Sample records for electromagnetic environment measurements

  1. Quantifying Electromagnetic Wave Propagation Environment Using Measurements From A Small Buoy

    DTIC Science & Technology

    2017-06-01

    ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A SMALL BUOY by Andrew E. Sweeney June 2017 Thesis Advisor: Qing Wang...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE QUANTIFYING ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A...the Coupled Air Sea Processes and Electromagnetic (EM) ducting Research (CASPER), to understand air-sea interaction processes and their representation

  2. Exploration of the Electromagnetic Environment

    ERIC Educational Resources Information Center

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  3. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  4. The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital.

    PubMed

    Hanada, Eisuke

    2007-01-01

    Most problems with the electromagnetic environment of medical institutions have been related to radiated electromagnetic fields and have been constructed from reports about electromagnetic interference (EMI) with electronic medical equipment by the radio waves emitted from mobile telephone handsets. However, radiated electromagnetic fields are just one of the elements. For example, little attention has been placed on problems with the electric power source. Apparatus for clinical treatment and diagnosis that use electric power sources have come into wide use in hospitals. Hospitals must pay careful attention to all elements of the electromagnetic environment. Herein, I will show examples of measurements and measuring methods for radiated electromagnetic fields, static magnetic fields, and power-source noise, common components of the medical electromagnetic environment.

  5. Electromagnetic environment measurements of PRT systems at "TRANSPO 72" : volume I

    DOT National Transportation Integrated Search

    1974-01-01

    An X-Y plot is made of the ambient radiated electromagnetic signals and noise between 1KHz and 50KHz at Dulles International Airport for the purpose of assessing the local environment at each of the four Personalized Rapid Transit (PRT) sites prior t...

  6. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.

    PubMed

    Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo

    2014-12-01

    With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  8. Electromagnetic Measurements in an Active Oilfield Environment

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Aur, K. A.; Schramm, K. A.; Aldridge, D. F.; O'rourke, W. T.

    2016-12-01

    An important issue in oilfield development is mapping fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring has been successful in constraining fracture system geometry and dynamics, accurate interpretation of microseismic data can be confounded by factors such as complex or poorly-understood velocity distributions, reactivation of previously unknown faults and fractures, and the problem of relating flow patterns to the cloud of hypocenter locations. For the particular problem of hydrocarbon production, the question of which fractures remain sufficiently "open" to allow economical fluid extraction is critical. As a supplement to microseismic analysis, we are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a hydrocarbon or geothermal reservoir by introducing an electrically conductive contrast agent into the fracturing fluid. In the field experiment presented here, a proppant-filled fracture zone is illuminated by a large engineered antenna consisting of an insulated current-carrying cable, grounded to `Earth' near the wellhead, and grounded at the other end to the steel-cased borehole near the target. Time-lapse measurements of horizontal electric field are subsequently made on Earth's surface to map the change in subsurface conductivity due to proppant emplacement. As predicted by 3D numerical modelling, observed differences in electric field values are very small. While these numbers are above the noise floor of electric field sensors, pervasive anthropogenic EM noise and regional-scale magnetotelluric signals make extraction of the differences from the observed time series especially difficult. We present field-acquired data on ambient EM noise in an active oilfield environment and demonstrate techniques for extracting the difference signal due to proppant emplacement. These techniques include classical spectral methods along with estimation of

  9. Electromagnetic exposure compliance estimation using narrowband directional measurements.

    PubMed

    Stratakis, D; Miaoudakis, A; Xenos, T; Zacharopoulos, V

    2008-01-01

    The increased number of everyday applications that rely on wireless communication has drawn an attention to several concerns on the adverse health effects that prolonged or even short time exposure might have on humans. International organisations and countries have adopted guides and legislation for the public safety. They include reference levels (RLs) regarding field strength electromagnetic quantities. To check for RLs compliance in an environment with multiple transmitters of various types, analytical simulation models may be implemented provided that all the necessary information are available. Since this is not generally the case in the most practical situations, on-site measurements have to be performed. The necessary equipment for measurements of this type usually includes broadband field metres suitable to measure the field strength over the whole bandwidth of the field sensor used. These types of measurements have several drawbacks; to begin with, given that RLs are frequency depended, compliance evaluation can be misleading since no information is available regarding the measured spectrum distribution. Furthermore, in a multi-transmitter environment there is no way of distinguishing the contribution of a specific source to the overall field measured. Of course, this problem can be resolved using narrowband directional receiver antennas, yet there is always the need for a priori knowledge of the polarisation of the incident electromagnetic wave. In this work, the use of measurement schemes of this type is addressed. A method independent to the polarisation of the incident wave is proposed and a way to evaluate a single source contribution to the total field in a multi-transmitter environment and the polarisation of the measured incident wave is presented.

  10. Electromagnetic Measurements in an Active Oilfield Environment

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Weiss, C. J.

    2015-12-01

    An important issue in oilfield development pertains to mapping and monitoring of the fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring and analysis have been used for this purpose for several decades, there remain several ambiguities and uncertainties with this approach. We are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a petroleum reservoir by injecting an electrically conductive contrast agent into an open fracture. The fracture is subsequently illuminated by a strong EM field radiated by a large engineered antenna. Specifically, a grounded electric current source is applied directly to the steel casing of the borehole, either at/near the wellhead or at a deep downhole point. Transient multicomponent EM signals (both electric and magnetic) scattered by the conductivity contrast are then recorded by a surface receiver array. We are presently utilizing advanced 3D numerical modeling algorithms to accurately simulate fracture responses, both before and after insertion of the conductive contrast agent. Model results compare favorably with EM field data recently acquired in a Permian Basin oilfield. However, extraction of the very-low-amplitude fracture signatures from noisy data requires effective noise suppression strategies such as long stacking times, rejection of outliers, and careful treatment of natural magnetotelluric fields. Dealing with the ever-present "episodic EM noise" typical in an active oilfield environment (associated with drilling, pumping, machinery, traffic, etc.) constitutes an ongoing problem. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. In-Flight Characterization of the Electromagnetic Environment Inside an Airliner

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Dudley, Kenneth L.; Quach, Cuong C.; Koppen, Sandra V.

    2001-01-01

    In 1995, the NASA Langley Research Center conducted a series of experimental measurements that characterized the electromagnetic environment (EME) inside a Boeing 757 airliner while in flight, Measurements were made of the electromagnetic energy coupled into a commercially configured aircraft as it was flown in close proximity to ground-based radio frequency (RF) transmitters operating at approximately 26, 173. and 430 MHz. The goal of this experiment was to collect data for the verification of analytical predictions of the internal aircraft response to an external stimulus. This paper describes the experiment, presents the data collected by it, and discusses techniques used to compute both the magnitude of the electric field illuminating the aircraft and its direction of propagation relative to a coordinate system fixed to the aircraft. The latter is determined from Global Positioning System (GPS) and aircraft Inertial Reference Unit (IRU) data. The paper concludes with an examination of the shielding effectiveness of the test aircraft. as determined by comparison of' the measured internal EME and computed external EME.

  12. Information system building of the urban electromagnetic environment

    NASA Astrophysics Data System (ADS)

    Wang, Jiechen; Rui, Yikang; Shen, Dingtao; Yu, Qing

    2007-06-01

    The pollution of urban electromagnetic radiation has become more serious, however, there is still lack of a perfect and interactive User System to manage, analyze and issue the information. In this study, taking the electromagnetic environment of Nanjing as an example, an information system based on WebGIS with the techniques of ArcIMS and JSP has been developed, in order to provide the services and technique supports for information query of public and decision making of relevant departments.

  13. The Crossed-Dipole Structure of Aircraft in an Electromagnetic Pulse Environment

    DTIC Science & Technology

    1974-09-01

    The crossed-dipole receiving antenna has been used as a representative model to approximate electromagnetic pulse effects on aircraft. This paper...receiving antenna is excited by a broad spectrum electromagnetic pulse , certain important electrical resonances occur: that is, at specific single...dipole are presented which give insight into methods of analyzing aircraft in an electromagnetic pulse environment.

  14. A measurement device for electromagnetic flow tomography

    NASA Astrophysics Data System (ADS)

    Vauhkonen, M.; Hänninen, A.; Lehtikangas, O.

    2018-01-01

    Electromagnetic flow meters have succesfully been used in many industries to measure the mean flow velocity of conductive liquids. This technology works reliably in single phase flows with axisymmetric flow profiles but can be inaccurate with asymmetric flows, which are encountered, for example, in multiphase flows, pipe elbows and T-junctions. Some computational techniques and measurement devices with multiple excitation coils and measurement electrodes have recently been proposed to be used in cases of asymmetric flows. In earlier studies, we proposed a computational approach for electromagnetic flow tomography (EMFT) for estimating velocity fields utilizing several excitation coils and a set of measurement electrodes attached to the surface of the pipe. This approach has been shown to work well with simulated data but has not been tested extensively with real measurements. In this paper, an EMFT system with four excitation coils and 16 measurement electrodes is introduced. The system is capable of using both square wave and sinusoidal coil current excitations and all the coils can be excited individually, also enabling parallel excitations with multiple frequencies. The studies undertaken in the paper demonstrate that the proposed EMFT system, together with the earlier introduced velocity field reconstruction approach, is capable of producing reliable velocify field estimates in a laboratory environment with both axisymmetric and asymmetric single phase flows.

  15. Testing for EMC (electromagnetic compatibility) in the clinical environment.

    PubMed

    Paperman, D; David, Y; Martinez, M

    1996-01-01

    Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.

  16. Space shuttle electromagnetic environment experiment. Phase A: Definition study

    NASA Technical Reports Server (NTRS)

    Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.

    1974-01-01

    A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.

  17. Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Tiemsin, Pacita I.; Bussell, Kerri; Dudley, Kenneth L.

    1995-01-01

    The capability to measure the dielectric properties of various materials has been developed in the Electromagnetic Properties Measurement Laboratory (EPML) of the Electromagnetics Research Branch (ERB). Two measurement techniques which have been implemented in the EPML to characterize materials are the dielectric probe and waveguide techniques. Several materials, including some for which the dielectric properties are well known, have been measured in an attempt to establish the capabilities of the EPML in determining dielectric properties. Brief descriptions of the two techniques are presented in this report, along with representative results obtained during these measurements.

  18. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    NASA Astrophysics Data System (ADS)

    Stevenson, L. E.; Scott, L. D.; Oakes, E. T.

    1987-04-01

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  19. Measurement of electromagnetic tracking error in a navigated breast surgery setup

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor

    2016-03-01

    PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.

  20. Superconducting Resonators with Parasitic Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Hornibrook, John; Mitchell, Emma; Reilly, David

    2012-02-01

    Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).

  1. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  2. [Measurement and study report as a part of the control system for human safety and health protection against electromagnetic fields and electromagnetic radiation (0 Hz-300 GHz)].

    PubMed

    Aniołczyk, Halina

    2007-01-01

    The National Control System for safety and health protection against electromagnetic fields (EMF) and electromagnetic radiation (EMR) (0 Hz-300 GHz) is constantly analyzed in view of Directive 2004/40/EC. Reports on the effects of investments (at the designing stage or at the stage of looking for their localization) on the environment and measurement and study reports on the objects already existing or being put into operation are important elements of this system. These documents should meet both national and European Union's legislation requirements. The overriding goal of the control system is safety and health protection of humans against electromagnetic fields in the environment and in occupational settings. The author pays a particular attention to provisions made in directives issued by relevant ministers and to Polish standards, which should be documented in measurement and study reports published by the accredited laboratories and relating to the problems of human safety and health protection. Similar requirements are valid for the Reports. Therefore, along with measurement outcomes, the reports should include data on the EMF exposure classification at work-posts and the assessment of occupational risk resulting from EMF exposure or at least thorough data facilitating such a classification.

  3. Electromagnetic tracking in the clinical environment

    PubMed Central

    Yaniv, Ziv; Wilson, Emmanuel; Lindisch, David; Cleary, Kevin

    2009-01-01

    When choosing an electromagnetic tracking system (EMTS) for image-guided procedures several factors must be taken into consideration. Among others these include the system’s refresh rate, the number of sensors that need to be tracked, the size of the navigated region, the system interaction with the environment, whether the sensors can be embedded into the tools and provide the desired transformation data, and tracking accuracy and robustness. To date, the only factors that have been studied extensively are the accuracy and the susceptibility of EMTSs to distortions caused by ferromagnetic materials. In this paper the authors shift the focus from analysis of system accuracy and stability to the broader set of factors influencing the utility of EMTS in the clinical environment. The authors provide an analysis based on all of the factors specified above, as assessed in three clinical environments. They evaluate two commercial tracking systems, the Aurora system from Northern Digital Inc., and the 3D Guidance system with three different field generators from Ascension Technology Corp. The authors show that these systems are applicable to specific procedures and specific environments, but that currently, no single system configuration provides a comprehensive solution across procedures and environments. PMID:19378748

  4. Electromagnetic Environment Due To A Pulsed Moving Conductor

    DTIC Science & Technology

    1999-06-01

    ELECTROMAGNETIC ENVIRONMENT DUE TO A PULSED MOVING CONDUCTOR Ira Kohlberg Kohl berg Associates, Inc., 11308 South Shore Road, Reston, VA 20190...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Kohlberg Associates, Inc., 11308 South Shore Road, Reston, VA 20190 8. PERFORMING ORGANIZATION REPORT...in this analysis but can readily be computed using the techniques developed in this study. REFERENCES I. I. Kohlberg , A. Zielinski, and C. Le

  5. Measuring the electromagnetic chirality of 2D arrays under normal illumination.

    PubMed

    Garcia-Santiago, X; Burger, S; Rockstuhl, C; Fernandez-Corbaton, I

    2017-10-15

    We present an electromagnetic chirality measure for 2D arrays of subwavelength periodicities under normal illumination. The calculation of the measure uses only the complex reflection and transmission coefficients from the array. The measure allows the ordering of arrays according to their electromagnetic chirality, which further allows a quantitative comparison of different design strategies. The measure is upper bounded, and the extreme properties of objects with high values of electromagnetic chirality make them useful in both near- and far-field applications. We analyze the consequences that different possible symmetries of the array have on its electromagnetic chirality. We use the measure to study four different arrays. The results indicate the suitability of helices for building arrays of high electromagnetic chirality, and the low effectiveness of a substrate for breaking the transverse mirror symmetry.

  6. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  7. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  8. Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges

    NASA Astrophysics Data System (ADS)

    Smalcerz, A.; Przylucki, R.

    2013-04-01

    The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.

  9. Space shuttle electromagnetic environment experiment. Phase A: Definition study

    NASA Technical Reports Server (NTRS)

    Haber, F.; Showers, R. M.; Kocher, C.; Forrest, L. A., Jr.

    1976-01-01

    Methods for carrying out measurements of earth electromagnetic environment using the space shuttle as a measurement system platform are herein reported. The goal is to provide means for mapping intentional and nonintentional emitters on earth in the frequency range 0.4 to 40 GHz. A survey was made of known emitters using available data from national and international regulatory agencies, and from industry sources. The spatial distribution of sources, power levels, frequencies, degree of frequency re-use, etc., found in the survey, are here presented. A concept is developed for scanning the earth using a directive antenna whose beam is made to rotate at a fixed angle relative to the nadir; the illuminated area swept by the beam is of the form of cycloidal annulus over a sphere. During the beam's sojourn over a point, the receiver sweeps in frequency over ranges in the order of octave width using sweeping filter bandwidths sufficient to give stable readings.

  10. Measurement of Electromagnetic Properties of Lightning with 10 Nanosecond Resolution

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Oneill, J. P.; Moore, C. B.; Hall, D. L.

    1980-01-01

    Electromagnetic data recorded from lightning strikes are presented. The data analysis reveals general characteristics of fast electromagnetic fields measured at the ground including rise times, amplitudes, and time patterns. A look at the electromagnetic structure of lightning shows that the shortest rise times in the vicinity of 30 ns are associated with leader leader streamers. Lightning location is based on electromagnetic field characteristics and is compared to a nearby sky camera. The fields from both leaders and return strokes were measured and are discussed. The data were obtained during 1978 and 1979 from lightning strikes occuring within 5 kilometers of an underground metal instrumentation room located on South Baldy peak near Langmuir Laboratory, New Mexico. The computer controlled instrumentation consisted of sensors previously used for measuring the nuclear electromagnetic pulse (EMP) and analog-digital recorders with 10 ns sampling, 256 levels of resolution, and 2 kilobytes of internal memory.

  11. Dynamic viscoelasticity measurement under alternative torque using electromagnetically spinning method with quadruple electromagnets.

    PubMed

    Matsuura, Yusuke; Hirano, Taichi; Sakai, Keiji

    2017-07-01

    In this study, we developed a novel type of rheological measurement system. Here, a spherical probe is driven to rotate periodically by applying torques using quadruple electromagnets in a noncontact manner. Moreover, this system is an enhancement of our electromagnetically spinning (EMS) viscometer, which is widely used for measuring rheological flow curves in various industrial fields. The quadruple EMS method provides the frequency spectrum of viscoelasticity, in addition to shear viscosity, in a steady flow by switching the operation modes of the driving torque. We show the results obtained for Newtonian fluids and viscoelastic materials and demonstrate the validity of the system.

  12. Electromagnetic Environment Measurements of PRT Systems at "TRANSPO 72" : Volume VI

    DOT National Transportation Integrated Search

    1974-01-01

    An X-Y plot is made of the radiated electromagnetic signals and noise between 1 KHz and 50KHz at each of the four Personalized Rapid Transit (PRT) sites at Dulles International Airport. The PRT Systems were operated simultaneously in an effort to det...

  13. Study of plasma environments for the integrated Space Station electromagnetic analysis system

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1992-01-01

    The final report includes an analysis of various plasma effects on the electromagnetic environment of the Space Station Freedom. Effects of arcing are presented. Concerns of control of arcing by a plasma contactor are highlighted. Generation of waves by contaminant ions are studied and amplitude levels of the waves are estimated. Generation of electromagnetic waves by currents in the structure of the space station, driven by motional EMF, is analyzed and the radiation level is estimated.

  14. Avionics electromagnetic interference immunity and environment

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.

    1986-01-01

    Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.

  15. Pulsed thrust measurements using electromagnetic calibration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Haibin; Shi Chenbo; Zhang Xin'ai

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measuredmore » to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.« less

  16. Electromagnetic interaction of spacecraft with ambient environment

    NASA Astrophysics Data System (ADS)

    Ku, Hwar-Ching; Silver, David M.

    1993-01-01

    A model of the midcourse space experiment (MSX) spacecraft and its electromagnetic environment has been developed using the potential of large spacecraft in the Auroral region (POLAR) code. The geometric model has a resolution of 0.341 meters and uses six materials to simulate the electrical surface properties of MSX. The vehicle model includes features such as the major instruments, electronic boxes, radiators, a dewar and open bay, a booster attachment ring, and three different orientations of the solar panels. The electron and ion composition and temperature environment are modeled as a function of the solar activity. Additional parameters include the ram-wake orientation, the hot electron spectrum, day-night-twilight variations, latitudinal variations, and solar panel voltage biasing. Nominal low spacecraft charging cases are described. Calculation with a high peak energetic electron flux produces a ground potential of -180 volts and differential charging as high as 66 volts.

  17. Real-time closed-loop simulation and upset evaluation of control systems in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1989-01-01

    Digital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test

  18. High-Altitude Electromagnetic Pulse (HEMP) Testing

    DTIC Science & Technology

    2015-07-09

    Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY... Weapons of Mass Destruction Agency (USANCA). In order to effectively determine criteria compliance, the TO/PE must thoroughly understand the...ELECTROMAGNETIC ENVIRONMENT AND EFFECTS. A.1 The electromagnetic environment produced by a nuclear weapon consists of the ionization of the atmosphere and

  19. Measurement environments and testing

    NASA Astrophysics Data System (ADS)

    Marvin, A. C.

    1991-06-01

    The various methods used to assess both the emission (interference generation) performance of electronic equipment and the immunity of electronic equipment to external electromagnetic interference are described. The measurement methods attempt to simulate realistic operating conditions for the equipment being tested, yet at the same time they must be repeatable and practical to operate. This has led to the development of a variety of test methods, each of which has its limitations. Concentration is on the most common measurement methods such as open-field test sites, screened enclosures and transverse electromagnetic (TEM) cells. The physical justification for the methods, their limitations, and measurement precision are described. Ways of relating similar measurements made by different methods are discussed, and some thoughts on future measurement improvements are presented.

  20. Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.

    2007-01-01

    Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.

  1. International Symposium on Electromagnetic Compatibility, Wakefield, MA, August 20-22, 1985, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. The general topics addressed include: EMI transient/impulsive disturbances, electromagnetic shielding, antennas and propagation, measurement technology, anechoic chamber/open site measurements, communications systems, electrostatic discahrge, cables/transmission lines. Also considered are: elecromagnetic environments, antennas, electromagnetic pulse, nonlinear effect, computer/data transmission systems, EMI standards and requirements, enclosures/TEM cells, systems EMC, and test site measurements.

  2. RF Loading Effects of Aircraft Seats in an Electromagnetic Reverberating Environment

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong

    2000-01-01

    Loading effects of aircraft seats in an electromagnetic reverberating environment are investigated. The effects are determined by comparing the reverberation chamber s insertion losses with and without the seats. The average per-seat absorption cross-sections are derived for coach and first class seats, and the results are compared for several seat configurations. An example is given for how the seat absorption cross-sections can be used to estimate the loading effects on the RF environment in an aircraft passenger cabin.

  3. RF Loading Effects of Aircraft Seats in an Electromagnetic Reverberating Environment

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2000-01-01

    Loading effects of aircraft seats in an electromagnetic reverberating environment are investigated. The effects are determined by comparing the reverberation chamber's insertion losses with and without the seats. The average per-seat absorption cross-sections are derived for coach and first class seats, and the results are compared for several seat configurations. An example is given for how the seat absorption cross-sections can be used to estimate the loading effects on the RF environment in an aircraft passenger cabin.

  4. [Evaluation of the levels of radiofrequency electromagnetic fields in the territory of the city of Bari in outside and inside environments].

    PubMed

    L'Abbate, N; Pranzo, S; Martucci, V; Rella, C; Vitucci, L; Salamanna, S

    2004-01-01

    In this study we measured the levels of the high frequency field in the proximity of non-ionizing radiation sources (wireless transmitting stations for mobile telephones and radio and television transmitters) in nine districts of the city of Bari. The measurements were taken both inside and outside closed environments. For the indoor measurements we took into account electromagnetic field generating equipment (VDT, electric domestic appliances, mobile telephones) in working and non-working order and with the windows open and shut respectively. We carried out these measurements according to the methods laid down in the Italian regulation CEI ENV 50166-2 of May 1995, as shown in the enclosure to the Ministerial Decree of 10.9.98 n.381. The electromagnetic field levels near wireless transmitting stations for mobile telephones are certainly modest when we consider that they never exceeded the limits established by the aforesaid Ministerial Decree. On the contrary radio and television equipment creates a much greater source of exposure. The electromagnetic field levels are certainly superior to those of the wireless transmitting stations although they never exceed, except in one isolated case, the values established by the Ministerial Decree 381/98.

  5. Electromagnetic environment measurements of PRT systems at "TRANSPO 72" : volume V, TTI System

    DOT National Transportation Integrated Search

    1974-01-01

    An X-Y plot is made of the radiated Electromagnetic signals and noise between 1KHz and 50KHz at each of the four Personalized Rapid Transit (PRT) sites at Dulles International Airport. The PRT systems were operated individually to establish the signa...

  6. Electromagnetic environment measurements of PRT systems at "TRANSPO 72" : volume IV, Monocab System

    DOT National Transportation Integrated Search

    1974-01-01

    An X-Y plot is made of the radiated Electromagnetic signals and noise between 1 KHz and 50KHz at each of the four Personalized Rapid Transit (PRT) sites at Dulles International Airport. The PRT systems were operated individually to establish the sign...

  7. Electromagnetic environment measurements of PRT systems at "TRANSPO 72" : volume II, Dashaveyor System

    DOT National Transportation Integrated Search

    1974-01-01

    An X-Y plot is made of the radiated electromagnetic signals and noise between 1 KHz and 50 KHz at each of the four Personalized Rapid Transit (PRT) sites at Dulles International Airport. The PRT systems were operated individually to establish the sig...

  8. Electromagnetic environment measurements of PRT systems at "TRANSPO 72" : volume III, Ford System

    DOT National Transportation Integrated Search

    1974-01-01

    An X-Y plot is made of the radiated electromagnetic signals and noise between 1 KHz and 50 KHz at each of the four Personalized Rapid Transit (PRT) sites at Dulles International Airport. The PRT systems were operated individually to establish the sig...

  9. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    PubMed

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  10. In situ attosecond pulse characterization techniques to measure the electromagnetic phase

    NASA Astrophysics Data System (ADS)

    Spanner, M.; Bertrand, J. B.; Villeneuve, D. M.

    2016-08-01

    A number of techniques have been developed to characterize the attosecond emission from high-order-harmonic sources. These techniques are broadly classified as ex situ, where the attosecond pulse train photoionizes a target gas in the presence of an infrared field, and in situ, where the measurement takes place in the medium in which the attosecond pulses are generated. It is accepted that ex situ techniques measure the characteristics of the electromagnetic field, including the phase of the recombination transition moment of the emitting atom or molecule, when the phase of the second medium is known. However, there is debate about whether in situ techniques measure the electromagnetic field, or only the characteristics of the recolliding electron before recombination occurs. We show numerically that in situ measurements are not sensitive to the recombination phase, when implemented in the perturbative regime as originally envisioned, and that they do not measure the electromagnetic phase of the emission.

  11. Building health: The need for electromagnetic hygiene?

    NASA Astrophysics Data System (ADS)

    Jamieson, Isaac A.; Holdstock, Paul; ApSimon, Helen M.; Bell, J. Nigel B.

    2010-04-01

    Whilst the electromagnetic nature of the built environment has changed considerably over the past century, little thought is at present given to the possible advantages of creating electromagnetic microenvironments that more closely resemble those found in nature and/or developing biologically-friendly technology aligned more closely to its operating principles. This review paper examines how more natural exposures to a variety of electromagnetic phenomena could be re-introduced into the built environment, possible benefits that might arise, and discusses the extent to which there may be tangible benefits obtainable from introducing more rigorous properly considered electromagnetic hygiene measures. Amongst the matters discussed are: the effects of different materials, finishes and electrical items on charge generation (and the effects of excess charge on contaminant deposition); the possible benefits of suitably grounding conductive objects (including humans) in order to reduce excess charge and contaminant deposition; how the presence of vertical electric field regimes, similar to those found in nature, may enhance biological performance; and possible pitfalls to avoid when seeking to introduce appropriate electromagnetic hygiene regimes.

  12. Electromagnetic compatibility of PLC adapters for in-home/domestic networks

    NASA Astrophysics Data System (ADS)

    Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek

    2018-01-01

    The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].

  13. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments

    PubMed Central

    Choi, Sungho; Cho, Hwanjeong; Lindsey, Matthew S.; Lissenden, Cliff J.

    2018-01-01

    Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT’s components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT’s performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT’s capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches. PMID:29324721

  14. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments.

    PubMed

    Choi, Sungho; Cho, Hwanjeong; Lindsey, Matthew S; Lissenden, Cliff J

    2018-01-11

    Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT's components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT's performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT's capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches.

  15. The electromagnetic environment of Magnetic Resonance Imaging systems. Occupational exposure assessment reveals RF harmonics

    NASA Astrophysics Data System (ADS)

    Gourzoulidis, G.; Karabetsos, E.; Skamnakis, N.; Kappas, C.; Theodorou, K.; Tsougos, I.; Maris, T. G.

    2015-09-01

    Magnetic Resonance Imaging (MRI) systems played a crucial role in the postponement of the former occupational electromagnetic fields (EMF) European Directive (2004/40/EC) and in the formation of the latest exposure limits adopted in the new one (2013/35/EU). Moreover, the complex MRI environment will be finally excluded from the implementation of the new occupational limits, leading to an increased demand for Occupational Health and Safety (OHS) surveillance. The gradient function of MRI systems and the application of the RF excitation frequency result in low and high frequency exposures, respectively. This electromagnetic field exposure, in combination with the increased static magnetic field exposure, makes the MRI environment a unique case of combined EMF exposure. The electromagnetic field levels in close proximity of different MRI systems have been assessed at various frequencies. Quality Assurance (QA) & safety issues were also faced. Preliminary results show initial compliance with the forthcoming limits in each different frequency band, but also revealed peculiar RF harmonic components, of no safety concern, to the whole range detected (20-1000MHz). Further work is needed in order to clarify their origin and characteristics.

  16. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts.

    PubMed

    Koprivica, Mladen; Neskovic, Natasa; Neskovic, Aleksandar; Paunovic, George

    2014-01-01

    As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m(-1), which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were <1 and 2 V m(-1), respectively.

  17. Electromagnetic spectrum survey of the environment in a locality in Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Abood, Wafa Ali; Din, Norashidah Md; Ismail, Aiman; Mohamad, Hafizal

    2013-06-01

    The electromagnetic spectrum in the environment is becoming a scarce resource with the emergence of a high number of wireless communications services Cognitive radio (CR) is viewed as a possible solution to the spectrum bottleneck which work in a premise that at an any given time and spatial region there are frequency bands that has no signal occupancy. The CR technique utilizes a temporarily unoccupied licensed band by allowing secondary users to exploit opportunistically the underutilized spectrum licensed to primary users without any harmful interference. Before investigating the technical and political implications of CR, it is necessary to know to what extent the licensed bands are temporally unoccupied. In this paper a spectrum occupancy measurements is conducted to study the utilization of RF spectrum in an environment. The measurements are performed on UHF TV, GSM900 and GSM1800 frequency bands in an urban area in Kuala Lumpur, Malaysia. The evaluation made is based on the power detection principle. From the measurements, the spectrum holes are identified. The obtained results show that the spectral usage is 7.37% for UHF TV band, 12.8% for GSM900 and 5.3% for GSM1800 band leading to the conclusion that a significant amount of spectrum is available for deployment of cognitive radio.

  18. [Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment].

    PubMed

    Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo

    2017-04-01

    In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  19. A 0.4 to 10 GHz airborne electromagnetic environment survey of USA urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35 mm continuous film camera, and a magnetic tape recorder. Most of the flights were made at a nominal altitude of 10,000 feet, and Washington, D. C., Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450 to 470 MHz land-mobile UHF band is especially crowded, and the 400 to 406 MHz space bands are less active. This paper discusses test measurements obtained up to 10 GHz. Sample spectrum analyzer photograhs were selected from a total of 5,750 frames representing 38 hours of data.

  20. 0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.

  1. Microfabricated sensors for the measurement of electromagnetic fields in biological tissues

    NASA Astrophysics Data System (ADS)

    Monberg, James; Henning, Albert K.

    1995-09-01

    Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.

  2. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment

    PubMed Central

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-01-01

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627

  3. Electromagnetic ion instabilities in a cometary environment

    NASA Astrophysics Data System (ADS)

    Gary, S. P.; Madland, C. D.

    1988-01-01

    This paper considers the linear theory of electromagnetic ion beam and ion ring-beam instabilities in a homogeneous Vlasov plasma. Propagation parallel or antiparallel to a uniform magnetic field and frequencies at or below the proton cyclotron frequency are considered. For parameters representative of the distant cometary environment, the authors show that instabilities with right-hand polarization in the zero momentum frame have larger linear growth rates than left-hand polarized instabilities at α values up to 90° where α is the angle between the solar wind velocity and the uniform interplanetary magnetic field. If both a proton beam and an oxygen beam are present with α = 0°, two right-hand resonant instabilities may grow; these two modes are distinct and relatively independent of one another for a very wide range of proton/oxygen beam density ratios.

  4. Measurement of electromagnetic fields over a small electrolytic tank

    NASA Astrophysics Data System (ADS)

    Caffey, T. W. H.; Morris, H. E.

    1990-12-01

    In 1986, Hart proposed a large, hemispherical electrolytic tank and the use of the Surface Electrical Potential method with which to study resistivity changes due to energy-extraction processes in the earth. A second method for the inference of underground resistivity changes, the Controlled Source Audio-MagnetoTelluric method, has been widely used in the field. This method uses measurements of the electromagnetic field from a surface dipole, rather than the surface potential distribution from a buried vertical electrode, as the basis of the technique. If both SEP and CSAMT could be applied to the same model structure in the same electrolytic tank, it would seem that the diagnostic information would be enhanced over the use of each technique separately. Accordingly, the specific objectives were: to determine to what radial extent the bowl could be used as a homogeneous half-space; and to demonstrate acceptable accuracy by measuring the effect of a conducting target immersed in the bowl and comparing the measurements with numerical modeling. Electromagnetic fields over an electrolytic tank have been measured by others, and this report begins with a comparative summary of both prior and present work. The next section presents the formulas for the electromagnetic fields, and explains the choice of a particular method of measuring apparent resistivity. The field theory is also used in the subsequent section to provide error estimates needed for design guidance. The following sections describe the measurements, and the considerations for a larger facility. The appendices include the derivatives of the fields, the electrolyte characteristics, a description of the apparatus, and calibration methods.

  5. A Determination of the Risk of Intentional and Unintentional Electromagnetic Radiation Emitters Degrading Installed Components in Closed Electromagnetic Environments

    DTIC Science & Technology

    2015-06-01

    shield that tends to lower the EM levels at the surface of the Earth (Christopoulos 2007). It is important to note for the purposes of this paper...ELECTROMAGNETIC ENVIRONMENTS 5. FUNDING NUMBERS 6. AUTHOR( S ) Jared A. Johnson 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School...Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING

  6. Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements

    NASA Astrophysics Data System (ADS)

    Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.

    1999-09-01

    MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.

  7. Electromagnetic code for naval applications

    NASA Astrophysics Data System (ADS)

    Crescimbeni, F.; Bessi, F.; Chiti, S.

    1988-12-01

    The use of an increasing number of electronic apparatus became vital to meet the high performance required for military Navy applications. Thus the number of antennas to be mounted on shipboard greatly increased. As a consequence of the high antenna density, of the complexity of the shipboard environment and of the powers used for communication and radar systems, the EMC (Electro-Magnetic Compatibility) problem is playing a leading role in the design of the topside of a ship. The Italian Navy has acquired a numerical code for the antenna siting and design. This code, together with experimental data measured at the Italian Navy test range facility, allows for the evaluation of optimal sitings for antenna systems on shipboard, and the prediction of their performances in the actual environment. The structure of this code, named Programma Elettromagnetico per Applicazioni Navali, (Electromagnetic Code for Naval Applications) is discussed, together with its capabilities and applications. Also the results obtained in some examples are presented and compared with the measurements.

  8. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  9. High speed displacement measurement based on electro-magnetic induction applied to electromagnetically driven ring expansion

    NASA Astrophysics Data System (ADS)

    Han, Xiaotao; Wu, Jiawei; Huang, Lantao; Qiu, Lei; Chen, Qi; Cao, Quanliang; Herlach, Fritz; Li, Liang

    2017-11-01

    Investigating the mechanism of electromagnetic forming (EMF) becomes a hot topic in the field of metal forming. The high speed up to 200 m/s in EMF makes it a real challenge to capture the forming process. To this end, a new method for measuring displacement at high speed based on electromagnetic induction has been developed. Specifically this is used to measure the displacement of an expanding metal ring driven by a pulsed magnetic field; this is one of the basic EMF processes. The new method is simple and practical, and it combines high-speed response with adequate precision. The new measurement system consists of a printed circuit board (PCB) and a Rogowski probe. Eleven coaxial annular detecting probes are arranged in the PCB plate to acquire induced voltage at different positions, and a Rogowski probe is used to measure the current in the driving coil. The displacement of the ring is deduced by analyzing the output voltages of the detecting probes and the Rogowski probe. The feasibility of the method is verified by comparing the results with pictures from a high speed camera taken simultaneously.

  10. Electromagnetic field strength prediction in an urban environment: A useful tool for the planning of LMSS

    NASA Technical Reports Server (NTRS)

    Vandooren, G. A. J.; Herben, M. H. A. J.; Brussaard, G.; Sforza, M.; Poiaresbaptista, J. P. V.

    1993-01-01

    A model for the prediction of the electromagnetic field strength in an urban environment is presented. The ray model, that is based on the Uniform Theory of Diffraction (UTD), includes effects of the non-perfect conductivity of the obstacles and their surface roughness. The urban environment is transformed into a list of standardized obstacles that have various shapes and material properties. The model is capable of accurately predicting the field strength in the urban environment by calculating different types of wave contributions such as reflected, edge and corner diffracted waves, and combinations thereof. Also, antenna weight functions are introduced to simulate the spatial filtering by the mobile antenna. Communication channel parameters such as signal fading, time delay profiles, Doppler shifts and delay-Doppler spectra can be derived from the ray-tracing procedure using post-processing routines. The model has been tested against results from scaled measurements at 50 GHz and proves to be accurate.

  11. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  12. First-principles definition and measurement of planetary electromagnetic-energy budget.

    PubMed

    Mishchenko, Michael I; Lock, James A; Lacis, Andrew A; Travis, Larry D; Cairns, Brian

    2016-06-01

    The imperative to quantify the Earth's electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  13. First-principles definition and measurement of planetary electromagnetic-energy budget

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; James, L.; Lacis, A. A.; Travis, L. D.; Cairns, B.

    2016-12-01

    The imperative to quantify the Earth's electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this talk we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated concepts of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  14. First-Principles Definition and Measurement of Planetary Electromagnetic-Energy Budget

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Lock, James A.; Lacis, Andrew A.; Travis, Larry D.; Cairns, Brian

    2016-01-01

    The imperative to quantify the Earths electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting- vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  15. Identifying Electromagnetic Attacks against Airports

    NASA Astrophysics Data System (ADS)

    Kreth, A.; Genender, E.; Doering, O.; Garbe, H.

    2012-05-01

    This work presents a new and sophisticated approach to detect and locate the origin of electromagnetic attacks. At the example of an airport, a normal electromagnetic environment is defined, in which electromagnetic attacks shall be identified. After a brief consideration of the capabilities of high power electromagnetic sources to produce high field strength values, this contribution finally presents the approach of a sensor network, realizing the identification of electromagnetic attacks.

  16. Active System for Electromagnetic Perturbation Monitoring in Vehicles

    NASA Astrophysics Data System (ADS)

    Matoi, Adrian Marian; Helerea, Elena

    Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.

  17. [Regulation requirements for the protection of workers against electromagnetic fields occurring in the work environment].

    PubMed

    Aniołczyk, Halina; Zmyślony, Marek

    2006-01-01

    In Poland, electromagnetic fields (EMF), one of potentially hazardous physical factors occurring in the work environment, are subjected to compulsory surveillance. In 2001, the Directive issued by the Minister of Labor and Social Policy substantially changed the approach towards the protection of workers against EMF. The Directive regulates the whole range of EMF frequencies and electromagnetic radiation, namely from 0 Hz to 300 GHz, which means the possibility of assessing worker's EMF exposure, determined by exposure index, along with the hygiene assessment of EMF sources, defined by protection zones. In 2003-2005, a number of amended executive and supplementary regulations were issued. However, it should be emphasized that in the process of their elaboration, striving after perfection, numerous incoherent and ambiguous provisions were adopted, which finally created difficulties in the interpretation of individual regulations. This is also linked with doubts and discussions on their practical application by services responsible for control, measurements and monitoring of working conditions under the exposure to EMF. In this work an attempt was made to clarify all issues and arrange them according to the faced problems. The authors also present proposals how to solve all these problems.

  18. Characteristics of electromagnetic interference generated during discharge of Mylar samples. [spacecraft-environment interaction simulation

    NASA Technical Reports Server (NTRS)

    Leung, P. L.

    1984-01-01

    This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.

  19. Measurement of the environmental broadband electromagnetic waves in a mid-size European city.

    PubMed

    Fernández-García, R; Gil, I

    2017-10-01

    In this paper, the level of exposure to broadband radiofrequency electromagnetic field in a mid-size European city was evaluated in accordance with the International Commission on Non-ionizing Radiation Protection guidelines from 1998. With the aim to analyse all the potential electromagnetic waves present in the city up to 18GHz, a total of 271 locations distributed along Terrassa (Spain) have been measured. To show the results in an easy-to-interpret way by the citizen, the results have been represented in a set of raster maps. The measurement results obtained showed that the electromagnetic wave measured in all broadband frequency range along the city is much lower than the safety level according to the international regulations for both public and occupational sectors. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Hypothesis on how to measure electromagnetic hypersensitivity.

    PubMed

    Tuengler, Andreas; von Klitzing, Lebrecht

    2013-09-01

    Electromagnetic hypersensitivity (EHS) is an ill-defined term to describe the fact that people who experience health symptoms in the vicinity of electromagnetic fields (EMFs) regard them as causal for their complaints. Up to now most scientists assume a psychological cause for the suffering of electromagnetic hypersensitive individuals. This paper addresses reasons why most provocation studies could not find any association between EMF exposure and EHS and presents a hypothesis on diagnosis and differentiation of this condition. Simultaneous recordings of heart rate variability, microcirculation and electric skin potentials are used for classification of EHS. Thus, it could be possible to distinguish "genuine" electromagnetic hypersensitive individuals from those who suffer from other conditions.

  1. Estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in an indoor commercial airplane environment.

    PubMed

    Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco

    2014-12-01

    In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.

  2. [Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].

    PubMed

    Nowak, D; Radon, K

    2004-02-26

    The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.

  3. Electromagnetic sensors for general lightning application

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.

    1980-01-01

    Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.

  4. A theoretical analysis of the electromagnetic environment of the AS330 super Puma helicopter external and internal coupling

    NASA Technical Reports Server (NTRS)

    Flourens, F.; Morel, T.; Gauthier, D.; Serafin, D.

    1991-01-01

    Numerical techniques such as Finite Difference Time Domain (FDTD) computer programs, which were first developed to analyze the external electromagnetic environment of an aircraft during a wave illumination, a lightning event, or any kind of current injection, are now very powerful investigative tools. The program called GORFF-VE, was extended to compute the inner electromagnetic fields that are generated by the penetration of the outer fields through large apertures made in the all metallic body. Then, the internal fields can drive the electrical response of a cable network. The coupling between the inside and the outside of the helicopter is implemented using Huygen's principle. Moreover, the spectacular increase of computer resources, as calculations speed and memory capacity, allows the modellization structures as complex as these of helicopters with accuracy. This numerical model was exploited, first, to analyze the electromagnetic environment of an in-flight helicopter for several injection configurations, and second, to design a coaxial return path to simulate the lightning aircraft interaction with a strong current injection. The E field and current mappings are the result of these calculations.

  5. CONFERENCE NOTE: Conference on Precision Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The next Conference on Precision Electromagnetic Measurements (CPEM), will be held from 9 to 12 June 1992 at the Centre des Nouvelles Industries et Technologies (CNIT), La Défense, Paris, France. This conference, which is held every two years and whose importance and high level, confirmed by thirty years' experience, are recognized throughout the world, can be considered as a forum in which scientists, metrologists and professionals will have the opportunity to present and compare their research results on fundamental constants, standards and new techniques of precision measurement in the electromagnetic domain. Topics The following topics are regarded as the most appropriate for this conference: realization of units and fundamental constants d.c. a.c. and high voltage time and frequency radio-frequency and microwaves dielectrics, antennas, fields lasers, fibre optics advanced instrumentation, cryoelectronics. There will also be a session on international cooperation. Conference Language The conference language will be English. No translation will be provided. Organizers Société des Electriciens et des Electroniciens (SEE). Bureau National de Métrologie (BNM) Sponsors Institute of Electrical and Electronics Engineers (IEEE) Instrumentation & Measurement Society Union Radio Scientifique Internationale United States National Institute of Standards and Technology Centre National d'Etudes des Télécommunications Mouvement Français pour la Qualité, Section Métrologie Comité National Français de Radioélectricité Scientifique Contact Jean Zara, CPEM 92 publicity, Bureau National de Métrologie, 22, rue Monge, 75005 Paris Tel.: (33) 1 46 34 48 16, Fax: (33) 1 46 34 48 63

  6. CONFERENCE NOTE: 1986 Conference on Precision Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    1985-01-01

    The 1986 CPEM—the next in the series of biennial international conferences on electromagnetic metrology and related fundamental physical constants— will be held on June 23 through June 27, 1986, at the National Bureau of Standards, Gaithersburg, Maryland, USA. Sponsors are: NBS, the IEEE Instrumentation and Measurement Society and the Union Radio Scientifique Internationale. Papers describing original work, not previously published or presented, covering the theory, design, performance, simulation, or application of electromagnetic standards, measurements, techniques, instruments, or systems, are sought for presentation at CPEM '86. Papers on absolute electrical measurements and the use of quantum phenomena as electrical standards are especially sought in preparation for the meeting late in 1986 of the Comité Consultatif D'Electricité of the CIPM to decide on the adoption of international values for the constants 2e/h and h/e2 for the definition of the volt and the ohm, respectively. All papers concerned with electromagnetic measurements and standards and with related fundamental physics will be considered. Papers in the following fields are considered to be especially appropriate: EM-related fundamental constants and standards Direct current, low frequency, and RF Time, time interval, and frequency Antennas and fields Microwaves and millimeter waves Infrared, visible, and ultraviolet radiation Lasers Electro- and fibre optics Cryo-electronics Automated measurements Technical calibration services. The Conference language will be English. Authors should request an author's kit for the submission of a summary (500 to 1000 words) and abstract (maximum of 50 words) to be used to facilitate paper selection by the Program Committee. The summary must describe clearly the new and significant results and their importance. Summaries must be received on or before 1 February 1986 and should be sent to: Mr Norman B Belecki, Technical Program Chairman, CPEM '86, National

  7. Hepatic blood flow measurement III. Total hepatic blood flow measured by ICG clearance and electromagnetic flowmeters in a canine septic shock model.

    PubMed Central

    Nxumalo, J L; Teranaka, M; Schenk, W G

    1978-01-01

    The validity of the ICG clearance method for the measurement of THBF in abnormal circulatory states remains questionable. In this study THBF measured by this method is compared with the electromagnetic flow technique in a canine spetic model. Good correlation is demonstrated between the two in normal control animals. However, in the septic animals the ICG underestimated the electromagnetic flow result by 20%. This is true in both the high and the low cardiac output septic shock pictures that emerge. In the septic animals, the total hepatic blood flow as measured by the ICG was almost equal to the portal vein flow alone measured by the electromagnetic flowmeters suggesting that this was the quantity it was measuring in this abnormal state. Pathophysiologic mechanisms that may explain the discrepancy are given. PMID:637587

  8. Measurement and mapping of the GSM-based electromagnetic pollution in the Black Sea region of Turkey.

    PubMed

    Tuysuz, Burak; Mahmutoglu, Yigit

    2017-01-01

    Electromagnetic pollution caused by mobile communication devices, a new form of environmental pollution, has been one of the most concerning problems to date. Consequences of long-term exposure to the electromagnetic radiation caused by cell phone towers are still unknown and can potentially be a new health hazard. It is important to measure, analyze and map the electromagnetic radiation levels periodically because of the potential risks. The electromagnetic pollution maps can be used for the detection of diseases caused by the radiation. With the help of the radiation maps of different regions, comparative analysis can be provided and distribution of the diseases can be investigated. In this article, Global System for Mobile communication (GSM)-based electromagnetic pollution map of the Rize Providence, which has high cancer rates because of the Chernobyl nuclear explosion, is generated. First, locations of the GSM base stations are identified and according to the antenna types of the base stations, safety distances are determined. Subsequently, 155 measurements are taken during November 2014 from the nearest living quarters of the Rize city center in Turkey. The measurements are then assessed statistically. Thenceforth, for visual judgment of the determined statistics, collected measurements are presented on the map. It is observed that national limits are not exceeded, but it is also discovered that the safety distance is waived at some of the measurement points and above the average radiation levels are noted. Even if the national limits are not exceeded, the long-term effects of the exposition to the electromagnetic radiation can cause serious health problems.

  9. Analysis of exposure to electromagnetic fields in a healthcare environment: simulation and experimental study.

    PubMed

    de Miguel-Bilbao, Silvia; Martín, Miguel Angel; Del Pozo, Alejandro; Febles, Victor; Hernández, José A; de Aldecoa, José C Fernández; Ramos, Victoria

    2013-11-01

    Recent advances in wireless technologies have lead to an increase in wireless instrumentation present in healthcare centers. This paper presents an analytical method for characterizing electric field (E-field) exposure within these environments. The E-field levels of the different wireless communications systems have been measured in two floors of the Canary University Hospital Consortium (CUHC). The electromagnetic (EM) conditions detected with the experimental measures have been estimated using the software EFC-400-Telecommunications (Narda Safety Test Solutions, Sandwiesenstrasse 7, 72793 Pfullingen, Germany). The experimental and simulated results are represented through 2D contour maps, and have been compared with the recommended safety and exposure thresholds. The maximum value obtained is much lower than the 3 V m(-1) that is established in the International Electrotechnical Commission Standard of Electromedical Devices. Results show a high correlation in terms of E-field cumulative distribution function (CDF) between the experimental and simulation results. In general, the CDFs of each pair of experimental and simulated samples follow a lognormal distribution with the same mean.

  10. Abundance measurements in stellar environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leone, F.

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  11. Non-ionising electromagnetic environments on manned spacecraft.

    PubMed

    Murphy, J R

    1989-08-01

    Future space travellers and settlers will be exposed to a variety of electromagnetic fields (EMFs). Extrinsic sources will include solar and stellar fluxes, planetary fluxes, and supernovae. Intrinsic sources may include fusion and ion engines, EMFs from electrical equipment, radar, lighting, superconduction energy storage systems, magnetic bearings on gyroscopic control and orientation systems, and magnetic rail microprobe launch systems. Communication sources may include radio and microwave frequencies, and laser generating systems. Magnetic fields may also be used for deflection of radiation. There is also a loss of the normal Geomagnetic field (GMF) which includes static, alternating, and time-varying components. This paper reviews exposure limits and the biological effects of EMFs, and evidence for an electromagnetic sense organ and a relationship between man and the Geomagnetic field.

  12. Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas

    NASA Technical Reports Server (NTRS)

    Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)

    2008-01-01

    Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.

  13. Map of low-frequency electromagnetic noise in the sky

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Smith, Nathan; Evans, Adrian

    2015-06-01

    The Earth's natural electromagnetic environment is disturbed by anthropogenic electromagnetic noise. Here we report the first results from an electromagnetic noise survey of the sky. The locations of electromagnetic noise sources are mapped on the hemisphere above a distributed array of wideband receivers that operate in a small aperture configuration. It is found that the noise sources can be localized at elevation angles up to ˜60° in the sky, well above the horizon. The sky also exhibits zones with little or no noise that are found toward the local zenith and the southwest of the array. These results are obtained by a rigorous analysis of the residuals from the classic dispersion relation for electromagnetic waves using an array analysis of electric field measurements in the frequency range from ˜20 to 250 kHz. The observed locations of the noise sources enable detailed observations of ionospheric modification, for example, caused by particle precipitation and lightning discharges, while the observed exclusion zones enable the detection of weak natural electromagnetic emissions, for example, from streamers in transient luminous events above thunderclouds.

  14. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  15. On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments.

    PubMed

    Aminzadeh, Reza; Thielens, Arno; Bamba, Aliou; Kone, Lamine; Gaillot, Davy Paul; Lienard, Martine; Martens, Luc; Joseph, Wout

    2016-07-01

    For the first time, response of personal exposimeters (PEMs) is studied under diffuse field exposure in indoor environments. To this aim, both numerical simulations, using finite-difference time-domain method, and calibration measurements were performed in the range of 880-5875 MHz covering 10 frequency bands in Belgium. Two PEMs were mounted on the body of a human male subject and calibrated on-body in an anechoic chamber (non-diffuse) and a reverberation chamber (RC) (diffuse fields). This was motivated by the fact that electromagnetic waves in indoor environments have both specular and diffuse components. Both calibrations show that PEMs underestimate actual incident electromagnetic fields. This can be compensated by using an on-body response. Moreover, it is shown that these responses are different in anechoic chamber and RC. Therefore, it is advised to use an on-body calibration in an RC in future indoor PEM measurements where diffuse fields are present. Using the response averaged over two PEMs reduced measurement uncertainty compared to single PEMs. Following the calibration, measurements in a realistic indoor environment were done for wireless fidelity (WiFi-5G) band. Measured power density values are maximally 8.9 mW/m(2) and 165.8 μW/m(2) on average. These satisfy reference levels issued by the International Commission on Non-Ionizing Radiation Protection in 1998. Power density values obtained by applying on-body calibration in RC are higher than values obtained from no body calibration (only PEMs) and on-body calibration in anechoic room, by factors of 7.55 and 2.21, respectively. Bioelectromagnetics. 37:298-309, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  17. Validating electromagnetic walking stick rail surface crack measuring systems : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    A series of field studies were undertaken to evaluate electromagnetic walking stick systems and their ability to measure the depth : of damage from surface breaking cracks. In total, four railroads, and four suppliers participated in the project. The...

  18. Comparison of velocity-log data collected using impeller and electromagnetic flowmeters

    USGS Publications Warehouse

    Newhouse, M.W.; Izbicki, J.A.; Smith, G.A.

    2005-01-01

    Previous studies have used flowmeters in environments that are within the expectations of their published ranges. Electromagnetic flowmeters have a published range from 0.1 to 79.0 m/min, and impeller flowmeters have a published range from 1.2 to 61.0 m/min. Velocity-log data collected in five long-screened production wells in the Pleasant Valley area of southern California showed that (1) electromagnetic flowmeter results were comparable within ??2% to results obtained using an impeller flowmeter for comparable depths; (2) the measured velocities from the electromagnetic flowmeter were up to 36% greater than the published maximum range; and (3) both data sets, collected without the use of centralizers or flow diverters, produced comparable and interpretable results. Although either method is acceptable for measuring wellbore velocities and the distribution of flow, the electromagnetic flowmeter enables collection of data over a now greater range of flows. In addition, changes in fluid temperature and fluid resistivity, collected as part of the electromagnetic flowmeter log, are useful in the identification of flow and hydrogeologic interpretation.

  19. Comparison of velocity-log data collected using impeller and electromagnetic flowmeters.

    PubMed

    Newhouse, M W; Izbicki, J A; Smith, G A

    2005-01-01

    Previous studies have used flowmeters in environments that are within the expectations of their published ranges. Electromagnetic flowmeters have a published range from 0.1 to 79.0 m/min, and impeller flowmeters have a published range from 1.2 to 61.0 m/min. Velocity-log data collected in five long-screened production wells in the Pleasant Valley area of southern California showed that (1) electromagnetic flowmeter results were comparable within +/-2% to results obtained using an impeller flowmeter for comparable depths; (2) the measured velocities from the electromagnetic flowmeter were up to 36% greater than the published maximum range; and (3) both data sets, collected without the use of centralizers or flow diverters, produced comparable and interpretable results. Although either method is acceptable for measuring wellbore velocities and the distribution of flow, the electromagnetic flowmeter enables collection of data over a now greater range of flows. In addition, changes in fluid temperature and fluid resistivity, collected as part of the electromagnetic flowmeter log, are useful in the identification of flow and hydrogeologic interpretation.

  20. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  1. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  2. Nuclear Electromagnetic Pulse Review

    NASA Astrophysics Data System (ADS)

    Dinallo, Michael

    2011-04-01

    Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.

  3. Electromagnetic Compatibility Design of the Computer Circuits

    NASA Astrophysics Data System (ADS)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  4. Cognitive Radio Cloud Networks: Assured Access In The Future Electromagnetic Operating Environment

    DTIC Science & Technology

    2017-04-04

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY COGNITIVE RADIO CLOUD NETWORKS: ASSURED ACCESS IN THE FUTURE ELECTROMAGNETIC OPERATING...3 Abstract The electromagnetic spectrum is a finite resource that is critical to the United States military’s...ability to gain superiority in the other five warfighting domains. The Department of Defense’s electromagnetic strategy is spectrum access when and

  5. An inhomogeneous thermal block model of man for the electromagnetic environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, I.; Gandhi, O.P.

    An inhomogeneous four layer block thermal model of a human body, composed of 476 electromagnetic-sensitive cubical cells has been developed to study the effects of electromagnetic radiation. Varying tissue properties defined by thermal conductivity, specific heat, blood flow rate and metabolic heat production are accounted for by equations. Peripheral cell temperature is weight-averaged for total cell volume and is thereby higher than actual skin temperature. During electromagnetic field exposure, additional factors considered are increased blood flow rate caused by vasodilation and sweat-induced heat loss. Hot spots have been located in the model and numerical results are presented. Subjected to planemore » wave iradiation, the model's sweating and insensible perspiration cease and all temperatures converge. Testing during electromagnetic hyperthemia shows all temperature body parts to increase approximately at the same rate.« less

  6. Electromagnetic plasma particle simulations on Solar Probe Plus spacecraft interaction with near-Sun plasma environment

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki

    It is necessary to predict the nature of spacecraft-plasma interactions in extreme plasma conditions such as in the near-Sun environment. The spacecraft environment immersed in the solar corona is characterized by the small Debye length due to dense (7000 mathrm{/cc}) plasmas and a large photo-/secondary electron emission current emitted from the spacecraft surfaces, which lead to distinctive nature of spacecraft-plasma interactions [1,2,3]. In the present study, electromagnetic field perturbation around the Solar Probe Plus (SPP) spacecraft is examined by using our original EM-PIC (electromagnetic particle-in-cell) plasma simulation code called EMSES. In the simulations, we consider the SPP spacecraft at perihelion (0.04 mathrm{AU} from the Sun) and important physical effects such as spacecraft charging, photoelectron and secondary electron emission, solar wind plasma flow including the effect of spacecraft orbital velocity, and the presence of a background magnetic field. Our preliminary results show that both photoelectrons and secondary electrons from the spacecraft are magnetized in a spatial scale of several meters, and make drift motion due the presence of the background convection electric field. This effect leads to non-axisymmetric distributions of the electron density and the resultant electric potential near the spacecraft. Our simulations predict that a strong (˜ 100 mathrm{mV/m}) spurious electric field can be observed by the probe measurement on the spacecraft due to such a non-axisymmetric effect. We also confirm that the large photo-/secondary electron current alters magnetic field intensity around the spacecraft, but the field variation is much smaller than the background magnetic field magnitude (a few mathrm{nT} compared to a few mathrm{mu T}). [1] Ergun et al., textit{Phys. Plasmas}, textbf{17}, 072903, 2010. [2] Guillemant et al., textit{Ann. Geophys.}, textbf{30}, 1075-1092, 2012. [3] Guillemant et al., textit{IEEE Trans. Plasma Sci

  7. Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor

    NASA Astrophysics Data System (ADS)

    Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi

    Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.

  8. Study of electromagnetic radiation pollution in Jalandhar city, India

    NASA Astrophysics Data System (ADS)

    Basandrai, D.; Dhami, A. K.; Bedi, R. K.; Khan, S. A.

    2017-07-01

    Environment pollution from electromagnetic radiations emitted from cell phone towers is a new kind of health hazard, which has increase the public concern regarding the health implications of electromagnetic radiations on humans and animals. Long term consequences of these radiations are still unknown. So it become important to measure and maps the electromagnetic radiation level to analyze potential risk. The present study has been taken to estimate the RF pollution by measuring radiation power densities level near school, hospitals and old age home of Jalandhar City, India. The radiation exposure was measured using a handheld portable electrosmog meter. Results were compared with the safety guidelines issued by ICNIRP (International commission on non ionizing radiation protection) and Bio-initiative report, 2012. It has been found that the radiation exposure level in terms of power densities and corresponding specific absorption rate (SAR) are much below than ICNIRP guidelines for all schools, hospitals and old age home. But in the case of 3 schools, the results are quite alarming where the power density and SAR was found to be 79.6% and 4%, respectively higher in comparisons with safe biological limit.

  9. Concurrent electromagnetic scattering analysis

    NASA Technical Reports Server (NTRS)

    Patterson, Jean E.; Cwik, Tom; Ferraro, Robert D.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Parker, Jay

    1989-01-01

    The computational power of the hypercube parallel computing architecture is applied to the solution of large-scale electromagnetic scattering and radiation problems. Three analysis codes have been implemented. A Hypercube Electromagnetic Interactive Analysis Workstation was developed to aid in the design and analysis of metallic structures such as antennas and to facilitate the use of these analysis codes. The workstation provides a general user environment for specification of the structure to be analyzed and graphical representations of the results.

  10. Study of electromagnetic radiation pollution in an Indian city.

    PubMed

    Dhami, A K

    2012-11-01

    Electromagnetic radiation emitted by cell phone towers is a form of environmental pollution and is a new health hazard, especially to children and patients. The present studies were taken to estimate the microwave/RF pollution by measuring radiation power densities near schools and hospitals of Chandigarh city in India. The cell phone radiations were measured using a handheld portable power density meter TES 593 and specific absorption rates were estimated from the measured values. These values of electromagnetic radiation in the environment were compared with the levels at which biological system of humans and animals starts getting affected. The values were also compared with the international exposure limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The highest measured power density was 11.48 mW/m(2) which is 1,148% of the biological limit. The results indicated that the exposure levels in the city were below the ICNIRP limit, but much above the biological limit.

  11. An electromagnetic noncontacting sensor for thickness measurement in a dispersive medium

    NASA Technical Reports Server (NTRS)

    Chufo, Robert L.

    1994-01-01

    This paper describes a general purpose imaging technology developed by the U.S. Bureau of Mines (USBM) that, when fully implemented, will solve the general problem of 'seeing into the earth.' A first-generation radar coal thickness sensor, the RCTS-1, has been developed and field-tested in both underground and highwall mines. The noncontacting electromagnetic technique uses spatial modulation created by moving a simple sensor antenna in a direction along each axis to be measured while the complex reflection coefficient is measured at multiple frequencies over a two-to-one bandwidth. The antenna motion imparts spatial modulation to the data that enables signal processing to solve the problems of media, target, and antenna dispersion. Knowledge of the dielectric constant of the media is not necessary because the electrical properties of the media are determined automatically along with the distance to the target and thickness of each layer of the target. The sensor was developed as a navigation guidance sensor to accurately detect the coal/noncoal interface required for the USBM computer-assisted mining machine program. Other mining applications include the location of rock fractures, water-filled voids, and abandoned gas wells. These hazards can be detected in advance of the mining operation. This initiating technology is being expanded into a full three-dimensional (3-D) imaging system that will have applications in both the underground and surface environment.

  12. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  13. Non-Invasive Electromagnetic Skin Patch Sensor to Measure Intracranial Fluid–Volume Shifts

    PubMed Central

    Griffith, Jacob; Cluff, Kim; Eckerman, Brandon; Aldrich, Jessica; Becker, Ryan; Moore-Jansen, Peer; Patterson, Jeremy

    2018-01-01

    Elevated intracranial fluid volume can drive intracranial pressure increases, which can potentially result in numerous neurological complications or death. This study’s focus was to develop a passive skin patch sensor for the head that would non-invasively measure cranial fluid volume shifts. The sensor consists of a single baseline component configured into a rectangular planar spiral with a self-resonant frequency response when impinged upon by external radio frequency sweeps. Fluid volume changes (10 mL increments) were detected through cranial bone using the sensor on a dry human skull model. Preliminary human tests utilized two sensors to determine feasibility of detecting fluid volume shifts in the complex environment of the human body. The correlation between fluid volume changes and shifts in the first resonance frequency using the dry human skull was classified as a second order polynomial with R2 = 0.97. During preliminary and secondary human tests, a ≈24 MHz and an average of ≈45.07 MHz shifts in the principal resonant frequency were measured respectively, corresponding to the induced cephalad bio-fluid shifts. This electromagnetic resonant sensor may provide a non-invasive method to monitor shifts in fluid volume and assist with medical scenarios including stroke, cerebral hemorrhage, concussion, or monitoring intracranial pressure. PMID:29596338

  14. NASA Applications for Computational Electromagnetic Analysis

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Trout, Dawn H.; Krome, Mark E.; Perry, Thomas A.

    2011-01-01

    Computational Electromagnetic Software is used by NASA to analyze the compatibility of systems too large or too complex for testing. Recent advances in software packages and computer capabilities have made it possible to determine the effects of a transmitter inside a launch vehicle fairing, better analyze the environment threats, and perform on-orbit replacements with assured electromagnetic compatibility.

  15. Vertical Electromagnetic Pulse (VEMP) Testing

    DTIC Science & Technology

    2009-09-11

    3) MIL-STD-2169B: High Altitude Electromagnetic Pulse ( HEMP ) Environment. The final survivability analysis of the baseline system...Electromagnetic Pulse ( HEMP ). The first EMP situation, SREMP, occurs within the atmosphere at an altitude of less than 40 km above sea level, and possesses an...The second EMP situation, HEMP , occurs at an altitude greater than 40 km above sea level, and possesses a large electric and magnetic field over a

  16. Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque.

    PubMed

    Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H

    2012-07-11

    The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.

  17. Constructing Uniformity: the Standardization of International Electromagnetic Measures, 1860-1912

    NASA Astrophysics Data System (ADS)

    Lagerstrom, Larry Randles

    Metrology gained much attention from electrical scientists and practitioners in the nineteenth and early twentieth centuries. Spurred by the expanding telegraph industries, they considered the construction and acceptance of a universal system of electromagnetic measures essential for the growth of science and technology. The task was not easy. Scientists and practitioners, having different concerns and needs, often found themselves at odds. National rivalries further obstructed the attainment of uniform measures. Under the auspices of a series of international electrical congresses and conferences between 1881 and 1908, the systembuilders succeeded in establishing an international system of practical electrical units and standards--the ohm, volt, ampere, coulomb, farad, joule, and watt--based on the centimeter-gram-second (CGS) system of measures. They had less success, however, with practical magnetic units. They had designed the system of electrical units to meet the needs of telegraphy. But the rise of the technologies of electrical power in the late nineteenth century made it difficult to define magnetic units that were both practical for the new technologies and coherent with the existing system of units. The international congress, as an institution, also gave them trouble. It lacked authority and stability and, in some cases, hindered the development of the system of units. More credit for the success of the systembuilders must go, paradoxically, to the national physical laboratories that arose in Germany, France, Great Britain, and the United States circa 1900. They enabled the standardization of international electromagnetic measures by narrowing the community of systembuilders to a small circle of elite experts. This historical process illustrates important aspects of the ways and means of standardization, of the technical and social construction of uniformity.

  18. FINITE-DIFFERENCE ELECTROMAGNETIC DEPOSITION/THERMOREGULATORY MODEL: COMPARISON BETWEEN THEORY AND MEASUREMENTS (JOURNAL VERSION)

    EPA Science Inventory

    The rate of the electromagnetic energy deposition and the resultant thermoregulatory response of a block model of a squirrel monkey exposed to plane-wave fields at 350 MHz were calculated using a finite-difference procedure. Noninvasive temperature measurements in live squirrel m...

  19. Vertical electromagnetic profiling (VEMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, R.J.

    1984-08-01

    Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less

  20. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  1. Method and apparatus for measuring electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  2. Effects of electromagnetic radiation on the hemorheology of rats

    NASA Astrophysics Data System (ADS)

    Huang, Zhiwei; Tian, Tian; Xiao, Bo; Li, Wen

    2017-01-01

    The current work examines the effects of electromagnetic radiation on the hemorheology to provide an experimental basis for radiation protection. Electromagnetic radiation was generated by a Helmholtz coil constructed from copper wire. There were six rats altogether: three rats in the experimental group, and three rats in the control group. The rats in the experimental group were continuously exposed to radiation for 10 hours every day, and rats in the control group remained in a normal environment. After 30 days, the characteristics of hemorheology of the two groups were compared. The average plasma viscosity, whole blood high shear velocity, and whole blood low shear viscosity were lower in rats in the experimental group than in rats in the control group, while the whole blood shear viscosity was higher in the experimental group than in the control group. Results suggest that long term exposure to electromagnetic radiation does have certain impacts on the cardiovascular system, deeming it necessary to take preventative measures.

  3. A Triaxial Applicator for the Measurement of the Electromagnetic Properties of Materials

    PubMed Central

    2018-01-01

    The design, analysis, and fabrication of a prototype triaxial applicator is described. The applicator provides both reflected and transmitted signals that can be used to characterize the electromagnetic properties of materials in situ. A method for calibrating the probe is outlined and validated using simulated data. Fabrication of the probe is discussed, and measured data for typical absorbing materials and for the probe situated in air are presented. The simulations and measurements suggest that the probe should be useful for measuring the properties of common radar absorbing materials under usual in situ conditions. PMID:29382122

  4. Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments.

    PubMed

    Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay

    2014-01-01

    We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.

  5. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the

  6. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    NASA Astrophysics Data System (ADS)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  7. Unified physical mechanism of frequency-domain controlled-source electromagnetic exploration on land and in ocean

    NASA Astrophysics Data System (ADS)

    Liu, Changsheng; Lin, Jun; Zhou, Fengdao; Hu, Ruihua; Sun, Caitang

    2013-12-01

    The frequency-domain controlled-source electromagnetic method (FDCSEM) has played an important role in the terrestrial and oceanic exploration. However, the measuring manners and the detecting abilities in two kinds of environment are much different. This paper analyses the electromagnetic theories of the FDCSEM exploration on land and in ocean, simulates the electromagnetic responses in the two cases based on a united physical and mathematical model, and studies the physical mechanism leading to these differences. In this study, the relationship between the propagation paths and the detecting ability is illuminated and the way to improve the detecting ability of FDCSEM is brought forward. In terrestrial exploration, FDCSEM widely adopts the measuring manner of controlled-source audio-frequency magnetotelluric method (CSAMT), which records the electromagnetic fields in the far zone in the broadside direction of an electric dipole source. This manner utilizes the airwave (i.e. the Earth surface wave) and takes the stratum wave as interference. It is sensitive to the conductive target but insensitive to the resistive one. In oceanic exploration, FDCSEM usually adopts the measuring manner of marine controlled-source electromagnetic method (MCSEM), which records the electromagnetic fields, commonly the horizontal electric fields, in the in-line direction of the electric dipole source. This manner utilizes the stratum wave (i.e. the seafloor wave and the guided wave in resistive targets) and takes the airwave as interference. It is sensitive to the resistive target but relatively insensitive to the conductive one. The numerical simulation shows that both the airwave and the stratum wave contribute to the FDCSEM exploration. United utilization of them will enhance the anomalies of targets and congregate the advantages of CSAMT and MCSEM theories. At different azimuth and different offset, the contribution of the airwave and the stratum wave to electromagnetic anomaly is

  8. Integrating long-offset transient electromagnetics (LOTEM) with seismics in an exploration environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strack, K.M.; Vozoff, K.

    The applications of electromagnetics have increased in the past two decades because of an improved understanding of the methods, improves service availability, and the increased focus of exploration in the more complex reservoir characterization issues. For electromagnetic methods surface applications for hydrocarbon Exploration and Production are still a special case, while applications in borehole and airborne research and for engineering and environmental objectives are routine. In the past, electromagnetic techniques, in particular deep transient electromagnetics, made up a completely different discipline in geophysics, although many of the principles are similar to the seismic one. With an understanding of the specificmore » problems related to data processing initially and then acquisition, the inclusion of principles learned from seismics happened almost naturally. Initially, the data processing was very similar to seismic full-waveform processing. The hardware was also changed to include multichannel acquisition systems, and the field procedures became very similar to seismic surveying. As a consequence, the integration and synergism of the interpretation process is becoming almost automatic. The long-offset transient electromagnetic (LOTEM) technique will be summarized from the viewpoint of its similarity to seismics. The complete concept of the method will also be reviewed. An interpretation case history that integrates seismic and LOTEM from a hydrocarbon area in China clearly demonstrates the limitations and benefits of the method.« less

  9. Measures of galaxy environment - I. What is 'environment'?

    NASA Astrophysics Data System (ADS)

    Muldrew, Stuart I.; Croton, Darren J.; Skibba, Ramin A.; Pearce, Frazer R.; Ann, Hong Bae; Baldry, Ivan K.; Brough, Sarah; Choi, Yun-Young; Conselice, Christopher J.; Cowan, Nicolas B.; Gallazzi, Anna; Gray, Meghan E.; Grützbauch, Ruth; Li, I.-Hui; Park, Changbom; Pilipenko, Sergey V.; Podgorzec, Bret J.; Robotham, Aaron S. G.; Wilman, David J.; Yang, Xiaohu; Zhang, Youcai; Zibetti, Stefano

    2012-01-01

    The influence of a galaxy's environment on its evolution has been studied and compared extensively in the literature, although differing techniques are often used to define environment. Most methods fall into two broad groups: those that use nearest neighbours to probe the underlying density field and those that use fixed apertures. The differences between the two inhibit a clean comparison between analyses and leave open the possibility that, even with the same data, different properties are actually being measured. In this work, we apply 20 published environment definitions to a common mock galaxy catalogue constrained to look like the local Universe. We find that nearest-neighbour-based measures best probe the internal densities of high-mass haloes, while at low masses the interhalo separation dominates and acts to smooth out local density variations. The resulting correlation also shows that nearest-neighbour galaxy environment is largely independent of dark matter halo mass. Conversely, aperture-based methods that probe superhalo scales accurately identify high-density regions corresponding to high-mass haloes. Both methods show how galaxies in dense environments tend to be redder, with the exception of the largest apertures, but these are the strongest at recovering the background dark matter environment. We also warn against using photometric redshifts to define environment in all but the densest regions. When considering environment, there are two regimes: the 'local environment' internal to a halo best measured with nearest neighbour and 'large-scale environment' external to a halo best measured with apertures. This leads to the conclusion that there is no universal environment measure and the most suitable method depends on the scale being probed.

  10. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    PubMed

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  11. Measurement and Analysis of L-Band (1535-1660 MHz) Electromagnetic (EM) Noise on Ships

    DOT National Transportation Integrated Search

    1974-12-01

    A program of L-band (1535-1660 MHz) electromagnetic (EM) noise measurements conducted on ships is described. The magnitude and duration of EM noise on ships is of particular significance in terms of potential radio frequency interference (RFI) to fut...

  12. Development and program implementation of elements for identification of the electromagnet condition for movable element position control

    NASA Astrophysics Data System (ADS)

    Leukhin, R. I.; Shaykhutdinov, D. V.; Shirokov, K. M.; Narakidze, N. D.; Vlasov, A. S.

    2017-02-01

    Developing the experimental design of new electromagnetic constructions types in engineering industry enterprises requires solutions of two major problems: regulator’s parameters setup and comprehensive testing of electromagnets. A weber-ampere characteristic as a data source for electromagnet condition identification was selected. Present article focuses on development and implementation of the software for electromagnetic drive control system based on the weber-ampere characteristic measuring. The software for weber-ampere characteristic data processing based on artificial neural network is developed. Results of the design have been integrated into the program code in LabVIEW environment. The license package of LabVIEW graphic programming was used. The hardware is chosen and possibility of its use for control system implementation was proved. The trained artificial neural network defines electromagnetic drive effector position with minimal error. Developed system allows to control the electromagnetic drive powered by the voltage source, the current source and hybrid sources.

  13. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.

    2016-06-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  14. Electromagnetic interference in electrical systems of motor vehicles

    NASA Astrophysics Data System (ADS)

    Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.

  15. Use of portable exposimeters to monitor radiofrequency electromagnetic field exposure in the everyday environment.

    PubMed

    Sagar, Sanjay; Struchen, Benjamin; Finta, Viktoria; Eeftens, Marloes; Röösli, Martin

    2016-10-01

    Spatial and temporal distribution of radiofrequency electromagnetic field (RF-EMF) levels in the environment is highly heterogeneous. It is thus not entirely clear how to monitor spatial variability and temporal trends of RF-EMF exposure levels in the environment in a representative and efficient manner. The aim of this study was to test a monitoring protocol for RF-EMF measurements in public areas using portable devices. Using the ExpoM-RF devices mounted on a backpack, we have conducted RF-EMF measurements by walking through 51 different outdoor microenvironments from 20 different municipalities in Switzerland: 5 different city centers, 5 central residential areas, 5 non-central residential areas, 15 rural residential areas, 15 rural centers and 6 industrial areas. Measurements in public transport (buses, trains, trams) were collected when traveling between the areas. Measurements were conducted between 25th March and 11th July 2014. In order to evaluate spatial representativity within one microenvironment, we measured two crossing paths of about 1km in length in each microenvironment. To evaluate repeatability, measurements in each microenvironment were repeated after two to four months on the same paths. Mean RF-EMF exposure (sum of 15 main frequency bands between 87.5 and 5,875MHz) was 0.53V/m in industrial zones, 0.47V/m in city centers, 0.32V/m in central residential areas, 0.25V/m non-central residential areas, 0.23V/m in rural centers and rural residential areas, 0.69V/m in trams, 0.46V/m in trains and 0.39V/m in buses. Major exposure contribution at outdoor locations was from mobile phone base stations (>80% for all outdoor areas with respect to the power density scale). Temporal correlation between first and second measurement of each area was high: 0.89 for total RF-EMF, 0.90 for all five mobile phone downlink bands combined, 0.51 for all five uplink bands combined and 0.79 for broadcasting. Spearman correlation between arithmetic mean values of the

  16. Passive Wearable Skin Patch Sensor Measures Limb Hemodynamics Based on Electromagnetic Resonance.

    PubMed

    Cluff, Kim; Becker, Ryan; Jayakumar, Balakumar; Han, Kiyun; Condon, Ernie; Dudley, Kenneth; Szatkowski, George; Pipinos, Iraklis I; Amick, Ryan Z; Patterson, Jeremy

    2018-04-01

    The objectives of this study were to design and develop an open-circuit electromagnetic resonant skin patch sensor, characterize the fluid volume and resonant frequency relationship, and investigate the sensor's ability to measure limb hemodynamics and pulse volume waveform features. The skin patch was designed from an open-circuit electromagnetic resonant sensor comprised of a single baseline trace of copper configured into a square planar spiral which had a self-resonating response when excited by an external radio frequency sweep. Using a human arm phantom with a realistic vascular network, the sensor's performance to measure limb hemodynamics was evaluated. The sensor was able to measure pulsatile blood flow which registered as shifts in the sensor's resonant frequencies. The time-varying waveform pattern of the resonant frequency displayed a systolic upstroke, a systolic peak, a dicrotic notch, and a diastolic down stroke. The resonant frequency waveform features and peak systolic time were validated against ultrasound pulse wave Doppler. A statistical correlation analysis revealed a strong correlation () between the resonant sensor peak systolic time and the pulse wave Doppler peak systolic time. The sensor was able to detect pulsatile flow, identify hemodynamic waveform features, and measure heart rate with 98% accuracy. The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.

  17. Occupational exposure to electromagnetic fields in the Polish Armed Forces.

    PubMed

    Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda

    2017-06-19

    Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  18. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  19. Mitigation measures of electromagnetic field exposure in the vicinity of high frequency welders.

    PubMed

    Zubrzak, Bartłomiej; Bieńkowski, Paweł; Cała, Pawel

    2017-10-17

    Presented information about the welding process and equipment, focusing on the emission of electromagnetic field (EMF) with levels significant in terms of the labor safety regulations in force in Poland - the ordinances of the Minister of Family, Labour and Social Policy that came into force on June 27, 2016 and June 29, 2016 - emerged due to harmonization with European Union directive 2013/35/EU of 26 June 2013 of the European Parliament and the Council. They presented methods of determination of the EMF distribution in the welding machine surroundings and analyzed the background knowledge from the available literature. The subject of the analysis included popular high frequency welders widely used in the industry. Electromagnetic field measurements were performed in the welder operating place (in situ) during machine normal operations, using measurement methods accordant with labor safety regulations in force in Poland and according to the same guidelines, the EMF distributions and parameters having been described. They presented various scenarios of particular, real examples of excessive exposure to EMF in the dielectric welder surroundings and showed solutions, ranging from simple and costless and ending on dedicated electromagnetic shielding systems, which allowed to reduce EMF exposure in some cases of more than 80% (protection zone ranges) or eliminate dangerous zone presence. It has shown that in the dielectric welders surrounding, significant EMF strength levels may be the result of errors or omissions which often occur during development, installation, operation or modification of welding machines. It has allowed to present the measures that may significantly reduce the exposure to EMF of workers in the welder surroundings. The role of accredited laboratories in helping in such cases was underlined. Med Pr 2017;68(6):693-703. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. SKA aperture array verification system: electromagnetic modeling and beam pattern measurements using a micro UAV

    NASA Astrophysics Data System (ADS)

    de Lera Acedo, E.; Bolli, P.; Paonessa, F.; Virone, G.; Colin-Beltran, E.; Razavi-Ghods, N.; Aicardi, I.; Lingua, A.; Maschio, P.; Monari, J.; Naldi, G.; Piras, M.; Pupillo, G.

    2018-03-01

    In this paper we present the electromagnetic modeling and beam pattern measurements of a 16-elements ultra wideband sparse random test array for the low frequency instrument of the Square Kilometer Array telescope. We discuss the importance of a small array test platform for the development of technologies and techniques towards the final telescope, highlighting the most relevant aspects of its design. We also describe the electromagnetic simulations and modeling work as well as the embedded-element and array pattern measurements using an Unmanned Aerial Vehicle system. The latter are helpful both for the validation of the models and the design as well as for the future instrumental calibration of the telescope thanks to the stable, accurate and strong radio frequency signal transmitted by the UAV. At this stage of the design, these measurements have shown a general agreement between experimental results and numerical data and have revealed the localized effect of un-calibrated cable lengths in the inner side-lobes of the array pattern.

  1. Measurement of the nuclear electromagnetic cascade development in glass at energies above 200 GeV

    NASA Technical Reports Server (NTRS)

    Gillespie, C. R.; Huggett, R. W.; Humphreys, D. R.; Jones, W. V.; Levit, L. B.

    1971-01-01

    The longitudinal development of nuclear-electromagnetic cascades with energies greater than 200 GeV was measured in a low-Z (glass) absorber. This was done in the course of operating an ionization spectrometer at mountain altitude in an experiment to study the properties of gamma rays emitted from individual interactions at energies around 10,000 GeV. The ionization produced by a cascade is sampled by 20 sheets of plastic scintillator spaced uniformly in depth every 2.2 radiation lengths. Adjacent pairs of scintillators are viewed by photomultipliers which measure the mean ionization produced by an individual cascade in 10 layers each 1.1 interaction length (4.4 radiation lengths) thick. The longitudinal development of the cascades was measured for about 250 cascades having energies ranging from 200 GeV to 2500 GeV. The observations are compared with the predictions of calculations made for this specific spectrometer using a three-dimensional Monte Carlo model of the nuclear-electromagnetic cascade.

  2. Shuttle Communications and Tracking, Avionics, and Electromagnetic Compatibility

    NASA Technical Reports Server (NTRS)

    deSilva, K.; Hwu, Shian; Kindt, Kaylene; Kroll, Quin; Nuss, Ray; Romero, Denise; Schuler, Diana; Sham, Catherine; Scully, Robert

    2011-01-01

    By definition, electromagnetic compatibility (EMC) is the capability of components, sub-systems, and systems, to operate in their intended electromagnetic environment, within an established margin of safety, and at design levels of performance. Practice of the discipline itself incorporates knowledge of various aspects of applied physics, materials science, and engineering across the board, and includes control and mitigation of undesirable electromagnetic interaction between intentional and unintentional emitters and receivers of radio frequency energy, both within and external to the vehicle; identification and control of the hazards of non-ionizing electromagnetic radiation to personnel, ordnance, and fuels and propellants; and vehicle and system protection from the direct and indirect effects of lightning and various other forms of electrostatic discharge (ESD) threats, such as triboelectrification and plasma charging. EMC is extremely complex and far-reaching, affecting in some degree every aspect of the vehicle s design and operation. The most successful efforts incorporate EMC design features and techniques throughout design and fabrication of the vehicle s structure and components, as well as appropriate operational considerations with regard to electromagnetic threats in the operational environment, from the beginning of the design effort to the end of the life cycle of the manufactured product. This approach yields the highest design performance with the lowest cost and schedule impact.

  3. Electromagnetic Radiation in the Plasma Environment Around the Shuttle

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.

    1995-01-01

    As part of the SAMPIE (The Solar Array Module Plasma Interaction Experiment) program, the Langmuir probe (LP) was employed to measure plasma characteristics during the flight STS-62. The whole set of data could be divided into two parts: (1) low frequency sweeps to determine voltage-current characteristics and to find electron temperature and number density; (2) high frequency turbulence (HFT dwells) data caused by electromagnetic noise around the shuttle. The broadband noise was observed at frequencies 250-20,000 Hz. Measurements were performed in ram conditions; thus, it seems reasonable to believe that the influence of spacecraft operations on plasma parameters was minimized. The average spectrum of fluctuations is in agreement with theoretical predictions. According to purposes of SAMPIE, the samples of solar cells were placed in the cargo bay of the shuttle, and high negative bias voltages were applied to them to initiate arcing between these cells and surrounding plasma. The arcing onset was registered by special counters, and data were obtained that included the amplitudes of current, duration of each arc, and the number of arcs per one experiment. The LP data were analyzed for two different situations: with arcing and without arcing. Electrostatic noise spectra for both situations and theoretical explanation of the observed features are presented in this report.

  4. Measurement of Electromagnetic Energy Flow Through a Sparse Particulate Medium: A Perspective

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2013-01-01

    First-principle analysis of the functional design of a well-collimated radiometer (WCR) reveals that in general, this instrument does not record the instantaneous directional flow of electromagnetic energy. Only in special cases can a sequence of measurements with a WCR yield the magnitude and direction of the local time-averaged Poynting vector. Our analysis demonstrates that it is imperative to clearly formulate the physical nature of the actual measurement afforded by a directional radiometer rather than presume desirable measurement capabilities. Only then can the directional radiometer be considered a legitimate part of physically based remote sensing and radiation-budget applications. We also emphasize the need for a better understanding of the nature of measurements with panoramic radiometers.

  5. Biological and Health Effects of Electromagnetic (Nonionizing) Radiation. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Halasz, Hisako, Comp.

    The environment we live in today is filled with human-created electromagnetic fields generated by a variety of sources, including radio and television transmitters, power lines, and visual display terminals. (In addition, there exists a natural background of electromagnetic fields.) The term "electromagnetic pollution" is often used to…

  6. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  7. Electromagnetic disturbance of electric drive system signal is extracted based on PLS

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Wang, Chuanqi; Yang, Weidong; Zhang, Xu; Jiang, Li; Hou, Shuai; Chen, Xichen

    2018-05-01

    At present ISO11452 and GB/T33014 specified by electromagnetic immunity are narrowband electromagnetic radiation, but our exposure to electromagnetic radiation at ordinary times is not only a narrowband electromagnetic radiation, and some broadband electromagnetic radiation, and even some of the more complex electromagnetic environment. In terms of Electric vehicles, electric drive system is a kind of complex electromagnetic disturbance source, is not only a narrow-band signal, there are a lot of broadband signal, this paper puts forward PLS data processing method is adopted to analyze the electric drive system of electromagnetic disturbance, this kind of method to extract the data can be provide reliable data support for future standards.

  8. A literature review of transmission effectiveness and electromagnetic compatibility in home telemedicine environments to evaluate safety and security.

    PubMed

    Carranza, Noemí; Ramos, Victoria; Lizana, Francisca G; García, Jorge; del Pozo, Alejando; Monteagudo, José Luis

    2010-09-01

    The objective of this study was to determine already reported cases of transmission/reception failure and interferences to evaluate the safety and security of the new mobile home telemedicine systems. The literature published in the last 10 years (1998-2009) has been reviewed, by searching in several databases. Searches on transmission effectiveness and electromagnetic compatibility were made manually through journals, conference proceedings, and also the healthcare technology assessment agencies' Web pages. Search strategies developed through electronic databases and manual search identified a total of 886 references, with 44 finally being included in the results. They have been divided by technology in the transmission/reception effectiveness studies, and according to the type of medical device in the case of electromagnetic interferences studies. The study reveals that there are numerous publications on telemedicine and home-monitoring systems using wireless networks. However, literature on effectiveness in terms of connectivity and transmission problems and electromagnetic interferences is limited. From the collected studies, it can be concluded that there are transmission failures, low-coverage areas, errors in the transmission of packets, and so on. Moreover, cases of serious interferences in medical instruments have also been reported. These facts highlight the lack of studies and specific recommendations to be followed in the implementation of biomonitoring systems in domestic environments using wireless networks.

  9. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  10. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  11. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less

  12. Department of Defense Interface Standard Electromagnetic Environmental Effects Requirements for Systems

    DTIC Science & Technology

    2002-12-19

    effective tool in evaluating IMI. A5.2.2 Shipboard internal electromagnetic environment (EME). For ship applications, electric fields (peak V/m-rms...effects waveform parameters ........................................ 9 MIL-STD-464A v CONTENTS Page TABLES 2B Electromagnetic fields from near...blasting of hardware. 3.8 Lightning indirect effects. Electrical transients induced by lightning due to coupling of electromagnetic fields . 3.9

  13. Effects of weak electromagnetic fields on Escherichia coli and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Smith, Derek A.

    Previous studies of electromagnetic field effects on bacteria are examined, and new experimental procedures and their results are discussed. Experimental samples of Escherichia coli and Staphylococcus aureus were prepared in different conditions, and measurements of optical density were used to track growth rates after removing the samples from their associated experimental environments. Experimental environments varied in magnetic field intensities and frequencies, including a control environment of minimal field intensity. Plots of experimental data sets and their associated averages are used to visualize the experimental outcomes, and differences in growth patterns are evaluated. Results are then used to hypothesize the mechanisms and consequences of the potentially observed field effects.

  14. A comparison of lightning and nuclear electromagnetic pulse response of tactical shelters

    NASA Technical Reports Server (NTRS)

    Perala, R. A.; Rudolph, T. H.; Mckenna, P. M.

    1984-01-01

    The internal response (electromagnetic fields and cable responses) of tactical shelters is addressed. Tactical shelters are usually well-shielded systems. Apart from penetrations by signal and power lines, the main leakage paths to the interior are via seams and the environment control unit (ECU) honeycomb filter. The time domain in three-dimensional finite-difference technique is employed to determine the external and internal coupling to a shelter excited by nuclear electromagnetic pulses (NEMP) and attached lightning. The responses of interest are the internal electromagnetic fields and the voltage, current, power, and energy coupled to internal cables. Leakage through the seams and ECU filter is accomplished by their transfer impedances which relate internal electric fields to external current densities. Transfer impedances which were experimentally measured are used in the analysis. The internal numerical results are favorably compared to actual shelter test data under simulated NEMP illumination.

  15. Operation Sun Beam, Shots Little Feller I, II and Johnie Boy. Project officers report. Project 6. 6. Electromagnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, W.D.; Livingston, P.M.; Rutter, R.L.

    Of considerable interest from both a physical and practical viewpoint is the coupling of electromagnetic energy from a nuclear explosion into various electrical systems in the vicinity of the burst. A series of electromagnetic measurements were made on Shots Little Feller I, Little Feller II, and Johnie Boy. It is clear from the records that radiation shielding must be given closer consideration in future tests. Due to equipment failure and radiation inactivation, only the Johnie Boy dynamic current measurement and the passive peak current indicators on all three events are interpretable.

  16. Crew Quarters (CQ) and Electromagnetic Interference (EMI) Measurement Facility Combined Impedance Study

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2011-01-01

    This report documents an investigation into observed failures associated with conducted susceptibility testing of Crew Quarters (CQ) hardware in the Johnson Space Center (JSC) Electromagnetic Interference (EMI) Measurement Facility, and the work accomplished to identify the source of the observed behavior. Investigation led to the conclusion that the hardware power input impedance was interacting with the facility power impedance leading to instability at the observed frequencies of susceptibility. Testing performed in other facilities did not show this same behavior, pointing back to the EMI Measurement Facility power as the potential root cause. A LISN emulating the Station power bus impedance was inserted into the power circuit, and the susceptibility was eliminated from the measurements.

  17. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Astrophysics Data System (ADS)

    Smith, V.

    2000-11-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  18. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Technical Reports Server (NTRS)

    Smith, V.; Minor, J. L. (Technical Monitor)

    2000-01-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  19. Precision measurement of the electromagnetic dipole strengths in Be11

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finlay, A.; Garnsworthy, A. B.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Quaglioni, S.; Svensson, C. E.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.

    2014-05-01

    The electromagnetic dipole strength in Be11 between the bound states has been measured using low-energy projectile Coulomb excitation at bombarding energies of 1.73 and 2.09 MeV/nucleon on a Pt196 target. An electric dipole transition probability B(E1;1/2-→1/2+)=0.102(2) e2fm was determined using the semi-classical code Gosia, and a value of 0.098(4) e2fm was determined using the Extended Continuum Discretized Coupled Channels method with the quantum mechanical code FRESCO. These extracted B(E1) values are consistent with the average value determined by a model-dependent analysis of intermediate energy Coulomb excitation measurements and are approximately 14% lower than that determined by a lifetime measurement. The much-improved precisions of 2% and 4% in the measured B(E1) values between the bound states deduced using Gosia and the Extended Continuum Discretized Coupled Channels method, respectively, compared to the previous accuracy of ˜10% will help in our understanding of and better improve the realistic inter-nucleon interactions.

  20. Measured opening characteristics of an electromagnetically opened diaphragm for the Langley expansion tunnel

    NASA Technical Reports Server (NTRS)

    Moore, J. A.

    1976-01-01

    Results from an experimental study of the opening characteristics of an electromagnetically opened, 15.24 cm diameter diaphragm are presented. This diaphragm consists of a polyester film bonded to a preformed wire and is opened by passing a current pulse (capacitor discharge) through the wire. The diaphragm separates the acceleration section of the expansion tunnel from the nozzle so that the nozzle may be at a lower pressure than the acceleration section prior to a test. Opening times and cleanness of the opened area were examined for dependence on diaphragm thickness, on wire diameter, on technique of bonding the wire to the diaphragm, and on voltage and energy level of the energy source. Time histories of the pitot pressure measured at the expansion-tunnel nozzle entrance location are presented for (1) no diaphragm, (2) a flow-opened diaphragm, and (3) an electromagnetically opened diaphragm.

  1. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  2. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  3. Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.

    PubMed

    Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook

    2014-05-01

    In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones. © 2014 Wiley Periodicals, Inc.

  4. Parallelizing serial code for a distributed processing environment with an application to high frequency electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Work, Paul R.

    1991-12-01

    This thesis investigates the parallelization of existing serial programs in computational electromagnetics for use in a parallel environment. Existing algorithms for calculating the radar cross section of an object are covered, and a ray-tracing code is chosen for implementation on a parallel machine. Current parallel architectures are introduced and a suitable parallel machine is selected for the implementation of the chosen ray-tracing algorithm. The standard techniques for the parallelization of serial codes are discussed, including load balancing and decomposition considerations, and appropriate methods for the parallelization effort are selected. A load balancing algorithm is modified to increase the efficiency of the application, and a high level design of the structure of the serial program is presented. A detailed design of the modifications for the parallel implementation is also included, with both the high level and the detailed design specified in a high level design language called UNITY. The correctness of the design is proven using UNITY and standard logic operations. The theoretical and empirical results show that it is possible to achieve an efficient parallel application for a serial computational electromagnetic program where the characteristics of the algorithm and the target architecture critically influence the development of such an implementation.

  5. Measurement and analysis of electromagnetic pollution generated by GSM-900 mobile phone networks in Erciyes University, Turkey.

    PubMed

    Sorgucu, Ugur; Develi, Ibrahim

    2012-12-01

    Mobile phones are becoming increasingly important in our everyday lives. The rising number of mobile phones reflects a similar increase in the number of base stations. Because of this rapid evolution, the establishment and planning of new base stations has become mandatory. However, the rise in the number of base stations, in terms of human health, is potentially very harmful. It is important to analyze the radiation levels of base stations until we can confirm that they are definitely not harmful in the long term. Mapping of electromagnetic field (EMF) is also important from a medical point of view because it provides useful information, for example, on the detection of diseases caused by EMF. With the help of this information the distribution of diseases over different regions can be obtained. In this article, the electromagnetic radiation levels of base stations were measured at 80 different points in Erciyes University (ERU), Turkey and detailed information about the measurement tools and measurement method were given. It was observed that no area in ERU exceeded the national and international limits. It is also observed that the effects of base stations vary according to duration and degree of exposure. Therefore, if people are exposed to a very low-intensity electromagnetic field for a very long time, serious health problems can occur.

  6. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  7. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASA's UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASA's S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  8. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  9. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter.

    PubMed

    Litzenberg, Dale W; Gallagher, Ian; Masi, Kathryn J; Lee, Choonik; Prisciandaro, Joann I; Hamstra, Daniel A; Ritter, Timothy; Lam, Kwok L

    2013-08-01

    To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm

  10. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  11. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  12. A large-scale measurement, analysis and modelling of electromagnetic radiation levels in the vicinity of GSM/UMTS base stations in an urban area.

    PubMed

    Karadağ, Teoman; Yüceer, Mehmet; Abbasov, Teymuraz

    2016-01-01

    The present study analyses the electric field radiating from the GSM/UMTS base stations located in central Malatya, a densely populated urban area in Turkey. The authors have conducted both instant and continuous measurements of high-frequency electromagnetic fields throughout their research by using non-ionising radiation-monitoring networks. Over 15,000 instant and 13,000,000 continuous measurements were taken throughout the process. The authors have found that the normal electric field radiation can increase ∼25% during daytime, depending on mobile communication traffic. The authors' research work has also demonstrated the fact that the electric field intensity values can be modelled for each hour, day or week with the results obtained from continuous measurements. The authors have developed an estimation model based on these values, including mobile communication traffic (Erlang) values obtained from mobile phone base stations and the temperature and humidity values in the environment. The authors believe that their proposed artificial neural network model and multivariable least-squares regression analysis will help predict the electric field intensity in an environment in advance. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The Measurement of College Environments.

    ERIC Educational Resources Information Center

    Pace, C. Robert

    In characterizing college and university environments, there have been 4 general approaches to measurement: "environmental press," individual characterization, demographic characteristics, and individual behavior. Despite different means of measurement, there are some general similarities in the results that indicate that college environments may…

  14. Detailed measurements of shower properties in a high granularity digital electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    van der Kolk, N.

    2018-03-01

    The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.

  15. High temperature electromagnetic characterization of thermal protection system tile materials

    NASA Technical Reports Server (NTRS)

    Heil, Garrett G.

    1993-01-01

    This study investigated the impact of elevated temperatures on the electromagnetic performance of the LI-2200 thermal protection system. A 15-kilowatt CO2 laser was used to heat an LI-2200 specimen to 3000 F while electromagnetic measurements were performed over the frequency range of l9 to 21 GHz. The electromagnetic measurement system consisted of two Dual-Lens Spot-Focusing (DLSF) antennas, a sample support structure, and an HP-8510B vector network analyzer. Calibration of the electromagnetic system was accomplished with a Transmission-Reflection-Line (TRL) procedure and was verified with measurements on a two-layer specimen of known properties. The results of testing indicated that the LI-2200 system's electromagnetic performance is slightly temperature dependent at temperatures up to 3000 F.

  16. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  17. Electromagnetic Remote Sensing. Low Frequency Electromagnetics

    DTIC Science & Technology

    1989-01-01

    biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics

  18. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.

    PubMed

    Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S

    2013-04-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.

  19. Test Plan for Experimental Measurements of Radio Noise and Electromagnetic Interference at Logan and Burlington Airports

    DOT National Transportation Integrated Search

    1979-10-01

    A test plan is designed to" (a) evaluate the performance of several types of LORAN-C receivers in the vicinity of both a large metropolitan and a small rural airport, (b) measure the electromagnetic interference in the LORAN-C band (100+/-50 KHZ) at ...

  20. Measuring food environments: a historical perspective.

    PubMed

    Glanz, Karen

    2009-04-01

    Food and nutrition environments are believed to contribute to obesity and chronic diseases. There is a need for valid, reliable measures of nutrition environments. Familiarity with previous efforts to measure food and nutrition environments can help researchers and practitioners build on past accomplishments. This article describes sources of food-environment data, discusses how they have been used, and places the definition and measurement of food and nutrition environments in historical context. Review articles, agency websites, and peer-reviewed articles were the main sources of information. The review is organized around three main types of data sources identified as historic traditions: government, industry, and research. Types of data include archives, business monitoring records, surveys, observational assessments, and self-report surveys. Future development of clear, adaptable measures of food and nutrition environments will build on lessons of the past and will update and improve on past tools.

  1. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  2. Electromagnetic hypersensitivity: biological effects of dirty electricity with emphasis on diabetes and multiple sclerosis.

    PubMed

    Havas, Magda

    2006-01-01

    Dirty electricity is a ubiquitous pollutant. It flows along wires and radiates from them and involves both extremely low frequency electromagnetic fields and radio frequency radiation. Until recently, dirty electricity has been largely ignored by the scientific community. Recent inventions of metering and filter equipment provide scientists with the tools to measure and reduce dirty electricity on electrical wires. Several case studies and anecdotal reports are presented. Graham/Stetzer (GS) filters have been installed in schools with sick building syndrome and both staff and students reported improved health and more energy. The number of students needing inhalers for asthma was reduced in one school and student behavior associated with ADD/ADHD improved in another school. Blood sugar levels for some diabetics respond to the amount of dirty electricity in their environment. Type 1 diabetics require less insulin and Type 2 diabetics have lower blood sugar levels in an electromagnetically clean environment. Individuals diagnosed with multiple sclerosis have better balance and fewer tremors. Those requiring a cane walked unassisted within a few days to weeks after GS filters were installed in their home. Several disorders, including asthma, ADD/ADHD, diabetes, multiple sclerosis, chronic fatigue, fibromyalgia, are increasing at an alarming rate, as is electromagnetic pollution in the form of dirty electricity, ground current, and radio frequency radiation from wireless devices. The connection between electromagnetic pollution and these disorders needs to be investigated and the percentage of people sensitive to this form of energy needs to be determined.

  3. Electromagnetic Environment Measurements of PRT Systems at "TRANSPO 72" : Volume XII

    DOT National Transportation Integrated Search

    1974-01-01

    The report covers the measurements of the broadband conducted noise present on the A.C. power lines feeding the Personalized Rapid Transit (PRT) systems with all four systems operating simultaneously. The purpose of the measurement effort was to eval...

  4. Electromagnetic environment measurements of PRT systems at "TRANSPO 72" : volume VII

    DOT National Transportation Integrated Search

    1974-01-01

    The report covers the measurements of the broadband conducted noise present on the A.C. power lines feeding the Personalized Rapid Transit (PRT) systems at Dulles Airport with all four systems off. The purpose of the measurement effort was to evaluat...

  5. Anatomy education environment measurement inventory: A valid tool to measure the anatomy learning environment.

    PubMed

    Hadie, Siti Nurma Hanim; Hassan, Asma'; Ismail, Zul Izhar Mohd; Asari, Mohd Asnizam; Khan, Aaijaz Ahmed; Kasim, Fazlina; Yusof, Nurul Aiman Mohd; Manan Sulong, Husnaida Abdul; Tg Muda, Tg Fatimah Murniwati; Arifin, Wan Nor; Yusoff, Muhamad Saiful Bahri

    2017-09-01

    Students' perceptions of the education environment influence their learning. Ever since the major medical curriculum reform, anatomy education has undergone several changes in terms of its curriculum, teaching modalities, learning resources, and assessment methods. By measuring students' perceptions concerning anatomy education environment, valuable information can be obtained to facilitate improvements in teaching and learning. Hence, it is important to use a valid inventory that specifically measures attributes of the anatomy education environment. In this study, a new 11-factor, 132-items Anatomy Education Environment Measurement Inventory (AEEMI) was developed using Delphi technique and was validated in a Malaysian public medical school. The inventory was found to have satisfactory content evidence (scale-level content validity index [total] = 0.646); good response process evidence (scale-level face validity index [total] = 0.867); and acceptable to high internal consistency, with the Raykov composite reliability estimates of the six factors are in the range of 0.604-0.876. The best fit model of the AEEMI is achieved with six domains and 25 items (X 2  = 415.67, P < 0.001, ChiSq/df = 1.63, RMSEA = 0.045, GFI = 0.905, CFI = 0.937, NFI = 0.854, TLI = 0.926). Hence, AEEMI was proven to have good psychometric properties, and thus could be used to measure the anatomy education environment in Malaysia. A concerted collaboration should be initiated toward developing a valid universal tool that, using the methods outlined in this study, measures the anatomy education environment across different institutions and countries. Anat Sci Educ 10: 423-432. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  6. Assessment of long-term spatio-temporal radiofrequency electromagnetic field exposure.

    PubMed

    Aerts, Sam; Wiart, Joe; Martens, Luc; Joseph, Wout

    2018-02-01

    As both the environment and telecommunications networks are inherently dynamic, our exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) at an arbitrary location is not at all constant in time. In this study, more than a year's worth of measurement data collected in a fixed low-cost exposimeter network distributed over an urban environment was analysed and used to build, for the first time, a full spatio-temporal surrogate model of outdoor exposure to downlink Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) signals. Though no global trend was discovered over the measuring period, the difference in measured exposure between two instances could reach up to 42dB (a factor 12,000 in power density). Furthermore, it was found that, taking into account the hour and day of the measurement, the accuracy of the surrogate model in the area under study was improved by up to 50% compared to models that neglect the daily temporal variability of the RF signals. However, further study is required to assess the extent to which the results obtained in the considered environment can be extrapolated to other geographic locations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements.

    PubMed

    Clemo, Tom; Barrash, Warren; Reboulet, Edward C; Johnson, Timothy C; Leven, Carsten

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code.

  8. The Ships Below-Decks Electromagnetic Compatibility (EMC) Program. A compilation of Papers Presented at the 1987 IEEE International Symposium on EMC

    DTIC Science & Technology

    1987-09-30

    were producing below-deck environ - such that after 24 hours the performance loss ranged mental levels exceeding the "normal" environmental from 13 to...SGA performance environmental EMI testing in the electromagnetically measurements b- made in the laboratory. However, it quiet laboratory environments ... Environmentally Sealed SGAs.................................... 1-1 Need for Long Term SGA Performance Evaluation .................... 1-2 Performance

  9. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  10. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration

    PubMed Central

    Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-01-01

    The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718

  11. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  12. Electromagnetic absorption properties of spacecraft and space debris

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Santoni, F.; Giusti, A.; Delfini, A.; Pastore, R.; Vricella, A.; Albano, M.; Arena, L.; Piergentili, F.; Marchetti, M.

    2017-04-01

    Aim of the work is to present a method to evaluate the electromagnetic absorption properties of spacecraft and space debris. For these objects, the radar detection ability depends mainly on volume, shape, materials type and other electromagnetic reflecting behaviour of spacecraft surface components, such as antennas or thermal blankets, and of metallic components in space debris. The higher the electromagnetic reflection coefficient of such parts, the greater the radar detection possibility. In this research an electromagnetic reverberation chamber is used to measure the absorption cross section (ACS) of four objects which may represent space structure operating components as well as examples of space debris: a small satellite, a composite antenna dish, a Thermal Protection System (TPS) tile and a carbon-based composite missile shell. The ACS mainly depends on geometrical characteristics like apertures, face numbers and bulk porosity, as well as on the type of the material itself. The ACS, which is an electromagnetic measurement, is expressed in squared meters and thus can be compared with the objects geometrical cross section. A small ACS means a quite electromagnetic reflective tendency, which is beneficial for radar observations; on the contrary, high values of ACS indicate a strong absorption of the electromagnetic field, which in turn can result a critical hindering of radar tracking.

  13. Measurement of electromagnetic waves in ELF and VLF bands to monitor lightning activity in the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Yamashita, Kozo; Takahashi, Yukihiro; Ohya, Hiroyo; Tsuchiya, Fuminori; Sato, Mitsuteru; Matsumoto, Jun

    2013-04-01

    Data of lightning discharge has been focused on as an effective way for monitoring and nowcasting of thunderstorm activity which causes extreme weather. Spatial distribution of lightning discharge has been used as a proxy of the presence or absence of deep convection. Latest observation shows that there is extremely huge lightning whose scale is more than hundreds times bigger than that of averaged event. This result indicates that lightning observation should be carried out to estimate not only existence but also scale for quantitative evaluation of atmospheric convection. In this study, lightning observation network in the Maritime Continent is introduced. This network is consisted of the sensors which make possible to measure electromagnetic wave radiated from lightning discharges. Observation frequency is 0.1 - 40 kHz for the measurement of magnetic field and 1 - 40 kHz for that of electric field. Sampling frequency is 100 kHz. Waveform of electromagnetic wave is recorded by personal computer. We have already constructed observation stations at Tainan in Taiwan (23.1N, 121.1E), Saraburi in Thailand (14.5N, 101.0E), and Pontianak in Indonesia (0.0N, 109.4E). Furthermore, we plan to install the monitoring system at Los Banos in Philippines (14.18, 121.25E) and Hanoi in Viet Nam. Data obtained by multipoint observation is synchronized by GPS receiver installed at each station. By using data obtained by this network, location and scale of lightning discharge can be estimated. Location of lightning is determined based on time of arrival method. Accuracy of geolocation could be less than 10km. Furthermore, charge moment is evaluated as a scale of each lightning discharge. It is calculated from electromagnetic waveform in ELF range (3-30 kHz). At the presentation, we will show the initial result about geolocation for source of electromagnetic wave and derivation of charge moment value based on the measurement of ELF and VLF sferics.

  14. The measurement of lightning environmental parameters related to interaction with electronic systems

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Pitts, F. L.; Thomas, M. E.; Sower, G. D.

    1982-01-01

    The measurement of electromagnetic fields and related quantities in a lightning environment is a challenging problem, especially at high frequencies and/or in the immediate vicinity of the lightning arcs and corona. This paper reviews the techniques for accomplishing such measurements in these regimes with examples. These sensors are often the same as for the nuclear electromagnetic pulse (EMP), but significant differences also appear.

  15. Simultaneous localization and calibration for electromagnetic tracking systems.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-06-01

    In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. E.M.I Effects of Cathodic Protection on Electromagnetic Flowmeters

    PubMed Central

    Gundogdu, Serdar; Sahin, Ozge

    2007-01-01

    Electromagnetic flowmeters are used to measure the speed of water flow in water distribution systems. Corrosion problem in metal pipelines can be solved by cathodic protection methods. This paper presents a research on corruptive effects of the cathodic protection system on electromagnetic flowmeter depending on its measuring principle. Experimental measurements are realized on the water distribution pipelines of the Izmir Municipality, Department of Water and Drainage Administration (IZSU) in Turkey and measurement results are given. Experimental results proved that the values measured by the electromagnetic flowmeter (EMF) are affected by cathodic protection system current. Comments on the measurement results are made and precautions to be taken are proposed.

  17. Giant angular dependence of electromagnetic induced transparency in THz metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Changji; Huang, Yuanyuan; Yao, Zehan; Yu, Leilei; Jin, Yanping; Xu, Xinlong

    2018-02-01

    The giant electromagnetic induced transparency (EIT) phenomenon is observed in symmetrical metamaterials with angular dependence in the THz region. This is due to the asymmetrical electromagnetic field distribution on the surface of the metamaterials, which induces asymmetric current distribution. Blueshift with the increase of the unit cell period has been observed, which is due to the unusual electromagnetic interaction between units at oblique incidence. This EIT demonstrates an angular dependent high Q-factor, which is sensitive to the dielectric environment. The angle-induced EIT effect could pave the way for future tunable sensing applications in the THz region.

  18. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    PubMed

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of electromagnetic waves on human reproduction.

    PubMed

    Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona

    2017-03-31

    Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.

  20. Electromagnetic Levitation: A Useful Tool in Microgravity Research

    NASA Technical Reports Server (NTRS)

    Szekely, Julian; Schwartz, Elliot; Hyers, Robert

    1995-01-01

    Electromagnetic levitation is one area of the electromagnetic processing of materials that has uses for both fundamental research and practical applications. This technique was successfully used on the Space Shuttle Columbia during the Spacelab IML-2 mission in July 1994 as a platform for accurately measuring the surface tensions of liquid metals and alloys. In this article, we discuss the key transport phenomena associated with electromagnetic levitation, the fundamental relationships associated with thermophysical property measurement that can be made using this technique, reasons for working in microgravity, and some of the results obtained from the microgravity experiments.

  1. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements

    USGS Publications Warehouse

    Clemo, T.; Barrash, W.; Reboulet, E.C.; Johnson, T.C.; Leven, C.

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. ?? 2009 National Ground Water Association.

  2. Improved methods for nightside time domain Lunar Electromagnetic Sounding

    NASA Astrophysics Data System (ADS)

    Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.

    2017-12-01

    Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to

  3. Earthquake prediction with electromagnetic phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp; Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo; Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQsmore » prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.« less

  4. Objects of Maximum Electromagnetic Chirality

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Fruhnert, Martin; Rockstuhl, Carsten

    2016-07-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. Reciprocal objects attain the upper bound if and only if they are transparent for all the fields of one polarization handedness (helicity). Additionally, electromagnetic duality symmetry, i.e., helicity preservation upon interaction, turns out to be a necessary condition for reciprocal objects to attain the upper bound. We use these results to provide requirements for the design of such extremal objects. The requirements can be formulated as constraints on the polarizability tensors for dipolar objects or on the material constitutive relations for continuous media. We also outline two applications for objects of maximum electromagnetic chirality: a twofold resonantly enhanced and background-free circular dichroism measurement setup, and angle-independent helicity filtering glasses. Finally, we use the theoretically obtained requirements to guide the design of a specific structure, which we then analyze numerically and discuss its performance with respect to maximal electromagnetic chirality.

  5. Electromagnetic Environmental Effects System Testing

    DTIC Science & Technology

    2013-11-20

    battery packs or air turbine power generators. The sensitivity of the entire instrumentation system should be taken into consideration from the sensor ...Electromagnetic Radiation to Ordnance (HERO) sensors , pneumatic switching, and those equipments associated with fiber optic technology. c. Test...Field probes to determine environment -Thermal heating sensors (e.g., FISO or Metricor systems) used to detect bridgewire heating induced by

  6. Anatomy Education Environment Measurement Inventory: A Valid Tool to Measure the Anatomy Learning Environment

    ERIC Educational Resources Information Center

    Hadie, Siti Nurma Hanim; Hassan, Asma'; Ismail, Zul Izhar Mohd; Asari, Mohd Asnizam; Khan, Aaijaz Ahmed; Kasim, Fazlina; Yusof, Nurul Aiman Mohd; Manan@Sulong, Husnaida Abdul; Tg Muda, Tg Fatimah Murniwati; Arifin, Wan Nor; Yusoff, Muhamad Saiful Bahri

    2017-01-01

    Students' perceptions of the education environment influence their learning. Ever since the major medical curriculum reform, anatomy education has undergone several changes in terms of its curriculum, teaching modalities, learning resources, and assessment methods. By measuring students' perceptions concerning anatomy education environment,…

  7. Theoretical Study of Wave Particle Correlation Measurement via 1-D Electromagnetic Particle Simulation

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshikatsu; Omura, Yoshiharu; Kojima, Hiro

    Spacecraft observation is essentially "one-point measurement", while numerical simulation can reproduce a whole system of physical processes on a computer. By performing particle simulations of plasma wave instabilities and calculating correlation of waves and particles observed at a single point, we examine how well we can infer the characteristics of the whole system by a one-point measurement. We perform various simulation runs with different plasma parameters using one-dimensional electromagnetic particle code (KEMPO1) and calculate 'E dot v' or other moments at a single point. We find good correlation between the measurement and the macroscopic fluctuations of the total simulation region. We make use of the results of the computer experiments in our system design of new instruments 'One-chip Wave Particle Interaction Analyzer (OWPIA)'.

  8. Continuous quantum measurement in spin environments

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Wang, An Min

    2015-08-01

    We derive a stochastic master equation (SME) which describes the decoherence dynamics of a system in spin environments conditioned on the measurement record. Markovian and non-Markovian nature of environment can be revealed by a spectroscopy method based on weak continuous quantum measurement. On account of that correlated environments can lead to a non-local open system which exhibits strong non-Markovian effects although the local dynamics are Markovian, the spectroscopy method can be used to demonstrate that there is correlation between two environments.

  9. Electromagnetic inhibition of high frequency thermal bonding machine

    NASA Astrophysics Data System (ADS)

    He, Hong; Zhang, Qing-qing; Li, Hang; Zhang, Da-jian; Hou, Ming-feng; Zhu, Xian-wei

    2011-12-01

    The traditional high frequency thermal bonding machine had serious radiation problems at dominant frequency, two times frequency and three times frequency. Combining with its working principle, the problems of electromagnetic compatibility were studied, three following measures were adopted: 1.At the head part of the high frequency thermal bonding machine, resonant circuit attenuator was designed. The notch groove and reaction field can make the radiation being undermined or absorbed; 2.The electromagnetic radiation shielding was made for the high frequency copper power feeder; 3.Redesigned the high-frequency oscillator circuit to reduce the output of harmonic oscillator. The test results showed that these measures can make the output according with the national standard of electromagnetic compatibility (GB4824-2004-2A), the problems of electromagnetic radiation leakage can be solved, and good social, environmental and economic benefits would be brought.

  10. Efficient mapping of agricultural soils using a novel electromagnetic measurement system

    NASA Astrophysics Data System (ADS)

    Trinks, Immo; Pregesbauer, Michael

    2016-04-01

    "Despite all our accomplishments, we owe our existence to a six-inch layer of topsoil and the fact that it rains." - Paul Harvey. Despite the fact, that a farmers most precious good is the soil that he or she cultivates, in most cases actually very little is known about the soils that are being farmed. Agricultural soils are under constant threat through erosion, depletion, pollution and other degrading processes, in particular when considering intensive industrial scale farming. The capability of soils to retain water and soil moisture is of vital importance for their agricultural potential. Detailed knowledge of the physical properties of soils, their types and texture, water content and the depth of the agricultural layer would be of great importance for resource-efficient tillage with sub-area dependent variable depth, and the targeted intelligent application of fertilizers or irrigation. Precision farming, which has seen increasing popularity in the USA as well as Australia, is still in its infancy in Europe. Traditional near-surface geophysical prospection systems for agricultural soil mapping have either been based on earth resistance measurements using electrode-disks that require soil contact, with inherent issues, or electromagnetic induction (EMI) measurements conducted with EMI devices mounted in non-metallic sledges towed several metres behind survey vehicles across the fields. Every farmer passes over the fields several times during each growing season, working the soil and treating the crops. Therefore a novel user-friendly measurement system, the "Topsoil Mapper" (TSM) has been developed, which enables the farmer to simultaneously acquire soil conductivity information and derived soil parameters while anyway passing over the fields using different agricultural implements. The measurement principle of the TSM is electromagnetic induction using a multi-coil array to acquire conductivity information along a vertical profile down to approximately 1.1 m

  11. [Proposal for magnetic/electromagnetic fields protection norms on national level].

    PubMed

    Dordević, Drago; Raković, Dejan

    2008-01-01

    The modern life is not possible without application of magnetic/electromagnetic fields, which can be both helpful and harmful for human body. The non-ionizing radiation, especially magnetic/electromagnetic fields of all frequencies (0-300 GHz), can have many harmful effects on the human health that is confirmed by numerous epidemiological studies, studies with volunteers, animal studies, and in vitro studies. Proposal for magnetic/electromagnetic fields protection norms on national level based on the WHO Program for Environment, International Commission on Non-Ionizing Radiation Protection (ICNIRP)], and WHO International EMF Project. Protection from harmful effects of the magnetic/electromagnetic fields is still a great problem in many countries of modern society--huge costs, impaired quality of life, and more important, damage to the human health. Numerous data and publications of harmful effects of the magnetic/electromagnetic fields represents one's country basic necessary documentation for making decisions and law documents for protection norms on national level concerning the health maintenance according to the ICNIRP normatives.

  12. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.

    PubMed

    Ishida, Kai; Fujioka, Tomomi; Endo, Tetsuo; Hosokawa, Ren; Fujisaki, Tetsushi; Yoshino, Ryoji; Hirose, Minoru

    2016-03-01

    Establishment of electromagnetic compatibility is important in use of electronic medical equipment in hospitals. To evaluate the electromagnetic environment, the electric field intensity induced by electromagnetic radiation in broadcasting spectra coming from outside the hospital was measured in a new hospital building before any patients visited the hospital and 6 months after the opening of the hospital. Various incoming radio waves were detected on the upper floors, with no significant difference in measured levels before and after opening of the hospital. There were no cellphone terminal signals before the hospital opened, but these signals were strongly detected at 6 months thereafter. Cellphone base stations signals were strongly detected on the upper floors, but there were no signals at most locations in the basement and in the center of the building on the lower floors. A maximum electrical intensity of 0.28 V/m from cellphone base stations (2.1 GHz) was detected at the south end of the 2nd floor before the hospital opened. This value is lower than the EMC marginal value for general electronic medical equipment specified in IEC 60601-1-2 (3 V/m). Therefore, electromagnetic interference with electronic medical equipment is unlikely in this situation. However, cellphone terminal signals were frequently detected in non-base station signal areas. This is a concern, and understanding signal strength from cellphone base stations at a hospital is important for promotion of greater safety.

  13. Electromagnetic Fields

    PubMed Central

    Ishida, Masashi; Takahashi, Kenji A.; Arai, Yuji; Kubo, Toshikazu

    2008-01-01

    Establishing a means to prevent osteonecrosis after corticosteroid administration is an important theme. We asked whether pulsed electromagnetic field stimulation, a noninvasive treatment, could prevent osteonecrosis. Ninety rabbits were divided into four treatment groups: (1) exposure of 10 hours per day to electromagnetic stimulation for 1 week, followed by injection of methylprednisolone (20 mg/kg), and exposure of 10 hours per day to electromagnetism for a further 4 weeks (n = 40); (2) methylprednisolone injection only (n = 40); (3) no treatment (n = 5); and (4) exposure of 10 hours per day to electromagnetism for 5 weeks (n = 5). After 5 weeks, we harvested and histologically examined femurs bilaterally. The frequency of osteonecrosis was lower in the steroid-electromagnetism group (15/40) than in the steroid-only group (26/40). No necrotic lesions were found in the two control groups. We observed no clear effects of electromagnetism on the number, location, extent, and repair of necrotic lesions and intramedullary fat cell size in affected rabbits. Pulsed electromagnetic field stimulation reportedly augments angiogenesis factors and dilates blood vessels; these effects may lower the frequency of osteonecrosis. Exposure to pulsed electromagnetic field stimulation before corticosteroid administration could be an effective means to reduce the risk of osteonecrosis. PMID:18350347

  14. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan

    2010-06-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  15. Measurement and analysis of electromagnetic fields from trams, trains and hybrid cars.

    PubMed

    Halgamuge, Malka N; Abeyrathne, Chathurika D; Mendis, Priyan

    2010-10-01

    Electricity is used substantially and sources of electric and magnetic fields are, unavoidably, everywhere. The transportation system is a source of these fields, to which a large proportion of the population is exposed. Hence, investigation of the effects of long-term exposure of the general public to low-frequency electromagnetic fields caused by the transportation system is critically important. In this study, measurements of electric and magnetic fields emitted from Australian trams, trains and hybrid cars were investigated. These measurements were carried out under different conditions, locations, and are summarised in this article. A few of the measured electric and magnetic field strengths were significantly lower than those found in prior studies. These results seem to be compatible with the evidence of the laboratory studies on the biological effects that are found in the literature, although they are far lower than international levels, such as those set up in the International Commission on Non-Ionising Radiation Protection guidelines.

  16. Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example

    NASA Astrophysics Data System (ADS)

    Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.

    2010-01-01

    A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.

  17. [Features of control of electromagnetic radiation emitted by personal computers].

    PubMed

    Pal'tsev, Iu P; Buzov, A L; Kol'chugin, Iu I

    1996-01-01

    Measurements of PC electromagnetic irradiation show that the main sources are PC blocks emitting the waves of certain frequencies. Use of wide-range detectors measuring field intensity in assessment of PC electromagnetic irradiation gives unreliable results. More precise measurements by selective devices are required. Thus, it is expedient to introduce a term "spectral density of field intensity" and its maximal allowable level. In this case a frequency spectrum of PC electromagnetic irradiation is divided into 4 ranges, one of which is subjected to calculation of field intensity for each harmonic frequency, and others undergo assessment of spectral density of field intensity.

  18. Design of Measurement Apparatus for Electromagnetic Shielding Effectiveness Using Flanged Double Ridged Waveguide

    NASA Astrophysics Data System (ADS)

    Kwon, Jong Hwa; Choi, Jae Ick; Yook, Jong Gwan

    In this paper, we design and manufacture a flanged double ridged waveguide with a tapered section as a sample holder for measuring the electromagnetic shielding effectiveness (SE) of planar material in broadband frequency ranges up to 10GHz. The proposed technique overcomes the limitations of the conventional ASTM D4935 test method at high frequencies. The simulation results for the designed sample holders agree well with the fabricated ones in consideration of the design specification of S11 < -20dB within the frequency range of 1-10GHz. To verify the proposed measurement apparatus, the measured SE data of the commercial shielding materials from 1 to 10GHz were indirectly compared with those obtained from the ASTM D4935 from 30MHz to 1GHz. We observed that the SE data obtained by using both experimental techniques agree with each other.

  19. Electromagnetic field radiation model for lightning strokes to tall structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motoyama, H.; Janischewskyj, W.; Hussein, A.M.

    1996-07-01

    This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.

  20. Measuring the Built Environment for Physical Activity

    PubMed Central

    Brownson, Ross C.; Hoehner, Christine M.; Day, Kristen; Forsyth, Ann; Sallis, James F.

    2009-01-01

    Physical inactivity is one of the most important public health issues in the U.S. and internationally. Increasingly, links are being identified between various elements of the physical—or built—environment and physical activity. To understand the impact of the built environment on physical activity, the development of high-quality measures is essential. Three categories of built environment data are being used: (1) perceived measures obtained by telephone interview or self-administered questionnaires; (2) observational measures obtained using systematic observational methods (audits); and (3) archival data sets that are often layered and analyzed with GIS. This review provides a critical assessment of these three types of built-environment measures relevant to the study of physical activity. Among perceived measures, 19 questionnaires were reviewed, ranging in length from 7 to 68 questions. Twenty audit tools were reviewed that cover community environments (i.e., neighborhoods, cities), parks, and trails. For GIS-derived measures, more than 50 studies were reviewed. A large degree of variability was found in the operationalization of common GIS measures, which include population density, land-use mix, access to recreational facilities, and street pattern. This first comprehensive examination of built-environment measures demonstrates considerable progress over the past decade, showing diverse environmental variables available that use multiple modes of assessment. Most can be considered first-generation measures, so further development is needed. In particular, further research is needed to improve the technical quality of measures, understand the relevance to various population groups, and understand the utility of measures for science and public health. PMID:19285216

  1. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  2. Electromagnetic Safety of Spacecraft During Active Experiments with the Use of Plasma Accelerators and Ion Injectors

    NASA Astrophysics Data System (ADS)

    Plokhikh, Andrey; Popov, Garri; Shishkin, Gennady; Antropov, Nikolay; Vazhenin, Nikolay; Soganova, Galina

    Works under the development and application of stationary and pulsed plasma accelerators of charged particles conducted at the Moscow Aviation Institute and Research Institute of Applied Mechanics and Electrodynamics during over 40 years, active experiments on board meteorological rockets, artificial Earth satellites and "Mir" orbital station including [1], allowed to obtain data on the influence of pulsed and continuous plasma injection with the given parameters on the drop of energetic particles out of the radiation belts, efficiency of artificial excitation and propagation of electromagnetic waves in ELF and VLF ranges, and evolution of artificial plasma formations in different regions of ionosphere. Variation of the near-spacecraft electromagnetic environment related to the operation of plasma injectors was registered during active experiments along with the global electrodynamic processes. The measured electromagnetic fields are of rather high intensity and occupy frequency spectrum from some Hz to tens of GHz that may be of definite danger for the operation of spacecraft and its onboard systems. Analysis for the known test data is presented in the paper and methods are discussed for the diagnostics and modeling under laboratory conditions of radiative processes proceeding at the operation of plasma accelerators and ion injectors used while making active space experiments. Great attention is paid to the methodological and metrological bases for making radio measurements in vacuum chambers, design concept and hardware configuration of ground special-purpose instrumentation scientific complexes [2]. Basic requirements are formulated for the measurements and analysis of electromagnetic fields originating during the operation of plasma accelerators, including the radiative induced and conductive components inside the spacecraft, as well as the wave emission and excitation outside the spacecraft, in the ionosphere including. Measurement results for the intrinsic

  3. Preliminary Measurement of Electromagnetic Fields and Microdischarges From the Human Body.

    PubMed

    Zheng, Ying; Zhang, Houqi; Yip, Karr; Zheng, Zhen; Yang, Shiji

    2016-01-01

    From 1978-1999, a large number of experts and scholars in China tested and analyzed the external qi of qigong (ie, the electrical signals [ES] released from human practitioners). Development of negatives from some tests had revealed the existence of speckles on the films. In 1998, the current research team analyzed some of the negatives that had been exposed to the ES. The current research team intended to test for the presence of ES in qigong using the dielectric-barrier discharge (DBD) method. The study design involved 2 measurements: electromagnetic test of a open, placebo-controlled methodology and an optical test of single-blinded open, placebo-controlled methodology. The study occurred in Taiyuan, Suzhou, and Shenzhen (China) as well as in Hong Kong. Participants were 10 qigong masters and practitioners and 5 nonpractitioners from 4 cities. In the ES test, the practitioners released ES and the nonpractitioners simulated the release of ES, using 2 channels. Any ambient disturbance was recorded on both channels. For the photo file, the practitioner or nonpractitioner could press his or her palm onto 1 envelope that contained film or could hold his or her palm a certain distance (5-30 cm) above the envelope to release ES or simulate its release, respectively. An oscilloscope, current probes, and photo negatives were used to acquire >50,000 images. A type of discharged electromagnetic field (EMF), with a frequency of approximately 0.3-200 MHz, was recorded. The microdischarge pulses were positive, with a pulse width from 2-100 ns and with a total charge of approximately 0.001-0.2 nC. Many speckles could also be clearly seen in the photo negatives. Within the context of DBD theory, the speckles could be individual footprints of a barrier discharge for which the human skin acts as a barrier layer. Thus, the study measured reproducible field energy or an EMF and microdischarges. ES were measured; then EMFs with a frequency of approximately 0.3-200 MHz and

  4. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  5. CSP - Hyperspectral Imaging and Sounding of the Environment Meeting Scholarship Fund

    DTIC Science & Technology

    2017-05-09

    performance via adaptation to the environment. The meeting has also contributed to the focus area of Electromagnetic Maneuver Warfare through disseminating the...latest information about advanced sensing techniques and understanding the electromagnetic environment through sensing. Additional sessions on...across the electromagnetic spectrum. The attendees at this event from the Naval Research Enterprise were Dr. Michael Yetzbacher, as a Program Co

  6. Thermal Conductivity Measurement of Molten Cu-Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuki; Takahashi, Ryuji; Shoji, Eita; Kubo, Masaki; Tsukada, Takao; Uchikoshi, Masahito; Fukuyama, Hiroyuki

    2017-12-01

    The thermal conductivity of molten Cu-Co alloy with different compositions around the liquidus line temperature was measured by the periodic laser-heating method using an electromagnetic levitator superimposed with a static magnetic field to suppress convection in a levitated droplet sample. During the measurement, a static magnetic field of 10 T was applied to the levitated droplet. To confirm that the strength of the static magnetic field was sufficient to suppress convection in the droplet, numerical simulations were performed for the flow and thermal fields in an electromagnetically levitated droplet under a static magnetic field, and moreover, for the periodic laser-heating method to determine the thermal conductivity. It was found that the thermal conductivity of molten Cu-Co alloy increased gradually with increasing Cu composition up to 80 at. pct, beyond which it increased markedly and reached that of pure Cu. In addition, it was found that the composition dependence of the thermal conductivity can be explainable by the Wiedemann-Franz law.

  7. Study to assess the effects of magnetohydrodynamic electromagnetic pulse on electric power systems, phase 1, volume 3

    NASA Astrophysics Data System (ADS)

    Legro, J. R.; Abi-Samra, N. C.; Tesche, F. M.

    1985-05-01

    In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal was defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena was detected in actual weapon tests and predicted from theoretical models. A preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems documented the construction of approximate system response network models, and the development of a unified methodology to assess equipment and systematic vulnerability are defined. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.

  8. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency.

    PubMed

    Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang

    2017-01-16

    Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.

  9. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  10. Detection of electromagnetic radiation using nonlinear materials

    DOEpatents

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  11. Electromagnetic and light scattering by nonspherical particles XV: Celebrating 150 years of Maxwell's electromagnetics

    NASA Astrophysics Data System (ADS)

    Macke, Andreas; Mishchenko, Michael I.

    2016-07-01

    The 15th Electromagnetic and Light Scattering Conference (ELS-XV) was held in Leipzig, Germany from 21 to 26 of June 2015 (Fig. 1). This conference built on the great success of the previous meetings held in Amsterdam (1995) [1], Helsinki (1997) [2], New York City (1998) [3], Vigo (1999), Halifax (2000) [4], Gainesville (2002) [5], Bremen (2003) [6], Salobreña (2005) [7], St. Petersburg (2006) [8], Bodrum (2007) [9], Hatfield (2008) [10], Helsinki (2010) [11], Taormina (2011) [12], and Lille [13] as well as the workshops held in Bremen (1996, 1998) and Moscow (1997). As usual, the main objective of this conference was to bring together scientists, engineers, and PhD students studying various aspects of electromagnetic scattering and to provide a relaxed atmosphere for in-depth discussion of theory, measurements, and applications. Furthermore, ELS-XV supported the United Nations "Year of Light" and celebrated the 150th anniversary of Maxwell's electromagnetics. Maxwell's paper on "A Dynamical Theory of the Electromagnetic Field" [14] was published in 1865 and has widely been acknowledged as one of the supreme achievements in the history of science.

  12. VHF Omnidirectional Radio Range (VOR) Electromagnetic Spectrum Measurements.

    DTIC Science & Technology

    1978-10-18

    MAINTENANCE AND INSPECTION OF VOR, DVOR FACILITIES. 9-42 mouce & Io 10/18/78 Page 9-1 VHF OMNI-DIRECTIONAL RADIO RANGE (VOR) ELECTROMAGNETIC SPECTRUM...developed by the rotating sideband pattern 0r Pattern shown at North 00 North position Reference30 R--Variable ....uRlerent Cardioid-shaped Field Pattern...to their respective antenna pairs (which are 1800 out of phase with each other). This combination creates a two lobe field pattern rotating at 30 rps

  13. [Return to work of a pacemaker bearing worker: the relationship between health problems and electromagnetic interferences].

    PubMed

    Taino, G; Frigerio, F

    2004-01-01

    The potential effects of electromagnetic fields is a problem that interest the public opinion, as the modern society expose all people to electromagnetic non ionizing radiations. The problem has a particular and important meaning facing the return to normal life and work conditions of a cardiopatic subject bearing a pacemaker (PM) or implantable cardioverter defibrillator (ICD). Electromagnetic interferences can produce temporary or permanent malfunctions in these devices. Checking for the absence of electromagnetic interferences is necessary considering that correct functioning of these medical devices is essential for the life of the bearer. Precautions normally adopted by these subjects are generally adequate to ensure protection from interferences present in life environment; for occupational environment, there is often lack of adequate information, also due to late involving of the doctor specialist in occupational health. This work intends to study in depth a specific job, a carpentry-workshop with welding activities, starting with a case of a PM bearer who asked a doctor specialist in occupational health to evaluate the problems involved in his return to work. Electric and magnetic fields produced by equipments present in the workshop were measured and compared to data supplied by the literature to evaluate the possibility of interactions in the normally functioning of implanted electronic devices. On the basis of our experience, we have found some criterions for specific risk assessement to adopt for the definition of operative protocols for return to work of PM or ICD carriers, also considering the lack of specific procedures and indications for the doctor specialist in occupational health. The collected information and data from the literature suggest that welding can be a risk for a subject with PM; as observed in experimental conditions, electromagnetic radiations can alter particular sensitive devices and those with uncorrected settings.

  14. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  15. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    PubMed

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  16. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    PubMed Central

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  17. Risk assessment of electromagnetic fields exposure with metallic orthopedic implants: a cadaveric study.

    PubMed

    Crouzier, D; Selek, L; Martz, B-A; Dabouis, V; Arnaud, R; Debouzy, J-C

    2012-02-01

    Metallic materials are well known to strongly interact with electromagnetic fields. While biological effects of such field have been extensively studied, only few works dealt with the interactions of electromagnetic waves with passive metallic device implanted in biological system. Hence only several numerical and phantom simulation studies were focusing on this aspect, whereas no in situ anatomic experiment has been previously performed. In this study the effect of electromagnetic waves on eight different orthopaedic medical devices (six plates from 55 to 318mm length, a total knee and a total hip prosthesis) were explored on six human cadavers. To mimic a random environmental exposure resulting from the most common frequencies band used in domestic environment and medical applications (TV and radio broadcasting, cell phone communication, MRI, diathermy treatment), a multifrequency generator emitting in VHF, UHF, GSM and GCS frequency bands was used. The different medical devices were exposed to an electromagnetic field at 50W/m(2) and 100W/m(2). After 6min exposure, the temperature was measured on three points close to each medical device, and the induced currents were estimated. No significant temperature increase (<0.2°C) was finally detected; beside, a slight induced tension (up to 1.1V) was recorded but would appear too low to induce any biological side effect. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Broadband electromagnetic analysis of compacted kaolin

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  19. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  20. Aircraft Electromagnetic Compatibility.

    DTIC Science & Technology

    1987-06-01

    Human Exposure to Radio Frequency Electromagnetic Fields , 300 KiloHertz to 100 GigaHertz." 6. ARINC 429-8, "Digital Information Transfer System (DITS...142 V EXECUTIVE SUMMARY The Aircraft Electromagnetic Compatibility guidelines document deals with electromagnetic compatibility in a... electromagnetic interference paths (figure EI. TYPE PATH 400 Hz Electrostatic MagneticCharge Electric Field Transients 5 R d t Coupling 150/i 300o Wire

  1. Descriptive study of electromagnetic wave distribution for various seating positions: using digital textbooks.

    PubMed

    Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung

    2014-04-01

    To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in an elementary school that uses digital textbooks. Electric and magnetic fields from TPCs were measured using the HI-3603 Visual Display Terminal/ Very Low Frequency (VDT/VLF) radiation measurement system. Electromagnetic field values from TPCs measured at a student's seat and at a teacher's computer were deemed not harmful to health. However, electromagnetic field values varied based on the distance between students, other electronic devices such as a desktop computers, and student posture while using a TPC. Based on these results, it is necessary to guide students to observe proper posture and to arrange seats at an appropriate distance in the classroom.

  2. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  3. Benchmark radar targets for the validation of computational electromagnetics programs

    NASA Technical Reports Server (NTRS)

    Woo, Alex C.; Wang, Helen T. G.; Schuh, Michael J.; Sanders, Michael L.

    1993-01-01

    Results are presented of a set of computational electromagnetics validation measurements referring to three-dimensional perfectly conducting smooth targets, performed for the Electromagnetic Code Consortium. Plots are presented for both the low- and high-frequency measurements of the NASA almond, an ogive, a double ogive, a cone-sphere, and a cone-sphere with a gap.

  4. High Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Framgos, William

    1999-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  5. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring, and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex

    2000-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  6. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2001-06-10

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  7. Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits.

    PubMed

    Urbinello, Damiano; Joseph, Wout; Huss, Anke; Verloock, Leen; Beekhuizen, Johan; Vermeulen, Roel; Martens, Luc; Röösli, Martin

    2014-07-01

    Concerns of the general public about potential adverse health effects caused by radio-frequency electromagnetic fields (RF-EMFs) led authorities to introduce precautionary exposure limits, which vary considerably between regions. It may be speculated that precautionary limits affect the base station network in a manner that mean population exposure unintentionally increases. The objectives of this multicentre study were to compare mean exposure levels in outdoor areas across four different European cities and to compare with regulatory RF-EMF exposure levels in the corresponding areas. We performed measurements in the cities of Amsterdam (the Netherlands, regulatory limits for mobile phone base station frequency bands: 41-61 V/m), Basel (Switzerland, 4-6 V/m), Ghent (Belgium, 3-4.5 V/m) and Brussels (Belgium, 2.9-4.3 V/m) using a portable measurement device. Measurements were conducted in three different types of outdoor areas (central and non-central residential areas and downtown), between 2011 and 2012 at 12 different days. On each day, measurements were taken every 4s for approximately 15 to 30 min per area. Measurements per urban environment were repeated 12 times during 1 year. Arithmetic mean values for mobile phone base station exposure ranged between 0.22 V/m (Basel) and 0.41 V/m (Amsterdam) in all outdoor areas combined. The 95th percentile for total RF-EMF exposure varied between 0.46 V/m (Basel) and 0.82 V/m (Amsterdam) and the 99th percentile between 0.81 V/m (Basel) and 1.20 V/m (Brussels). All exposure levels were far below international reference levels proposed by ICNIRP (International Commission on Non-Ionizing Radiation Protection). Our study did not find indications that lowering the regulatory limit results in higher mobile phone base station exposure levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Shock response of poly[methyl methacrylate] (PMMA) measured with embedded electromagnetic gauges

    NASA Astrophysics Data System (ADS)

    Lacina, David; Neel, Christopher; Dattelbaum, Dana

    2018-05-01

    The shock response of poly[methyl methacrylate] (PMMA) acquired from two providers, Spartech and Rohm & Haas, has been measured to investigate the shock response variations related to material pedigree. These measurements have also been used to examine the effects of viscoelasticity on Spartech PMMA. Measurements of the Hugoniot curves, release wave speeds, and index of refraction have been acquired up to previously unexplored stresses, ˜10.7 GPa, for Spartech PMMA. In-situ, time-resolved particle velocity wave profiles, as a function of time and depth, were obtained using twelve separate electromagnetic gauge elements embedded at different depths in the PMMA. A comparison of the new data to the shock response data for Rohm and Haas PMMA, used as a "standard" material in shock compression studies, shows that there are no significant differences in shock response for the two materials. From the index of refraction measurements, the apparent particle velocity correction for a PMMA window exhibits an interesting oscillation, increasing at up = 0.3 km/s after decreasing up to that point. The results are generalized into guidelines for sourcing PMMA for use in shock studies.

  9. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  10. EFFECTS OF ELECTROMAGNETICALLY SIGNALIZED MEDIA ON HOST-PATHOGEN INTERACTION.

    PubMed

    D'Hallewin, G; Venditti, T; Cubaiu, L; Ladu, G; Renati, P

    2014-01-01

    Up to date, limited data are available about electromagnetic phase signaling effects on host-pathogen interactions during the postharvest of horticultural commodities. Inspired by the last striking works on water physics, quantum signaling through phase transfer and its impact on biological and histological structures, we studied the effect of different electromagnetic signals on pome blue mold (Penicillium expansum) pathogenesis. Tags with different electromagnetic-signals (EmS) were used to generate 3 Coherent Electro Dynamic (CED) environments. Artificially wounded 'Coscia' pears, placed onto 3 EmS tags (QF, QA and QR), were employed for the in vivo experiment. Whereas, a set of wounded-fruit placed onto an un-electromagnetic-signalized tag (QN) or kept without tag were used as blank or control, respectively. Inoculation was performed 2 or 24 h post-wounding with P. expansum conidia. The same tags placed under Petri dishes containing dot-inoculated PDA served for the in vitro experiment. Both experiments performed at 25 degrees C endured 7 days. The percentage of infected wounds was calculated and the radial growth measured in vitro. Concerning the in vivo experiment, 100% of control and blank fruit inoculated 2 h post-wounding was infected after 5 days, while, 97% after 7 days, when inoculation occurred 24 h post-wounding. Compared to control and blank, the pathogenesis in fruit placed on the EmS tags resulted inhibited, and when fruit was inoculated 2 h post-wounding, the infection degree on QF, QA and QR tags resulted 19, 52 and 64%, respectively. The degree for the same EmS tags was significantly lower when fruit was inoculated 24 h post-wounding (9, 32 and 42%, respectively). The in vitro experiment evidenced a notable inhibition of the radial growth by all EmS tags in comparison to control and blank (51 mm), while the QF tag provided the greatest inhibition (12 mm).

  11. Electromagnetic Measurements Conducted by the Central Radio Propagation Laboratory During Operation Upshot-Knothole (Redacted)

    DTIC Science & Technology

    1954-03-31

    b . ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 31...March 1954 Final report Electromagnetic Measurements Conducted by the Central Radio Propagation Laboratory During Operation Upshot-Knothole B /216/E...Vubington 25, D. C. COD fw 5 U.S.C. § 552 ( b )( 6) O££ice (or AtOIIIie Fnergy, DCS/0 r r T l A . O!tp1rtment o£ the 1\\ir force \\ ·-’ . If

  12. Measuring physical activity environments: a brief history.

    PubMed

    Sallis, James F

    2009-04-01

    Physical activity is usually done in specific types of places, referred to as physical activity environments. These often include parks, trails, fitness centers, schools, and streets. In recent years, scientific interest has increased notably in measuring physical activity environments. The present paper provides an historical overview of the contributions of the health, planning, and leisure studies fields to the development of contemporary measures. The emphasis is on attributes of the built environment that can be affected by policies to contribute to the promotion of physical activity. Researchers from health fields assessed a wide variety of built environment variables expected to be related to recreational physical activity. Settings of interest were schools, workplaces, and recreation facilities, and most early measures used direct observation methods with demonstrated inter-observer reliability. Investigators from the city planning field evaluated aspects of community design expected to be related to people's ability to walk from homes to destinations. GIS was used to assess walkability defined by the 3Ds of residential density, land-use diversity, and pedestrian-oriented designs. Evaluating measures for reliability or validity was rarely done in the planning-related fields. Researchers in the leisure studies and recreation fields studied mainly people's use of leisure time rather than physical characteristics of parks and other recreation facilities. Although few measures of physical activity environments were developed, measures of aesthetic qualities are available. Each of these fields made unique contributions to the contemporary methods used to assess physical activity environments.

  13. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  14. Spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Siqueira, Glecio; Silva, Jucicléia; Bezerra, Joel; Silva, Enio; Montenegro, Abelardo

    2013-04-01

    The cultivation of sugar cane in Brazil occupies a prominent place in national production chain, because the country is the main world producer of sugar and ethanol. Accordingly, studies are needed that allow an integrated production and technified, and especially that estimates of crops are consistent with the actual production of each region. The objective of this study was to determine the spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction. The field experiment was conducted at an agricultural research site located in Goiana municipality, Pernambuco State, north-east of Brazil (Latitude 07 ° 34 '25 "S, Longitude 34 ° 55' 39" W). The surface of the studied field is 6.5 ha, and its mean height 8.5 m a.s.l. This site has been under sugarcane (Saccharum officinarum sp.) monoculture during the last 24 years and it was managed burning the straw each year after harvesting, renewal of plantation was performed every 7 years. Studied the field is located 10 km east from Atlantic Ocean and it is representative of the regional landscape lowlands, whose soils are affected by salinity seawater, sugarcane plantations with the main economical activity. Soil was classified an orthic the Podsol. The productivity of cane sugar and electrical conductivity were measured in 90 sampling points. The productivity of cane sugar was determined in each of the sampling points in plots of 9 m2. The Apparent soil electrical conductivity (ECa, mS m-1) was measured with an electromagnetic induction device EM38-DD (Geonics Limited). The equipment consists of two units of measurement, one in a horizontal dipole (ECa-H) to provide effective measurement distance of 1.5 m approximately and other one in vertical dipole (ECa-V) with an effective measurement depth of approximately 0.75 m. Data were analyzed using descriptive statistics and geostatistical tools. The results showed that productivity in the study area

  15. Imaging Quaternary glacial deposits and basement topography using the transient electromagnetic method for modeling aquifer environments

    NASA Astrophysics Data System (ADS)

    Simard, Patrick Tremblay; Chesnaux, Romain; Rouleau, Alain; Daigneault, Réal; Cousineau, Pierre A.; Roy, Denis W.; Lambert, Mélanie; Poirier, Brigitte; Poignant-Molina, Léo

    2015-08-01

    Aquifer formations along the northern shore of the Saint-Lawrence River in Quebec (Canada) mainly consist of glacial and coastal deposits of variable thickness overlying Precambrian bedrock. These deposits are important because they provide the main water supply for many communities. As part of a continuing project aimed at developing an inventory of the groundwater resources in the Charlevoix and Haute-Côte-Nord (CHCN) regions of the province of Quebec in Canada, the central loop transient electromagnetic (TEM) method was used to map the principal hydrogeological environments in these regions. One-dimensional smooth inversion models of the TEM soundings have been used to construct two-dimensional electrical resistivity sections, which provided images for hydrogeological validation. Electrical contour lines of aquifer environments were compared against available well logs and Quaternary surface maps in order to interpret TEM soundings. A calibration table was achieved to represent common deposits and basements. The calibration table was then exported throughout the CHCN region. This paper presents three case studies; one in the Forestville site, another in the Les Escoumins site and the other in the Saint-Urbain site. These sites were selected as targets for geophysical surveys because of the general lack of local direct hydrogeological data related to them.

  16. [Working environment measurement of radioactive substances].

    PubMed

    Kunugita, Naoki

    2007-12-01

    The control of the working environment is one of the most important duties in any working place to prevent occupational disease. In Japan, in the case of the controlled area using unsealed radioisotopes, the measurement of the concentration of airborne radioactive substances should be carried out under the regulations of the "Industrial Safety and Health Law" and the "Ordinance on Prevention of Ionizing Radiation Hazards". Many reports showed that the results of regular working environment measurements of radioactive substances were about background levels. Safe working environments are sufficiently guaranteed by a suitable estimation and handling under the strict regulation by the "Laws Concerning the Prevention from Radiation Hazards Due to Radioisotopes and Others". The regulation by "Ordinance on Prevention of Ionizing Radiation Hazards" would be relaxed in the field of education and research, which use very low quantities of radioactive substances, in ways such as estimation by calculation in place of the actual measurement, decrease of the number of monthly measurements, and measurement exemption for low levels of isotopes.

  17. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  18. Radiofrequency Electromagnetic Field Map of Timisoara

    NASA Astrophysics Data System (ADS)

    Stefu, N.; Solyom, I.; Arama, A.

    2015-12-01

    There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.

  19. Real-time acquisition and preprocessing system of transient electromagnetic data based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Zhao, Huinan; Zhang, Shuang; Gu, Lingjia; Sun, Jian

    2014-09-01

    Transient electromagnetic method (TEM) is regarded as an everlasting issue for geological exploration. It is widely used in many research fields, such as mineral exploration, hydrogeology survey, engineering exploration and unexploded ordnance detection. The traditional measurement systems are often based on ARM DSP or FPGA, which have not real-time display, data preprocessing and data playback functions. In order to overcome the defects, a real-time data acquisition and preprocessing system based on LabVIEW virtual instrument development platform is proposed in the paper, moreover, a calibration model is established for TEM system based on a conductivity loop. The test results demonstrated that the system can complete real-time data acquisition and system calibration. For Transmit-Loop-Receive (TLR) response, the correlation coefficient between the measured results and the calculated results is 0.987. The measured results are basically consistent with the calculated results. Through the late inversion process for TLR, the signal of underground conductor was obtained. In the complex test environment, abnormal values usually exist in the measured data. In order to solve this problem, the judgment and revision algorithm of abnormal values is proposed in the paper. The test results proved that the proposed algorithm can effectively eliminate serious disturbance signals from the measured transient electromagnetic data.

  20. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  1. Electromagnetic Navigation Diagnostic Bronchoscopy

    PubMed Central

    Gildea, Thomas R.; Mazzone, Peter J.; Karnak, Demet; Meziane, Moulay; Mehta, Atul C.

    2006-01-01

    Rationale: Electromagnetic navigation bronchoscopy using superDimension/Bronchus System is a novel method to increase diagnostic yield of peripheral and mediastinal lung lesions. Objectives: A prospective, open label, single-center, pilot study was conducted to determine the ability of electromagnetic navigation bronchoscopy to sample peripheral lung lesions and mediastinal lymph nodes with standard bronchoscopic instruments and demonstrate safety. Methods: Electromagnetic navigation bronchoscopy was performed using the superDimension/Bronchus system consisting of electromagnetic board, position sensor encapsulated in the tip of a steerable probe, extended working channel, and real-time reconstruction of previously acquired multiplanar computed tomography images. The final distance of the steerable probe to lesion, expected error based on the actual and virtual markers, and procedure yield was gathered. Measurements: 60 subjects were enrolled between December 2004 and September 2005. Mean navigation times were 7 ± 6 min and 2 ± 2 min for peripheral lesions and lymph nodes, respectively. The steerable probe tip was navigated to the target lung area in all cases. The mean peripheral lesions and lymph nodes size was 22.8 ± 12.6 mm and 28.1 ± 12.8 mm. Yield was determined by results obtained during the bronchoscopy per patient. Results: The yield/procedure was 74% and 100% for peripheral lesions and lymph nodes, respectively. A diagnosis was obtained in 80.3% of bronchoscopic procedures. A definitive diagnosis of lung malignancy was made in 74.4% of subjects. Pneumothorax occurred in two subjects. Conclusion: Electromagnetic navigation bronchoscopy is a safe method for sampling peripheral and mediastinal lesions with high diagnostic yield independent of lesion size and location. PMID:16873767

  2. Thermophysical properties of substantially undercooled liquid Ti-Al-Nb ternary alloy measured by electromagnetic levitation

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Wang, H. P.; Wei, B.

    2013-03-01

    The thermophysical properties of undercooled liquid alloys at high temperature are usually difficult to measure by experiment. Here, we report the specific heat of liquid Ti45Al45Nb10 ternary alloy in the undercooled state. By using electromagnetic levitation technique, a maximum undercooling of 287 K (0.15 T L) is achieved for this alloy. Its specific heat is determined to be 32.72 ± 2.51 J mol-1 K-1 over a broad temperature range of 1578-2010 K.

  3. Some thermodynamic considerations on low frequency electromagnetic waves effects on cancer invasion and metastasis

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Ponzetto, Antonio

    2017-02-01

    Cell membranes are the reason of the cell energy transfer. In cells energy transfer, thermo-electro-chemical processes and transports phenomena occur through their membranes. Cells can actively modify their behaviours in relation to any change of their environment. They waste heat into their environment. The analysis of irreversibility related to this wasted heat, to the ions transport and the related cell-environment pH changes represents a new useful approach to the study of the cells behaviour. This analysis allows also the explanation of the effects of electromagnetic fields on the cell behaviour, and to suggest how low intensity electromagnetic fields could represent a useful support to the present anticancer therapies.

  4. Faulting and groundwater in a desert environment: constraining hydrogeology using time-domain electromagnetic data

    USGS Publications Warehouse

    Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy

    2013-01-01

    Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.

  5. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station installed on buildings in Serbia.

    PubMed

    Koprivica, Mladen; Slavkovic, Vladimir; Neskovic, Natasa; Neskovic, Aleksandar

    2016-03-01

    As a result of dense deployment of public mobile base stations, additional electromagnetic (EM) radiation occurs in the modern human environment. At the same time, public concern about the exposure to EM radiation emitted by such sources has increased. In order to determine the level of radio frequency radiation generated by base stations, extensive EM field strength measurements were carried out for 664 base station locations, from which 276 locations refer to the case of base stations with antenna system installed on buildings. Having in mind the large percentage (42 %) of locations with installations on buildings, as well as the inevitable presence of people in their vicinity, a detailed analysis of this location category was performed. Measurement results showed that the maximum recorded value of total electric field strength has exceeded International Commission on Non-Ionizing Radiation Protection general public exposure reference levels at 2.5 % of locations and Serbian national reference levels at 15.6 % of locations. It should be emphasised that the values exceeding the reference levels were observed only outdoor, while in indoor total electric field strength in no case exceeded the defined reference levels. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  7. Quality assurance for clinical implementation of an electromagnetic tracking system.

    PubMed

    Santanam, Lakshmi; Noel, Camille; Willoughby, Twyla R; Esthappan, Jacqueline; Mutic, Sasa; Klein, Eric E; Low, Daniel A; Parikh, Parag J

    2009-08-01

    The Calypso Medical 4D localization system utilizes alternating current electromagnetics for accurate, real-time tumor tracking. A quality assurance program to clinically implement this system is described here. Testing of the continuous electromagnetic tracking system (Calypso Medical Technologies, Seattle, WA) was performed using an in-house developed four-dimensional stage and a quality assurance fixture containing three radiofrequency transponders at independently measured locations. The following tests were performed to validate the Calypso system: (a) Localization and tracking accuracy, (b) system reproducibility, (c) measurement of the latency of the tracking system, and (d) measurement of transmission through the Calypso table overlay and the electromagnetic array. The translational and rotational localization accuracies were found to be within 0.01 cm and 1.0 degree, respectively. The reproducibility was within 0.1 cm. The average system latency was measured to be within 303 ms. The attenuation by the Calypso overlay was measured to be 1.0% for both 6 and 18 MV photons. The attenuations by the Calypso array were measured to be 2% and 1.5% for 6 and 18 MV photons, respectively. For oblique angles, the transmission was measured to be 3% for 6 MV, while it was 2% for 18 MV photons. A quality assurance process has been developed for the clinical implementation of an electromagnetic tracking system in radiation therapy.

  8. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  10. A study to identify research issues in the area of electromagnetic measurements and signal handling of remotely sensed data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research issues in the area of electromagnetic measurements and signal handling of remotely sensed data are identified. The following seven issues are discussed; platform/sensor system position and velocity, platform/sensor attitudes and attitude rates, optics and antennas, detectors and associated electronics, sensor calibration, signal handling, and system design.

  11. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2013-08-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  12. Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments.

    PubMed

    Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio

    2011-11-01

    We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.

  13. Marine Electromagnetic System Development in the Shallow Water Environment for Radioactive Waste Repository Site Investigation

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.; Sakashita, S.; Okubo, S.; Yamane, K.

    2006-12-01

    Radioactive Waste Management Funding and Research Center of Japan has recently conducted a program to develop an electromagnetic (EM) technology for investigating the subsurface to the depths of 1,000m below the seafloor in the near-shore environment. Potential applications include structural studies for geological disposal of radioactive wastes. The system includes both natural field by magnetotellurics and controlled source EM data was collected to evaluate the feasibility of the methods and instrumentation. The shallow water environment is challenging because of high water currents and wave motion effects contaminating the data. We demonstrate the performance test of the new type of instrument, and the field experiment that was carried out in the Monterey Bay of California, USA, in 2003 and 2004. In this paper we describe the instrumentation developed, shows some examples from field trial and finally provide some inversion results using collected and simulated data. The system consists of EM transmitter deployed on the beach in combination with a series of offshore based multicomponent receivers. Field data collected near Monterey California revealed some of the challenges associated with this type of system. Collected data showed the influence of wave and cultural noise as well. In site of these difficulties we were able to accumulate a sufficient quantity of good quality records to interpret results. We show 2-D inversion results which image the "Navy Fault zone" which strikes NW-SE offshore Monterey bay in water depths of 10 to 40m.

  14. Electromagnetic radiation and behavioural response of ticks: an experimental test.

    PubMed

    Vargová, Blažena; Majláth, Igor; Kurimský, Juraj; Cimbala, Roman; Kosterec, Michal; Tryjanowski, Piotr; Jankowiak, Łukasz; Raši, Tomáš; Majláthová, Viktória

    2018-05-01

    Factors associated with the increased usage of electronic devices, wireless technologies and mobile phones nowadays are present in increasing amounts in our environment. All living organisms are constantly affected by electromagnetic radiation which causes serious environmental pollution. The distribution and density of ticks in natural habitats is influenced by a complex of abiotic and biotic factors. Exposure to radio-frequency electromagnetic field (RF-EMF) constitutes a potential cause altering the presence and distribution of ticks in the environment. Our main objective was to determine the affinity of Dermacentor reticulatus ticks towards RF-EMF exposure. Originally designed and constructed radiation-shielded tube (RST) test was used to test the affinity of ticks under controlled laboratory conditions. All test were performed in an electromagnetic compatibility laboratory in an anechoic chamber. Ticks were irradiated using a Double-Ridged Waveguide Horn Antenna to RF-EMF at 900 and 5000 MHz, 0 MHz was used as control. The RF-EMF exposure to 900 MHz induced a higher concentration of ticks on irradiated arm of RST as opposed to the RF-EMF at 5000 MHz, which caused an escape of ticks to the shielded arm. This study represents the first experimental evidence of RF-EMF preference in D. reticulatus. The projection of obtained results to the natural environment could help assess the risk of tick borne diseases and could be a tool of preventive medicine.

  15. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  16. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2004-06-16

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  17. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2002-11-20

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  18. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol.

    PubMed

    Röösli, Martin; Frei, Patrizia; Bolte, John; Neubauer, Georg; Cardis, Elisabeth; Feychting, Maria; Gajsek, Peter; Heinrich, Sabine; Joseph, Wout; Mann, Simon; Martens, Luc; Mohler, Evelyn; Parslow, Roger C; Poulsen, Aslak Harbo; Radon, Katja; Schüz, Joachim; Thuroczy, György; Viel, Jean-François; Vrijheid, Martine

    2010-05-20

    The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas.

  19. First-Principles Modeling Of Electromagnetic Scattering By Discrete and Discretely Heterogeneous Random Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of

  20. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.

    PubMed

    Mishchenko, Michael I; Dlugach, Janna M; Yurkin, Maxim A; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R Lee; Travis, Larry D; Yang, Ping; Zakharova, Nadezhda T

    2016-05-16

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ , or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of

  1. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    PubMed Central

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2018-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development

  2. Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

    PubMed

    Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Bornheim, A; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Asner, D M; Edwards, K W; Besson, D

    2005-12-31

    Using 20.7 pb(-1) of e(+)e(-) annihilation data taken at sq.rt(r) = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q(2)| = 13.48 GeV(2) by the reaction e(+)e(-) --> h(+)h(-). The measurements are the first ever with identified pions and kaons of |Q(2)| > 4 GeV(2), with the results F(13.48 GeV(2)) = 0.075 +/- 0.008(stat) +/- 0.005(syst) and F(K)(13.48 GeV(2)) = 0.063 +/- 0.004(stat) +/- 0.001(syst). The result for the proton, assuming G(p)(E) = G(p)(M), is G(p)(M)(13.48 GeV(2)) = 0.014 +/- 0.002(stat) +/- 0.001(syst), which is in agreement with earlier results.

  3. Study on the electromagnetic radiation characteristics of discharging excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng

    2016-10-01

    Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.

  4. Design and evaluation of an electromagnetic beam waveguide for measuring electrical properties of materials

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    A beam waveguide was designed that is based upon the propagation characteristics of the fundamental Gaussian beam and the focusing properties of spherical dielectric lenses. The 20-GHz, two-horn, four-lens system was constructed and experimentally evaluated by probing the field in a plane perpendicular to the beam axis at the center of the beam waveguide system. The critical parameters were determined by numerical sensitivity studies, and the lens-horn critical spacing was adjusted to better focus the beam at the probe plane. The measured performance was analyzed by consideration of higher order Gaussian-Laguerre beam modes. The beam waveguide system was successfully used in the measurements of the electromagnetic transmission properties of Shuttle thermal-protection tiles while the tile surface was being heated to reentry-level temperatures with a high-power laser.

  5. Joint Electromagnetic Spectrum Management Operations

    DTIC Science & Technology

    2012-03-20

    electromagnetic radiation to ordnance ( HERO ), hazards of electromagnetic radiation to fuels (HERF), and natural phenomena effects of lightning and...fuels HERO hazards of electromagnetic radiation to ordnance HERP hazards of electromagnetic radiation to personnel HF high frequency HN host... electromagnetic pulse (EMP); hazards of EM radiation to personnel, ordnance ,

  6. Modification of the Electromagnetic Levitator (EML) Hardware

    NASA Technical Reports Server (NTRS)

    Frost, R. T.

    1985-01-01

    The goals of this project are: (1) to study the upgrade requirements and approaches needed for incorporation of an Electromagnetic Levitator (EML) into the shuttle orbiter, (2) to work with members of the Electromagnetic Containerless Processing science working group (SWG) to define future experiments for the EML, and (3) to assist these investigators in further development of ground-based experiment techniques to the limits possible in the terrestrial gravitational environment. Present work is directed toward: (1) upgrading the EML flight apparatus to meet requirements of safety and integration interfaces with the MSL orbiter carrier, (2) development of new experiment components required to carry out approved experiments in undercooled solidification and associated fluid flow studies directed by MIT, and (3) construction, test, qualification and integration assistance for the EML MSL flight package.

  7. LONG-TERM ELECTROMAGNETIC FIELD MEASUREMENT AND ASSESSMENT FOR A SHOPPING MALL.

    PubMed

    Engiz, Begum Korunur; Kurnaz, Cetin

    2017-07-01

    As a result of the dense deployment of wireless devices and base stations, measuring and evaluating the electromagnetic (EM) exposure levels they emit have become important to human health especially if they exceed the limits defined in the standards. Base stations, Wi-Fi equipment and other electronic devices are used heavily, especially in densely crowded places like shopping centers. In this study, electric field strength (E) measurements were conducted at one of the largest shopping malls in Turkey. Broadband E measurements were performed using PMM 8053 EM field strength meter for 24 h a day for the duration of one week while frequency selective measurements were carried out with SRM-3006 EM field strength meter. It is concluded from the measurements that the mean measured total E in the band between 100 kHz and 3 GHz is 0.59 V/m while the maximum E is 7.88 V/m, which are both below the limit determined by International Commission on Non-Ionizing Radiation Protection. Evolutions show that E can increase by up to 55% during the daytime. Analyses demonstrate that 71.3% of total E is caused by UMTS2100, 16.3% is produced by GSM900, 6.2% by LTE, 3.5% by Wi-Fi, and 2.7% is generated by devices that use the remaining frequency bands. Based on the detailed statistical analysis of long-term E measurement results, it can be concluded that the measured E levels are not in normal distribution and that they are statistically different with respect to days. Furthermore, distribution of E can be best modeled with the non-parametric approach. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Electromagnetic interference of power conditioners for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.; Macie, T. W.

    1973-01-01

    Electrical, multikilowatt power conditioning (PC) equipment needed on board a spacecraft utilizing solar electric propulsion creates an electromagnetic environment that is potentially deterimental to the science, navigation, and radio communication hardware. Within the scope of the solar electric propulsion system technology program, three lightweight, 2.5-kW PCs were evaluated in terms of their electromagnetic characteristics. It was found that the levels of radiated and conducted interference exceeded the levels anticipated for a solar electric propulsion mission. These noise emissions, however, were the result of deficient interference design in these models, rather than a basic inability to control interference in this type of PC.

  9. Pulsed EMAT (Electromagnetic Acoustic Transducer) acoustic measurements on a horizontal continuous caster for internal temperature determination

    NASA Astrophysics Data System (ADS)

    Boyd, Donald M.

    1989-10-01

    Development of a Pulsed Electromagnetic Acoustic Transducer (EMAT) through transmission system for acoustic measurements on steel billets up to 1300 C was completed. Laboratory measurements of acoustic velocity were made, and used to determine the average internal temperature of hot stainless and carbon steel billets. Following the success of the laboratory system development, the laboratory EMAT system was subsequently tested successfully at the Baltimore Specialty Steel Co. on a horizontal continuous caster. Details of the sensor system development and the steel plant demonstration results are presented. Future directions for the high temperature pulsed EMAT internal temperature concept are discussed for potential material processing applications.

  10. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  11. Descriptive Study of Electromagnetic Wave Distribution for Various Seating Positions: Using Digital Textbooks

    ERIC Educational Resources Information Center

    Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung

    2014-01-01

    To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…

  12. Electromagnetic environment measurements of PRT systems at "TRANSPO 72" : volume VIII, Dashaveyor System

    DOT National Transportation Integrated Search

    1999-01-01

    The report covers the measurements of the broadband conducted noise present on the A.C. power lines feeding the Personalized Rapid Transit (PRT) systems at Dulles Airport with each system operating individually. The purpose of the measurement effort ...

  13. Electromagnetic Environment Measurements of PRT Systems at "TRANSPO 72" : Volume X, Monocab System

    DOT National Transportation Integrated Search

    1974-01-01

    The report covers the measurements of the broadband conducted noise present on the A.C. power lines feeding the Personalized Rapid Transit (PRT) systems at Dulles Airport with each system operating individually. The purpose of the measurement effort ...

  14. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  15. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  16. Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field

    NASA Astrophysics Data System (ADS)

    Gros, J.-B.; Kuhl, U.; Legrand, O.; Mortessagne, F.

    2016-03-01

    The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response.

  17. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  18. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  19. Reflections on using a postgraduate educational environment measure.

    PubMed

    Joiner, Adam B; Dearman, Samuel P

    2016-10-01

    The aim was to use an educational environment measure to learn more about our postgraduate psychiatry education program, in order to gain further insights into areas for development. The educational environment includes such things as atmosphere and facilities. A secondary aim was to explore if different types of trainees experienced any aspects of the educational environment differently. The education environment measure used was able to reveal areas of the educational environment which trainees did not feel were adequate, as well as differences between how different trainees perceive some aspects of the educational environment. This allowed us to understand where improvements which we had not previously considered should be made to the educational environment. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  20. What Are Electromagnetic Fields?

    MedlinePlus

    ... Alt+0 Navigation Alt+1 Content Alt+2 Electromagnetic fields (EMF) Menu EMF Home About electromagnetic fields ... Standards EMF publications & information resources Meetings What are electromagnetic fields? Definitions and sources Electric fields are created ...

  1. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics

    DOE PAGES

    Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...

    2015-06-11

    We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).

  2. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-10-23

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29more » $$+0.05\\atop{-0.04}$$) % in the barrel and (0.54$$+0.06\\atop{-0.04}$$)% in the endcaps. Lastly, the same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 ± 0.07 mm/μs at 88.5 K and 1 kV/mm.« less

  3. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Yildiz, H. Duran; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0.54^{+0.06}_{-0.04})% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61±0.07 mm/μs at 88.5 K and 1 kV/mm.

  4. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  5. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    PubMed Central

    2010-01-01

    Background The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas. PMID:20487532

  6. A top-face-sway electromagnetic micromotor

    NASA Astrophysics Data System (ADS)

    Liang, Jingqiu; Le, Zichun; Yao, Jinsong; Wu, Zhiyong; Jia, Hongguang; Wu, Yihui; Jia, Zhi; 1, Qiongying Lu; Xuan, Ming; Wang, Lijun

    2003-04-01

    In this paper, the structure of a top-face-sway electromagnetic micromotor and its principle, fabrication and performance are introduced. A combination of the electromagnetic actuating and the planetary reducing provides this micromotor an advantage of low rotational speed and high torque. In addition, since a flexible coupling absorbs the sway and only outputs rotation, it gives this micromotor a balanced output. The dimension of the micromotor is 5 mm. Its rotation speed has a range of 20 - 860 rpm, and its driving current is 300 mA. The output torque of the micromotor is measured to be 13.0 ?Nm.

  7. Electromagnetic miniactuators using thin magnetic layers

    NASA Astrophysics Data System (ADS)

    Kube, H.; Zoeppig, V.; Hermann, R.; Hoffmann, A.; Kallenbach, E.

    2000-06-01

    This paper presents two examples of miniactuators based on the electromagnetic and electrodynamic force generation principle respectively. They use modern high-energy polymer-bonded permanent magnetic layers basing on NdFeB. The first example is a linear drive with an integrated magnetic bearing. It generates electrodynamic forces to lift and move a lightweight platen. The position of the platen is measured and controlled. The second example is a miniature pneumatic valve with a fully integrated polarized electromagnetic actuator. The valve consumes power only when the armature position is changed. The holding force is generated without consumption of power.

  8. Measuring the Viewing Angle of GW170817 with Electromagnetic and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Finstad, Daniel; De, Soumi; Brown, Duncan A.; Berger, Edo; Biwer, Christopher M.

    2018-06-01

    The joint detection of gravitational waves (GWs) and electromagnetic (EM) radiation from the binary neutron star merger GW170817 ushered in a new era of multi-messenger astronomy. Joint GW–EM observations can be used to measure the parameters of the binary with better precision than either observation alone. Here, we use joint GW–EM observations to measure the viewing angle of GW170817, the angle between the binary’s angular momentum and the line of sight. We combine a direct measurement of the distance to the host galaxy of GW170817 (NGC 4993) of 40.7 ± 2.36 Mpc with the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo GW data and find that the viewing angle is {32}-13+10 +/- 1.7 degrees (90% confidence, statistical, and systematic errors). We place a conservative lower limit on the viewing angle of ≥13°, which is robust to the choice of prior. This measurement provides a constraint on models of the prompt γ-ray and radio/X-ray afterglow emission associated with the merger; for example, it is consistent with the off-axis viewing angle inferred for a structured jet model. We provide for the first time the full posterior samples from Bayesian parameter estimation of LIGO/Virgo data to enable further analysis by the community.

  9. Electromagnetic Interference in Implantable Defibrillators in Single-Engine Fixed-Wing Aircraft.

    PubMed

    de Rotte, Alexandra A J; van der Kemp, Peter; Mundy, Peter A; Rienks, Rienk; de Rotte, August A

    2017-01-01

    Little is known about the possible electromagnetic interferences (EMI) in the single-engine fixed-wing aircraft environment with implantable cardio-defibrillators (ICDs). Our hypothesis is that EMI in the cockpit of a single-engine fixed-wing aircraft does not result in erroneous detection of arrhythmias and the subsequent delivery of an inappropriate device therapy. ICD devices of four different manufacturers, incorporated in a thorax phantom, were transported in a Piper Dakota Aircraft with ICAO type designator P28B during several flights. The devices under test were programmed to the most sensitive settings for detection of electromagnetic signals from their environment. After the final flight the devices under test were interrogated with the dedicated programmers in order to analyze the number of tachycardias detected. Cumulative registration time of the devices under test was 11,392 min, with a mean of 2848 min per device. The registration from each one of the devices did not show any detectable "tachycardia" or subsequent inappropriate device therapy. This indicates that no external signals, which could be originating from electromagnetic fields from the aircraft's avionics, were detected by the devices under test. During transport in the cockpit of a single-engine fixed-wing aircraft, the tested ICDs did not show any signs of being affected by electromagnetic fields originating from the avionics of the aircraft. This current study indicates that EMI is not a potential safety issue for transportation of passengers with an ICD implanted in a single-engine fixed-wing aircraft.de Rotte AAJ, van der Kemp P, Mundy PA, Rienks R, de Rotte AA. Electromagnetic interference in implantable defibrillators in single-engine fixed-wing aircraft. Aerosp Med Hum Perform. 2017; 88(1):52-55.

  10. Electromagnetic semi-implantable hearing device: phase I. Clinical trials.

    PubMed

    McGee, T M; Kartush, J M; Heide, J C; Bojrab, D I; Clemis, J D; Kulick, K C

    1991-04-01

    Conventional hearing aids have improved significantly in recent years; however, amplification of sound within the external auditory canal creates a number of intrinsic problems, including acoustic feedback and the need for a tight ear mold to increase usable gain. Nonacoustic alternatives which could obviate these encumbrances have not become practical due to inefficient coupling (piezoelectric techniques) or unfeasible power requirements (electromagnetic techniques). Recent technical advances, however, prompted a major clinical investigation of a new electromagnetic, semi-implantable hearing device. This study presents the details of clinical phase I, in which an electromagnetic driver was coupled with a target magnet temporarily affixed onto the lateral surface of the malleus of six hearing aid users with sensorineural losses. The results indicate that the electromagnetic hearing device provides sufficient gain and output characteristics to benefit individuals with sensorineural hearing loss. Significant improvements compared to conventional hearing aids were noted in pure-tone testing and, to a lesser degree, in speech discrimination. Subjective responses were quite favorable, indicating that the electromagnetic hearing device 1. produces no acoustic feedback; 2. works well in noisy environments; and 3. provides a more quiet, natural sound than patients' conventional hearing aids. These favorable results led to phase II of the project, in which patients with surgically amendable mixed hearing losses were implanted with the target magnet incorporated within a hydroxyapatite ossicular prosthesis. The results of this second-stage investigation were also encouraging and will be reported separately.

  11. Outcome measurement in Australian rehabilitation environments.

    PubMed

    Douglas, Heather; Swanson, Cheryl; Gee, Travis; Bellamy, Nicholas

    2005-09-01

    To determine the frequency and pattern of methods of outcome assessment used in Australian physical rehabilitation environments. Postal survey. A questionnaire on service type, staffing, numbers of adults treated and outcome measures used for 7 conditions related to injury and road trauma as well as stroke and neuromuscular disorders was sent to 973 services providing adult physical rehabilitation treatment. Questionnaires were completed by 440 service providers for a response rate of 45%, similar to that reported in a recent European survey reported in this journal. A small number of measures were reported as in use by most respondents, while a large number of measures were used by a few respondents. Measures of physical changes were used more frequently than those of generic well-being or quality of life. Ease of use and reporting to other professionals were cited as the most important reasons in selection of outcome measures. This Australian-wide survey detected considerable heterogeneity in outcome measurement procedures used in rehabilitation environments. While the goal of measurement may vary between providers and differ between conditions, the results highlight opportunities for harmonization, bench-marking and measurement of health-related quality of life.

  12. Nucleation and Grain Refinement of 7A04 Aluminum Alloy Under a Low-Power Electromagnetic Pulse

    NASA Astrophysics Data System (ADS)

    Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Bao, Xinyu; Feng, Yanfei; Kang, Xiaolan

    2018-02-01

    The effects of a low-power electromagnetic pulse on the grain size and cooling curve of high-strength aluminum alloy 7A04 were investigated for various pulse duty cycles. This electromagnetic pulse treatment was found to effectively produce fine grains with globular crystals and a uniform microstructure for pulse duty cycles between 20 and 40%. The key factors that affected grain refinement under the electromagnetic pulse included the electromagnetic energy and the conversion frequency between \\varvec{B} and \\varvec{E} . The nucleation rate increased as the nucleation period was extended. A new kinetic condition of magnetic nucleation was explored by decreasing the critical Gibbs free energy in the electromagnetic pulse, which was more sensitive under low undercooling. In addition, the crystal orientation was controlled in such a solidification environment.

  13. Interpreting Electromagnetic Reflections In Glaciology

    NASA Astrophysics Data System (ADS)

    Eisen, O.; Nixdorf, U.; Wilhelms, F.; Steinhage, D.; Miller, H.

    Electromagnetic reflection (EMR) measurements are active remote sensing methods that have become a major tool for glaciological investigations. Although the basic pro- cesses are well understood, the unambiguous interpretation of EMR data, especially internal layering, still requires further information. The Antacrtic ice sheet provides a unique setting for investigating the relation between physical­chemical properties of ice and EMR data. Cold ice, smooth surface topography, and low accumulation facilitates matters to use low energy ground penetrating radar (GPR) devices to pene- trate several tens to hundreds of meters of ice, covering several thousands of years of snow deposition history. Thus, sufficient internal layers, primarily of volcanic origin, are recorded to enable studies on a local and regional scale. Based on dated ice core records, GPR measurements at various frequencies, and airborne radio-echo sound- ing (RES) from Dronning Maud Land (DML), Antarctica, combined with numerical modeling techniques, we investigate the influence of internal layering characteristics and properties of the propagating electromagnetic wave on EMR data.

  14. Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)

    NASA Astrophysics Data System (ADS)

    Knott, M. J.

    1982-08-01

    As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.

  15. A borehole-to-surface electromagnetic survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Hung-Wen; Becker, A.; Wilt, M.

    1995-12-31

    We have assessed the feasibility of borehole to surface electromagnetic measurements for fluid injection monitoring. To do this we performed a vertical electromagnetic profiling (VEMP) experiment at the University of California Richmond Field Station where a saline water injection zone was created at a subsurface depth of 30 meters. The methodology used is quite similar to the conventional seismic (VSP) procedure for surface to borehole measurements. In our case however, the transmitter was located in a PVC cased borehole while the receivers were deployed on the surface. With a carefully designed system operating at 9.6 kHz we were able tomore » make measurements accurate to 1 % in amplitude and 1 degree in phase. The data profiles at surface were centered on the injection well and extended for 60 m on either side of it. Measurements were made at 5 m intervals. Although the VEMP process is quite vulnerable to near surface conductivity anomalies we readily detected the flat tabular target zone which was about 3 m thick and covered an area of about 120 M{sup 2}.« less

  16. Electromagnetic exploration of the oceanic mantle

    PubMed Central

    UTADA, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth’s interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques. PMID:26062736

  17. Electromagnetic properties of ice coated surfaces

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Walton, E.; Wang, N.; Beard, L.

    1989-01-01

    The electromagnetic scattering from ice coated structures is examined. The influence of ice is shown from a measurement standpoint and related to a simple analytical model. A hardware system for the realistic measurement of ice coated structures is also being developed to use in an existing NASA Lewis icing tunnel. Presently, initial measurements have been performed with a simulated tunnel to aid in the development.

  18. Electromagnetic Interference Tests

    DTIC Science & Technology

    1994-05-31

    for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (300 kHz - 100 GHz), American National Standards Institute...Respect to Human Exposure to Radio Frequency Electromagnetic Fields (300 kHz - 100 GHz), American National Standards Institute, C95.1-1982, 30 July 1980...II il~l I!I 11 lll i 13. ABSTkACT (Waxlrnun 200woruh) This TOP is a general guideline for electromagnetic interference testing of electronic

  19. Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.

    PubMed

    Thornton, Ian M

    2006-01-01

    Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.

  20. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    PubMed Central

    Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  1. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  2. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to electromagnetically sensitive spacecraft. This study employs the multilevel fast multipole method (MLFMM) from a commercial electromagnetic tool, FEKO, to model the fairing electromagnetic environment in the presence of an internal transmitter with improved accuracy over industry applied techniques. This fairing model includes material properties representative of acoustic blanketing commonly used in vehicles. Equivalent surface material models within FEKO were successfully applied to simulate the test case. Finally, a simplified model is presented using Nicholson Ross Weir derived blanket material properties. These properties are implemented with the coated metal option to reduce the model to one layer within the accuracy of the original three layer simulation.

  3. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  4. A "caliper" type of controlled-source, frequency-domain, electromagnetic sounding method

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lin, J.; Zhou, F.; Liu, C.; Chen, J.; Xue, K.; Liu, L.; Wu, Y.

    2011-12-01

    We developed a special measurement manner for controlled-source, frequency-domain, electromagnetic sounding method that can improve resolution and efficiency, called as "caliper". This manner is base on our array electromagnetic system DPS-I, which consists of 53 channels and can cover 2500 m survey line at one arrangement. There are several steps to apply this method. First, a rough measurement is carried out, using large dynamic range but sparse frequencies. The ratio of adjacent frequency is set to be 2 or 4. The frequency points cover the entire frequency band that is required according to the geological environment, and are almost equidistantly distributed at logarithmic axis. Receivers array are arranged in one or more survey lines to measure the amplitude and phase of electromagnetic field components simultaneously. After all frequency points for rough measurement are measured, data in each sub-receiver are transmitted to the controller and the apparent resistivity and phase are calculated in field quickly. Then the pseudo section diagrams of apparent resistivity and phase are drew. By the pseudo section we can roughly lock the abnormal zone and determine the frequency band required for detail investigation of abnormal zone. Next, the measurement using high density of frequencies in this frequency band is carried out, which we called "detailed measurement". The ratio of adjacent frequency in this time is m which lies between 1 and 2. The exact value of m will depend on how detailed that the user expected. After "detailed measurement" is finished, the pseudo section diagrams of apparent resistivity and phase are drew in the same way with the first step. We can see more detailed information about the abnormal zone and decide whether further measurement is necessary. If it is necessary, we can repeat the second step using smaller m until the resolution meet the requirements to distinguish the target. By simulation, we know that high density of frequencies

  5. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  6. Investigation of measurement method of saturation magnetization of iron core material using electromagnet

    NASA Astrophysics Data System (ADS)

    Shibataki, Takuya; Takahashi, Yasuhito; Fujiwara, Koji

    2018-04-01

    This paper discusses a measurement method for saturation magnetizations of iron core materials using an electromagnet, which can apply an extremely large magnetic field strength to a specimen. It is said that electrical steel sheets are completely saturated at such a large magnetic field strength over about 100 kA/m. The saturation magnetization can be obtained by assuming that the completely saturated specimen shows a linear change of the flux density with the magnetic field strength because the saturation magnetization is constant. In order to accurately evaluate the flux density in the specimen, an air flux between the specimen and a winding of B-coil for detecting the flux density is compensated by utilizing an ideal condition that the incremental permeability of saturated specimen is equal to the permeability of vacuum. An error of magnetic field strength caused by setting a sensor does not affect the measurement accuracy of saturation magnetization. The error is conveniently cancelled because the saturation magnetization is a function of a ratio of the magnetic field strength to its increment. It may be concluded that the saturation magnetization can be easily measured with high accuracy by using the proposed method.

  7. Electromagnetic fields and their impacts

    NASA Astrophysics Data System (ADS)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  8. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  9. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  10. An estimate of the error caused by the elongation of the wavelength in a focused beam in free-space electromagnetic parameters measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunpeng; Li, En, E-mail: lien@uestc.edu.cn; Guo, Gaofeng

    2014-09-15

    A pair of spot-focusing horn lens antenna is the key component in a free-space measurement system. The electromagnetic constitutive parameters of a planar sample are determined using transmitted and reflected electromagnetic beams. These parameters are obtained from the measured scattering parameters by the microwave network analyzer, thickness of the sample, and wavelength of a focused beam on the sample. Free-space techniques introduced by most papers consider the focused wavelength as the free-space wavelength. But in fact, the incident wave projected by a lens into the sample approximates a Gaussian beam, thus, there has an elongation of the wavelength in themore » focused beam and this elongation should be taken into consideration in dielectric and magnetic measurement. In this paper, elongation of the wavelength has been analyzed and measured. Measurement results show that the focused wavelength in the vicinity of the focus has an elongation of 1%–5% relative to the free-space wavelength. Elongation's influence on the measurement result of the permittivity and permeability has been investigated. Numerical analyses show that the elongation of the focused wavelength can cause the increase of the measured value of the permeability relative to traditionally measured value, but for the permittivity, it is affected by several parameters and may increase or decrease relative to traditionally measured value.« less

  11. A Constant-Field Interrupted Resonance System for Percutaneous Electromagnetic Measurement of Blood Flow

    PubMed Central

    Kolin, Alexander; Steele, James R.; Imai, James S.; Macalpin, Rex N.

    1974-01-01

    A combination of deformable flow probes of negligible lateral dimensions with an electronic circuit capable of providing a prolonged plateau of dB/dt = 0 and of sampling the flow signal at the end of this interval permits electromagnetic measurement of blood flow with a reliable zero base line secured by switching off the magnet. An extracorporeal magnet provides the magnetic field. The flow transducer is introduced into the vascular system percutaneously through a standard angiographic catheter by conventional technique. The idea of the current generator can be described as “principle of interrupted resonance.” The current wave form can be described as a sequence of disconnected bisected sine waves joined at the apices by horizontal current plateaus where di/dt is strictly zero. Images PMID:4275395

  12. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    NASA Astrophysics Data System (ADS)

    Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio

    2018-02-01

    This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This

  13. Electromagnetic Education in India

    ERIC Educational Resources Information Center

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  14. Evaluation of Honeywell Recoverable Computer System (RCS) in Presence of Electromagnetic Effects

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar

    1997-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time critical communication of data and commands between the RCS and flight simulation code in real-time, while meeting the stringent hard deadlines is also presented. The performance results of the RCS while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields is also discussed.

  15. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    NASA Astrophysics Data System (ADS)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  16. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. Wemore » show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.« less

  17. Effects of Electromagnetic Fields on Automated Blood Cell Measurements.

    PubMed

    Vagdatli, Eleni; Konstandinidou, Vasiliki; Adrianakis, Nikolaos; Tsikopoulos, Ioannis; Tsikopoulos, Alexios; Mitsopoulou, Kyriaki

    2014-08-01

    The aim of this study is to investigate whether the electromagnetic fields associated with mobile phones and/or laptops interfere with blood cell counts of hematology analyzers. Random blood samples were analyzed on an Aperture Impedance hematology analyzer. The analysis was performed in four ways: (A) without the presence of any mobile phone or portable computer in use, (B) with mobile phones in use (B1: one mobile, B4: four mobiles), (C) with portable computers (laptops) in use (C1: one laptop, C3: three laptops), and (D) with four mobile phones and three laptops in use simultaneously. The results obtained demonstrated a statistically significant decrease in neutrophil, erythrocyte, and platelet count and an increase in lymphocyte count, mean corpuscular volume, and red blood cell distribution width, notably in the B4 group. Despite this statistical significance, in clinical practice, only the red blood cell reduction could be taken into account, as the mean difference between the A and B4 group was 60,000 cells/µL. In group D, the analyzer gave odd results after 11 measurements and finally stopped working. The combined and multiple use of mobile phones and computers affects the function of hematology analyzers, leading to false results. Consequently, the use of such electronic devices must be avoided. © 2014 Society for Laboratory Automation and Screening.

  18. Electromagnetic and magnetic vector potential bio-information and water.

    PubMed

    Smith, Cyril William

    2015-10-01

    This work developed over the past 40 years starting from dielectric measurements on enzymes and the subsequent finding that the measurements were affected by electric, magnetic, electromagnetic fields and quantum fields. A request for help in the diagnosis and therapy of chemically sensitive patients who had become sensitive to their electromagnetic environment came in 1982. The same symptoms could be provoked by a chemical or a frequency challenge and this led to an appreciation of the synergy between chemical and frequency environmental sensitivities. Experimental cooperation with theoretical physicist Herbert Fröhlich FRS and others led to an understanding of the physics of coherent water in living systems and a mechanism for the memory of water for coherent frequencies. In a coherent system there are interacting frequencies proportionate to any velocity the system will support, in particular the velocity of light and the velocity of coherence diffusion. Thus, there can be biological interaction between the optical, microwave and ELF spectral regions. Frequency modulation of light scattered by bio-fields and its retention in recorded images is discussed. A 'nil-potent' frequency can erase a frequency signature and thence affect a biological system. Homeopathy is interpreted through the biological effects of coherent frequencies derived from the frequency signature of the 'Mother Tincture' and developed through dilution and succussion. A homeopathic potency has a frequency signature therefore it must be able to have a biological effect. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  19. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    NASA Astrophysics Data System (ADS)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  20. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.

    PubMed

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  1. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  2. Electromagnetic Spectrum Test and Evaluation Process

    DTIC Science & Technology

    2010-01-01

    HERO , hazards of electromagnetic radiation to ordnance ; HERP, hazards of electromagnetic radiation to personnel; HERF, hazards of electromagnetic ... electromagnetic pulse (EMP); electronic protection; electrostatic dis- charge (ESD); hazards of electromagnetic radi- ation to personnel (HERP), ordnance ...including ordnance containing electrically initiated devices, to be mutually compatible in their intended

  3. A new unified theory of electromagnetic and gravitational interactions

    NASA Astrophysics Data System (ADS)

    Li, Li-Xin

    2016-12-01

    In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.

  4. Veterinary students' perceptions of their learning environment as measured by the Dundee Ready Education Environment Measure.

    PubMed

    Pelzer, Jacquelyn M; Hodgson, Jennifer L; Werre, Stephen R

    2014-03-24

    The Dundee Ready Education Environment Measure (DREEM) has been widely used to evaluate the learning environment within health sciences education, however, this tool has not been applied in veterinary medical education. The aim of this study was to evaluate the reliability and validity of the DREEM tool in a veterinary medical program and to determine veterinary students' perceptions of their learning environment. The DREEM is a survey tool which quantitatively measures students' perceptions of their learning environment. The survey consists of 50 items, each scored 0-4 on a Likert Scale. The 50 items are subsequently analysed within five subscales related to students' perceptions of learning, faculty (teachers), academic atmosphere, and self-perceptions (academic and social). An overall score is obtained by summing the mean score for each subscale, with an overall possible score of 200. All students in the program were asked to complete the DREEM. Means and standard deviations were calculated for the 50 items, the five subscale scores and the overall score. Cronbach's alpha was determined for the five subscales and overall score to evaluate reliability. Confirmatory factor analysis was used to evaluate construct validity. 224 responses (53%) were received. The Cronbach's alpha for the overall score was 0.93 and for the five subscales were; perceptions of learning 0.85, perceptions of faculty 0.79, perceptions of atmosphere 0.81, academic self-perceptions 0.68, and social self-perceptions 0.72. Construct validity was determined to be acceptable (p < 0.001) and all items contributed to the overall validity of the DREEM. The overall DREEM score was 128.9/200, which is a positive result based on the developers' descriptors and comparable to other health science education programs. Four individual items of concern were identified by students. In this setting the DREEM was a reliable and valid tool to measure veterinary students' perceptions of their learning

  5. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.

    PubMed

    Jun, Xu; Luming, Li; Hongwei, Hao

    2009-01-01

    With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.

  6. Fiber Bragg Grating Sensors for Harsh Environments

    PubMed Central

    Mihailov, Stephen J.

    2012-01-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments. PMID:22438744

  7. A spaceborne receiver for measuring electromagnetic field intensity

    NASA Technical Reports Server (NTRS)

    Reich, B. W.; Van Dusen, M. R.; Habib, E. J.

    1973-01-01

    Description of a very accurately controlled receiver for monitoring the electromagnetic radiations in both existing and projected space communication bands. Based on analysis of the existing and projected space communication bands, 108 to 174 MHz, 240 to 478 MHz, and 1535 to 1665 MHz were covered. The receiver achieves accurate control via a digitally tuned synthesizer and a wide range of digital control including frequency band coverage and gain control selection. Digital memory was provided to store 16 separate digital command instructions which can be programmed via a command data link. The receiver provides for transmission to the ground of both a predetection signal and signals in digital format, which in turn, were provided by sampling and analog-to-digital conversions.

  8. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOEpatents

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  9. Accurate electromagnetic modeling of terahertz detectors

    NASA Technical Reports Server (NTRS)

    Focardi, Paolo; McGrath, William R.

    2004-01-01

    Twin slot antennas coupled to superconducting devices have been developed over the years as single pixel detectors in the terahertz (THz) frequency range for space-based and astronomy applications. Used either for mixing or direct detection, they have been object of several investigations, and are currently being developed for several missions funded or co-funded by NASA. Although they have shown promising performance in terms of noise and sensitivity, so far they have usually also shown a considerable disagreement in terms of performance between calculations and measurements, especially when considering center frequency and bandwidth. In this paper we present a thorough and accurate electromagnetic model of complete detector and we compare the results of calculations with measurements. Starting from a model of the embedding circuit, the effect of all the other elements in the detector in the coupled power have been analyzed. An extensive variety of measured and calculated data, as presented in this paper, demonstrates the effectiveness and reliability of the electromagnetic model at frequencies between 600 GHz and 2.5THz.

  10. A large-scale measurement of electromagnetic fields near GSM base stations in Guangxi, China for risk communication.

    PubMed

    Wu, Tongning; Shao, Qing; Yang, Lei; Qi, Dianyuan; Lin, Jun; Lin, Xiaojun; Yu, Zongying

    2013-06-01

    Radiofrequency (RF) electromagnetic field (EMF) exposure from wireless telecommunication base station antennae can lead to debates, conflicts or litigations among the adjacent residents if inappropriately managed. This paper presents a measurement campaign for the GSM band EMF exposure in the vicinity of 827 base station sites (totally 6207 measurement points) in Guangxi, China. Measurement specifications are designed for risk communication with the residents who previously complained of over-exposure. The EMF power densities with the global positioning system coordinate at each measured point were recorded. Compliance with the International Commission on Non-Ionizing Radiation Protection guidelines and Chinese environmental EMF safety standards was studied. The results show that the GSM band EMF level near the base stations is very low. The measurement results and the EMF risk communication procedures positively influence public perception of the RF EMF exposure from the base stations and promote the exchange of EMF exposure-related knowledge.

  11. Apparatus for processing electromagnetic radiation and method

    NASA Technical Reports Server (NTRS)

    Gatewood, George D. (Inventor)

    1983-01-01

    Measuring apparatus including a ruled member having alternate transparent and opaque zones. An optical coupler connecting the ruled member with electromagnetic radiation-conversion apparatus. The conversion apparatus may include a photomultiplier and a discriminator. Radiation impinging on the ruled member will, in part, be converted to electrical pulses which correspond to the intensity of the radiation. A method of processing electromagnetic radiation includes providing a member having alternating dark and light zones, establishing movement of the member through the beam of electromagnetic radiation with the dark zones interrupting passage of radiation through the rule, providing an optical coupler to connect a portion of the radiation with a conversion station where the radiation portion is converted into an electrical pulse which is related to the intensity of the radiation received at the conversion station. The electrical pulses may be counted and the digitized signals stored or permanently recorded to produce positional information.

  12. EMI Measurement and Mitigation Testing for the ARPA Hybrid Electric Vehicle Program

    DTIC Science & Technology

    1996-08-27

    communication range is reduced, computers malfunction, or monitoring systems fail. Various electric vehicles ( EVs ) were measured to evaluate their...electric vehicles ( EVs ) were measured to evaluate their potential EMI emissions when used in today’s hostile commercial electromagnetic environment...monitoring systems fail. Various electric vehicles ( EVs ) were measured to evaluate their potential EMI emissions when used in today’s hostile commercial

  13. Environmental impact of the use of radiofrequency electromagnetic fields in physiotherapeutic treatment.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2014-01-01

    Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.

  14. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    NASA Astrophysics Data System (ADS)

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile

  15. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  16. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    PubMed Central

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-01-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783

  17. Assisted of electromagnetic fields in glucose production from cassava stems

    NASA Astrophysics Data System (ADS)

    Lismeri, Lia; Haryati, Sri; Djoni Bustan, M.; Darni, Yuli

    2018-03-01

    Decrease in fossil fuel reserves that led to high price has become major problem in many countries around the world. To acquire the sustainability of energy reserves, the renewable energies obtained from plant biomass will therefore have to play an increasing role in fulfilling energy demand throughout the century. Renewable energy source must be explored by innovative techniques which is safe to the environment and low in energy consumptions. This research conducted to produce glucose from cassava stems assisted by electromagnetic field inductions process. The parameters used in this research were pretreatment solvent, concentration, temperature and electrical currents. The electromagnetic field inductions could be applied to increase glucose productivity with the maximum yield of glucose was 47.43%.

  18. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  19. Magnetic flimmers: 'light in the electromagnetic darkness'.

    PubMed

    Martens, Johannes W; Koehler, Peter J; Vijselaar, Joost

    2013-03-01

    Transcranial magnetic stimulation has become an important field for both research in neuroscience and for therapy since Barker in 1985 showed that it was possible to stimulate the human motor cortex with an electromagnet. Today for instance, transcranial magnetic stimulation can be used to measure nerve conduction velocities and to create virtual lesions in the brain. The latter option creates the possibility to inactivate parts of the brain temporarily without permanent damage. In 2008, the American Food and Drugs Administration approved repetitive transcranial magnetic stimulation as a therapy for major depression under strict conditions. Repetitive transcranial magnetic stimulation has not yet been cleared for treatment of other diseases, including schizophrenia, anxiety disorders, obesity and Parkinson's disease, but results seem promising. Transcranial magnetic stimulation, however, was not invented at the end of the 20th century. The discovery of electromagnetism, the enthusiasm for electricity and electrotherapy, and the interest in Beard's concept of neurasthenia already resulted in the first electromagnetic treatments in the late 19th and early 20th century. In this article, we provide a history of electromagnetic stimulation circa 1900. From the data, we conclude that Mesmer's late 18th century ideas of 'animal magnetism' and the 19th century absence of physiological proof had a negative influence on the acceptance of this therapy during the first decades of the 20th century. Electromagnetism disappeared from neurological textbooks in the early 20th century to recur at the end of that century.

  20. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  1. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less

  2. Helicopter electromagnetic and magnetic geophysical survey data, Hunton anticline, south-central Oklahoma

    USGS Publications Warehouse

    Smith, Bruce D.; Smith, David V.; Deszcz-Pan, Maryla; Blome, Charles D.; Hill, Patricia

    2011-01-01

    This report is a digital data release for multiple geophysical surveys conducted in the Hunton anticline area of south-central Oklahoma. The helicopter electromagnetic and magnetic surveys were flown on March 16–17, 2007, in four areas of the Hunton anticline in south-central Oklahoma. The objective of this project is to improve the understanding of the geohydrologic framework of the Arbuckle-Simpson aquifer. The electromagnetic sensor for the helicopter electromagnetic survey consisted of six different transmitter-receiver orientations that measured the earth's electrical response at six distinct frequencies from approximately 500 Hertz to approximately 115,000 Hertz. The electromagnetic measurements were converted to electrical resistivity values, which were gridded and plotted on georeferenced maps. The map from each frequency represents a different depth of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow groundwater. The four areas selected for the helicopter electromagnetic study, blocks A–D, have different geologic and hydrologic settings. Geophysical and hydrologic information from U.S. Geological Survey studies are being used by modelers and resource managers to develop groundwater resource plans for the Arbuckle-Simpson aquifer.

  3. International Symposium on Electromagnetic Compatibility, 25th, Arlington, VA, August 23-25, 1983, Symposium Record

    NASA Astrophysics Data System (ADS)

    Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.

  4. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the

  5. Association between electromagnetic field exposure and abortion in pregnant women living in Tehran

    PubMed Central

    Abad, Masoumeh; Malekafzali, Hossein; Simbar, Masoumeh; Seyed Mosaavi, Hassan; Merghati Khoei, Effat

    2016-01-01

    Background: Health-related quality of life is affected by electromagnetic field exposure in each person everyday life. However, this is extremely controversial issue. Objective: Investigation of the associations between electromagnetic field exposure and miscarriage among women of Tehran. Materials and Methods: In this longitudinal study, 462 pregnant women with gestational age <12 wks from seven main regions of Tehran city in Iran with similar social and cultural status were participated. Women were interviewed face-to face to collect data. Reproductive information was collected using medical file recorded in those hospitals the subjects had delivery. The measuring device measured electromagnetic waves, Narda safety test solutions with valid calibration date at the entrance door of their houses. Results: A significant likelihood of miscarriage in women who exposed to significant level of electromagnetic wave. However, this association was not confirmed by Wald test. Conclusion: This study may not provide strong or consistent evidence that electromagnetic field exposure is associated or cause miscarriage. This issue may be due to small sample size in this study. PMID:27326421

  6. An interlaboratory comparison programme on radio frequency electromagnetic field measurements: the second round of the scheme.

    PubMed

    Nicolopoulou, E P; Ztoupis, I N; Karabetsos, E; Gonos, I F; Stathopulos, I A

    2015-04-01

    The second round of an interlaboratory comparison scheme on radio frequency electromagnetic field measurements has been conducted in order to evaluate the overall performance of laboratories that perform measurements in the vicinity of mobile phone base stations and broadcast antenna facilities. The participants recorded the electric field strength produced by two high frequency signal generators inside an anechoic chamber in three measurement scenarios with the antennas transmitting each time different signals at the FM, VHF, UHF and GSM frequency bands. In each measurement scenario, the participants also used their measurements in order to calculate the relative exposure ratios. The results were evaluated in each test level calculating performance statistics (z-scores and En numbers). Subsequently, possible sources of errors for each participating laboratory were discussed, and the overall evaluation of their performances was determined by using an aggregated performance statistic. A comparison between the two rounds proves the necessity of the scheme. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This paper employees the Multilevel Fast Multipole Method (MLFMM) feature of a commercial electromagnetic tool to model the fairing electromagnetic environment in the presence of an internal transmitter. This work is an extension of the perfect electric conductor model that was used to represent the bare aluminum internal fairing cavity. This fairing model includes typical acoustic blanketing commonly used in vehicle fairings. Representative material models within FEKO were successfully used to simulate the test case.

  8. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications

    PubMed Central

    Vegni, Lucio

    2018-01-01

    A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell’s equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on “metamaterial” concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring. PMID:29652853

  9. Custom modular electromagnetic induction system for shallow electrical conductivity measurements

    NASA Astrophysics Data System (ADS)

    Mester, Achim; Zimmermann, Egon; Tan, Xihe; von Hebel, Christian; van der Kruk, Jan; van Waasen, Stefan

    2017-04-01

    Electromagnetic induction (EMI) is a contactless measurement method that offers fast and easy investigations of the shallow electrical conductivity, e.g. on the field-scale. Available frequency domain EMI systems offer multiple fixed transmitter-receiver (Tx-Rx) pairs with Tx-Rx separations between 0.3 and 4.0 m and investigation depths of up to six meters. Here, we present our custom EMI system that consists of modular sensor units that can either be transmitters or receivers, and a backpack containing the data acquisition system. The prototype system is optimized for frequencies between 5 and 30 kHz and Tx-Rx separations between 0.4 and 2.0 m. Each Tx and Rx signal is digitized separately and stored on a notebook computer. The soil conductivity information is determined after the measurements with advanced digital processing of the data using optimized correction and calibration procedures. The system stores the raw data throughout the entire procedure, which offers many advantages: (1) comprehensive accuracy and error analysis as well as the reproducibility of corrections and calibration procedures; (2) easy customizability of the number of Tx-/Rx-units and their arrangement and frequencies; (3) signals from simultaneously working transmitters can be separated within the received data using orthogonal signals, resulting in additional Tx-Rx pairs and maximized soil information; and (4) later improvements in the post-processing algorithms can be applied to old data sets. Exemplary, here we present an innovative setup with two transmitters and five receivers using orthogonal signals yielding ten Tx-Rx pairs. Note that orthogonal signals enable for redundant Tx-Rx pairs that are useful for verification of the transmitter signals and for data stacking. In contrast to commercial systems, only adjustments in the post-processing were necessary to realize such measurement configurations with flexibly combined Tx and Rx modules. The presented system reaches an accuracy of

  10. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  11. A unified inversion scheme to process multifrequency measurements of various dispersive electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Y.; Misra, S.

    2018-04-01

    Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.

  12. Sensing Random Electromagnetic Fields and Applications

    DTIC Science & Technology

    2015-06-23

    PI: Aristide Dogariu Content: A. Stochastic Electromagnetics for Sensing ……………………………. 2 B. Fluctuation Polarimetry ...field correlations in the two components. 26 B. Fluctuation Polarimetry One of the simplest optical measurements to make is the measurement...imaging polarimetry and correlation techniques, Appl. Opt. 52, 997 (2013) 5. A. Dogariu, S. Sukhov, and J. J. Sáenz, The optically-induced

  13. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  14. Electromagnetic Environment Measurements of PRT Systems at "TRANSPO 72" : Volume XI, TTI System

    DOT National Transportation Integrated Search

    1974-01-01

    This report covers the masurements of the broadband conducted noise present on the A.C. power lines feeding the Personalized Rapid Transit (PRT) systems at Dulles Airport with each system operating individually. : The purpose of the measurement effor...

  15. Electromagnetic Environment Measurements of PRT Systems at "TRANSPO 72" : Volume IX, Ford System

    DOT National Transportation Integrated Search

    1974-01-01

    This report covers the masurements of the broadband conducted noise present on the A.C. power lines feeding the Personalized Rapid Transit (PRT) systems at Dulles Airport with each system operating individually. : The purpose of the measurement effor...

  16. Preliminary assessment of the electromagnetic environment in the immediate vicinity of the ETA accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabayan, H.S.; Bogdan, E.; Zicker, J.

    The electromagnetic fields in the immediate vicinity of the Experimental Test Accelerator (ETA) at the Lawrence Livermore Laboratory have been characterized. Various EM sensors that cover the frequency band from the very low frequencies up into the GHz region have been used. The report describes in detail the probes, the test set-up and the data processing techniques.

  17. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  18. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies

    NASA Astrophysics Data System (ADS)

    Pellereau, E.; Taïeb, J.; Chatillon, A.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pietri, S.; Rodríguez-Sánchez, J. L.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.

    2017-05-01

    SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238U.

  19. Biological and Health Effects of Electromagnetic Fields Related to the Operation of MRI/TMS

    NASA Astrophysics Data System (ADS)

    Shigemitsu, Tsukasa; Ueno, Shoogo

    This paper reviews issues of biological effects and safety aspects of the electromagnetic fields related to both Magnetic Resonance Imaging (MRI) and Transcranial Magnetic Stimulation (TMS) as a diagnostic technique. The noninvasive character of these diagnostic techniques is based on the utilization of the electromagnetic fields such as the static magnetic field, time-varying magnetic field, and radiofrequency electromagnetic field. Following the short view of the history and the principle of these noninvasive techniques, we review the biological effects of the electromagnetic fields, the health effects and safety issues related to MRI/TMS environments. Through a discussion of biological and health effects, it shows briefly guidelines which provide a consideration in human risk for both patients and medical staff. Finally, safety issues related to MRI/TMS are discussed with the highlighting of the guideline such as the International Commission on NonIonizing Radiation Protection (ICNIRP) and EMF Directive (Directve2013/35/EU) of European Union.

  20. Electromagnetic duality and the electric memory effect

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Seo, Min-Seok; Shiu, Gary

    2018-02-01

    We study large gauge transformations for soft photons in quantum electrodynamics which, together with the helicity operator, form an ISO(2) algebra. We show that the two non-compact generators of the ISO(2) algebra correspond respectively to the residual gauge symmetry and its electromagnetic dual gauge symmetry that emerge at null infinity. The former is helicity universal (electric in nature) while the latter is helicity distinguishing (magnetic in nature). Thus, the conventional large gauge transformation is electric in nature, and is naturally associated with a scalar potential. We suggest that the electric Aharonov-Bohm effect is a direct measure for the electromagnetic memory arising from large gauge transformations.

  1. The calculation of transport phenomena in electromagnetically levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation has been developed for the electromagnetic force field, fluid flow field, and solute concentration field of levitation-melted metal specimens. The governing equations consist of the conventional transport equations combined with the appropriate expressions for the electromagnetic force field. The predictions obtained by solving the governing equations numerically on a digital computer are in good agreement with lifting force and average temperature measurements reported in the literature.

  2. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Statistical EMC: A new dimension electromagnetic compatibility of digital electronic systems

    NASA Astrophysics Data System (ADS)

    Tsaliovich, Anatoly

    Electromagnetic compatibility compliance test results are used as a database for addressing three classes of electromagnetic-compatibility (EMC) related problems: statistical EMC profiles of digital electronic systems, the effect of equipment-under-test (EUT) parameters on the electromagnetic emission characteristics, and EMC measurement specifics. Open area test site (OATS) and absorber line shielded room (AR) results are compared for equipment-under-test highest radiated emissions. The suggested statistical evaluation methodology can be utilized to correlate the results of different EMC test techniques, characterize the EMC performance of electronic systems and components, and develop recommendations for electronic product optimal EMC design.

  4. Electromagnetic tracking for abdominal interventions in computer aided surgery

    PubMed Central

    Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin

    2014-01-01

    Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506

  5. Improved accuracy of ultrasound-guided therapies using electromagnetic tracking: in-vivo speed of sound measurements

    NASA Astrophysics Data System (ADS)

    Samboju, Vishal; Adams, Matthew; Salgaonkar, Vasant; Diederich, Chris J.; Cunha, J. Adam M.

    2017-02-01

    The speed of sound (SOS) for ultrasound devices used for imaging soft tissue is often calibrated to water, 1540 m/s1 , despite in-vivo soft tissue SOS varying from 1450 to 1613 m/s2 . Images acquired with 1540 m/s and used in conjunction with stereotactic external coordinate systems can thus result in displacement errors of several millimeters. Ultrasound imaging systems are routinely used to guide interventional thermal ablation and cryoablation devices, or radiation sources for brachytherapy3 . Brachytherapy uses small radioactive pellets, inserted interstitially with needles under ultrasound guidance, to eradicate cancerous tissue4 . Since the radiation dose diminishes with distance from the pellet as 1/r2 , imaging uncertainty of a few millimeters can result in significant erroneous dose delivery5,6. Likewise, modeling of power deposition and thermal dose accumulations from ablative sources are also prone to errors due to placement offsets from SOS errors7 . This work presents a method of mitigating needle placement error due to SOS variances without the need of ionizing radiation2,8. We demonstrate the effects of changes in dosimetry in a prostate brachytherapy environment due to patientspecific SOS variances and the ability to mitigate dose delivery uncertainty. Electromagnetic (EM) sensors embedded in the brachytherapy ultrasound system provide information regarding 3D position and orientation of the ultrasound array. Algorithms using data from these two modalities are used to correct bmode images to account for SOS errors. While ultrasound localization resulted in >3 mm displacements, EM resolution was verified to <1 mm precision using custom-built phantoms with various SOS, showing 1% accuracy in SOS measurement.

  6. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas Christopher

    Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric

  7. Future Directions of Electromagnetic Methods for Hydrocarbon Applications

    NASA Astrophysics Data System (ADS)

    Strack, K. M.

    2014-01-01

    For hydrocarbon applications, seismic exploration is the workhorse of the industry. Only in the borehole, electromagnetic (EM) methods play a dominant role, as they are mostly used to determine oil reserves and to distinguish water from oil-bearing zones. Throughout the past 60 years, we had several periods with an increased interest in EM. This increased with the success of the marine EM industry and now electromagnetics in general is considered for many new applications. The classic electromagnetic methods are borehole, onshore and offshore, and airborne EM methods. Airborne is covered elsewhere (see Smith, this issue). Marine EM material is readily available from the service company Web sites, and here I will only mention some future technical directions that are visible. The marine EM success is being carried back to the onshore market, fueled by geothermal and unconventional hydrocarbon applications. Oil companies are listening to pro-EM arguments, but still are hesitant to go through the learning exercises as early adopters. In particular, the huge business drivers of shale hydrocarbons and reservoir monitoring will bring markets many times bigger than the entire marine EM market. Additional applications include support for seismic operations, sub-salt, and sub-basalt, all areas where seismic exploration is costly and inefficient. Integration with EM will allow novel seismic methods to be applied. In the borehole, anisotropy measurements, now possible, form the missing link between surface measurements and ground truth. Three-dimensional (3D) induction measurements are readily available from several logging contractors. The trend to logging-while-drilling measurements will continue with many more EM technologies, and the effort of controlling the drill bit while drilling including look-ahead-and-around the drill bit is going on. Overall, the market for electromagnetics is increasing, and a demand for EM capable professionals will continue. The emphasis will

  8. Electromagnetic and Light Scattering by Nonspherical Particles XV: Celebrating 150 Years of Maxwell's Electromagnetics

    NASA Technical Reports Server (NTRS)

    Macke, Andreas; Mishchenko, Michael I.

    2015-01-01

    The 15th Electromagnetic and Light Scattering Conference (ELS-XV) was held in Leipzig, Germany from 21 to 26 of June 2015. This conference built on the great success of the previous meetings held in Amsterdam (1995), Helsinki(1997) [2], New York City(1998) [3], Vigo (1999),Halifax (2000), Gainesville (2002), Bremen (2003), Salobreña (2005), St. Petersburg (2006), Bodrum (2007), Hatfield (2008), Helsinki (2010), Taormina (2011), and Lille as well as the workshops held in Bremen (1996,1998) and Moscow (1997). As usual, the main objective of this conference was to bring together scientists, engineers, and PhD students studying various aspects of electromagnetic scattering and to provide a relaxed atmosphere for in-depth discussion of theory, measurements, and applications. Furthermore, ELS-XV supported the United Nations "Year of Light" and celebrated the150th anniversary of Maxwell's electromagnetics. Maxwell's paper on "A Dynamical Theory of the Electromagnetic Field" was published in1865 and has widely been acknowledged as one of the supreme achievements in the history of science. The conference was attended by136 scientists from 22 countries. The scientific program included two plenary lectures, 16 invited reviews, 88 contributed oral talks, and 70 poster presentations. The program and the abstracts of conference presentations are available at the conference website http://www.els-xv-2015.net/home.html. Following the well-established ELS practice and with Elsevier's encouragement, we solicited full-size papers for a topical issue of the Journal of Quantitative Spectroscopy and Radiative Transfer (JQSRT). The result of this collective effort is now in the reader's hands. As always, every invited review and regular paper included in this topical issue has undergone the same rigorous peer review process as any other manuscript published in the JQSRT.

  9. An IoT Reader for Wireless Passive Electromagnetic Sensors.

    PubMed

    Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier

    2017-03-28

    In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain.

  10. An IoT Reader for Wireless Passive Electromagnetic Sensors

    PubMed Central

    Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier

    2017-01-01

    In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain. PMID:28350356

  11. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  12. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  13. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  14. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  15. A modified Bitter-type electromagnet and control system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong, E-mail: xuzongchen@pku.edu.cn

    2014-02-15

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000more » G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.« less

  16. Electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1992-01-01

    An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.

  17. Quantized Electromagnetic-Field Propagation in General Non-Local and Non-Stationary Dispersive and Absorbing Media

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    Dynamical descriptions for the propagation of quantized electromagnetic fields, in the presence of environmental interactions, are systematically and self-consistently developed in the complimentary Schrödinger and Heisenberg pictures. An open-systems (non-equilibrium) quantum-electrodynamics description is thereby provided for electromagnetic-field propagation in general non-local and non-stationary dispersive and absorbing optical media, including a fundamental microscopic treatment of decoherence and relaxation processes due to environmental collisional and electromagnetic interactions. Particular interest is centered on entangled states and other non-classical states of electromagnetic fields, which may be created by non-linear electromagnetic interactions and detected by the measurement of various electromagnetic-field correlation functions. Accordingly, we present dynamical descriptions based on general forms of electromagnetic-field correlation functions involving both the electric-field and the magnetic-field components of the electromagnetic field, which are treated on an equal footing. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  18. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOEpatents

    Young, J.N.

    1957-08-20

    An electromagnetic device for moving an object in a linear path by increments is described. The device is specifically adapted for moving a neutron absorbing control rod into and out of the core of a reactor and consists essentially of an extension member made of magnetic material connected to one end of the control rod and mechanically flexible to grip the walls of a sleeve member when flexed, a magnetic sleeve member coaxial with and slidable between limit stops along the flexible extension, electromagnetic coils substantially centrally located with respect to the flexible extension to flex the extension member into gripping engagement with the sleeve member when ener gized, moving electromagnets at each end of the sleeve to attract the sleeve when energized, and a second gripping electromagnet positioned along the flexible extension at a distance from the previously mentioned electromagnets for gripping the extension member when energized. In use, the second gripping electromagnet is deenergized, the first gripping electromagnet is energized to fix the extension member in the sleeve, and one of the moving electromagnets is energized to attract the sleeve member toward it, thereby moving the control rod.

  19. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  20. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  1. Electromagnetic structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  2. Underwater Electromagnetic Sensor Networks-Part I: Link Characterization.

    PubMed

    Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J Joaquín

    2017-01-19

    Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined.

  3. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    PubMed

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  4. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  5. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    PubMed

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p < 0.01). The data shows a discrepancy between the model surgical plans and the actual correction of the upper jaw of 0.8 mm. Using the electromagnetic tracking, we could reduce the discrepancy of the maxillary transposition between the planned and actual orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. [Medical and biologic research of electromagnetic fields in radiofrequencies range. Results and prospects].

    PubMed

    Kaliada, T V; Vishnevskiĭ, A M; Gorodetskiĭ, B N; Plekhanov, V P; Kuznetsov, A V

    2014-01-01

    The authors present research findings on the problem of technology-related electromagnetic fields as an occupational risk factor of workers health disturbances, and on the issue of prevention measures development against this adverse physical factor effects. Prospects for further research development in the field of electromagnetic safety are discussed.

  7. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  8. Strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  9. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  10. Functional brain measurements within the prefrontal area on pseudo-"blindsight" induced by extremely low frequency electromagnetic stimulations

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hidenori; Ueno, Shoogo

    2015-05-01

    For evaluating the effects of phosphene as pseudo-blindsight closely, we used functional near-infrared spectroscopy to investigate whether or not the phosphene appearance itself substantially affects the hemodynamic responses of the prefrontal area. Seven healthy volunteers ranging in age from 22 to 72 participated in the visual stimulation experiments. First, we examined the influences of electromagnetic stimulations at around the threshold (10 mT) for a blindsight-like phosphene on the responses. According to the results of the aged volunteers, we found the possibility that the delay in the phosphene perception might be caused by aging beyond a certain age. In the results of our measurements using the stimulation of 50 mT, no significant difference in the perception delay for all the volunteers could be detected. When the field strength was decreased from 50 mT to the threshold in steps of 10 mT, the results obtained at the threshold are equivalent to that obtained at 50 mT. Our data strongly support the hypothesis that pseudo-blindsight induced by electromagnetic stimulation of above 50 mT is able to excite all the volunteers' retinal photoreceptor cells provisionally. Hence the continuous stimulations for a long period of time might gradually activate synaptic plasticity on the neural network of the retina.

  11. Application of Manning's Formula for Estimation of Liquid Metal Levels in Electromagnetic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen

    2015-02-01

    Lorentz force velocimetry is a new technique in electromagnetic flow measurements based on exposing an electrical conducting metal to a static magnetic field and measuring the force acting on the magnet system. The calibration procedure of a Lorentz force flowmeter used in industrial open-channel flow measurements is difficult because of the fluctuating liquid level in the channel. In this paper, the application of Manning's formula to estimate the depth of a liquid metal flowing in an open channel is analyzed by using the numerical modeling. Estimations of Manning's n parameter for aluminum show higher values as compared with water flowing in artificial channels. Saint-Venant equations are solved in order to analyze the wave propagation at the free surface of the liquid. Numerical results show a significant damping of waves at the surface of liquid metals as compared with water. Therefore, the Manning formula can be used to correlate the liquid depth and the flow rate in LFF numerical calibration procedure. These results show that the classical formulas, used exclusively to study the water flow in open channels, can be also applied for the liquid metals. The application of Manning's formulas requires experimental measurements of the parameter n, which depends on the channel bed roughness and also on the physical properties of the liquid flowing in channel.

  12. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  13. Analysis of waveguides containing EMCs (electromagnetic conductors) or PEMCs (perfect electromagnetic conductors)

    NASA Astrophysics Data System (ADS)

    Prudêncio, Filipa R.; Matos, Sérgio A.; Paiva, Carlos R.

    2014-11-01

    The concept of a perfect electromagnetic conductor (PEMC) was introduced to generalize and unify two well-known and apparently disjoint concepts in electromagnetics: the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC). Although the PEMC has proven a fertile tool in electromagnetic analyses dealing with new and complex boundaries, its corresponding definition as a medium has, nevertheless, raised several problems. In fact, according to its initial 3D definition, the PEMC cannot be considered a unique and well-defined medium: it leads to extraneous fields without physical meaning. By using a previously published generalization of a PEMC that regards this concept both as a boundary and as a medium - which was dubbed an MIM (Minkowskian isotropic medium) and acts, in practice, as an actual electromagnetic conductor (EMC) - it is herein presented a straightforward analysis of waveguides containing PEMCs that readily and systematically follows from the general framework of waveguides containing EMCs.

  14. Reference Frames and the Physical Gravito-Electromagnetic Analogy

    NASA Astrophysics Data System (ADS)

    Costa, Luis Filipe P. O.; Herdeiro, C. A. R.

    2009-05-01

    The interest on the physical analogies between General Relativity and Electromagnetism has been revived by the recent Gravity Probe-B and the upcoming Lares missions, aiming to measure the so-called gravito-magnetic effects. These effects are presently believed to be at the origin of observed jets in quasars, galactic nuclei, neutron stars and black holes, as well as the precession of black holes' accretion disks. Gravitomagnetism has been studied mainly in a first order approximation ( e.g. [arXiv:gr-qc/0207065]) which, making use of certain similarities between linearized gravity and electromagnetism, applies intuition and well known results from electromagnetic phenomena to the description of the less familiar gravitational ones. However, there is no consensus at present on the limit of validity of such approach. Using a new exact approach based on tidal tensors [Phys. Rev. D 78, 024021 (2008)], we show that the existence of the aforementioned similarities depends crucially on the reference frame. Whereas a stationary observer will find remarkable similarities between the gravitational and electromagnetic interactions, if the fields are not stationary in the observer's rest frame, however, the two interactions differ significantly, so that the gravito-electromagnetic equations commonly found in literature are no longer valid. The tidal tensor formalism allows for a comparison between gravity and electromagnetism in terms of quantities common to both theories (tidal forces), making transparent both the similarities and key differences between the two interactions. It also unveils a new analogy based on exact, covariant, and fully general equations, which allows to extend the intuition from electromagnetism to the understanding of non-linear gravitational phenomena, such as the spin interaction between two celestial bodies, and Hawking's [Phys Rev. Lett. 26, 1344 (1971)] spin-dependent upper bound for the energy released by gravitational radiation when two black

  15. Electromagnetic Pulse (EMP) survey of the Louisiana State Emergency Operating Center, Baton Rouge, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1989-08-01

    The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Anymore » system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.« less

  16. Electromagnetic shielding of thermal protection system for hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Albano, M.; Micheli, D.; Gradoni, G.; Morles, R. B.; Marchetti, M.; Moglie, F.; Mariani Primiani, V.

    2013-06-01

    The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2-8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.

  17. Psychometric analysis of the Brisbane Practice Environment Measure (B-PEM).

    PubMed

    Flint, Anndrea; Farrugia, Charles; Courtney, Mary; Webster, Joan

    2010-03-01

    To undertake rigorous psychometric testing of the newly developed contemporary work environment measure (the Brisbane Practice Environment Measure [B-PEM]) using exploratory factor analysis and confirmatory factor analysis. Content validity of the 33-item measure was established by a panel of experts. Initial testing involved 195 nursing staff using principal component factor analysis with varimax rotation (orthogonal) and Cronbach's alpha coefficients. Confirmatory factor analysis was conducted using data from a further 983 nursing staff. Principal component factor analysis yielded a four-factor solution with eigenvalues greater than 1 that explained 52.53% of the variance. These factors were then verified using confirmatory factor analysis. Goodness-of-fit indices showed an acceptable fit overall with the full model, explaining 21% to 73% of the variance. Deletion of items took place throughout the evolution of the instrument, resulting in a 26-item, four-factor measure called the Brisbane Practice Environment Measure-Tested. The B-PEM has undergone rigorous psychometric testing, providing evidence of internal consistency and goodness-of-fit indices within acceptable ranges. The measure can be utilised as a subscale or total score reflective of a contemporary nursing work environment. An up-to-date instrument to measure practice environment may be useful for nursing leaders to monitor the workplace and to assist in identifying areas for improvement, facilitating greater job satisfaction and retention.

  18. [National system of protection against electromagnetic fields 0 Hz-300 GHz in the light of current legal regulations].

    PubMed

    Aniołczyk, Halina

    2006-01-01

    Exposure to electromagnetic fields (EMF) occurs when man is exposed to the effect of electric, magnetic and electromagnetic fields and contact currents different from those resulting from physiological processes in the organism or other natural phenomena. In Poland, the system of protection against EMF has been functioning for over 35 years. In 2001, when the Minister of Labor and Social Policy issued the regulation introducing the maximum admissible intensities (MAI) for electromagnetic fields and radiation within the range of 0 Hz-300 GHz, the system was directed mainly towards evaluation of exposure to EMF occurring in the occupational environment. The system is linked via MAI values with human protection in the natural environment. In this paper, the background, principles and the range of the national system of protection against EMF and its monitoring are presented. The project of implementation of EU directives, following Poland's accession to the European Union is also discussed.

  19. Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-09-01

    Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.

  20. Design and testing of an electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Anderson, William J.

    1986-01-01

    Hostile environments such as the hard vacuum of space, and exposure to water or caustic fluids have fostered the development of devices which allow mechanical rotary feed throughs with positive sealing without the use of conventional dynamic seals. One such device is an electromagnetic coupling which transfers motion across a hermetic seal by means of a rotating magnetic field. Static pull-out torque and dynamic heat build-up and pull-out torque tests of a synchronous reluctance homopolar coupling are reported herein. Coupling efficiencies are estimated for a range of speeds and torques.

  1. An Electromagnetically Actuated Vacuum Circuit Breaker Developed by Electromagnetic Analysis Coupled with Motion

    NASA Astrophysics Data System (ADS)

    Takeuchi, Toshie; Nakagawa, Takafumi; Tsukima, Mitsuru; Koyama, Kenichi; Tohya, Nobumoto; Yano, Tomotaka

    A new electromagnetically actuated vacuum circuit breaker (VCB) has been designed and developed on the basis of the transient electromagnetic analysis coupled with motion. The VCB has three advanced bi-stable electromagnetic actuators, which control each phase independently. The VCB serves as a synchronous circuit breaker as well as a standard circuit breaker. In this work, the flux delay due to the eddy current is analytically formulated using the delay time constant of the actuator coil current, thereby leading to accurate driving behavior. With this analytical method, the electromagnetic mechanism for a 24kV rated VCB has been optimized; and as a result, the driving energy is reduced to one fifth of that of a conventional VCB employing spring mechanism, and the number of parts is significantly decreased. Therefore, the developed VCB becomes compact, highly reliable and highly durable.

  2. EML - an electromagnetic levitator for the International Space Station

    NASA Astrophysics Data System (ADS)

    Seidel, A.; Soellner, W.; Stenzel, C.

    2011-12-01

    Based on a long and successful evolution of electromagnetic levitators for microgravity applications, including facilities for parabolic flights, sounding rocket missions and Spacelab missions, the Electromagnetic Levitator EML provides unique experiment opportunities onboard ISS. With the application of the electromagnetic levitation principle under microgravity conditions the undercooled regime of electrically conductive materials becomes accessible for an extended time which allows the performance of unique studies of nucleation phenomena or phase formation as well as the measurement of a range of thermophysical properties both above the melting temperature and in the undercooled regime. The EML payload is presently being developed by Astrium Space Transportation under contracts to ESA and DLR. The design of the payload allows flexible experiment scenarios individually targeted towards specific experimental needs and samples including live video control of the running experiments and automatic or interactive process control.

  3. Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1974-01-01

    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

  4. Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion.

    PubMed Central

    Adey, W R

    1990-01-01

    Studies of environmental electromagnetic (EM) field interactions in tissues have contributed to a new understanding of both normal growth and the biology of cancer in cell growth. From cancer research comes a floodtide of new knowledge about the disruption of communication by cancer-promoting chemicals with an onset of unregulated growth. Bioelectromagnetic research reveals clear evidence of joint actions at cell membranes of chemical cancer promoters and environmental electromagnetic fields. The union of these two disciplines has resulted in the first major new approach to tumor formation in 75 years, directing attention to dysfunctions in inward and outward streams of signals at cell membranes, rather than to damage DNA in cell nuclei, and to synergic actions of chemical pollutants and environmental electromagnetic fields. We are witnesses and, in great measure, participants in one of the great revolutions in the history of biology. In little more than a century, we have moved from organs, to tissues, to cells, and finally to the molecules that are the elegant fabric of living tissues. Today, we stand at a new frontier. It may be more difficult to comprehend, but it is far more significant; for it is at the atomic level, rather than the molecular, that physical, rather than chemical, processes appear to shape the flow of signals that are at the essence of living matter. To pursue these problems in the environment and in the laboratory, our needs for further research with appropriate budgets are great.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2205491

  5. The measurement of heats of solution of high melting metallic systems in an electromagnetic levitation field. Ph.D. Thesis - Tech. Univ. Berlin - 1979

    NASA Technical Reports Server (NTRS)

    Frohberg, M. G.; Betz, G.

    1982-01-01

    A method was tested for measuring the enthalpies of mixing of liquid metallic alloying systems, involving the combination of two samples in the electromagnetic field of an induction coil. The heat of solution is calculated from the pyrometrically measured temperature effect, the heat capacity of the alloy, and the heat content of the added sample. The usefulness of the method was tested experimentally with iron-copper and niobium-silicon systems. This method should be especially applicable to high-melting alloys, for which conventional measurements have failed.

  6. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  7. Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images

    DTIC Science & Technology

    2009-12-01

    Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong...Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong DRDC Ottawa...for simulating radar images of a target is obtained, through direct simulation-to-measurement comparisons. A 3-dimensional computer-aided design

  8. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer.

    PubMed

    Ding, Xu; Wu, Xinjun; Wang, Yugang

    2014-03-01

    A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Determining Detection and Classification Potential of Munitions using Advanced EMI Sensors in the Underwater Environment

    DTIC Science & Technology

    2016-11-01

    focuses on characterizing Electromagnetic Induction (EMI) responses in the underwater setting through numerical and experimental studies with the...marine EMI sensing. 15. SUBJECT TERMS Munitions Response, Electromagnetic Induction, Unexploded Ordnance, Classification 16. SECURITY CLASSIFICATION...using Advanced EMI Sensors in the Underwater Environment.” The project focuses on characterizing Electromagnetic Induction (EMI) responses in the

  10. Results of 2007 test beam of AMS-02 Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    di Falco, Stefano

    2010-01-01

    The AMS-02 experiment will be delivered by the Space Shuttle Discovery to the ISS in summer 2010. The main goals of the experiment are search for antimatter and dark matter, high precision measurement of charged cosmic ray spectra and fluxes and study of gamma rays, in the GeV to TeV energy range. In AMS-02 the Electromagnetic Calorimeter (ECAL) is required to measure e+,e- and gamma energy and to discriminate electromagnetic showers from hadronic cascades. ECAL is based on a lead/scintillating fiber sandwich, providing a 3D imaging reconstruction of the showers. The electronics equipping the detector has low power consumption, low noise, large dynamic range readout and full double redundancy. The calorimeter successfully got through several space qualification tests concerning the mechanical and thermal stability, the electromagnetic compatibility and radiation hardness. The ECAL Flight Model was calibrated during Summer 2007 in a test beam at CERN, using 6-250 GeV electron and proton beams: angular and energy resolutions, obtained from these data, are reported.

  11. Electromagnetic Environmental Effects System Testing

    DTIC Science & Technology

    2009-09-02

    Procedure (TOP) 1-2-511 Electromagnetic Environmental Effects System Testing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...airborne, sea, space, and ground systems , including associated ordnance, as stated in military standard (MIL-STD)-464A “Electromagnetic Environmental...Effects Requirement for Systems ”, as well as ADS-37A-PRF “Aeronautical Design Standard for the Electromagnetic Environmental Effects (E3) Performance and

  12. High frequency electromagnetic impedance measurements for characterization, monitoring and verification efforts. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.H.; Pellerin, L.; Becker, A.

    1998-06-01

    'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field datamore » can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction

  13. Binary black holes' effects on electromagnetic fields.

    PubMed

    Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-08-21

    In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  14. Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities

    NASA Astrophysics Data System (ADS)

    Higgins, Matthew Benjamin

    This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (< 100 kHz), electromagnetic energy can readily propagate through hundreds of feet of earth. Indirect transfer function measurements compare extremely well with analytical and computational models

  15. Measures of the food environment: a compilation of the literature, 1990-2007.

    PubMed

    McKinnon, Robin A; Reedy, Jill; Morrissette, Meredith A; Lytle, Leslie A; Yaroch, Amy L

    2009-04-01

    Valid and reliable measures are required to assess any effect of the food environment on individual dietary behavior, and form the foundation of research that may inform obesity-related policy. Although many methods of measuring the food environment exist, this area of research is still relatively new and there has been no systematic attempt to gather these measures, to compare and contrast them, or to report on their psychometric properties. A structured literature search was conducted to identify peer-reviewed articles published between January 1990 and August 2007 that measured the community-level food environment. These articles were categorized into the following environments: food stores, restaurants, schools, and worksites. The measurement strategies in these studies were categorized as instruments (checklists, market baskets, inventories, or interviews/questionnaires) or methodologies (geographic, sales, menu, or nutrient analyses). A total of 137 articles were identified that included measures of the food environment. Researchers focused on assessing the accessibility, availability, affordability, and quality of the food environment. The most frequently used measure overall was some form of geographic analysis. Eighteen of the 137 articles (13.1%) tested for any psychometric properties, including inter-rater reliability, test-retest reliability, and/or validity. A greater focus on testing for reliability and validity of measures of the food environment may increase rigor in research in this area. Robust measures of the food environment may strengthen research on the effects of the community-level food environment on individual dietary behavior, assist in the development and evaluation of interventions, and inform policymaking targeted at reducing the prevalence of obesity and improving diet.

  16. Experimental verification and optimization of a linear electromagnetic energy harvesting device

    NASA Astrophysics Data System (ADS)

    Mullen, Christopher; Lee, Soobum

    2017-04-01

    Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with a case study including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.

  17. Novel methodology to characterize electromagnetic exposure of the brain

    NASA Astrophysics Data System (ADS)

    Crespo-Valero, Pedro; Christopoulou, Maria; Zefferer, Marcel; Christ, Andreas; Achermann, Peter; Nikita, Konstantina S.; Kuster, Niels

    2011-01-01

    Due to the greatly non-uniform field distribution induced in brain tissues by radio frequency electromagnetic sources, the exposure of anatomical and functional regions of the brain may be a key issue in interpreting laboratory findings and epidemiological studies concerning endpoints related to the central nervous system. This paper introduces the Talairach atlas in characterization of the electromagnetic exposure of the brain. A hierarchical labeling scheme is mapped onto high-resolution human models. This procedure is fully automatic and allows identification of over a thousand different sites all over the brain. The electromagnetic absorption can then be extracted and interpreted in every region or combination of regions in the brain, depending on the characterization goals. The application examples show how this methodology enhances the dosimetry assessment of the brain based on results obtained by either finite difference time domain simulations or measurements delivered by test compliance dosimetry systems. Applications include, among others, the detailed dosimetric analysis of the exposure of the brain during cell phone use, improved design of exposure setups for human studies or medical diagnostic and therapeutic devices using electromagnetic fields or ultrasound.

  18. Comments on "Radiofrequency electromagnetic fields and some cancers of unknown etiology: An ecological study".

    PubMed

    Mortazavi, S A R; Mortazavi, Ghazal; Mortazavi, S M J

    2017-12-31

    This correspondence refers to the Science of the Total Environment article by Gonzalez-Rubio et al. entitled "Radiofrequency electromagnetic fields and some cancers of unknown etiology: An ecological study". Authors of this paper have presented the findings of their preliminary epidemiological study which combined epidemiology, statistics and geographical information systems (GIS). Gonzalez-Rubio et al. have analyzed the possible link between exposure to Radiofrequency Electromagnetic Fields (RF-EMF) in the city of Albacete, Spain and the incidence of cancers such as lymphomas, and brain tumors. The shortcomings of this study are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Cunningham and J. Shank

    2004-11-01

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I&C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner.

  20. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  1. Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health.

    PubMed

    Cansiz, Mustafa; Abbasov, Teymuraz; Kurt, M Bahattin; Celik, A Recai

    2018-03-01

    In this study, radio frequency electromagnetic field exposure levels were measured on the main streets in the city center of Diyarbakır, Turkey. Measured electric field levels were plotted on satellite imagery of Diyarbakır and were compared with exposure guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Exposure measurements were performed in dense urban, urban and suburban areas each day for 7 consecutive days. The measurement system consisted of high precision and portable spectrum analyzer, three-axis electric field antenna, connection cable and a laptop which was used to record the measurement samples as a data logger. The highest exposure levels were detected for two places, which are called Diclekent and Batıkent. It was observed that the highest instantaneous electric field strength value for Batıkent was 7.18 V/m and for Diclekent was 5.81 V/m. It was statistically determined that the main contributor band to the total exposure levels was Universal Mobile Telecommunications System band. Finally, it was concluded that all measured exposure levels were lower than the reference levels recommended by ICNIRP for general public health.

  2. Comparison of Precision between Optical and Electromagnetic Navigation Systems in Total Knee Arthroplasty

    PubMed Central

    Rhee, Seung Joon; Park, Shi Hwan; Cho, He Myung

    2014-01-01

    Purpose The purpose of this study is to compare and analyze the precision of optical and electromagnetic navigation systems in total knee arthroplasty (TKA). Materials and Methods We retrospectively reviewed 60 patients who underwent TKA using an optical navigation system and 60 patients who underwent TKA using an electromagnetic navigation system from June 2010 to March 2012. The mechanical axis that was measured on preoperative radiographs and by the intraoperative navigation systems were compared between the groups. The postoperative positions of the femoral and tibial components in the sagittal and coronal plane were assessed. Results The difference of the mechanical axis measured on the preoperative radiograph and by the intraoperative navigation systems was 0.6 degrees more varus in the electromagnetic navigation system group than in the optical navigation system group, but showed no statistically significant difference between the two groups (p>0.05). The positions of the femoral and tibial components in the sagittal and coronal planes on the postoperative radiographs also showed no statistically significant difference between the two groups (p>0.05). Conclusions In TKA, both optical and electromagnetic navigation systems showed high accuracy and reproducibility, and the measurements from the postoperative radiographs showed no significant difference between the two groups. PMID:25505703

  3. Measuring the food service environment: development and implementation of assessment tools.

    PubMed

    Minaker, Leia M; Raine, Kim D; Cash, Sean B

    2009-01-01

    The food environment is increasingly being implicated in the obesity epidemic, though few reported measures of it exist. In order to assess the impact of the food environment on food intake, valid measures must be developed and tested. The current study describes the development of a food service environment assessment tool and its implementation in a community setting. A descriptive study with mixed qualitative and quantitative methods at a large, North American university campus was undertaken. Measures were developed on the basis of a conceptual model of nutrition environments. Measures of community nutrition environment were the number, type and hours of operation of each food service outlet on campus. Measures of consumer nutrition environment were food availability, food affordability, food promotion and nutrition information availability. Seventy-five food service outlets within the geographic boundaries were assessed. Assessment tools could be implemented in a reasonable amount of time and showed good face and content validity. The food environments were described and measures were grouped so that food service outlet types could be compared in terms of purchasing convenience, cost/value, healthy food promotion and health. Food service outlet types that scored higher in purchasing convenience and cost/value tended to score lower in healthy food promotion and health. This study adds evidence that food service outlet types that are convenient to consumers and supply high value (in terms of calories per dollar) tend to be less health-promoting. Results from this study also suggest the possibility of characterizing the food environment according to the type of food service outlet observed.

  4. Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage.

    PubMed

    Rosenberry, Donald O; Morin, Roger H

    2004-01-01

    A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rainfalls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.

  5. Some Student Conceptions of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students' conceptions of electromagnetism, to investigate to what extent the results from the present…

  6. Electromagnetic free suspension system for space manufacturing. Volume 1: Technology department

    NASA Technical Reports Server (NTRS)

    Buerger, E. H.; Frost, R. T.; Lambert, R. H.; Oconnor, M. F.; Odell, E. L. G.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1972-01-01

    The technology developed in defining a facility to be used on the Skylab mission for electromagnetic suspension of small, molten spheres in the weightless space environment is described. The technologies discussed include: four-coil optimization, four-coil versus six-coil configuration comparison, four-coil position servocontrol, four-coil breadboard, position sensing and servosystem, two-color pyrometer, and specimen toration mode analysis.

  7. Measurements by the plasma diagnostics package on STS-3

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G. B.

    1982-01-01

    A comprehensive set of measurements about the orbiter environment are provided by the plasma diagnostics package (PDP). Ion and electron particle densities, energies, and spatial distribution functions; ion mass for identification of particular molecular ion species; and magnetic fields, electric fields and electromagnetic waves over a broad frequency range are studied. Shuttle environmental measurements will be made both on the pallet and, by use of the remote manipulator system (RMS), the PDP will be maneuvered in and external to the bay area to continue environmental measurements and to carry on a joint plasma experiment with the Utah State University fast-pulsed electron generator. Results of orbiter environment EMI measurements and S-band field strengths as well as preliminary results from wake search operations indicating wake boundary identifiers are reported.

  8. Underwater Electromagnetic Sensor Networks—Part I: Link Characterization †

    PubMed Central

    Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J. Joaquín

    2017-01-01

    Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined. PMID:28106843

  9. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    DOE PAGES

    Pan, Y. -C.; Kilpatrick, C. D.; Simon, J. D.; ...

    2017-10-16

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10 farcs 2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass ofmore » $$\\mathrm{log}(M/{M}_{\\odot })={10.49}_{-0.20}^{+0.08}$$ and star formation rate of 0.003 $${M}_{\\odot }$$ yr -1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude $${M}_{V}\\gt -5.8$$ mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.« less

  10. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y. -C.; Kilpatrick, C. D.; Simon, J. D.

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10 farcs 2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass ofmore » $$\\mathrm{log}(M/{M}_{\\odot })={10.49}_{-0.20}^{+0.08}$$ and star formation rate of 0.003 $${M}_{\\odot }$$ yr -1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude $${M}_{V}\\gt -5.8$$ mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.« less

  11. FREQUENCY-DEPENDENT ABSORPTION OF ELECTROMAGNETIC ENERGY IN BIOLOGICAL TISSUE

    EPA Science Inventory

    The frequency-dependent absorption of electromagnetic energy in biological tissue is illustrated by use of the Debye equations, model calculations for different irradiation conditions, and measured electrical properties (conductivity and permittivity) of different tissues. Four s...

  12. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  13. Purely electromagnetic spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, B. V.

    The Rainich's program of describing metrics induced by pure electromagnetic fields is implemented in a simpler way by using the Ernst formalism and increasing the symmetry of spacetime. Stationary metrics possessing one, two or three Killing vectors are studied and classified. Three branches of solutions exist. Electromagnetically induced mass terms appear in two of them, including a class of solutions in harmonic functions. The static subcase is discussed too. Relations to other well-known electrovacuum metrics are elucidated.

  14. A laboratory study of the electromagnetic bias of rough surface scattering by water waves

    NASA Technical Reports Server (NTRS)

    Parsons, Chester L.; Miller, Lee S.

    1990-01-01

    The design, development, and use of a focused-beam radar to measure the electromagnetic bias introduced by the scattering of radar waves by a roughened water surface are discussed. The bias measurements were made over wide ranges of environmental conditions in a wavetank laboratory. Wave-elevation data were provided by standard laboratory capacitance probes. Backscattered radar power measurements coincident in time and space with the elevation data were produced by the radar. The two data sets are histogrammed to produce probability density functions for elevation and radar reflectivity, from which the electromagnetic bias is computed. The experimental results demonstrate that the electromagnetic bias is quite variable over the wide range of environmental conditions that can be produced in the laboratory. The data suggest that the bias is dependent upon the local wind field and on the amplitude and frequency of any background wave field that is present.

  15. Coupled Hydromechanical and Electromagnetic Responses in Unsaturated Porous Media: Theory, Observation, and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Mahardika, Harry

    contaminated with DNAPL. (3) Next, we present a test case which is the first-attempt analysis of seismoelectric sounding measurements done on glacial environment of Glacier de Tsanfleuron through numerical forward modeling. Here we treat the snow-glacial environment similar as with vadoze zone-aquifer zone in unsaturated porous medium. (4) The modified governing equations also provides us foundations to do another case study, which is characterization of seismoelectrical events generated from water content changes in the vadoze zone measured using seismoelectric sounding from NE England. (5) We finalize the thesis with an interpretation of electrical signal generated from water injection experiment done on the top two meter of the soil surface (vadoze zone) using inverse calculation presented on the first topic of the thesis. The fundamental research presented on this thesis hopefully provides a basis for further advancement on seismoelectric or joint seismic-electrical methods for applications ranging from hydrogeology, volcanology and geothermal energy, and oil and gas cases.

  16. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sati, Priti; Tripathi, V. K.

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of lowmore » frequency electromagnetic wave.« less

  17. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  18. Triboelectric-Electromagnetic Hybrid Generator for Harvesting Blue Energy

    NASA Astrophysics Data System (ADS)

    Shao, Huiyun; Cheng, Ping; Chen, Ruixuan; Xie, Lingjie; Sun, Na; Shen, Qingqing; Chen, Xiaoping; Zhu, Qianqian; Zhang, Yi; Liu, Yina; Wen, Zhen; Sun, Xuhui

    2018-07-01

    Progress has been developed in harvesting low-frequency and irregular blue energy using a triboelectric-electromagnetic hybrid generator in recent years. However, the design of the high-efficiency, mechanically durable hybrid structure is still challenging. In this study, we report a fully packaged triboelectric-electromagnetic hybrid generator (TEHG), in which magnets were utilized as the trigger to drive contact-separation-mode triboelectric nanogenerators (CS-TENGs) and coupled with copper coils to operate rotary freestanding-mode electromagnetic generators (RF-EMGs). The magnet pairs that produce attraction were used to transfer the external mechanical energy to the CS-TENGs, and packaging of the CS-TENG part was achieved to protect it from the ambient environment. Under a rotatory speed of 100 rpm, the CS-TENGs enabled the TEHG to deliver an output voltage, current, and average power of 315.8 V, 44.6 μA, and 90.7 μW, and the output of the RF-EMGs was 0.59 V, 1.78 mA, and 79.6 μW, respectively. The cylinder-like structure made the TEHG more easily driven by water flow and demonstrated to work as a practical power source to charge commercial capacitors. It can charge a 33 μF capacitor from 0 to 2.1 V in 84 s, and the stored energy in the capacitor can drive an electronic thermometer and form a self-powered water-temperature sensing system.[Figure not available: see fulltext.

  19. Correlation singularities in partially coherent electromagnetic beams.

    PubMed

    Raghunathan, Shreyas B; Schouten, Hugo F; Visser, Taco D

    2012-10-15

    We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially coherent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to be a closed string. These coherence singularities have implications for both interference experiments and correlation of intensity fluctuation measurements performed with such beams.

  20. A strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  1. Measuring Command Post Operations in a Decisive Action Training Environment

    DTIC Science & Technology

    2017-05-01

    Research Report 2001 Measuring Command Post Operations in a Decisive Action Training Environment Michelle N...September 2014 - September 2015 4. TITLE AND SUBTITLE Measuring Command Post Operations in a Decisive Action Training Environment 5a...Readiness Training Center Warrior Leadership Council, we explored whether a guide on Command Post (CP) Operations could improve performance during

  2. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  3. Current facts on pacemaker electromagnetic interference and their application to clinical care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sager, D.P.

    1987-03-01

    The development of the sensing demand cardiac pacemaker brought with it the problem of interference as a result of extraneous electric current and electromagnetic fields. This problem still deserves consideration, not only because harmful disruption of pacemaker function, while infrequent, can occur but also because myths and misunderstandings have flourished on the subject. Misinformation has often led to needless patient anxiety and unnecessary restrictions in activities of daily living. Similarly, when health care practitioners are misinformed about pacemaker interference, potentially hazardous situations can occur in the clinical environment. This article is a review of current information on the sources andmore » effects of electromagnetic interference (EMI) on pacemakers and includes a discussion of their application to patient care.« less

  4. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  5. Wireless Fidelity Electromagnetic Field Exposure Monitoring With Wearable Body Sensor Networks.

    PubMed

    Lecoutere, Jeroen; Thielens, Arno; Agneessens, Sam; Rogier, Hendrik; Joseph, Wout; Puers, Robert

    2016-06-01

    With the breakthrough of the Internet of Things and the steady increase of wireless applications in the daily environment, the assessment of radio frequency electromagnetic field (RF-EMF) exposure is key in determining possible health effects of exposure to certain levels of RF-EMF. This paper presents the first experimental validation of a novel personal exposimeter system based on a distributed measurement approach to achieve higher measurement quality and lower measurement variability than the commonly used single point measurement approach of existing exposimeters. An important feature of the system is the integration of inertial sensors in order to determine activity and posture during exposure measurements. The system is designed to assess exposure to frequencies within the 389 to 464, 779 to 928 and 2400 to 2483.5 MHz bands using only two transceivers per node. In this study, the 2400 to 2483.5 MHz band is validated. Every node provides antenna diversity for the different bands in order to achieve higher sensitivity at these frequencies. Two AAA batteries power each standalone node and as such determine the node hardware size of this proof of concept (53 mm×25 mm×15 mm) , making it smaller than any other commercially available exposimeter.

  6. Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case

    DOE PAGES

    Campione, Salvatore; Warne, Larry K.; Langston, William L.; ...

    2017-07-11

    In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less

  7. Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Langston, William L.

    In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less

  8. Evaluation of Electromagnetic Near-Field Measurement Technique as Non-Destructive Testing for Composite Structures

    NASA Astrophysics Data System (ADS)

    Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt

    2018-05-01

    Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.

  9. Novel exposure units for at-home personalized testing of electromagnetic sensibility.

    PubMed

    Huss, Anke; Murbach, Manuel; van Moorselaar, Imke; Kuster, Niels; van Strien, Rob; Kromhout, Hans; Vermeulen, Roel; Slottje, Pauline

    2016-01-01

    Previous experimental studies on electromagnetic hypersensitivity have been criticized regarding inflexibility of choice of exposure and of study locations. We developed and tested novel portable exposure units that can generate different output levels of various extremely low frequency magnetic fields (ELF-MF; 50 Hz field plus harmonics) and radiofrequency electromagnetic fields (RF-EMF). Testing was done with a group of healthy volunteers (n = 25 for 5 ELF-MF and n = 25 for 5 RF-EMF signals) to assess if units were indeed able to produce double-blind exposure conditions. Results substantiated that double-blind conditions were met; on average participants scored 50.6% of conditions correct on the ELF-MF, and 50.0% on the RF-EMF unit, which corresponds to guessing probability. No cues as to exposure conditions were reported. We aim to use these units in a future experiment with subjects who wish to test their personal hypothesis of being able to sense or experience when being exposed to EMF. The new units allow for a high degree of flexibility regarding choice of applied electromagnetic signal, output power level and location (at home or another environment of subjects' choosing). © 2015 Wiley Periodicals, Inc.

  10. In vivo measurement of the 3D kinematics of the temporomandibular joint using miniaturized electromagnetic trackers: technical report.

    PubMed

    Baeyens, J-P; Gilomen, H; Erdmann, B; Clijsen, R; Cabri, J; Vissers, D

    2013-04-01

    The aim of this study was to evaluate the use of miniaturized electromagnetic trackers (1 × 0.5 × 0.5 cm) fixed on teeth of the maxilla and mandible to analyse in vivo the 3D kinematics of the temporomandibular joint (TMJ). A third sensor was fixed to the forehead, and a fourth sensor was used as a stylus pointer to detect several anatomical landmarks in order to embed a local frame on the cranium. Temporomandibular opening/closing, chewing, laterotrusion and protrusion were examined. The prime objective within this study was to rigidly attach electromagnetic minisensors on teeth. The key for a successful affixation was the kevlar interface. The distances between the two mandibular affixed sensors and between the two maxillar affixed sensors were overall smaller than 0.033 cm for position and 0.2° for attitude throughout the temporomandibular motions. The relative motions between a forehead sensor and the maxilla affixed sensor are too big to suggest a forehead sensor as an alternative for a maxilla affixed sensor. The technique using miniaturized electromagnetic trackers furthers on the methods using electromagnetic trackers on external appliances. The method allows full range of motion of the TMJ and does not disturb normal TMJ function.

  11. Analysis of electromagnetic fields on an F-106B aircraft during lightning strikes

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Pitts, F. L.

    1982-01-01

    Information on the exterior electromagnetic environment of an aircraft when it is struck by lightning has been obtained during thunderstorm penetrations with an F-106B aircraft. Electric and magnetic fields were observed, using mainly time-derivative type sensors, with bandwidths to 50 MHz. Lightning pulse lengths ranging from 25 ns to 7 microsec have been recorded. Sufficient high-frequency content was present to excite electromagnetic resonances of the aircraft, and peaks in the frequency spectra of the waveforms in the range 7 to 23 MHz are in agreement with the resonant frequencies determined in laboratory scale-model tests. Both positively and negatively charged strikes were experienced, and most of the data suggest low values of peak current.

  12. Occupational exposure to electromagnetic fields from medical sources

    PubMed Central

    STAM, Rianne; YAMAGUCHI-SEKINO, Sachiko

    2017-01-01

    High exposures to electromagnetic fields (EMF) can occur near certain medical devices in the hospital environment. A systematic assessment of medical occupational EMF exposure could help to clarify where more attention to occupational safety may be needed. This paper seeks to identify sources of high exposure for hospital workers and compare the published exposure data to occupational limits in the European Union. A systematic search for peer-reviewed publications was conducted via PubMed and Scopus databases. Relevant grey literature was collected via a web search. For each publication, the highest measured magnetic flux density or internal electric field strength per device and main frequency component was extracted. For low frequency fields, high action levels may be exceeded for magnetic stimulation, MRI gradient fields and movement in MRI static fields. For radiofrequency fields, the action levels may be exceeded near devices for diathermy, electrosurgery and hyperthermia and in the radiofrequency field inside MRI scanners. The exposure limit values for internal electric field may be exceeded for MRI and magnetic stimulation. For MRI and magnetic stimulation, practical measures can limit worker exposure. For diathermy, electrosurgery and hyperthermia, additional calculations are necessary to determine if SAR limits may be exceeded in some scenarios. PMID:29109357

  13. The Revised Electromagnetic Fields Directive and Worker Exposure in Environments With High Magnetic Flux Densities

    PubMed Central

    Stam, Rianne

    2014-01-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers’ exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker’s body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. PMID:24557933

  14. The revised electromagnetic fields directive and worker exposure in environments with high magnetic flux densities.

    PubMed

    Stam, Rianne

    2014-06-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers' exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker's body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-03

    SUPPLEMENTARY NOTES 14. ABSTRACT The overall objective of the project is to design , build and demonstrate an underwater advanced time -domain...Description The overall objective of the project is to design , build and demonstrate an underwater advanced time - domain electromagnetic (TEM) system...Electromagnetic System Design (July, 2015), and in the Underwater Advanced Time -Domain Electromagnetic System Evaluation Plan (October, 2016). A

  16. The high-performance electric field detector EFD for space-based measurements

    NASA Astrophysics Data System (ADS)

    Badoni, Davide

    2016-04-01

    We present the prototype of a new electric field detector (EFD) for space applications, that has been built and fully tested in laboratory in the framework of the LIMADOU collaboration between Italy and China aimed at developing the CSES (China Seismo-Electromagnetic Satellite) space mission (launch scheduled by the end of 2016). Investigations of the electromagnetic near-Earth space environment represent an important field of research as demonstrated by the satellite missions, already accomplished and/or planned to be launched in the near future, devoted to such issue (e.g. INJUN-5; POLAR, DEMETER, THEMIS, TARANIS, CSES, etc.). The payload of these satellites includes several instruments to measure electric fields in a broad frequency band along with magnetic field, plasma parameters and high energy particles fluxes. Even though these phenomena are mainly dominated by the solar activity, they are also conditioned by atmospheric and ionospheric processes, seismic activity, and human electromagnetic sources. The CSES mission will prosecute the exploratory study performed by the DEMETER satellite, by studying the electromagnetic, plasma and particle perturbations caused by seismicity in the ionosphere, magnetosphere and inner Van Allen belts. This task will be carried out through a detailed investigation of the anomalous electromagnetic field fluctuations, ionospheric plasma perturbations and instabilities accompanying earthquakes of moderate and strong magnitude, as observed by numerous satellite. As a secondary objective, the CSES satellite will also investigate the influence of the electromagnetic emissions of anthropogenic origin on the ionosphere and magnetosphere. The EFD detector consists of four probes designed to be installed on four booms deployed from the 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as magnetospheric waves, seimo-electromagnetic perturbations, anthropogenic

  17. Electromagnetic Methods of Lightning Detection

    NASA Astrophysics Data System (ADS)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  18. Electromagnetic field effects in explosives

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  19. Deformation of the proton emitter 113Cs from electromagnetic transition and proton-emission rates

    NASA Astrophysics Data System (ADS)

    Hodge, D.; Cullen, D. M.; Taylor, M. J.; Nara Singh, B. S.; Ferreira, L. S.; Maglione, E.; Smith, J. F.; Scholey, C.; Rahkila, P.; Grahn, T.; Braunroth, T.; Badran, H.; Capponi, L.; Girka, A.; Greenlees, P. T.; Julin, R.; Konki, J.; Mallaburn, M.; Nefodov, O.; O'Neill, G. G.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Smolen, M.; Sorri, J.; Stolze, S.; Uusitalo, J.

    2016-09-01

    The lifetime of the (11 /2+ ) state in the band above the proton-emitting (3 /2+ ) state in 113Cs has been measured to be τ =24 (6 ) ps from a recoil-decay-tagged differential-plunger experiment. The measured lifetime was used to deduce the deformation of the states using wave functions from a nonadiabatic quasiparticle model to independently calculate both proton-emission and electromagnetic γ -ray transition rates as a function of deformation. The only quadrupole deformation, which was able to reproduce the experimental excitation energies of the states, the electromagnetic decay rate of the (11 /2+ ) state and the proton-emission rate of the (3 /2+ ) state, was found to be β2=0.22 (6 ) . This deformation is in agreement with the earlier proton emission studies which concluded that 113Cs was best described as a deformed proton emitter, however, it is now more firmly supported by the present measurement of the electromagnetic transition rate.

  20. Dipole-Induced Electromagnetic Transparency

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric

    2014-10-01

    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.

  1. Feasibility of in situ beta ray measurements in underwater environment.

    PubMed

    Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik

    2017-09-01

    We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Exposure to Radiofrequency Electromagnetic Fields From Wi-Fi in Australian Schools

    PubMed Central

    Karipidis, Ken; Henderson, Stuart; Wijayasinghe, Don; Tjong, Lydiawati; Tinker, Rick

    2017-01-01

    Abstract The increasing use of Wi-Fi in schools and other places has given rise to public concern that the radiofrequency (RF) electromagnetic fields from Wi-Fi have the potential to adversely affect children. The current study measured typical and peak RF levels from Wi-Fi and other sources in 23 schools in Australia. All of the RF measurements were much lower than the reference levels recommended by international guidelines for protection against established health effects. The typical and peak RF levels from Wi-Fi in locations occupied by children in the classroom were of the order of 10−4 and 10−2% of the exposure guidelines, respectively. Typical RF levels in the classroom were similar between Wi-Fi and radio but higher than other sources. In the schoolyard typical RF levels were higher for radio, TV and mobile phone base stations compared to Wi-Fi. The results of this study showed that the typical RF exposure of children from Wi-Fi at school is very low and comparable or lower to other sources in the environment. PMID:28074013

  3. Electromagnetic methods for mapping freshwater lenses on Micronesian atoll islands

    USGS Publications Warehouse

    Anthony, S.S.

    1992-01-01

    The overall shape of freshwater lenses can be determined by applying electromagnetic methods and inverse layered-earth modeling to the mapping of atoll island freshwater lenses. Conductivity profiles were run across the width of the inhabited islands at Mwoakilloa, Pingelap, and Sapwuahfik atolls of the Pohnpei State, Federated States of Micronesia using a dual-loop, frequency-domain, electromagnetic profiling system. Six values of apparent conductivity were recorded at each sounding station and were used to interpret layer conductivities and/or thicknesses. A three-layer model that includes the unsaturated, freshwater, and saltwater zones was used to simulate apparent-conductivity data measured in the field. Interpreted results were compared with chloride-concentration data from monitoring wells and indicate that the interface between freshwater and saltwater layers, defined from electromagnetic data, is located in the upper part of the transition zone, where the chloride-concentration profile shows a rapid increase with depth. The electromagnetic method can be used to interpret the thickness of the freshwater between monitoring wells, but can not be used to interpret the thickness of freshwater from monitoring wells to the margin of an island. ?? 1992.

  4. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Peterson, A. M.

    1979-01-01

    In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.

  5. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the

  6. Use of an Electromagnetic Seepage Meter to Investigate Temporal Variability in Lake Seepage

    USGS Publications Warehouse

    Rosenberry, D.O.; Morin, R.H.

    2004-01-01

    A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rain-falls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.

  7. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  8. New Concepts in Electromagnetic Materials and Antennas

    DTIC Science & Technology

    2015-01-01

    Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division

  9. Broadband electromagnetic sensors for aircraft lightning research. [electromagnetic effects of lightning on aircraft digital equipment

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Zaepfel, K. P.

    1980-01-01

    A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.

  10. Test Bed Considerations for the Evaluation of EMP Protection Measures for Defense Electronics Installations.

    DTIC Science & Technology

    1981-05-31

    number) EMP Hardening EMP Testing Electromagnetic Pulse (EMP) EMP Test Bed Facility Electromagnetic Environment Electromagnetic Susceptibility 20 ABSTRACT...very high energy electromagnetic pulse (EMP). The EMP from an exo-atmospheric :3 burst can disrupt or damage unprotected electronics over an area as...3. A., and Parker, R. L., " Electromagnetic Pulse Handbook for Missiles and Aircraft in Flight EMP Interaction 1-1," Sandia Laboratories for Air Force

  11. Analyzing high school students' reasoning about electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Jelicic, Katarina; Planinic, Maja; Planinsic, Gorazd

    2017-06-01

    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students' explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework.

  12. Methods for describing the electromagnetic properties of silver and gold nanoparticles.

    PubMed

    Zhao, Jing; Pinchuk, Anatoliy O; McMahon, Jeffrey M; Li, Shuzhou; Ausman, Logan K; Atkinson, Ariel L; Schatz, George C

    2008-12-01

    This Account provides an overview of the methods that are currently being used to study the electromagnetics of silver and gold nanoparticles, with an emphasis on the determination of extinction and surface-enhanced Raman scattering (SERS) spectra. These methods have proven to be immensely useful in recent years for interpreting a wide range of nanoscience experiments and providing the capability to describe optical properties of particles up to several hundred nanometers in dimension, including arbitrary particle structures and complex dielectric environments (adsorbed layers of molecules, nearby metal films, and other particles). While some of the methods date back to Mie's celebrated work a century ago, others are still at the forefront of algorithm development in computational electromagnetics. This Account gives a qualitative description of the physical and mathematical basis behind the most commonly used methods, including both analytical and numerical methods, as well as representative results of applications that are relevant to current experiments. The analytical methods that we discuss are either derived from Mie theory for spheres or from the quasistatic (Gans) model as applied to spheres and spheroids. In this discussion, we describe the use of Mie theory to determine electromagnetic contributions to SERS enhancements that include for retarded dipole emission effects, and the use of the quasistatic approximation for spheroidal particles interacting with dye adsorbate layers. The numerical methods include the discrete dipole approximation (DDA), the finite difference time domain (FDTD) method, and the finite element method (FEM) based on Whitney forms. We discuss applications such as using DDA to describe the interaction of two gold disks to define electromagnetic hot spots, FDTD for light interacting with metal wires that go from particle-like plasmonic response to the film-like transmission as wire dimension is varied, and FEM studies of

  13. New Horizons: Designing and Measuring for Modern Learning Environments

    ERIC Educational Resources Information Center

    Carter, Richard Allen, Jr.

    2017-01-01

    This dissertation consists of five chapters. The first chapter serves to introduce the Modern Learning Environment (MLE) by discussing the challenges of designing and measuring student performance in these novel environments. Chapter two of the dissertation reviews the current research base of studying self-regulated learning in the modern…

  14. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life.

  15. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Kilpatrick, C. D.; Simon, J. D.; Xhakaj, E.; Boutsia, K.; Coulter, D. A.; Drout, M. R.; Foley, R. J.; Kasen, D.; Morrell, N.; Murguia-Berthier, A.; Osip, D.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.; Siebert, M. R.

    2017-10-01

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10.″2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass of {log}(M/{M}⊙ )={10.49}-0.20+0.08 and star formation rate of 0.003 {M}⊙ yr-1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude {M}V> -5.8 mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. An Electromagnetic Resonance Circuit for Liquid Level Detection

    ERIC Educational Resources Information Center

    Hauge, B. L.; Helseth, L. E.

    2012-01-01

    Electromagnetic resonators are often used to detect foreign materials. Here we present a simple experiment for the measurement of liquid level. The resonator, consisting of a coil and a capacitor, is brought to resonance by an external magnetic field source, and the corresponding resonance frequency is determined using Fourier analysis combined…

  17. Research on key factors and their interaction effects of electromagnetic force of high-speed solenoid valve.

    PubMed

    Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.

  18. Research on Key Factors and Their Interaction Effects of Electromagnetic Force of High-Speed Solenoid Valve

    PubMed Central

    Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217

  19. Infrared Fiber Radiometer For Thermometry In Electromagnetic Induced Therapeutic Healing

    NASA Astrophysics Data System (ADS)

    Katzir, A.; Bowman, F.; Asfour, Y.; Zur, A.; Valeri, C. R.

    1988-06-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35°C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0°C for an extended period (e.g. 30 min.) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electro-magnetic field. For this purpose we have developed a fiberoptic radiometer system which is based on a non-metallic, infrared fiber probe, which can operate either in contact or in non-contact modes. In preliminary investigations the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of ±0.5°C.

  20. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test

    NASA Astrophysics Data System (ADS)

    Chengwu, Li; Qifei, Wang; Pingyang, Lyu

    2016-06-01

    Dynamic loads provided by a Split Hopkinson pressure bar are applied in the impact failure experiment on coal with an impact velocity of 4.174-17.652 m s-1. The mechanical property characteristics of coal and an electromagnetic radiation signal can be detected and measured during the experiment. The variation of coal stress, strain, incident energy, dissipated energy and other mechanical parameters are analyzed by the unidimensional stress wave theory. It suggests that with an increase of the impact velocity, the mechanical parameters and electromagnetic radiation increased significantly and the dissipated energy of the coal sample has a high discrete growing trend during the failure process of coal impact. Combined with the received energy of the electromagnetic radiation signal, the relationship between these mechanical parameters and electromagnetic radiation during the failure process of coal burst could be analyzed by the grey correlation model. The results show that the descending order of the gray correlation degree between the mechanical characteristics and electromagnetic radiation energy are impact velocity, maximum stress, the average stress, incident energy, the average strain, maximum strain, the average strain rate and dissipation energy. Due to the correlation degree, the impact velocity and incident energy are relatively large, and the main factor affecting the electromagnetic radiation energy of coal is the energy magnitude. While the relationship between extreme stress and the radiation energy change trend is closed, the stress state of coal has a greater impact on electromagnetic radiation than the strain and destruction which can deepen the research of the coal-rock dynamic disaster electromagnetic monitoring technique.