Sample records for electromagnetic cross sections

  1. Asymptotic quantum inelastic generalized Lorenz Mie theory

    NASA Astrophysics Data System (ADS)

    Gouesbet, G.

    2007-10-01

    The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane wave illumination. In a recent paper, we consider (i) elastic cross-sections in electromagnetic generalized Lorenz-Mie theory and (ii) elastic cross-sections in an associated quantum generalized Lorenz-Mie theory. We demonstrated that the electromagnetic problem is equivalent to a superposition of two effective quantum problems. We now intend to generalize this result from elastic cross-sections to inelastic cross-sections. A prerequisite is to build an asymptotic quantum inelastic generalized Lorenz-Mie theory, which is presented in this paper.

  2. Equality between gravitational and electromagnetic absorption cross sections of extreme Reissner-Nordstroem black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Ednilton S.; Crispino, Luis C. B.; Higuchi, Atsushi

    2011-10-15

    The absorption cross section of Reissner-Nordstroem black holes for the gravitational field is computed numerically, taking into account the coupling of the electromagnetic and gravitational perturbations. Our results are in excellent agreement with low- and high-frequency approximations. We find equality between gravitational and electromagnetic absorption cross sections of extreme Reissner-Nordstroem black holes for all frequencies, which we explain analytically. This gives the first example of objects in general relativity in four dimensions that absorb the electromagnetic and gravitational waves in exactly the same way.

  3. Electromagnetic dissociation of U-238 in heavy-ion collisions at 120 MeV/A

    NASA Astrophysics Data System (ADS)

    Justice, M. L.

    1991-04-01

    This thesis describes a measurement of the heavy-ion induced electromagnetic dissociation of a 120 MeV/A U-238 beam incident on five targets: Be-9, Al-27, Cu, Ag, and U. Electromagnetic dissociation at this beam energy is essentially a two step process involving the excitation of a giant resonance followed by particle decay. At 120 MeV/A there is predicted to be a significant contribution of the giant quadrupole resonance to the EMD cross sections. The specific exit channel which was looked at was projectile fission. The two fission fragments were detected in coincidence by an array of solid-state (Delta)E-E detectors, allowing the changes of the fragments to be determined to within (+/-) .5 units. The events were sorted on the basis of the sums of the fragments' charges, acceptance corrections were applied, and total cross sections for the most peripheral events were determined. Electromagnetic fission at the beam energy of this experiment always leads to a true charge sum of 92. Due to the imperfect resolution of the detectors, charge sums of 91 and 93 were included in order to account for all of the electromagnetic fission events. The experimentally observed cross sections are due to nuclear interaction processes as well as electromagnetic processes. Under the conditions of this experiment, the cross sections for the beryllium target are almost entirely due to nuclear processes. The nuclear cross sections for the other four targets were determined by extrapolation from the beryllium data using a geometrical scaling model. After subtraction of the nuclear cross sections, the resulting electromagnetic cross sections are compared to theoretical calculations based on the equivalent photon approximation. Systematic uncertainties are discussed and suggestions for improving the experiment are given.

  4. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  5. Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Adamczyk, Anne; Dick, Frank

    2008-01-01

    Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.

  6. Electromagnetic Dissociation of Uranium in Heavy Ion Collisions at 120 Mev/a

    NASA Astrophysics Data System (ADS)

    Justice, Marvin Lealon

    The heavy-ion induced electromagnetic dissociation (EMD) of a 120 MeV/A ^{238}U beam incident on five targets (^9Be, ^{27}Al, ^ {nat}Cu, ^{nat} Ag, and ^{nat}U) has been studied experimentally. Electromagnetic dissociation at this beam energy is essentially a two step process involving the excitation of a giant resonance followed by particle decay. At 120 MeV/A there is predicted to be a significant contribution (~25%) of the giant quadrupole resonance to the EMD cross sections. The specific exit channel which was looked at was projectile fission. The two fission fragments were detected in coincidence by an array of solid-state DeltaE-E detectors, allowing the charges of the fragments to be determined to within +/- .5 units. The events were sorted on the basis of the sums of the fragments' charges, acceptance corrections were applied, and total cross sections for the most peripheral events (i.e. those leading to charge sums of approximately 92) were determined. Electromagnetic fission at the beam energy of this experiment always leads to a true charge sum of 92. Due to the imperfect resolution of the detectors, charge sums of 91 and 93 were included in order to account for all of the electromagnetic fission events. The experimentally observed cross sections are due to nuclear interaction processes as well as electromagnetic processes. Under the conditions of this experiment, the cross sections for the beryllium target are almost entirely due to nuclear processes. The nuclear cross sections for the other four targets were determined by extrapolation from the beryllium data using a geometrical scaling model. After subtraction of the nuclear cross sections, the resulting electromagnetic cross sections are compared to theoretical calculations based on the equivalent photon approximation. Systematic uncertainties associated with the normalization of the data make quantitative comparisons with theory difficult, however. The systematic uncertainties are discussed and suggestions for improving the experiment are given.

  7. Numeric Computation of the Radar Cross Section of In-flight Projectiles

    DTIC Science & Technology

    2016-11-01

    SUBJECT TERMS computational electromagnetics , radar signature, ballistic trajectory, radar cross section, RCS 16. SECURITY CLASSIFICATION OF: 17...under the generic category of rockets, artillery, and mortar (RAM). The electromagnetic (EM) modeling team at the US Army Research Laboratory (ARL) is...ARL-TR-5145. 5. Balanis C. Advanced engineering electromagnetics . New York (NY): Wiley; 1989. 6. Ruck G, Barrick DE, Stuart WD, Krichbaum CK

  8. Electromagnetic scattering laws in Weyl systems.

    PubMed

    Zhou, Ming; Ying, Lei; Lu, Ling; Shi, Lei; Zi, Jian; Yu, Zongfu

    2017-11-09

    Wavelength determines the length scale of the cross section when electromagnetic waves are scattered by an electrically small object. The cross section diverges for resonant scattering, and diminishes for non-resonant scattering, when wavelength approaches infinity. This scattering law explains the colour of the sky as well as the strength of a mobile phone signal. We show that such wavelength scaling comes from the conical dispersion of free space at zero frequency. Emerging Weyl systems, offering similar dispersion at non-zero frequencies, lead to new laws of electromagnetic scattering that allow cross sections to be decoupled from the wavelength limit. Diverging and diminishing cross sections can be realized at any target wavelength in a Weyl system, providing the ability to tailor the strength of wave-matter interactions for radiofrequency and optical applications.

  9. Computer program for parameterization of nucleus-nucleus electromagnetic dissociation cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.; Badavi, Forooz F.

    1988-01-01

    A computer subroutine parameterization of electromagnetic dissociation cross sections for nucleus-nucleus collisions is presented that is suitable for implementation in a heavy ion transport code. The only inputs required are the projectile kinetic energy and the projectile and target charge and mass numbers.

  10. Investigations of electromagnetic scattering by columnar ice crystals

    NASA Technical Reports Server (NTRS)

    Weil, H.; Senior, T. B. A.

    1976-01-01

    An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

  11. Electromagnetic dissociation effects in galactic heavy-ion fragmentation

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.

    1986-01-01

    Methods for calculating cross sections for the breakup of galactic heavy ions by the Coulomb fields of the interacting nuclei are presented. By using the Weizsacker-Williams method of virtual quanta, estimates of electromagnetic dissociation cross sections for a variety of reactions applicable to galactic cosmic ray shielding studies are presented and compared with other predictions and with available experimental data.

  12. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.

    PubMed

    Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  13. Photonuclear absorption cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.

  14. Electromagnetic Nucleus - Nucleus Cross Sections Using Energy Dependent Branching Ratios

    NASA Astrophysics Data System (ADS)

    Adamczyk, Anne; Norbury, John

    2009-11-01

    Energy dependent branching ratios, derived from Weisskopf-Ewing theory, are presented and compared to an energy independent formalism, developed by Norbury, Townsend, and Westfall. The energy dependent branching ratio formalism is more versatile since it allows for not only neutron and proton emission, but also alpha particle, deuteron, helion, and triton emission. A new theoretical method for calculating electromagnetic dissociation (EMD) nucleus - nucleus cross sections, with energy dependent branching ratios, is introduced. Comparisons of photonuclear and nucleus - nucleus cross sections, using energy dependent and independent branching ratios, to experiment are presented. Experimental efforts, by various groups, have focused on measuring cross sections for proton and neutron emission, because proton and neutron emission is generally more probable than heavier particle emission. Consequently, comparisons of energy dependent and independent branching ratios to experiment are made for photoneutron and photoproton cross sections. EMD cross sections for single neutron, proton, and alpha particle removal are calculated and compared to experimental data for a variety of projectile, target, and energy combinations. Results indicate that using energy dependent branching ratios yields better estimates.

  15. Selective wave-transmitting electromagnetic absorber through composite metasurface

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun

    2017-11-01

    Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.

  16. RF Loading Effects of Aircraft Seats in an Electromagnetic Reverberating Environment

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong

    2000-01-01

    Loading effects of aircraft seats in an electromagnetic reverberating environment are investigated. The effects are determined by comparing the reverberation chamber s insertion losses with and without the seats. The average per-seat absorption cross-sections are derived for coach and first class seats, and the results are compared for several seat configurations. An example is given for how the seat absorption cross-sections can be used to estimate the loading effects on the RF environment in an aircraft passenger cabin.

  17. RF Loading Effects of Aircraft Seats in an Electromagnetic Reverberating Environment

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2000-01-01

    Loading effects of aircraft seats in an electromagnetic reverberating environment are investigated. The effects are determined by comparing the reverberation chamber's insertion losses with and without the seats. The average per-seat absorption cross-sections are derived for coach and first class seats, and the results are compared for several seat configurations. An example is given for how the seat absorption cross-sections can be used to estimate the loading effects on the RF environment in an aircraft passenger cabin.

  18. Electromagnetic Dissociation and Spacecraft Electronics Damage

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  19. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability

    DOE PAGES

    Appelquist, T.; Berkowitz, E.; Brower, R. C.; ...

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using themore » background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m 6 B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.« less

  20. Installation restoration research program: Assessment of geophysical methods for subsurface geologic mapping, cluster 13, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.

    1996-10-01

    Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less

  1. Simultaneous production of lepton pairs in ultraperipheral relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kurban, E.; Güçlü, M. C.

    2017-10-01

    We calculate the total cross sections and probabilities of electromagnetic productions of electron, muon, and tauon pairs simultaneously. At the CERN Large Hadron Collider (LHC), the available electromagnetic energy is sufficient to produce all kinds of leptons coherently. The masses of muons and tauons are large, so their Compton wavelengths are small enough to interact with the colliding nuclei. Therefore, the realistic nuclear form factors are included in the calculations of electromagnetic pair productions. The cross section calculations show that, at LHC energies, the probabilities of simultaneous productions of all kinds of leptons are increased significantly compared to energies available at the BNL Relativistic Heavy Ion Collider (RHIC) . Experimentally, observing this simultaneous production can give us important information about strong QED.

  2. Electromagnetic absorption properties of spacecraft and space debris

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Santoni, F.; Giusti, A.; Delfini, A.; Pastore, R.; Vricella, A.; Albano, M.; Arena, L.; Piergentili, F.; Marchetti, M.

    2017-04-01

    Aim of the work is to present a method to evaluate the electromagnetic absorption properties of spacecraft and space debris. For these objects, the radar detection ability depends mainly on volume, shape, materials type and other electromagnetic reflecting behaviour of spacecraft surface components, such as antennas or thermal blankets, and of metallic components in space debris. The higher the electromagnetic reflection coefficient of such parts, the greater the radar detection possibility. In this research an electromagnetic reverberation chamber is used to measure the absorption cross section (ACS) of four objects which may represent space structure operating components as well as examples of space debris: a small satellite, a composite antenna dish, a Thermal Protection System (TPS) tile and a carbon-based composite missile shell. The ACS mainly depends on geometrical characteristics like apertures, face numbers and bulk porosity, as well as on the type of the material itself. The ACS, which is an electromagnetic measurement, is expressed in squared meters and thus can be compared with the objects geometrical cross section. A small ACS means a quite electromagnetic reflective tendency, which is beneficial for radar observations; on the contrary, high values of ACS indicate a strong absorption of the electromagnetic field, which in turn can result a critical hindering of radar tracking.

  3. Electromagnetic fission of238U at 600 and 1000 MeV per nucleon

    NASA Astrophysics Data System (ADS)

    Rubehn, Th.; Müller, W. F. J.; Bassini, R.; Begemann-Blaich, M.; Blaich, Th.; Ferrero, A.; Groß, C.; Imme, G.; Iori, I.; Kunde, G. J.; Kunze, W. D.; Lindenstruth, V.; Lynen, U.; Möhlenkamp, T.; Moretto, L. G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Reito, S.; Sann, H.; Schüttauf, A.; Seidel, W.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Wörner, A.; Zude, E.; Zwieglinski, B.

    1995-06-01

    Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsäcker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium.

  4. Offshell quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin; Horwitz, Lawrence P.

    2013-04-01

    In this paper, we develop the quantum field theory of off-shell electromagnetism, and use it to calculate the Møller scattering cross-section. This calculation leads to qualitative deviations from the usual scattering cross-sections, which are, however, small effects, but may be visible at small angles near the forward direction.

  5. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  6. Is e+e- pair emission important in the determination of the 3He+4He S factor?

    NASA Astrophysics Data System (ADS)

    Snover, K. A.; Hurd, A. E.

    2003-05-01

    We show that the cross section for direct E0 pair emission is related to the cross section for direct E2 photon emission, and is a negligible contribution to the total capture cross section for 3He+4He→7Be. E0 resonance emission, E1 pair emission, and internal conversion are also negligible. Thus there cannot be significant contributions to the 3He+4He→7Be capture cross section at low energies from electromagnetic emission processes other than single photon emission.

  7. Calculation of the Coulomb Fission Cross Sections for Pb-Pb and Bi-Pb Interactions at 158 A GeV

    NASA Technical Reports Server (NTRS)

    Poyser, William J.; Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    The Weizsacker-Williams (WW) method of virtual quanta is used to make approximate cross section calculations for peripheral relativistic heavy-ion collisions. We calculated the Coulomb fission cross sections for projectile ions of Pb-208 and Bi-209 with energies of 158 A GeV interacting with a Pb-208 target. We also calculated the electromagnetic absorption cross section for Pb-208 ion interacting as described. For comparison we use both the full WW method and a standard approximate WW method. The approximate WW method in larger cross sections compared to the more accurate full WW method.

  8. Cascades from nu_E above 1020 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Spencer R.

    2004-12-21

    At very high energies, the Landau-Pomeranchuk-Migdal effect reduces the cross sections for electron bremsstrahlung and photon e{sup +}e{sup -} pair production. The fractional electron energy loss and pair production cross sections drop as the energy increases. In contrast, the cross sections for photonuclear interactions grow with energy. In solids and liquids, at energies above 10{sup 20} eV, photonuclear reactions dominate, and showers that originate as photons or electrons quickly become hadronic showers. These electron-initiated hadronic showers are much shorter (due to the absence of the LPM effect), but wider than purely electromagnetic showers would be. This change in shape altersmore » the spectrum of the electromagnetic and acoustic radiation emitted from the shower. These alterations have important implications for existing and planned searches for radiation from u{sub e} induced showers above 10{sup 20} eV, and some existing limits should be reevaluated.« less

  9. Electromagnetic retroreflection augmented by spherical and conical metasurfaces

    NASA Astrophysics Data System (ADS)

    Shang, Yuping; Shen, Zhongxiang

    2017-11-01

    The focus of this paper is on phase gradient metasurfaces conformal to spherical and conical bodies of revolution, with an aim of engineering retroreflections and therefore augmenting backscattering cross-sections of those three-dimensional geometries under the illumination of a plane electromagnetic wave. Based on the conducting sphere and cone, the effect of the geometric revolution property on the selection of the unit inclusion of metasurfaces is considered. The procedure for using the selected unit inclusion to implement the proper reflection phase gradient onto the illuminated surfaces of those objects is formulated in detail. Retroreflections resembling conducting plates under normal incidence are observed for both the conducting sphere and cone coated with conformal metasurfaces. As a result, the redirection-induced retroreflection effectively contributes to the backscattering cross-section enhancement. A good agreement between full-wave simulations and measurements demonstrates the validity and effectiveness of backscattering cross-section enhancement using spherical and conical metasurfaces.

  10. Radiation and scattering by thin-wire structures in the complex frequency domain. [electromagnetic theory for thin-wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.

  11. Do recent observations of very large electromagnetic dissociation cross sections signify a transition towards non-perturbative QED?

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    The very large electromagnetic dissociation (EMD) cross section recently observed by Hill, Wohn, Schwellenbach, and Smith do not agree with Weizsacker-Williams (WW) theory or any simple modification thereof. Calculations are presented for the reaction probabilities for this experiment and the entire single and double nucleon removal EMD data set. It is found that for those few reactions where theory and experiment disagree, the probabilities are exceptionally large. This indicates that WW theory is not valid for these reactions and that one must consider higher order corrections and perhaps even a non-perturbative approach to quantum electrodynamics (QED).

  12. Relativistic Coulomb Fission

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  13. Fragmentation cross sections of O-16 between 0.9 and 200 GeV/nucleon

    NASA Technical Reports Server (NTRS)

    Hirzebruch, S. E.; Heinrich, W.; Tolstov, K. D.; Kovalenko, A. D.; Benton, E. V.

    1995-01-01

    Inclusive cross sections for high energy interactions at 0.9, 2.3, 3.6, and 13.5 GeV/nucleon of O-16 with C, CR-39 (C12H18O7), CH2, Al, Cu, Ag, and Pb targets were measured. The total charge-changing cross sections and partial charge-changing cross sections for the production of fragments with charge Z = 6 and Z = 7 are compared to previous experiments at 60 and 200 GeV/nucleon. The contributions of Coulomb dissociation to the total cross sections are calculated. Using factorization rules the partial electromagnetic cross sections are separated from the nuclear components. Energy dependence of both components are investigated and discussed.

  14. Electromagnetic Dissociation Cross Sections using Weisskopf-Ewing Theory

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne M.; Norbury, John W.

    2011-01-01

    It is important that accurate estimates of crew exposure to radiation are obtained for future long-term space missions. Presently, several space radiation transport codes exist to predict the radiation environment, all of which take as input particle interaction cross sections that describe the nuclear interactions between the particles and the shielding material. The space radiation transport code HZETRN uses the nuclear fragmentation model NUCFRG2 to calculate Electromagnetic Dissociation (EMD) cross sections. Currently, NUCFRG2 employs energy independent branching ratios to calculate these cross sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios, however, is more advantageous than the method currently employed in NUCFRG2. The WE theory can calculate not only neutron and proton emission, as in the energy independent branching ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha particle emission. These particles can contribute significantly to total exposure estimates. In this work, photonuclear cross sections are calculated using WE theory and the energy independent branching ratios used in NUCFRG2 and then compared to experimental data. It is found that the WE theory gives comparable, but mainly better agreement with data than the energy independent branching ratio. Furthermore, EMD cross sections for single neutron, proton, and alpha particle removal are calculated using WE theory and an energy independent branching ratio used in NUCFRG2 and compared to experimental data.

  15. Correlation singularities in partially coherent electromagnetic beams.

    PubMed

    Raghunathan, Shreyas B; Schouten, Hugo F; Visser, Taco D

    2012-10-15

    We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially coherent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to be a closed string. These coherence singularities have implications for both interference experiments and correlation of intensity fluctuation measurements performed with such beams.

  16. Spectral peculiarities of electromagnetic wave scattering by Veselago's cylinders

    NASA Astrophysics Data System (ADS)

    Sukhov, S. V.; Shevyakhov, N. S.

    2006-03-01

    The results are presented of spectral calculations of extinction cross-section for scattering of E- and H-polarized electromagnetic waves by cylinders made of Veselago material. The insolvency of previously developed models of scattering is demonstrated. It is shown that correct description of scattering requires separate consideration of both electric and magnetic subsystems.

  17. Spectral peculiarities of electromagnetic wave scattered by Veselago's cylinders

    NASA Astrophysics Data System (ADS)

    Sukhov, S. V.; Shevyakhov, N. S.

    2005-09-01

    The results are presented of spectral calculations of extinction cross-section for scattering of E- and H-polarized electromagnetic waves by cylinders made of Veselago material. The insolvency of previously developed models of scattering is demonstrated. It is shown that correct description of scattering requires separate consideration of both electric and magnetic subsystems.

  18. Comparison of Image Processing Techniques using Random Noise Radar

    DTIC Science & Technology

    2014-03-27

    detection UWB ultra-wideband EM electromagnetic CW continuous wave RCS radar cross section RFI radio frequency interference FFT fast Fourier transform...several factors including radar cross section (RCS), orientation, and material makeup. A single monostatic radar at some position collects only range and...Chapter 2 is to provide the theory behind noise radar and SAR imaging. Section 2.1 presents the basic concepts in transmitting and receiving random

  19. Dielectric waveguide with transverse index variation that support a zero group velocity mode at a non-zero longitudinal wavevector

    DOEpatents

    Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui

    2005-06-21

    Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.

  20. Relativistic effects in ab initio electron-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Rocco, Noemi; Leidemann, Winfried; Lovato, Alessandro; Orlandini, Giuseppina

    2018-05-01

    The electromagnetic responses obtained from Green's function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.

  1. Theory of scattering of electromagnetic waves of the microwave range in a turbid medium

    NASA Astrophysics Data System (ADS)

    Konstantinov, O. V.; Matveentsev, A. V.

    2013-02-01

    The coefficient of extinction of electromagnetic waves of the microwave range due to their scattering from clusters suspended in an amorphous medium and responsible for turbidity is calculated. Turbidity resembles the case when butter clusters transform water into milk. In the case under investigation, the clusters are conductors (metallic or semiconducting). The extinction coefficient is connected in a familiar way with the cross section of light scattering from an individual cluster. A new formula is derived for the light scattering cross section in the case when damping of oscillations of an electron is due only to spontaneous emission of light quanta. In this case, the resonant scattering cross section for light can be very large. It is shown that this can be observed only in a whisker nanocluster. In addition, the phonon energy on a whisker segment must be higher than the photon energy, which is close to the spacing between the electron energy levels in the cluster.

  2. Terahertz wide aperture reflection tomography.

    PubMed

    Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M; White, Jeff; Zimdars, David

    2005-07-01

    We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

  3. Asymptotic quantum elastic generalized Lorenz Mie theory

    NASA Astrophysics Data System (ADS)

    Gouesbet, G.

    2006-10-01

    The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.

  4. Almond-Shaped Test Body

    NASA Technical Reports Server (NTRS)

    Dominek, Allen; Wood, Richard; Gilreath, Mel

    1992-01-01

    Almond shaped test body developed for use in electromagnetic anechoic chamber for evaluation of range and measurement of components has low radar cross section that varies with angle over large dynamic range. Surface is composite formed by joining properly scaled ellipsoidal surfaces. Used to mount components whose radar cross sections are to be measured, and simulate backscatter characteristics of component as though it were over infinite ground plane.

  5. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  6. Differential cross sections in a thick brane world scenario

    NASA Astrophysics Data System (ADS)

    Pedraza, Omar; Arceo, R.; López, L. A.; Cerón, V. E.

    2018-04-01

    The elastic differential cross section is calculated at low energies for the elements He and Ne using an effective 4D electromagnetic potential coming from the contribution of the massive Kaluza-Klein modes of the 5D vector field in a thick brane scenario. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model.

  7. Algorithm for Surface of Translation Attached Radiators (A-STAR). Volume 1: Formulation of the analysis

    NASA Astrophysics Data System (ADS)

    Medgyesimitschang, L. N.; Putnam, J. M.

    1982-05-01

    A general analytical formulation, based on the method of moments (MM) is described for solving electromagnetic problems associated with off-surface (wire) and aperture radiators on finite-length cylinders of arbitrary cross section, denoted in this report as bodies of translation (BOT). This class of bodies can be used to model structures with noncircular cross sections such as wings, fins and aircraft fuselages.

  8. Development of a high-energy distributed energy source electromagnetic railgun with improved energy conversion efficiency

    NASA Astrophysics Data System (ADS)

    Tower, M. M.; Haight, C. H.

    1984-03-01

    The development status of a single-pulse distributed-energy-source electromagnetic railgun (ER) based on the design of Tower (1982) is reviewed. The five-stage ER is 3.65 m long, with energy inputs every 30 cm starting at the breech and a 12.7-mm-square bore cross section, and is powered by a 660-kJ 6-kV modular capacitor bank. Lexan cubes weighing 2.5 grams have been accelerated to velocities up to 8.5 km/sec at 500 kA and conversion efficiency up to 20 percent. Design goal for a 20-mm-sq-cross-section ER is acceleration of a 60-g projectile to 3-4 km/sec at 35-percent efficiency. Drawings, photographs, and graphs of performance are provided.

  9. Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan

    2018-05-01

    A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.

  10. User's manual for three dimensional FDTD version D code for scattering from frequency-dependent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code version D is a 3-D numerical electromagnetic scattering code based upon the finite difference time domain technique (FDTD). The manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction; description of the FDTD method; operation; resource requirements; version D code capabilities; a brief description of the default scattering geometry; a brief description of each subroutine; a description of the include file; a section briefly discussing Radar Cross Section computations; a section discussing some scattering results; a sample problem setup section; a new problem checklist; references and figure titles. The FDTD technique models transient electromagnetic scattering and interactions with objects of arbitrary shape and/or material composition. In the FDTD method, Maxwell's curl equations are discretized in time-space and all derivatives (temporal and spatial) are approximated by central differences.

  11. Transition operators in electromagnetic-wave diffraction theory - General theory

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1992-01-01

    A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.

  12. On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration

    NASA Astrophysics Data System (ADS)

    Barsukov, P. O.; Fainberg, E. B.

    2018-03-01

    The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.

  13. Observation of a cross-section enhancement near mass threshold in e+e-→Λ Λ ¯

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-02-01

    The process e+e-→Λ Λ ¯ is studied using data samples at √{s }=2.2324 , 2.400, 2.800 and 3.080 GeV collected with the BESIII detector operating at the BEPCII collider. The Born cross section is measured at √{s }=2.2324 GeV , which is 1.0 MeV above the Λ Λ ¯ mass threshold, to be 305 ±4 5-36+66 pb , where the first uncertainty is statistical and the second systematic. The cross section near threshold is larger than that expected from theory, which predicts the cross section to vanish at threshold. The Born cross sections at √{s }=2.400 , 2.800 and 3.080 GeV are measured and found to be consistent with previous experimental results, but with improved precision. Finally, the corresponding effective electromagnetic form factors of Λ are deduced.

  14. Scattering Cross Section of Sound Waves by the Modal Element Method

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1994-01-01

    #he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.

  15. Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Archana, E-mail: anju.archana@gmail.com; Murugesan, Dr V., E-mail: murugesh@serc.iisc.in

    The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations.

  16. Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate

    NASA Astrophysics Data System (ADS)

    Fenn, Alan J.

    1990-05-01

    The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon

    We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finitemore » value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.« less

  18. Electromagnetic analysis of the slotted-tube resonator with a circular cross section for MRI applications.

    PubMed

    Benabdallah, Nadia; Benahmed, Nasreddine; Benyoucef, Boumediene; Bouhmidi, Rachid; Khelif, M'Hamed

    2007-08-21

    In this paper we present electromagnetic (EM) analysis of the unloaded slotted-tube resonator (STR) with a circular cross section, using the finite element method (FEM) and method of moments (MoM) in two dimensions. This analysis allows the determination of the primary parameters: [L] and [C] matrices, optimization of the field homogeneity, and simulates the frequency response of S(11) at the RF port of the designed STR. The optimum configuration is presented, taking into account the effect of the thickness of the STR and the effect of the RF shield. As an application, we present the design results of a MRI probe using the STR and operating at 500 MHz (proton imaging at 11.74 T). The resonator has -69.37 dB minimum reflection and an unloaded quality factor (Q(o)) > 500 at 500 MHz.

  19. Absorptive coding metasurface for further radar cross section reduction

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Mingde; Xu, Zhuo; Qu, Shaobo

    2018-02-01

    Lossless coding metasurfaces and metamaterial absorbers have been widely used for radar cross section (RCS) reduction and stealth applications, which merely depend on redirecting electromagnetic wave energy into various oblique angles or absorbing electromagnetic energy, respectively. Here, an absorptive coding metasurface capable of both the flexible manipulation of backward scattering and further wideband bistatic RCS reduction is proposed. The original idea is carried out by utilizing absorptive elements, such as metamaterial absorbers, to establish a coding metasurface. We establish an analytical connection between an arbitrary absorptive coding metasurface arrangement of both the amplitude and phase and its far-field pattern. Then, as an example, an absorptive coding metasurface is demonstrated as a nonperiodic metamaterial absorber, which indicates an expected better performance of RCS reduction than the traditional lossless coding metasurface and periodic metamaterial-absorber. Both theoretical analysis and full-wave simulation results show good accordance with the experiment.

  20. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section

    NASA Technical Reports Server (NTRS)

    Taflove, Allen; Umashankar, Korada R.

    1989-01-01

    Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.

  1. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction

    PubMed Central

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-01

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves. PMID:28106090

  2. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.

    PubMed

    Iwaszczuk, Krzysztof; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Jepsen, Peter Uhd

    2012-01-02

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial.

  3. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction.

    PubMed

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-20

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves.

  4. The extinction properties of forest components

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Blanchard, A. J.; Nance, C. E.

    1988-01-01

    The effect of each forest component on the extinction of electromagnetic waves is investigated by modeling the branches with finite cylinders, deciduous leaves with elliptic disks, and coniferous leaves with needles. The inner field is estimated by the field inside an infinitely long cylinder of similar properties for the branches, and by the Shifrin approximation for the leaves. For each forest component analytic expressions were derived for the extinction cross section via the forward scattering theorem and for ohmic and scattered losses. For branches, the variation of the extinction cross section obtained via the forward scattering theorem is illustrated numerically as a function of the branch radius and the imaginery part of its dielectric constant. It is compared with the measurements from a single branch. For the leaves, the forward scattering theorem gives value for the extinction cross section equal to the ohmic cross section.

  5. User's manual for three dimensional FDTD version C code for scattering from frequency-independent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  6. User's manual for three dimensional FDTD version D code for scattering from frequency-dependent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version D is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version D code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMOND.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  7. User's manual for three dimensional FDTD version A code for scattering from frequency-independent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain (FDTD) Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain technique. The supplied version of the code is one version of our current three dimensional FDTD code set. The manual provides a description of the code and the corresponding results for the default scattering problem. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version A code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONA.FOR), a section briefly discussing radar cross section (RCS) computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.

  8. User's manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONB.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  9. Nuclear electromagnetic charge and current operators in Chiral EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  10. Radar cross section studies/compact range research

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.

    1989-01-01

    Achievements in advancing the state-of-the-art in the measurement, control, and analysis of electromagnetic scattering from general aerodynamic targets are summarized. The major topics associated with this study include: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of standard targets; and (7) antenna studies. Progress in each of these areas is reported and related publications are listed.

  11. Electromagnetic fields and Green's functions in elliptical vacuum chambers

    NASA Astrophysics Data System (ADS)

    Persichelli, S.; Biancacci, N.; Migliorati, M.; Palumbo, L.; Vaccaro, V. G.

    2017-10-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.

  12. Electromagnetic fields and Green’s functions in elliptical vacuum chambers

    DOE PAGES

    Persichelli, S.; Biancacci, N.; Migliorati, M.; ...

    2017-10-23

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less

  13. Electromagnetic fields and Green’s functions in elliptical vacuum chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persichelli, S.; Biancacci, N.; Migliorati, M.

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less

  14. Comparison of Theoretically Predicted Electromagnetic Heavy Ion Cross Sections with CERN SPS and RHIC Data

    NASA Astrophysics Data System (ADS)

    Baltz, Anthony J.

    2002-10-01

    Theoretical predictions for a number of electromagnetically induced reactions have been compared with available ultrarelativistic heavy ion data. Calculations for three atomic process have been confronted with CERN SPS data. Theoretically predicted rates are in good agreement with data[1] for bound-electron positron pairs and ionization of single electron heavy ions. Furthermore, the exact solution of the semi-classical Dirac equation in the ultrarelativistic limit reproduces the perturbative scaling result seen in data[2] for continuum pairs (i.e. cross sections go as Z_1^2 Z_2^2). In the area of electromagnetically induced nuclear and hadronic physics, mutual Coulomb dissociation predictions are in good agreement with RHIC Zero Degree Calorimeter measurements[3], and calculations of coherent vector meson production accompanied by mutual Coulomb dissociation[4] are in good agreement with RHIC STAR data[5]. [1] H. F. Krause et al., Phys. Rev. Lett., 80, 1190 (1998). [2] C. R. Vane et al., Phys. Rev. A 56, 3682 (1997). [3] Mickey Chiu et al., Phys. Rev. Lett. 89, 012302 (2002). [4] Anthony J. Baltz, Spencer R. Klein, and Joakim Nystrand, Phys. Rev. Lett. 89, 012301 (2002). [5] C. Adler et al., STAR Collaboration, arXiv:nucl-ex/206004.

  15. Observation of a cross-section enhancement near mass threshold in e + e - → Λ Λ ¯

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.

    Tmore » he process e + e - → Λ Λ ¯ is studied using data samples at √s = 2.2324, 2.400, 2.800 and 3.080 GeV collected with the BESIII detector operating at the BEPCII collider. he Born cross section is measured at √s=2.2324 GeV, which is 1.0 MeV above the Λ Λ ¯ mass threshold, to be 305±$$45_{-36}^{+66}$$ pb, where the first uncertainty is statistical and the second systematic. he substantial cross section near threshold is significantly larger than that expected from theory, which predicts the cross section to vanish at threshold. he Born cross sections at √s=2.400, 2.800 and 3.080 GeV are measured and found to be consistent with previous experimental results, but with improved precision. Finally, the corresponding effective electromagnetic form factors of Λ are deduced.« less

  16. Observation of a cross-section enhancement near mass threshold in e + e - → Λ Λ ¯

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...

    2018-02-28

    Tmore » he process e + e - → Λ Λ ¯ is studied using data samples at √s = 2.2324, 2.400, 2.800 and 3.080 GeV collected with the BESIII detector operating at the BEPCII collider. he Born cross section is measured at √s=2.2324 GeV, which is 1.0 MeV above the Λ Λ ¯ mass threshold, to be 305±$$45_{-36}^{+66}$$ pb, where the first uncertainty is statistical and the second systematic. he substantial cross section near threshold is significantly larger than that expected from theory, which predicts the cross section to vanish at threshold. he Born cross sections at √s=2.400, 2.800 and 3.080 GeV are measured and found to be consistent with previous experimental results, but with improved precision. Finally, the corresponding effective electromagnetic form factors of Λ are deduced.« less

  17. International Conference on Mathematical Methods in Electromagnetic Theory (MMET 2000), Volume 1 Held in Kharkov, Ukraine on September 12-15, 2000

    DTIC Science & Technology

    2000-09-01

    Minsk, 1987 ). [13] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New...arbitrary cross-section", IEE Proceedings, vol. 133, Pt. H, pp. 115-121, Apr. 1986. [5] S. Eisler and Y. Leviatan, "Analysis of electromagnetic scattering...the open two-mirror resonator," Dokl. Akad. nauk URSR, Ser. A, n. 8, pp. 51-54, 1987 . Kharkov, Ukraine, VIII-th International Conference on

  18. User's manual for three dimensional FDTD version A code for scattering from frequency-independent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Finite Difference Time Domain Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). This manual provides a description of the code and corresponding results for the default scattering problem. In addition to the description, the operation, resource requirements, version A code capabilities, a description of each subroutine, a brief discussion of the radar cross section computations, and a discussion of the scattering results.

  19. Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas

    2013-08-01

    Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.

  20. Advanced Antennas Enabled by Electromagnetic Metamaterials

    DTIC Science & Technology

    2014-12-01

    radiation patterns of a conical horn antenna and three soft horns with various homogeneous metasurface liners. The maximum cross-polarization level was...inhomogencous metasurface liners covering both the flared horn section and the straight waveguide section. The mctahorn is fed by a circular waveguide...with a diameter of 20 mm. (b) The sizes of the metallic patches at each row of the metasurface in the flared horn section. Both the length and width

  1. User's manual for three dimensional FDTD version C code for scattering from frequency-independent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three-dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain (FDTD) technique. The supplied version of the code is one version of our current three-dimensional FDTD code set. The manual given here provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing radar cross section computations, a section discussing some scattering results, a new problem checklist, references, and figure titles.

  2. Challenges of Particle Flow reconstruction in the CMS High-Granularity Calorimeter at the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Chlebana, Frank; CMS Collaboration

    2017-11-01

    The challenges of the High-Luminosity LHC (HL-LHC) are driven by the large number of overlapping proton-proton collisions (pileup) in each bunch-crossing and the extreme radiation dose to detectors at high pseudorapidity. To overcome this challenge CMS is developing an endcap electromagnetic+hadronic sampling calorimeter employing silicon sensors in the electromagnetic and front hadronic sections, comprising over 6 million channels, and highly-segmented plastic scintillators in the rear part of the hadronic section. This High- Granularity Calorimeter (HGCAL) will be the first of its kind used in a colliding beam experiment. Clustering deposits of energy over many cells and layers is a complex and challenging computational task, particularly in the high-pileup environment of HL-LHC. Baseline detector performance results are presented for electromagnetic and hadronic objects, and studies demonstrating the advantages of fine longitudinal and transverse segmentation are explored.

  3. Geoelectrical investigation of oil contaminated soils in former underground fuel base: Borne Sulinowo, NW Poland

    NASA Astrophysics Data System (ADS)

    Zogala, B.; Dubiel, R.; Zuberek, W. M.; Rusin-Zogala, M.; Steininger, M.

    2009-07-01

    The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10-12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A-A' profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.

  4. User's manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file, a discussion of radar cross section computations, a discussion of some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  5. 49 CFR 234.205 - Operating characteristics of warning system apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... apparatus. 234.205 Section 234.205 Transportation Other Regulations Relating to Transportation (Continued... characteristics of warning system apparatus. Operating characteristics of electromagnetic, electronic, or electrical apparatus of each highway-rail crossing warning system shall be maintained in accordance with the...

  6. 49 CFR 234.205 - Operating characteristics of warning system apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... apparatus. 234.205 Section 234.205 Transportation Other Regulations Relating to Transportation (Continued... characteristics of warning system apparatus. Operating characteristics of electromagnetic, electronic, or electrical apparatus of each highway-rail crossing warning system shall be maintained in accordance with the...

  7. On the determination of the electromagnetic field upon scattering by a small inhomogeneous spherical object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalashov, A. G., E-mail: ags@appl.sci-nnov.ru; Gospodchikov, E. D.

    An efficient and fairly simple method of solving the problem of the incidence of a plane electromagnetic wave on an inhomogeneous object with specified spherically symmetric distributions of its electric permittivity and magnetic permeability is presented. The fields inside the object and the integrated scattering and absorption cross sections are found by assuming the object to be small compared to the vacuum wavelength. Since no constraints are imposed on the scales of the fields inside the object, the method is suitable for investigating complex cases, including those associated with the local amplification and absorption of the electromagnetic field in inhomogeneousmore » resonant media.« less

  8. Occupational Electromagnetic Field Exposures Associated with Sleep Quality: A Cross-Sectional Study

    PubMed Central

    Liu, Hui; Chen, Guangdi; Pan, Yifeng; Chen, Zexin; Jin, Wen; Sun, Chuan; Chen, Chunjing; Dong, Xuanjun; Chen, Kun; Xu, Zhengping; Zhang, Shanchun; Yu, Yunxian

    2014-01-01

    Background Exposure to electromagnetic field (EMF) emitted by mobile phone and other machineries concerns half the world’s population and raises the problem of their impact on human health. The present study aims to explore the effects of electromagnetic field exposures on sleep quality and sleep duration among workers from electric power plant. Methods A cross-sectional study was conducted in an electric power plant of Zhejiang Province, China. A total of 854 participants were included in the final analysis. The detailed information of participants was obtained by trained investigators using a structured questionnaire, which including socio-demographic characteristics, lifestyle variables, sleep variables and electromagnetic exposures. Physical examination and venous blood collection were also carried out for every study subject. Results After grouping daily occupational electromagnetic exposure into three categories, subjects with long daily exposure time had a significantly higher risk of poor sleep quality in comparison to those with short daily exposure time. The adjusted odds ratios were 1.68 (95%CI: 1.18, 2.39) and 1.57 (95%CI: 1.10, 2.24) across tertiles. Additionally, among the subjects with long-term occupational exposure, the longer daily occupational exposure time apparently increased the risk of poor sleep quality (OR (95%CI): 2.12 (1.23∼3.66) in the second tertile; 1.83 (1.07∼3.15) in the third tertile). There was no significant association of long-term occupational exposure duration, monthly electric fee or years of mobile-phone use with sleep quality or sleep duration. Conclusions The findings showed that daily occupational EMF exposure was positively associated with poor sleep quality. It implies EMF exposure may damage human sleep quality rather than sleep duration. PMID:25340654

  9. Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band

    NASA Astrophysics Data System (ADS)

    Jang, Hong-Kyu; Lee, Won-Jun; Kim, Chun-Gon

    2011-01-01

    In this study, the authors developed a radar absorbing method to reduce the antenna radar cross section (RCS) without any loss of antenna performance. The new method was based upon an electromagnetic bandgap (EBG) absorber using conducting polymer (CP). First, a microstrip patch antenna was made by using a copper film and glass/epoxy composite materials, which are typically used for load-bearing structures, such as aircraft and other vehicles. Then, CP EBG patterns were also designed that had a 90% electromagnetic (EM) wave absorbing performance within the X-band (8.2-12.4 GHz). Finally, the CP EBG patterns were printed on the top surface of the microstrip patch antenna. The measured radar absorbing performance of the fabricated patch antenna showed that the frontal RCS of the antenna declined by nearly 95% at 10 GHz frequency while the CP EBG patterns had almost no effect on the antenna's performance.

  10. Measurement of the Total Cross Section of Uranium-Uranium Collisions at √{sNN} = 192 . 8 GeV

    NASA Astrophysics Data System (ADS)

    Baltz, A. J.; Fischer, W.; Blaskiewicz, M.; Gassner, D.; Drees, K. A.; Luo, Y.; Minty, M.; Thieberger, P.; Wilinski, M.; Pshenichnov, I. A.

    2014-03-01

    The total cross section of Uranium-Uranium at √{sNN} = 192 . 8 GeV has been measured to be 515 +/-13stat +/-22sys barn, which agrees with the calculated theoretical value of 487.3 barn within experimental error. That this total cross section is more than an order of magnitude larger than the geometric ion-ion cross section is primarily due to Bound-Free Pair Production (BFPP) and Electro-Magnetic Dissociation (EMD). Nearly all beam losses were due to geometric, BFPP and EMD collisions. This allowed the determination of the total cross section from the measured beam loss rates and luminosity. The beam loss rate is calculated from a time-dependent measurement of the total beam intensity. The luminosity is measured via the detection of neutron pairs in time-coincidence in the Zero Degree Calorimeters. Apart from a general interest in verifying the calculations experimentally, an accurate prediction of the losses created in the heavy ion collisions is of practical interest for the LHC, where collision products have the potential to quench cryogenically cooled magnets.

  11. Effects on RCS of a perfect electromagnetic conductor sphere in the presence of anisotropic plasma layer

    NASA Astrophysics Data System (ADS)

    Ghaffar, A.; Hussan, M. M.; Illahi, A.; Alkanhal, Majeed A. S.; Ur Rehman, Sajjad; Naz, M. Y.

    2018-01-01

    Effects on RCS of perfect electromagnetic conductor (PEMC) sphere by coating with anisotropic plasma layer are studied in this paper. The incident, scattered and transmitted electromagnetic fields are expanded in term of spherical vector wave functions using extended classical theory of scattering. Co and cross-polarized scattered field coefficients are obtained at the interface of free space-anisotropic plasma and at anisotropic plasma-PEMC sphere core by scattering matrices method. The presented analytical expressions are general for any perfect conducting sphere (PMC, PEC, or PEMC) with general anisotropic/isotropic material coatings that include plasma and metamaterials. The behavior of the forward and backscattered radar cross section of PEMC sphere with the variation of the magnetic field strength, incident frequency, plasma density, and effective collision frequency for the co-polarized and the cross polarized fields are investigated. It is also observed from the obtained results that anisotropic layer on PEMC sphere shows reciprocal behavior as compared to isotopic plasma layer on PEMC sphere. The comparisons of the numerical results of the presented analytical expressions with available results of some special cases show the correctness of the analysis.

  12. Relativistic corrections to electromagnetic heavy quarkonium production

    NASA Astrophysics Data System (ADS)

    Shtabovenko, Vladyslav

    2017-03-01

    We report on the calculation [1] of the relativistic O(αs0 ν2) corrections to the quarkonium production process e+e- → χcJ + γ in non-relativistic QCD (NRQCD). In our work we incorporate effects from operators that contribute through the sub-leading Fock state |QQ¯g>, that were not taken into account by previous studies. We determine the corresponding matching coeffcients that should be included into theoretical predictions for the electromagnetic production cross-section of χcJ. This process could be, in principle, measured by the Belle II experiment.

  13. On the radar cross section (RCS) prediction of vehicles moving on the ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  14. Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    NASA Astrophysics Data System (ADS)

    Budd, H.; Bodek, A.; Arrington, J.

    2005-02-01

    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of F(q). We show the that F(q) has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check F(q) extracted from neutrino scattering. (Presented by Howard Budd at NuInt04, Mar. 2004, Laboratori Nazionali del Gran Sasso - INFN - Assergi, Italy [ http://nuint04.lngs.infn.it/])

  15. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  16. A user's manual for the Electromagnetic Surface Patch code: ESP version 3

    NASA Technical Reports Server (NTRS)

    Newman, E. H.; Dilsavor, R. L.

    1987-01-01

    This report serves as a user's manual for Version III of the Electromagnetic Surface Patch Code or ESP code. ESP is user-oriented, based on the method of moments (MM) for treating geometries consisting of an interconnection of thin wires and perfectly conducting polygonal plates. Wire/plate junctions must be about 0.1 lambda or more from any plate edge. Several plates may intersect along a common edge. Excitation may be by either a delta-gap voltage generator or by a plane wave. The thin wires may have finite conductivity and also may contain lumped loads. The code computes most of the usual quantities of interest such as current distribution, input impedance, radiation efficiency, mutual coupling, far zone gain patterns (both polarizations) and radar-cross-section (both/cross polarizations).

  17. Experiment E89-044 of quasi-elastic diffusion 3He(e,e'p) at Jefferson Laboratory: Analyze cross sections of the two body breakup in parallel kinematics; Experience E89-044 de diffusion quasi-elastique 3he(e,e'p) au Jefferson Laboratory : analyse des sections efficaces de desintegration a deux corps en cinematique parallele (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penel-Nottaris, Emilie

    2004-07-01

    The Jefferson Lab Hall A experiment has measured the 3He(e,e'p) reaction cross sections. The separation of the longitudinal and transverse response functions for the two-body breakup reaction in parallel kinematics allows to study the bound proton electromagnetic properties in the 3He nucleus and the involved nuclear mechanisms beyond impulse approximation. Preliminary cross sections show some disagreement with theoretical predictions for the forward angles kinematics around 0 MeV/c missing momenta, and sensitivity to final state interactions and 3He wave functions for missing momenta of 300 MeV/c.

  18. Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface

    NASA Astrophysics Data System (ADS)

    Xie, Tao; He, Chao; William, Perrie; Kuang, Hai-Lan; Zou, Guang-Hui; Chen, Wei

    2010-02-01

    In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.

  19. Depolarization and Scattering of Electromagnetic Waves. Appendices.

    DTIC Science & Technology

    1986-06-30

    for both specular point scattering and Bragg scattering in a self-consistent manner is used to express the total cross section of the flake as a...by Arbitrarily Oriented Composite Rough Surfaces. In this work the full wave approach is used to determine the modu- lations of the like and cross...analyze multiple scattering using the equation of radiative transfer with the general Stokes’ parameters. Our ultimate goal is to develop codes which will

  20. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.; Buesch, David C.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  1. Lorentz violation, gravitoelectromagnetism and Bhabha scattering at finite temperature

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2018-04-01

    Gravitoelectromagnetism (GEM) is an approach for the gravitation field that is described using the formulation and terminology similar to that of electromagnetism. The Lorentz violation is considered in the formulation of GEM that is covariant in its form. In practice, such a small violation of the Lorentz symmetry may be expected in a unified theory at very high energy. In this paper, a non-minimal coupling term, which exhibits Lorentz violation, is added as a new term in the covariant form. The differential cross-section for Bhabha scattering in the GEM framework at finite temperature is calculated that includes Lorentz violation. The Thermo Field Dynamics (TFD) formalism is used to calculate the total differential cross-section at finite temperature. The contribution due to Lorentz violation is isolated from the total cross-section. It is found to be small in magnitude.

  2. Motor stator using corner scraps for additional electrical components

    DOEpatents

    Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

    2004-03-16

    A method for making a motor and auxiliary devices with a unified stator body comprises providing a piece of material (10) having an area larger than a cross section of the stator (11), removing material from the piece of material (10) to form a pattern for a cross section of a core (11) for the stator, and removing material from the piece of material (10) outside the cross section of the core of the stator (11) to allow positioning of cores (22, 23, 24) for supporting windings (25, 26, 27) of least one additional electromagnetic device, such as a transformer (62) in a dc-to-dc converter (61, 62) that provides a low. voltage dc output. An article of manufacture made according to the invention is also disclosed and apparatus made with the method and article of manufacture are also disclosed.

  3. Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging.

    PubMed

    Giblin, Jay; Syed, Muhammad; Banning, Michael T; Kuno, Masaru; Hartland, Greg

    2010-01-26

    Absorption cross sections ((sigma)abs) of single branched CdSe nanowires (NWs) have been measured by photothermal heterodyne imaging (PHI). Specifically, PHI signals from isolated gold nanoparticles (NPs) with known cross sections were compared to those of individual CdSe NWs excited at 532 nm. This allowed us to determine average NW absorption cross sections at 532 nm of (sigma)abs = (3.17 +/- 0.44) x 10(-11) cm2/microm (standard error reported). This agrees well with a theoretical value obtained using a classical electromagnetic analysis ((sigma)abs = 5.00 x 10(-11) cm2/microm) and also with prior ensemble estimates. Furthermore, NWs exhibit significant absorption polarization sensitivities consistent with prior NW excitation polarization anisotropy measurements. This has enabled additional estimates of the absorption cross section parallel ((sigma)abs) and perpendicular ((sigma)abs(perpendicular) to the NW growth axis, as well as the corresponding NW absorption anisotropy ((rho)abs). Resulting values of (sigma)abs = (5.6 +/- 1.1) x 10(-11) cm2/microm, (sigma)abs(perpendicular) = (1.26 +/- 0.21) x 10(-11) cm2/microm, and (rho)abs = 0.63+/- 0.04 (standard errors reported) are again in good agreement with theoretical predictions. These measurements all indicate sizable NW absorption cross sections and ultimately suggest the possibility of future direct single NW absorption studies.

  4. Production cross sections for Lee-Wick massive electromagnetic bosons and for spin-zero and spin-one W bosons at high energies.

    NASA Technical Reports Server (NTRS)

    Linsker, R.

    1972-01-01

    Production cross sections for three types of hypothetical particles are calculated in the presented paper. Several (Z, Z') cases were studied corresponding to elastic scattering off protons and neutrons (either free or embedded within a Fermi sea), coherent scattering off a nucleus, and inelastic scattering off a proton (in which case Z' denotes a nucleon resonance or hadronic system in the continuum). Detailed structure-function data are used to improve the accuracy of the inelastic scattering calculation. Results of calculations are given for beam energies between 50 and 10,000 GeV, and masses between 5 and 40 GeV for the massive Lee-Wick spin-1 boson. Cross sections were computed for resonant and semiweak processes. The production cross section of spin-zero weak intermediate bosons was found to be at least one order of magnitude smaller than for spin-1 weak bosons in nearly all regions of interest. The production cross section of spin-zero weak intermediate bosons for inelastic scattering off protons compares with that for elastic scattering in the regions of interest. In the case of massive spin-1 bosons and spin-1 weak intermediates, the main contribution to total production cross section off protons is elastic.

  5. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  6. A coincidence measurement of the D(gamma, pp pi(-)) cross section in the region of the Delta resonance

    NASA Astrophysics Data System (ADS)

    Quraan, Maher A.

    Photonuclear reactions are excellent means for understanding final state interactions (FSI). The photon interacts only electromagnetically, allowing a clean separation of the strong interaction channels in the final state. The availability of high duty factor electron machines and large acceptance detectors in the past decade have allowed a further investigation of these effects covering wider regions of phase space. In this experiment, we have successfully measured the D(/gamma, pp/pi/sp-) reaction cross section at the Saskatchewan Accelerator Laboratory (SAL) utilizing the Saskatchewan- Alberta Large Acceptance Detector (SALAD). This is the first measurement of the /gamma D /to pp/pi/sp--cross section covering a wide range of phase space with an attempt to study the FSI's and the /Delta - N interaction that has successfully reproduced the normalizations. The cross section for this reaction is compared to the calculation of J. M. Laget. Laget's theory is quite successful in describing the shapes of the distributions. as well as the overall magnitude of the cross section. The different FSI's and the /Delta - N interaction have an overall effect of 10%-15% on the single differential cross section, with the calculation that includes /Delta - N interaction having the best normalization compared to the data.

  7. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  8. Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  9. Calculation of two-neutron multiplicity in photonuclear reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1989-01-01

    The most important particle emission processes for electromagnetic excitations in nucleus-nucleus collisions are the ejection of single neutrons and protons and also pairs of neutrons and protons. Methods are presented for calculating two-neutron emission cross sections in photonuclear reactions. The results are in a form suitable for application to nucleus-nucleus reactions.

  10. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  11. Electron-impact ionization and electron attachment cross sections of radicals important in transient gaseous discharges

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Srivastava, Santosh K.

    1990-01-01

    Electron-impact ionization and electron attachment cross sections of radicals and excited molecules were measured using an apparatus that consists of an electron beam, a molecular beam and a laser beam. The information obtained is needed for the pulse power applications in the areas of high power gaseous discharge switches, high energy lasers, particle beam experiments, and electromagnetic pulse systems. The basic data needed for the development of optically-controlled discharge switches were also investigated. Transient current pulses induced by laser irradiation of discharge media were observed and applied for the study of electron-molecule reaction kinetics in gaseous discharges.

  12. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  13. Extension of On-Surface Radiation Condition (OSRC) theory to full-vector electromagnetic wave scattering by three-dimensional conducting, dielectric, and coated targets

    NASA Astrophysics Data System (ADS)

    Taflove, Allen; Umashankar, Korada R.

    1993-08-01

    This project introduced radiation boundary condition (RBC) and absorbing boundary condition (ABC) theory to the engineering electromagnetics community. An approximate method for obtaining the scattering of 2-D and 3-D bodies, the on-surface radiation condition (OSRC) method, was formulated and validated. RBC's and ABC's were shown to work well at points closer to scatterers than anyone had expected. Finite-difference time domain (FD-TD) methods exploiting these ABC's were pursued for applications in scattering, radiation, penetration, biomedical studies, and nonlinear optics. Multiprocessing supercomputer software was developed for FD-TD, leading to the largest scale detailed electromagnetic wave interaction models ever conducted, including entire jet fighter aircraft modeled for radar cross section (RCS) at UHF frequencies up to 500 MHz.

  14. Effect of bird maneuver on frequency-domain helicopter EM response

    USGS Publications Warehouse

    Fitterman, D.V.; Yin, C.

    2004-01-01

    Bird maneuver, the rotation of the coil-carrying instrument pod used for frequency-domain helicopter electromagnetic surveys, changes the nominal geometric relationship between the bird-coil system and the ground. These changes affect electromagnetic coupling and can introduce errors in helicopter electromagnetic, (HEM) data. We analyze these effects for a layered half-space for three coil configurations: vertical coaxial, vertical coplanar, and horizontal coplanar. Maneuver effect is shown to have two components: one that is purely geometric and another that is inductive in nature. The geometric component is significantly larger. A correction procedure is developed using an iterative approach that uses standard HEM inversion routines. The maneuver effect correction reduces inversion misfit error and produces laterally smoother cross sections than obtained from uncorrected data. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  15. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more complexity than has been suggested by previous investigations. Our procedure is largely data-driven with an adaptable degree of expert user input that provides a clear protocol for incorporating different types of geophysical data into the bedrock mapping procedure.

  16. The Crossed-Dipole Structure of Aircraft in an Electromagnetic Pulse Environment

    DTIC Science & Technology

    1974-09-01

    The crossed-dipole receiving antenna has been used as a representative model to approximate electromagnetic pulse effects on aircraft. This paper...receiving antenna is excited by a broad spectrum electromagnetic pulse , certain important electrical resonances occur: that is, at specific single...dipole are presented which give insight into methods of analyzing aircraft in an electromagnetic pulse environment.

  17. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements

    NASA Astrophysics Data System (ADS)

    Dodig, H.

    2017-11-01

    This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.

  18. Intraluminal laser atherectomy with ultrasound and electromagnetic guidance

    NASA Astrophysics Data System (ADS)

    Gregory, Kenton W.; Aretz, H. Thomas; Martinelli, Michael A.; LeDet, Earl G.; Hatch, G. F.; Gregg, Richard E.; Sedlacek, Tomas; Haase, Wayne C.

    1991-05-01

    The MagellanTM coronary laser atherectomy system is described. It uses high- resolution ultrasound imaging and electromagnetic sensing to provide real-time guidance and control of laser therapy in the coronary arteries. The system consists of a flexible catheter, an electromagnetic navigation antenna, a sensor signal processor and a computer for image processing and display. The small, flexible catheter combines an ultrasound transducer and laser delivery optics, aimed at the artery wall, and an electromagnetic receiving sensor. An extra-corporeal electromagnetic transmit antenna, in combination with catheter sensors, locates the position of the ultrasound and laser beams in the artery. Navigation and ultrasound data are processed electronically to produce real-time, transverse, and axial cross-section images of the artery wall at selected locations. By exploiting the ability of ultrasound to image beneath the surface of artery walls, it is possible to identify candidate treatment sites and perform safe radial laser debulking of atherosclerotic plaque with reduced danger of perforation. The utility of the system in plaque identification and ablation is demonstrated with imaging and experimental results.

  19. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-06-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  20. Spin-1 Particles and Perturbative QCD

    NASA Astrophysics Data System (ADS)

    de Melo, J. P. B. C.; Frederico, T.; Ji, Chueng-Ryong

    2018-07-01

    Due to the angular condition in the light-front dynamics (LFD), the extraction of the electromagnetic form factors for spin-1 particles can be uniquely determined taking into account implicitly non-valence and/or the zero-mode contributions to the matrix elements of the electromagnetic current. No matter which matrix elements of the electromagnetic current is used to extract the electromagnetic form factors, the same unique result is obtained. As physical observables, the electromagnetic form factors obtained from matrix elements of the current in LFD must be equal to those obtained in the instant form calculations. Recently, the Babar collaboration (Phys Rev D 78:071103, 2008) has analyzed the reaction e^+ + e^-→ ρ ^+ + ρ ^- at √{s}=10.58 GeV to measure the cross section as well as the ratios of the helicity amplitudes F_{λ 'λ }. We present our recent analysis of the Babar data for the rho meson considering the angular condition in LFD to put a stringent test on the onset of asymptotic perturbative QCD and predict the energy regime where the subleading contributions are still considerable.

  1. Rapid Charged Geosynchronous Debris Perturbation Modeling of Electrodynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Hughes, Joseph; Schaub, Hanspeter

    2018-04-01

    Charged space objects experience small perturbative torques and forces from their interaction with Earth's magnetic field. These small perturbations can change the orbits of lightweight, uncontrolled debris objects dramatically even over short periods. This paper investigates the effects of the isolated Lorentz force, the effects of including or neglecting this and other electromagnetic perturbations in a full propagation, and then analyzes for which objects electromagnetic effects have the most impact. It is found that electromagnetic forces have a negligible impact on their own. However, if the center of charge is not collocated with the center of mass, electromagnetic torques are produced which do impact the attitude, and thus the position by affecting the direction and magnitude of the solar radiation pressure force. The objects for which electrostatic torques have the most influence are charged above the kilovolt level, have a difference between their center of mass and center of charge, have highly attitude-dependent cross-sectional area, and are not spinning stably about an axis of maximum inertia. Fully coupled numerical simulation illustrate the impact of electromagnetic disturbances through the solar radiation pressure coupling.

  2. Feature Extraction Using Attributed Scattering Center Models for Model-Based Automatic Target Recognition (ATR)

    DTIC Science & Technology

    2005-10-01

    section of the coiled arm. Right: measured realized total gain for a square spiral in free space with inductive treatment. . . . . . . . 154 8.5 Initial...appreciable velocities can often be easily separated from clutter returns, slow moving targets of more moderate cross sections can be very difficult to detect...electromagnetic radiation and measuring the energy scattered back. The data obtained as a result of this process is a finite-extent, noisy set of

  3. Propagation Characteristics Of Weakly Guiding Optical Fibers

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    1992-01-01

    Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.

  4. Use of apparent thickness for preprocessing of low-frequency electromagnetic data in inversion-based multibarrier evaluation workflow

    NASA Astrophysics Data System (ADS)

    Omar, Saad; Omeragic, Dzevat

    2018-04-01

    The concept of apparent thicknesses is introduced for the inversion-based, multicasing evaluation interpretation workflow using multifrequency and multispacing electromagnetic measurements. A thickness value is assigned to each measurement, enabling the development of two new preprocessing algorithms to remove casing collar artifacts. First, long-spacing apparent thicknesses are used to remove, from the pipe sections, artifacts ("ghosts") caused by the transmitter crossing a casing collar or corrosion. Second, a collar identification, localization, and assignment algorithm is developed to enable robust inversion in collar sections. Last, casing eccentering can also be identified on the basis of opposite deviation of short-spacing phase and magnitude apparent thicknesses from the nominal value. The proposed workflow can handle an arbitrary number of nested casings and has been validated on synthetic and field data.

  5. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  6. Electromagnetic scattering and absorption by thin walled dielectric cylinders with application to ice crystals

    NASA Technical Reports Server (NTRS)

    Senior, T. B. A.; Weil, H.

    1977-01-01

    Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.

  7. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  8. Technical background, chapter 3, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A description is given of the physics of electromagnetic scattering from the sea and a guideline is presented to relate an observable (such as the radar cross section) to the hydrodynamics or physical properties of the sea. As specific examples of the interdisciplinary science of electromagnetics and geophysical oceanography, the physics is discussed in connection with data provided by three instruments: namely, the scatterometer, the altimeter, and the imaging radar. The data provided by each instrument are discussed in context with specular point and Bragg scattering theories. Finally, the degrading effect of extraneous sources of noise is discussed as a limiting mechanism of the accuracy of the ocean surface measurement.

  9. MicroBooNE and its Cross Section Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yun-Tse

    2017-05-22

    MicroBooNE (the Micro Booster Neutrino Experiment) is a short-baseline neutrino experiment based on the technology of a liquid-argon time-projection chamber (LArTPC), and has recently completed its first year of data-taking in the Fermilab Booster Neutrino Beam. It aims to address the anomalous excess of events with an electromagnetic final state in MiniBooNE, to measure neutrino-argon interaction cross sections, and to provide relevant R\\&D for the future LArTPC experiments, such as DUNE. In these proceedings, we present the first reconstructed energy spectrum of Michel electrons from cosmic muon decays, the first kinematic distributions of the candidate muon tracks frommore » $$\

  10. Cross section parameterizations for cosmic ray nuclei. 1: Single nucleon removal

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Parameterizations of single nucleon removal from electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the most accurate theoretical calculations available to date. They should be very suitable for use in cosmic ray propagation through interstellar space, the Earth's atmosphere, lunar samples, meteorites, spacecraft walls and lunar and martian habitats.

  11. 49 CFR 234.247 - Purpose of inspections and tests; removal from service of relay or device failing to meet test...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operations over the grade crossing resume. (c) Any electronic device, relay, or other electromagnetic device... service of relay or device failing to meet test requirements. 234.247 Section 234.247 Transportation Other... Inspections and Tests § 234.247 Purpose of inspections and tests; removal from service of relay or device...

  12. Scattering from a quantum anapole at low energies

    NASA Astrophysics Data System (ADS)

    Whitcomb, Kyle M.; Latimer, David C.

    2017-12-01

    In quantum field theory, the photon-fermion vertex can be described in terms of four form-factors that encode the static electromagnetic properties of the particle, namely, its charge, magnetic dipole moment, electric dipole moment, and anapole moment. For Majorana fermions, only the anapole moment can be nonzero, a consequence of the fact that these particles are their own antiparticles. Using the framework of quantum field theory, we perform a scattering calculation that probes the anapole moment with a spinless charged particle. In the limit of low momentum transfer, we confirm that the anapole can be classically likened to a point-like toroidal solenoid whose magnetic field is confined to the origin. Such a toroidal current distribution can be used to demonstrate the Aharonov-Bohm effect. We find that, in the non-relativistic limit, our scattering cross section agrees with a quantum mechanical computation of the cross section for a spinless current scattered by an infinitesimally thin toroidal solenoid. Our presentation is geared toward advanced undergraduate or beginning graduate students. This work serves as an introduction to the anapole moment and also provides an example of how one can develop an understanding of a particle's electromagnetic properties in quantum field theory.

  13. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geytenbeek, Ben; Rao, Soumya; White, Martin

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or anmore » anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.« less

  14. Active electromagnetic invisibility cloaking and radiation force cancellation

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-03-01

    This investigation shows that an active emitting electromagnetic (EM) Dirichlet source (i.e., with axial polarization of the electric field) in a homogeneous non-dissipative/non-absorptive medium placed near a perfectly conducting boundary can render total invisibility (i.e. zero extinction cross-section or efficiency) in addition to a radiation force cancellation on its surface. Based upon the Poynting theorem, the mathematical expression for the extinction, radiation and amplification cross-sections (or efficiencies) are derived using the partial-wave series expansion method in cylindrical coordinates. Moreover, the analysis is extended to compute the self-induced EM radiation force on the active source, resulting from the waves reflected by the boundary. The numerical results predict the generation of a zero extinction efficiency, achieving total invisibility, in addition to a radiation force cancellation which depend on the source size, the distance from the boundary and the associated EM mode order of the active source. Furthermore, an attractive EM pushing force on the active source directed toward the boundary or a repulsive pulling one pointing away from it can arise accordingly. The numerical predictions and computational results find potential applications in the design and development of EM cloaking devices, invisibility and stealth technologies.

  15. XPATCH: a high-frequency electromagnetic scattering prediction code using shooting and bouncing rays

    NASA Astrophysics Data System (ADS)

    Hazlett, Michael; Andersh, Dennis J.; Lee, Shung W.; Ling, Hao; Yu, C. L.

    1995-06-01

    This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time domain signatures, and synthetic aperture radar (SAR) images of realistic 3-D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, curved surfaces, or solid geometries. The computer code, XPATCH, based on the shooting and bouncing ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. XPATCH computes the first-bounce physical optics plus the physical theory of diffraction contributions and the multi-bounce ray contributions for complex vehicles with materials. It has been found that the multi-bounce contributions are crucial for many aspect angles of all classes of vehicles. Without the multi-bounce calculations, the radar return is typically 10 to 15 dB too low. Examples of predicted range profiles, SAR imagery, and radar cross sections (RCS) for several different geometries are compared with measured data to demonstrate the quality of the predictions. The comparisons are from the UHF through the Ka frequency ranges. Recent enhancements to XPATCH for MMW applications and target Doppler predictions are also presented.

  16. Mathematical Model of Solidification During Electroslag Casting of Pilger Roll

    NASA Astrophysics Data System (ADS)

    Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin

    A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.

  17. A 100,000 Scale Factor Radar Range.

    PubMed

    Blanche, Pierre-Alexandre; Neifeld, Mark; Peyghambarian, Nasser

    2017-12-19

    The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects. We have now devised a new scaling technique to overcome these difficulties, and make accurate measurements of the radar cross section of large items. In this article we demonstrate that by reducing the scale of the model by a factor 100,000, and using near infrared wavelength, the radar cross section can be determined in a tabletop setup. The accuracy of the method is compared to simulations, and an example of measurement is provided on a 1 mm highly detailed model of a ship. The advantages of this scaling approach is its versatility, and the possibility to perform fast, convenient, and inexpensive measurements.

  18. Soft-photon emission effects and radiative corrections for electromagnetic processes at very high energies

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1979-01-01

    Higher-order electromagnetic processes involving particles at ultrahigh energies are discussed, with particular attention given to Compton scattering with the emission of an additional photon (double Compton scattering). Double Compton scattering may have significance in the interaction of a high-energy electron with the cosmic blackbody photon gas. At high energies the cross section for double Compton scattering is large, though this effect is largely canceled by the effects of radiative corrections to ordinary Compton scattering. A similar cancellation takes place for radiative pair production and the associated radiative corrections to the radiationless process. This cancellation is related to the well-known cancellation of the infrared divergence in electrodynamics.

  19. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    NASA Astrophysics Data System (ADS)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  20. Measurement of the Two-Photon Exchange Contribution to the Elastic e ± p Scattering Cross Sections at the VEPP-3 Storage Ring

    DOE PAGES

    Rachek, I. A.; Arrington, J.; Dmitriev, V. F.; ...

    2015-02-12

    The ratio of the elastic e +p to e –p scattering cross sections has been measured precisely, allowing the determination of the two-photon exchange contribution to these processes. This neglected contribution is believed to be the cause of the discrepancy between the Rosenbluth and polarization transfer methods of measuring the proton electromagnetic form factors. The experiment was performed at the VEPP-3 storage ring at beam energies of 1.6 and 1.0 GeV and at lepton scattering angles between 15° and 105°. The data obtained show evidence of a significant two-photon exchange effect. Furthermore, the results are compared with several theoretical predictions.

  1. Radar cross section fundamentals for the aircraft designer

    NASA Technical Reports Server (NTRS)

    Stadmore, H. A.

    1979-01-01

    Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.

  2. Determination of concrete cover thickness in a reinforced concrete pillar by observation of the scattered electromagnetic field

    NASA Astrophysics Data System (ADS)

    Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Pajewski, Lara

    2017-04-01

    The electromagnetic scattered field by a reinforced concrete structure is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The concrete pillar, used as supporting architectural element, is modelled as a parallelepiped shell made of concrete material inside which are present steel bars. In order to make the model simpler, the steel bars are supposed running parallel to the air-pillar interface. To excite the model, a linearly-polarized plane wave impinging normally with respect to the pillars surface, is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pillar cross-section, the steel bars cross-section and the concrete cover. All the three components of the scattered field are monitored along a line just above the interface air-pillar. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. The results obtained for different values of the concrete cover are compared, with the goal of determining the scattered field dependence on the concrete cover thickness. Considering different concrete cover thicknesses, we want to provide an electromagnetic method to obtain this useful parameter by observation of the scattered electromagnetic field. One of the practical applications of this study in the field of Civil Engineering may be the use of ground penetrating radar (GPR) techniques to monitor the thickness of the concrete that separates the metal bars embedded in the pillar from the outer surface. A correct distance is useful because the concrete cover serves as a protection against external agents avoiding corrosion of the bars that might prejudice the reinforced concrete; it ensures also an optimal transmission and distribution of the adhesion forces in the pillar. Acknowledgement This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).

  3. First measurement of the polarization observable E and helicity-dependent cross sections in single π 0 photoproduction from quasi-free nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterle, M.; Witthauer, L.; Cividini, F.

    The double-polarization observable Eand the helicity-dependent cross sections σ 1/2 and σ 3/2have been measured for the first time for single π0photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π 0N final state. A comparison to data measured with a freemore » proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI) effects. However, there is no significant effect on the asymmetry E since the σ 1/2 and σ 3/2components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons.« less

  4. First measurement of the polarization observable E and helicity-dependent cross sections in single π 0 photoproduction from quasi-free nucleons

    DOE PAGES

    Dieterle, M.; Witthauer, L.; Cividini, F.; ...

    2017-05-10

    The double-polarization observable Eand the helicity-dependent cross sections σ 1/2 and σ 3/2have been measured for the first time for single π0photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π 0N final state. A comparison to data measured with a freemore » proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI) effects. However, there is no significant effect on the asymmetry E since the σ 1/2 and σ 3/2components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons.« less

  5. Search for magnetic monopoles in lunar material.

    NASA Technical Reports Server (NTRS)

    Eberhard, P. H.; Ross, R. R.; Alvarez, L. W.; Watt, R. D.

    1971-01-01

    A search for magnetic monopoles in lunar material has been performed by the electromagnetic measurement of the magnetic charge of samples. All measurements were found consistent with zero charge for all samples and inconsistent with any other value allowed by the Dirac theory. Upper limits are determined for the monopole flux in cosmic radiation and for the pair-production cross section in proton-nucleon collisions.

  6. Covariant relativistic hydrodynamics of multispecies plasma and generalized Ohm's law

    NASA Astrophysics Data System (ADS)

    Gedalin, Michael

    1996-04-01

    Fully covariant hydrodynamical equations for a multispecies relativistic plasma in an external electromagnetic field are derived. The derived multifluid description takes into account binary Coulomb collisions, annihilation, and interaction with the photon background in terms of the invariant collision cross sections. A generalized Ohm's law is derived in a manifestly covariant form. Particular attention is devoted to the relativistic electron-positron plasma.

  7. Electromagnetic-wave propagation in unmagnetized plasmas

    NASA Astrophysics Data System (ADS)

    Gregoire, D. J.; Santoru, J.; Schumacher, R. W.

    1992-03-01

    This final report describes an investigation of electromagnetic-wave propagation in unmagnetized plasmas and its application to the reduction of the radar cross section (RCS) of a plasma-filled enclosure. We have demonstrated RCS reduction of 20 to 25 dB with a prototype system at the radar range at Hughes Aircraft's Microwave Products Division in Torrance. The prototype consists of a sealed ceramic enclosure with a microwave reflector and a plasma generator inside it. When the plasma is present, the RCS is significantly reduced over a frequency range of 4 to 14 GHz. As part of the program, we also investigated the basic-plasma-physics issues relating to the absorption and refraction of electromagnetic (EM) waves in collisional plasmas. We demonstrated absorption as high as 63 dB in a section of plasma-loaded C-band rectangular waveguide. We also developed a theoretical model for the plasma cloaking process that includes scattering contributions from the plasma-vacuum interface, partial reflections from the plasma, and collisional absorption in the plasma. The theoretical model is found to be in reasonable agreement with the experimental results and can be used to confidently design future plasma cloaking systems.

  8. On electromagnetic and quantum invisibility

    NASA Astrophysics Data System (ADS)

    Mundru, Pattabhiraju Chowdary

    The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible. In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit, our theory is consistent with Maxwell-Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. This dissertation proposes a multi-shell generic cloaking system. A transparency condition independent of the object's optical and geometrical properties is proposed in the quasi-static regime of operation. The suppression of dipolar scattering is demonstrated in both cylindrically and spherically symmetric systems. A realistic tunable low-loss shell design is proposed based on the composite metal-dielectric shell. The effects due to dissipation and dispersion on the overall scattering cross-section are thoroughly evaluated. It is shown that a strong reduction of scattering by a factor of up to 103 can be achieved across the entire optical spectrum. Full wave numerical simulations for complex shaped particle are performed to validate the analytical theory. The proposed design does not require optical magnetism and is generic in the sense that it is independent of the object's material and geometrical properties. A generic quantum cloak analogous to the optical cloak is also proposed. The transparency conditions required for the shells to cloak an object impinged by a low energy beam of particles are derived. A realistic cloaking system with semiconductor material shells is studied.

  9. Structures of Mid-Polish Trough in the light of regional magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    Stefaniuk, M.; Pokorski, J.; Wojdyla, M.; Klitynski, W.

    2009-04-01

    Introduction The magnetotelluric survey at three long regional profiles crossing the Mid-Polish Trough in north-western part of Poland was made during 2005-2008 period. Two of the profiles pass across the Pomeranian section of the Trough and the third one cuts its Kujawy section. The task of the survey was to recognize the geological structure of the contact zone of Precambrian East European Craton and Paleozoic Platform of Western Europe. The profiles crossed major geological structures of central and north-western Poland, including the Variscan Externides and Varscian Foredeep, the Transeuropean Suture Zone and the marginal zone of the East European Craton. The main objectives of the project included evaluation of resistivity distribution and identification of structures of sub-Zechstein sedimentary and metamorphic complexes.The screening of seismic energy by high reflective Zechstein evaporates is the main problem in identifying the sub-Zechstein complexes in the Polish Lowlands area. Since evaporates do not screen the electromagnetic waves, the magnetotelluric method can be advantageously applied. The sub-Zechstein complexes and structures are commonly considered as hydrocarbon prospective. A lot of gas deposits have been discovered in Rotliegend sediments in central and Western Europe. A number offshore and onshore oil fields were found in Cambrian sandstones in the Baltic Sea area. Techniques and methodology of surveys Magnetotelluric measurements were taken with the use of MT-1 system of Electromagnetic Instruments Incorporation (EMI), Richmond, California, USA and System 2000.net based on V8 receiver of Phoenix Geophysics Ltd., Ottawa, Canada. An average spacing of sounding sites was about 4 km. The components of natural electromagnetic field were recorded over a broad range of frequencies, ranging from 0.0003 Hz to 575 Hz (MT-1) and 0,0003 HZ to 10 000,0 HZ (System 2000.net). This frequency band allowed information on the geology from a depth range of a few dozen meters to approximately 100 km to be obtained. A remote reference site was located at a distance of over 100 km of the study area. Data processing and interpretation Processing of the recorded data included the estimation of the components of impedance tensor (Zxx, Zxy, Zyx and Zyy ), with the use of robust procedures. The components of the impedance tensor enabled calculation of field curves for two orientations of the measurement system and additional parameters of the medium like skew, strike, pole diagrams etc. Recording of the vertical component of electromagnetic field (Hz) enabled the tipper parameter, T, to be calculated. Geophysical interpretation of MT sounding data along profiles was based on 1D inversion and 2D inversion. The upper part of the geological section is built of relatively flat layers; hence a 1D interpretation model could be effectively applied. Starting models for 1D inversion were constructed based on results of electromagnetic well-logging data. Some well-documented seismic horizons were taken as constraints in 1D inversion. The first step in 2D MT inversion was the calculation of inverse model with stabilized parameters of the upper part of geological section over the top of Zechstein complex. The starting model was obtained with the use of available geological cross-sections interpreted based on borehole and reflection seismic data. Results of inversion for the lower part of the section with constrained its upper part made some misfits between calculated and post-processed magnetotelluric curves. The second step in geophysical interpretation was 2D inversion with no constraints, which was finished when the misfit was small. Results of the first step of 2D inversion were applied as a starting model. Depending on inversion parameters, final resistivity distribution model along profiles was obtained. Geological interpretation was made based on resistivity cross-sections and borehole and reflection seismic data. Of great interest is varied resistivity of the formation resting below the Zechstein evaporate complex. As a result of data interpretation geophysical and geological sections were constructed. Conclusions As a result of magnetotelluric data interpretation, a tectonic model along measurement profiles with fault zones was constructed and lithology differentiation of sub-Zechstein complex was determined. Deep magnetotelluric cross-sections with interpretation of sub-Zechstein structures across the Polish Lowlands help to understand geodynamic processes in the area. Acknowledgments. This paper was based on results of investigations carried out by the PBG Geophysical Exploration Company Ltd. financed by Ministry of Environment trough National Fund for Environment Protection and Water Resources. The authors used also results of statutory research of Department of General Geology, Environment Protection and Geotourism, UST AGH, financed by the Minister of Science and Higher Education (project no 11.11.140.447). Interpretation was carried out using software by EMI, and Geosystem WingLinkTM.

  10. Electromagnetic properties of baryon resonances

    NASA Astrophysics Data System (ADS)

    Tiator, Lothar

    2013-10-01

    Longitudinal and transverse transition form factors for most of the four-star nucleon resonances have been obtained from high-quality cross section data and polarization observables measured at MAMI, ELSA, BATES, GRAAL and CEBAF. As an application, we further show how the transition form factors can be used to obtain empirical transverse charge densities. Contour plots of the thus derived densities are shown and compared for the Roper and S11 nucleon resonances.

  11. Perturbative calculation of two-photon double electron ionization of helium

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2008-05-01

    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.

  12. Numerical Simulation of Ultra-Fast Pulse Propagation in Two-Photon Absorbing Medium

    DTIC Science & Technology

    2011-08-01

    physical problems including coherent- and incoherent regimes of optical power limiting, saturation, CEP effects, soliton formation etc. It can be also...coherent- and incoherent regimes of optical power limiting, saturation, CEP effects, electromagnetically induced transparency, soliton formation etc...experimental data ( dark blue); Upper panel - 1PA spectrum; Lower panel - 2PA cross section spectrum. The parameter values used are shown in Table 1. 10

  13. An Analytical Study of Wave Propagation Through Foliage

    DTIC Science & Technology

    1980-01-01

    indicate a strong need for further theoretical and field measurement work in this area in order to meet the intended goal. HARRY H. GODLEWSKI, Jr...propagation and scattering reprcsents a research area V where much work remains to be accomplished. Since electromagnetic theory is a particularly detailed...the coherent field because of their high number density and their geometric cross sectional area . The tran- sition from low frequency volume

  14. Direct electron-pair production by high energy heavy charged particles

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  15. Different roles of electron beam in two stream instability in an elliptical waveguide for generation and amplification of THz electromagnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, S.; Jazi, B., E-mail: jaziada@kashanu.ac.ir; Jahanbakht, S.

    2016-08-15

    In this work, two stream instability in a metallic waveguide with elliptical cross-section and with a hollow annular dielectric layer is studied for generation and amplification of THz electromagnetic waves. Dispersion relation of waves and their dependents to geometric dimensions and characteristics of the electron beam are analyzed. In continuation, the diagrams of growth rate for some operating frequencies are presented, so that effective factors on the growth rates, such as geometrical dimensions, dielectric constant of dielectric layer, accelerating voltage, and applied current intensity are analyzed. It is shown that while an electron beam is responsible for instability, another electronmore » beam plays a stabilizing role.« less

  16. Design of transmission-type phase holograms for a compact radar-cross-section measurement range at 650 GHz.

    PubMed

    Noponen, Eero; Tamminen, Aleksi; Vaaja, Matti

    2007-07-10

    A design formalism is presented for transmission-type phase holograms for use in a submillimeter-wave compact radar-cross-section (RCS) measurement range. The design method is based on rigorous electromagnetic grating theory combined with conventional hologram synthesis. Hologram structures consisting of a curved groove pattern on a 320 mmx280 mm Teflon plate are designed to transform an incoming spherical wave at 650 GHz into an output wave generating a 100 mm diameter planar field region (quiet zone) at a distance of 1 m. The reconstructed quiet-zone field is evaluated by a numerical simulation method. The uniformity of the quiet-zone field is further improved by reoptimizing the goal field. Measurement results are given for a test hologram fabricated on Teflon.

  17. Exclusive photoproduction of J/ψ and ψ(2S) in pp and AA collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisek, Anna; Schäfer, Wolfgang; Szczurek, Antoni

    2015-04-10

    The amplitude for γp → J/ψp(γp → ψ'p) is calculated in a pQCD k{sub ⊥}-factorization approach. The total cross section for this process is calculated for different unintegrated gluon distributions and compared with the HERA data and the data extracted recently by the LHCb collaboration. The amplitude for γp → J/ψp(γp → ψ'p) is used to predict the cross section for exclusive photoproduction of the J/ψ(ψ') meson in proton-proton and nucleus-nucleus collisions. In the pp case, compared to earlier calculations we include both Dirac and Pauli electromagnetic form factors. We also discuss the dependence of nuclear shadowing on the charmoniummore » state.« less

  18. Loosely coupled coaxial TEM applicators for deep-heating.

    PubMed

    Harrison, W H; Storm, F K

    1989-01-01

    The development of a coaxial TEM (transverse electromagnetic) deep-heating, non-contacting applicator employing two axially spaced concentric sleeves is described which has electrostatic characteristics and has been named the ESA. Thermal data obtained with the FDA/CDRH elliptic-shaped human torso phantom (with fat overlay) showed nearly uniform heating (+/- 10%) throughout the inner cross-section. Saline tank measurements on a torso cross-section confirmed similar SAR uniformity. Animal experiments with a pig, both with and without blood flow, verified deep-heating and suggested that some preferential central heating occurred. The absence of excessive surface heating indicated that the major portion of the E-field excitation is axially aligned. The non-contacting applicator does not require a water bolus, and experiments showed that moderate patient movement had minor effect on performance.

  19. Electromagnetic Scattering from Arbitrarily Shaped Aperture Backed by Rectangular Cavity Recessed in Infinite Ground Plane

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, Fred B.

    1997-01-01

    The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.

  20. Exposure to non-ionizing electromagnetic radiation from mobile telephony and the association with psychiatric symptoms.

    PubMed

    Silva, Denize Francisca da; Barros, Warley Rocha; Almeida, Maria da Conceição Chagas de; Rêgo, Marco Antônio Vasconcelos

    2015-10-01

    The aim of this study was to investigate the association between exposure to non-ionizing electromagnetic radiation from mobile phone base stations and psychiatric symptoms. In a cross-sectional study in Salvador, Bahia State, Brazil, 440 individuals were interviewed. Psychiatric complaints and diagnoses were the dependent variables and distance from the individual's residence to the base station was considered the main independent variable. Hierarchical logistic regression analysis was conducted to assess confounding. An association was observed between psychiatric symptoms and residential proximity to the base station and different forms of mobile phone use (making calls with weak signal coverage, keeping the mobile phone close to the body, having two or more chips, and never turning off the phone while sleeping), and with the use of other electronic devices. The study concluded that exposure to electromagnetic radiation from mobile phone base stations and other electronic devices was associated with psychiatric symptoms, independently of gender, schooling, and smoking status. The adoption of precautionary measures to reduce such exposure is recommended.

  1. Numerical Electromagnetics Simulations of the Leakage Through the Pump-out Holes in the DISC Electromagnetic Interference Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., Charles G.; Cooper, Amy; Moore, Alastair S.

    In order to prevent electromagnetic interference (EMI) from affecting the DISC diagnostic, an EMI shield was added. Figure 1 is a cross section from a CAD model of DISC and shows the EMI shield in situ. The shield is orange and at the top of the figure. Figure 2 is a drawing of just the EMI shield. The slit in the center of the EMI shield is covered by a metal mesh, which is not shown in this drawing. The small holes toward the base of the conical portion of the EMI shield are the pump-out holes, and the electromagneticmore » leakage through these holes is the subject of this report1. An alternate design for the EMI shield is considered in order to determine how to increase the EMI effectiveness of the pump-out holes in the shield without compromising the flow rate through the shield. Both the original and alternate designs are simulated and compared.« less

  2. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  3. SU-E-I-43: Photoelectric Cross Section Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, A; Nakagawa, K; Kotoku, J

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (boundmore » electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock potential for K-shell electrons, the difference from XCOM database was limited: 1% to 8% for low-Z elements in 10keV-1MeV energy ranges. This work was partly supported by the JSPS Core-to-Core Program (No. 23003)« less

  4. Scattering of Electromagnetic Radiation by ITO Nanoparticles with Various Doping Levels

    NASA Astrophysics Data System (ADS)

    Bugaev, A. S.; Astapenko, V. A.; Manuilovich, E. S.; Sakhno, S. V.; Khramov, E. S.; Yakovets, A. V.

    2018-02-01

    The process of scattering of radiation by indium‒tin oxide (ITO) nanoparticles is theoretically studied at various degrees of doping and for different radii of nanoparticles. Qualitative conclusions are made about the character of the dependence of the scattering cross section on the frequency with variation of the particle size and the percentage content of tin. The prospects of using ITO nanoparticles as an active substance in optical sensors are estimated.

  5. Current techniques for the real-time processing of complex radar signatures

    NASA Astrophysics Data System (ADS)

    Clay, E.

    A real-time processing technique has been developed for the microwave receiver of the Brahms radar station. The method allows such target signatures as the radar cross section (RCS) of the airframes and rotating parts, the one-dimensional tomography of aircraft, and the RCS of electromagnetic decoys to be characterized. The method allows optimization of experimental parameters including the analysis frequency band, the receiver gain, and the wavelength range of EM analysis.

  6. Cladding for transverse-pumped solid-state laser

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  7. Corrections to the Thomson cross section caused by relativistic effects and by the presence of the drift velocity of a classical charged particle in the field of a monochromatic plane wave

    NASA Astrophysics Data System (ADS)

    Perestoronin, A. V.

    2017-03-01

    An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.

  8. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    PubMed Central

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen

    2016-01-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580

  9. A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi

    For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.

  10. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons.

    PubMed

    Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon

    2016-07-01

    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  11. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  12. Microwave thawing package and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.

    2004-03-16

    A package for containing frozen liquids during an electromagnetic thawing process includes: a first section adapted for containing a frozen material and exposing the frozen material to electromagnetic energy; a second section adapted for receiving thawed liquid material and shielding the thawed liquid material from further exposure to electromagnetic energy; and a fluid communication means for allowing fluid flow between the first section and the second section.

  13. Non-latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A non-latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes a permanent magnet and an electromagnet. The respective sections are arranged in separate locations or cavities in the assembly. The switch has a "normal" position and is selectively switched by an overriding electromagnetic assembly. The switch returns to the "normal" position when the overriding electromagnetic assembly is inactive.

  14. Wave multiple scattering by a finite number of unclosed circular cylinders

    NASA Technical Reports Server (NTRS)

    Veliyev, E. I.; Veremey, V. V.

    1984-01-01

    The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.

  15. Experiment E89-044 on the Quasielastic 3He(e,e'p) Reaction at Jefferson Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penel-Nottaris, Emilie

    The Jefferson Lab Hall A E89-044 experiment has measured the 3He(e,e'p) reaction cross-sections. The extraction of the longitudinal and transverse response functions for the two-body break-up 3He(e,e'p)d reaction in parallel kinematics allows the study of the bound proton electromagnetic properties inside the 3He nucleus and the involved nuclear mechanisms beyond plane wave approximations.

  16. Measurement of elastic pp scattering at $$\\sqrt{\\hbox {s}} = \\hbox {8}$$ TeV in the Coulomb–nuclear interference region: Determination of the ρ-parameter and the total cross-section

    DOE PAGES

    Antchev, G.; Aspell, P.; Atanassov, I.; ...

    2016-11-30

    Here, the TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy s√=8TeV and four-momentum transfers squared, |t|, from 6 × 10 –4 to 0.2 GeV 2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purelymore » exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12±0.03. The results for the total hadronic cross-section are σ tot = (102.9±2.3) mb and (103.0±2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.« less

  17. The Impact of Microstructure on an Accurate Snow Scattering Parameterization at Microwave Wavelengths

    NASA Astrophysics Data System (ADS)

    Honeyager, Ryan

    High frequency microwave instruments are increasingly used to observe ice clouds and snow. These instruments are significantly more sensitive than conventional precipitation radar. This is ideal for analyzing ice-bearing clouds, for ice particles are tenuously distributed and have effective densities that are far less than liquid water. However, at shorter wavelengths, the electromagnetic response of ice particles is no longer solely dependent on particle mass. The shape of the ice particles also plays a significant role. Thus, in order to understand the observations of high frequency microwave radars and radiometers, it is essential to model the scattering properties of snowflakes correctly. Several research groups have proposed detailed models of snow aggregation. These particle models are coupled with computer codes that determine the particles' electromagnetic properties. However, there is a discrepancy between the particle model outputs and the requirements of the electromagnetic models. Snowflakes have countless variations in structure, but we also know that physically similar snowflakes scatter light in much the same manner. Structurally exact electromagnetic models, such as the discrete dipole approximation (DDA), require a high degree of structural resolution. Such methods are slow, spending considerable time processing redundant (i.e. useless) information. Conversely, when using techniques that incorporate too little structural information, the resultant radiative properties are not physically realistic. Then, we ask the question, what features are most important in determining scattering? This dissertation develops a general technique that can quickly parameterize the important structural aspects that determine the scattering of many diverse snowflake morphologies. A Voronoi bounding neighbor algorithm is first employed to decompose aggregates into well-defined interior and surface regions. The sensitivity of scattering to interior randomization is then examined. The loss of interior structure is found to have a negligible impact on scattering cross sections, and backscatter is lowered by approximately five percent. This establishes that detailed knowledge of interior structure is not necessary when modeling scattering behavior, and it also provides support for using an effective medium approximation to describe the interiors of snow aggregates. The Voronoi diagram-based technique enables the almost trivial determination of the effective density of this medium. A bounding neighbor algorithm is then used to establish a greatly improved approximation of scattering by equivalent spheroids. This algorithm is then used to posit a Voronoi diagram-based definition of effective density approach, which is used in concert with the T-matrix method to determine single-scattering cross sections. The resulting backscatters are found to reasonably match those of the DDA over frequencies from 10.65 to 183.31 GHz and particle sizes from a few hundred micrometers to nine millimeters in length. Integrated error in backscatter versus DDA is found to be within 25% at 94 GHz. Errors in scattering cross-sections and asymmetry parameters are likewise small. The observed cross-sectional errors are much smaller than the differences observed among different particle models. This represents a significant improvement over established techniques, and it demonstrates that the radiative properties of dense aggregate snowflakes may be adequately represented by equal-mass homogeneous spheroids. The present results can be used to supplement retrieval algorithms used by CloudSat, EarthCARE, Galileo, GPM and SWACR radars. The ability to predict the full range of scattering properties is potentially also useful for other particle regimes where a compact particle approximation is applicable.

  18. Lorentz violation, gravitoelectromagnetic field and Bhabha scattering

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2018-01-01

    Lorentz symmetry is a fundamental symmetry in the Standard Model (SM) and in General Relativity (GR). This symmetry holds true for all models at low energies. However, at energies near the Planck scale, it is conjectured that there may be a very small violation of Lorentz symmetry. The Standard Model Extension (SME) is a quantum field theory that includes a systematic description of Lorentz symmetry violations in all sectors of particle physics and gravity. In this paper, SME is considered to study the physical process of Bhabha Scattering in the Gravitoelectromagnetism (GEM) theory. GEM is an important formalism that is valid in a suitable approximation of general relativity. A new nonminimal coupling term that violates Lorentz symmetry is used in this paper. Differential cross-section for gravitational Bhabha scattering is calculated. The Lorentz violation contributions to this GEM scattering cross-section are small and are similar in magnitude to the case of the electromagnetic field.

  19. Part-body and multibody effects on absorption of radio-frequency electromagnetic energy by animals and by models of man

    NASA Technical Reports Server (NTRS)

    Gandhi, O. P.; Hagmann, M. J.; Dandrea, J. A.

    1979-01-01

    Fine structure in the whole-body resonant curve for radio-frequency energy deposition in man can be attributed to part-body resonances. As for head resonance, which occurs near 350 MHz in man, the absorptive cross section is nearly three times the physical cross section of the head. The arm has a prominent resonance at 150 MHz. Numerical solutions, antenna theory, and experimental results on animals have shown that whole-body energy deposition may be increased by 50 percent or more because of multiple bodies that are strategically located in the field. Empirical equations for SARs are also presented along with test data for several species of laboratory animals. Barbiturate anesthesia is sufficiently disruptive of thermoregulation that delta Ts of colonic temperature yield energy dose values in several mammals that compare quite favorably with those based on whole-body calorimetry.

  20. Electromagnetic wave extinction within a forested canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1989-01-01

    A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.

  1. Linear induction pump

    DOEpatents

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  2. Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.

    1990-01-01

    A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate thatmore » consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.« less

  3. Measurement of isolated-photon pair production in pp collisions at sqrt{s}=7TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Gonzalez, B. Alvarez; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Atkinson, M.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Mayes, J. Backus; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Balek, P.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bittner, B.; Black, C. W.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Urbán, S. Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Dressnandt, N.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guest, D.; Guicheney, C.; Guido, E.; Guindon, S.; Gul, U.; Gunther, J.; Guo, B.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Hong, T. M.; van Huysduynen, L. Hooft; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Loevschall-Jensen, A. E.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Joram, C.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Krejci, F.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, M. K.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Miotto, G. Lehmann; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, J. B.; Liu, L.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Mateos, D. Lopez; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Sterzo, F. Lo; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundberg, O.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rao, K.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Martinez, V. Sanchez; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schäfer, U.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Sykora, I.; Sykora, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Ye, J.; Ye, S.; Yen, A. L.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J.; Youssef, S.; Yu, D.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2013-01-01

    The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at sqrt{s}=7TeV . The full data set collected in 2011, corresponding to an integrated luminosity of 4 .9 fb-1, is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter (| η| < 1 .37 and 1 .52 < | η| < 2 .37) and with an angular separation Δ R > 0 .4, is 44.0_{-4.2}^{+3.2 } pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins-Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.[Figure not available: see fulltext.

  4. Scattering properties of electromagnetic waves from metal object in the lower terahertz region

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.

    2018-01-01

    An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.

  5. Electromagnetic inverse scattering

    NASA Technical Reports Server (NTRS)

    Bojarski, N. N.

    1972-01-01

    A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.

  6. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

    PubMed Central

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-01-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084

  7. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    PubMed

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  8. Shallow groundwater investigation using time-domain electromagnetic (TEM) method at Itay El-Baroud, Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Shaaban, H.; El-Qady, G.; Al-Sayed, E.; Ghazala, H.; Taha, A. I.

    2016-12-01

    The Nile Delta is one of the oldest known ancient delta, largest and most important depositional complex in the Mediterranean sedimentary basin. Furthermore, it is a unique site in Egypt that is suitable for accumulation and preservation of the Quaternary sediments. In this work we applied time-domain electromagnetic (TEM) method to investigate the Quaternary sediments sequence as well as detecting the groundwater aquifer in the area of study. A suite of 232 TEM sounding at 43 stations were carried out using a ;SIROTEM MK-3; time-domain electromagnetic system. A simple coincident loop configuration, in which the same loop transmits and receives signals, was employed with loop side length of 25 m. The 1-D modeling technique was applied to estimate the depth and the apparent resistivity of the interpreted geoelectrical data. Based on the interpretation of the acquired geophysical data, four geoelectric cross-sections were constructed. These sections show that the Upper Quaternary sequence consists of three geoelectric layers. The Holocene Nile mud is separated into two layers: the agricultural root zone (Layer 1) and thick water saturated mud (Layer 2). The Upper Pleistocene sandy aquifer (Layer 3) is very complicated non-linear boundary. This aquifer is the most important unit since it is considered as the main water bearing unit in the study area.

  9. Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam.

    PubMed

    Qu, Tan; Wu, Zhen-Sen; Shang, Qing-Chao; Li, Zheng-Jun; Bai, Lu

    2013-08-01

    Electromagnetic scattering of a zero-order Bessel beam by an anisotropic spherical particle in the off-axis configuration is investigated. Based on the spherical vector wave functions, the expansion expression of the zero-order Bessel beam is derived, and its convergence is numerically discussed in detail. Utilizing the tangential continuity of the electromagnetic fields, the expressions of scattering coefficients are given. The effects of the conical angle of the wave vector components of the zero-order Bessel beam, the ratio of the radius of the sphere to the central spot radius of the zero-order Bessel beam, the shift of the beam waist center position along both the x and y axes, the permittivity and permeability tensor elements, and the loss of the sphere on the radar cross section (RCS) are numerically analyzed. It is revealed that the maximum RCS appears in the conical direction or neighboring direction when the sphere is illuminated by a zero-order Bessel beam. Furthermore, the RCS will decrease and the symmetry is broken with the shift of the beam waist center.

  10. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    NASA Astrophysics Data System (ADS)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  11. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  12. PEPSI — a Monte Carlo generator for polarized leptoproduction

    NASA Astrophysics Data System (ADS)

    Mankiewicz, L.; Schäfer, A.; Veltri, M.

    1992-09-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.

  13. Radar Cross Section Studies/Compact Range Research

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.

    1988-01-01

    A summary is given of the achievements of NASA Grant NsG-1613 by Ohio State University from May 1, 1987 to April 30, 1988. The major topics covered are as follows: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of design studies; and (7) antenna studies. Major progress has been made in each of these areas as verified by the numerous publications produced.

  14. Laser modified processes: bremsstrahlung and inelastic photon atom scattering

    NASA Astrophysics Data System (ADS)

    Budriga, Olimpia; Dondera, Mihai; Florescu, Viorica

    2007-08-01

    We consider the influence of a low-frequency monochromatic external electromagnetic field (the laser) on two basic atomic processes: electron Coulomb bremsstrahlung and inelastic photon scattering on an electron bound in the ground state of a hydrogenic atom. We briefly describe the approximations adopted and illustrate in figures how the laser parameters modify the shape of the differential cross-sections and extend the energy domain for emitted electrons, due to simultaneous absorption or emission of a large number (hundreds) of laser photons.

  15. Electromagnetic surveys to detect clay-rich sediment in the Rio Grande inner valley, Albuquerque area, New Mexico

    USGS Publications Warehouse

    Bartolino, James R.; Sterling, Joseph M.

    2000-01-01

    Information on the presence of clay-rich layers in the inner-valley alluvium is essential for quantifying the amount of water transmitted between the Rio Grande and the Santa Fe Group aquifer system. This report describes a study that used electromagnetic surveys to provide this information. In the first phase of the study, electromagnetic soundings were made using time-domain and frequency-domain electro- magnetic methods. On the basis of these initial results, the time- domain method was judged ineffective because of cultural noise in the study area, so subsequent surveys were made using the frequency-domain method. For the second phase of the study, 31 frequency-domain electromagnetic surveys were conducted along the inner valley and parallel to the Rio Grande in the Albuquerque area in the spring and summer of 1997 to determine the presence of hydrologically significant clay-rich layers buried in the inner-valley alluvium. For this report, the 31 survey sections were combined into 10 composite sections for ease of interpretation. Terrain-conductivity data from the surveys were modeled using interpretation software to produce geoelectric cross sections along the survey lines. This modeling used lithologic logs from two wells installed near the survey lines: the Bosque South and Rio Bravo 5 wells. Because of cultural interference, location of the wells and soundings, complex stratigraphy, and difficulty interpreting lithology, such interpretation was inconclusive. Instead, a decision process based on modeling results was developed using vertical and horizontal dipole 40-meter intercoil spacing terrain-conductivity values. Values larger than or equal to 20 millisiemens per meter were interpreted to contain a hydrologically significant thickness of clay-rich sediment. Thus, clay-rich sediment was interpreted to underlie seven segments of the 10 composited survey lines, totaling at least 2,660 meters of the Rio Grande inner valley. The longest of these clay-rich segments is a 940-meter reach between Bridge and Rio Bravo Boulevards.

  16. Long regional magnetotelluric profile crossing geotectonic structures of central Poland

    NASA Astrophysics Data System (ADS)

    Stefaniuk, M.; Pokorski, J.; Wojdyla, M.

    2009-04-01

    Introduction The magnetotelluric survey was made along a regional profile, which runs across Poland from south-west to north-east during 2005-2006 years. The profile crosses major geological structures of Central Poland, including the Variscan Externides and Variscan foredeep, the Transeuropean Suture Zone and the marginal zone of East European Craton. The main objectives of the project include identification of sub-Zechstein sedimentary structures and evaluation of resistivity distribution within the deep crust, especially at the contact of East European Precambrian Craton and Central Europe Paleozoic structures. The length of the profile is about 700 km; 161 deep magnetotelluric sounding sites were made with a medium spacing of about 4 km. Data acquisition and processing The recording of the components of natural electromagnetic field was made with a broad range of frequencies, varying from 0.0003 Hz up to 575 Hz with use of MT-1 system of Electromagnetic Instruments Incorporation. This frequency band allowed obtaining the information about geology ranging from a few dozen meters to approximately 100 km, depending on the vertical distribution of the resistivity inside geological medium. To reduce the electromagnetic noise, magnetic and electric remote reference was applied. A remote reference site was located at a distance of over 100 km of field sites. Processing of the recorded data included the estimation of the components of impedance tensor (Zxx, Zxy, Zyx and Zyy ), with use of robust type procedures. The components of the impedance tensor allowed in a subsequent step for calculation of field curves for two orientations of the measurement system (XY - described further as the TM mode and YX - TE mode) and additional parameters of the medium like skew, strike, pole diagrams etc. Recording of the vertical component of electromagnetic field (Hz) allowed calculation of tipper parameter T. Magnetotelluric soundings interpretation Geophysical interpretation of MT sounding data was made based on 1D and 2D inversion. The upper part of the geological section is built of relatively flat layers, hence a 1D interpretation model could be effectively applied. Starting models for 1D inversion were constructed based on results of electromagnetic well-logging and some well-documented seismic horizons. Initial models for 2D inversion were constructed with the use of results of 1D magnetotelluric sounding inversion and structural model of the upper part of cross-section based on seismic data interpretation. 2D inversion was performed in two steps with use of NLCG and SBI algorithms. At first step of inversion high-frequency range of data was used and constraints based on borehole data was applied. Inversion in second step was made with starting model constructed based on results of first one and with stabilizing resistivity distribution in upper part of cross-section. Of great interest is varied resistivity of the formation resting between the Zechstein evaporate complex, and the crystalline basement. Interpretation of results of magnetotelluric soundings provide a lot of new information. The main tectonic boundaries were distinguished and location of sediments of different lithology reflected in resistivity differentiation was defined. Some new deep tectonic elements were recognized at the zone of Fore-Sudetic Block and Fore-Sudetic Monocline. Substantial differentiation of resistivity of crystalline massif of the East European Craton basement was discovered. Zones of low resistivity are probably connected with development of metamorphic processes or reflects location of big faults. Geological cross- section based on resistivity distribution was constructed. Deep model of regional structures based on resistivity distribution was suggested as well. Acknowledgments. This paper was based on results of investigations carried out by the PBG Geophysical Exploration Company Ltd. financed by the Minister of Environment through National Found for Environment Protection and Water Resources. The authors used also results of statutory research of Department of General Geology, Environment Protection and Geotourism, UST AGH, financed by the Minister of Science and Higher Education (project no 11.11.140.447). Geophysical interpretation was carried out using softwares by EMI, and Geosystem WingLinkTM.

  17. Integrated Advanced Microwave Sounding Unit-A (AMSU-A. Engineering Report: Electromagnetic Interface (EMI)/Electromagnetic Radiation (EMR) and Electromagnetic Compatibility (EMC), for the METSAT/METOP AMSU-A1

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    1999-01-01

    This document contains the procedure and the test results of the Advanced Microwave Sounding Unit-A (AMSU-A) Electromagnetic Interference (EMI), Electromagnetic Susceptibility, and Electromagnetic Compatibility (EMC) qualification test for the Meteorological Satellite (METSAT) and the Meteorological Operation Platform (METOP) projects. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/5D. This document describes the EMI/EMC test performed by Aerojet and it is presented in the following manner: Section-1 contains introductory material and a brief summary of the test results. Section 2 contains more detailed descriptions of the test plan, test procedure, and test results for each type of EMI/EMC test conducted. Section 3 contains supplementary information that includes test data sheets, plots, and calculations collected during the qualification testing.

  18. Detection of Two Buried Cross Pipelines by Observation of the Scattered Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Mangini, Fabio; Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Muzi, Marco; Tedeschi, Nicola

    2015-04-01

    In this work we present a numerical study on the effects that can be observed in the electromagnetic scattering of a plane wave due to the presence of two crossed pipelines buried in a half-space occupied by cement. The pipeline, supposed to be used for water conveyance, is modeled as a cylindrical shell made of metallic or poly-vinyl chloride (PVC) material. In order to make the model simpler, the pipelines are supposed running parallel to the air-cement interface on two different parallel planes; moreover, initially we suppose that the two tubes make an angle of 90 degrees. We consider a circularly-polarized plane wave impinging normally to the interface between air and the previously-mentioned medium, which excites the structure in order to determine the most useful configuration in terms of scattered-field sensitivity. To perform the study, a commercially available simulator which implements the Finite Element Method was adopted. A preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the commercial pipeline cross-section. We monitor the three components of the scattered electric field along a line just above the interface between the two media. The electromagnetic properties of the materials employed in this study are taken from the literature and, since a frequency-domain technique is adopted, no further approximation is needed. Once the ideal problem has been studied, i.e. having considered orthogonal and tangential scenario, we further complicate the model by considering different crossing angles and distances between the tubes, in two cases of PVC and metallic material. The results obtained in these cases are compared with those of the initial problem with the goal of determining the scattered field dependence on the geometrical characteristics of the cross between two pipelines. One of the practical applications in the field of Civil Engineering of this study may be the use of ground penetrating radar (GPR) techniques to monitor the fouling conditions of water pipelines without the need to intervene destructively on the structure. Acknowledgements: This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  19. Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Hsiang-Yu; Chen, Yen-Chun; Su, Po-Ching

    2011-04-15

    We report the experimental demonstration of electromagnetically-induced-transparency-based cross-phase-modulation at attojoule or, equivalently, few-hundred-photon levels. A phase shift of 0.005 rad of a probe pulse modulated by a signal pulse with an energy of {approx}100 aJ, equivalent to {approx}400 photons, was observed in a four-level system of cold {sup 87}Rb atoms.

  20. Transition form factors of the N*(1535) as a dynamically generated resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jido, D.; Doering, M.; Oset, E.

    2008-06-15

    We discuss how electromagnetic properties provide useful tests of the nature of resonances, and we study these properties for the N*(1535) that appears dynamically generated from the strong interaction of mesons and baryons. Within this coupled-channels chiral unitary approach, we evaluate the A{sub 1/2} and S{sub 1/2} helicity amplitudes as a function of Q{sup 2} for the electromagnetic N*(1535){yields}{gamma}*N transition. Within the same formalism we evaluate the cross section for the reactions {gamma}N{yields}{eta}N. We find a fair agreement for the absolute values of the transition amplitudes, as well as for the Q{sup 2} dependence of the amplitudes, within theoretical andmore » experimental uncertainties discussed in the article. The ratios obtained between the S{sub 1/2} and A{sub 1/2} for the neutron or proton states of the N*(1535) are in qualitative agreement with experiment and there is agreement on the signs. The same occurs for the ratio of cross sections for the {eta} photoproduction on neutron and proton targets in the vicinity of the N*(1535) energy. The global results support the idea of this resonance as being dynamically generated, hence, largely built up from meson baryon components. However, the details of the model indicate that an admixture with a genuine quark state is also demanded that could help obtain a better agreement with experimental data.« less

  1. Radar-cross-section reduction of wind turbines. part 1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites,more » but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.« less

  2. GRAPhEME: a setup to measure (n, xn γ) reaction cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Greg; Bacquias, A.; Capdevielle, O.

    2015-07-01

    Most of nuclear reactor developments are using evaluated data base for numerical simulations. However, the considered databases present still large uncertainties and disagreements. To improve their level of precision, new measurements are needed, in particular for (n, xn) reactions, which are of great importance as they modify the neutron spectrum, the neutron population, and produce radioactive species. The IPHC group started an experimental program to measure (n, xn gamma) reaction cross sections using prompt gamma spectroscopy and neutron energy determination by time of flight. Measurements of (n, xn gamma) cross section have been performed for {sup 235,238}U, {sup 232}Th, {supmore » nat,182,183,184,186}W, {sup nat}Zr. The experimental setup is installed at the neutron beam at GELINA (Geel, Belgium). The setup has recently been upgraded with the addition of a highly segmented 36 pixels planar HPGe detector. Significant efforts have been made to reduce radiation background and electromagnetic perturbations. The setup is equipped with a high rate digital acquisition system. The analysis of the segmented detector data requires a specific procedure to account for cross signals between pixels. An overall attention is paid to the precision of the measurement. The setup characteristic and the analysis procedure will be presented along with the acquisition and analysis challenges. Examples of results and their impact on models will be discussed. (authors)« less

  3. A Least-Squares Finite Element Method for Electromagnetic Scattering Problems

    NASA Technical Reports Server (NTRS)

    Wu, Jie; Jiang, Bo-nan

    1996-01-01

    The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.

  4. Evidence for Neutral-Current Diffractive π 0 Production from Hydrogen in Neutrino Interactions on Hydrocarbon

    DOE PAGES

    Wolcott, J.; Aliaga, L.; Altinok, O.; ...

    2016-09-01

    Here, the MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π 0 production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26more » $$\\pm$$ 0.02 (stat) $$\\pm$$ 0.08 (sys) x $$10^{-39} cm^{2}$$. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive neutral pion production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino oscillation experiments searching for $$\

  5. Analysis of electromagnetic scattering characteristics of plasma sheath surrounding a hypersonic aerocraft based on high-order auxiliary differential equation finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Sun, Hao-yu; Cui, Zhiwei; Wang, Jiajie; Han, Yiping; Sun, Peng; Shi, Xiaowei

    2018-06-01

    A numerical analysis of electromagnetic (EM) scattering characteristics of a hypersonic aerocraft enveloped by a plasma sheath is presented. The flow field parameters around a hypersonic aerocraft are derived by numerically solving the Navier-Stokes equations. Through multiphysics coupling of flow field and electromagnetic field, distributions of plasma frequency and collision frequency in plasma sheaths are obtained. A high-order auxiliary differential equation finite-difference time-domain algorithm is employed to investigate the EM wave scattering properties of the aerocraft covered by a plasma sheath. The backward radar cross sections (RCSs) of a blunt cone in the hypersonic flows at different velocities and altitudes with frequencies from 0.1 GHz to 18 GHz are studied. Numerical results show that, for the cases of altitude ranging from 50 km to 55 km and velocity ranging from 18 Ma to 20 Ma, the plasma sheath enhances the backscattering of the blunt cone when frequencies are below 1.5 GHz, and it reduces the backward RCSs of the blunt cone as frequency ranges from 1.5 GHz to 13.5 GHz. The plasma sheath has a larger attenuation effect for frequency lying in the range of 2 GHz to 6 GHz, but it has little influence on the backward electromagnetic scattering characteristics when frequencies are above 14 GHz.

  6. Measurement of electrons from semileptonic heavy-flavor hadron decays in p p collisions at s = 2.76 TeV

    DOE PAGES

    Abelev, B.; Adam, J.; Adamová, D.; ...

    2015-01-07

    We measured the p T-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons at midrapidity in proton-proton collisions and at √s=2.76 TeV in the transverse momentum range 0.5T<12 GeV/c with the ALICE detector at the LHC. Our analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties.

  7. Processes of ionization of atoms in nonstationary states by the field of an attosecond pulse

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2015-02-01

    Processes of ionization at the interaction of attosecond pulses of an electromagnetic field with atoms in nonstationary states have been considered. The probabilities and ionization cross section at the radiative relaxation of an excited state of a single-electron atom and at the Auger decay of the autoionization state of a two-electron atom have been calculated. The developed method allows the expansion to the case of more complex targets, including those in the collision state, and to various chemical reactions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blunden, P. G.; Melnitchouk, W.

    We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e + p to e - p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.

  9. Future prospects of nuclear reactions induced by gamma-ray beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Filipescu, D.; Balabanski, D. L.; Camera, F.; Gheorghe, I.; Ghita, D.; Glodariu, T.; Kaur, J.; Ur, C. A.; Utsunomiya, H.; Varlamov, V. V.

    2017-01-01

    The future prospects of photonuclear reactions studies at the new Extreme Light Infrastructure—Nuclear Physics (ELI-NP) facility are discussed in view of the pursuit of investigating the electromagnetic response of nuclei using γ-ray beams of unprecedented energy resolution and intensity characteristics. We present here the features of the γ-ray beam source, the emerging ELI-NP experimental program involving photonuclear reactions cross section measurements and spectroscopy and angular measurements of γ-rays and neutrons along with the detection arrays currently under implementation.

  10. Radar cross section studies

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.

    1987-01-01

    The ultimate goal is to generate experimental techniques and computer codes of rather general capability that would enable the aerospace industry to evaluate the scattering properties of aerodynamic shapes. Another goal involves developing an understanding of scattering mechanisms so that modification of the vehicular structure could be introduced within constraints set by aerodynamics. The development of indoor scattering measurement systems with special attention given to the compact range is another goal. There has been considerable progress in advancing state-of-the-art scattering measurements and control and analysis of the electromagnetic scattering from general targets.

  11. Production of {π ^0} and η mesons up to high transverse momentum in pp collisions at 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R. Alfaro; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Prado, C. Alves Garcia; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Awes, T.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Camejo, A. Batista; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Martinez, H. Bello; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Villar, E. Calvo; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Sanchez, C. Ceballos; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Balbastre, G. Conesa; Valle, Z. Conesa del; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Maldonado, I. Cortés; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Ducati, M. B. Gay; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Coral, D. M. Goméz; Ramirez, A. Gomez; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Corral, G. Herrera; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Fernandes, C. Lagana; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Monzón, I. León; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; Torres, E. López; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; García, G. Martínez; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Pérez, J. Mercado; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Khan, M. Mohisin; Montes, E.; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; da Luz, H. Natal; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; De Oliveira, R. A. Negrao; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Da Silva, A. C. Oliveira; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Velasquez, A. Ortiz; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Da Costa, H. Pereira; Peresunko, D.; Lezama, E. Perez; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; oskoń, M. Pł; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Cahuantzi, M. Rodríguez; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vyvre, P. Vande; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Doce, O. Vázquez; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Tello, A. Villatoro; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.

    2017-05-01

    The invariant differential cross sections for inclusive π 0 and η mesons at midrapidity were measured in pp collisions at √{s}=2.76 TeV for transverse momenta 0.4

  12. XENON100 dark matter results from a combination of 477 live days

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Duchovni, E.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Levy, C.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C. D.; Wall, R.; Wang, H.; Weber, M.; Wei, Y.; Weinheimer, C.; Wulf, J.; Zhang, Y.; Xenon Collaboration

    2016-12-01

    We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultralow electromagnetic background of the experiment, ˜5 ×10-3 events /(keVee×kg ×day ) ) before electronic recoil rejection, together with the increased exposure of 48 kg ×yr , improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3 ) keVnr sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV /c2 , with a minimum of 1.1 ×10-45 cm2 at 50 GeV /c2 and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 ×10-40 cm2 (52 ×10-40 cm2 ) at a WIMP mass of 50 GeV /c2 , at 90% confidence level.

  13. Scattering theory of stochastic electromagnetic light waves.

    PubMed

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  14. Is fertility reduced among men exposed to radiofrequency fields in the Norwegian Navy?

    PubMed

    Møllerløkken, Ole J; Moen, Bente E

    2008-07-01

    The effects of radiofrequency fields on human health are not well understood, and public concern about negative health effects has been rising. The aim of this study was to examine the relationship between workers exposed to electromagnetic fields and their reproductive health. We obtained data using a questionnaire in a cross-sectional study of naval military men, response rate 63% (n = 1487). We asked the respondents about exposure, lifestyle, reproductive health, previous diseases, work and education. An expert group categorized the work categories related to electromagnetic field exposure. We categorized the work categories "tele/communication," "electronics" and "radar/sonar" as being exposed to electromagnetic fields. Logistic regression adjusted for age, ever smoked, military education, and physical exercise at work showed increased risk of infertility among tele/communication odds ratio (OR = 1.72, 95% confidence interval 1.04-2.85), and radar/sonar odds ratio (OR = 2.28, 95% confidence interval 1.27-4.09). The electronics group had no increased risk. This study shows a possible relationship between exposure to radiofrequency fields during work with radiofrequency equipment and radar and reduced fertility. However, the results must be interpreted with caution.

  15. Comparison of electromagnetic and nuclear dissociation of 17Ne

    NASA Astrophysics Data System (ADS)

    Wamers, F.; Marganiec, J.; Aksouh, F.; Aksyutina, Yu.; Alvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffman, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lehr, C.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Riisager, K.; Rodriguez-Tajes, C.; Rossi, D.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.

    2018-03-01

    The Borromean drip-line nucleus 17Ne has been suggested to possess a two-proton halo structure in its ground state. In the astrophysical r p -process, where the two-proton capture reaction 15O(2 p ,γ )17Ne plays an important role, the calculated reaction rate differs by several orders of magnitude between different theoretical approaches. To add to the understanding of the 17Ne structure we have studied nuclear and electromagnetic dissociation. A 500 MeV/u 17Ne beam was directed toward lead, carbon, and polyethylene targets. Oxygen isotopes in the final state were measured in coincidence with one or two protons. Different reaction branches in the dissociation of 17Ne were disentangled. The relative populations of s and d states in 16F were determined for light and heavy targets. The differential cross section for electromagnetic dissociation (EMD) shows a continuous internal energy spectrum in the three-body system 15O+2 p . The 17Ne EMD data were compared to current theoretical models. None of them, however, yields satisfactory agreement with the experimental data presented here. These new data may facilitate future development of adequate models for description of the fragmentation process.

  16. Evaluation of magnetic field's uniformity inside electromagnetic coils using graphene

    NASA Astrophysics Data System (ADS)

    Amanatiadis, Stamatios A.; Kantartzis, Nikolaos V.; Ohtani, Tadao; Kanai, Yasushii

    2018-05-01

    The distribution of the magnetic field in electromagnetic coils, such as those employed in magnetic resonance imaging (MRI), is evaluated in this paper, through graphene gyrotropic properties. Initially, the rotation of an incident linearly polarized plane wave, due to an infinite graphene layer, is studied theoretically via the extraction of the perpendicular, to the polarization, electric component of the transmitted wave. Moreover, the influence of the magnetic bias field strength on this component is, also, examined, indicating the eligibility of graphene to detect magnetostatic field variations. To this aim, a specific device is proposed, consisting of a high frequency source, an electric field detector, and a finite graphene sheet that differs from the infinite one of the analytical case. To quantify the distance that the gyrotropic effects are detectable, the effective region is introduced and extracted via a properly modified finite-difference time-domain (FDTD) algorithm. The featured device is verified through a setup comprising a uniform electromagnetic coil, where the generated magnetostatic field is calculated at several cross-sections of the coil and compared to actual field values. Results indicate the accuracy and sensitivity of the designed device for the unambiguous regions.

  17. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  18. Radiofrequency electromagnetic fields; male infertility and sex ratio of offspring.

    PubMed

    Baste, Valborg; Riise, Trond; Moen, Bente E

    2008-01-01

    Concern is growing about exposure to electromagnetic fields and male reproductive health. The authors performed a cross-sectional study among military men employed in the Royal Norwegian Navy, including information about work close to equipment emitting radiofrequency electromagnetic fields, one-year infertility, children and sex of the offspring. Among 10,497 respondents, 22% had worked close to high-frequency aerials to a "high" or "very high" degree. Infertility increased significantly along with increasing self-reported exposure to radiofrequency electromagnetic fields. In a logistic regression, odds ratio (OR) for infertility among those who had worked closer than 10 m from high-frequency aerials to a "very high" degree relative to those who reported no work near high-frequency aerials was 1.86 (95% confidence interval (CI): 1.46-2.37), adjusted for age, smoking habits, alcohol consumption and exposure to organic solvents, welding and lead. Similar adjusted OR for those exposed to a "high", "some" and "low" degree were 1.93 (95% CI: 1.55-2.40), 1.52 (95% CI: 1.25-1.84), and 1.39 (95% CI: 1.15-1.68), respectively. In all age groups there were significant linear trends with higher prevalence of involuntary childlessness with higher self-reported exposure to radiofrequency fields. However, the degree of exposure to radiofrequency radiation and the number of children were not associated. For self-reported exposure both to high-frequency aerials and communication equipment there were significant linear trends with lower ratio of boys to girls at birth when the father reported a higher degree of radiofrequency electromagnetic exposure.

  19. Simulations and measurements of a radar cross section of a Boeing 747-200 in the 20-60 MHz frequency band

    NASA Astrophysics Data System (ADS)

    David, A.; Brousseau, C.; Bourdillon, A.

    2003-08-01

    HF and VHF low frequency bands provide a promising way to perform radar target recognition. At these frequencies, Radar Cross Section (RCS) behavior is not well known because the scattered field is due to a complex phenomenon where the interactions between the different parts of the structure have a significant contribution, which makes the prediction difficult. A wire model of a commercial Boeing 747-200 aircraft, developed to be used with the Numerical Electromagnetic Code (NEC), is presented. The reliability of this model has been assessed by comparing the results given by NEC with the measurements made in an anechoïc chamber with a scaled aircraft, and a relatively good agreement was observed between simulations and measurements. The RCS variations of an aircraft along different flight routes have been investigated, and it is shown that it is necessary to know the flight route of the airplane to envisage target identification in spite of the use of the low frequency band.

  20. Medical radar considerations for detecting and monitoring Crohn's disease

    NASA Astrophysics Data System (ADS)

    Smith, Sonny; Narayanan, Ram M.; Messaris, Evangelos

    2014-05-01

    Crohn's disease is a condition that causes inflammation and associated complications along any section of the digestive tract. Over the years, numerous radiological and endoscopic methods as well as the use of ultrasound have been developed to examine and diagnose inflammatory bowel disorders such as Crohn's disease. While such techniques have much merit, an alternative medical solution that is safe, non-invasive, and inexpensive is proposed in this paper. Reflections from electromagnetic signals transmitted by an ultra-wide band (UWB) radar allow for not only range (or extent) information but also spectral analysis of a given target of interest. Moreover, the radar cross-section (RCS) of an object measures how detectable the electromagnetic return energy of such an object is to the radar. In the preliminary phase of research, we investigate how disparities in the dielectric properties of diseased versus non-diseased portions of the intestines can aid in the detection of Crohn's disease. RCS analysis from finite-difference time-domain (FDTD) method simulations using a simple 3D model of the intestines are presented. The ultimate goal of our research is to design a UWB radar system using a suitable waveform to detect and monitor Crohn's disease.

  1. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    DOE PAGES

    Velizhanin, Kirill A.

    2016-05-25

    We report that unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron–photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, asmore » such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. Lastly, as an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ~2.« less

  2. A new polarimetric active radar calibrator and calibration technique

    NASA Astrophysics Data System (ADS)

    Tang, Jianguo; Xu, Xiaojian

    2015-10-01

    Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.

  3. Theoretical studies of the radar properties of the icy Galilean moons of Jupiter

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1993-01-01

    The icy Galilean satellites of Jupiter - Europa, Ganymede, and Callisto - have unusual radar scattering properties compared with those of the terrestrial planets or Earth's Moon. There are three main features of the data that distinguish these targets: (1) the radar cross-section normalized by the geometrical cross-section is an order of magnitude larger than that of any terrestrial planet; (2) the reflected power is almost evenly distributed between two orthogonal polarizations with more power being returned in the same circular polarization as was transmitted whereas virtually all of the power returned from the terrestrial planets is contained in the opposite circular polarization to the one that was transmitted; and (3) the echo power spectra have a broad shape indicating a nearly uniformly radar-bright surface in contrast to the spectra from the terrestrial planets that contain a strong quasi-specular component from the vicinity of the sub-radar point and very little reflected power from the rest of the surface. The normalized radar cross-sections decrease as the areal water ice coverage decreases from Europa to Ganymede to Callisto. Recently, radar echoes from the polar caps of Mars and Mercury, and from Saturn's satellite Titan imply similarly strong cross-sections and have classically unexpected polarization properties and it is also thought that this is due to the presence of ice on the surface. A model called the radar glory model is analyzed and it is shown that the main features of the radar echoes calculated from this model agree well with the observations from all three icy Galilean satellites. This model involves long radar paths in the ice below the surface and special structures in which the refractive index decreases abruptly at a hemispherical boundary. It is not known whether such structures exist or how they could be created, but possible scenarios can be imagined such as the formation of an impact crater followed by deposition of a frost layer followed by a resurfacing event in which a layer of solid ice is placed above the layer of frost. Regardless of the exact geophysical processes required to create such structures, the superior ability of this model to account for all of the important observations with very few adjustable parameters and with no ad hoc assumptions is a compelling argument in support of at least the electromagnetic model. The key features of the electromagnetic model are multiple subsurface scattering events, total internal reflection, and a low degree of randomness imposed on a deterministic geometry that strongly favors backscattering.

  4. Yttrium oxide based three dimensional metamaterials for visible light cloaking

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2014-04-01

    Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.

  5. Brain electromagnetic activity and lightning: potentially congruent scale-invariant quantitative properties

    PubMed Central

    Persinger, Michael A.

    2012-01-01

    The space-time characteristics of the axonal action potential are remarkably similar to the scaled equivalents of lightning. The energy and current densities from these transients within their respective volumes or cross-sectional areas are the same order of magnitude. Length–velocity ratios and temporal durations are nearly identical. There are similar chemical consequences such as the production of nitric oxide. Careful, quantitative examination of the characteristics of lightning may reveal analogous features of the action potential that could lead to a more accurate understanding of these powerful correlates of neurocognitive processes. PMID:22615688

  6. Automation of an RCS (Radar Cross Section) Measurement System and Its Application to Investigate the Electromagnetic Scattering from Scale Model Aircraft Canopies

    DTIC Science & Technology

    1989-12-01

    8217 -E ep IP 760 7v rag-2-t 7 -vet ca vo - a~ .:cz : 112 !] 10 Star-, requency i- -in.- -,,z. 200 :1h too t rouencv, i ax. 210 N T iarizat~on i2:)15. 220... 10 2-3 Pyramidal Radar Absorbing Material (RAM) ... . 11 2-4 Hardware configuration .... ............. 13 2-5 Point source model for phase variation...two plates ....... 51 4- 10 Gated RCS of 4 inch circular flat plate a) time doi. ain and b) frequency response . . . . 52 5-1 Measurement test matrix

  7. Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres.

    PubMed

    Zhang, Lin; Shi, Yan; Liang, Chang-Hong

    2016-10-03

    In this paper, full-wave electromagnetic scattering theory is employed to investigate illusion and invisibility of inhomogeneous anisotropic cylinders and spheres. With the use of a shell designed according to Mie series theory for multiple piecewise anisotropic layers, radar cross section (RCS) of the coated inhomogeneous anisotropic object can be dramatically reduced or disguised as another object in the long-wavelength limit. With the suitable adjustment of the anisotropy parameters of the shell, optimal illusion and invisibility characteristics of the coated inhomogeneous anisotropic object can be achieved. Details of theoretical analysis and numerical examples are presented to validate the proposed methodology.

  8. Measurement of electrons from heavy-flavour decays in p-Pb collisions at √(S{sub NN}) = 5.02 TeV with ALICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ALICE collaboration, Cristiane Jahnke for the

    Electrons from the decay of hadrons containing charm or beauty quarks have been measured in p-Pb collisions at √(S{sub NN}) = 5.02 TeV with ALICE. Electrons from heavy-flavour hadron decays were identified using the Time Projection Chamber and the Electromagnetic Calorimeter of ALICE. The nuclear modification factor R{sub pPb} was calculated using a pp reference obtained from a perturbative QCD-based √(s)-extrapolation of the cross section measured at 7 TeV and from a FONLL prediction.

  9. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  10. Transport methods and interactions for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Schimmerling, Walter S.; Khandelwal, Govind S.; Khan, Ferdous S.; Nealy, John E.; Cucinotta, Francis A.; Simonsen, Lisa C.; Shinn, Judy L.; Norbury, John W.

    1991-01-01

    A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed.

  11. Monte Carlo simulation of the nuclear-electromagnetic cascade development and the energy response of ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1973-01-01

    Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.

  12. Analysis of Transient Electromagnetic Scattering from Three Dimensional Cavities

    DTIC Science & Technology

    2014-01-01

    New York, 2002. [24] J. Jin and J. L. Volakis, A hybrid finite element method for scattering and radiation by micro strip patch antennas and arrays...applications such as the design of cavity-backed conformal antennas and the deliberate control in the form of enhancement or reduction of radar cross...electromagnetic scattering analysis, IEEE Trans. Antennas Propagat., 50 (2002), pp. 1192–1202. [22] J. Jin, Electromagnetic scattering from large, deep, and

  13. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less

  14. Production of [Formula: see text] and [Formula: see text] mesons up to high transverse momentum in pp collisions at 2.76 TeV.

    PubMed

    Acharya, S; Adamová, D; Aggarwal, M M; Rinella, G Aglieri; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, N; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Molina, R Alfaro; Alici, A; Alkin, A; Alme, J; Alt, T; Altsybeev, I; Prado, C Alves Garcia; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Awes, T; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Camejo, A Batista; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Martinez, H Bello; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Villar, E Calvo; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castellanos, J Castillo; Castro, A J; Casula, E A R; Sanchez, C Ceballos; Cerello, P; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Barroso, V Chibante; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Concas, M; Balbastre, G Conesa; Valle, Z Conesa Del; Connors, M E; Contreras, J G; Cormier, T M; Morales, Y Corrales; Maldonado, I Cortés; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Corchero, M A Diaz; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Gimenez, D Domenicis; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Téllez, A Fernández; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Girard, M Fusco; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Ducati, M B Gay; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Coral, D M Goméz; Ramirez, A Gomez; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Grull, F R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Corral, G Herrera; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Hohlweger, B; Horak, D; Hornung, S; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jaelani, S; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Bustamante, R T Jimenez; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Uysal, A Karasu; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, D; Kim, D W; Kim, D J; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Meethaleveedu, G Koyithatta; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Fernandes, C Lagana; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; Monzón, I León; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; Torres, E López; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Cervantes, I Maldonado; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; García, G Martínez; Pedreira, M Martinez; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Pérez, J Mercado; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D L; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Khan, M Mohisin; Montes, E; De Godoy, D A Moreira; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Narayan, A; Naru, M U; da Luz, H Natal; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; De Oliveira, R A Negrao; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Da Silva, A C Oliveira; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Velasquez, A Ortiz; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Pathak, S P; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Da Costa, H Pereira; Peresunko, D; Lezama, E Perez; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Oskoń, M Pł; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Cahuantzi, M Rodríguez; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Montero, A J Rubio; Rueda, O V; Rui, R; Russo, R; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Muñoz, G Tejeda; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vyvre, P Vande; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Doce, O Vázquez; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Limón, S Vergara; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Baillie, O Villalobos; Tello, A Villatoro; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Witt, W E; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zimmermann, S; Zinovjev, G; Zmeskal, J

    2017-01-01

    The invariant differential cross sections for inclusive [Formula: see text] and [Formula: see text] mesons at midrapidity were measured in pp collisions at [Formula: see text] TeV for transverse momenta [Formula: see text] GeV/ c and [Formula: see text] GeV/ c , respectively, using the ALICE detector. This large range in [Formula: see text] was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). In particular, a new single-cluster, shower-shape based method was developed for the identification of high-[Formula: see text] neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. Above 4 GeV/[Formula: see text], the measured cross sections are found to exhibit a similar power-law behavior with an exponent of about 6.3. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about 30% for the [Formula: see text], and between 30-50% for the [Formula: see text] meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than 10-30%, except at [Formula: see text] GeV/[Formula: see text]. The new data can therefore be used to further improve the theoretical description of [Formula: see text] and [Formula: see text] meson production.

  15. Helicity-dependent cross sections and double-polarization observable E in η photoproduction from quasifree protons and neutrons

    NASA Astrophysics Data System (ADS)

    Witthauer, L.; Dieterle, M.; Abt, S.; Achenbach, P.; Afzal, F.; Ahmed, Z.; Akondi, C. S.; Annand, J. R. M.; Arends, H. J.; Bashkanov, M.; Beck, R.; Biroth, M.; Borisov, N. S.; Braghieri, A.; Briscoe, W. J.; Cividini, F.; Costanza, S.; Collicott, C.; Denig, A.; Downie, E. J.; Drexler, P.; Ferretti-Bondy, M. I.; Gardner, S.; Garni, S.; Glazier, D. I.; Glowa, D.; Gradl, W.; Günther, M.; Gurevich, G. M.; Hamilton, D.; Hornidge, D.; Huber, G. M.; Käser, A.; Kashevarov, V. L.; Kay, S.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lazarev, A. B.; Linturi, J. M.; Lisin, V.; Livingston, K.; Lutterer, S.; MacGregor, I. J. D.; Mancell, J.; Manley, D. M.; Martel, P. P.; Metag, V.; Meyer, W.; Miskimen, R.; Mornacchi, E.; Mushkarenkov, A.; Neganov, A. B.; Neiser, A.; Oberle, M.; Ostrick, M.; Otte, P. B.; Paudyal, D.; Pedroni, P.; Polonski, A.; Prakhov, S. N.; Rajabi, A.; Reicherz, G.; Ron, G.; Rostomyan, T.; Sarty, A.; Sfienti, C.; Sikora, M. H.; Sokhoyan, V.; Spieker, K.; Steffen, O.; Strakovsky, I. I.; Strub, Th.; Supek, I.; Thiel, A.; Thiel, M.; Thomas, A.; Unverzagt, M.; Usov, Yu. A.; Wagner, S.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Wettig, J.; Wolfes, M.; Zana, L.; A2 Collaboration at MAMI

    2017-05-01

    Precise helicity-dependent cross sections and the double-polarization observable E were measured for η photoproduction from quasifree protons and neutrons bound in the deuteron. The η →2 γ and η →3 π0→6 γ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin (σ1 /2). It is absent for reactions with parallel spin orientation (σ3 /2) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them withLegendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of P11 and S11 partial waves to explain the narrow structure.

  16. Slow wave structures using twisted waveguides for charged particle applications

    DOEpatents

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  17. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    PubMed Central

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-01-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031

  18. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution.

    PubMed

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-26

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  19. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    PubMed

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.

  20. A health examination of railway high-voltage substation workers exposed to ELF electromagnetic fields.

    PubMed

    Baroncelli, P; Battisti, S; Checcucci, A; Comba, P; Grandolfo, M; Serio, A; Vecchia, P

    1986-01-01

    This is a cross-sectional survey on the health conditions of railways workers active in 258 interconnection and conversion substations all over Italy. Measurements performed in both kinds of substations operating at 220 kV have shown that maximum levels of the electric field strength and of the magnetic flux density at 50 Hz are of the order of 5 kV/m and 15 microT, respectively. Three subject groups, differently exposed (1, 10, 20 h/week), and an unexposed control group, for a total number of 627 workers, constitute the population at study. All subjects underwent a general medical examination, laboratory investigations, and a series of selected examinations relative to three systems (nervous, cardiovascular, and haematopoietic) considered at higher risk. No differences have been found between the exposed and the control groups. It is concluded that workers exposed to ELF electromagnetic fields of moderate strength do not show the presence of clear effects on their state of health.

  1. A FLUKA simulation of the KLOE electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Di Micco, B.; Branchini, P.; Ferrari, A.; Loffredo, S.; Passeri, A.; Patera, V.

    2007-10-01

    We present the simulation of the KLOE calorimeter with the FLUKA Monte Carlo program. The response of the detector to electromagnetic showers has been studied and compared with the publicly available KLOE data. The energy and the time resolution of the electromagnetic clusters is in good agreement with the data. The simulation has been also used to study a possible improvement of the KLOE calorimeter using multianode photo-multipliers. An HAMAMATSU R7600-M16 photomultiplier has been assembled in order to determine the whole cross talk matrix that has been included in the simulation. The cross talk matrix takes into account the effects of a realistic photo-multiplier's electronics and of its coupling to the active material. The performance of the modified readout has been compared to the usual KLOE configuration.

  2. Intrasystem Electromagnetic Compatibility Analysis Program. Volume 2. User’s Manual Usage Section

    DTIC Science & Technology

    1974-12-01

    AD-A008 527 INTRASYSTEM ELECTROMAGNETIC COMPATI- BILITY ANALYSIS PROGRAM. VOLUME II.USER’S MANUAL USAGE SECTION J. L. Bogdanor , et al McDonnell...NUMBERVolume II - User’s Manual Usage Section None 7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(s) J.L. Bogdanor F30602-72-C-0277 R.A. Pearlman M.D. Siegel

  3. Optical tractor Bessel polarized beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.; Li, R. X.; Guo, L. X.; Ding, C. Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications.

  4. Hydrometry's classical and Innovative methods and tools comparison for Stara river flows at Agios Germanos monitoring station in north-west Greece.

    NASA Astrophysics Data System (ADS)

    Filintas, Agathos, , Dr; Hatzigiannakis, Evagellos, , Dr; Arampatzis, George, , Dr; Ilias, Andreas; Panagopoulos, Andreas, , Dr; Hatzispiroglou, Ioannis

    2015-04-01

    The aim of the present study is a thorough comparison of hydrometry's conventional and innovative methods-tools for river flow monitoring. A case study was conducted in Stara river at Agios Germanos monitoring station (northwest Greece), in order to investigate possible deviations between conventional and innovative methods-tools on river flow velocity and discharge. For this study, two flowmeters were used, which manufac-tured in 2013 (OTT Messtechnik Gmbh, 2013), as follows: a) A conventional propeller flow velocity meter (OTT-Model C2) which is a me-chanical current flow meter with a certification of calibration BARGO, operated with a rod and a relocating device, along with a digital measuring device including an elec-tronic flow calculator, data logger and real time control display unit. The flowmeter has a measurement velocity range 0.025-4.000 m/s. b) An innovative electromagnetic flowmeter (OTT-Model MF pro) which it is con-sisted of a compact and light-weight sensor and a robust handheld unit. Both system components are designed to be attached to conventional wading rods. The electromag-netic flowmeter uses Faraday's Law of electromagnetic induction to measure the process flow. When an electrically conductive fluid flows along the meter, an electrode voltage is induced between a pair of electrodes placed at right angles to the direction of mag-netic field. The electrode voltage is directly proportional to the average fluid velocity. The electromagnetic flowmeter was operated with a rod and relocating device, along with a digital measuring device with various logging and graphical capabilities and vari-ous methods of velocity measurement (ISO/USGS standards). The flowmeter has a measurement velocity range 0.000-6.000 m/s. The river flow data were averaged over a pair measurement of 60+60 seconds and the measured river water flow velocity, depths and widths of the segments were used for the estimation of cross-section's mean flow velocity in each measured segment. Then it was used the mid-section method for the overall discharge calculation of all segments flow area. The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured, calculated and an-notated respectively. A series of concurrent conventional and innovative (electromag-netic) flow measurements were performed during 2014. The results and statistical analysis showed that Froude number during the measurement period in all cases was Fr<1 which means that the water flow of the Stara river is classified as subcritical flow. The 12 months' study showed various advantages for the elec-tromagnetic sensor that is virtually maintenance-free because there are no moving parts, no calibration was required in practice, and it can be used even in the lowest water ve-locities from 0.000 m/s. Moreover, based on the concurrent hydromeasurements of the Stara River, on the velocity and discharge modelling and the statistical analysis, it was found that there was not a significant statistical difference (α=0.05) between mean velocity measured with a) conventional and b) electromagnetic method which seems to be more accurate in low velocities where a significant statistical difference was found. Acknowledgments Data in this study are collected in the framework of the elaboration of the national water resources monitoring network, supervised by the Special Secretariat for Water-Hellenic Ministry for the Environment and Climate Change. This project is elaborated in the framework of the operational program "Environment and Sustainable Development" which is co-funded by the National Strategic Reference Framework (NSRF) and the Public Investment Program (PIP).

  5. Parallelizing serial code for a distributed processing environment with an application to high frequency electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Work, Paul R.

    1991-12-01

    This thesis investigates the parallelization of existing serial programs in computational electromagnetics for use in a parallel environment. Existing algorithms for calculating the radar cross section of an object are covered, and a ray-tracing code is chosen for implementation on a parallel machine. Current parallel architectures are introduced and a suitable parallel machine is selected for the implementation of the chosen ray-tracing algorithm. The standard techniques for the parallelization of serial codes are discussed, including load balancing and decomposition considerations, and appropriate methods for the parallelization effort are selected. A load balancing algorithm is modified to increase the efficiency of the application, and a high level design of the structure of the serial program is presented. A detailed design of the modifications for the parallel implementation is also included, with both the high level and the detailed design specified in a high level design language called UNITY. The correctness of the design is proven using UNITY and standard logic operations. The theoretical and empirical results show that it is possible to achieve an efficient parallel application for a serial computational electromagnetic program where the characteristics of the algorithm and the target architecture critically influence the development of such an implementation.

  6. Numerical and Experimental Investigation on Electromagnetic Attenuation by Semi-Ellipsoidal Shaped Plasma

    NASA Astrophysics Data System (ADS)

    He, Xiang; Chen, Jianping; Zhang, Yachun; Chen, Yudong; Zeng, Xiaojun; Tang, Chunmei

    2015-10-01

    Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome. In simulations, we discussed the scattering of the electromagnetic (EM) wave by a perfect electric conductor (PEC) covered with this plasma screen using the finite-difference-time-domain (FDTD) method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency (RF) power of 5 kW at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna. supported by National Natural Science Foundation of China (No. 51107033) and the Fundamental Research Funds for the Central Universities, China (No. 2013B33614)

  7. Intrasystem Electromagnetic Compatibility Analysis Program. Volume 1. User’s Manual Engineering Section

    DTIC Science & Technology

    1974-12-01

    AD-A008 526 INTRASYSTEM ELECTROMAGNETIC COMPATI- BILITY ANALYSIS PROGRAM. VOLUME I. USER’S MANUAL ENGINEERING SECTION J. L. Bogdanor , et al McDonnell...e) 8 CONTRACT OR GRANT NUMBERfs) J.L. Bogdanor F30602-72-C-0277 R.A. Pearlman M.D. Siegel PERFORMING ORGANIZATION NAME AND ADDRESS I0 PROGRAM ELEMENT...June 1968. 14. J. L. Bogdanor , M. D. Siegel, G. L. Weinstock, "Intra-Vehicle Electromagnetic Compatibility Analysis," AFAL-TR-71-155, July 1971. 15

  8. Laser-Induced Translative Hydrodynamic Mass Snapshots: Noninvasive Characterization and Predictive Modeling via Mapping at Nanoscale

    NASA Astrophysics Data System (ADS)

    Wang, X. W.; Kuchmizhak, A. A.; Li, X.; Juodkazis, S.; Vitrik, O. B.; Kulchin, Yu. N.; Zhakhovsky, V. V.; Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Rudenko, A. A.; Inogamov, N. A.

    2017-10-01

    Subwavelength structures (meta-atoms) with artificially engineered permittivity and permeability have shown promising applications for guiding and controlling the flow of electromagnetic energy on the nanoscale. Ultrafast laser nanoprinting emerges as a promising single-step, green and flexible technology in fabricating large-area arrays of meta-atoms through the translative or ablative modification of noble-metal thin films. Ultrafast laser energy deposition in noble-metal films produces irreversible, intricate nanoscale translative mass redistributions after resolidification of the transient thermally assisted hydrodynamic melt perturbations. Such mass redistribution results in the formation of a radially symmetric frozen surface with modified hidden nanofeatures, which strongly affect the optical response harnessed in plasmonic sensing and nonlinear optical applications. Here, we demonstrate that side-view electron microscopy and ion-beam cross sections together with low-energy electron x-ray dispersion microscopy provide exact information about such three-dimensional patterns, enabling an accurate acquisition of their cross-sectional mass distributions. Such nanoscale solidified structures are theoretically modeled, considering the underlying physical processes associated with laser-induced energy absorption, electron-ion energy exchange, acoustic relaxation, and hydrodynamic flows. A theoretical approach, separating slow and fast physical processes and combining hybrid analytical two-temperature calculations, scalable molecular-dynamics simulations, and a semianalytical thin-shell model is synergistically applied. These advanced characterization approaches are required for a detailed modeling of near-field electromagnetic response and pave the way to a fully automated noninvasive in-line control of a high-throughput and large-scale laser fabrication. This theoretical modeling provides an accurate prediction of scales and topographies of the laser-fabricated meta-atoms and metasurfaces.

  9. Association between exposure to radiofrequency electromagnetic fields assessed by dosimetry and acute symptoms in children and adolescents: a population based cross-sectional study

    PubMed Central

    2010-01-01

    Background The increase in numbers of mobile phone users was accompanied by some concern that exposure to radiofrequency electromagnetic fields (RF EMF) might adversely affect acute health especially in children and adolescents. The authors investigated this potential association using personal dosimeters. Methods A 24-hour exposure profile of 1484 children and 1508 adolescents was generated in a population-based cross-sectional study in Germany between 2006 and 2008 (participation 52%). Personal interview data on socio-demographic characteristics, self-reported exposure and potential confounders were collected. Acute symptoms were assessed twice during the study day using a symptom diary. Results Only few of the large number of investigated associations were found to be statistically significant. At noon, adolescents with a measured exposure in the highest quartile during morning hours reported a statistically significant higher intensity of headache (Odd Ratio: 1.50; 95% confidence interval: 1.03, 2.19). At bedtime, adolescents with a measured exposure in the highest quartile during afternoon hours reported a statistically significant higher intensity of irritation in the evening (4th quartile 1.79; 1.23, 2.61), while children reported a statistically significant higher intensity of concentration problems (4th quartile 1.55; 1.02, 2.33). Conclusions We observed few statistically significant results which are not consistent over the two time points. Furthermore, when the 10% of the participants with the highest exposure are taken into consideration the significant results of the main analysis could not be confirmed. Based on the pattern of these results, we assume that the few observed significant associations are not causal but rather occurred by chance. PMID:21108839

  10. Association between exposure to radiofrequency electromagnetic fields assessed by dosimetry and acute symptoms in children and adolescents: a population based cross-sectional study.

    PubMed

    Heinrich, Sabine; Thomas, Silke; Heumann, Christian; von Kries, Rüdiger; Radon, Katja

    2010-11-25

    The increase in numbers of mobile phone users was accompanied by some concern that exposure to radiofrequency electromagnetic fields (RF EMF) might adversely affect acute health especially in children and adolescents. The authors investigated this potential association using personal dosimeters. A 24-hour exposure profile of 1484 children and 1508 adolescents was generated in a population-based cross-sectional study in Germany between 2006 and 2008 (participation 52%). Personal interview data on socio-demographic characteristics, self-reported exposure and potential confounders were collected. Acute symptoms were assessed twice during the study day using a symptom diary. Only few of the large number of investigated associations were found to be statistically significant. At noon, adolescents with a measured exposure in the highest quartile during morning hours reported a statistically significant higher intensity of headache (Odd Ratio: 1.50; 95% confidence interval: 1.03, 2.19). At bedtime, adolescents with a measured exposure in the highest quartile during afternoon hours reported a statistically significant higher intensity of irritation in the evening (4th quartile 1.79; 1.23, 2.61), while children reported a statistically significant higher intensity of concentration problems (4th quartile 1.55; 1.02, 2.33). We observed few statistically significant results which are not consistent over the two time points. Furthermore, when the 10% of the participants with the highest exposure are taken into consideration the significant results of the main analysis could not be confirmed. Based on the pattern of these results, we assume that the few observed significant associations are not causal but rather occurred by chance.

  11. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  12. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  13. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  14. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  15. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  16. A fast and complete GEANT4 and ROOT Object-Oriented Toolkit: GROOT

    NASA Astrophysics Data System (ADS)

    Lattuada, D.; Balabanski, D. L.; Chesnevskaya, S.; Costa, M.; Crucillà, V.; Guardo, G. L.; La Cognata, M.; Matei, C.; Pizzone, R. G.; Romano, S.; Spitaleri, C.; Tumino, A.; Xu, Y.

    2018-01-01

    Present and future gamma-beam facilities represent a great opportunity to validate and evaluate the cross-sections of many photonuclear reactions at near-threshold energies. Monte Carlo (MC) simulations are very important to evaluate the reaction rates and to maximize the detection efficiency but, unfortunately, they can be very cputime-consuming and in some cases very hard to reproduce, especially when exploring near-threshold cross-section. We developed a software that makes use of the validated tracking GEANT4 libraries and the n-body event generator of ROOT in order to provide a fast, realiable and complete MC tool to be used for nuclear physics experiments. This tool is indeed intended to be used for photonuclear reactions at γ-beam facilities with ELISSA (ELI Silicon Strip Array), a new detector array under development at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP). We discuss the results of MC simulations performed to evaluate the effects of the electromagnetic induced background, of the straggling due to the target thickness and of the resolution of the silicon detectors.

  17. Neutrino flux prediction at MiniBooNE

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2009-04-01

    The booster neutrino experiment (MiniBooNE) searches for νμ→νe oscillations using the O(1GeV) neutrino beam produced by the booster synchrotron at the Fermi National Accelerator Laboratory). The booster delivers protons with 8 GeV kinetic energy (8.89GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beam line incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the beam line materials, as well as the decay of particles. The absolute double differential cross sections of pion and kaon production in the simulation have been tuned to match external measurements, as have the hadronic cross sections for nucleons and pions. The statistical precision of the flux predictions is enhanced through reweighting and resampling techniques. Systematic errors in the flux estimation have been determined by varying parameters within their uncertainties, accounting for correlations where appropriate.

  18. Radiation and scattering from bodies of translation, volume 1

    NASA Astrophysics Data System (ADS)

    Medgyesi-Mitschang, L. N.

    1980-04-01

    An analytical formulation, based on the method of moments (MM) is described for solving electromagnetic problems associated with finite-length cylinders of arbitrary cross section, denoted in this report as bodies of translation (BOT). This class of bodies can be used to model structures with noncircular cross sections such as wings, fins, and aircraft fuselages. The theoretical development parallels in part the MM formulation developed earlier by Mautz and Harrington for bodies of revolution (BOR). Like the latter approach, a modal expansion is used to describe the unknown surface currents on the BOT. The present analysis has been developed to treat the far-field radiation and scattering from a BOT excited by active antennas or illuminated by a plane wave of arbitrary polarization and angle of incidence. In addition, the electric and magnetic near-field components are determined in the vicinity of active and passive apertures (slots). Using the Schelkunoff equivalence theorem, the aperture-coupled fields within a BOT are also obtained. The formulation has been implemented by a computer algorithm and validated using accepted data in the literature.

  19. Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure

    NASA Technical Reports Server (NTRS)

    Xu, Yu-Lin

    2016-01-01

    Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of scattered intensities are cross sections, such as for extinction, scattering, absorption, and radiation pressure, as a critical type of key quantity addressed in most theoretical and experimental studies of radiative scattering. Cross sections predicted from different scattering theories are supposed to be in general agreement. For objects of irregular shape, the GMM-PA solutions can be compared with the highly flexible Discrete Dipole Approximation (DDA) [4,5] when dividing a target to no more than 106 unit cells. Also, there are different ways to calculate the cross sections in the GMM-PA, providing an additional means to examine the accuracy of the numerical solutions and to unveil potential issues concerning the theoretical formulations and numerical aspects. To solve multiple scattering by an assembly of material volumes through classical theories such as the GMM-PA, the radiative properties of the component scatterers, the complex refractive index in particular, must be provided as input parameters. When using a PA to characterize a material body, this involves the use of an adequate theoretical tool, an effective medium theory, to connect Maxwell's phenomenogical theory with the atomistic theory of matter. In the atomic theory, one regards matter as composed of interacting particles (atoms and molecules) embedded in the vacuum [6]. However, the radiative properties of atomic-scaled particles are known to be substantially different from bulk materials. Intensive research efforts in the fields of cluster science and nanoscience attempt to bridge the gap between bulk and atom and to understand the transition from classical to quantum physics. The GMM-PA calculations, which place virtually no restriction on the component-particle size, might help to gain certain insight into the transition.

  20. The European Alps as an interrupter of the Earth's conductivity structures

    NASA Astrophysics Data System (ADS)

    Al-Halbouni, D.

    2013-07-01

    Joint interpretation of magnetotelluric and geomagnetic depth sounding results in the period range of 10-105 s in the Western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques and the combination of both electromagnetic methods. 3-D forward modeling reveals on the one hand interrupted dipping crustal conductors with maximum conductances of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central Western Alps. Graphite networks arising from Palaeozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary Molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its belonging to the Iberian Peninsula. In conclusion the proposed model arisen from combined 3-D modeling of noise corrected electromagnetic data is able to explain the geophysical influence of various structural features in and around the Western European Alps and serves as a background for further upcoming studies.

  1. Interaction of 160-GeV muon with emulsion nuclei

    NASA Astrophysics Data System (ADS)

    Othman, S. M.; Ghoneim, M. T.; Hussein, M. T.; El-Samman, H.; Hussein, A.

    In this work we present some results of the interaction of high-energy muons with emulsion nuclei. The interaction results in emission of a number of fragments as a consequence of electromagnetic dissociation of the excited target nuclei. This excitation is attributed to absorption of photons by the target nuclei due to the intense electric field of the very fast incident muon particles. The interactions take place at impact parameters that allow ultra-peripheral collisions to take place, leading to giant resonances and hence multifragmentation of emulsion targets. Charge identification, range, energy spectra, angular distribution and topological cross-section of the produced fragments are measured and evaluated.

  2. Finite difference time domain electromagnetic scattering from frequency-dependent lossy materials

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.

    1991-01-01

    Four different FDTD computer codes and companion Radar Cross Section (RCS) conversion codes on magnetic media are submitted. A single three dimensional dispersive FDTD code for both dispersive dielectric and magnetic materials was developed, along with a user's manual. The extension of FDTD to more complicated materials was made. The code is efficient and is capable of modeling interesting radar targets using a modest computer workstation platform. RCS results for two different plate geometries are reported. The FDTD method was also extended to computing far zone time domain results in two dimensions. Also the capability to model nonlinear materials was incorporated into FDTD and validated.

  3. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    PubMed

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-09

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.

  4. Dispersive approach to two-photon exchange in elastic electron-proton scattering

    DOE PAGES

    Blunden, P. G.; Melnitchouk, W.

    2017-06-14

    We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e + p to e - p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.

  5. Average characteristics of partially coherent electromagnetic beams.

    PubMed

    Seshadri, S R

    2000-04-01

    Average characteristics of partially coherent electromagnetic beams are treated with the paraxial approximation. Azimuthally or radially polarized, azimuthally symmetric beams and linearly polarized dipolar beams are used as examples. The change in the mean squared width of the beam from its value at the location of the beam waist is found to be proportional to the square of the distance in the propagation direction. The proportionality constant is obtained in terms of the cross-spectral density as well as its spatial spectrum. The use of the cross-spectral density has advantages over the use of its spatial spectrum.

  6. Helicity-dependent cross sections and double-polarization observable E in η photoproduction from quasifree protons and neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witthauer, L.; Dieterle, M.; Abt, S.

    2017-05-01

    Precise helicity-dependent cross sections and the double-polarization observable E were measured for η photoproduction from quasifree protons and neutrons bound in the deuteron. The η → 2γ and η → 3π 0 → 6γ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected withmore » the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin (σ 1/2). It is absent for reactions with parallel spin orientation (σ 3/2) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them with Legendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of P 11 and S 11 partial waves to explain the narrow structure.« less

  7. Applicability of the Rayleigh-Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence

    NASA Astrophysics Data System (ADS)

    Tyynelä, J.; Leinonen, J.; Westbrook, C. D.; Moisseev, D.; Nousiainen, T.

    2013-02-01

    The applicability of the Rayleigh-Gans approximation (RGA) for scattering by snowflakes is studied in the microwave region of the electromagnetic spectrum. Both the shapes of the single ice crystals, or monomers, and their amounts in the modeled snowflakes are varied. For reference, the discrete-dipole approximation (DDA) is used to produce numerically accurate solutions to the single-scattering properties, such as the backscattering and extinction cross-sections, single-scattering albedo, and the asymmetry parameter. We find that the single-scattering albedo is the most accurate with only about 10% relative bias at maximum. The asymmetry parameter has about 0.12 absolute bias at maximum. The backscattering and extinction cross-sections show about - 65% relative biases at maximum, corresponding to about - 4.6 dB difference. Overall, the RGA agrees well with the DDA computations for all the cases studied and is more accurate for the integrated quantities, such as the single-scattering albedo and the asymmetry parameter than the cross-sections for the same snowflakes. The accuracy of the RGA seems to improve, when the number of monomers is increased in an aggregate, and decrease, when the frequency increases. It is also more accurate for less dense monomer shapes, such as stellar dendrites. The DDA and RGA results are well correlated; the sample correlation coefficients of those are close to unity throughout the study. Therefore, the accuracy of the RGA could be improved by applying appropriate correction factors.

  8. Analysis of the static magnetic field-dependent optical transmission of Ni nanorod colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Krämer, Florian; Gratz, Micha; Tschöpe, Andreas

    2016-07-01

    The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.

  9. Random walk study of electron motion in helium in crossed electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1972-01-01

    Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.

  10. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to... Exposure Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright... Electromagnetic Fields—RF and Microwave,” IEEE C95.3-1991. (4) For purposes of analyzing portable transmitting...

  11. Meson Production and Space Radiation

    NASA Astrophysics Data System (ADS)

    Norbury, John; Blattnig, Steve; Norman, Ryan; Aghara, Sukesh

    Protecting astronauts from the harmful effects of space radiation is an important priority for long duration space flight. The National Council on Radiation Protection (NCRP) has recently recommended that pion and other mesons should be included in space radiation transport codes, especially in connection with the Martian atmosphere. In an interesting accident of nature, the galactic cosmic ray spectrum has its peak intensity near the pion production threshold. The Boltzmann transport equation is structured in such a way that particle production cross sec-tions are multiplied by particle flux. Therefore, the peak of the incident flux of the galactic cosmic ray spectrum is more important than other regions of the spectrum and cross sections near the peak are enhanced. This happens with pion cross sections. The MCNPX Monte-Carlo transport code now has the capability of transporting heavy ions, and by using a galactic cosmic ray spectrum as input, recent work has shown that pions contribute about twenty percent of the dose from galactic cosmic rays behind a shield of 20 g/cm2 aluminum and 30 g/cm2 water. It is therefore important to include pion and other hadron production in transport codes designed for space radiation studies, such as HZETRN. The status of experimental hadron production data for energies relevant to space radiation will be reviewed, as well as the predictive capa-bilities of current theoretical hadron production cross section and space radiation transport models. Charged pions decay into muons and neutrinos, and neutral pions decay into photons. An electromagnetic cascade is produced as these particles build up in a material. The cascade and transport of pions, muons, electrons and photons will be discussed as they relate to space radiation. The importance of other hadrons, such as kaons, eta mesons and antiprotons will be considered as well. Efficient methods for calculating cross sections for meson production in nucleon-nucleon and nucleus-nucleus reactions will be presented. The NCRP has also recom-mended that more attention should be paid to neutron and light ion transport. The coupling of neutrons, light ions, mesons and other hadrons will be discussed.

  12. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    PubMed

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  14. Sandwich-structured C/C-SiC composites fabricated by electromagnetic-coupling chemical vapor infiltration.

    PubMed

    Hu, Chenglong; Hong, Wenhu; Xu, Xiaojing; Tang, Sufang; Du, Shanyi; Cheng, Hui-Ming

    2017-10-13

    Carbon fiber (CF) reinforced carbon-silicon carbide (C/C-SiC) composites are one of the most promising lightweight materials for re-entry thermal protection, rocket nozzles and brake discs applications. In this paper, a novel sandwich-structured C/C-SiC composite, containing two exterior C/SiC layers, two gradient C/C-SiC layers and a C/C core, has been designed and fabricated by two-step electromagnetic-coupling chemical vapor infiltration (E-CVI) for a 20-hour deposition time. The cross-section morphologies, interface microstructures and SiC-matrix growth characteristics and compositions of the composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. Microstructure characterization indicates that the SiC growth includes an initial amorphous SiC zone, a gradual crystallization of SiC and grow-up of nano-crystal, and a columnar grain region. The sandwich structure, rapid deposition rate and growth characteristics are attributed to the formation of thermal gradient and the establishment of electromagnetic field in the E-CVI process. The composite possesses low density of 1.84 g/cm 3 , high flexural strength of 325 MPa, and low linear ablation rate of 0.38 μm/s under exposure to 5-cycle oxyacetylene flame for 1000 s at ~1700 °C.

  15. A Novel Shape Memory Plate Osteosynthesis for Noninvasive Modulation of Fixation Stiffness in a Rabbit Tibia Osteotomy Model

    PubMed Central

    Müller, Christian W.; Pfeifer, Ronny; Meier, Karen; Decker, Sebastian; Reifenrath, Janin; Gösling, Thomas; Wesling, Volker; Krettek, Christian; Krämer, Manuel

    2015-01-01

    Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery. PMID:26167493

  16. Near field interaction of microwave signals with a bounded plasma plume

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Hallock, Gary A.; Kim, Hyeongdong; Birkner, Bjorn

    1991-01-01

    The objective was to study the effect of the arcjet thruster plume on the performance of an onboard satellite reflector antenna. A project summary is presented along with sections on plasma and electromagnetic modeling. The plasma modeling section includes the following topics: wave propagation; plasma analysis; plume electron density model; and the proposed experimental program. The section on electromagnetic modeling includes new developments in ray modeling and the validation of three dimensional ray results.

  17. Numerical methods for analyzing electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.

    1985-01-01

    Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield.

  18. Stimulated Emission of Terahertz Radiation from Internal ExcitonTransitions in Cu2O

    NASA Astrophysics Data System (ADS)

    Schmid, B. A.; Huber, R.; Shen, Y. R.; Kaindl, R. A.; Chemla, D. S.

    2006-03-01

    Excitons are among the most fundamental optical excitation modes in semiconductors. Resonant infrared pulses have been used to sensitively probe absorptive transitions between hydrogen-like bound pair states [1,2]. We report the first observation of the reverse quantum process: stimulated emission of electromagnetic radiation from intra-excitonic transitions [3]. Broadband terahertz pulses monitor the far-infrared electromagnetic response of Cu2O after ultrafast resonant photogeneration of 3p excitons. Stimulated emission from the 3p to the energetically lower 2s bound level occurs at a photon energy of 6.6 meV, with a cross section of ˜10-14 cm^2. Simultaneous excitation of both exciton levels, in turn, drives quantum beats which lead to efficient terahertz emission sharply peaked at the difference frequency. Our results demonstrate a new fundamental process of THz quantum optics and highlight analogies and differences between excitonic and atomic systems. [1] R. A. Kaindl et al., Nature 423, 734 (2003). [2] M. Kubouchi et al., Phys. Rev. Lett. 94, 016403 (2005). [3] R. Huber et al., Phys. Rev. Lett., to appear.

  19. Beam dynamics and electromagnetic studies of a 3 MeV, 325 MHz radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Gaur, Rahul; Kumar, Vinit

    2018-05-01

    We present the beam dynamics and electromagnetic studies of a 3 MeV, 325 MHz H- radio frequency quadrupole (RFQ) accelerator for the proposed Indian Spallation Neutron Source project. We have followed a design approach, where the emittance growth and the losses are minimized by keeping the tune depression ratio larger than 0.5. The transverse cross-section of RFQ is designed at a frequency lower than the operating frequency, so that the tuners have their nominal position inside the RFQ cavity. This has resulted in an improvement of the tuning range, and the efficiency of tuners to correct the field errors in the RFQ. The vane-tip modulations have been modelled in CST-MWS code, and its effect on the field flatness and the resonant frequency has been studied. The deterioration in the field flatness due to vane-tip modulations is reduced to an acceptable level with the help of tuners. Details of the error study and the higher order mode study along with mode stabilization technique are also described in the paper.

  20. Electromagnetic moments and electric dipole transitions in carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-07-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.

  1. Effect of radiofrequency energy emitted from monopolar "Bovie" instruments on cardiac implantable electronic devices.

    PubMed

    Robinson, Thomas N; Varosy, Paul D; Guillaume, Girard; Dunning, James E; Townsend, Nicole T; Jones, Edward L; Paniccia, Alessandro; Stiegmann, Greg V; Weyer, Christopher; Rozner, Marc A

    2014-09-01

    The monopolar "Bovie" instrument emits radiofrequency energy that can disrupt the function of other implanted electronic devices through a phenomenon termed electromagnetic interference. The purpose of this study was to quantify the electromagnetic interference occurring on cardiac implantable devices (CIEDs) resulting from monopolar instrument use in common, modifiable clinical scenarios. Three anesthetized pigs underwent CIED placement (1 pacemaker and 2 defibrillators). Electromagnetic interference was quantified when changing the monopolar instrument parameters of generator power, generator mode, surgical technique, orientation of active electrode cord, pathway of current vector, and proximity of active electrode to the CIED. Monopolar instrument parameters that decreased the electromagnetic interference occurring on the CIED included decreasing generator power from 60 W to 30 W (p < 0.001), using cut mode rather than coag mode (p < 0.001), using desiccation technique rather than fulguration technique (p < 0.001), orienting the active electrode cord from the feet rather than across the chest wall (p < 0.001), and avoiding the current vector from crossing the CIED system (p < 0.001). Increasing the distance between the active electrode tool and the CIED system decreased electromagnetic interference occurring on the CIED in a dose-response fashion up to a distance of 10 cm (ANOVA, p < 0.001), after which the magnitude of electromagnetic interference remained constant. Electromagnetic interference occurring on CIEDs resulting from monopolar instruments is minimized by decreasing generator power, using cut mode, using desiccation technique, orienting the active electrode cord from the feet, avoiding the current vector for crossing the CIED system, and increasing the distance between the active electrode and the CIED. Surgeons and operating room staff can minimize electromagnetic interference on CIEDs during monopolar instrument use by accounting for these modifiable clinical factors. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.1-1992... Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR... Potentially Hazardous Electromagnetic Fields—RF and Microwave,” IEEE C95.3-1991. (4) For purposes of analyzing...

  3. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.1-1992... Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR... Potentially Hazardous Electromagnetic Fields—RF and Microwave,” IEEE C95.3-1991. (4) For purposes of analyzing...

  4. Evaluation of some physical hazards which may affect health in primary schools.

    PubMed

    Bakır, Bilal; Babayiğit, Mustafa Alparslan; Tekbaş, Ömer Faruk; Oğur, Recai; Kılıç, Abdullah; Ulus, Serdar

    2014-09-01

    This study was performed with the objective to determine the levels of some physical hazards in primary schools. This study is a cross-sectional field survey. In this study which was conducted in 31 primary schools selected by appropriate sampling from the district of Keçiören of the province of Ankara, measurements related with temperature, light, electromagnetic field (EMF) and noise levels were done at hundreds of points. Approval was obtained from Gülhane Military Medical Faculty Ethics Committee (2007/97). Only 47.1% of the classes had a temperature value within the recommended limits (20-21°C). It was found that the illumination levels in 96.8% of the schools were above the standard values. However, the levels of illumination were found to be statistically significantly decreased towards the door and the back line (p<0.05). It was found that electromagnetic field levels were significantly higher in the schools who had a source of electromagnetic field nearby compared to the schools who did not have such a source nearby (p<0.001). It was found that the electromagnetic field levels in computer classes were statistically significantly higher compared to the other classes (p<0.001). Noise levels were found to be statistically significantly higher in classes which had 35 and more students (p<0.05). No statistically significant difference was found in schools near intensive vehicle traffic in terms of noise levels (62.8±5.0 (n=72), 62.0±6.4 (n=79), respectively, p>0.05). It was found that primary schools in the region of Keçiören had aspects which had to be improved in terms of building age, building location, brightness, electromagnetic field and noise levels. School health programs directed to improve negative enviromental factors should be developed.

  5. Electromagnetic Dissociation Cross Sections for High LET Fragments

    NASA Technical Reports Server (NTRS)

    Norbury, John

    2016-01-01

    Nuclear interaction cross sections are used in space radiation transport codes to calculate the probability of fragment emission in high energy nucleus-nucleus collisions. Strong interactions usually dominate in these collisions, but electromagnetic (EM) interactions can also sometimes be important. Strong interactions typically occur when the projectile nucleus hits a target nucleus, with a small impact parameter. For impact parameters larger than the sum of the nuclear radii, EM reactions dominate and the process is called electromagnetic dissociation (EMD) if one of the nuclei undergo fragmentation. Previous models of EMD have been used to calculate single proton (p) production, single neutron (n) production or light ion production, where a light ion is defined as an isotope of hydrogen (H) or helium (He), such as a deuteron (2H), a triton (3H), a helion (3He) or an alpha particle (4He). A new model is described which can also account for multiple nucleon production, such as 2p, 2n, 1p1n, 2p1n, 2p2n, etc. in addition to light ion production. Such processes are important to include for the following reasons. Consider, for example, the EMD reaction 56Fe + Al --> 52Cr + X + Al, for a 56Fe projectile impacting Al, which produces the high linear energy transfer (LET) fragment 52Cr. In this reaction, the most probable particles representing X are either 2p2n or 4He. Therefore, production of the high LET fragment 52Cr, must include the multiple nucleon production of 2p2n in addition to the light ion production of 4He. Previous models, such as the NUCFRG3 model, could only account for the 4He production process in this reaction and could not account for 2p2n. The new EMD model presented in this work accounts for both the light ion and multiple nucleon processes, and is therefore able to correctly account for the production of high LET products such as 52Cr. The model will be described and calculations will be presented that show the importance of light ion and multiple nucleon production. The work will also show that EMD reactions contribute most to those fragments with the highest LET.

  6. Confined states in photonic-magnonic crystals with complex unit cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk

    2016-08-21

    We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less

  7. The use of electromagnetic body forces to enhance the quality of laser welds

    NASA Astrophysics Data System (ADS)

    Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.

    2003-11-01

    The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.

  8. FDTD-based computed terahertz wave propagation in multilayer medium structures

    NASA Astrophysics Data System (ADS)

    Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun

    2013-08-01

    The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing terahertz responses from a multilayered sample.

  9. Mie and debye scattering in dusty plasmas

    PubMed

    Guerra; Mendonca

    2000-07-01

    We calculate the total field scattered by a charged sphere immersed in a plasma using a unified treatment that includes the usual Mie scattering and the scattering by the Debye cloud around the particle. This is accomplished by use of the Dyadic Green function to determine the field radiated by the electrons of the Debye cloud, which is then obtained as a series of spherical vector wave functions similar to that of the Mie field. Thus we treat the Debye-Mie field as a whole and study its properties. The main results of this study are (1) the Mie (Debye) field dominates at small (large) wavelengths and in the Rayleigh limit the Debye field is constant; (2) the total cross section has an interference term between the Debye and Mie fields, important in some regimes; (3) this term is negative for negative charge of the grain, implying a total cross section smaller than previously thought; (4) a method is proposed to determine the charge of the grain (divided by a certain suppression factor) and the Debye length of the plasma; (5) a correction to the dispersion relation of an electromagnetic wave propagating in a plasma is derived.

  10. The design of broadband radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  11. Interpretation of lunar and planetary electromagnetic scattering using the full wave solutions

    NASA Technical Reports Server (NTRS)

    Bahar, E.; Haugland, M.

    1993-01-01

    Bistatic radar experiments carried out during the Apollo 14, 15, and 16 missions provide a very useful data set with which to compare theoretical models and experimental data. Vesecky, et al. report that their model for near grazing angles compares favorably with experimental data. However, for angles of incidence around 80 degrees, all the analytical models considered by Vesecky, et al. predict values for the quasi-specular cross sections that are about half the corresponding values taken from the Apollo 16 data. In this work, questions raised by this discrepancy between the reported analytical and experimental results are addressed. The unified full wave solutions are shown to be in good agreement with the bistatic radar taken during Apollo 14 and 16 missions. Using the full wave approach, the quasi-specular contributions to the scattered field from the large scale surface roughness as well as the diffuse Bragg-like scattering from the small scale surface roughness are accounted for in a unified self-consistent manner. Since the full wave computer codes for the scattering cross sections contain ground truth data only, it is shown how it can be reliably used to predict the rough surface parameters of planets based on the measured data.

  12. Analysis of 4He+40Ca and 4He+44Ti scattering using different optical model potentials

    NASA Astrophysics Data System (ADS)

    Ibraheem, Awad A.

    2016-09-01

    Elastic scattering of 4He+40Ca and 4He+44Ti reactions at backward angles has been analyzed using two differentmodels, microscopic and semimicroscopic folding potentials. The derived real potentials supplemented with phenomenological Woods-Saxon imaginary potentials, provide good agreement with the experimental data at energy E c.m. = 21.8 MeV without need to renormalize the potentials. Coupledchannels calculations are used to extract the inelastic scattering cross section to the low-lying state 2+ (1.083 MeV) of 44Ti. The deformation length is obtained and compared with the electromagnetic measurement values as well as those obtained from previous studies.

  13. Measurement of the proton structure function F2 and σγ*ptot at low Q2 and very low x at HERA

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Romeo, G. Cara; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Ricci, F.; Sartorelli, G.; Garcia, Y. Zamora; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, J.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajac, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Żarnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Utley, M. L.; Waugh, R.; Wilson, A. S.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Nakao, M.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; An, S. H.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Harnew, N.; Lancaster, M.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Okrasiński, J. R.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Doeker, T.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Suzuki, I.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1997-02-01

    A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q2 inelastic neutral current scattering, e+p -> e+X, at HERA. A measurement of the proton structure function F2 and the total virtual photon-proton (γ*p) cross-section is presented for 0.11 <= Q2 <= 0.65 GeV2 and 2 × 10-6 <= x <= 6 × 10-5, corresponding to a range in the γ*p c.m. energy of 100 <= W <= 230 GeV. Comparisons with various models are also presented.

  14. Electromagnetic wave scattering from some vegetation samples

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.

    1988-01-01

    For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.

  15. Nanostructuring superconductors by ion beams: A path towards materials engineering

    NASA Astrophysics Data System (ADS)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-01

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  16. Probing Subdiffraction Limit Separations with Plasmon Coupling Microscopy: Concepts and Applications

    PubMed Central

    Wu, Linxi

    2014-01-01

    Due to their advantageous materials properties, noble metal nanoparticles are versatile tools in biosensing and imaging. A characteristic feature of gold and silver nanoparticles is their ability to sustain localized surface plasmons that provide both large optical cross-sections and extraordinary photophysical stability. Plasmon Coupling Microscopy takes advantage of the beneficial optical properties and utilizes electromagnetic near-field coupling between individual noble metal nanoparticle labels to resolve subdiffraction limit separations in an all-optical fashion. This Tutorial provides an introduction into the physical concepts underlying distance dependent plasmon coupling, discusses potential experimental implementations of Plasmon Coupling Microscopy, and reviews applications in the area of biosensing and imaging. PMID:24390574

  17. Scattering from finite bodies of translation - Plates, curved surfaces, and noncircular cylinders

    NASA Astrophysics Data System (ADS)

    Medgyesi-Mitschang, L. N.; Putnam, J. M.

    1983-11-01

    Electromagnetic scattering from finite, conducting bodies of translation (BOT) is examined using a formulation based on the electric field integral equation (EFIE) and solved by the method of moments (MM). The present approach provides a systematic, unified treatment for a wide class of finite, thin scatterers at all angles of illumination and polarization. Both concave and convex surfaces are considered. An entire-domain Galerkin expansion along one dimension of the body and a piecewise continuous one along the other are used to represent the unknown current variations. The scattering cross sections, obtained with this formulation, are compared with published results using more specialized methods and further confirmed by experimental measurements.

  18. WKB solution 4×4 for electromagnetic waves in a planar magnetically anisotropic inhomogeneous layer

    NASA Astrophysics Data System (ADS)

    Moiseeva, Natalya Michailovna; Moiseev, Anton Vladimirovich

    2018-04-01

    In the paper, an oblique incidence of a plane electromagnetic wave on a planar magnetically anisotropic inhomogeneous layer is considered. We consider the case when all the components of the magnetic permeability tensor are non zero and vary with distance from the interface of media. The WKB method gives a matrix 4 × 4 solution for the projections of the electromagnetic wave fields during its propagation. The dependence of the cross-polarized components on the orientation of the anisotropic medium relative to the plane of incidence of the medium is analyzed.

  19. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  20. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  1. Vector scattering analysis of TPF coronagraph pupil masks

    NASA Astrophysics Data System (ADS)

    Ceperley, Daniel P.; Neureuther, Andrew R.; Lieber, Michael D.; Kasdin, N. Jeremy; Shih, Ta-Ming

    2004-10-01

    Rigorous finite-difference time-domain electromagnetic simulation is used to simulate the scattering from proto-typical pupil mask cross-section geometries and to quantify the differences from the normally assumed ideal on-off behavior. Shaped pupil plane masks are a promising technology for the TPF coronagraph mission. However the stringent requirements placed on the optics require that the detailed behavior of the edge-effects of these masks be examined carefully. End-to-end optical system simulation is essential and an important aspect is the polarization and cross-section dependent edge-effects which are the subject of this paper. Pupil plane masks are similar in many respects to photomasks used in the integrated circuit industry. Simulation capabilities such as the FDTD simulator, TEMPEST, developed for analyzing polarization and intensity imbalance effects in nonplanar phase-shifting photomasks, offer a leg-up in analyzing coronagraph masks. However, the accuracy in magnitude and phase required for modeling a chronograph system is extremely demanding and previously inconsequential errors may be of the same order of magnitude as the physical phenomena under study. In this paper, effects of thick masks, finite conductivity metals, and various cross-section geometries on the transmission of pupil-plane masks are illustrated. Undercutting the edge shape of Cr masks improves the effective opening width to within λ/5 of the actual opening but TE and TM polarizations require opposite compensations. The deviation from ideal is examined at the reference plane of the mask opening. Numerical errors in TEMPEST, such as numerical dispersion, perfectly matched layer reflections, and source haze are also discussed along with techniques for mitigating their impacts.

  2. A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection.

    PubMed

    Wang, Haofeng; Chen, Shudong; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-11-17

    Portable transient electromagnetic (TEM) systems can be well adapted to various terrains, including mountainous, woodland, and other complex terrains. They are widely used for the detection of unexploded ordnance (UXO). As the core component of the portable TEM system, the sensor is constructed with a transmitting coil and a receiving coil. Based on the primary field of the transmitting coil and internal noise of the receiving coil, the design and testing of such a sensor is described in detail. Results indicate that the primary field of the transmitting coil depends on the diameter, mass, and power of the coil. A higher mass-power product and a larger diameter causes a stronger primary field. Reducing the number of turns and increasing the clamp voltage reduces the switch-off time of the transmitting current effectively. Increasing the cross-section of the wire reduces the power consumption, but greatly increases the coil's weight. The study of the receiving coil shows that the internal noise of the sensor is dominated by the thermal noise of the damping resistor. Reducing the bandwidth of the system and increasing the size of the coil reduces the internal noise effectively. The cross-sectional area and the distance between the sections of the coil have little effect on the internal noise. A less damped state can effectively reduce signal distortion. Finally, a portable TEM sensor with both a transmitting coil (constructed with a diameter, number of turns, and transmitting current of 0.5 m, 30, and 5 A, respectively) and a receiving coil (constructed with a length and resonant frequency of 5.6 cm and 50 kHz, respectively) was built. The agreement between experimental and calculated results confirms the theory used in the sensor design. The responses of an 82 mm mortar shell at different distances were measured and inverted by the differential evolution (DE) algorithm to verify system performance. Results show that the sensor designed in this study can not only detect the 82 mm mortar shell within 1.2 m effectively but also locate the target precisely.

  3. Chapter 18: Web-based Tools - NED VO Services

    NASA Astrophysics Data System (ADS)

    Mazzarella, J. M.; NED Team

    The NASA/IPAC Extragalactic Database (NED) is a thematic, web-based research facility in widespread use by scientists, educators, space missions, and observatory operations for observation planning, data analysis, discovery, and publication of research about objects beyond our Milky Way galaxy. NED is a portal into a systematic fusion of data from hundreds of sky surveys and tens of thousands of research publications. The contents and services span the entire electromagnetic spectrum from gamma rays through radio frequencies, and are continuously updated to reflect the current literature and releases of large-scale sky survey catalogs. NED has been on the Internet since 1990, growing in content, automation and services with the evolution of information technology. NED is the world's largest database of crossidentified extragalactic objects. As of December 2006, the system contains approximately 10 million objects and 15 million multi-wavelength cross-IDs. Over 4 thousand catalogs and published lists covering the entire electromagnetic spectrum have had their objects cross-identified or associated, with fundamental data parameters federated for convenient queries and retrieval. This chapter describes the interoperability of NED services with other components of the Virtual Observatory (VO). Section 1 is a brief overview of the primary NED web services. Section 2 provides a tutorial for using NED services currently available through the NVO Registry. The "name resolver" provides VO portals and related internet services with celestial coordinates for objects specified by catalog identifier (name); any alias can be queried because this service is based on the source cross-IDs established by NED. All major services have been updated to provide output in VOTable (XML) format that can be accessed directly from the NED web interface or using the NVO registry. These include access to images via SIAP, Cone- Search queries, and services providing fundamental, multi-wavelength extragalactic data such as positions, redshifts, photometry and spectral energy distributions (SEDs), and sizes (all with references and uncertainties when available). Section 3 summarizes the advantages of accessing the NED "name resolver" and other NED services via the web to replace the legacy "server mode" custom data structure previously available through a function library provided only in the C programming language. Section 4 illustrates visualization via VOPlot of an SED and the spatial distribution of sources from a NED All-Sky (By Parameters) query. Section 5 describes the new NED Spectral Archive, illustrating how VOTables are being used to standardize the data and metadata as well as the physical units of spectra made available by authors of journal articles and producers of major survey archives; quick-look spectral analysis through convenient interoperability with the SpecView (STScI) Java applet is also shown. Section 6 closes with a summary of the capabilities described herein, which greatly simplify interoperability of NED with other components of the VO, enabling new opportunities for discovery, visualization, and analysis of multiwavelength data.

  4. Search for Long-Lived Neutral Particles in Final States with Delayed Photon and Missing Transverse Energy from Proton-Proton Collisions Using the CMS detector

    NASA Astrophysics Data System (ADS)

    Tambe Ebai, Norbert

    We perform a search for long-lived neutral particles in final state with delayed photons and large missing transverse energy produced in LHC proton-proton collisions at center-of-mass energy, √s = 8 TeV. Capitalizing on the excellent timing resolution of the CMS Electromagnetic Calorimeter the search uses photon time measurements made by the Electromagnetic Calorimeter as the main search quantity. We found a single event consistent with our background expectations from the Standard Model and set a model-independent upper limit of 4.37 on number of signal events. We also interpret our results in the context of the SPS8 benchmark GMSB model and show that neutralinos with mean lifetime, tau PSneutralinoOne ≤ 45 ns, and mass, mPSneutralinoOne ≤ 300 GeV/c2, or effective Supersymmetry breaking energy scale, Lambda ≤ 220TeV, are ruled out of existence at 95% CLS confidence level. The exclusion limit on the product of the production cross-section and branching ratio of the neutralino to photon and gravitino decay channel, sigma(PSneutralinoOne → gamma + G˜) x BR, for different lifetimes and masses is derived. Our results confirm for the first time that the CMS Electromagnetic Calorimeter provides good sensitivity to search for long-lived neutral particles with lifetimes up to 40 ns and masses up to 300 GeV/c2 using only timing measurements.

  5. Association between Exposure to Electromagnetic Fields from High Voltage Transmission Lines and Neurobehavioral Function in Children

    PubMed Central

    Huang, Jiongli; Tang, Tiantong; Hu, Guocheng; Zheng, Jing; Wang, Yuyu; Wang, Qiang; Su, Jing; Zou, Yunfeng; Peng, Xiaowu

    2013-01-01

    Background Evidence for a possible causal relationship between exposure to electromagnetic fields (EMF) emitted by high voltage transmission (HVT) lines and neurobehavioral dysfunction in children is insufficient. The present study aims to investigate the association between EMF exposure from HVT lines and neurobehavioral function in children. Methods Two primary schools were chosen based on monitoring data of ambient electromagnetic radiation. A cross-sectional study with 437 children (9 to 13 years old) was conducted. Exposure to EMF from HVT lines was monitored at each school. Information was collected on possible confounders and relevant exposure predictors using standardized questionnaires. Neurobehavioral function in children was evaluated using established computerized neurobehavioral tests. Data was analyzed using multivariable regression models adjusted for relevant confounders. Results After controlling for potential confounding factors, multivariable regression revealed that children attending a school near 500 kV HVT lines had poorer performance on the computerized neurobehavioral tests for Visual Retention and Pursuit Aiming compared to children attending a school that was not in close proximity to HVT lines. Conclusions The results suggest long-term low-level exposure to EMF from HVT lines might have a negative impact on neurobehavioral function in children. However, because of differences in results only for two of four tests achieved statistical significance and potential limitations, more studies are needed to explore the effects of exposure to extremely low frequency EMF on neurobehavioral function and development in children. PMID:23843999

  6. Synthesis of resistive tapers to control scattering patterns of strips

    NASA Astrophysics Data System (ADS)

    Haupt, Randy L.

    Scattering occurs when an electromagnetic wave impinges on an object and creates currents in that object which reradiate other electromagnetic waves. Three primary methods exist to reduce microwave scattering from an object: covering it with absorber, changing its shape, and detuning it through impedance loading. Absorbers convert unwanted electromagnetic energy into heat. An example is lining an anechoic chamber with absorbers. Changing its shape channels energy from one direction to another, changes dominant scattering centers, or causes returns from one direction to another, changes dominant scattering centers, or causes returns from various parts to coherently add and cancel the total return. Impedance loading alters the resonant frequency of an object. Absorbers have the most attractive features. They have a broad bandwidth, attenuate the return in many directions, and may be used to reduce scattering from an object after the object is designed. Before trying to control scattering from complex shapes, such as an antenna or airplane, one should try to develop methods to control scattering from simple objects. A very simple object is two dimensional strip. It is infinitely thin, has a finite width, and an infinite length. The scattering pattern of the strip depends upon its width and material composition. Varying these two factors provides a means for controlling the radar cross-section (RCS) of the strip. The goal of this thesis is to synthesize resistive tapers for the strip that produce desired bistatic scattering and backscattering patterns.

  7. Production of $${\\pi ^0}$$ and $$\\eta $$ mesons up to high transverse momentum in pp collisions at 2.76 TeV

    DOE PAGES

    Acharya, S.; Adamová, D.; Aggarwal, M. M.; ...

    2017-05-22

    The invariant differential cross sections for inclusive π 0 and η mesons at midrapidity were measured in pp collisions at √s=2.76 TeV for transverse momenta 0.4 < p T < 40 GeV/c and 0.6 < p T < 20 GeV/c, respectively, using the ALICE detector. This large range in p T was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). Particularly, a new single-cluster, shower-shape based method was developed for the identification of high-p T neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. Above 4 GeV/c, the measured crossmore » sections are found to exhibit a similar power-law behavior with an exponent of about 6.3. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about 30% for the π 0 , and between 30–50% for the η meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than 10–30%, except at p T < 1 GeV/c. The new data can therefore be used to further improve the theoretical description of π 0 and η meson production.« less

  8. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Sections 17.4.1, 17.4.1.1, 17.4.2... Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI...

  9. 47 CFR 215.1 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Background. 215.1 Section 215.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL FEDERAL GOVERNMENT FOCAL POINT FOR ELECTROMAGNETIC PULSE (EMP) INFORMATION § 215.1 Background. (a) The nuclear electromagnetic...

  10. 47 CFR 215.1 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Background. 215.1 Section 215.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL FEDERAL GOVERNMENT FOCAL POINT FOR ELECTROMAGNETIC PULSE (EMP) INFORMATION § 215.1 Background. (a) The nuclear electromagnetic...

  11. 47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.1-1992, Copyright 1992 by the Institute of Electrical and... Exposure Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright...

  12. 47 CFR 215.1 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Background. 215.1 Section 215.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL FEDERAL GOVERNMENT FOCAL POINT FOR ELECTROMAGNETIC PULSE (EMP) INFORMATION § 215.1 Background. (a) The nuclear electromagnetic...

  13. 47 CFR 215.1 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Background. 215.1 Section 215.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL FEDERAL GOVERNMENT FOCAL POINT FOR ELECTROMAGNETIC PULSE (EMP) INFORMATION § 215.1 Background. (a) The nuclear electromagnetic...

  14. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Sections 17.4.1, 17.4.1.1, 17.4.2... Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI...

  15. 47 CFR 215.1 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Background. 215.1 Section 215.1 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL FEDERAL GOVERNMENT FOCAL POINT FOR ELECTROMAGNETIC PULSE (EMP) INFORMATION § 215.1 Background. (a) The nuclear electromagnetic...

  16. Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies

    PubMed Central

    Liang, Lanju; Wei, Minggui; Yan, Xin; Wei, Dequan; Liang, Dachuan; Han, Jiaguang; Ding, Xin; Zhang, GaoYa; Yao, Jianquan

    2016-01-01

    A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than −10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices. PMID:27982089

  17. Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies.

    PubMed

    Liang, Lanju; Wei, Minggui; Yan, Xin; Wei, Dequan; Liang, Dachuan; Han, Jiaguang; Ding, Xin; Zhang, GaoYa; Yao, Jianquan

    2016-12-16

    A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than -10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices.

  18. Experimental and computational studies of electromagnetic cloaking at microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui

    An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (epsilon r>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.

  19. Measurement and simulation of millimeter wave scattering cross-sections from steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Hassan, A. M.; Martys, N. S.; Garboczi, E. J.; McMichael, R. D.; Stiles, M. D.; Plusquellic, D. F.; Stutzman, P. E.; Wang, S.; Provenzano, V.; Surek, J. T.; Novotny, D. R.; Coder, J. B.; Janezic, M. D.; Kim, S.

    2014-02-01

    Some iron oxide corrosion products exhibit antiferromagnetic magnetic resonances (AFMR) at frequencies on the order of 100 GHz at ambient temperatures. AFMR can be detected in laboratory conditions, which serves as the basis for a new non-destructive spectroscopic method for detecting early corrosion. When attempting to measure the steel corrosion in reinforced concrete in the field, rebar geometry must be taken into account. Experiments and numerical simulations have been developed at frequencies near 100 GHz to sort out these effects. The experimental setup involves a vector network analyzer with converter heads to up-convert the output frequency, which is then connected to a horn antenna followed by a 7.5 cm diameter polymer lens to focus the waves on the sample. Two sets of samples were studied: uniform cylindrical rods and rebar corrosion samples broken out of concrete with different kinds of coatings. Electromagnetic scattering from uniform rods were calculated numerically using classical modal expansion. A finite-element electromagnetic solver was used to model more complex rebar geometry and non-uniform corrosion layers. Experimental and numerical data were compared to help quantify and understand the anticipated effect of local geometrical features on AFMR measurements.

  20. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  1. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  2. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.

    PubMed

    Zhang, Chao; Chen, Dong; Jiang, Xuefeng

    2017-11-13

    An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.

  3. Electromagnetic structure of few-nucleon ground states

    DOE PAGES

    Marcucci, Laura E.; Gross, Franz L.; Peña, M. T.; ...

    2016-01-08

    Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled ChiEFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). Furthermore, for momentum transfers belowmore » Q < 5 fm -1 there is satisfactory agreement between experimental data and theoretical results in all three approaches. Conversely, at Q > 5 fm -1, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q ~ 12 fm -1, and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, there is no evidence for new effects coming from quark and gluon degrees of freedom at short distances.« less

  4. Smart skin spiral antenna with chiral absorber

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-05-01

    Recently there has been considerable interest toward designing 'smart skins' for aircraft. The smart skin is a composite layer which may contain conformal radars, conformal microstrip antennas or spiral antennas for electromagnetic applications. These embedded antennas will give rise to very low radar cross section (RCS) or can be completely 'hidden' to tracking radar. In addition, they can be used to detect, monitor or even jam other unwanted electromagnetic field signatures. This paper is designed to address some technical advances made to reduce the size of spiral antennas using tunable dielectric materials and chiral absorbers. The purpose is to design, develop and fabricate a thin, wideband, conformal spiral antenna architecture that is structurally integrable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integrable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film or LTCC techniques.

  5. The Propagation and Scattering of EM Waves in Electrically Large Ducts

    NASA Astrophysics Data System (ADS)

    Khan, Saeed Mahmood

    The electromagnetic scattering from large arbitrarily shaped ducts with complex termination is studied here by a hybrid technique. The propagation of electromagnetic waves in the duct is analyzed in terms of an approximate modal solution. A finite difference technique is employed for computing the reflection characteristics of the complex terminations. Both solutions are combined using the unimoment method. The analysis here is carried out for monostatic RCS and considers only fields backscattered from inside the cavity. Rim-diffraction has been left out. The procedure offers such advantages as in that it is not necessary to find complicated Green's functions, which may not be readily available, when compared with the integral equation method. Hybridization performed by combining an approximate modal technique with a finite difference one makes the scheme numerically efficient. From a computational EM point of view, it brings together a whole spectrum of techniques associated with high frequency modal analysis, Fourier Methods, Radar Cross Section and Scattering, finite difference solution and the Unimoment Method. The practical application of this technique may range from the study of RCS scattered from jet inlets of radar evasive aircraft to submarine communication waveguides.

  6. Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Oumbé Tékam, Gabin T.; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2017-02-01

    Electromagnetic energy harvesting, i.e., capturing energy from ambient microwave signals, may become an essential part in extending the battery lifetime of wearable devices. Here, we present a design of a microwave energy harvester based on a cut-wire metasurface with an integrated PN junction diode. The cut wire with a quasistatic electric-dipole moment is designed to have a resonance at 6.75 GHz, leading to a substantial cross-section for absorption. The external microwaves create a unidirectional current through the rectifying action of the integrated diode. Using an electrical-circuit model, we design the operating frequency and the resistive load of the cut wire. Subsequently, by optimizing our design using full-wave numerical simulations, we obtain an energy harvesting efficiency of 50% for incident power densities in agreement with the typical power density of WiFi signals. Finally, we study the effect of connecting adjacent unit cells of the metasurface in parallel by a thin highly inductive wire and we demonstrate that this allows for the collection of current from all individual cells, while the microwave resonance of the unit cell is not significantly altered, thus solving the wiring problem that arises in many nonlinear metamaterials.

  7. Remote sensing of soil moisture using airborne hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...

  8. Electromagnetic properties of thin-film transformer-coupled superconducting tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, T.F.; Lacquaniti, V.; Vaglio, R.

    1981-09-01

    Multisection superconducting microstrip transformers with designed output impedances below 0.1 ..cap omega.. have been fabricated via precise photolithographic techniques to investigate the electromagnetic properties of Nb-Nb oxide-Pb tunnel junctions. The low-impedance transformer sections incorporate a rf sputtered thin-film Ta-oxide dielectric, and the reproducible external coupling achievable with this type of geometry makes possible the systematic investigation of electromagnetic device parameters as a function of tunneling oxide thickness.

  9. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collision

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1992-01-01

    The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting factor in the design of long duration space flights and the building of lunar and martian habitats. It is of vital importance to have an accurate understanding of the interactions of GCR in order to assess the radiation environment that the astronauts will be exposed to. Although previous studies have concentrated on the strong interaction process in GCR, there are also very large effects due to electromagnetic (EM) interactions. In this report we describe our first efforts at understanding these EM production processes due to two-photon collisions. More specifically, we shall consider particle production processes in relativistic heavy ion collisions (RHICs) through two-photon exchange.

  10. Analysis of {sup 4}He+{sup 40}Ca and {sup 4}He+{sup 44}Ti scattering using different optical model potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibraheem, Awad A., E-mail: awad-ah-eb@hotmail.com

    Elastic scattering of {sup 4}He+{sup 40}Ca and {sup 4}He+{sup 44}Ti reactions at backward angles has been analyzed using two different models, microscopic and semimicroscopic folding potentials. The derived real potentials supplemented with phenomenological Woods–Saxon imaginary potentials, provide good agreement with the experimental data at energy E{sub c.m.} = 21.8 MeV without need to renormalize the potentials. Coupled channels calculations are used to extract the inelastic scattering cross section to the low-lying state 2+ (1.083 MeV) of {sup 44}Ti. The deformation length is obtained and compared with the electromagnetic measurement values as well as those obtained from previous studies.

  11. Electromagnetic characterization of conformal antennas

    NASA Technical Reports Server (NTRS)

    Volakis, John L.; Kempel, Leo C.; Alexanian, Angelos; Jin, J. M.; Yu, C. L.; Woo, Alex C.

    1992-01-01

    The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations.

  12. Mirror-image-induced magnetic modes.

    PubMed

    Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco

    2013-01-22

    Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section.

  13. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  14. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  15. Development of an outdoor MRI system for measuring flow in a living tree

    NASA Astrophysics Data System (ADS)

    Nagata, Akiyoshi; Kose, Katsumi; Terada, Yasuhiko

    2016-04-01

    An outdoor MRI system for noninvasive, long-term measurements of sap flow in a living tree in its natural environment has been developed. An open-access, 0.2 T permanent magnet with a 160 mm gap was combined with a radiofrequency probe, planar gradient coils, electromagnetic shielding, several electrical units, and a waterproofing box. Two-dimensional cross-sectional images were acquired for a ring-porous tree, and the anatomical structures, including xylem and phloem, were identified. The MRI flow measurements demonstrated the diurnal changes in flow velocity in the stem on a per-pixel basis. These results demonstrate that our outdoor MRI system is a powerful tool for studies of water transport in outdoor trees.

  16. Search for exclusive gammagamma production in Hadron-Hadron collisions.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Caron, B; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pinfold, J; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-12-14

    We have searched for exclusive gammagamma production in proton-antiproton collisions at sqrt[s]=1.96 TeV, using 532 pb(-1) of integrated luminosity taken by the run II Collider Detector at Fermilab. The event signature requires two electromagnetic showers, each with transverse energy E(T)>5 GeV and pseudorapidity |eta|<1.0, with no other particles detected in the event. Three candidate events are observed. We discuss the consistency of the three events with gammagamma, pi(0)pi(0), or eta eta production. The probability that other processes fluctuate to >or=3 events is 1.7x10(-4). An upper limit on the cross section of pp-->p + gammagamma + p production is set at 410 fb with 95% confidence level.

  17. Using Optical Coherence Tomography to Reveal the Hidden History of The Landsdowne Virgin of the Yarnwinder by Leonardo da Vinci and Studio.

    PubMed

    Targowski, Piotr; Iwanicka, Magdalena; Sylwestrzak, Marcin; Frosinini, Cecilia; Striova, Jana; Fontana, Raffaella

    2018-06-18

    Optical coherence tomography (OCT) was used for non-invasive examination of a well-known, yet complex, painting from the studio of Leonardo da Vinci in combination with routine imaging in various bands of electromagnetic radiation. In contrast with these techniques, OCT provides depth-resolved information. Three post-processing modalities were explored: cross-sectional views, maps of scattering from given depths, and their 3D models. Some hidden alterations of the painting owing to past restorations were traced: retouching and overpainting with their positioning within varnish layers as well as indications of a former transfer to canvas. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Discharge dynamics of self-oriented microplasma coupling between cross adjacent cavities in micro-structure device driven by a bipolar pulse waveform

    NASA Astrophysics Data System (ADS)

    Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen

    2018-04-01

    The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.

  19. Pixelated Checkerboard Metasurface for Ultra-Wideband Radar Cross Section Reduction.

    PubMed

    Haji-Ahmadi, Mohammad-Javad; Nayyeri, Vahid; Soleimani, Mohammad; Ramahi, Omar M

    2017-09-12

    In this paper we designed and fabricated a metasurface working as a radar cross section (RCS) reducer over an ultra wide band of frequency from 3.8 to 10.7 GHz. The designed metasurface is a chessboard-like surface made of alternating tiles, with each tile composed of identical unit cells. We develop a novel, simple, highly robust and fully automated approach for designing the unit cells. First, a topology optimization algorithm is used to engineer the shape of the two unit cells. The area of each unit cell is pixelated. A particle swarm optimization algorithm is applied wherein each pixel corresponds to a bit having a binary value of 1 or 0 indicating metallization or no metallization. With the objective of reducing the RCS over a specified frequency range, the optimization algorithm is then linked to a full wave three-dimensional electromagnetic simulator. To validate the design procedure, a surface was designed, fabricated and experimentally tested showing significantly enhanced performance than previous works. Additionally, angular analysis is also presented showing good stability and wide-angle behavior of the designed RCS reducer. The automated design procedure has a wide range of applications and can be easily extended to design surfaces for antennas, energy harvesters, noise mitigation in electronic circuit boards amongst others.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Luca, A., E-mail: antonio.deluca@fis.unical.it; Dhama, R.; Rashed, A. R.

    We report on the broadband resonant energy transfer processes observed in dye doped gold nanoshells, consisting of spherical particles with a dielectric core (SiO{sub 2}) covered by a thin gold shell. The silica core has been doped with rhodamine B molecules in order to harness a coherent plasmon-exciton coupling between chromophores and plasmonic shell. This plasmon-exciton interplay depends on the relative spectral position of their bands. Here, we present a simultaneous double strong coupling plasmon-exciton and exciton-plasmon. Indeed, experimental observations reveal of a transmittance enhancement as function of the gain in a wide range of optical wavelengths (about 100 nm), whilemore » scattering cross sections remains almost unmodified. These results are accompanied by an overall reduction of chromophore fluorescence lifetimes that are a clear evidence of nonradiative energy transfer processes. The increasing of transmission in the range of 630–750 nm is associated with a striking enhancement of the extinction cross-section in the 510–630 nm spectral region. In this range, the system assumes super-absorbing features. This double behavior, as well as the broadband response of the presented system, represents a promising step to enable a wide range of electromagnetic properties and fascinating applications of plasmonic nanoshells as building blocks for advanced optical materials.« less

  1. Measurement of inclusive muon pair production by 225-GeV/c. pi. /sup +/,. pi. /sup -/, and proton beams with a large acceptance spectrometers. [Cross sections, 225 GeV/c, tables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brason, J G

    1977-05-01

    Inclusive muon pair production by 225 GeV/c ..pi../sup +/, ..pi../sup -/ and proton beams incident upon carbon and tin targets was measured over a large range of kinematic variables (2m/sub ..mu../ < m/sub ..mu mu.. < 1 GeV/c/sup 2/, 0 < x/sub F/ < 1, P/sub perpendicular to/ < 4 GeV/c and vertical bar cos theta* vertical bar < .3). The value of the invariant cross section E d/sup 4/sigma/dmdx/sub f/dp/sup 2//sub perpendicular to/ is presented as a function of these variables. The vector mesons rho, ..omega.., phi, J and psi' appear in the data along with apparently nonresonant ..mu..-pairs.more » By looking for additional muons accompanying J ..-->.. ..mu../sup +/..mu../sup -/ events, a 1.0% upper limit on production of pairs of charmed particles in association with the J is obtained. Aspects of the continuum muon pair data are compared to Drell-Yan model calculations. The ratio of ..mu..-pairs produced by ..pi../sup +/ beam particles to ..mu..-pairs produced by ..pi../sup -/ beam particles supports electromagnetic production at high mass.« less

  2. On the use of statistical methods to interpret electrical resistivity data from the Eumsung basin (Cretaceous), Korea

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun

    2001-12-01

    Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.

  3. Expansion tunnel performance with and without an electromagnetically opened tertiary diaphragm

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1977-01-01

    A study was conducted to examine the effect of synchronization of an electromagnetically opened tertiary diaphragm with flow arrival at the diaphragm on the pitot pressure measured at the test section of an expansion tunnel. The effect of tertiary diaphragm pressure ratio (ratio of initial nozzle pressure to quiescent acceleration section pressure) on the pitot pressure time history is also determined. The inadequacy of a pressure transducer protection arrangement used in previous expansion tube and expansion tunnel tests was revealed.

  4. Properties of an ultrarelativistic charged particle radiation in a constant homogeneous crossed electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, O.V., E-mail: bov@tpu.ru; Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050; Kazinski, P.O., E-mail: kpo@phys.tsu.ru

    The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energiesmore » and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.« less

  5. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  6. High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection

    NASA Astrophysics Data System (ADS)

    Zhang, Jiameng; Yang, Lan; Li, Linpeng; Zhang, Tong; Li, Haihong; Wang, Qingmin; Hao, Yanan; Lei, Ming; Bi, Ke

    2017-07-01

    An ultra-wideband polarization conversion metasurface based on S-shaped metallic structure is designed and prepared. The simulation results show that the polarization conversion bandwidth is 14 GHz for linearly polarized normally incident electromagnetic waves and the cross-polarized reflectance is more than 99% in the range of 10.3 GHz-20.5 GHz. On the premise of high reflection efficiency, the reflective phase can be regulated by changing the geometrical parameter of the S-shaped metallic structure. A phase gradient metasurface composed of six periodically arrayed S-shaped unit cells is proposed and further demonstrated both numerically and experimentally. The specular cross-polarization reflection of the phase gradient metasurface is below -10 dB, which shows a good performance on manipulating the direction of the reflected electromagnetic waves.

  7. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Arguello, Alejandro Marti

    The study of the inner structure of hadrons allows us to understand the nature of the interactions between partons, quarks and gluons, described by Quantum Chromodynamics. The elastic scattering reactions, which have been studied in order to measure the nucleon form factors, are included in this frame. The inelastic scattering reactions are also included in this frame, they allow us to obtain information about the nucleon structure thanks to the development of the parton distribution functions (PDFs). While through elastic scattering we can obtain information about the charge distribution of the nucleon, and hence, about the spatial distribution of themore » partons, through inelastic scattering we obtain information about the momentum distributions of partons, by employing the PDFs. However, we can study the exclusive inelastic scattering reactions, such as the Deeply Virtual Compton Scattering (DVCS), wich allow us to access to the spatial and momentum distributions simultaneously. This is possible thanks to the generalized parton distributions (GPDs), which allow us to correlate both types of distributions. The process known as DVCS is the easiest way to access the GPDs. This process can be expressed as the scattering of an electron by a proton by means of a virtual photon with the result of the scattered initial particles plus a real photon. We find a process competing with DVCS known as Bethe-Heitler (BH), in which the real photon is radiated by the lepton rather than the quark. Due to the small cross section of DVCS, of the order of nb, in order to conduct these kind of experiments it is necessary to make use of facilities capable of providing high beam intensities. One of these facilities is the Thomas Jefferson National Accelerator Facility , where the experiment JLab E07-007, "Complete Separation of Virtual Photon and π⁰ Electroproduction Observables of Unpolarized Protons", took place during the months of October to December of 2010. The main goal of this experiment is the isolation of the contribution from the term coming form the DVCS from the interference term, resulting from the BH contribution. This isolation is known as "Rosenbluth Separation". The work presented in this thesis focuses on the analysis of the data stored by the electromagnetic calorimeter, employed for the detection of real photons. There is also a a theoretical introduction to the study of the nucleon structure, reviewing the concepts of form factors and parton distributions through elastic and inelastic processes. The computation of the photon leptoproduction cross section is described in detail, as well as the goals of experiment E07-007. This thesis also describes the analysis of the data stored by the electromagnetic calorimeter, with the purpose of obtaining the kinematic variables of the real photons resulting from DVCS reactions. Finally, it describes the selection of events from stored data, the applied cuts to kinematical variables and the background subtraction. Also, the process of extraction of the necessary observables for computing the photon leptoproduction cross section is described, along with the main steps followed to perform the Monte Carlo simulation used in this computation. The resulting cross sections are shown at the end of this thesis.« less

  9. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats.

    PubMed

    Oyewopo, A O; Olaniyi, S K; Oyewopo, C I; Jimoh, A T

    2017-12-01

    Cell phones have become an integral part of everyday life. As cell phone usage has become more widespread, concerns have increased regarding the harmful effects of radiofrequency electromagnetic radiation from these devices. The current study was undertaken to investigate the effects of the emitted radiation by cell phones on testicular histomorphometry and biochemical analyses. Adult male Wistar rats weighing 180-200 g were randomly allotted to control, group A (switched off mode exposure), group B (1-hr exposure), group C (2-hr exposure) and group D (3-hr exposure). The animals were exposed to radiofrequency electromagnetic radiation of cell phone for a period of 28 days. Histomorphometry, biochemical and histological investigations were carried out. The histomorphometric parameters showed no significant change (p < .05) in the levels of germinal epithelial diameter in all the experimental groups compared with the control group. There was no significant change (p < .05) in cross-sectional diameter of all the experimental groups compared with the control group. Group D rats showed a significant decrease (p ˂ .05) in lumen diameter compared with group B rats. There was an uneven distribution of germinal epithelial cells in groups B, C and D. However, there was degeneration of the epithelia cells in group D when compared to the control and group B rats. Sera levels of malondialdehyde (MDA) and superoxide dismutase (SOD), which are markers of reactive oxygen species, significantly increased (MDA) and decreased (SOD), respectively, in all the experimental groups compared with the control group. Also sera levels of gonadotropic hormones (FSH, LH and testosterone) significantly decreased (p < .05) in groups C and D compared with the control group. The study demonstrates that chronic exposure to radiofrequency electromagnetic radiation of cell phone leads to defective testicular function that is associated with increased oxidative stress and decreased gonadotropic hormonal profile. © 2017 Blackwell Verlag GmbH.

  10. Multiband rectenna for microwave applications

    NASA Astrophysics Data System (ADS)

    Okba, Abderrahim; Takacs, Alexandru; Aubert, Hervé; Charlot, Samuel; Calmon, Pierre-François

    2017-02-01

    This paper reports a multiband rectenna (rectifier + antenna) suitable for the electromagnetic energy harvesting of the spill-over loss of microwave antennas placed on board of geostationary satellites. Such rectenna is used for powering autonomous wireless sensors for satellite health monitoring. The topology of the rectenna is presented. The experimental results demonstrate that the proposed compact rectenna can harvest efficiently the incident electromagnetic energy at three different frequencies that are close to the resonant frequencies of the cross-dipoles implemented in the antenna array. xml:lang="fr"

  11. Reversed rainbow with a nonlocal metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt

    2014-12-29

    One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.

  12. Electromagnetically induced transparency with noisy lasers

    NASA Astrophysics Data System (ADS)

    Xiao, Yanhong; Wang, Tun; Baryakhtar, Maria; van Camp, Mackenzie; Crescimanno, Michael; Hohensee, Michael; Jiang, Liang; Phillips, David F.; Lukin, Mikhail D.; Yelin, Susanne F.; Walsworth, Ronald L.

    2009-10-01

    We demonstrate and characterize two coherent phenomena that can mitigate the effects of laser phase noise for electromagnetically induced transparency (EIT): a laser-power-broadening-resistant resonance in the transmitted intensity cross correlation between EIT optical fields, and a resonant suppression of the conversion of laser phase noise to intensity noise when one-photon noise dominates over two-photon-detuning noise. Our experimental observations are in good agreement with both an intuitive physical picture and numerical calculations. The results have wide-ranging applications to spectroscopy, atomic clocks, and magnetometers.

  13. Susceptibility study of audio recording devices to electromagnetic stimulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiuguo; Ma, Zhichao; Xu, Zhimou

    Mueller matrix ellipsometry (MME) is applied to detect foot-like asymmetry encountered in nanoimprint lithography (NIL) processes. We present both theoretical and experimental results which show that MME has good sensitivity to both the magnitude and direction of asymmetric profiles. The physics behind the use of MME for asymmetry detection is the breaking of electromagnetic reciprocity theorem for the zeroth-order diffraction of asymmetric gratings. We demonstrate that accurate characterization of asymmetric nanoimprinted gratings can be achieved by performing MME measurements in a conical mounting with the plane of incidence parallel to grating lines and meanwhile incorporating depolarization effects into the opticalmore » model. The comparison of MME-extracted asymmetric profile with the measurement by cross-sectional scanning electron microscopy also reveals the strong potential of this technique for in-line monitoring NIL processes, where symmetric structures are desired.« less

  15. {{\\rm{\\Lambda }}}_{c}^{+} physics at BESIII

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; BESIII collaboration

    2018-05-01

    Based on the data sets collected by the BESIII detector near the {{{Λ }}}c+{\\bar{{{Λ }}}}c- production threshold, i.e. at \\sqrt{s}=4574.5,4580.0,4590.0, and 4599.5 MeV, we report the preliminary study of the production behaviour of {e}+{e}-\\to {{{Λ }}}c+{\\bar{{{Λ }}}}c- process, including the Born cross section and electromagnetic form factor ratios. Using the large statistic data at \\sqrt{s}=4599.5 {{MeV}}, we measured the absolute branching fractions of Cabibbo-favored hadronic decays of {{{Λ }}}c+ baryon with a double-tag technique. The branching fractions for 12 hadronic decay modes are significantly improved. We also report the model-independent measurement of the branching fraction of {{{Λ }}}c+\\to {{Λ }}{e}+{v}e and {{{Λ }}}c+\\to {{Λ }}{μ }+{v}μ semi-leptonic decays.

  16. The reduced basis method for the electric field integral equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, M., E-mail: fares@cerfacs.f; Hesthaven, J.S., E-mail: Jan_Hesthaven@Brown.ed; Maday, Y., E-mail: maday@ann.jussieu.f

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, formore » many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.« less

  17. Scattering and cloaking of binary hyper-particles in metamaterials.

    PubMed

    Alexopoulos, A; Yau, K S B

    2010-09-13

    We derive the d-dimensional scattering cross section for homogeneous and composite hyper-particles inside a metamaterial. The polarizability of the hyper-particles is expressed in multi-dimensional form and is used in order to examine various scattering characteristics. We introduce scattering bounds that display interesting results when d --> ∞ and in particular consider the special limit of hyper-particle cloaking in some detail. We demonstrate cloaking via resonance for homogeneous particles and show that composite hyper-particles can be used in order to obtain electromagnetic cloaking with either negative or all positive constitutive parameters respectively. Our approach not only considers cloaking of particles of integer dimension but also particles with non-integer dimension such as fractals. Theoretical results are compared to full-wave numerical simulations for two interacting hyper-particles in a medium.

  18. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  19. Casting inorganic structures with DNA molds

    PubMed Central

    Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng

    2014-01-01

    We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. PMID:25301973

  20. Search for Gamma Ray Bursts at Sierra Negra, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar, H.; Alvarez, C.; Martinez, O.

    2006-09-25

    We present results from a search for GRBs in the energy range from tens of GeVs to one TeV with an array of 4 water Cherenkov detectors located at 4550 m a.s.l. as part of the high mountain observatory of Sierra Negra (N18 deg. 59.1, W97 deg. 18.76) near Puebla city in Mexico. The detectors consist of light-tight cylindrical containers of 1 m2 and 4 m2 cross section filled with purified water; they are spaced 25 m and have a 5'' photomultiplier (EMI model 9030A) facing down along the cylindrical axis. We report the measured rates of the electromagnetic andmore » mounic components of the background as the photon estimated flux.« less

  1. Digital filter polychromator for Thomson scattering applications

    NASA Astrophysics Data System (ADS)

    Solokha, V.; Kurskiev, G.; Mukhin, E.; Tolstyakov, S.; Babinov, N.; Bazhenov, A.; Bukreev, I.; Dmitriev, A.; Kochergin, M.; Koval, A.; Litvinov, A.; Masyukevich, S.; Razdobarin, A.; Samsonov, D.; Semenov, V.; Solovey, V.; Chernakov, P.; Chernakov, Al; Chernakov, An

    2018-02-01

    Incoherent Thomson scattering diagnostics (TS) is a proven technique capable of reliable and robust instantaneous measurement of electron temperature (T e) and density (n e) local values in wide area of plasma physics experiments: from hall-effect thrusters to tokamaks and stellarators. The TS cross section is very low (˜ 6.7 × 10-30 m2), and the corresponding TS signals, measured in fusion experiments, are usually of ˜10-15 of incident power. This paper represents 6 (7) channel filter polychromator equipped with avalanche photodiodes and low-noise preamplifiers. The incorporated ADC system (5 GS/s, 12 bit) provides digital optical output preventing acquisition system from electromagnetic interferences. The calibration techniques and T e, n e with corresponding errors measured in Globus-M plasma are given for the digital polychromator test-bench.

  2. Optical nondestructive dynamic measurements of wafer-scale encapsulated nanofluidic channels.

    PubMed

    Liberman, Vladimir; Smith, Melissa; Weaver, Isaac; Rothschild, Mordechai

    2018-05-20

    Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed or embedded channels without cleaving the sample. Here, we demonstrate a novel method for accurately extracting nanochannel cross-sectional dimensions and monitoring fluid filling, utilizing spectroscopic ellipsometric scatterometry, combined with rigorous electromagnetic simulations. Our technique is capable of measuring channel dimensions with better than 5-nm accuracy and assessing channel filling within seconds. The developed technique is, thus, well suited for both process monitoring of channel fabrication as well as for studying complex phenomena of fluid flow through nanochannel structures.

  3. Application of Fresnel Zone to Cross Talk

    NASA Technical Reports Server (NTRS)

    Javan, Hank

    1998-01-01

    Unintentional radiation results in cross coupling to nearby cables. As frequency increases, the amount of this coupling becomes significant especially in high speed data transmission and space lab experiments. There has been a considerable amount of research to model this radiation and design the electronic equipment accordingly so that operation of space lab instruments will be immune to unwanted radiation. Here at MSFC, the Electromagnetics and Aerospace Environment Branch has the responsibility to analyze, test, and make the necessary recommendation as to the safe operation of instruments used in the space program. Rules, regulation, and limits as set by this group are published in Electromagnetic Compatibility Design and Interference Control (MEDIC) Handbook. This document contains both conducted and radiate emission rules and limits are set by NASA. However cross coupling have not been included. At the time of assigning the research task for the author, the Group decided that a more in-depth investigation of Near Field is needed before establishing a set of rules and limits for cross coupling. Thus this task was assigned to the author with hope that his work will be more beneficial to NASA's Space mission experiments. The model and the method which will be described shortly is intended to improve the present approach of this Group and suggests a method for measuring the cross field coupling capacitance.

  4. Introduction to the special section ‘Applications of electromagnetic induction to digital soil mapping’

    USDA-ARS?s Scientific Manuscript database

    Use of electromagnetic induction (EMI) instruments has increased as a tool to map soils because it provides a means of locating suitable sampling sites that provide the basis for mapping the spatial variability of various soil properties either directly or indirectly measured with EMI, including sa...

  5. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California.

    PubMed

    Knight, Rosemary; Smith, Ryan; Asch, Ted; Abraham, Jared; Cannia, Jim; Viezzoli, Andrea; Fogg, Graham

    2018-03-09

    The passage of the Sustainable Groundwater Management Act in California has highlighted a need for cost-effective ways to acquire the data used in building conceptual models of the aquifer systems in the Central Valley of California. One approach would be the regional implementation of the airborne electromagnetic (AEM) method. We acquired 104 line-kilometers of data in the Tulare Irrigation District, in the Central Valley, to determine the depth of investigation (DOI) of the AEM method, given the abundance of electrically conductive clays, and to assess the usefulness of the method for mapping the hydrostratigraphy. The data were high quality providing, through inversion of the data, models displaying the variation in electrical resistivity to a depth of approximately 500 m. In order to transform the resistivity models to interpreted sections displaying lithology, we established the relationship between resistivity and lithology using collocated lithology logs (from drillers' logs) and AEM data. We modeled the AEM response and employed a bootstrapping approach to solve for the range of values in the resistivity model corresponding to sand and gravel, mixed coarse and fine, and clay in the unsaturated and saturated regions. The comparison between the resulting interpretation and an existing cross section demonstrates that AEM can be an effective method for mapping the large-scale hydrostratigraphy of aquifer systems in the Central Valley. The methods employed and developed in this study have widespread application in the use of the AEM method for groundwater management in similar geologic settings. © 2018 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  6. FD_BH: a program for simulating electromagnetic waves from a borehole antenna

    USGS Publications Warehouse

    Ellefsen, Karl J.

    2002-01-01

    Program FD_BH is used to simulate the electromagnetic waves generated by an antenna in a borehole. The model representing the antenna may include metallic parts, a coaxial cable as a feed to the driving point, and resistive loading. The program is written in the C programming language, and the program has been tested on both the Windows and the UNIX operating systems. This Open-File Report describes • The contents and organization of the Zip file (section 2). • The program files, the installation of the program, the input files, and the execution of the program (section 3). • Address to which suggestions for improving the program may be sent (section 4).

  7. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, Carlos O.; Nieminen, Juha E.

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  8. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE PAGES

    Maidana, Carlos O.; Nieminen, Juha E.

    2017-02-01

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  9. The interaction of radio frequency electromagnetic fields with atmospheric water droplets and applications to aircraft ice prevention. Thesis

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.

    1982-01-01

    The feasibility of computerized simulation of the physics of advanced microwave anti-icing systems, which preheat impinging supercooled water droplets prior to impact, was investigated. Theoretical and experimental work performed to create a physically realistic simulation is described. The behavior of the absorption cross section for melting ice particles was measured by a resonant cavity technique and found to agree with theoretical predictions. Values of the dielectric parameters of supercooled water were measured by a similar technique at lambda = 2.82 cm down to -17 C. The hydrodynamic behavior of accelerated water droplets was studied photograhically in a wind tunnel. Droplets were found to initially deform as oblate spheroids and to eventually become unstable and break up in Bessel function modes for large values of acceleration or droplet size. This confirms the theory as to the maximum stable droplet size in the atmosphere. A computer code which predicts droplet trajectories in an arbitrary flow field was written and confirmed experimentally. The results were consolidated into a simulation to study the heating by electromagnetic fields of droplets impinging onto an object such as an airfoil. It was determined that there is sufficient time to heat droplets prior to impact for typical parameter values. Design curves for such a system are presented.

  10. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    NASA Astrophysics Data System (ADS)

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-10-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  11. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    PubMed Central

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-01-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification. PMID:27762292

  12. Microstrip-antenna design for hyperthermia treatment of superficial tumors.

    PubMed

    Montecchia, F

    1992-06-01

    Microstrip antennas have many different advantages over other RF/MW radiative applicators employed for superficial hyperthermia treatment. This is mainly due to their compact and body-conformable structure as well as to printed circuit board techniques, both of which allow a wide design flexibility for superficial tumor heating. Among the wide variety of radiator configurations, three microstrip antennas of increasing complexity with electromagnetic and heating characteristics potentially suitable as applicators for superficial hyperthermia have been designed, developed, and tested in different radiative conditions: a microstrip disk, a microstrip annular-slot, and a microstrip spiral. Electromagnetic design criteria are presented together with the determinations of the applicator return loss versus frequency and thermograms of the near-field heating pattern in muscle-like phantom. The results are in good agreement with theory and indicate that: i) the operating frequency is either single or multiple according to the applicator-mode, "resonant" or "traveling-wave," and can be chosen in the useful frequency range for hyperthermia (200-1000 MHz) according to the tumor cross-section and depth; ii) the heating pattern flexibility increases going from the simple geometry disk to the annular-slot and spiral applicators; iii) a distilled-water bolus is required; iv) the annular-slot applicator exhibits the highest efficiency, while the spiral applicator provides the best performance.

  13. On the Alternate Stirring Mode of F-EMS for Bloom Continuous Castings

    NASA Astrophysics Data System (ADS)

    Sun, Haibo; Li, Liejun; Ye, Dexin; Wu, Xuexing

    2018-05-01

    Local solute transportation behaviors under different alternate stirring parameters of final electromagnetic stirring (F-EMS) and their influences on the internal quality of the as-cast bloom are compared and evaluated based on a developed coupled model of electromagnetism, heat, and solute transport. To this end, plant trials were conducted in Shaoguan Steel, China. Under the action of F-EMS, a negative segregation band in an ellipse shape is observed at the central area of strand cross section, where the minimum carbon segregation degree is decreased from 0.98 to 0.84 as the stirring duration increases from 15 to 35 seconds in the alternate stirring mode, while it is reduced to 0.805 in the continuous stirring mode. The white band and shrinkage cavity are simultaneously observed at strand center under the conditions of continuous stirring mode, and alternate stirring mode with a stirring period of 35 seconds because of the local over-sustaining melt rotation. In contrast, the V-shape porosity belt width and strand center segregation fluctuation range increase from 60 to 90 mm and from 0.12 to 0.30, respectively, as the stirring duration is reduced from 25 to 15 seconds in the alternate stirring mode because of the poor mixing of the local melt at the strand center.

  14. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms.

    PubMed

    Mirkovic, Djordje; Stepanian, Phillip M; Kelly, Jeffrey F; Chilson, Phillip B

    2016-10-20

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  15. Screw-Shaped Light in Extended Electromagnetics

    NASA Astrophysics Data System (ADS)

    Lehnert, B.

    2005-01-01

    Twisted light beams have recently been observed for which the energy travels in a corkscrew-shaped path, spiralling around the beam's central axis. These discoveries are expected to become important to the development of new methods in the field of communication, as well as to the invention of new tools in microbiology. In this paper is shown that conventional theory based on Maxwell's equations cannot explain the basic features of twisted light. On the other hand an extended electromagnetic theory, based on a nonzero electric field divergence in the vacuum state, appears to be reconcilable with the main behaviour of the twisted light phenomena. The solutions and the set of modes being obtained from this extended theory are applicable both to models of high and low density photon beams and to those of individual photons, all having limited extensions in space and possessing an angular momentum (spin). Thereby beam models can be developed the intensity of which forms a ring-shaped cross-section, and individual photon models can be obtained which have the features of "needle radiation". However, within the limits of validity of the approximations made so far in the analysis, it is not clear whether the effective diameter of the individual photon models can be small enough to approach atomic dimensions.

  16. Dual-polarized feed antenna apparatus and method of use

    NASA Technical Reports Server (NTRS)

    Sarehraz, Mohammed (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)

    2009-01-01

    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  17. Dual-polarized feed antenna apparatus and method of use

    NASA Technical Reports Server (NTRS)

    Sarehraz, Mohammad (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)

    2008-01-01

    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  18. Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units

    NASA Astrophysics Data System (ADS)

    Chen, Zhaobin; Deng, Hui; Xiong, Qingxu; Liu, Chen

    2018-03-01

    It has been pointed out by many documents that a phase gradient metasurface with wideband characteristics can be designed by the unit with a low-quality factor ( Q value). In this paper, a cross-shaped unit with a low-quality factor Q is proposed. By changing the variable parameters of the unit, it is found that the reflection phase of the unit can achieve a stable distribution of phase gradient in the frequency range of 8.0-20.0 GHz. we analyze variation of the electromagnetic field distribution on the unit with frequency and find that the size along electrical field polarization of electromagnetic field distribution area changes with frequency. Based on our design, effective size of electromagnetic field distribution area keeps meeting the subwavelength condition, thus stable phase distribution is gained across broadened bandwidth. It is found by the analysis of the phase gradient metasurface composed of seven units that the metasurface can exhibit anomalous reflection in the wide frequency band of 8.0-20.0 GHz, and the efficiency of abnormal reflection is higher in the range of 10.0-18.0 GHz. The error between the simulation results of abnormal reflection angle and the theoretical result is only - 1.5° to 0.5° after the work of comparison. Therefore, the metasurface designed by the new cross-shaped unit has a good control on the deflection direction of the reflected wave, and shows obvious advantages in widening the bandwidth.

  19. Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target

    NASA Astrophysics Data System (ADS)

    Scherer, Artur; Valiron, Benoît; Mau, Siun-Chuon; Alexander, Scott; van den Berg, Eric; Chapuran, Thomas E.

    2017-03-01

    We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X, Y, Z, H, S, T, { CNOT } }. In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N=332{,}020{,}680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ɛ =0.01 requires an approximate circuit width 340 and circuit depth of order 10^{25} if oracle costs are excluded, and a circuit width and circuit depth of order 10^8 and 10^{29}, respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.

  20. Constructing the deep temperature section of the Travale geothermal area in Italy, with the use of an electromagnetic geothermometer

    NASA Astrophysics Data System (ADS)

    Spichak, V. V.; Zakharova, O. K.

    2015-01-01

    The technology of electromagnetic geothermometer is applied for constructing the two-dimensional (2D) section of temperature in the Travale geothermal region in Italy up to a depth of 10 km. The joint analysis of this section, together with the previously constructed model of electric resistivity suggests that the heat transfer in the Travale region is rendered by the overheated vapor-gas fluids instead of liquid fluids as it was previously believed based on the interpretation of the resistivity model. Another important conclusion consists in the fact that, instead of two geothermal reservoirs, whose existence was previously tentatively inferred from the interpretation of the electromagnetic and seismic data, it is likely that there is a single deep reservoir with a shallow (near-surface) offshoot. From the constructed temperature distribution it can be seen that the temperature below a depth of 4 km exceeds 500°C, which indicates that drilling down to these depths could be useful for the subsequent exploitation of this geothermal reservoir.

  1. Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Fairfield, D. H.; Wu, C. S.

    1979-01-01

    Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.

  2. Measured opening characteristics of an electromagnetically opened diaphragm for the Langley expansion tunnel

    NASA Technical Reports Server (NTRS)

    Moore, J. A.

    1976-01-01

    Results from an experimental study of the opening characteristics of an electromagnetically opened, 15.24 cm diameter diaphragm are presented. This diaphragm consists of a polyester film bonded to a preformed wire and is opened by passing a current pulse (capacitor discharge) through the wire. The diaphragm separates the acceleration section of the expansion tunnel from the nozzle so that the nozzle may be at a lower pressure than the acceleration section prior to a test. Opening times and cleanness of the opened area were examined for dependence on diaphragm thickness, on wire diameter, on technique of bonding the wire to the diaphragm, and on voltage and energy level of the energy source. Time histories of the pitot pressure measured at the expansion-tunnel nozzle entrance location are presented for (1) no diaphragm, (2) a flow-opened diaphragm, and (3) an electromagnetically opened diaphragm.

  3. Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices.

    PubMed

    Luis, Alfredo

    2007-04-01

    We assess the degree of coherence of vectorial electromagnetic fields in the space-frequency domain as the distance between the cross-spectral density matrix and the identity matrix representing completely incoherent light. This definition is compared with previous approaches. It is shown that this distance provides an upper bound for the degree of coherence and visibility for any pair of scalar waves obtained by linear combinations of the original fields. This same approach emerges when applying a previous definition of global coherence to a Young interferometer.

  4. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Radiation emitted by a beam of particles crossing an inhomogeneous electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Kol'tsov, A. V.; Serov, Alexander V.

    1995-03-01

    A theoretical investigation is made of the time dependence of the spatial distribution of particles injected perpendicular to the direction of propagation of a linearly polarised inhomogeneous electromagnetic wave and reflected by this wave. It is shown that such reflection modulates the particle density in a beam which is homogeneous at injection. Stimulated emission of radiation from a ribbon electron beam reflected by a wave is considered. The spectral—angular and polarisation characteristics of such radiation are investigated.

  5. Induction conductivity and natural gamma logs collected in 15 wells at Camp Stanley Storage Activity, Bexar County, Texas

    USGS Publications Warehouse

    Stanton, Gregory P.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Camp Stanley Storage Activity conducted electromagnetic induction conductivity and natural gamma logging of 15 selected wells on the Camp Stanley Storage Activity, located in northern Bexar County, Texas, during March 28–30, 2005. In late 2004, a helicopter electromagnetic survey was flown of the Camp Stanley Storage Activity as part of a U.S. Geological Survey project to better define subsurface geologic units, the structure, and the catchment area of the Trinity aquifer. The electromagnetic induction conductivity and natural gamma log data in this report were collected to constrain the calculation of resistivity depth sections and to provide subsurface controls for interpretation of the helicopter electromagnetic data collected for the Camp Stanley Storage Activity. Logs were recorded digitally while moving the probe in an upward direction to maintain proper depth control. Logging speed was no greater than 30 feet per minute. During logging, a repeat section of at least 100 feet was recorded to check repeatability of log responses. Several of the wells logged were completed with polyvinyl chloride casing that can be penetrated by electromagnetic induction fields and allows conductivity measurement. However, some wells were constructed with steel centralizers and stainless steel screen that caused spikes on both conductivity and resulting resistivity log curves. These responses are easily recognizable and appear at regular intervals on several logs.

  6. A NEW PRINCIPLE FOR ELECTROMAGNETIC CATHETER FLOW METERS*

    PubMed Central

    Kolin, Alexander

    1969-01-01

    An electromagnetic catheter flow meter is described in which the magnetic field is generated by two parallel bundles of wire carrying equal currents in opposite directions. The electrodes are fixed centrally to the insulated wire bundles that generate the magnetic field. The flow sensor is flexible, resembling a split catheter. The flow transducer is designed to constrict as it is introduced through a branch artery and to expand in the main artery over the span of its diameter. The principle is suitable for branch flow measurement as well as for measurement of flow in a major artery or vein by the same transducer. A special method of guiding the electrode wires results in a zero base line at zero flow for the entire range of diameters accommodating the field generating coil. The electrodes could be used in this configuration with a magnetic field generated by coils external to the patient for blood flow measurements with a catheter of reduced gauge. The transducer can be made smaller in circumference than those employed in other electromagnetic flow measuring catheter devices. This feature is of special value for envisaged clinical uses (percutaneous introduction) to minimize surgical intervention. The velocity sensitivity of the flow transducer is a logarithmic function of the tube diameter. The flow throughout the entire tube cross section contributes to the flow signal. It is sufficient to calibrate the transducer by one measurement in a dielectric conduit of less than maximum diameter. The sensitivity at other diameters follows from a logarithmic plot. The diameter of the blood vessel is outlined by the transducer in radiograms, thus obviating the need for radiopaque materials. The principle was demonstrated by measurements in vitro. Experiments in vivo, derivation of equations, and construction details will be published elsewhere. Images PMID:5257127

  7. Chromosomal aberrations in lymphocytes of employees in transformer and generator production exposed to electromagnetic fields and mineral oil.

    PubMed

    Skyberg, K; Hansteen, I L; Vistnes, A I

    2001-04-01

    The objective was to study the risk of cytogenetic damage among high voltage laboratory workers exposed to electromagnetic fields and mineral oil. This is a cross sectional study of 24 exposed and 24 matched controls in a Norwegian transformer factory. The exposure group included employees in the high voltage laboratory and in the generator soldering department. Electric and magnetic fields and oil mist and vapor were measured. Blood samples were analyzed for chromosomal aberrations in cultured lymphocytes. In addition to conventional cultures, the lymphocytes were also treated with hydroxyurea and caffeine. This procedure inhibits DNA synthesis and repair in vitro, revealing in vivo genotoxic lesions that are repaired during conventional culturing. In conventional cultures, the exposure group and the controls showed similar values for all cytogenetic parameters. In the DNA synthesis- and repair-inhibited cultures, generator welders showed no differences compared to controls. Among high voltage laboratory testers, compared to the controls, the median number of chromatid breaks was doubled (5 vs. 2.5 per 50 cells; P<0.05) the median number of chromosome breaks was 2 vs. 0.5 (P>0.05) and the median number of aberrant cells was 5 vs. 3.5 (P<0.05). Further analysis of the inhibited culture data from this and a previous study indicated that years of exposure and smoking increase the risk of aberrations. We conclude that there was no increase in cytogenetic damage among exposed workers compared to controls in the conventional lymphocyte assay. In inhibited cultures, however, there were indications that electromagnetic fields in combination with mineral oil exposure may produce chromosomal aberrations. Copyright 2001 Wiley-Liss, Inc.

  8. Measurement and computer simulation of antennas on ships and aircraft for results of operational reliability

    NASA Astrophysics Data System (ADS)

    Kubina, Stanley J.

    1989-09-01

    The review of the status of computational electromagnetics by Miller and the exposition by Burke of the developments in one of the more important computer codes in the application of the electric field integral equation method, the Numerical Electromagnetic Code (NEC), coupled with Molinet's summary of progress in techniques based on the Geometrical Theory of Diffraction (GTD), provide a clear perspective on the maturity of the modern discipline of computational electromagnetics and its potential. Audone's exposition of the application to the computation of Radar Scattering Cross-section (RCS) is an indication of the breadth of practical applications and his exploitation of modern near-field measurement techniques reminds one of progress in the measurement discipline which is essential to the validation or calibration of computational modeling methodology when applied to complex structures such as aircraft and ships. The latter monograph also presents some comparison results with computational models. Some of the results presented for scale model and flight measurements show some serious disagreements in the lobe structure which would require some detailed examination. This also applies to the radiation patterns obtained by flight measurement compared with those obtained using wire-grid models and integral equation modeling methods. In the examples which follow, an attempt is made to match measurements results completely over the entire 2 to 30 MHz HF range for antennas on a large patrol aircraft. The problem of validating computer models of HF antennas on a helicopter and using computer models to generate radiation pattern information which cannot be obtained by measurements are discussed. The use of NEC computer models to analyze top-side ship configurations where measurement results are not available and only self-validation measures are available or at best comparisons with an alternate GTD computer modeling technique is also discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmer, W

    Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4).more » The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to a qualified understanding of radiation physics for students.« less

  10. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    NASA Astrophysics Data System (ADS)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  11. User's manual for two dimensional FDTD version TEA and TMA codes for scattering from frequency-independent dielectic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional numerical electromagnetic scattering codes based upon the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current two dimensional FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem set section, a new problem checklist, references and figure titles.

  12. User's manual for two dimensional FDTD version TEA and TMA codes for scattering from frequency-independent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional electromagnetic scattering codes based on the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.

  13. Propagation and Linear Mode Conversion of Magnetosonic and Electromagnetic Ion Cyclotron Waves in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Horne, R. B.; Yoshizumi, M.

    2017-12-01

    Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called cross-over frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the cross-over frequency magnetosonic waves could be a source of hydrogen band waves but not helium band waves.

  14. Nonlinear inversion of borehole-radar tomography data to reconstruct velocity and attenuation distribution in earth materials

    USGS Publications Warehouse

    Zhou, C.; Liu, L.; Lane, J.W.

    2001-01-01

    A nonlinear tomographic inversion method that uses first-arrival travel-time and amplitude-spectra information from cross-hole radar measurements was developed to simultaneously reconstruct electromagnetic velocity and attenuation distribution in earth materials. Inversion methods were developed to analyze single cross-hole tomography surveys and differential tomography surveys. Assuming the earth behaves as a linear system, the inversion methods do not require estimation of source radiation pattern, receiver coupling, or geometrical spreading. The data analysis and tomographic inversion algorithm were applied to synthetic test data and to cross-hole radar field data provided by the US Geological Survey (USGS). The cross-hole radar field data were acquired at the USGS fractured-rock field research site at Mirror Lake near Thornton, New Hampshire, before and after injection of a saline tracer, to monitor the transport of electrically conductive fluids in the image plane. Results from the synthetic data test demonstrate the algorithm computational efficiency and indicate that the method robustly can reconstruct electromagnetic (EM) wave velocity and attenuation distribution in earth materials. The field test results outline zones of velocity and attenuation anomalies consistent with the finding of previous investigators; however, the tomograms appear to be quite smooth. Further work is needed to effectively find the optimal smoothness criterion in applying the Tikhonov regularization in the nonlinear inversion algorithms for cross-hole radar tomography. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. Phenomenological theory of laser-plasma interaction in ``bubble'' regime

    NASA Astrophysics Data System (ADS)

    Kostyukov, I.; Pukhov, A.; Kiselev, S.

    2004-11-01

    The electron trapping in the "bubble" regime of laser-plasma interaction as proposed by Pukhov and Meyer-ter-Vehn [A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)] is studied. In this regime the laser pulse generates a solitary plasma electron cavity: the bubble. It is free from the cold plasma electrons and runs with nearly light velocity. The present work discusses the form of the bubble and the spatial distribution of electromagnetic fields within the cavity. We extend the one-dimensional electron capture theory to the three-dimensional case. It is shown that the bubble can trap plasma electrons. The trapping condition is derived and the trapping cross section is estimated. Electron motion in the self-generated electron bunch is investigated. Estimates for the maximum of electron bunch energy and the bunch density are provided.

  16. Acoustic integrated extinction.

    PubMed

    Norris, Andrew N

    2015-05-08

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  17. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  18. Casting inorganic structures with DNA molds

    DOE PAGES

    Sun, Wei; Boulais, Etienne; Hakobyan, Yera; ...

    2014-10-09

    Here we report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic propertiesmore » consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.« less

  19. Investigation of the radiation background in the interaction region of the medium-energy electron relativisitic heavy ion collider (MeRHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beebe-Wang,J.

    There are three main sources of the radiation background in MeRHIC: forward synchrotron radiation generated upstream of the detector, the direct backward radiation caused by the photons hitting beampipe downstream of the detector, and the indirect secondary radiation caused by hard photons hitting vacuum systems, masks, collimators, absorbers or any other elements in the interaction region. In this paper, we first calculate the primary radiation distribution by employing electromagnetic theory. Then we obtain the direct backward scattering rate by applying the kinematic Born approximation deduced from scattering dynamics. The diffuse scattering cross section is calculated as a function of themore » surface properties of the MeRHIC vacuum system. Finally, the dominating physical processes and minimization of indirect secondary radiation is presented and discussed.« less

  20. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  1. Casting inorganic structures with DNA molds.

    PubMed

    Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng

    2014-11-07

    We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucleating gold "seed." Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. Copyright © 2014, American Association for the Advancement of Science.

  2. Gigaflop (billion floating point operations per second) performance for computational electromagnetics

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Rowell, C.; Hall, W. F.; Mohammadian, A. H.; Schuh, M.; Taylor, K.

    1992-01-01

    Accurate and rapid evaluation of radar signature for alternative aircraft/store configurations would be of substantial benefit in the evolution of integrated designs that meet radar cross-section (RCS) requirements across the threat spectrum. Finite-volume time domain methods offer the possibility of modeling the whole aircraft, including penetrable regions and stores, at longer wavelengths on today's gigaflop supercomputers and at typical airborne radar wavelengths on the teraflop computers of tomorrow. A structured-grid finite-volume time domain computational fluid dynamics (CFD)-based RCS code has been developed at the Rockwell Science Center, and this code incorporates modeling techniques for general radar absorbing materials and structures. Using this work as a base, the goal of the CFD-based CEM effort is to define, implement and evaluate various code development issues suitable for rapid prototype signature prediction.

  3. Meta-Chirality: Fundamentals, Construction and Applications

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Guo, Yinghui; Gao, Ping; Luo, Xiangang

    2017-01-01

    Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced. PMID:28513560

  4. A three-dimensional thermal and electromagnetic model of whole limb heating with a MAPA.

    PubMed

    Charny, C K; Levin, R L

    1991-10-01

    Previous studies by the authors have shown that if properly implemented, the Pennes assumptions can be applied to quantify bioheat transfer during extremity heating. Given its relative numerical simplicity and its ability to predict temperatures in thermoregulated tissue, the Pennes model of bioheat transfer was utilized in a three-dimensional thermal model of limb heating. While the arterial blood temperature was assumed to be radially uniform within a cross section of the limb, axial gradients in the arterial and venous blood temperatures were computed with this three-dimensional model. A realistically shaped, three-dimensional finite element model of a tumor-bearing human lower leg was constructed and was "attached" mathematically to the whole body thermal model of man described in previous studies by the authors. The central as well as local thermoregulatory feedback control mechanisms which determine blood perfusion to the various tissues and rate of evaporation by sweating were input into the limb model. In addition, the temperature of the arterial blood which feeds into the most proximal section of the lower leg was computed by the whole body thermal model. The variations in the shape of the tissues which comprise the limb were obtained from computerized tomography scans. Axial variations in the energy deposition patterns along the length of the limb exposed to a miniannular phased array (MAPA) applicator were also input into this model of limb heating. Results indicate that proper positioning of the limb relative to the MAPA is a significant factor in determining the effectiveness of the treatment. A patient-specific hyperthermia protocol can be designed using this coupled electromagnetic and thermal model.

  5. Electromagnetic processes at low momentum transfer : a review for users

    NASA Astrophysics Data System (ADS)

    Parizet, M. J.; Borie, E.; Grossetête, B.; Isabelle, D. B.; Proriol, J.

    Electromagnetic processes at low momentum transfer are often sources of background in many experiments. To be removed these effects must be calculated by the experimentalist, who must have a good knowledge of the validity of the theoretical formulas that he must use. Then we thought that it will be useful to prepare this review whose presentation is such that it should allow everyone to appreciate the accuracy of formulas that he must use in very complex situations. In this paper, we examine the problem related to bremsstrahlung, pair production and radiative corrections. The first part is devoted to kinematic and to the methods used to establish the corresponding cross sections. Les phénomènes électromagnétiques à faible transfert d'impulsion interviennent dans de nombreuses expériences comme des phénomènes parasites. Pour les éliminer, l'expérimentateur doit les calculer, mais il connait généralement mal la validité des formules théoriques qu'il doit alors utiliser. Il nous a donc paru utile de faire une revue dont la présentation doit permettre à chacun d'apprécier la précision des formules qu'il doit appliquer dans des situations très souvent complexes. Dans cet article, nous faisons le point, tant pour la théorie que pour l'expérience, en ce qui concerne : le rayonnement de freinage, la production de paires et les corrections radiatives. La première partie est consacrée à la cinématique des processus appréciés et aux méthodes permettant d'établir les sections efficaces correspondantes.

  6. Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2000-01-01

    The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.

  7. 3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion

    PubMed Central

    Dou, Qingxu; Wei, Lijun; Magee, Derek R.; Atkins, Phil R.; Chapman, David N.; Curioni, Giulio; Goddard, Kevin F.; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R.; Rustighi, Emiliano; Swingler, Steven G.; Rogers, Christopher D. F.; Cohn, Anthony G.

    2016-01-01

    We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation. PMID:27827836

  8. 3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion.

    PubMed

    Dou, Qingxu; Wei, Lijun; Magee, Derek R; Atkins, Phil R; Chapman, David N; Curioni, Giulio; Goddard, Kevin F; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R; Rustighi, Emiliano; Swingler, Steven G; Rogers, Christopher D F; Cohn, Anthony G

    2016-11-02

    We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed "multi-utility multi-sensor" system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.

  9. Conference Proceedings: 7th Annual Review of Progress in Applied Computational Electromagnetics at the Naval Postgraduate School, Monterey, California, March 18-22, 1991

    DTIC Science & Technology

    1991-03-01

    34Volume integral Equations and Conjugate Gradient Methods in Electromagnetic Non destructive Evaluation’ by Dr. Harold P.. Sabbagh, Sabbagh Associates...8217 Experimental Demonstrations far teaching Electroamgnetic Folods and Energy’ M. Zathn, J. Mectrer...8217-....................................... . ...................................................... 329 ’PoalarimetrIc Scattering and Control at Radar Crass Section of Chirat Targets at Simple

  10. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Analysis and finite element simulation of electromagnetic heating in the nitride MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Ming; Hao, Yue; Zhang, Jin-Cheng; Xu, Sheng-Rui; Ni, Jin-Yu; Zhou, Xiao-Wei

    2009-11-01

    Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, intensity, coil turn number and the distance between the coil turns on the distribution of the Joule heat are analysed separately, and their relations to the value of Joule heat are also investigated. The temperature distribution on the susceptor is also obtained. It is observed that the results of the simulation are in good agreement with previous measurements.

  11. The impact of exposure to radio frequency electromagnetic fields on chronic well-being in young people--a cross-sectional study based on personal dosimetry.

    PubMed

    Heinrich, Sabine; Thomas, Silke; Heumann, Christian; von Kries, Rüdiger; Radon, Katja

    2011-01-01

    A possible influence of radio frequency electromagnetic field (RF EMF) exposure on health outcomes was investigated in various studies. The main problem of previous studies was exposure assessment. The aim of our study was the investigation of a possible association between RF EMF and chronic well-being in young persons using personal dosimetry. 3022 children and adolescents were randomly selected from the population registries of four Bavarian cities in Germany (participation 52%). Personal interview data on chronic symptoms, socio-demographic characteristics and potential confounders were collected. A 24-h radio frequency exposure profile was generated using a personal dosimeter. Exposure levels over waking hours were expressed as mean percentage of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference level. Half of the children and nearly every adolescent owned a mobile phone which was used only for short durations per day. Measured exposure was far below the current ICNIRP reference levels. The most reported chronic symptom in children and adolescents was fatigue. No statistically significant association between measured exposure and chronic symptoms was observed. Our results do not indicate an association between measured exposure to RF EMF and chronic well-being in children and adolescents. Prospective studies investigating potential long-term effects of RF EMF are necessary to confirm our results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Full vector modal analysis of microstructured optical fiber propagation characteristics

    NASA Astrophysics Data System (ADS)

    Zghal, Mourad; Bahloul, Faouzi; Chatta, Rihab; Attia, Rabah; Pagnoux, Dominique; Roy, Philippe; Melin, Gilles; Gasca, Laurent

    2004-10-01

    Microstructured optical fibers (MOFs) are optical fibers having a periodic air-silica cross-section. The air holes extend along the axis of the fiber for its entire length. The core of the fiber is formed by a missing hole in the periodic structure. Remarkable properties of MOFs have recently been reported. This paper presents new work in the modeling of the propagation characteristics of MOFs using the Finite Element Method (FEM) and the Galerkin Method (GM). This efficient electromagnetic simulation package provides a vectorial description of the electromagnetic fields and of the associated effective index. This information includes accurate determination of the spectral extent of the modes, cutoff properties and mode-field distributions. We show that FEM is well adapted for describing the fields at abrupt transitions of the refractive index while GM has the advantage to accurately analyze MOFs of significant complexity using only modest computational resources. This presentation will focus on the specific techniques required to determine single mode operation, dispersion properties and effective area through careful choice of the geometrical parameters of the fibers. We demonstrate that with suitable geometrical parameters, the zero dispersion wavelength can be shifted. This tool can also provide design criteria for fabricating MOFs and a corresponding map of effective area. This approach is validated by comparison with experimental results and measurements on actual MOFs fabricated at IRCOM and at Alcatel Research and Innovation Center.

  13. Reactive polymer fused deposition manufacturing

    DOEpatents

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  14. UTD analysis of electromagnetic scattering by flat structures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sikta, F. A.; Peters, L., Jr.

    1981-01-01

    The different scattering mechanisms that contribute to the radar cross of finite flat plates were identified and analyzed. The geometrical theory of diffraction, the equivalent current and the corner diffraction are used for this study. A study of the cross polarized field for a monopole mounted on a plate is presented, using novel edge wave mechanism in the analysis. The results are compared with moment method solutions as well as measured data.

  15. Nonlinear analysis of generalized cross-field current instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Lui, Anthony T. Y.

    1993-01-01

    Analysis of the generalized cross-field current instability is carried out in which cross-field drift of both the ions and electrons and their temperatures are permitted to vary in time. The unstable mode under consideration is the electromagnetic generalization of the classical modified-two-stream instability. The generalized instability is made of the modified-two-stream and ion-Weibel modes. The relative importance of the features associated with the ion-Weibel mode and those of the modified-two-stream mode is assessed. Specific applications are made to the Earth's neutral sheet prior to substorm onset and to the Earth's bow shock. The numerical solution indicates that the ion-Weibel mode dominates in the Earth's neutral sheet environment. In contrast, the situation for the bow shock is dominated by the modified-two-stream mode. Notable differences are found between the present calculation and previous results on ion-Weibel mode which restrict the analysis to only parallel propagating waves. However, in the case of Earth's bow shock for which the ion-Weibel mode plays no important role, the inclusion of the electromagnetic ion response is found to differ little from the previous results which treats ions responding only to the electrostatic component of the excited waves.

  16. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  17. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  18. Measurement of electromagnetic fields over a small electrolytic tank

    NASA Astrophysics Data System (ADS)

    Caffey, T. W. H.; Morris, H. E.

    1990-12-01

    In 1986, Hart proposed a large, hemispherical electrolytic tank and the use of the Surface Electrical Potential method with which to study resistivity changes due to energy-extraction processes in the earth. A second method for the inference of underground resistivity changes, the Controlled Source Audio-MagnetoTelluric method, has been widely used in the field. This method uses measurements of the electromagnetic field from a surface dipole, rather than the surface potential distribution from a buried vertical electrode, as the basis of the technique. If both SEP and CSAMT could be applied to the same model structure in the same electrolytic tank, it would seem that the diagnostic information would be enhanced over the use of each technique separately. Accordingly, the specific objectives were: to determine to what radial extent the bowl could be used as a homogeneous half-space; and to demonstrate acceptable accuracy by measuring the effect of a conducting target immersed in the bowl and comparing the measurements with numerical modeling. Electromagnetic fields over an electrolytic tank have been measured by others, and this report begins with a comparative summary of both prior and present work. The next section presents the formulas for the electromagnetic fields, and explains the choice of a particular method of measuring apparent resistivity. The field theory is also used in the subsequent section to provide error estimates needed for design guidance. The following sections describe the measurements, and the considerations for a larger facility. The appendices include the derivatives of the fields, the electrolyte characteristics, a description of the apparatus, and calibration methods.

  19. Electromagnetically driven peristaltic pump

    DOEpatents

    Marshall, Douglas W.

    2000-01-01

    An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

  20. Quantum plasmonics: optical properties of a nanomatryushka.

    PubMed

    Kulkarni, Vikram; Prodan, Emil; Nordlander, Peter

    2013-01-01

    Quantum mechanical effects can significantly reduce the plasmon-induced field enhancements around nanoparticles. Here we present a quantum mechanical investigation of the plasmon resonances in a nanomatryushka, which is a concentric core-shell nanoparticle consisting of a solid metallic core encapsulated in a thin metallic shell. We compute the optical response using the time-dependent density functional theory and compare the results with predictions based on the classical electromagnetic theory. We find strong quantum mechanical effects for core-shell spacings below 5 Å, a regime where both the absorption cross section and the local field enhancements differ significantly from the classical predictions. We also show that the workfunction of the metal is a crucial parameter determining the onset and magnitude of quantum effects. For metals with lower workfunctions such as aluminum, the quantum effects are found to be significantly more pronounced than for a noble metal such as gold.

  1. The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures

    PubMed Central

    Davletshin, Yevgeniy R

    2016-01-01

    Summary This paper presents a theoretical study of the interaction of a 6 ps laser pulse with uncoupled and plasmon-coupled gold nanoparticles. We show how the one-dimensional assembly of particles affects the optical breakdown threshold of its surroundings. For this purpose we used a fully coupled electromagnetic, thermodynamic and plasma dynamics model for a laser pulse interaction with gold nanospheres, nanorods and assemblies, which was solved using the finite element method. The thresholds of optical breakdown for off- and on-resonance irradiated gold nanosphere monomers were compared against nanosphere dimers, trimers, and gold nanorods with the same overall size and aspect ratio. The optical breakdown thresholds had a stronger dependence on the optical near-field enhancement than on the mass or absorption cross-section of the nanostructure. These findings can be used to advance the nanoparticle-based nanoscale manipulation of matter. PMID:27547604

  2. Magnetically driven jets and winds: Exact solutions

    NASA Technical Reports Server (NTRS)

    Contopoulos, J.; Lovelace, R. V. E.

    1994-01-01

    We present a general class of self-similar solutions of the full set of MHD equations that include matter flow, electromagnetic fields, pressure, and gravity. The solutions represent axisymmetric, time-independent, nonrelativistic, ideal, magnetohydrodynamic, collimated outflows (jet and winds) from magnetized accretion disks around compact objects. The magnetic field extracts angular momentum from the disk, accelerates the outflows perpedicular to the disk, and provides collimation at large distances. The terminal outflow velocities are of the order of or greater than the rotational velocity of the disk at the base of the flow. When a nonzero electric current flows along the jet, the outflow radius oscillates with axial distance, whereas when the total electric current is zero (with the return current flowing across the jet's cross section), the outflow radius increase to a maximum and then decreases. The method can also be applied to relativistic outflows.

  3. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    PubMed

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  4. A laser based frequency modulated NL-OSL phenomenon

    NASA Astrophysics Data System (ADS)

    Mishra, D. R.; Bishnoi, A. S.; Soni, Anuj; Rawat, N. S.; Bhatt, B. C.; Kulkarni, M. S.; Babu, D. A. R.

    2015-01-01

    The detailed theoretical and experimental approach to novel technique of pulse frequency modulated stimulation (PFMS) method has been described for NL-OSL phenomenon. This method involved pulsed frequency modulation with respect to time for fixed pulse width of 532 nm continuous wave (CW)-laser light. The linearly modulated (LM)-, non-linearly (NL)-stimulation profiles have been generated using fast electromagnetic optical shutter. The PFMS parameters have been determined for present experimental setup. The PFMS based LM-, NL-OSL studies have been carried out on dosimetry grade single crystal α-Al2O3:C. The photo ionization cross section of α-Al2O3:C has been found to be ∼9.97 × 10-19 cm2 for 532 nm laser light using PFMS LM-OSL studies under assumption of first order of kinetic. This method of PFMS is found to be a potential alternative to generate different stimulation profiles using CW-light sources.

  5. Calculation of wakefields in 2D rectangular structures

    DOE PAGES

    Zagorodnov, I.; Bane, K. L. F.; Stupakov, G.

    2015-10-19

    We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in themore » computer code echo(2d). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Finally, we present numerical examples obtained with the new numerical code.« less

  6. Electron-positron pair production in ion collisions at low velocity beyond Born approximation

    NASA Astrophysics Data System (ADS)

    Lee, R. N.; Milstein, A. I.

    2016-10-01

    We derive the spectrum and the total cross section of electromagnetic e+e- pair production in the collisions of two nuclei at low relative velocity β. Both free-free and bound-free e+e- pair production is considered. The parameters ηA,B =ZA,B α are assumed to be small compared to unity but arbitrary compared to β (ZA,B are the charge numbers of the nuclei and α is the fine structure constant). Due to a suppression of the Born term by high power of β, the first Coulomb correction to the amplitude appears to be important at ηA,B ≳ β. The effect of a finite nuclear mass is discussed. In contrast to the result obtained in the infinite nuclear mass limit, the terms ∝M-2 are not suppressed by the high power of β and may easily dominate at sufficiently small velocities.

  7. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  8. New Precision Limit on the Strange Vector Form Factors of the Proton

    DOE PAGES

    Ahmed, Z.; Allada, K.; Aniol, K. A.; ...

    2012-03-01

    The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q 2 = 0.624 GeV 2 and beam energy E b = 3.48 GeV to be A PV = -23.80 ± 0.78 (stat) ± 0.36 (syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors G E s + 0.517 G M s = 0.003 ± 0.010 (stat) ± 0.004 (syst) ± 0.009 (ff), where the third error is due to the limits of precisionmore » on the electromagnetic form factors and radiative corrections. With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.« less

  9. Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at $$ \\sqrt{s}=13 $$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-08-11

    The differential cross section for inclusive particle production as a function of energy in proton-proton collisions at a center-of-mass energy of 13 TeV is measured in the very forward region of the CMS detector. The measurement is based on data collected with the CMS apparatus at the LHC, and corresponds to an integrated luminosity of 0.34 μb –1. The energy is measured in the CASTOR calorimeter, which covers the pseudorapidity region -6.6 < η < -5.2. The results are given as a function of the total energy deposited in CASTOR, as well as of its electromagnetic and hadronic components. Furthermore,more » the spectra are sensitive to the modeling of multiparton interactions in pp collisions, and provide new constraints for hadronic interaction models used in collider and in high energy cosmic ray physics.« less

  10. The End Point Tagger physics program at A2@MAMI

    NASA Astrophysics Data System (ADS)

    Steffen, Oliver

    2017-04-01

    The A2-Collaboration uses a beam of real photons from the tagged photon facility at the electron accelerator MAMI in Mainz, Germany, to study photo-produced mesons. A new tagging device allows access to the higher photon beam energy range of 1.4 to 1.6 GeV. A large dataset containing more than 6 million η' and roughly 29 million ω decays has been obtained. Analyses are ongoing, including a study of the cusp effect and Dalitz plot in η' → ηπ0π0, giving insight to the ππ scattering length and the structure of the ηππ system, as well as the measurement of the electromagnetic transition form factor in η' → e+e-γ, a cross section measurement of γp → 3π0, and branching ratio analyses of η' → ωγ and ω → ηγ.

  11. Waveguide-Mode Terahertz Free Electron Lasers Driven by Magnetron-Based Microtrons

    NASA Astrophysics Data System (ADS)

    Jeong, Young Uk; Miginsky, Sergey; Gudkov, Boris; Lee, Kitae; Mun, Jungho; Shim, Gyu Il; Bae, Sangyoon; Kim, Hyun Woo; Jang, Kyu-Ha; Park, Sunjeong; Park, Seong Hee; Vinokurov, Nikolay

    2016-04-01

    We have developed small-sized terahertz free-electron lasers by using low-cost and compact microtrons combining with magnetrons as high-power RF sources. We could stabilize the bunch repetition rate by optimizing a modulator for the magnetron and by coupling the magnetron with an accelerating cavity in the microtron. By developing high-performance undulators and low-loss waveguide-mode resonators having small cross-sectional areas, we could strengthen the interaction between the electron beam and the THz wave inside the FEL resonators to achieve lasing even with low-current electron beams from the microtron. We used a parallel-plate waveguide in a planar electromagnet undulator for our first THz FEL. We try to reduce the size of the FEL resonator by combining a dielectric-coated circular waveguide and a variable-period helical undulator to realize a table-top THz FEL for applying it to the security inspection on airports.

  12. A combined finite element-boundary element formulation for solution of axially symmetric bodies

    NASA Technical Reports Server (NTRS)

    Collins, Jeffrey D.; Volakis, John L.

    1991-01-01

    A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.

  13. Annihilation cross section of Kaluza Klien dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rakesh, E-mail: rakesh-sharma-ujn@yahoo.co.in; Upadhyaya, G. K., E-mail: gopalujjain@yahoo.co.in; Sharma, S.

    2015-07-31

    The question as to how this universe came into being and as to how it has evolved to its present stage, is an old question. The answer to this question unfolds many secrets regarding fundamental particles and forces between them. Theodor Kaluza proposed the concept that the universe is composed of more than four space-time dimensions. In his work, electromagnetism is united with gravity. Various extra dimension formulations have been proposed to solve a variety of problems. Recently, the idea of more than four space time dimensions is applied to the search for particle identity of dark matter (DM). Signaturemore » of dark matter can be revealed by analysis of very high energy electrons which are coming from outer space. We investigate recent advancement in the field of dark matter search with reference to very high energy electrons from outer space [1-8].« less

  14. Separated Response Function Ratios in Exclusive, Forward π ± Electroproduction

    DOE PAGES

    Huber, G. M.; Blok, H. P.; Butuceanu, C.; ...

    2014-05-05

    The study of exclusive π ± electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio R L = σ π- L / σ π+ L is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of R T = σ π- T / σ π+ T from unity at small –t, to 1/4 at large –t, would suggest a transition from coupling to a (virtual)more » pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative QCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive π ± electroproduction on the deuteron at central Q 2 values of 0.6, 1.0, 1.6 GeV 2 at W = 1.95 GeV, and Q 2 = 2.45 GeV 2 at W = 2.22 GeV. In this paper, we present the L and T cross sections, with emphasis on R L and R T, and compare them with theoretical calculations. Finally, results for the separated ratio R L indicate dominance of the pion-pole diagram at low –t, while results for R T are consistent with a transition between pion knockout and quark knockout mechanisms.« less

  15. Experimental Nuclear Physics Activity in Italy

    NASA Astrophysics Data System (ADS)

    Chiavassa, E.; de Marco, N.

    2003-04-01

    The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.

  16. Measurement of two-photon exchange effect by comparing elastic e ± p cross sections

    DOE PAGES

    Rimal, D.; Adikaram, D.; Raue, B. A.; ...

    2017-06-01

    Here, the electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four momentum transfer (more » $$Q^{2}$$). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. We produced a mixed simultaneous electron-positron beam in Jefferson Lab's Hall B by passing the 5.6 GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron/positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm long liquid hydrogen (LH$$_2$$) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented.« less

  17. Development and application of discontinuous Galerkin method for the solution of two-dimensional Maxwell equations

    NASA Astrophysics Data System (ADS)

    Wong, See-Cheuk

    We inhabit an environment of electromagnetic (EM) waves. The waves within the EM spectrum---whether light, radio, or microwaves---all obey the same physical laws. A band in the spectrum is designated to the microwave frequencies (30MHz--300GHz), at which radar systems operate. The precise modeling of the scattered EM-ields about a target, as well as the numerical prediction of the radar return is the crux of the computational electromagnetics (CEM) problems. The signature or return from a target observed by radar is commonly provided in the form of radar cross section (RCS). Incidentally, the efforts in the reduction of such return forms the basis of stealth aircraft design. The object of this dissertation is to extend Discontinuous Galerkin (DG) method to solve numerically the Maxwell equations for scatterings from perfect electric conductor (PEC) objects. The governing equations are derived by writing the Maxwell equations in conservation-law form for scattered field quantities. The transverse magnetic (TM) and the transverse electric (TE) waveforms of the Maxwell equations are considered. A finite-element scheme is developed with proper representations for the electric and magnetic fluxes at a cell interface to account for variations in properties, in both space and time. A characteristic sub-path integration process, known as the "Riemann solver" is involved. An explicit Runge-Kutta Discontinuous Galerkin (RKDG) upwind scheme, which is fourth-order accurate in time and second-order in space, is employed to solve the TM and TE equations. Arbitrary cross-sectioned bodies are modeled, around which computational grids using random triangulation are generated. The RKDG method, in its development stage, was constructed and studied for solving hyperbolic conservation equations numerically. It was later extended to multidimensional nonlinear systems of conservation laws. The algorithms are described, including the formulations and treatments to the numerical fluxes, degrees of freedom, boundary conditions, and other implementation issues. The computational solution amounts to a near-field solution in form of contour plot and one extending from the scatterer to a far-field boundary located a few wavelengths away. Near-field to far-field transformation utilizing the Green's function is performed to obtain the bistatic radar cross section information. Results are presented for scatterings from a series of two-dimensional objects, including circular and square cylinders, ogive and NACA airfoils. Also, scatterings from more complex geometries such as cylindrical and rectangular cavitations are simulated. Exact solutions for selected cases are compared to the computational results and demonstrate excellent accuracy and efficiency in the RKDG calculations. In the whole, its ease and flexibility to incorporate the characteristic-based schemes for the flux integrals between cell interfaces, and the compact formulation allowing direct application to the boundary elements without modification are some of the admired features of the DG method.

  18. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  19. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  20. Is {sup 276}U a doubly magic nucleus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  1. Mobile phone use, school electromagnetic field levels and related symptoms: a cross-sectional survey among 2150 high school students in Izmir.

    PubMed

    Durusoy, Raika; Hassoy, Hür; Özkurt, Ahmet; Karababa, Ali Osman

    2017-06-02

    Health outcomes of electromagnetic fields (EMF) from mobile phones and their base stations are of concern. Conducting multidisciplinary research, targeting children and exploring dose-response are recommended. Our objectives were to describe the mobile phone usage characteristics of high school students and to explore the association between mobile phone usage characteristics, high school EMF levels and self-reported symptoms. This cross-sectional study's data were collected by a survey questionnaire and by measuring school EMF levels between November 2009 and April 2011. A sample size of 2530 was calculated from a total of 20,493 students in 26 high schools and 2150 (85.0%) were included in the analysis. The frequencies of 23 symptoms were questioned and analysed according to 16 different aspects of mobile phone use and school EMF levels, exploring also dose-response. School EMF levels were measured with Aaronia Spectran HF-4060 device. Chi square and trend tests were used for univariate and logistic regression was used for multivariate analyses. Among participants, 2021 (94.0%) were using mobile phones and 129 (6.0%) were not. Among users, 49.4% were speaking <10 min and 52.2% were sending/receiving 75 or more messages per day. Headache, fatigue and sleep disturbances were observed respectively 1.90 (95% CI 1.30-2.77), 1.78 (1.21-2.63) and 1.53 (1.05-2.21) times more among mobile phone users. Dose-response relationships were observed especially for the number of calls per day, total duration of calls per day, total number of text messages per day, position and status of mobile phone at night and making calls while charging as exposures and headache, concentration difficulties, fatigue and sleep disturbances as general symptoms and warming of the ear and flushing as local symptoms. We found an association between mobile phone use and especially headache, concentration difficulties, fatigue, sleep disturbances and warming of the ear showing also dose-response. We have found limited associations between vicinity to base stations and some general symptoms; however, we did not find any association with school EMF levels. Decreasing the numbers of calls and messages, decreasing the duration of calls, using earphones, keeping the phone away from the head and body and similar precautions might decrease the frequencies or prevalence of the symptoms.

  2. The effects of non-stationary noise on electromagnetic response estimates

    NASA Astrophysics Data System (ADS)

    Banks, R. J.

    1998-11-01

    The noise in natural electromagnetic time series is typically non-stationary. Sections of data with high magnetic noise levels bias impedances and generate unreliable error estimates. Sections containing noise that is coherent between electric and magnetic channels also produce inappropriate impedances and errors. The answer is to compute response values for data sections which are as short as is feasible, i.e. which are compatible both with the chosen bandwidth and with the need to over-determine the least-squares estimation of the impedance and coherence. Only those values that are reliable are selected, and the best single measure of the reliability of Earth impedance estimates is their temporal invariance, which is tested by the coherence between the measured and predicted electric fields. Complex demodulation is the method used here to explore the temporal structure of electromagnetic fields in the period range 20-6000 s. For periods above 300 s, noisy sections are readily identified in time series of impedance values. The corresponding estimates deviate strongly from the normal value, are biased towards low impedance values, and are associated with low coherences. Plots of the impedance against coherence are particularly valuable diagnostic aids. For periods below 300 s, impedance bias increases systematically as the coherence falls, identifying input channel noise as the cause. By selecting sections with high coherence (equivalent to the impedance being invariant over the section) unbiased impedances and realistic errors can be determined. The scatter in impedance values among high-coherence sections is due to noise that is coherent between input and output channels, implying the presence of two or more systems for which a consistent response can be defined. Where the Earth and noise responses are significantly different, it may be possible to improve estimates of the former by rejecting sections that do not generate satisfactory values for all the response elements.

  3. Constraints on Nubular Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Eisenhour, D. D.; Buseck, P. R.

    1993-07-01

    Chondritic meteorites contain an abundance of silicate minerals with opaque inclusions of oxides, sulfides, and metals. These host silicates interact differently from their enclosed opaques to electromagnetic (EM) radiation; specifically, silicates are inefficient at absorbing EM energy in the visible and near infrared while metals, sulfides, and Fe oxides absorb strongly in this frequency range. In the presence of a strong electromagnetic pulse (EMP), this preferential absorption leads to the selective heating of the opaque inclusions and can produce unique textures ("dirty snowballs": intimate, ~spherical intergrowths of silicate and opaque minerals with radii of < 1 to 10 micrometers) that record the passage of the EMP. Many chondrules, CAIs, and isolated silicate grains within chondritic meteorites exhibit these unique features, suggesting that strong EMPs were common in the early solar nebula [1]. Here we discuss new constraints on nebular EMPs obtained from both experimental simulations and calculations of radiative heat transport. To test the feasibility of producing "dirty snowball" textures by EMP heating, olivines and pyroxenes containing metal and sulfide inclusions were heated with a 10 watt, argon-ion, CW laser operated at 514 nm. Comparisons between meteoritic "dirty snowball" textures and experimentally produced textures confirm the ability to produce the meteoritic textures by EMP heating and suggest heating times and fluxes of 0.25 to 10 seconds and 10^9 to 10^10 ergs cm^-2 sec^-1. Fluxes less than 10^9 ergs cm^-2 sec^-1 were insufficient to melt metal and sulfide inclusions, while fluxes greater than 10^10 ergs cm^-2 sec^-1 resulted in complete melting of metal, sulfide, and silicates. The experimentally determined heating time scales suggest that radiative equilibrium was reached in the "dirty snowball" formation process, indicating that the range of observed textures is controlled by cooling rates. Calculations of radiative absorption and emission allow further constraints to be placed on the EMPs responsible for "dirty snowball" formation. The absorption and emission efficiencies of grains in a blackbody radiation field were determined by calculating Planck mean cross sections for olivine, pyroxene, and iron as a function of grain size [2,3]. This information was combined with conductive heat flow calculations to determine the behavior of olivine and pyroxene grains with small inclusions of metal. Results indicate that "dirty snowball" formation results only over a narrow flux range for a given multiphase assemblage, with higher fluxes required for smaller, more transparent, or more refractory grains. For a 100-mm olivine chondrule containing a 10-micrometer "dirty snowball," the required flux is ~9 +- 1 x 10^8 ergs cm^-2 sec^-1, with a minimum pulse duration of 4 seconds (assuming an initial grain temperature of 500 K prior to heating). These values are in good agreement with experimentally determined values. The results show that pulses energetic enough to create "dirty snowballs" are also capable of producing the total melting required for chondrule formation with only slight increases in flux, or with only marginally different grain properties (e.g., more opaque inclusions, lower melting points, higher absorption cross sections). Because of the temperature and grain size dependence of the Planck mean cross sections of silicates, an EMP of the type described above will selectively melt larger aggregates and individual grains (>100 micrometer) while leaving smaller aggregates and grains unmelted. Therefore, natural products of EMP heating are: 1) the formation of chondrules in a sustained dusty environment, 2) a paucity of small chondrules, and 3) residual grains relatively unaffected by the EMPs. References: [1] Eisenhour D. D. and Buseck P. R. (1993) LPSC XXIV, 435-436. [2] Falk S. W. and Scalo J. M. (1975) Ap. J., 202, 690-695. [3] Gilman R. C. (1974) Ap. J. Supp., 268, 28, 397-403.

  4. Near field of an oscillating electric dipole and cross-polarization of a collimated beam of light: Two sides of the same coin

    NASA Astrophysics Data System (ADS)

    Aiello, Andrea; Ornigotti, Marco

    2014-09-01

    We address the question of whether there exists a hidden relationship between the near-field distribution generated by an oscillating electric dipole and the so-called cross-polarization of a collimated beam of light. We find that the answer is affirmative by showing that the complex field distributions occurring in both cases have a common physical origin: the requirement that the electromagnetic fields must be transverse.

  5. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  6. Accurate Control of Josephson Phase Qubits

    DTIC Science & Technology

    2016-04-14

    1 We begin by noting that g50 is a valid choice for a pulse . This corresponds to applying no electromagnetic radiation for some time. Working with...population during the pulse sequence. The total operation time is equal to n(2p/dv)1t ~where t is the total duration of the electromagnetic radiation... pulse . In the next section we show how transient populations in the third energy level can be highly undesirable in the presence of high tunneling rates

  7. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  8. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing; Hu, Jiawei; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn

    We study the spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations by separately calculating the contribution to the excitation rate of vacuum fluctuations and a cross term which involves both vacuum fluctuations and radiation reaction, and demonstrate that although the spontaneous excitation for the atom in its ground state would occur in vacuum, such atoms in circular motion do not perceive a pure thermal radiation as their counterparts in linear acceleration do since the transition rates of the atom do not contain the Planckian factor characterizing a thermal bath. We also find that the contributionmore » of the cross term that plays the same role as that of radiation reaction in the scalar and electromagnetic fields cases differs for atoms in circular motion from those in linear acceleration. This suggests that the conclusion drawn for atoms coupled with the scalar and electromagnetic fields that the contribution of radiation reaction to the mean rate of change of atomic energy does not vary as the trajectory of the atom changes from linear acceleration to circular motion is not a general trait that applies to the Dirac field where the role of radiation reaction is played by the cross term. - Highlights: • Spontaneous excitation of a circularly accelerated atom is studied. • The atom interacts with the Dirac field through nonlinear coupling. • A cross term involving vacuum fluctuations and radiation reaction contributes. • The atom in circular motion does not perceive pure thermal radiation. • The contribution of the cross term changes as the atomic trajectory varies.« less

  10. Detection of terahertz radiation in metamaterials: giant plasmonic ratchet effect (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rudin, Sergey; Rupper, Greg; Kachorovski, Valentin; Shur, Michael S.

    2017-05-01

    The electromagnetic wave impinging on the spatially modulated two-dimensional electron liquid (2DEL) induces a direct current (DC) when the wave amplitude modulated with the same wave vector as the 2DEL but is shifted in phase (the ratchet effect). The recent theory of this phenomenon predicted a dramatic enhancement at the plasmonic resonances and a non-trivial polarization dependence [1]. We will present the results of the numerical simulations using a hydrodynamic model exploring the helicity dependence of the DC current for silicon, InGaAs, and GaN metamaterial structures at cryogenic and room temperatures. In particular we will report on the effect of the DEL viscosity and explore the nonlinear effects at large amplitudes of the helical electromagnetic radiation impinging on the ratchet structures. We will then discuss the applications of the ratchet effect for terahertz metamaterials in order to realize ultra-sensitive terahertz (THz) radiation detectors, modulators, phase shifters, and delay lines with cross sections matching the terahertz wavelength and capable of determining the electromagnetic wave polarization and helicity. To this end, we propose and analyze the four contact ratchet devices capable of registering the two perpendicular components of the electric currents induced by the elliptically or circularly polarized radiation and analyze the load impedance effects in the structures optimized for the ratchet metamaterial THz components. The analysis is based on the hydrodynamic model suitable for the multi-gated semiconductor structures, coupled self-consistently with Poisson's equation for the electric potential. The model accounts for the effects of pressure gradients and 2DEL viscosity. Our numerical solutions are applicable to the wide ranges of electron mobility and terahertz power. [1] I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, Helicity-Driven Ratchet Effect Enhanced by Plasmons, Phys. Rev. Lett. 114, 246601, 15 June 2015

  11. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) two-photon exchange experiment

    NASA Astrophysics Data System (ADS)

    Rimal, Dipak

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.

  12. Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Cui, Tie Jun

    2017-08-01

    Since 2004, my group at Southeast University has been carrying out research into microwave metamaterials, which are classified into three catagories: metamaterials based on the effective medium model, plasmonic metamaterials for spoof surface plasmon polaritons (SPPs), and coding and programmable metamaterials. For effective-medium metamaterials, we have developed a general theory to accurately describe effective permittivity and permeability in semi-analytical forms, from which we have designed and realized a three dimensional (3D) wideband ground-plane invisibility cloak, a free-space electrostatic invisibility cloak, an electromagnetic black hole, optical/radar illusions, and radially anisotropic zero-index metamaterial for omni-directional radiation and a nearly perfect power combination of source array, etc. We have also considered the engineering applications of microwave metamaterials, such as a broadband and low-loss 3D transformation-optics lens for wide-angle scanning, a 3D planar gradient-index lens for high-gain radiations, and a random metasurface for reducing radar cross sections. In the area of plasmonic metamaterials, we proposed an ultrathin, narrow, and flexible corrugated metallic strip to guide SPPs with a small bending loss and radiation loss, from which we designed and realized a series of SPP passive devices (e.g. power divider, coupler, filter, and resonator) and active devices (e.g. amplifier and duplexer). We also showed a significant feature of the ultrathin SPP waveguide in overcoming the challenge of signal integrity in traditional integrated circuits, which will help build a high-performance SPP wireless communication system. In the area of coding and programmable metamaterials, we proposed a new measure to describe a metamaterial from the viewpoint of information theory. We have illustrated theoretically and experimentally that coding metamaterials composed of digital units can be controlled by coding sequences, leading to different functions. We realised that when the digital state of a coding unit is controlled by a field programmable gate array, the programmable metamaterial, which is capable of manipulating electromagnetic waves in real time, can generate many different functions.

  13. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced-density-matrix formulation. It will become apparent that the full atomic data needs for the precise modeling of extreme non-equilibrium plasma environments extend beyond the conventional radiative-transition-probability and collisional-cross-section data sets.

  14. Experimental Smoke and Electromagnetic Analog Study of Induced Flow Field About a Model Rotor in Steady Flight Within Ground Effect

    NASA Technical Reports Server (NTRS)

    Gray, Robin B.

    1960-01-01

    Hovering and steady low-speed forward-flight tests were run on a 4-foot-diameter rotor at a ground height of 1 rotor radius. The two blades had a 2 to 1 taper ratio and were mounted in a see-saw hub. The solidity ratio was 0.05. Measurements were made of the rotor rpm, collective pitch, and forward-flight velocity. Smoke was introduced into the tip vortex and the resulting vortex pattern was photographed from two positions. Using the data obtained from these photographs, wire models of the tip vortex configurations were constructed and the distribution of the normal component of induced velocity at the blade feathering axis that is associated with these tip vortex configurations was experimentally determined at 450 increments in azimuth position from this electromagnetic analog. Three steady-state conditions were analyzed. The first was hovering flight; the second, a flight velocity just under the wake "tuck under" speed; and the third, a flight velocity just above this speed. These corresponded to advance ratios of 0, 0.022, and 0.030 (or ratios of forward velocity to calculated hovering induced velocity of approximately 0, 0.48, and 0.65), respectively, for the model test rotor. Cross sections of the wake at 450 intervals in azimuth angle as determined from the path of the tip vortex are presented graphically for all three cases. The nondimensional normal component of the induced velocity that is associated with the tip vortex as determined by an electromagnetic analog at 450 increments in azimuth position and at the blade feathering axis is presented graphically. It is shown that the mean value of this component of the induced velocity is appreciably less after tuck-under than before. It is concluded that this method yields results of engineering accuracy and is a very useful means of studying vortex fields.

  15. No detectable bioeffects following acute exposure to high peak power ultra-wide band electromagnetic radiation in rats.

    PubMed

    Walters, T J; Mason, P A; Sherry, C J; Steffen, C; Merritt, J H

    1995-06-01

    A wide range assessment of the possible bioeffects of an acute exposure to high peak power ultra-wide band (UWB) electromagnetic radiation was performed in rats. The UWB-exposure consisted of 2 min of pulsed (frequency: 60 Hz, pulse width: 5-10 ns) UWB (bandwidth: 0.25-2.50 GHz) electromagnetic radiation. Rats were examined using one of the following: 1) a functional observational battery (FOB); 2) a swimming performance test; 3) a complete panel of blood chemistries; or 4) determination of the expression of the c-fos protein in immunohistologically-stained sections of the brain. No significant differences were found between UWB- or sham-exposed rats on any of the measured parameters.

  16. Cross Coating Weight Control by Electromagnetic Strip Stabilization at the Continuous Galvanizing Line of ArcelorMittal Florange

    NASA Astrophysics Data System (ADS)

    Guelton, Nicolas; Lopès, Catherine; Sordini, Henri

    2016-08-01

    In hot dip galvanizing lines, strip bending around the sink roll generates a flatness defect called crossbow. This defect affects the cross coating weight distribution by changing the knife-to-strip distance along the strip width and requires a significant increase in coating target to prevent any risk of undercoating. The already-existing coating weight control system succeeds in eliminating both average and skew coating errors but cannot do anything against crossbow coating errors. It has therefore been upgraded with a flatness correction function which takes advantage of the possibility of controlling the electromagnetic stabilizer. The basic principle is to split, for every gage scan, the coating weight cross profile of the top and bottom sides into two, respectively, linear and non-linear components. The linear component is used to correct the skew error by realigning the knives with the strip, while the non-linear component is used to distort the strip in the stabilizer in such a way that the strip is kept flat between the knives. Industrial evaluation is currently in progress but the first results have already shown that the strip can be significantly flattened between the knives and the production tolerances subsequently tightened without compromising quality.

  17. Electromagnetic and neutral-weak response functions of 4He and 12C

    NASA Astrophysics Data System (ADS)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, Steven C.; Schiavilla, R.

    2015-06-01

    Background: A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Purpose: The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Methods: Their ab initio calculation is a very challenging quantum many-body problem, since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Results: Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. Conclusions: These results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.

  18. Single neutral pion electroproduction off the proton in the resonance region

    NASA Astrophysics Data System (ADS)

    Markov, Nikolay

    We study a pi0 electroproduction off the proton in the invariant mass range for the ppi0 system of W = 1.1 -- 1.8 GeV in the broad range of the photon virtualities Q2 = 0.4 -- 1.0 GeV2. The experiment was conducted in the Hall B at the Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) detector which is uniquely suited for the spectroscopic measurements. The channel is identified by subsequent determination of the electron using information from the forward angle electromagnetic calorimeter and the drift chambers, and proton from the time of flight and drift chambers signals. Kinematical relations between the charged particles separate the single pion events. The detector efficiency and the geometrical acceptance are studied with the GEANT simulation of the CLAS. The exclusive channel radiative corrections are developed and applied. The full differential cross section of the pi0 electroproduction is measured with high statistical accuracy and small systematical error. The quality of the overall data analysis is checked against the firmly established benchmark reactions. The structure functions and Legendre multipoles are extracted and show the sensitivity of our measurements to the different resonance electroproduction amplitudes. The advanced phenomenological approach will be used to extract the Q2 evolution of the electromagnetic transition form factors of the different resonance states in the combined analysis of the major exclusive channels. This information will notably improve our understanding of the structure of the nucleon.

  19. Electromagnetic and neutral-weak response functions of 4He and 12C

    DOE PAGES

    Lovato, A.; Gandolfi, Stefano; Carlson, Joseph Allen; ...

    2015-06-04

    A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Their ab initio calculation is a very challenging quantum many-body problem,more » since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. In conclusion, these results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.« less

  20. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Wu, C. H.; Chen, C. C.

    2016-05-01

    Radar absorbing materials (RAMs) also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI) reduction and human health protection. In this study, the synthesis of functionally graded material (FGM) (CI/Polyurethane composites), which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA) to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below -10 dB can be obtained in the frequency range of 5.12˜18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of -25.2 dB at 6.64 GHz and its bandwidth below - 10 dB is larger than 12.8 GHz.

  1. Electromagnetic Structure of A=2 and 3 Nuclei and the Nuclear Current Operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco Schiavilla

    Different models for conserved two- and three-body electromagnetic currents are constructed from two- and three-nucleon interactions, using either meson-exchange mechanisms or minimal substitution in the momentum dependence of these interactions. The connection between these two different schemes is elucidated. A number of low-energy electronuclear observables, including (i) np radiative capture at thermal neutron energies and deuteron photodisintegration at low energies, (ii) nd and pd radiative capture reactions, and (iii) isoscalar and isovector magnetic form factors of {sup 3}H and {sup 3}He, are calculated in order to make a comparative study of these models for the current operator. The realistic Argonnemore » v{sub 18} two-nucleon and Urbana IX or Tucson-Melbourne three-nucleon interactions are taken as a case study. For A=3 processes, the bound and continuum wave functions, both below and above deuteron breakup threshold, are obtained with the correlated hyperspherical-harmonics method. Three-body currents give small but significant contributions to some of the polarization observables in the {sup 2}H(p,{gamma}){sup 3}He process and the {sup 2}H(n,{gamma}){sup 3}H cross section at thermal neutron energies. It is shown that the use of a current which did not exactly satisfy current conservation with the two- and three-nucleon interactions in the Hamiltonian was responsible for some of the discrepancies reported in previous studies between the experimental and theoretical polarization observables in pd radiative capture.« less

  2. The electronic and optical properties of quantum nano-structures

    NASA Astrophysics Data System (ADS)

    Ham, Heon

    In semiconducting quantum nano-structures, the excitonic effects play an important role when we fabricate opto-electronic devices, such as lasers, diodes, detectors, etc. To gain a better understanding of the excitonic effects in quantum nano-structures, we investigated the exciton binding energy, oscillator strength, and linewidth in quantum nano-structures using both the infinite and finite well models. We investigated also the hydrogenic impurity binding energy and the photoionization cross section of the hydrogenic impurity in a spherical quantum dot. In our work, the variational approach is used in all calculations, because the Hamiltonian of the system is not separable, due to the different symmetries of the Coulomb and confining potentials. In the infinite well model of the semiconducting quantum nanostructures, the binding energy of the exciton increases with decreasing width of the potential barriers due to the increase in the effective strength of the Coulomb interaction between the electron and hole. In the finite well model, the exciton binding energy reaches a peak value, and the binding energy decreases with further decrease in the width of the potential barriers. The exciton linewidth in the infinite well model increases with decreasing wire radius, because the scattering rate of the exciton increases with decreasing wire radius. In the finite well model, the exciton linewidth in a cylindrical quantum wire reaches a peak value and the exciton linewidth decreases with further decrease in the wire radius, because the exciton is not well confined at very smaller wire radii. The binding energy of the hydrogenic impurity in a spherical quantum dot has also calculated using both the infinite and the finite well models. The binding energy of the hydrogenic impurity was calculated for on center and off center impurities in the spherical quantum dots. With decreasing radii of the dots, the binding energy of the hydrogenic impurity increases in the infinite well model. The binding energy of the hydrogenic impurity in the finite well model reaches a peak value and decreases with further decrease in the dot radii for both on center and off center impurities. We have calculated the photoionization cross section as a function of the radius and the frequency using both the infinite and finite well models. The photoionizaton cross section has a peak value at a frequency where the photon energy equals the difference between the final and initial state energies of the impurity. The behavior of the cross section with dot radius depends upon the location of the impurity and the polarization of the electromagnetic field.

  3. Measurement of $$\\sigma\\cdot$$Br($$W + \\gamma$$) and $$\\sigma\\cdot$$BR($$Z + \\gamma$$) and Search for Anomalous $W$ ($$\\gamma$$) and $Z$ ($$\\gamma$$) Couplings at $$\\sqrt{s}$$ = 1.8-TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondracek, Mark Frank

    1994-11-01

    Measurements of the production cross section times branching ratio for W + γ and Z + γ processes, where the W decays into a muon and neutrino and the Z decays into a muon pair, have been made from the analysis of 18.6±0.7 pb -1 of high-P T muon data from proton-antiproton (pmore » $$\\bar{p}$$) collisions. The data were collected with the Collider Detector at Fermilab (CDF) during the 1992-93 run. In a search for central photons (|η| < 1.1) with transverse energy above 7 GeV and angular separation from the muon by at least ΔR = 0. 7, where ΔR = √(Δ Φ 2+ Δη 2) , we find 7 W γ and 4 Zγ candidates. This translates into cross section times branching ratios of 9.0 ± 6.4 pb for the Wγ process and 6.6 ± 3.4 pb for the Zγ process. Separate measurements were made for photon E T values above 11 Ge V and 15 Ge V. The cross section times branching ratio results were used to calculate a series of cross section ratios. An analysis designed to search for anomalous couplings between the gauge bosons was also carried out using these results. Assuming only one anomalous coupling to be non-zero at a time, the 95% CL limits on W γ anomalous couplings are, -3.7 < Δ κ< 3.7, -1.2 < λ< 1.2, -3.8 < $$\\tilde{κ}$$, < 3.8 and -1.2 < $$\\tilde{λ}$$ < 1.2. For ZZγ anomalous couplings the experimental limits are measured to be, at the 95% CL, -4.6 < h$$Z\\atop{30}$$ (h$$Z\\atop{10}$$ ) < 4.6 and -1.1 < h$$Z\\atop{40}$$ (h$$Z\\atop{20}$$) < 1.1. For Zγγ anomalous couplings the experimental limits are measured to be, at the 95% CL, -4.9 < h$$γ\\atop{30}$$ ($$γ\\atop{10}$$) < 4.9 and -1.2 < $$γ\\atop{40}$$ ( $$γ\\atop{20}$$ ) < 1.2. Limits are placed on electromagnetic multi pole moments for both the W and Z bosons using the measured limits of the anomalous couplings, and are presented in this thesis. All of the measurements presented in this thesis are consistent with Standard Model expectations.« less

  4. Search for weak M 1 transitions in 48Ca with inelastic proton scattering

    NASA Astrophysics Data System (ADS)

    Mathy, M.; Birkhan, J.; Matsubara, H.; von Neumann-Cosel, P.; Pietralla, N.; Ponomarev, V. Yu.; Richter, A.; Tamii, A.

    2017-05-01

    Background: The quenching of spin-isospin modes in nuclei is an important field of research in nuclear structure. It has an impact on astrophysical reaction rates and on fundamental processes like neutrinoless double-β decay. Gamow-Teller (GT) and spin-flip M 1 strengths are quenched. Concerning the latter, the Jπ=1+ resonance in the doubly magic nucleus 48Ca, dominated by a single transition, serves as a reference case. Purpose: The aim of the present work is to search for weak M 1 transitions in 48Ca with a high-resolution (p ,p') experiment at 295 MeV and forward angles including 0∘ and a comparison with results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B (M 1 ) strength in 48Ca. Methods: The spin-M 1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis (MDA) and converted to reduced spin-M 1 transition strengths by using the unit cross-section method. For a comparison with electron-scattering results, corresponding reduced B (M 1 ) transition strengths are extracted following the approach outlined in Birkhan et al. [Phys. Rev. C 93, 041302(R) (2016), 10.1103/PhysRevC.93.041302]. Results: In total, 30 peaks containing a M 1 contribution are found in the excitation energy region 7-13 MeV. The resulting B (M 1 ) strength distribution compares well to the electron-scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.14(7) μN2 deduced assuming a nonquenched isoscalar part of the (p ,p') cross sections agrees with the (e ,e') result of 1.21(13) μN2. A bin-wise analysis above 10 MeV provides an upper limit of 1.51(17) μN2. Conclusions: The present results confirm the previous electron-scattering work that weak transitions contribute about 25% to the total B (M 1 ) strength in 48Ca and the quenching factors of GT and spin-M 1 strength are then comparable in f p -shell nuclei. Thus, the role of meson-exchange currents seems to be negligible in 48Ca, in contrast to s d -shell nuclei.

  5. Revisiting the Plane Electromagnetic Wave Transmission and Reflection Coefficients for the Layer with AN Alternating-Sign Disturbance of Relative Dielectric Permittivity

    NASA Astrophysics Data System (ADS)

    Milov, V. R.; Kogan, L. P.; Gorev, P. V.; Kuzmichev, P. N.; Egorova, P. A.

    2017-01-01

    In this paper, we consider the question of the plane electromagnetic wave incidence at the inhomogeneity with an arbitrary profile of the relative permittivity disturbance. Module estimation of Neumann series remainder is carried out for the field of the wave passing through the nonhomogeneous section. Based on that, the number of summands in the series, required to calculate with a given accuracy, the transmission and reflection coefficients have been determined.

  6. Time delay and distance measurement

    NASA Technical Reports Server (NTRS)

    Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)

    2011-01-01

    A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.

  7. Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam.

    PubMed

    Wu, Gaofeng; Cai, Yangjian

    2011-04-25

    Analytical formula for the cross-spectral density matrix of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam truncated by a circular phase aperture propagating in free space is derived with the help of a tensor method, which provides a reliable and fast way for studying the propagation and transformation of a truncated EGSM beam. Statistics properties, such as the spectral intensity, the degree of coherence, the degree of polarization and the polarization ellipse of a truncated EGSM beam in free space are studied numerically. The propagation factor of a truncated EGSM beam is also analyzed. Our numerical results show that we can modulate the spectral intensity, the polarization, the coherence and the propagation factor of an EGSM beam by a circular phase aperture. It is found that the phase aperture can be used to shape the beam profile of an EGSM beam and generate electromagnetic partially coherent dark hollow or flat-topped beam, which is useful in some applications, such as optical trapping, material processing, free-space optical communications.

  8. Gyrotropic response in the absence of a bias field

    PubMed Central

    Wang, Zhiyu; Wang, Zheng; Wang, Jingyu; Zhang, Bin; Huangfu, Jiangtao; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin

    2012-01-01

    Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials. PMID:22847403

  9. Controlling the delocalization-localization transition of light via electromagnetically induced transparency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng Jing; Huang Guoxiang; State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062

    2011-05-15

    We propose a scheme to realize a transition from delocalization to localization of light waves via electromagnetically induced transparency. The system we suggested is a resonant cold atomic ensemble having N configuration, with a control field consisting of two pairs of laser beams with different cross angles, which produce an electromagnetically induced quasiperiodic waveguide (EIQPW) for the propagation of a signal field. By appropriately tuning the incommensurate rate or relative modulation strength between the two pairs of control-field components, the signal field can exhibit the delocalization-localization transition as it transports inside the atomic ensemble. The delocalization-localization transition point is determinedmore » and the propagation property of the signal field is studied in detail. Our work provides a way of realizing wave localization via atomic coherence, which is quite different from the conventional, off-resonant mechanism-based Aubry-Andre model, and the great controllability of the EIQPW also allows an easy manipulation of the delocalization-localization transition.« less

  10. Gyrotropic response in the absence of a bias field.

    PubMed

    Wang, Zhiyu; Wang, Zheng; Wang, Jingyu; Zhang, Bin; Huangfu, Jiangtao; Joannopoulos, John D; Soljačić, Marin; Ran, Lixin

    2012-08-14

    Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials.

  11. The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats.

    PubMed

    Hassanshahi, Amin; Shafeie, Seyed Ali; Fatemi, Iman; Hassanshahi, Elham; Allahtavakoli, Mohammad; Shabani, Mohammad; Roohbakhsh, Ali; Shamsizadeh, Ali

    2017-06-01

    Wireless internet (Wi-Fi) electromagnetic waves (2.45 GHz) have widespread usage almost everywhere, especially in our homes. Considering the recent reports about some hazardous effects of Wi-Fi signals on the nervous system, this study aimed to investigate the effect of 2.4 GHz Wi-Fi radiation on multisensory integration in rats. This experimental study was done on 80 male Wistar rats that were allocated into exposure and sham groups. Wi-Fi exposure to 2.4 GHz microwaves [in Service Set Identifier mode (23.6 dBm and 3% for power and duty cycle, respectively)] was done for 30 days (12 h/day). Cross-modal visual-tactile object recognition (CMOR) task was performed by four variations of spontaneous object recognition (SOR) test including standard SOR, tactile SOR, visual SOR, and CMOR tests. A discrimination ratio was calculated to assess the preference of animal to the novel object. The expression levels of M1 and GAT1 mRNA in the hippocampus were assessed by quantitative real-time RT-PCR. Results demonstrated that rats in Wi-Fi exposure groups could not discriminate significantly between the novel and familiar objects in any of the standard SOR, tactile SOR, visual SOR, and CMOR tests. The expression of M1 receptors increased following Wi-Fi exposure. In conclusion, results of this study showed that chronic exposure to Wi-Fi electromagnetic waves might impair both unimodal and cross-modal encoding of information.

  12. High Resolution, Low Altitude Aeromagnetic and Electromagnetic Survey of Mt Rainier

    USGS Publications Warehouse

    Rystrom, V.L.; Finn, C.; Deszcz-Pan, Maryla

    2000-01-01

    In October 1996, the USGS conducted a high resolution airborne magnetic and electromagnetic survey in order to discern through-going sections of exposed altered rocks and those obscured beneath snow, vegetation and surficial unaltered rocks. Hydrothermally altered rocks weaken volcanic edifices, creating the potential for catastrophic sector collapses and ensuing formation of destructive volcanic debris flows. This data once compiled and interpreted, will be used to examine the geophysical properties of the Mt. Rainier volcano, and help assist the USGS in its Volcanic Hazards Program and at its Cascades Volcano Observatory. Aeromagnetic and electromagnetic data provide a means for seeing through surficial layers and have been tools for delineating structures within volcanoes. However, previously acquired geophysical data were not useful for small-scale geologic mapping. In this report, we present the new aeromagnetic and electromagnetic data, compare results from previously obtained, low-resolution aeromagnetic data with new data collected at a low-altitude and closely spaced flightlines, and provide information on potential problems with using high-resolution data.

  13. Design Challenges of Power Systems for Instrumented Spacecraft with Very Low Perigees in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Moran, Vickie Eakin; Manzer, Dominic D.; Pfaff, Robert E.; Grebowsky, Joseph M.; Gervin, Jan C.

    1999-01-01

    Designing a solar array to power a spacecraft bus supporting a set of instruments making in situ plasma and neutral atmosphere measurements in the ionosphere at altitudes of 120km or lower poses several challenges. The driving scientific requirements are the field-of-view constraints of the instruments resulting in a three-axis stabilized spacecraft, the need for an electromagnetically unperturbed environment accomplished by designing an electrostatically conducting solar array surface to avoid large potentials, making the spacecraft body as small and as symmetric as possible, and body-mounting the solar array. Furthermore, the life and thermal constraints, in the midst of the effects of the dense atmosphere at low altitude, drive the cross-sectional area of the spacecraft to be small particularly normal to the ram direction. Widely varying sun angles and eclipse durations add further complications, as does the growing desire for multiple spacecraft to resolve spatial and temporal variations packaged into a single launch vehicle. Novel approaches to insure adequate orbit-averaged power levels of approximately 250W include an oval-shaped cross section to increase the solar array collecting area during noon-midnight orbits and the use of a flywheel energy storage system. The flywheel could also be used to help maintain the spacecraft's attitude, particularly during excursions to the lowest perigee altitudes. This paper discusses the approaches used in conceptual power designs for both the proposed Dipper and the Global Electrodynamics Connections (GEC) Mission currently being studied at the NASA/Goddard Space Flight Center.

  14. Mobile phones, radiofrequency fields, and health effects in children--epidemiological studies.

    PubMed

    Feychting, Maria

    2011-12-01

    In 2004, when WHO organized a workshop on children's sensitivity to electromagnetic fields, very few studies on radiofrequency fields were available. With the recent increase in mobile phone use among children and adolescents, WHO has identified studies on health effects in this age-group as a high priority research area. There are no empirical data supporting the notion that children and adolescents are more susceptible to RF exposure, but the number of studies is still relatively small. There are a few cross-sectional studies on well-being, cognitive effects and behavioral problems, and some cohort studies, mainly of maternal use of mobile phones during pregnancy. Cancer outcomes have been studied in relation to environmental RF exposure, e.g. from transmitters, and only one study on mobile phone use in children and adolescents and brain tumor risk has been published. Several methodological limitations need to be taken into consideration when interpreting the findings of the epidemiological studies. The cross-sectional design does not allow determination of the temporal sequence of exposure and outcome, and for several outcomes there is a large potential for reversed causality, i.e. that the outcome causes an increased RF exposure rather than the opposite. Biases such as recall errors in self-reported mobile phone use, lack of confounding control, e.g. of other aspects of mobile phone use than RF fields, trained behaviors, and pubertal development, makes causal interpretations impossible. Future studies need to include prospectively collected exposure information, incident outcomes, and proper confounding control. Monitoring of brain tumor incidence trends is strongly recommended. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp

    NASA Astrophysics Data System (ADS)

    Billaud, Pierre; Marhaba, Salem; Grillet, Nadia; Cottancin, Emmanuel; Bonnet, Christophe; Lermé, Jean; Vialle, Jean-Louis; Broyer, Michel; Pellarin, Michel

    2010-04-01

    This article describes a high sensitivity spectrophotometer designed to detect the overall extinction of light by a single nanoparticle (NP) in the 10-4-10-5 relative range, using a transmission measurement configuration. We focus here on the simple and low cost scheme where a white lamp is used as a light source, permitting easy and broadband extinction measurements (300-900 nm). Using a microscope, in a confocal geometry, an increased sensitivity is reached thanks to a modulation of the NP position under the light spot combined with lock-in detection. Moreover, it is shown that this technique gives access to the absolute extinction cross-sections of the single NP provided that the incident electromagnetic field distribution experienced by the NP is accurately characterized. In this respect, an experimental procedure to characterize the light spot profile in the focal plane, using a reference NP as a probe, is also laid out. The validity of this approach is discussed and confirmed by comparing experimental intensity distributions to theoretical calculations taking into account the vector character of the tightly focused beam. The calibration procedure permitting to obtain the absolute extinction cross-section of the probed NP is then fully described. Finally, the force of the present technique is illustrated through selected examples concerning spherical and slightly elongated gold and silver NPs. Absolute extinction measurements are found to be in good consistency with the NP size and shape independently obtained from transmission electron microscopy, showing that spatial modulation spectroscopy is a powerful tool to get an optical fingerprint of the NP.

  16. Full-Scale Model of Subionospheric VLF Signal Propagation Based on First-Principles Charged Particle Transport Calculations

    NASA Astrophysics Data System (ADS)

    Kouznetsov, A.; Cully, C. M.; Knudsen, D. J.

    2016-12-01

    Changes in D-Region ionization caused by energetic particle precipitation are monitored by the Array for Broadband Observations of VLF/ELF Emissions (ABOVE) - a network of receivers deployed across Western Canada. The observed amplitudes and phases of subionospheric-propagating VLF signals from distant artificial transmitters depend sensitively on the free electron population created by precipitation of energetic charged particles. Those include both primary (electrons, protons and heavier ions) and secondary (cascades of ionized particles and electromagnetic radiation) components. We have designed and implemented a full-scale model to predict the received VLF signals based on first-principle charged particle transport calculations coupled to the Long Wavelength Propagation Capability (LWPC) software. Calculations of ionization rates and free electron densities are based on MCNP-6 (a general-purpose Monte Carlo N- Particle) software taking advantage of its capability of coupled neutron/photon/electron transport and novel library of cross-sections for low-energetic electron and photon interactions with matter. Cosmic ray calculations of background ionization are based on source spectra obtained both from PAMELA direct Cosmic Rays spectra measurements and based on the recently-implemented MCNP 6 galactic cosmic-ray source, scaled using our (Calgary) neutron monitor measurement results. Conversion from calculated fluxes (MCNP F4 tallies) to ionization rates for low-energy electrons are based on the total ionization cross-sections for oxygen and nitrogen molecules from the National Institute of Standard and Technology. We use our model to explore the complexity of the physical processes affecting VLF propagation.

  17. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    DOE PAGES

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; ...

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore » swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less

  18. Periodic array-based substrates for surface-enhanced infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-01-01

    At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS) surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS), SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures.

  19. Near grazing scattering from non-Gaussian ocean surfaces

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin; Rodriguez, Ernesto

    1993-01-01

    We investigate the behavior of the scattered electromagnetic waves from non-Gaussian ocean surfaces at near grazing incidence. Even though the scattering mechanisms at moderate incidence angles are relatively well understood, the same is not true for near grazing rough surface scattering. However, from the experimental ocean scattering data, it has been observed that the backscattering cross section of a horizontally polarized wave can be as large as the vertical counterpart at near grazing incidence. In addition, these returns are highly intermittent in time. There have been some suggestions that these unexpected effects may come from shadowing or feature scattering. Using numerical scattering simulations, it can be shown that the horizontal backscattering cannot be larger than the vertical one for the Gaussian surfaces. Our main objective of this study is to gain a clear understanding of scattering mechanisms underlying the near grazing ocean scattering. In order to evaluate the backscattering cross section from ocean surfaces at near grazing incidence, both the hydrodynamic modeling of ocean surfaces and an accurate near grazing scattering theory are required. For the surface modeling, we generate Gaussian surfaces from the ocean surface power spectrum which is derived using several experimental data. Then, weakly nonlinear large scale ocean surfaces are generated following Longuet-Higgins. In addition, the modulation of small waves by large waves is included using the conservation of wave action. For surface scattering, we use MOM (Method of Moments) to calculate the backscattering from scattering patches with the two scale shadowing approximation. The differences between Gaussian and non-Gaussian surface scattering at near grazing incidence are presented.

  20. 40 CFR 761.20 - Prohibitions and exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... locomotives and self-propelled cars), capacitors, electromagnets, voltage regulators, switches (including... Capacitor. See paragraph (c)(1) of this section for provisions allowing the distribution in commerce of PCBs...

  1. 40 CFR 761.20 - Prohibitions and exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... locomotives and self-propelled cars), capacitors, electromagnets, voltage regulators, switches (including... Capacitor. See paragraph (c)(1) of this section for provisions allowing the distribution in commerce of PCBs...

  2. 40 CFR 761.20 - Prohibitions and exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... locomotives and self-propelled cars), capacitors, electromagnets, voltage regulators, switches (including... Capacitor. See paragraph (c)(1) of this section for provisions allowing the distribution in commerce of PCBs...

  3. Guidance of Magnetic Nanocontainers for Treating Alzheimer's Disease Using an Electromagnetic, Targeted Drug-Delivery Actuator.

    PubMed

    Do, Ton Duc; Ul Amin, Faiz; Noh, Yeongil; Kim, Myeong Ok; Yoon, Jungwon

    2016-03-01

    The "impermeability" of the blood-brain barrier (BBB) has hindered effective treatment of central nervous system (CNS) disorders such as Alzheimer's disease (AD), which is one of the most common neurodegenerative disorders. A drug can be delivered to a targeted disease site effectively by applying a strong electromagnetic force to the conjugate of a drug and magnetic nanocontainers. This study developed a novel nanotechnology-based strategy to deliver therapeutic agents to the brain via the BBB as a possible therapeutic approach for AD. First, a novel approach for an electromagnetic actuator for guiding nanocontainers is introduced. Then, we analyzed the in vivo uptake in mice experimentally to evaluate the capacity of the nanocontainers. In the mouse model, we demonstrated that magnetic particles can cross the normal BBB when subjected to external electromagnetic fields of 28 mT (0.43 T/m) and 79.8 mT (1.39 T/m). Our study also assessed the differential effects of pulsed (0.25, 0.5, and 1 Hz) and constant magnetic fields on the transport of particles across the BBB in mice injected with magnetic nanoparticles (MNPs) via a tail vein. The applied magnetic field was either kept constant or pulsed on and off. Relative to a constant magnetic field, the rate of MNP uptake and transport across the BBB was enhanced significantly by a pulsed magnetic field. Localization inside the brain was established using fluorescent MNPs. These results using 770-nm fluorescent carboxyl magnetic nanocontainers demonstrated the feasibility of the proposed electromagnetic targeted drug delivery actuator. These results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external electromagnetic field. This might be a valuable targeting system for AD diagnosis and therapy.

  4. Meteoroid head echo polarization features studied by numerical electromagnetics modeling

    NASA Astrophysics Data System (ADS)

    Vertatschitsch, L. E.; Sahr, J. D.; Colestock, P.; Close, S.

    2011-12-01

    Meteoroid head echoes are radar returns associated with scatter from the dense plasma surrounding meteoroids striking the Earth's atmosphere. Such echoes are detected by high power, large aperture (HPLA) radars. Frequently such detections show large variations in signal strength that suggest constructive and destructive interference. Using the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR) we can also observe the polarization of the returns. Usually, scatter from head echoes resembles scatter from a small sphere; when transmitting right circular polarization (RC), the received signal consists entirely of left circular polarization (LC). For some detections, power is also received in the RC channel, which indicates the presence of a more complicated scattering process. Radar returns of a fragmenting meteoroid are simulated using a hard-sphere scattering model numerically evaluated in the resonant region of Mie scatter. The cross- and co-polar scattering cross-sections are computed for pairs of spheres lying within a few wavelengths, simulating the earliest stages of fragmentation upon atmospheric impact. The likelihood of detecting this sort of idealized fragmentation event is small, but this demonstrates the measurements that would result from such an event would display RC power comparable to LC power, matching the anomalous data. The resulting computations show that fragmentation is a consistent interpretation for these head echo radar returns.

  5. 40 CFR 63.9306 - What are my continuous parameter monitoring system (CPMS) installation, operation, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If a gas...) of this section. (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the...

  6. 40 CFR 63.9306 - What are my continuous parameter monitoring system (CPMS) installation, operation, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If a gas...) of this section. (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the...

  7. Intrasystem Analysis Program (IAP) Code Summaries.

    DTIC Science & Technology

    1983-05-01

    I - Ue’s Manual Engineering Section," RADC-TR-74-342, AD# A008526, December 1974. - 3. L. Bogdanor , R. A. Pearl--n, and M. .. Siegel, "Intrasystem...Electromagnetic Compatibility Analysis Program, Volume II - User’s Manual Usage Section," RADC-TR-74-342, AD# A008527, December 1974. i * J. L. Bogdanor

  8. Wavelength Division Multiplexing Scheme for Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We describe work on a wavelength division multiplexing scheme for radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. Using discrete components, we made a two-channel demonstration of this concept and successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  9. Photoeffect cross sections of some rare-earth elements at 145.4 keV

    NASA Astrophysics Data System (ADS)

    Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.

    1985-08-01

    Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.

  10. Electromagnetic scattering from a class of open-ended waveguide discontinuities

    NASA Technical Reports Server (NTRS)

    Altintas, A.; Pathak, P. H.; Burnside, Walter D.

    1986-01-01

    A relatively simple high frequency analysis of electromagnetic scattering from a class of open-ended waveguide discontinuites was developed. The waveguides are composed of perfectly-conducting sections in which the electromagnetic field can be written as the sum of waveguide modes. Junctions are formed at the open end and also within interior regions where different sections are joined. The reflection and transmission properties of each junction are described in terms of a scattering matrix which is determined by combining the modal ray picture with high frequency techniques such as the Geometrical Theory of Diffraction (GTD), the Equivalent Current Method (ECM), and modifications of the Physical Theory of Diffraction (PTD). A new set of equivalent circuits are employed in this ECM analysis which leads to a simple treatment of many types of junction discontinuities. Also, a new procedure is presented to improve the efficiency of the aperture integration at the open end which is required in the PTD procedure for finding the fields radiated from (or coupled to) the open end. Once the scattering matrices are determined, they are then combined using a self-consistent multiple scattering method to obtain the total scattered fields.

  11. Formulation and Analysis of the Quantum Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.

    In radar, the amount of returns that an object sends back to the receiver after being struck by an electromagnetic wave is characterized by what is known as the radar cross section, denoted by sigma typically. There are many mechanisms that affect how much radiation is reflected back in the receiver direction, such as reflectivity, physical contours and dimensions, attenuation properties of the materials, projected cross sectional area and so on. All of these characteristics are lumped together in a single value of sigma, which has units of m2. Stealth aircrafts for example are designed to minimize its radar cross section and return the smallest amount of radiation possible in the receiver direction. A new concept has been introduced called quantum radar, that uses correlated quantum states of photons as well as the unique properties of quantum mechanics to ascertain information on a target at a distance. At the time of writing this dissertation, quantum radar is very much in its infancy. There still exist fundamental questions about the feasibility of its implementation, especially in the microwave spectrum. However, what has been theoretically determined, is that quantum radar has a fundamental advantage over classical radar in terms of resolution and returns in certain regimes. Analogous to the classical radar cross section (CRCS), the concept of the quantum radar cross section (QRCS) has been introduced. This quantity measures how an object looks to a quantum radar be describing how a single photon, or small cluster of photons scatter off of a macroscopic target. Preliminary simulations of the basic quantum radar cross section equation have yielded promising results showing an advantage in sidelobe response in comparison to the classical RCS. This document expands upon this idea by providing insight as to where this advantage originates, as well as developing more rigorous simulation analysis, and greatly expanding upon the theory. The expanded theory presented in this document includes re-deriving the QRCS formula to be a general bistatic formula, as the current equation is only valid for monostatic radar geometries. This re-derivation process also leads to the addition of terms that capture the effect of photon polarization, something that is not properly taken into account in the current literature. Most importantly, a new formulation of the QRCS formula will be derived that includes writing the equation in terms of Fourier transforms. This has a profound impact on the analysis of the theory of the QRCS as it allows for the derivation of closed form solutions of certain geometries, something that has never been possible due to the form of the current QRCS equation. All together, this document will provide a complete and general theory of the QRCS. After deriving the necessary equations, there will be extensive work in the utilization of these equations in deriving geometry dependent responses and comparing the closed form solutions to the classical solutions as well as comparing the solutions to the numerical simulations. The current literature relies exclusively on numerical simulations to analyze the behavior of the QRCS. The simulations done do not take into account the macroscopic nature of the target. Because the atoms are so numerous, and because of the underlying Fourier transform relationship, there are many issues of sampling that must be taken into account when performing simulations. Simulating an object with too few samples results in an aliased and incorrect version of the QRCS response. An extensive error analysis is presented which ensures an accurate simulation result based on sample number. Finally, possible future work endeavors will be presented which include QRCS diffraction, shadowing, more accurate simulation concepts, and the effect of quantum tunneling on the QRCS response.

  12. Study of cross-shaped ultrasonic array sensor applied to partial discharge location in transformer oil.

    PubMed

    Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo

    2013-11-01

    A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.

  13. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  14. Numerical methods for analyzing electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.

    1985-01-01

    Attenuation properties of the normal modes in an overmoded waveguide coated with a lossy material were analyzed. It is found that the low-order modes, can be significantly attenuated even with a thin layer of coating if the coating material is not too lossy. A thinner layer of coating is required for large attenuation of the low-order modes if the coating material is magnetic rather than dielectric. The Radar Cross Section (RCS) from an uncoated circular guide terminated by a perfect electric conductor was calculated and compared with available experimental data. It is confirmed that the interior irradiation contributes to the RCS. The equivalent-current method based on the geometrical theory of diffraction (GTD) was chosen for the calculation of the contribution from the rim diffraction. The RCS reduction from a coated circular guide terminated by a PEC are planned schemes for the experiments are included. The waveguide coated with a lossy magnetic material is suggested as a substitute for the corrugated waveguide.

  15. Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in pp collisions at √ s=8 TeV

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-02-10

    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb -1 of data collected in proton–proton collisions at √s=8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio intomore » long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.« less

  16. Experimental status DVCS e p ---> e p gamma and e n ---> e n gamma at Jefferson Lab-Hall A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Ferdi

    2004-06-02

    The experiments E00-110 and E03-106 [1] propose to measure the Deep Virtual Compton Scattering process (DVCS) ep --> ep{gamma} and en --> en{gamma} in Hall A at Jefferson Lab with a 5.75 GeV longitudinally polarized electron beam. The exclusivity requires the High Resolution Spectrometer of the Hall A for the detection of the scattered electron ({Delta}p/p = 10^-4), an electromagnetic calorimeter for the detection of the real photon ({sigma}/E<5%) and a scintillator array for the detection of the third particle. A 1 GHz sampling system allows one to deal with pile-up as expected from running detectors at small angles andmore » high luminosity L = 10^37 cm^-2 s^-1. We will describe the apparatus and will explain the method to extract GPDs and evaluate the contributions from higher twists from the measurement of the cross-section difference.« less

  17. Specification for a surface-search radar-detection-range model

    NASA Astrophysics Data System (ADS)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  18. Microwave heating and joining of ceramic cylinders: A mathematical model

    NASA Technical Reports Server (NTRS)

    Booty, Michael R.; Kriegsmann, Gregory A.

    1994-01-01

    A thin cylindrical ceramic sample is placed in a single mode microwave applicator in such a way that the electric field strength is allowed to vary along its axis. The sample can either be a single rod or two rods butted together. We present a simple mathematical model which describes the microwave heating process. It is built on the assumption that the Biot number of the material is small, and that the electric field is known and uniform throughout the cylinder's cross-section. The model takes the form of a nonlinear parabolic equation of reaction-diffusion type, with a spatially varying reaction term that corresponds to the spatial variation of the electromagnetic field strength in the waveguide. The equation is analyzed and a solution is found which develops a hot spot near the center of the cylindrical sample and which then propagates outwards until it stabilizes. The propagation and stabilization phenomenon concentrates the microwave energy in a localized region about the center where elevated temperatures may be desirable.

  19. Exploring for oil with nuclear physics

    NASA Astrophysics Data System (ADS)

    Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa

    2017-09-01

    Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.

  20. Special Session 2: Cosmic Evolution of Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Vrtilek, J. M.; David, L. P.

    2015-03-01

    During the past decade observations across the electromagnetic spectrum have led to broad progress in the understanding of galaxy clusters and their far more abundant smaller siblings, groups. From the X-rays, where Chandra and XMM have illuminated old phenomena such as cooling cores and discovered new ones such as shocks, cold fronts, bubbles and cavities, through rich collections of optical data (including vast and growing arrays of redshifts), to the imaging of AGN outbursts of various ages through radio observations, our access to cluster and group measurements has leaped forward, while parallel advances in theory and modeling have kept pace. This Special Session offered a survey of progress to this point, an assessment of outstanding problems, and a multiwavelength overview of the uses of the next generation of observatories. Holding the symposium in conjuction with the XXVIIIth General Assembly provided the significant advantage of involving not only a specialist audience, but also interacting with a broad cross-section of the world astronomical community.

Top