about 100 depth segments, to explore impact of dead material on the mean and r.m.s. of the hadronic distribution. The amount and location of the dead material is varied. It important to remember that the Hanging File data was calibrated, EM to HCAL compartment, so as to minimize the electron to pion energy dependence. In practical terms e/pie was made = 1.0 at an incident energy of about 100 GeV. Note that the PB(EM) + FE(HCAL) calorimeter was not a compensating device.

  12. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  13. Optimal optoacoustic detector design

    NASA Technical Reports Server (NTRS)

    Rosengren, L.-G.

    1975-01-01

    Optoacoustic detectors are used to measure pressure changes occurring in enclosed gases, liquids, or solids being excited by intensity or frequency modulated electromagnetic radiation. Radiation absorption spectra, collisional relaxation rates, substance compositions, and reactions can be determined from the time behavior of these pressure changes. Very successful measurements of gaseous air pollutants have, for instance, been performed by using detectors of this type together with different lasers. The measuring instrument consisting of radiation source, modulator, optoacoustic detector, etc. is often called spectrophone. In the present paper, a thorough optoacoustic detector optimization analysis based upon a review of its theory of operation is introduced. New quantitative rules and suggestions explaining how to design detectors with maximal pressure responsivity and over-all sensitivity and minimal background signal are presented.

  14. Testing a prototype BGO calorimeter with 100-800 MeV positron beams

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Grigoriev, D. N.; Hashimoto, R.; Kaida, S.; Kitazawa, R.; Kuznetsov, G. N.; Nakamura, A.; Shimizu, H.; Suzuki, K.; Takahashi, S.; Tsuchikawa, Y.; Vasiliev, Ya. V.; Yamazaki, H.

    2016-11-01

    An electromagnetic calorimeter, BGOegg, composed of 1320 BGO crystals, has been constructed at the Research Center for Electron Photon Science, Tohoku University to study the structure of hadrons in detail using photo-induced reactions. The design of the new electromagnetic calorimeter and the basic characteristics of the manufactured BGO crystals are described. A performance test has been conducted for the prototype, which consists of 25 crystals arranged in a 5×5 matrix, using positron beams at energies ranging from 100 to 800 MeV. The obtained energy resolution is (σE / E) 2 =(0.63 %) 2 +(1.15 % ± 0.04 %) 2 /(E / GeV) +(0.42 % ± 0.03 %) 2 /(E / GeV) 2 at room temperature. The energy resolution corresponds to 1.38 % ± 0.05 % for 1-GeV positrons. The position resolution is found to be σr / mm =(3.07 ± 0.03)(E / GeV) - 0.202 ± 0.008 which corresponds to an angular resolution of approximately 1 ° for 1-GeV positrons.

  15. A no-load RF calorimeter

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  16. Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-08-10

    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. Furthermore, the reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from H → γγ decays. Furthermore, different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events.

  17. Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-08-10

    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. Furthermore, the reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In themore » barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from H → γγ decays. Furthermore, different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events.« less

  18. R&D Studies on Radiation Hard Wavelength Shifting Fiber for CMS Hadronic Endcap Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Neuhaus, John

    2009-11-01

    The Hadronic Endcap (HE) calorimeters of the CMS experiment cover the pseudorapidity range of 1.4 to 3 on both sides of the CMS detector, contributing to superior jet and missing transverse energy resolutions. As the integrated luminosity of the LHC increases, the scintillator tiles used in the CMS Hadronic Endcap calorimeter will lose their efficiency. Here, we propose to replace the scintillator tiles in high radiation area with ``radiation hard'' quartz plates. To increase the light collection efficiency, the generated Cerenkov photons are collected by UV absorbing wavelength shifting (WLS) fibers. Our previous study has shown that quartz plates and plastic wavelength shifting fibers can be used as an effective calorimeter. However there is no radiation hard WLS fiber commercially available. Here we summarize the R&D studies on constructing a radiation hard WLS fiber prototype in University of Iowa CMS Laboratories. The results from the tests performed on quartz fibers treated with p-Terphenyl, as well as the Geant4 simulations of this prototype are presented.

  19. Performances of the signal reconstruction in the ATLAS Hadronic Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Meoni, E.

    2013-08-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of ATLAS. It is a key detector for the reconstruction of hadrons, jets, tau leptons and missing transverse energy. TileCal is a sampling calorimeter using steel as an absorber and plastic scintillators as an active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMTs). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The read-out system is designed to reconstruct the data in real time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 kHz). The signal amplitude and phases for each channel are measured using Optimal Filtering algorithms both at online and offline level. We present the performances of these techniques on the data collected in the proton-proton collisions at center-of-mass energy of 7 TeV. We show in particular the measurements of low amplitudes, close to the pedestal value, using as probe high transverse momenta muons produced in the proton-proton collisions.

  20. Upgraded Trigger Readout Electronics for the ATLAS LAr Calorimeters for Future LHC Running

    NASA Astrophysics Data System (ADS)

    Ma, Hong; ATLAS Liquid Argon Calorimeter Group

    2015-02-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that are digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first- level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 1034cm-2s-1. In order to retain the capability to trigger on low energy electrons and photons when the LHC is upgraded to higher luminosity, an improved LAr calorimeter trigger readout is proposed and being constructed. The new trigger readout system makes available the fine segmentation of the calorimeter at the L1 trigger with high precision in order to reduce the QCD jet background in electron, photon and tau triggers, and to improve jet and missing ET trigger performance. The new LAr Trigger Digitizer Board is designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new Digital Processing System. The reconstructed energies of trigger readout channels after digital filtering are transmitted to the L1 system, allowing the extraction of improved trigger signatures. This contribution presents the motivation for the upgrade, the concept for the new trigger readout and the expected performance of the new trigger, and describes the components being developed for the new system.

  1. LAr calorimeter for SCC with a common vacuum bulkhead---a concept to improve hermeticity

    SciTech Connect

    Pope, W.L. ); Watt, R.D. )

    1989-11-01

    A new concept for a Barrel/Endcap LAr Calorimeter (LAC) is described in which the Barrel and Endcaps are in separate vacuum enclosures but share a common vacuum bulkhead (CVB). We explore 2 possible bulkhead construction types; welded plate sandwich panels, and brazed sandwich panels in which the core is an isotropic cellular solid--foamed aluminum. Gas lines and electric cables from he innermost Drift Chamber pass through radial holes in the core of the sandwich bulkhead. The CVB concept offers the potential to obtain a more hermetic calorimeter with significantly reduced dead material and/or space in the interface region common to conventional design LAr detectors for the SSC with Endcap features. To utilize a common additional steps to remove the Drift Chamber, a large increase in Endcap standby heat leak, and perhaps, new cryogenic safety issues. We find that significant amount of dead mass can be removed from critical regions of the vacuum shells when compared to a promising SSC LAC reference design. It is also shown that the increased standby heat leak of this concept can be easily removed by existing cooling capacity in another large LAr calorimeter. It is further shown that shut-downs need not be appreciably longer. Finally, it is argued that cryogen spill hazards can be avoided if the Endcap's LAr is removed during Drift chamber maintenance shutdowns, and that cryogenic safety is not compromised.

  2. Cosmic background rejection by means of the calorimeter in the Mu2e experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Pezzullo, Gianantonio; Murat, Pavel; Sarra, Ivano; Lucà, Alessandra

    2014-03-01

    Mu2e experiment [J.R. Abrams, et al., Mu2e conceptual design report http://arxiv.org/abs/1211.7019] searches for coherent, neutrino-less conversion of muons into electrons in the field of a nucleus with a sensitivity of fews parts in 10-17 (a factor of 103-104 over existing limits). Mu2e apparatus takes advantage of high intensity muon beams which hit muon stopping targets (devoted for the capture) and uses a basic detector system which is composed by a low-mass straw tubes tracker and by a LYSO crystal calorimeter. One of the main source of background which afflicts this measure is the cosmic induced background. To suppress and keep that source under control the calorimeter operates both: muon identification (with a muon rejection factor of about 102-103) and fake-signal-electron (created via muon interactions with the experimental set-up) rejection. In this paper a description of the calorimeter role in cosmic suppression is reported showing results from GEANT4 simulations.

  3. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  4. The trigger readout electronics for the Phase-I upgrade of the ATLAS Liquid Argon calorimeters

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-03-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12-bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  5. Study of radiation hardness of pure CsI crystals for Belle-II calorimeter

    NASA Astrophysics Data System (ADS)

    Boyarintsev, A.; Boyarintseva, Y.; Gektin, A.; Shiran, N.; Shlyakhturov, V.; Taranyuk, V.; Timoshenko, N.; Bobrov, A.; Garmash, A.; Golkovski, M.; Kuzmin, A.; Matvienko, D.; Savrovski, P.; Shebalin, V.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Krumshtein, Z. V.; Nozdrin, A. A.; Olshevsky, A. G.

    2016-03-01

    A study of the radiation hardness of pure CsI crystals 30 cm long was performed with a uniformly absorbed dose of up to 14.3 krad. This study was initiated by the proposed upgrade of the end cap calorimeter of the Belle-II detector, using pure CsI crystals. A set of 14 crystals of truncated pyramid shape used in this study was produced at the Institute for Scintillation Materials NAS from 14 different ingots grown with variations of the growing technology. Interrelationship of crystal scintillation characteristics, radiation hardness and the growing technology was observed.

  6. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

    2014-05-15

    .9%. Conclusions: The good agreement of the graphite calorimeter and free-air chamber results indicates that both devices are performing as expected. Further investigations at higher dose rates than 50 Gy/s are planned. At higher dose rates, recombination effects for the free-air chamber are much higher and expected to lead to much larger uncertainties. Since the graphite calorimeter does not have problems associated with dose rate, it is an appropriate primary standard detector for the synchrotron IMBL x rays and is the more accurate dosimeter for the higher dose rates expected in radiotherapy applications.

  7. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect

    Thorn, Daniel Bristol

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  8. A calorimeter for neutron flux measurement. Final report

    SciTech Connect

    Chupp, T.E.

    1993-04-01

    A calorimeter for absolute neutron flux measurement has been built and tested. The calorimeter measures the heat produced in a 10{degrees}K thick LiPb target when neutrons are captured via the {sup 6}Li(n,{sup 3}H){sup 4}He reaction. The sensitivity achieved was 1.3x10{sup 6} n/s for a 1 hour measurement. Separate flux measurements with the calorimeter and a {sup 238}U fission chamber are in agreement and show that systematic errors are less than 3%. An improved calorimeter has been built which is sensitive to 10{sup 5} n/s for a 1 hour measurement.

  9. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  10. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  11. The Heavy Photon Search test detector

    NASA Astrophysics Data System (ADS)

    Battaglieri, M.; Boyarinov, S.; Bueltmann, S.; Burkert, V.; Celentano, A.; Charles, G.; Cooper, W.; Cuevas, C.; Dashyan, N.; DeVita, R.; Desnault, C.; Deur, A.; Egiyan, H.; Elouadrhiri, L.; Essig, R.; Fadeyev, V.; Field, C.; Freyberger, A.; Gershtein, Y.; Gevorgyan, N.; Girod, F.-X.; Graf, N.; Graham, M.; Griffioen, K.; Grillo, A.; Guidal, M.; Haller, G.; Hansson Adrian, P.; Herbst, R.; Holtrop, M.; Jaros, J.; Kaneta, S.; Khandaker, M.; Kubarovsky, A.; Kubarovsky, V.; Maruyama, T.; McCormick, J.; Moffeit, K.; Moreno, O.; Neal, H.; Nelson, T.; Niccolai, S.; Odian, A.; Oriunno, M.; Paremuzyan, R.; Partridge, R.; Phillips, S. K.; Rauly, E.; Raydo, B.; Reichert, J.; Rindel, E.; Rosier, P.; Salgado, C.; Schuster, P.; Sharabian, Y.; Sokhan, D.; Stepanyan, S.; Toro, N.; Uemura, S.; Ungaro, M.; Voskanyan, H.; Walz, D.; Weinstein, L. B.; Wojtsekhowski, B.

    2015-03-01

    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment's technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+e- invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+e- pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.

  12. Detectors and experiments

    NASA Astrophysics Data System (ADS)

    Hauptman, John

    2016-11-01

    The talks in the Program and the Conference parallel sessions make clear that high quality pixel vertex chambers are presently well developed and with continuing improvements (M. Caccia,1 X. Sun,2 M. Stanitzki,3 J. Qian4); that there are at least two major tracking chambers that are well studied, a TPC and silicon-strip chambers (H. Qi,5,6 C. Young,7,8 A. de Roeck9,10); that the energy measurement of photons and electrons is generally very good (H. Yang,11 S. Franchino12); and, that the last remaining detector that has not yet achieved the high precision required for good e+e- physics is the hadronic calorimeter for the measurement of jets, most importantly, jets from the decays of W and Z to quarks (S. Lee,13,14 M. Cascella,15 A. de Roeck16). The relationship of the detectors to physics and the overall design of detectors was addressed and questioned (Y. Gao,17 M. Ruan,18 G. Tonelli,19 H. Zhu,20 M. Mangano,21 C. Quigg22) in addition to precision time measurements in detectors (C. Tully23).

  13. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  14. Test beam results with a sampling calorimeter of cerium fluoride scintillating crystals and tungsten absorber plates for calorimetry at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Becker, R.; Dissertori, G.; Djambazov, L.; Donegà, M.; Dröge, M.; Haller, C.; Horisberger, U.; Lustermann, W.; Nessi-Tedaldi, F.; Quittnat, M.; Pandolfi, F.; Peruzzi, M.; Schönenberger, M.; Cavallari, F.; Dafinei, I.; Diemoz, M.; D`Imperio, G.; del Re, D.; Gelli, S.; Jorda Lope, C.; Meridiani, P.; Micheli, F.; Nuccetelli, M.; Organtini, G.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Tabarelli de Fatis, T.; Martelli, A.; Monti, V.; Pastrone, N.; Trapani, P. P.; Candelise, V.; Della Ricca, G.

    2016-07-01

    A sampling calorimeter using cerium fluoride scintillating crystals as active material, interleaved with absorber plates made of tungsten, and read out by wavelength-shifting fibres has been tested with high-energy electron beams at the CERN SPS H4 beam line, as well as with lower-energy beams at the INFN Frascati Beam Test Facility in Italy. Energy resolution studies revealed a low stochastic term (< 10 % /√{ E }). This result, combined with high radiation hardness of the material used, marks this sampling calorimeter as a good candidate for the detectors' forward regions during the high luminosity phase of LHC.

  15. Study of the $H^0/A^0 \\to \\tau \\mu$ signal at the hadronic colliders and intercalibration of the D0 calorimeter at Tevatron Run II

    SciTech Connect

    Delsart, Pierre Antoine

    2003-10-13

    This thesis was realized in collaboration with the "theory'' group and the "D0" group of IPNL. Within D0 we have worked on a component of the calibration of the detector's calorimeter : the intercalibration. Using the fact the physics is $\\phi$-symmetric in D0, we created and applied statistical methods for a relative calibration of the $\\phi$-symmetric parts of the calorimeter. Work on particle physics concerned the two Higgs doublet model. In such models leptonic number violation is possible : we have simulated the $H^0/A^0 \\to \\tau \\mu$ signal in order to study the discovery potential and the constraints on the coupling responsible for this decay.

  16. Proportional wire calorimeter for magnet pole tips

    SciTech Connect

    Kraus, D; Ludlam, T; Renardy, J; Willis, W; Zurfluh, E

    1980-01-01

    A total absorption calorimeter is designed to have magnetic properties comparable to those of ordinary steel, and thus can be incorporated into the poles of a spectrometer magnet without compromising the field quality. A test device has been built which consists of an iron structure penetrated by a finegrain pattern of holes, each acting as a proportional tube such that 90% of the volume is occupied by iron. Measurements of the energy and space resolution of this device in a high energy beam will be presented.

  17. Calorimeter measurements of low wattage items

    SciTech Connect

    Cremers, T.L.; Camp, K.L.; Hildner, S.S.; Sedlacek, W.A.

    1993-08-01

    The transition of DOE facilities from production to decontamination and decommissioning has led to more measurements of waste, scrap, and other less attractive materials. The difficulty that these materials pose for segmented gamma scanning and neutron counting has increased the use of calorimetric assay for very low wattage items (< 250 millwatts). We have measured well characterized {sup 238}Pu oxide ranging in wattage from 25 to 500 milliwatts in the calorimeters at the Los Alamos Plutonium Facility and report the error and the precision of the measurements.

  18. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  19. Isothermal drop calorimeter provides measurements for alpha active, pyrophoric materials

    NASA Technical Reports Server (NTRS)

    Savage, H.

    1969-01-01

    Isothermal drop calorimeter measures the heat content of intensely alpha active and pyrophoric materials in inert atmospheres. It consists of a furnace, calorimeter, and aluminum isothermal jacket contained within an inert-atmosphere glove box, which permits the use of unencapsulated materials without exposing personnel to alpha contamination.

  20. Ac loss calorimeter for three-phase cable

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G.

    1996-10-01

    A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

  1. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  2. Eureca - A European-japanese Micro-calorimeter Array Under Development For Ixo

    NASA Astrophysics Data System (ADS)

    De Korte, Piet; Anquita, J.; Barcons, X.; Bastia, P.; Beyer, J.; Briones, F.; Bruijn, M.; Bussons, J.; Camón, A.; Carrera, F.; Ceballos, M.; Colasanti, L.; Dirks, B.; Drung, D.; Fabrega, L.; Gatti, F.; Gonzalez-Arrabal, R.; Gonzalez-Arrabal, R.; Gottardi, L.; Hajdas, W.; Helistö, P.; den Herder, J.; Hoevers, H.; Ishisaki, Y.; Kiviranta, M.; van der Kuur, J.; Macculi, C.; Mchedlischvili, A.; Mitsuda, K.; Paltani, S.; Parra-Borderías, M.; Piro, L.; Rohlfs, R.; Sese, J.; Takei, Y.; Torrioli, G.; Yamasaki, N.

    2009-01-01

    The EURECA (EURopean-JapanEse Calorimeter Array) project aims to demonstrate the science performance and technological readiness of an imaging X-ray spectrometer based on a micro-calorimeter array for application in future X-ray astronomy missions, like IXO, XENIA, and DIOS. Since the recent merger of the ESA XEUS and NASA Constellation-X studies into a joint ESA/NASA/JAXA study of the International X-ray Observatory (IXO) collaboration between GSFC and NIST (U.S.), SRON and INAF (Europe), and ISAS (Japan) has been established. The prototype instrument consists of a 5 x 5 pixel array of TES-based micro-calorimeters read out by by two SQUID-amplifier channels using frequency-domain-multiplexing (FDM). The SQUID-amplifiers are linearized by digital base-band feedback. The detector array is cooled in a cryogen-free cryostat consisting of a pulse tube cooler and a two stage ADR. A European-Japanese consortium designs, fabricates, and tests this prototype instrument. This paper describes the instrument concept, and shows the design and status of the various sub-units, like the TES detector array, LC-filters, SQUID-amplifiers, AC-bias sources, digital electronics, etc. Initial tests of the system at the PTB beam line of the BESSY synchrotron showed stable performance and an X-ray energy resolution of 1.58 eV at 250 eV and 2.5 eV @ 5.9 keV for the read-out of one TES-pixel only. Next step is deployment of FDM to read-out the full array. Full performance demonstration is expected mid 2009.

  3. Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at √s = 8  TeV

    SciTech Connect

    Khachatryan, V.

    2015-06-10

    The performance and strategies used in electron reconstruction and selection at CMS are presented based on data corresponding to an integrated luminosity of 19.7 fb-1, collected in proton-proton collisions at √s = 8 TeV at the CERN LHC. The paper focuses on prompt isolated electrons with transverse momenta ranging from about 5 to a few 100 GeV. A detailed description is given of the algorithms used to cluster energy in the electromagnetic calorimeter and to reconstruct electron trajectories in the tracker. The electron momentum is estimated by combining the energy measurement in the calorimeter with the momentum measurement in the tracker. Benchmark selection criteria are presented, and their performances assessed using Z, Υ, and J/ψ decays into e++ e- pairs. The spectra of the observables relevant to electron reconstruction and selection as well as their global efficiencies are well reproduced by Monte Carlo simulations. The momentum scale is calibrated with an uncertainty smaller than 0.3%. The momentum resolution for electrons produced in Z boson decays ranges from 1.7 to 4.5%, depending on electron pseudorapidity and energy loss through bremsstrahlung in the detector material.

  4. Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at √s = 8  TeV

    DOE PAGES

    Khachatryan, V.

    2015-06-10

    The performance and strategies used in electron reconstruction and selection at CMS are presented based on data corresponding to an integrated luminosity of 19.7 fb-1, collected in proton-proton collisions at √s = 8 TeV at the CERN LHC. The paper focuses on prompt isolated electrons with transverse momenta ranging from about 5 to a few 100 GeV. A detailed description is given of the algorithms used to cluster energy in the electromagnetic calorimeter and to reconstruct electron trajectories in the tracker. The electron momentum is estimated by combining the energy measurement in the calorimeter with the momentum measurement in themore » tracker. Benchmark selection criteria are presented, and their performances assessed using Z, Υ, and J/ψ decays into e++ e- pairs. The spectra of the observables relevant to electron reconstruction and selection as well as their global efficiencies are well reproduced by Monte Carlo simulations. The momentum scale is calibrated with an uncertainty smaller than 0.3%. The momentum resolution for electrons produced in Z boson decays ranges from 1.7 to 4.5%, depending on electron pseudorapidity and energy loss through bremsstrahlung in the detector material.« less

  5. The Center-of-mass angular distribution of direct photons at $S^{(1/2)}$ = 1.8-TeV observed with the D0 detector

    SciTech Connect

    Rubinov, Paul Michael

    1995-12-01

    The study of center-of-mass angular distribution of direct photons produced in p$\\bar{p}$ collisions at √s = 1.8TeV with the D0 detector is described. The photons are detected and identified using a liquid argon calorimeter, with charged particle rejection provided by tracking chambers. The photons are restricted to the central region (n ≤ 0.75), but center-of-mass system for the hard scattering is reconstructed using the information from reconstructed jets. A method for avoiding possible bias due to edges of the calorimeter is presented. The background, due mainly to rare fragmentations of a jet into a leading neutral meson, are subtracted statistically using the expected variation in the longitudinal profile of the electromagnetic shower. The angular distribution in the range of η* from 0 to 1.5 (cos θ* from 0 to 0.9) is compared to next-to-leading order QCD predictions, and found to be in good agreement.

  6. CALIFA, a Dedicated Calorimeter for the R{sup 3}B/FAIR

    SciTech Connect

    Cortina-Gil, D.; Alvarez-Pol, H.; Aumann, T.; Avdeichikov, V.; Bendel, M.; Benlliure, J.; Bertini, D.; Bezbakh, A.; Bloch, T.; Böhmer, M.; Borge, M.J.G.; Briz, J.A.; Cabanelas, P.; Casarejos, E.; Carmona Gallardo, M.; Cederkäll, J.; Chulkov, L.; Dierigl, M.; Di Julio, D.; Durán, I.; and others

    2014-06-15

    The R{sup 3}B experiment (Reactions with Relativistic Radioactive Beams) at FAIR (Facility for Antiproton and Ion Research) is a versatile setup dedicated to the study of reactions induced by high-energy radioactive beams. It will provide kinematically complete measurements with high efficiency, acceptance and resolution, making possible a broad physics program with rare-isotopes. CALIFA (CALorimeter for In-Flight detection of gamma-rays and high energy charged pArticles), is a complex detector based on scintillation crystals, that will surround the target of the R{sup 3}B experiment. CALIFA will act as a total absorption gamma-calorimeter and spectrometer, as well as identifier of charged particles from target residues. This versatility is its most challenging requirement, demanding a huge dynamic range, to cover from low energy gamma-rays up to 300 MeV protons. This fact, along with the high-energy of the beams determine the conceptual design of the detector, presented in this paper, together with the technical solutions proposed for its construction.

  7. The COSINUS project: perspectives of a NaI scintillating calorimeter for dark matter search

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Carniti, P.; Cassina, L.; Gironi, L.; Gotti, C.; Gütlein, A.; Hauff, D.; Maino, M.; Nagorny, S. S.; Pagnanini, L.; Pessina, G.; Petricca, F.; Pirro, S.; Pröbst, F.; Reindl, F.; Schäffner, K.; Schieck, J.; Seidel, W.

    2016-08-01

    The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop a cryogenic scintillating calorimeter using an undoped NaI-crystal as target for direct dark matter search. Dark matter particles interacting with the detector material generate both a phonon signal and scintillation light. While the phonon signal provides a precise determination of the deposited energy, the simultaneously measured scintillation light allows for particle identification on an event-by-event basis, a powerful tool to study material-dependent interactions, and to suppress backgrounds. Using the same target material as the DAMA/LIBRA collaboration, the COSINUS technique may offer a unique possibility to investigate and contribute information to the presently controversial situation in the dark matter sector. We report on the dedicated design planned for the NaI proof-of-principle detector and the objectives of using this detection technique in the light of direct dark matter detection.

  8. Production summary for extended barrel module fabrication at Argonne for the ATLAS tile calorimeter.

    SciTech Connect

    Guarino, V.; Hill, N.; Petereit, E.; Skrzecz, F.; Wood, K.; Proudfoot, J.; Anderson, S.; Caird, A.; Keyser, C.; Kocenko, L.; Matijas, Z.; Nephew, T.; Stanek, R.; Franchini, F.; High Energy Physics

    2007-11-14

    The Tile Calorimeter is one of the main hadronic calorimeters to be used in the ATLAS experiment at CERN [1,2]. It is a steel/scintillator sampling calorimeter which is built by stacking 64 segments in azimuth and 3 separate cylinders to provide a total structure whose length is approximately 12m and whose diameter is a little over 8.4m. It has a total weight of about 2630 metric tons. Important features of this calorimeter are: A minimum gap (1.5mm) between modules in azimuth; Pockets in the structure to hold the scintillator tiles; Recessed channels at the edges of the module into which the readout fibers will sit; and Holes in the structure through which a radioactive source will pass. The mechanical structure for one of the 3 calorimeter sections, the Extended Barrel (EBA) was constructed at Argonne. A schematic of the calorimeter sampling structure and the layout of one of the 64 segments, termed a module, are shown in figure 1. Each module comprises mechanically of a precision machined, structural girder to which 10 submodules are bolted. One of these submodules, the ITC, has a customized shape to accommodate services for other detector elements. Each submodule weighs 850Kg and the assembled mechanical structure of the module weighs approximately 9000Kg (a fully instrumented Extended Barrel modules weighs {approx}9600Kg). A crucial issue for the tile calorimeter assembly is the minimization of the un-instrumented gap between modules when they are stacked on top of each other during final assembly. The design goal was originally 1mm gap which was eventually relaxed to 1.5mm following a careful evaluation of all tolerances in the construction and assembly process as shown in figure 2 [3]. Submodules for this assembly were produced at 4 locations [4] using tooling and procedures which were largely identical [5]. An important issue was the height of each submodule on the stacking fixture on which they were fabricated as this defines the length along the girder

  9. PAMELA Space Mission: The Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  10. Thermal detector model for cryogenic composite detectors for the dark matter experiments CRESST and EURECA

    NASA Astrophysics Data System (ADS)

    Roth, S.; Ciemniak, C.; Coppi, C.; Feilitzsch, F. V.; Gütlein, A.; Isaila, C.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Westphal, W.

    2008-11-01

    The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) and the EURECA (European Underground Rare Event Calorimeter Array) experiments are direct dark matter search experiments where cryogenic detectors are used to detect spin-independent, coherent WIMP (Weakly Interacting Massive Particle)-nucleon scattering events by means of the recoil energy. The cryogenic detectors use a massive single crystal as absorber which is equipped with a TES (transition edge sensor) for signal read-out. They are operated at mK-temperatures. In order to enable a mass production of these detectors, as needed for the EURECA experiment, a so-called composite detector design (CDD) that allows decoupling of the TES fabrication from the optimization procedure of the absorber single-crystal was developed and studied. To further investigate, understand and optimize the performance of composite detectors, a detailed thermal detector which takes into account the CDD has been developed.

  11. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  12. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  13. Biological detector and method

    SciTech Connect

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  14. Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at sqrt[S(NN)] =2.76 TeV with the ATLAS detector at the LHC.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Ackers, M; Adams, D L; Addy, T N; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albrand, S; Aleksa, M; Aleksandrov, I N; Aleppo, M; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, J; Alviggi, M G; Amako, K; Amaral, P; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonelli, S; Antos, J; Anulli, F; Aoun, S; Bella, L Aperio; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arms, K E; Armstrong, S R; Arnaez, O; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Silva, J; Asfandiyarov, R; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Aubert, B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Bachy, G; Backes, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Pedrosa, F Baltasar Dos Santos; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barashkou, A; Galtieri, A Barbaro; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, D; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Battistoni, G; Bauer, F; Bawa, H S; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C; Begel, M; Harpaz, S Behar; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, G; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Benchouk, C; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Bertinelli, F; Bertolucci, F; Besana, M I; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocci, A; Bock, R; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boonekamp, M; Boorman, G; Booth, C N; Booth, P; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Botterill, D; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozhko, N I; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Brambilla, E; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Bright-Thomas, P G; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchanan, N J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Buira-Clark, D; Buis, E J; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byatt, T; Urbán, S Cabrera; Caccia, M; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camard, A; Camarri, P; Cambiaghi, M; Cameron, D; Cammin, J; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carpentieri, C; Montoya, G D Carrillo; Montero, S Carron; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Hernandez, A M Castaneda; Castaneda-Miranda, E; Gimenez, V Castillo; Castro, N F; Cataldi, G; Cataneo, F; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavallari, A; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Cazzato, A; Ceradini, F; Cerna, C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, L; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; El Moursli, R Cherkaoui; Tcherniatine, V; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Ciubancan, M; Clark, A; Clark, P J; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clifft, R W; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coe, P; Cogan, J G; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Coluccia, R; Comune, G; Muiño, P Conde; Coniavitis, E; Conidi, M C; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Correard, S; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Torres, R Coura; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Almenar, C Cuenca; Donszelmann, T Cuhadar; Cuneo, S; Curatolo, M; Curtis, C J; Cwetanski, P; Czirr, H; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Mello, A Da Rocha Gesualdi; Da Silva, P V M; Da Via, C; Dabrowski, W; Dahlhoff, A; Dai, T; Dallapiccola, C; Dallison, S J; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dankers, R; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Daum, C; Dauvergne, J P; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, M; Davison, A R; Dawe, E; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Lotto, B; De Mora, L; De Nooij, L; Branco, M De Oliveira; De Pedis, D; de Saintignon, P; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dean, S; Debbe, R; Dedes, G; Dedovich, D V; Degenhardt, J; Dehchar, M; Deile, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delpierre, P; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Dennis, C; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietl, H; Dietrich, J; Dietzsch, T A; Diglio, S; Yagci, K Dindar; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Wemans, A Do Valle; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Dogan, O B; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dosil, M; Dotti, A; Dova, M T; Dowell, J D; Doxiadis, A D; Doyle, A T; Drasal, Z; Drees, J; Dressnandt, N; Drevermann, H; Driouichi, C; Dris, M; Drohan, J G; Dubbert, J; Dubbs, T; Dube, S; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Dunford, M; Yildiz, H Duran; Duxfield, R; Dwuznik, M; Dydak, F; Dzahini, D; Düren, M; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Efthymiopoulos, I; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Curull, X Espinal; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fasching, D; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferguson, D; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiascaris, M; Fiedler, F; Filipčič, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fischer, P; Fisher, M J; Fisher, S M; Flammer, J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Castillo, L R Flores; Flowerdew, M J; Föhlisch, F; Fokitis, M; Martin, T Fonseca; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallo, V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gapienko, V A; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; Navarro, J E García; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Garvey, J; Gatti, C; Gaudio, G; Gaumer, O; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gieraltowski, G F; Gilbert, L M; Gilchriese, M; Gildemeister, O; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Golovnia, S N; Gomes, A; Fajardo, L S Gomez; Gonçalo, R; Gonella, L; Gong, C; Gonidec, A; Gonzalez, S; de la Hoz, S González; Silva, M L Gonzalez; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gorokhov, S A; Gorski, B T; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gouanère, M; Eschrich, I Gough; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grabski, V; Grafström, P; Grah, C; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenfield, D; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, P L Y; Grishkevich, Y V; Grivaz, J-F; Grognuz, J; Groh, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Gruwe, M; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guindon, S; Guler, H; Gunther, J; Guo, B; Guo, J; Gupta, A; Gusakov, Y; Gushchin, V N; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, C J; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harper, D; Harrington, R D; Harris, O M; Harrison, K; Hart, J C; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Hatch, M; Hauff, D; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawes, B M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayden, D; Hayward, H S; Haywood, S J; Hazen, E; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heldmann, M; Heller, M; Hellman, S; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Correia, A M Henriques; Henrot-Versille, S; Henry-Couannier, F; Hensel, C; Henss, T; Jiménez, Y Hernández; Herrberg, R; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hill, N; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmes, A; Holmgren, S O; Holy, T; Holzbauer, J L; Homer, R J; Homma, Y; Horazdovsky, T; Horn, C; Horner, S; Horton, K; Hostachy, J-Y; Hott, T; Hou, S; Houlden, M A; Hoummada, A; Howarth, J; Howell, D F; Hristova, I; Hrivnac, J; Hruska, I; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Hughes-Jones, R E; Huhtinen, M; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Ichimiya, R; Iconomidou-Fayard, L; Idarraga, J; Idzik, M; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Imbault, D; Imhaeuser, M; Imori, M; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Ionescu, G; Quiles, A Irles; Ishii, K; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D K; Jankowski, E; Jansen, E; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jeremie, A; Jež, P; Jézéquel, S; Ji, H; Ji, W; Jiang, Y; Belenguer, M Jimenez; Jin, G; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, L G; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joo, K K; Joram, C; Jorge, P M; Joseph, J; Ju, X; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagoz, M; Karnevskiy, M; Karr, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenney, C J; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Ketterer, C; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoo, T J; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiver, A M; Kiyamura, H; Kladiva, E; Klaiber-Lodewigs, J; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knobloch, J; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Koenig, S; König, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kokott, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kollefrath, M; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kootz, A; Koperny, S; Kopikov, S V; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasel, O; Krasny, M W; Krasznahorkay, A; Kraus, J; Kreisel, A; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kruth, A; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kundu, N; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuykendall, W; Kuze, M; Kuzhir, P; Kvasnicka, O; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Landsman, H; Lane, J L; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lapin, V V; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Lau, W; Laurelli, P; Lavorato, A; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Leger, A; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Miotto, G Lehmann; Lehto, M; Lei, X; Leite, M A L; Leitner, R; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J-R; Lesser, J; Lester, C G; Cheong, A Leung Fook; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Lewandowska, M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Lifshitz, R; Lilley, J N; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lombardo, V P; Long, R E; Lopes, L; Mateos, D Lopez; Losada, M; Loscutoff, P; Losterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, J; Lu, L; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lungwitz, M; Lupi, A; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Maassen, M; Goia, J A Macana; Maccarrone, G; Macchiolo, A; Maček, B; Miguens, J Machado; Macina, D; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Martins, P J Magalhaes; Magnoni, L; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Manz, A; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchesotti, M; Marchiori, G; Marcisovsky, M; Marin, A; Marino, C P; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti-Garcia, S; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, Ph; Martin, T A; Dit Latour, B Martin; Martinez, M; Outschoorn, V Martinez; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Mass, M; Massa, I; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maugain, J M; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzoni, E; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; McGlone, H; Mchedlidze, G; McLaren, R A; Mclaughlan, T; McMahon, S J; McMahon, T R; McMahon, T J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meinhardt, J; Meirose, B; Melachrinos, C; Garcia, B R Mellado; Navas, L Mendoza; Meng, Z; Mengarelli, A; Menke, S; Menot, C; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meuser, S; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Miele, P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikulec, B; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Verge, L Miralles; Misiejuk, A; Mitra, A; Mitrevski, J; Mitrofanov, G Y; Mitsou, V A; Mitsui, S; Miyagawa, P S; Miyazaki, K; Mjörnmark, J U; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moisseev, A M; Moles-Valls, R; Molina-Perez, J; Moneta, L; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Herrera, C Mora; Moraes, A; Morais, A; Morange, N; Morel, J; Morello, G; Moreno, D; Llácer, M Moreno; Morettini, P; Morii, M; Morin, J; Morita, Y; Morley, A K; Mornacchi, G; Morone, M-C; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muijs, A; Muir, A; Munwes, Y; Murakami, K; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakahama, Y; Nakamura, K; Nakano, I; Nanava, G; Napier, A; Nash, M; Nasteva, I; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nektarijevic, S; Nelson, A; Nelson, S; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Nesterov, S Y; Neubauer, M S; Neusiedl, A; Neves, R M; Nevski, P; Newman, P R; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicquevert, B; Niedercorn, F; Nielsen, J; Niinikoski, T; Nikiforov, A; Nikolaenko, V; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nomoto, H; Nordberg, M; Nordkvist, B; Francisco, O Norniella; Norton, P R; Novakova, J; Nozaki, M; Nožička, M; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nyman, T; O'Brien, B J; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohska, T K; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Okuyama, T; Olcese, M; Olchevski, A G; Oliveira, M; Damazio, D Oliveira; Garcia, E Oliver; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Orellana, F; Oren, Y; Orestano, D; Orlov, I; Barrera, C Oropeza; Orr, R S; Ortega, E O; Osculati, B; Ospanov, R; Osuna, C; Otero y Garzon, G; Ottersbach, J P; Ouchrif, M; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Oyarzun, A; Øye, O K; Ozcan, V E; Ozturk, N; Pages, A Pacheco; Aranda, C Padilla; Paganis, E; Paige, F; Pajchel, K; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Paoloni, A; Papadopoulou, Th D; Paramonov, A; Park, S J; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Morales, M I Pedraza; Peleganchuk, S V; Peng, H; Pengo, R; Penson, A; Penwell, J; Perantoni, M; Perez, K; Cavalcanti, T Perez; Codina, E Perez; García-Estañ, M T Pérez; Reale, V Perez; Peric, I; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Peters, O; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, A W; Phillips, P W; Piacquadio, G; Piccaro, E; Piccinini, M; Pickford, A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M-A; Pleskach, A V; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Poghosyan, T; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Bueso, X Portell; Porter, R; Posch, C; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Pribyl, L; Price, D; Price, L E; Price, M J; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Qian, Z; Qin, Z; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rajagopalan, S; Rajek, S; Rammensee, M; Rammes, M; Ramstedt, M; Randrianarivony, K; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reichold, A; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renaud, A; Renkel, P; Rensch, B; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robinson, M; Robson, A; de Lima, J G Rocha; Roda, C; Dos Santos, D Roda; Rodier, S; Rodriguez, D; Garcia, Y Rodriguez; Roe, A; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Maltrana, D Romero; Roos, L; Ros, E; Rosati, S; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rossi, L; Rotaru, M; Roth, I; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubinskiy, I; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruiz-Martinez, A; Rulikowska-Zarebska, E; Rumiantsev, V; Rumyantsev, L; Runge, K; Runolfsson, O; Rurikova, Z; Rusakovich, N A; Rust, D R; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Ryder, N C; Rzaeva, S; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Ferrando, B M Salvachua; Salvatore, D; Salvatore, F; Salzburger, A; Sampsonidis, D; Samset, B H; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandhu, P; Sandoval, T; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sansoni, A; Rios, C Santamarina; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savinov, V; Savva, P; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scallon, O; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmidt, E; Schmidt, M P; Schmieden, K; Schmitt, C; Schmitz, M; Schöning, A; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schuh, S; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, C; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimizu, S; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Short, D; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skovpen, K; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloan, T J; Sloper, J; Smakhtin, V; Smirnov, S Yu; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldevila, U; Camillocci, E Solfaroli; Solodkov, A A; Solovyanov, O V; Sondericker, J; Soni, N; Sopko, V; Sopko, B; Sorbi, M; Sosebee, M; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spila, F; Spiriti, E; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G A; Stockmanns, T; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Soh, D A; Su, D; Subramania, S; Sugaya, Y; Sugimoto, T; Suhr, C; Suita, K; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, Y; Sviridov, Yu M; Swedish, S; Sykora, I; Sykora, T; Szeless, B; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanaka, Y; Tani, K; Tannoury, N; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Taylor, C; Taylor, F E; Taylor, G; Taylor, G N; Taylor, W; Castanheira, M Teixeira Dias; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Tennenbaum-Katan, Y D; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Therhaag, J; Theveneaux-Pelzer, T; Thioye, M; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomson, E; Thomson, M; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Viegas, F J Tique Aires; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokunaga, K; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tonazzo, A; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Traynor, D; Trefzger, T; Treis, J; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tuggle, J M; Turala, M; Turecek, D; Cakir, I Turk; Turlay, E; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Typaldos, D; Tyrvainen, H; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valderanis, C; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Gallego, E Valladolid; Vallecorsa, S; Ferrer, J A Valls; van der Graaf, H; van der Kraaij, E; van der Poel, E; van der Ster, D; Van Eijk, B; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Rodriguez, F Varela; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Ventura, S; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Viel, S; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Viret, S; Virzi, J; Vitale, A; Vitells, O; Vivarelli, I; Vaque, F Vives; Vlachos, S; Vlasak, M; Vlasov, N; Vogel, A; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vovenko, A S; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Anh, T Vu; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wakabayashi, J; Walbersloh, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Wang, C; Wang, H; Wang, J; Wang, J; Wang, J C; Wang, S M; Warburton, A; Ward, C P; Warsinsky, M; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, J; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wrona, B; Wu, S L; Wu, X; Wulf, E; Wunstorf, R; Wynne, B M; Xaplanteris, L; Xella, S; Xie, S; Xie, Y; Xu, C; Xu, D; Xu, G; Yabsley, B; Yamada, M; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Y; Yang, Z; Yanush, S; Yao, W-M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zaets, V G; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zalite, Yo K; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zdrazil, M; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, A V; Zenin, O; Zeniš, T; Zenonos, Z; Zenz, S; Zerwas, D; Della Porta, G Zevi; Zhan, Z; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zilka, B; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zolnierowski, Y; Zsenei, A; zur Nedden, M; Zutshi, V; Zwalinski, L

    2010-12-17

    By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse energies of dijets in opposite hemispheres are observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

  15. Electromagnetic Effects in SDF Explosions

    SciTech Connect

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise

  16. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  17. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  18. High-sensitivity microfluidic calorimeters for biological and chemical applications

    PubMed Central

    Lee, Wonhee; Fon, Warren; Axelrod, Blake W.; Roukes, Michael L.

    2009-01-01

    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described. PMID:19706406

  19. New tools for the simulation and design of calorimeters

    SciTech Connect

    Womersley, W.J.

    1989-07-10

    Two new approaches to the simulation and design of large hermetic calorimeters are presented. Firstly, the Shower Library scheme used in the fast generation of showers in the Monte Carlo of the calorimeter for the D-Zero experiment at the Fermilab Tevatron is described. Secondly, a tool for the design future calorimeters is described, which can be integrated with a computer aided design system to give engineering designers an immediate idea of the relative physics capabilities of different geometries. 9 refs., 6 figs., 1 tab.

  20. SCA controller for the ATLAS calorimeter

    SciTech Connect

    Gingrich, D.M.; Hewlett, J.C.; Holm, L.

    1997-12-31

    The front-end readout of the ATLAS liquid argon calorimeter will store data locally in analog pipeline memories at the LHC beam crossing frequency of 40 MHz. Switched capacitor array chips meeting the ATLAS readout requirements will be used. These new chips axe capable of simultaneous read and write operations, and allow random access to storage locations. To utilize these essential design features requires a substantial amount of fast control and address bookkeeping logic. We have designed a controller capable of operating the pipelines as analog random access memories and that satisfies the ATLAS readout requirements. The pipeline controller manages the data of 144 time samples and can operate at a mean trigger rate of about 75 kHz, when reading out five time samples per event. We are currently prototyping an integrated version of the controller implemented in a FPGA from Xilinx.

  1. HGCAL: a High-Granularity Calorimeter for the endcaps of CMS at HL-LHC

    NASA Astrophysics Data System (ADS)

    Magnan, A.-M.

    2017-01-01

    Calorimetry at the High Luminosity LHC (HL-LHC) faces two enormous challenges, particularly in the forward direction: radiation tolerance and unprecedented in-time event pileup. To meet these challenges, the CMS experiment has decided to construct a High Granularity Calorimeter (HGCAL), featuring a previously unrealized transverse and longitudinal segmentation, for both electromagnetic and hadronic compartments. This will facilitate particle-flow-type calorimetry, where the fine structure of showers can be measured and used to enhance particle identification, energy resolution and pileup rejection. The majority of the HGCAL will be based on robust and cost-effective hexagonal silicon sensors with simeq 1 cm2 or 0.5 cm2 hexagonal cell size, with the final five interaction lengths of the hadronic compartment being based on highly segmented plastic scintillator with on-scintillator SiPM readout. We present an overview of the HGCAL project, including the motivation, engineering design, readout/trigger concept and simulated performance.

  2. Light yield of Kuraray SCSF-78MJ scintillating fibers for the Gluex barrel calorimeter

    SciTech Connect

    Beattie, T D; Fischer, A P; Krueger, S T; Lolos, G J; Papandreou, Z; Plummer, E L; Semenov, A Yu; Semenova, I A; Sichello, L M; Teigro, L A; Smith, E S

    2014-09-01

    Over three quarters of a million 1-mm-diameter 4-m-long Kuraray double-clad SCSF-78MJ (blue-green) scintillating fibers have been used in the construction of the GlueX electromagnetic barrel calorimeter for the Hall D experimental program at Jefferson Lab. The quality of a random sample of 4,750 of these fibers was evaluated by exciting the fibers at their mid point using a 90Sr source in order to determine the light yield using a calibrated vacuum photomultiplier as the photosensor. A novel methodology was developed to extract the number of photoelectrons detected for measurements where individual photoelectron peaks are not discernible. The average number of photoelectrons from this sample of fibers was 9.17±0.6 at a source distance of 200 cm from the PMT.

  3. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x

  4. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  5. Calibration of a digital hadron calorimeter with muons

    SciTech Connect

    Bilki, Burak; Butler, John; Cundiff, Tim; Drake, Gary; Haberichter, William; Hazen, Eric; Hoff, Jim; Holm, Scott; Kreps, Andrew; May, Ed; Mavromanolakis, Georgios; /Fermilab /Iowa U. /Argonne /Boston U. /Argonne, PHY

    2008-02-01

    The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as the active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented.

  6. The Belle detector

    NASA Astrophysics Data System (ADS)

    Abashian, A.; Gotow, K.; Morgan, N.; Piilonen, L.; Schrenk, S.; Abe, K.; Adachi, I.; Alexander, J. P.; Aoki, K.; Behari, S.; Doi, Y.; Enomoto, R.; Fujii, H.; Fujita, Y.; Funahashi, Y.; Haba, J.; Hamasaki, H.; Haruyama, T.; Hayashi, K.; Higashi, Y.; Hitomi, N.; Igarashi, S.; Igarashi, Y.; Iijima, T.; Ikeda, Hirokazu; Ikeda, Hitomi; Itoh, R.; Iwai, M.; Iwasaki, H.; Iwasaki, Y.; Joo, K. K.; Kasami, K.; Katayama, N.; Kawai, M.; Kichimi, H.; Kobayashi, T.; Koike, S.; Kondo, Y.; Lee, M. H.; Makida, Y.; Manabe, A.; Matsuda, T.; Murakami, T.; Nagayama, S.; Nakao, M.; Nozaki, T.; Ogawa, K.; Ohkubo, R.; Ohnishi, Y.; Ozaki, H.; Sagawa, H.; Saito, M.; Sakai, Y.; Sasaki, T.; Sato, N.; Sumiyoshi, T.; Suzuki, J.; Suzuki, J. I.; Suzuki, S.; Takasaki, F.; Tamai, K.; Tanaka, M.; Tatomi, T.; Tsuboyama, T.; Tsukada, K.; Tsukamoto, T.; Uehara, S.; Ujiie, N.; Uno, S.; Yabsley, B.; Yamada, Y.; Yamaguchi, H.; Yamaoka, H.; Yamaoka, Y.; Yamauchi, M.; Yoshimura, Y.; Zhao, H.; Abe, R.; Iwai, G.; Kawasaki, T.; Miyata, H.; Shimada, K.; Takahashi, S.; Tamura, N.; Abe, K.; Hanada, H.; Nagamine, T.; Nakajima, M.; Nakajima, T.; Narita, S.; Sanpei, M.; Takayama, T.; Ueki, M.; Yamaga, M.; Yamaguchi, A.; Ahn, B. S.; Kang, J. S.; Kim, Hyunwoo; Park, C. W.; Park, H.; Ahn, H. S.; Jang, H. K.; Kim, C. H.; Kim, S. K.; Lee, S. H.; Park, C. S.; Won, E.; Aihara, H.; Higuchi, T.; Kawai, H.; Matsubara, T.; Nakadaira, T.; Tajima, H.; Tanaka, J.; Tomura, T.; Yokoyama, M.; Akatsu, M.; Fujimoto, K.; Hirose, M.; Inami, K.; Ishikawa, A.; Itami, S.; Kani, T.; Matsumoto, T.; Nagai, I.; Okabe, T.; Oshima, T.; Senyo, K.; Sugi, A.; Sugiyama, A.; Suitoh, S.; Suzuki, S.; Tomoto, M.; Yoshida, K.; Akhmetshin, R.; Chang, P.; Chao, Y.; Chen, Y. Q.; Hou, W. S.; Hsu, S. C.; Huang, H. C.; Huang, T. J.; Lee, M. C.; Lu, R. S.; Peng, J. C.; Peng, K. C.; Sahu, S.; Sung, H. F.; Tsai, K. L.; Ueno, K.; Wang, C. C.; Wang, M. Z.; Alimonti, G.; Browder, T. E.; Casey, B. C. K.; Fang, F.; Guler, H.; Jones, M.; Li, Y.; Olsen, S. L.; Peters, M.; Rodriguez, J. L.; Rosen, M.; Swain, S.; Trabelsi, K.; Varner, G.; Yamamoto, H.; Zheng, Y. H.; An, Q.; Chen, H. F.; Wang, Y. F.; Xu, Z. Z.; Ye, S. W.; Zhang, Z. P.; Asai, M.; Asano, Y.; Mori, S.; Stanič, S.; Tsujita, Y.; Zhang, J.; Žontar, D.; Aso, T.; Aulchenko, V.; Beiline, D.; Bondar, A.; Dneprovsky, L.; Eidelman, S.; Garmash, A.; Kuzmin, A.; Romanov, L.; Root, N.; Shwartz, B.; Sidorov, A.; Sidorov, V.; Usov, Y.; Zhilich, V.; Bakich, A. M.; Peak, L. S.; Varvell, K. E.; Banas, E.; Bozek, A.; Jalocha, P.; Kapusta, P.; Natkaniec, Z.; Ostrowicz, W.; Palka, H.; Rozanka, M.; Rybicki, K.; Behera, P. K.; Mohapatra, A.; Satapathy, M.; Chang, Y. H.; Chen, H. S.; Dong, L. Y.; Li, J.; Liu, H. M.; Mao, Z. P.; Yu, C. X.; Zhang, C. C.; Zhang, S. Q.; Zhao, Z. G.; Zheng, Z. P.; Cheon, B. G.; Choi, Y.; Kim, D. W.; Nam, J. W.; Chidzik, S.; Korotuschenko, K.; Leonidopoulos, C.; Liu, T.; Marlow, D.; Mindas, C.; Prebys, E.; Rabberman, R.; Sands, W.; Wixted, R.; Choi, S.; Dragic, J.; Everton, C. W.; Gordon, A.; Hastings, N. C.; Heenan, E. M.; Moffitt, L. C.; Moloney, G. R.; Moorhead, G. F.; Sevior, M. E.; Taylor, G. N.; Tovey, S. N.; Drutskoy, A.; Kagan, R.; Pakhlov, P.; Semenov, S.; Fukunaga, C.; Suda, R.; Fukushima, M.; Goriletsky, V. I.; Grinyov, B. V.; Lyubinsky, V. R.; Panova, A. I.; Shakhova, K. V.; Shpilinskaya, L. I.; Vinograd, E. L.; Zaslavsky, B. G.; Guo, R. S.; Haitani, F.; Hoshi, Y.; Neichi, K.; Hara, K.; Hara, T.; Hazumi, M.; Hojo, T.; Jackson, D.; Miyake, H.; Nagashima, Y.; Ryuko, J.; Sumisawa, K.; Takita, M.; Yamanaka, T.; Hayashii, H.; Miyabayashi, K.; Noguchi, S.; Hikita, S.; Hirano, H.; Hoshina, K.; Mamada, H.; Nitoh, O.; Okazaki, N.; Yokoyama, T.; Ishino, H.; Ichizawa, S.; Hirai, T.; Kakuno, H.; Kaneko, J.; Nakamura, T.; Ohshima, Y.; Watanabe, Y.; Yanaka, S.; Inoue, Y.; Nakano, E.; Takahashi, T.; Teramoto, Y.; Kang, J. H.; Kim, H. J.; Kim, Heejong; Kwon, Y.-J.; Kawai, H.; Kurihara, E.; Ooba, T.; Suzuki, K.; Unno, Y.; Kawamura, N.; Yuta, H.; Kinoshita, K.; Satpathy, A.; Kobayashi, S.; Kuniya, T.; Murakami, A.; Tsukamoto, T.; Kumar, S.; Singh, J.; Lange, J.; Stock, R.; Matsumoto, S.; Watanabe, M.; Matsuo, H.; Nishida, S.; Nomura, T.; Sakamoto, H.; Sasao, N.; Ushiroda, Y.; Nagasaka, Y.; Tanaka, Y.; Ogawa, S.; Shibuya, H.; Hanagaki, K.; Okuno, S.; Shen, D. Z.; Yan, D. S.; Yin, Z. W.; Tan, N.; Wang, C. H.; Yamaki, T.; Yamashita, Y.

    2002-02-01

    The Belle detector was designed and constructed to carry out quantitative studies of rare B-meson decay modes with very small branching fractions using an asymmetric e +e - collider operating at the ϒ(4S) resonance, the KEK-B-factory. Such studies require data samples containing ˜10 7 B-meson decays. The Belle detector is configured around a 1.5 T superconducting solenoid and iron structure surrounding the KEK-B beams at the Tsukuba interaction region. B-meson decay vertices are measured by a silicon vertex detector situated just outside of a cylindrical beryllium beam pipe. Charged particle tracking is performed by a wire drift chamber (CDC). Particle identification is provided by d E/d x measurements in CDC, aerogel threshold Cherenkov counter and time-of-flight counter placed radially outside of CDC. Electromagnetic showers are detected in an array of CsI( Tl) crystals located inside the solenoid coil. Muons and K L mesons are identified by arrays of resistive plate counters interspersed in the iron yoke. The detector covers the θ region extending from 17° to 150°. The part of the uncovered small-angle region is instrumented with a pair of BGO crystal arrays placed on the surfaces of the QCS cryostats in the forward and backward directions. Details of the design and development works of the detector subsystems, which include trigger, data acquisition and computer systems, are described. Results of performance of the detector subsystems are also presented.

  7. Building and testing a high school calorimeter at CERN

    NASA Astrophysics Data System (ADS)

    Biesot, L.; Crane, R.; Engelen, M. A. G.; van Haren, A. M. A.; van Kleef, R. H. B.; Leenders, O. R.; Timmermans, C.

    2016-11-01

    We have designed, built and tested a crystal calorimeter in the context of CERN’s first beam line for schools competition. The results of the tests at CERN show that the light output of our calorimeter depends on the energy deposited by particles (electrons and muons) hitting the crystals. Our design can be reproduced by high schools around the world, as we have avoided the use of toxic chemicals.

  8. Vibration isolation system for cryogenic phonon-scintillation calorimeters

    NASA Astrophysics Data System (ADS)

    Lee, C.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, I.; Kim, S. R.; Kim, Y. H.; Lee, H. J.; So, J. H.; Yoon, Y. S.

    2017-02-01

    Cryogen-free dilution refrigerators are getting popular for rare event searches underground due to their advantages. However, the application of a pulse tube refrigerator introduces mechanical vibration that can translate into temperature fluctuation for calorimeters. The effect is significant in particular when the sensor is attached to a large absorber. A mechanical filter is installed to isolate the calorimeters from the vibration inside a cryogen-free dilution refrigerator while meeting thermal requirements.

  9. On method of muon spectrum measurements by the scintillation detectors of a large thickness T4t sub o

    NASA Technical Reports Server (NTRS)

    Ryazhskaya, O. G.

    1985-01-01

    Various methods for the study of muon spectrum are presented. The direct ones include the muon energy measurements by magnetic spectrometers. The indirect ones deal with the reconstruction of the muon spectrum from the spectrum of secondary particles obtained by burst or calorimeter technique. The burst technique is based on the measurement of the number of cascade particles, mainly in the cascade maximum, by the detectors of small thickness T sub 0. The calorimeter method consist in determination of the cascade energy with help of the cascade curve shape. The multilayer detectors are used for this purpose. They are usually comprised of proportional counters, X-ray emulsion chambers or scintillation counters with the target material placed between them. The scintillation detectors of a large thickness measures the total cascade energy directly and the detector works as a true calorimeter. When the total energy is detected, the cascade spectrum differs from the muon one.

  10. The NA49 large acceptance hadron detector

    NASA Astrophysics Data System (ADS)

    Afanasiev, S.; Alber, T.; Appelshäuser, H.; Bächler, J.; Barna, D.; Barnby, L. S.; Bartke, J.; Barton, R. A.; Betev, L.; Bialkowska, H.; Bieser, F.; Billmeier, A.; Blyth, C. O.; Bock, R.; Bormann, C.; Bracinik, J.; Brady, F. P.; Brockmann, R.; Brun, R.; Buncic, P.; Caines, H. L.; Cebra, D.; Cooper, G. E.; Cramer, J. G.; Csato, P.; Cyprian, M.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Empl, T.; Eschke, J.; Ferguson, M. I.; Fessler, H.; Fischer, H. G.; Flierl, D.; Fodor, Z.; Frankenfeld, U.; Foka, P.; Freund, P.; Friese, V.; Ftacnik, J.; Fuchs, M.; Gabler, F.; Gal, J.; Ganz, R.; Gaździcki, M.; Gładysz, E.; Grebieszkow, J.; Günther, J.; Harris, J. W.; Hegyi, S.; Henkel, T.; Hill, L. A.; Hlinka, V.; Huang, I.; Hümmler, H.; Igo, G.; Irmscher, D.; Ivanov, M.; Janik, R.; Jacobs, P.; Jones, P. G.; Kadija, K.; Kolesnikov, V. I.; Kowalski, M.; Lasiuk, B.; Lévai, P.; Liebicher, K.; Lynen, U.; Malakhov, A. I.; Margetis, S.; Markert, C.; Marks, C.; Mayes, B.; Melkumov, G. L.; Mock, A.; Molnár, J.; Nelson, J. M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A. D.; Pestov, Y.; Petridis, A.; Pikna, M.; Pimpl, W.; Pinsky, L.; Piper, A.; Porter, R. J.; Poskanzer, A. M.; Poziombka, S.; Prindle, D. J.; Pühlhofer, F.; Rauch, W.; Reid, J. G.; Renfordt, R.; Retyk, W.; Ritter, H. G.; Röhrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Schäfer, E.; Schmidt, R.; Schmischke, D.; Schmitz, N.; Schönfelder, S.; Semenov, A. Yu.; Seyboth, J.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Squier, G. T. A.; Stelzer, H.; Stock, R.; Strmen, P.; Ströbele, H.; Struck, C.; Susa, T.; Szarka, I.; Szentpetery, I.; Szymański, P.; Sziklai, J.; Toy, M.; Trainor, T. A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Vranic, D.; Wang, F. Q.; Weerasundara, D. D.; Wenig, S.; Whitten, C.; Wieman, H.; Wienold, T.; Wood, L.; Yates, T. A.; Zimanyi, J.; Zhu, X.-Z.; Zybert, R.

    1999-07-01

    The NA49 detector is a wide acceptance spectrometer for the study of hadron production in p+p, p+A, and A+A collisions at the CERN SPS. The main components are 4 large-volume TPCs for tracking and particle identification via d E/d x. TOF scintillator arrays complement particle identification. Calorimeters for transverse energy determination and triggering, a detector for centrality selection in p+A collisions, and beam definition detectors complete the set-up. A description of all detector components is given with emphasis on new technical realizations. Performance and operational experience are discussed in particular with respect to the high track density environment of central Pb+Pb collisions.

  11. Alignment of the Fermilab D0 Detector

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It is currently being upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II in the Fall of 2000. Some of the essential elements of this upgrade is the upgrade of the Solenoid Magnet, the Central Fiber Tracker, the Preshower Detectors, the Calorimeter System, and the Muon System. This paper discusses the survey and alignment of the these detectors with emphasis on the Muon detector system. The alignment accuracy is specified as better than 0.5mm. A combination of the Laser Tracker, BETS, and V-STARS systems are used for the survey.

  12. Simulator for the Parity-Violating Deep Inelastic Scattering experiment in the Solenoidal Large Intensity Detector

    NASA Astrophysics Data System (ADS)

    Anderson, Jack; Hall A SoLID Collaboration

    2013-10-01

    The Solenoid Large Intensity Detector (SoLID) particle detector is the main detector that will be used for high energy particle experiments in Hall A that will be used with the 12 GeV electron beam at the Jefferson Lab. SoLID geometries were writen to be implemented in Geant4 using openGL as the visualization tool. This will allow us to test how the calorimeter, a specific yet integral part of the SoLID detector, detects the particles that result from electron beams colliding with targets. The goal is to simulate the approved experiments for the SoLID detector, starting with the Parity-Violating Deep Inelastic Scattering (PVDIS) experiment. This will provide critical information regarding the effectiveness of the calorimeter's design for such experiments. The expectation is that a Shashlik calorimeter will prove effective for the experiments approved for the SoLID detector. The ideal number of layers, or types of material for said layers, is an aspect of the calorimeter that will require testing through the simulations.The geometry files allow an easily-packaged program that can be shared amongst any collaborators interested in the SoLID experiments. NSF Grant No. 714001.

  13. ATLAS Detector Upgrade Prospects

    NASA Astrophysics Data System (ADS)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  14. Single event effect hardness for the front-end ASICs in the DAMPE satellite BGO calorimeter

    NASA Astrophysics Data System (ADS)

    Gao, Shan-Shan; Jiang, Di; Feng, Chang-Qing; Xi, Kai; Liu, Shu-Bin; An, Qi

    2016-01-01

    The Dark Matter Particle Explorer (DAMPE) is a Chinese scientific satellite designed for cosmic ray studies with a primary scientific goal of indirect detection of dark matter particles. As a crucial sub-detector, the BGO calorimeter measures the energy spectrum of cosmic rays in the energy range from 5 GeV to 10 TeV. In order to implement high-density front-end electronics (FEE) with the ability to measure 1848 signals from 616 photomultiplier tubes on the strictly constrained satellite platform, two kinds of 32-channel front-end ASICs, VA160 and VATA160, are customized. However, a space mission period of more than 3 years makes single event effects (SEEs) become threats to reliability. In order to evaluate SEE sensitivities of these chips and verify the effectiveness of mitigation methods, a series of laser-induced and heavy ion-induced SEE tests were performed. Benefiting from the single event latch-up (SEL) protection circuit for power supply, the triple module redundancy (TMR) technology for the configuration registers and the optimized sequential design for the data acquisition process, 52 VA160 chips and 32 VATA160 chips have been applied in the flight model of the BGO calorimeter with radiation hardness assurance. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-4) and Fundamental Research Funds for the Central Universities (WK2030040048)

  15. Development of an Electromagnetic Microscope for Eddy Current Evaluation of Materials

    DTIC Science & Technology

    1991-08-01

    a superconductive gradiometer in an ultrasensitive electromagnetic metal detector , IEEE Trans. Magn. MAG-25, 1204-1207, 1989. Podney, W.N., and R.E...superconductive gradiometer in an ultrasensitive electromagnetic metal detector , IEEE Trans. Magn. MAG-25, 1204-1207, 1989. Czipott, P.V., and W.N. Podney

  16. D0 Decomissioning : Storage of Depleted Uranium Modules Inside D0 Calorimeters after the Termination of D0 Experiment

    SciTech Connect

    Sarychev, Michael; /Fermilab

    2011-09-21

    Dzero liquid Argon calorimeters contain hadronic modules made of depleted uranium plates. After the termination of DO detector's operation, liquid Argon will be transferred back to Argon storage Dewar, and all three calorimeters will be warmed up. At this point, there is no intention to disassemble the calorimeters. The depleted uranium modules will stay inside the cryostats. Depleted uranium is a by-product of the uranium enrichment process. It is slightly radioactive, emits alpha, beta and gamma radiation. External radiation hazards are minimal. Alpha radiation has no external exposure hazards, as dead layers of skin stop it; beta radiation might have effects only when there is a direct contact with skin; and gamma rays are negligible - levels are extremely low. Depleted uranium is a pyrophoric material. Small particles (such as shavings, powder etc.) may ignite with presence of Oxygen (air). Also, in presence of air and moisture it can oxidize. Depleted uranium can absorb moisture and keep oxidizing later, even after air and moisture are excluded. Uranium oxide can powder and flake off. This powder is also pyrographic. Uranium oxide may create health problems if inhaled. Since uranium oxide is water soluble, it may enter the bloodstream and cause toxic effects.

  17. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  18. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  19. D-0 North End Cap Calorimeter Cold Test Results

    SciTech Connect

    Michael, J.; /Fermilab

    1990-08-02

    The North endcap calorimeter vessel was recieved on July 1, 1990. A cooldown of the pressure vessel with liquid nitrogen was performed on July 10-11 to check the vessel's integrity. With the pressure vessel cold, the insulating vacuum was monitored for leaks. Through out the testing, the insulating vacuum remained good and the vessel passed the test. The cold test was carried out per the procedures of D-Zero engineering note 3740.220-EN-250. The test was very similar to the cold test performed on the Central Calorimeter in October of 1987. Reference D-Zero engineering notes 3740.210-EN-122, 3740.000-EN107, and 3740.210-EN-110 for information about the CC cold test. The insulating vacuum space was pumped on while equipment was being connected to the pressure vessel. Two hours after starting to pump with the blower the vacuum space pressure was at about 210 microns. Pumping on the vacuum space for the next 15 hours showed no progress and a leak detector was connected to the pumping line. A leak check showed a leak in a thermocouple feedthru on the vacuum space relief plate. After fixing the leak, the pressure dropped to 16 microns in less than one hour. A rate of rise test was performed starting at a pressure of 13 microns. The pressure rose to 39 microns within 8 minutes and then only rose to 43 microns in 2.5 hours (1.6 microns/hour). After all connections were made to the pressure vessel, a vacuum pump with an estimated effective pumping speed of about 70 scfm was valved on. The lowest pressure achieved after 2 days of pumping was 80 microns. Valving out the pump for 30 minutes resulted in a 5 micron per minute rate of rise. The rate of rise was considered acceptable since there were known leak paths through the bolts of the signal ports. The EC North vessel was rolled outside of Lab A in preparation for a 5000 gallon liquid nitrogen trailer which arrived July, 10 at 8:00am. Before filling the vessel, the vacuum space pump was valved off. The pressure in the

  20. Neutron detection using a crystal ball calorimeter

    NASA Astrophysics Data System (ADS)

    Martem'yanov, M. A.; Kulikov, V. V.; Krutenkova, A. P.

    2015-12-01

    The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.

  1. Electromagnetic microactuators

    NASA Astrophysics Data System (ADS)

    Büttgenbach, S.; Al-Halhouli, A. T.; Feldmann, M.; Seidemann, V.; Waldschik, A.

    2013-05-01

    High precision microactuators have become key elements for many applications of MEMS, for example for positioning and handling systems as well as for microfluidic devices. Electromagnetic microactuators exhibit considerable benefits such as high forces, large deflections, low input impedances and thus, the involvement of only low voltages. Most of the magnetic microactuators developed so far are based on the variable reluctance principle and use soft magnetic materials. Since the driving force of such actuators is proportional to their volume, they require structures with rather great heights and aspect ratios. Therefore, the development of new photo resists, which allow UV exposure of thick layers of resist, has been essential for the advancement of variable reluctance microactuators. On the other hand, hard magnetic materials have the potential for larger forces and larger deflections. Accordingly, polymer magnets, in which micro particles of hard magnetic material are suspended in a polymer matrix, have been used to fabricate permanent magnet microactuators. In this paper we give an overview of sophisticated electromagnetic microactuators which have been developed in our laboratory in the framework of the Collaborative Research Center "Design and Manufacturing of Active Microsystems". In particular, concept, fabrication and test of variable reluctance micro stepper motors, of permanent magnet synchronous micromotors and of microactuators based on the Lorentz force principle will be described. Special emphasis will be given to applications in lab-on-chip systems.

  2. Detectors in Extreme Conditions

    SciTech Connect

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Tomada, A.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  3. A search for neutrinoless double beta decay of [sup 130]Te with a low temperature calorimeter

    SciTech Connect

    Alessandrello, A. ); Brofferio, C. ); Camin, D.V.; Cremonesi, O.; Gervasio, G.; Fiorini, E.; Giuliani, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L. )

    1992-02-05

    Possible impacts of the bolometric technique on Neutrinoless Double Beta Decay (0[nu]-DVD) search are discussed. In this approach, the performances of two TeO[sub 2] low temperature calorimeters with masses of 73 g and 340 g are reported: the FWHM resolutions are respectively 6 keV and 20 keV at 2614 keV. The operation of these detectors in a low background environment in the Gran Sasso underground laboratory has allowed to set a limit on the half-life of [sup 130]Te 2[nu]-DBD of about 2.5[times]10[sup 21] and to study the residual radioactive background components.

  4. A readout driver for the ATLAS LAr-calorimeter at a High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Kielburg-Jeka, A.; Stärz, S.

    2011-01-01

    A new readout driver (ROD) is being developed as a central part of the signal processing of the ATLAS liquid-argon calorimeters for operation at the High Luminosity LHC (HL-LHC). In the architecture of the upgraded readout system, the ROD modules will have several challenging tasks: receiving of up to 1.4 Tb/s of data per board from the detector front-end on multiple high-speed serial links, low-latency data processing, data buffering, and data transmission to the ATLAS trigger and DAQ systems. In order to evaluate the different components, prototype boards in ATCA format equipped with modern Xilinx and Altera FPGAs have been built. We will report on the measured performance of the SERDES devices, the parallel signal processing using DSP slices, the implementation of trigger interfaces, using e.g. multi-Gb Ethernet, as well as the development of the ATCA infrastructure on the very first ROD prototype modules.

  5. Development of fiber-to-fiber connectors for scintillating tile/fiber calorimeters

    NASA Astrophysics Data System (ADS)

    Aota, S.; Bossert, R. C.; Fukuda, S.; Hara, K.; Kawamoto, H.; Kim, S.; Kondo, K.; Mishina, M.; Nakada, H.; Sato, H.; Seiya, Y.; Takikawa, K.

    1995-02-01

    We have developed fiber-to-fiber connectors for plastic fibers of 0.83, 0.90, and 1.00 mm in diameter. Such a connector is essential for detectors that use a large number of optical fibers, scintillating or clear. Typical applicators are unscintillating tile/fiber calorimetry and scintillating fiber tracking. We describe the design and performance of two types of small 10-fiber connectors which were developed for the CDF endplug tile/fiber calorimeter. The connectors showed a light transmission of 85-90% with a uniformity of 2.5-3.1%, and a reproducibility of 1%. Use of optical matching material at the joints could further improve the transmission and uniformity but showed instability after heat cycles.

  6. A pure CsI calorimeter for the Belle II experiment at SuperKEKB

    NASA Astrophysics Data System (ADS)

    Aloisio, A.; Baccaro, S.; Bernieri, E.; Branchini, P.; Budano, A.; Budano, F.; Cecchi, C.; Cemmi, A.; Corradi, G.; De Lucia, E.; De Nardo, G.; de Sangro, R.; Finocchiaro, G.; Fiore, S.; Giordano, R.; Manoni, E.; Merola, M.; Montecchi, M.; Oberhof, B.; Passeri, A.; Peruzzi, I.; Piccolo, M.; Rossi, A.; Sciacca, C.; Tagnani, D.

    2016-07-01

    The new SuperKEKB collider will be an upgrade of the existing KEKB electron-positron asymmetric collider, with a target luminosity of 8 ×1035cm-2s-1, about 40 times greater than the previous one. The accelerator upgrade is based on the novel low-emittance "nanobeams" scheme. The detector will also be upgraded to cope with the higher luminosity, pile-up and occupancy. We report on the development of the new pure CsI calorimeter for the forward region. An intensive R&D has been carried out to study the performance of pure CsI crystals with Avalanche Photodiodes readout. Results on the signal to noise ratio for different sensors and front end electronics configurations will be presented. A matrix of 16 crystals has been tested with the electron beam at the BTF facility in Frascati. Results in terms of energy resolution of this prototype will also be discussed.

  7. Detection of High Energy Cosmic Ray with the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Fazely, Ali R.

    2003-01-01

    ATIC is a balloon-borne investigation of cosmic ray spectra, from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Gemmate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pixels capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'. Very high energy gamma-rays and their energy spectrum may provide insight to the flux of extremely high energy neutrinos which will be investigated in detail with several proposed cubic kilometer scale neutrino observatories in the next decade.

  8. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    SciTech Connect

    Chyzh, A.; Dashdorj, D.; Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Becker, J. A.; Parker, W.; Wu, C. Y.; Becvar, F.; Kroll, J.; Krticka, M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  9. Electromagnetic Counterparts of Gravitational Wave Transients

    NASA Astrophysics Data System (ADS)

    Branchesi, Marica

    2015-03-01

    In the near future the ground-based gravitational wave detectors will reach sensitivities that should make it possible for the first time to directly observe gravitational waves. The simultaneous availability of gravitational wave detectors observing together with space and ground-based electromagnetic telescopes will offer a great opportunity to explore the Universe in a new multi-messenger perspective. Promising sources of gravitational waves are the most energetic astrophysical events such as the merger of neutron stars and/or stellar-mass black holes and the core collapse of massive stars. These events are believed to produce electromagnetic transients in the sky, like gamma-ray bursts and supernovae. An overview of the expected electromagnetic counterparts of the gravitational wave sources is presented, focusing on the challenges, opportunities and strategies for starting transient gravitational wave astronomy.

  10. Hard scattering of partons as a probe of collisions at RHIC using the STAR detector system

    SciTech Connect

    Christie, W.B.

    1995-07-15

    Presented here is the current state of the author`s investigations into the use of hard probes to study pp, pA, and AA collisions at the Relativistic Heavy Ion Collider (RHIC) being built at Brookhaven National Laboratory. The overall goal of the RHIC program is the discovery and study of the Quark-Gluon Plasma (QGP), which is predicted to be formed at the high energy densities reached at RHIC in high energy AA collisions. The term {open_quotes}Hard probes{close_quotes} as used in this document includes those particles whose origin is the result of a direct hard parton scatter (i.e qq, qg, or gg). The final states of these hard parton scatters which the author proposes to study include dijets, gamma-jet coincidences, and inclusive high P{sub t} particle spectra. A brief discussion of the physics objectives is given in section 1. This is followed by an introduction to the STAR detector system in section 2, with particular details given for the proposed STAR Electromagnetic Calorimeter (EMC). The present simulation studies and results are given in section 3. The author concludes with a summary and a discussion of future plans in section 4.

  11. Study of the Neutron Detection Efficiency for the CLAS12 Detector

    NASA Astrophysics Data System (ADS)

    Sherman, Keegan; Gilfoyle, Gerard; CLAS Collaboration

    2015-10-01

    One of the central physics goals of Jefferson Lab is to understand how quarks and gluons form nuclei. The 12 GeV upgrade is nearing completion and a new detector, CLAS12, is being built in Hall B. One of the approved experiments will measure the magnetic form factor of the neutron. To make this measurement, we will extract the ratio of electron-neutron (e-n) to electron-proton (e-p) scattering events from deuterium in quasi-elastic kinematics. A major source of systematic uncertainty is the neutron detection efficiency (NDE) of CLAS12. To better understand the NDE we used the Monte Carlo code gemc to simulate quasi-elastic e-n events like those expected in the experiment. We then analyzed the simulated e-n events by using the measured, scattered electron information to predict the neutron's path. The neutron is detected in CLAS12's electromagnetic calorimeter (EC). If the predicted neutron path intersected the fiducial volume of the EC, then we searched for a hit near that point. The NDE is the ratio of the number of neutrons found in the EC to the number of neutrons predicted to hit the EC. The analysis was done using the newly released CLAS12 reconstruction tools. We observe a rapid rise in the NDE at low neutron momentum and a plateau above 60%. Work supported by the University of Richmond and the US Department of Energy.

  12. Integrated Operation of the GАММА-400 Gamma-Ray Telescope Scintillation Detector Systems

    NASA Astrophysics Data System (ADS)

    Runtso, Mikhail

    In this paper the question of integrated operation of scintillation detector systems AC (anticoincidence system) and SDC (scintillation detector system of calorimeter) in the GАММА-400 gamma-ray telescope is discussed. The main problem is the presence of so-called «backsplash current» (BSC) of particles from massive telescope calorimeter when detecting of very high-energy gamma-rays is provided. BSC is a low energy particle flux, moving up from the calorimeter and producing triggering of the AC detector, imitating detection of a charged particle. It is offered to record all events accompanied by BSC that should not result in to overload of the gamma-ray telescope in frequency of triggering. As an indicator to the number of BSC particles in the AC detector we offer the value of energy release in the C3 scintillation detector placing between two parts of the calorimeter (KK1 and KK2). Using mathematical simulation, the threshold on energy release in the C3 detector equal to 280 GeV was determined, at which the losses of gamma-quanta number in events with BSC do not exceed 10%. When detecting protons there are also events with BSC, which will be accompanied by exceeding of the indicated threshold of energy release in the С3 detector for proton energies above 30 GeV. However, counting rate for such protons will not exceed 200 Hz, that is reasonable for the GAMMA-400 data acquisition system.

  13. Tile-in-ONE: A web platform which integrates Tile Calorimeter data quality and calibration assessment

    NASA Astrophysics Data System (ADS)

    Sivolella, A.; Ferreira, F.; Maidantchik, C.; Solans, C.; Solodkov, A.; Burghgrave, B.; Smirnov, Y.

    2015-12-01

    The ATLAS Tile Calorimeter collaboration assesses the quality of calibration data in order to ensure its proper operation. A number of tasks is then performed by executing several tools and accessing web systems, which were independently developed to meet distinct collaboration's requirements and do not necessarily are connected with each other. Thus, to attend the collaboration needs, several programs are usually implemented without a global perspective of the detector, requiring basic software features. In addition, functionalities may overlap in their objectives and frequently replicate resources retrieval mechanisms. Tile-in-ONE is a designed and implemented platform that assembles various web systems used by the calorimeter community through a single framework and a standard technology. It provides an infrastructure to support the code implementation, avoiding duplication of work while integrating with an overall view of the detector status. Database connectors smooth the process of information access since developers do not need to be aware of where records are placed and how to extract them. Within the environment, a dashboard stands f