Science.gov

Sample records for electromagnetic field effects

  1. Biological effects of electromagnetic fields.

    PubMed

    Adey, W R

    1993-04-01

    Life on earth has evolved in a sea of natural electromagnetic (EM) fields. Over the past century, this natural environment has sharply changed with introduction of a vast and growing spectrum of man-made EM fields. From models based on equilibrium thermodynamics and thermal effects, these fields were initially considered too weak to interact with biomolecular systems, and thus incapable of influencing physiological functions. Laboratory studies have tested a spectrum of EM fields for bioeffects at cell and molecular levels, focusing on exposures at athermal levels. A clear emergent conclusion is that many observed interactions are not based on tissue heating. Modulation of cell surface chemical events by weak EM fields indicates a major amplification of initial weak triggers associated with binding of hormones, antibodies, and neurotransmitters to their specific binding sites. Calcium ions play a key role in this amplification. These studies support new concepts of communication between cells across the barriers of cell membranes; and point with increasing certainty to an essential physical organization in living matter, at a far finer level than the structural and functional image defined in the chemistry of molecules. New collaborations between physical and biological scientists define common goals, seeking solutions to the physical nature of matter through a strong focus on biological matter. The evidence indicates mediation by highly nonlinear, nonequilibrium processes at critical steps in signal coupling across cell membranes. There is increasing evidence that these events relate to quantum states and resonant responses in biomolecular systems, and not to equilibrium thermodynamics associated with thermal energy exchanges and tissue heating.

  2. [Health effects of electromagnetic fields].

    PubMed

    Röösli, Martin

    2013-12-01

    Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies.

  3. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwolińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  4. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  5. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  6. CRC handbook of biological effects of electromagnetic fields

    SciTech Connect

    Polk, C.; Postow, E.

    1986-01-01

    This book presents the current knowledge about the effects of electromagnetic fields on living matter. The three-part format covers dielectric permittivity and electrical conductivity of biological materials; effects of direct current and low frequency fields; and effects of radio frequency (including microwave) fields. The parts are designed to be consulted independently or in sequence, depending upon the needs of the reader. Useful appendixes on measurement units and safety standards are also included.

  7. CRC handbook of biological effects of electromagnetic fields

    SciTech Connect

    Polk, C. . Dept. of Electrical Engineering); Postow, E. )

    1986-01-01

    This book presents current knowledge about the effects of electromagnetic fields on living matter. The three-part format covers: dielectric permittivity and electrical conductivity of biological materials; effects of direct current and low frequency fields; and effects of radio frequency (including microwave) fields. The parts are designed to be consulted independently or in sequence, depending upon the needs of the reader. Useful appendixes on measurement units and safety standards are also included.

  8. Macroscopic vacuum effects in an inhomogeneous and nonstationary electromagnetic field

    SciTech Connect

    Gal'tsov, D.V.; Nikitina, N.S.

    1983-04-01

    Macroscopic effects of vacuum polarization by a strong nonuniform and nonstationary fields, which are kinematically forbidden in the case of a uniform magnetic field, are considered. Calculations are perfomed for the deflection of a light beam in the field of a magnetic dipole, for the production of photon pairs by an inclined rotator, and for doubling and modulation of the frequency in scattering of low-frequency electromagnetic waves by the magnetic field of an inclined rotator.

  9. The effect of pulsed electromagnetic field therapy on food sensitivity.

    PubMed

    Monro, Jean A; Puri, Basant K

    2015-01-01

    Owing to the involvement of the immune system in the etiology of food sensitivity, and because pulsed electromagnetic field therapy is associated with beneficial immunologic changes, it was hypothesized that pulsed electromagnetic fields may have a beneficial effect on food sensitivity. A small pilot study was carried out in patients suffering from food sensitivity, with the antigen leukocyte antibody test being employed to index the degree of food sensitivity in terms of the number of foods to which each patient reacted. It was found that a 1-week course of pulsed electromagnetic field therapy, consisting of one hour's treatment per day, resulted in a reduction in the mean number of reactive foods of 10.75 (p < 0.05). On the basis of these results, a larger study is warranted.

  10. Biological effects and exposure criteria for radiofrequency electromagnetic fields

    SciTech Connect

    Not Available

    1986-01-01

    This report, which begins with a discussion of fundamental studies at the molecular level, presents a review of the subject matter covered in NCRP Report No. 67 on mechanisms of interaction of radiofrequency electromagnetic (RFEM) fields with tissue. The discussion continues to progressively larger scales of interaction, beginning with macromolecular and cellular effects, chromosomal and mutagenic effects, and carcinogenic effects. The scope of the subject matter is then expanded to include systemic effects such as those on reproduction, growth, and development, hematopoiesis and immunology, endocrinology and autonomic nervous function, cardiovascular effects and cerebrovascular effects. The interaction of electromagnetic fields with the central nervous system and special senses is also discussed. Also included are epidemiological studies, a discussion of thermoregulation, and a history of therapeutic applications of RFEM fields. The report concludes with human exposure criteria and rationale.

  11. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  12. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  13. Immunorehabilitating effect of ultrahigh frequency electromagnetic fields in immunocompromised animals.

    PubMed

    Pershin, S B; Bobkova, A S; Derevnina, N A; Sidorov, V D

    2013-06-01

    We observed immunorehabilitation effects of ultrahigh frequency electromagnetic fields (microwaves) in immunocompromised animals. It was shown that microwave irradiation of the thyroid gland area could abolish actinomycin D- and colchicine-induced immunosuppression and did not affect immunosuppression caused by 5-fluorouracil. These findings suggest that changes in the hormonal profile of the organism during microwave exposure can stimulate the processes of transcription and mitotic activity of lymphoid cells.

  14. Opinion on potential health effects of exposure to electromagnetic fields.

    PubMed

    2015-09-01

    In January 2015, the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) published its final opinion on "Potential health effects of exposure to electromagnetic fields." The purpose of this document was to update previous SCENIHR opinions in the light of recently available information since then, and to give special consideration to areas that had not been dealt with in the previous opinions or in which important knowledge gaps had been identified.

  15. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    NASA Astrophysics Data System (ADS)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.

  16. Offshore windmills and the effects of electromagnetic fields on fish.

    PubMed

    Ohman, Marcus C; Sigray, Peter; Westerberg, Håkan

    2007-12-01

    With the large scale developments of offshore windpower the number of underwater electric cables is increasing with various technologies applied. A wind farm is associated with different types of cables used for intraturbine, array-to-transformer, and transformer-to-shore transmissions. As the electric currents in submarine cables induce electromagnetic fields there is a concern of how they may influence fishes. Studies have shown that there are fish species that are magneto-sensitive using geomagnetic field information for the purpose of orientation. This implies that if the geomagnetic field is locally altered it could influence spatial patterns in fish. There are also physiological aspects to consider, especially for species that are less inclined to move as the exposure could be persistent in a particular area. Even though studies have shown that magnetic fields could affect fish, there is at present limited evidence that fish are influenced by the electromagnetic fields that underwater cables from windmills generate. Studies on European eel in the Baltic Sea have indicated some minor effects. In this article we give an overview on the type of submarine cables that are used for electric transmissions in the sea. We also describe the character of the magnetic fields they induce. The effects of magnetic fields on fish are reviewed and how this may relate to the cables used for offshore wind power is discussed.

  17. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  18. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations. PMID:26598938

  19. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  20. [Biological effects of exposure to electromagnetic fields: introduction].

    PubMed

    Pira, E

    2003-01-01

    A widespread agreement on the presence, if any, of an association between non deterministic effects and exposure to electromagnetic fields (ELF and RF-MW) has not been reached yet. Some critical points of the pooled analyses of data that lead to the conclusion of the International Agency for Research on Cancer (IARC) are examined. While waiting for more well planned scientific studies, it seems important for scientific experts to give the most sober interpretation of current data, considering the widespread and growing attention of the general population for this subject.

  1. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  2. Mechanisms of biological effects of radiofrequency electromagnetic fields: an overview.

    PubMed

    Erwin, D N

    1988-11-01

    Manmade sources of electromagnetic (EM) fields, and therefore human exposures to them, continue to increase. Public concerns stem from the effects reported in the literature, the visibility of the sources, and somewhat from confusion between EM fields and ionizing radiation. Protecting humans from the real hazards and allaying groundless fears requires a self-consistent body of scientific data concerning effects of the fields, levels of exposures which cause those effects, and which effects are deleterious (or beneficial or neutral). With that knowledge, appropriate guidelines for safety can be devised, while preserving the beneficial uses of radiofrequency radiation (RFR) energy for military or civilian purposes. The task is monumental because of the large and growing number of biological endpoints and the infinite array of RFR exposure conditions under which those endpoints might be examined. The only way to reach this goal is to understand the mechanisms by which EM fields interact with tissues. As in other fields of science, a mechanistic understanding of RFR effects will enable scientists to generalize from a selected few experiments to derive the "laws" of RFR bioeffects. This article gives an overview of present knowledge of those mechanisms and the part that the USAF School of Aerospace Medicine has played in expanding that knowledge.

  3. Effects of microwave and radio frequency electromagnetic fields on lichens.

    PubMed

    Urech, M; Eicher, B; Siegenthaler, J

    1996-01-01

    The effects of electromagnetic fields on lichens were investigated. Field experiments of long duration (1-3 years) were combined with laboratory experiments and theoretical considerations. Samples of the lichen species Parmelia tiliacea and Hypogymnia physodes were exposed to microwaves (2.45 GHz; 0.2, 5, and 50 mW/cm2; and control). Both species showed a substantially reduced growth rate at 50 mW/cm2. A differentiation between thermal and nonthermal effects was not possible. Temperature measurements on lichens exposed to microwaves (2.45 GHz, 50 mW/cm2) showed a substantial increase in the surface temperature and an accelerated drying process. The thermal effect of microwave on lichens was verified. The exposure of lichens of both species was repeated near a short-wave broadcast transmitter (9.5 MHz, amplitude modulated; maximum field strength 235 V/m, 332 mA/m). No visible effects on the exposed lichens were detected. At this frequency, no thermal effects were expected, and the experimental results support this hypothesis. Theoretical estimates based on climatic data and literature showed that the growth reductions in the initial experiments could very likely have been caused by drying of the lichens from the heating with microwaves. The results of the other experiments support the hypothesis that the response of the lichens exposed to microwaves was mainly due to thermal effects and that there is a low probability of nonthermal effects.

  4. Effects of electromagnetic fields on osteoporosis: A systematic literature review.

    PubMed

    Wang, Rong; Wu, Hua; Yang, Yong; Song, Mingyu

    2016-01-01

    Electromagnetic fields (EMFs) as a safe, effective and noninvasive treatment have been researched and used for many years in orthopedics, and the common use clinically is to promote fracture healing. The effects of EMFs on osteoporosis have not been well concerned. The balance between osteoblast and osteoclast activity as well as the balance between osteogenic differentiation and adipogenic differentiation of bone marrow mesenchymal stem cells plays an important role in the process of osteoporosis. A number of recent reports suggest that EMFs have a positive impact on the balances. In this review, we discuss the recent advances of EMFs in the treatment of osteoporosis from basic research to clinical study and introduce the possible mechanism. In addition, we presented future perspectives of application of EMFs for osteoporosis. PMID:27356174

  5. [Effect of electromagnetic fields on movement of microorganisms].

    PubMed

    Zel'nichenko, A T; Koval'chuk, V S; Posudin, Iu I

    1988-01-01

    Relationships between the motor activity and orientation of microorganisms and parameters of the electromagnetic field and of the microorganisms themselves were investigated. It has been shown that the type of microorganism and field amplitude produces the strongest influence on the behaviour of microorganisms in the fields. Theoretical relationships of the value of rotating moment and the field parameters, microorganism and environment were obtained. The results of the experiments well agree with the theory. PMID:3224110

  6. Retraction: Evaluation of carcinogenic effects of electromagnetic fields (EMF).

    PubMed

    Mehic, Bakir

    2010-11-01

    The Editor-in-chief of the Bosnian Journal of Basic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: "Evaluation of carcinogenic effects of electromagnetic fields (EMF)" published in Bosn J Basic Med Sci. 2010 Aug;10(3):245-50. After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.

  7. [Curative effects of pulsed electromagnetic fields on postmenopausal osteoporosis].

    PubMed

    Liu, Huifang; Liu, Ying; Yang, Lin; Wang, Chunyan; Wu, Yuanchao; He, Chengqi

    2014-02-01

    We investigated the effects and optimal treatment frequency of pulsed electromagnetic fields (PEMFs) on postmenopausal osteoporosis (PMO). A comparison was performed with the cyclical alendronate and a course of PEMFs in the treatment for postmenopausal osteoporosis on bone mineral density (BMD), pain intensity and balance function. There was no significant difference between the two groups on mean percentage changes from baseline of BMD within 24 weeks after random treatments (P > or = 0.05). However, at the ends of 48 weeks and 72 weeks, the BMD of the PEMFs group were significantly lower than that of the alendronate group (P < 0.05). No significant difference was detected between the two groups with regard to treatment effects on Visual Analogue Scale score, the Timed Up & Go Test and Berg Balance Scale score. Compared with cyclical alendronate, a course of PEMFs was as effective as alendronate in treating PMO for at least 24 weeks. So its optimal treatment frequency for PMO may be one course per six months.

  8. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  9. Systemic Effects of Electromagnetic Fields in Patients with Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Cañedo-Dorantes, L.; Valle, L.; Uruchurtu, E.; Medel, A.; García-Mayen, F.; Serrano-Luna, G.

    2003-09-01

    Healing of acute myocardial infarction (AMI) is associated with inflammatory response, which promotes healing and scar formation. Activation of a local inflammatory response in patients with sequel of AMI could have an important role to enhance angiogenesis and regeneration of hibernating myocardial tissue. Chronic arterial leg ulcers have a similar etiology, and healing has been promoted by exposure to extremely low frequency electromagnetic fields (ELF). We report the evolution of three AMI patients with sequel of AMI that were exposed to ELF.

  10. [Electromagnetic fields: damage to health due to the nocebo effect].

    PubMed

    Bonneux, L

    2007-04-28

    Environmental exposure to man-made electromagnetic fields has been steadily increasing as the growing demand for electricity and advancing technology have created many artificial sources. Over the course of the past decade, numerous sources of electromagnetic fields have become the focus of health scares, most recently mobile phones and their base stations. The predictable reaction to these health scares has been 'more research'. This comment argues that studies of the possible hazards of low-level electromagnetic fields waste scarce financial resources. Many studies have convincingly excluded detectable tangible health hazards. Bayesian logic predicts that the likelihood of false-positive results will be great in studies lacking a prior hypothesis and using non-specific health states as outcomes. The health hazards due to the maintenance of environmental scares by false-positive studies have been neglected. The nocebo hypothesis states that expectations of sickness cause sickness in the expectant individual. Maintaining anxiety by fostering doubts in gullible populations about the quality ofthe environment they live in may cause serious mental illness. Anxiety caused by health scares is an increasing public health problem, which should be addressed in its own right. PMID:17520846

  11. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  12. Topological thermal Casimir effect for spinor and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mota, H. F.; Bezerra, V. B.

    2015-12-01

    We obtain the thermal corrections to the Casimir energy for the neutrino and electromagnetic fields in Einstein and closed Friedmann universes containing a static, infinitely straight and thin cosmic string. The Casimir free energy is also obtained as well as their low and high temperature limits. It is shown that the vacuum energies associated with these fields, in the background considered, are given simply by the vacuum energies in the absence of the cosmic string multiplied by a factor that codifies the presence of this topological defect.

  13. The effects of exposure to electromagnetic field on rat myocardium.

    PubMed

    Kiray, Amac; Tayefi, Hamid; Kiray, Muge; Bagriyanik, Husnu Alper; Pekcetin, Cetin; Ergur, Bekir Ugur; Ozogul, Candan

    2013-06-01

    Exposure to electromagnetic fields (EMFs) causes increased adverse effects on biological systems. The aim of this study was to investigate the effects of EMF on heart tissue by biochemical and histomorphological evaluations in EMF-exposed adult rats. In this study, 28 male Wistar rats weighing 200-250 g were used. The rats were divided into two groups: sham group (n = 14) and EMF group (n = 14). Rats in sham group were exposed to same conditions as the EMF group except the exposure to EMF. Rats in EMF group were exposed to a 50-Hz EMF of 3 mT for 4 h/day and 7 days/week for 2 months. After 2 months of exposure, rats were killed; the hearts were excised and evaluated. Determination of oxidative stress parameters was performed spectrophotometrically. To detect apoptotic cells, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and caspase-3 immunohistochemistry were performed. In EMF-exposed group, levels of lipid peroxidation significantly increased and activities of superoxide dismutase and glutathione peroxidase decreased compared with sham group. The number of TUNEL-positive cells and caspase-3 immunoreactivity increased in EMF-exposed rats compared with sham. Under electron microscopy, there were mitochondrial degeneration, reduction in myofibrils, dilated sarcoplasmic reticulum and perinuclear vacuolization in EMF-exposed rats. In conclusion, the results show that the exposure to EMF causes oxidative stress, apoptosis and morphologic damage in myocardium of adult rats. The results of our study indicate that EMF-related changes in rat myocardium could be the result of increased oxidative stress. Further studies are needed to demonstrate whether the exposure to EMF can induce adverse effects on myocardium.

  14. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  15. Electromagnetic fields and cells.

    PubMed

    Goodman, R; Chizmadzhev, Y; Shirley-Henderson, A

    1993-04-01

    There is strong public interest in the possibility of health effects associated with exposure to extremely low frequency (elf) electromagnetic (EM) fields. Epidemiological studies suggest a probable, but controversial, link between exposure to elf EM fields and increased incidence of some cancers in both children and adults. There are hundreds of scientific studies that have tested the effects of elf EM fields on cells and whole animals. A growing number of reports show that exposure to elf EM fields can produce a large array of effects on cells. Of interest is an increase in specific transcripts in cultured cells exposed to EM fields. The interaction mechanism with cells, however, remains elusive. Evidence is presented for a model based on cell surface interactions with EM fields.

  16. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Luo, Fei; Hou, Tianyong; Zhang, Zehua; Xie, Zhao; Wu, Xuehui; Xu, Jianzhong

    2012-04-01

    The purpose of this study was to evaluate the effect of different frequencies of pulsed electromagnetic fields on the osteogenic differentiation of human mesenchymal stem cells. Third-generation human mesenchymal stem cells were irradiated with different frequencies of pulsed electromagnetic fields, including 5, 25, 50, 75, 100, and 150 Hz, with a field intensity of 1.1 mT, for 30 minutes per day for 21 days. Changes in human mesenchymal stem cell morphology were observed using phase contrast microscopy. Alkaline phosphatase activity and osteocalcin expression were also determined to evaluate human mesenchymal stem cell osteogenic differentiation.Different effects were observed on human mesenchymal stem cell osteoblast induction following exposure to different pulsed electromagnetic field frequencies. Levels of human mesenchymal stem cell differentiation increased when the pulsed electromagnetic field frequency was increased from 5 hz to 50 hz, but the effect was weaker when the pulsed electromagnetic field frequency was increased from 50 Hz to 150 hz. The most significant effect on human mesenchymal stem cell differentiation was observed at of 50 hz.The results of the current study show that pulsed electromagnetic field frequency is an important factor with regard to the induction of human mesenchymal stem cell differentiation. Furthermore, a pulsed electromagnetic field frequency of 50 Hz was the most effective at inducing human mesenchymal stem cell osteoblast differentiation in vitro.

  17. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  18. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. )

    1993-04-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  19. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury.

  20. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  1. Effect of electromagnetic field on the polymerization of microtubules extracted from rat brain.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-zarchi

    2012-09-01

    Microtubules (MTs) are ubiquitous eukaryotic proteinaceous filaments showing a hollow cylindrical structure. MTs are composed of α-β-tubulin heterodimers arranged in linear protofilaments. MTs have a significant electric dipolar moment along their axes, which makes them capable of being aligned parallel to the applied electromagnetic field direction. Tubulin heterodimers were purified from rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules adsorbed under and without electromagnetic fields with 500 Hz frequency. Our results demonstrate the effect of electromagnetic field with 500 Hz frequency to increase the polymerization of MTs. Some relevant patents are also outlined in this article.

  2. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    SciTech Connect

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  3. Effects of Electromagnetic Fields on Automated Blood Cell Measurements.

    PubMed

    Vagdatli, Eleni; Konstandinidou, Vasiliki; Adrianakis, Nikolaos; Tsikopoulos, Ioannis; Tsikopoulos, Alexios; Mitsopoulou, Kyriaki

    2014-08-01

    The aim of this study is to investigate whether the electromagnetic fields associated with mobile phones and/or laptops interfere with blood cell counts of hematology analyzers. Random blood samples were analyzed on an Aperture Impedance hematology analyzer. The analysis was performed in four ways: (A) without the presence of any mobile phone or portable computer in use, (B) with mobile phones in use (B1: one mobile, B4: four mobiles), (C) with portable computers (laptops) in use (C1: one laptop, C3: three laptops), and (D) with four mobile phones and three laptops in use simultaneously. The results obtained demonstrated a statistically significant decrease in neutrophil, erythrocyte, and platelet count and an increase in lymphocyte count, mean corpuscular volume, and red blood cell distribution width, notably in the B4 group. Despite this statistical significance, in clinical practice, only the red blood cell reduction could be taken into account, as the mean difference between the A and B4 group was 60,000 cells/µL. In group D, the analyzer gave odd results after 11 measurements and finally stopped working. The combined and multiple use of mobile phones and computers affects the function of hematology analyzers, leading to false results. Consequently, the use of such electronic devices must be avoided.

  4. Effect of radio frequency waves of electromagnetic field on the tubulin.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  5. Biological Effects of Electromagnetic Fields on Cellular Growth

    NASA Astrophysics Data System (ADS)

    Eftekhari, Beheshte; Wilson, James; Masood, Samina

    2012-10-01

    The interaction of organisms with environmental magnetic fields at the cellular level is well documented, yet not fully understood. We review the existing experimental results to understand the physics behind the effects of ambient magnetic fields on the growth, metabolism, and proliferation of in vitro cell cultures. Emphasis is placed on identifying the underlying physical principles responsible for alterations to cell structure and behavior.

  6. Effects of electromagnetic fields produced by high voltage transmission lines

    NASA Astrophysics Data System (ADS)

    Young, T.

    1984-06-01

    The potential impacts of higher transmission line voltages on people, animals, and plants were determined. The differences among various studies are reviewed. Although there are some obvious dangers posed by transmission line operation, construction, and maintenance, most of these concerns are addressed by safety measures taken by utility companies. The indirect effects of power transission is reported. Three major categories of field effects are covered: (1) corona effects due to the electric field at the conductor's surface; (2) indirect coupling effects, arising from induced currents in nearby conducting objects; and (3) direct coupling effects, caused by induced currents in organisms.

  7. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    PubMed Central

    Pazur, Alexander; Rassadina, Valentina

    2009-01-01

    Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at

  8. Static electric and electromagnetic low-frequency fields (biological effects and hygienic assessment)

    SciTech Connect

    Davydov, B.I.; Karpov, V.N.

    1982-11-01

    The literature data are used to analyze the hygienic situation when man is exposed to constant electrical and low frequency electromagnetic radiations. The spectral characteristics and intensities of electrical fields near and on the surface of the earth generated by natural sources of electromagnetic radiations (electrical quasi-static fields, atmospheric electricity, thunderstorm charges, electromagnetic radiation emitted by the Sun and galaxies) are given. They can be employed to determine man's adaptive capabilities to the frequencies described during acute and chronic irradiation. The mechanisms of biological effects of the exposures are discussed. The methods for calculating the safety levels based on the USSR radiation safety standards and the competing frequencies procedure proposed can be applied to the design of electrotechnical devices and evaluation of integral hazard of constant electrical and electromagnetic fields of low frequencies.

  9. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida.

    PubMed

    Tkalec, Mirta; Stambuk, Anamaria; Srut, Maja; Malarić, Krešimir; Klobučar, Göran I V

    2013-04-01

    Accumulating evidence suggests that exposure to radiofrequency electromagnetic field (RF-EMF) can have various biological effects. In this study the oxidative and genotoxic effects were investigated in earthworms Eisenia fetida exposed in vivo to RF-EMF at the mobile phone frequency (900 MHz). Earthworms were exposed to the homogeneous RF-EMF at field levels of 10, 23, 41 and 120 V m(-1) for a period of 2h using a Gigahertz Transversal Electromagnetic (GTEM) cell. At the field level of 23 V m(-1) the effect of longer exposure (4h) and field modulation (80% AM 1 kHz sinusoidal) was investigated as well. All exposure treatments induced significant genotoxic effect in earthworms coelomocytes detected by the Comet assay, demonstrating DNA damaging capacity of 900 MHz electromagnetic radiation. Field modulation additionally increased the genotoxic effect. Moreover, our results indicated the induction of antioxidant stress response in terms of enhanced catalase and glutathione reductase activity as a result of the RF-EMF exposure, and demonstrated the generation of lipid and protein oxidative damage. Antioxidant responses and the potential of RF-EMF to induce damage to lipids, proteins and DNA differed depending on the field level applied, modulation of the field and duration of E. fetida exposure to 900 MHz electromagnetic radiation. Nature of detected DNA lesions and oxidative stress as the mechanism of action for the induction of DNA damage are discussed.

  10. Electromagnetic field and the chiral magnetic effect in the quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Tuchin, Kirill

    2015-06-01

    Time evolution of an electromagnetic field created in heavy-ion collisions strongly depends on the electromagnetic response of the quark-gluon plasma, which can be described by the Ohmic and chiral conductivities. The latter is intimately related to the chiral magnetic effect. I argue that a solution to the classical Maxwell equations at finite chiral conductivity is unstable due to the soft modes k <σχ that grow exponentially with time. In the kinematical region relevant for the relativistic heavy-ion collisions, I derive analytical expressions for the magnetic field of a point charge. I show that finite chiral conductivity causes oscillations of magnetic field at early times.

  11. The question of health effects from exposure to electromagnetic fields

    SciTech Connect

    Hendee, W.R.; Boteler, J.C.

    1994-02-01

    Possible health effects of exposure to low-intensity electric and magnetic fields (EMFs) are receiving increased attention in the scientific literature and, especially, in the public media. Laboratory research at the cellular and whole animal level has demonstrated various biological effects that may be related in some manner to the effects of EMF exposure on people. However, the exact mechanisms of this relationship are far from clear. The studies suggest that EMFs might be cancer promoters but are unlikely to be cancer initiators. At the level of human epidemiology, approximately 50 studies have examined the possible correlation of EMF exposures with adult and childhood cancers. Although the possibility of a correlation is weak, it cannot be discounted, and further research is needed. In the meantime, a practice of {open_quotes}prudent avoidance{close_quotes} of prolonged exposure to EMFs is warranted. 89 refs.

  12. Effects of Electromagnetic Fields in Spinal Muscular Atrophy: A Case Report

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Martínez-Mata, J.; Serrano-Luna, G.

    2004-09-01

    Spinal Muscular Atrophy Type I is a disease that rapidly progress to death in early infancy. A case report of a child with Werdnig-Hoffmann disease Type I that recovered at three years of age after two years exposure to electromagnetic fields (ELF) is presented. The child is now eleven years old and with the exception of slightly abnormal gait, the muscle mass of tights and gluteus, high, weight and his everyday activities correspond to those of a normal child his age. Hypothetical explanations for the effects of the electromagnetic fields are discussed.

  13. Electromagnetic field interactions with the human body: Observed effects and theories

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1981-01-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  14. Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins

    SciTech Connect

    Falugi, C.; Grattarola, M.; Prestipino, G.

    1987-06-01

    The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities.

  15. Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats

    PubMed Central

    Ahmadi, Seyed Shahin; Khaki, Amir Afshin; Ainehchi, Nava; Alihemmati, Alireza; Khatooni, Azam Asghari; Khaki, Arash; Asghari, Ali

    2016-01-01

    Introduction In recent years, there has been an increase in the attention paid to safety effects, environmental and society’s health, extremely low frequency electromagnetic fields (ELF-EMF), and radio frequency electromagnetic fields (RF-EMF). The aim of this research was to determine the effect of EMF on the alteration of ovarian follicles. Methods In this experimental study at Tabriz Medical University in 2015, we did EMF exposures and assessed the alteration of rats’ ovarian follicles. Thirty three-month old rats were selected randomly from laboratory animals, and, after their ages and weights were determined, they were divided randomly into three groups. The control group consisted of 10 rats without any treatment, and they were kept in normal conditions. The second group of rats was influenced by a magnetic field of 50 Hz for eight weeks (three weeks intrauterine and five weeks ectopic). The third group of rats was influenced by a magnetic field of 50 Hz for 13 weeks (three weeks intrauterine and ten weeks ectopic). Samples were fixed in 10% buffered formaldehyde and cleared with Xylol and embedded in paraffin. After sectioning and staining, samples were studied by optic microscopy. Finally, SPSS version 17, were used for data analysis. Results EMF radiation increased the harmful effects on the formation of ovarian follicles and oocytes implantation. Studies on the effects of electromagnetic fields on ovarian follicles have shown that the nuclei of the oocytes become smaller and change shape. There were significant, harmful changes in the groups affected by electromagnetic waves. Atresia of ovarian follicles was significantly significant in both study groups compared to the control group (p < 0.05). Conclusion Exposure to electromagnetic fields during embryonic development can cause morphological changes in oocytes and affect the differentiation of oocytes and folliculogenesis, resulting in decreased ovarian reserve leading to infertility or reduced

  16. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  17. [Effect of electromagnetic field of extremely low frequency on ATPase activity of actomyosin].

    PubMed

    Tseĭslier, Iu V; Sheliuk, O V; Martyniuk, V S; Nuryshchenko, N Ie

    2012-01-01

    The Mg2+/Ca2+ and K(+)-ATPase actomyosin activity of rabbit skeletal muscle was evaluated by the Fiske-Subbarow method during a five-hour exposition of protein solutions in electromagnetic field of extremely low frequency of 8 Hz and 25 microT induction. The results of the study of the ATPase activity of actomyosin upon electromagnetic exposure have shown statistically significant changes that are characterized by a rather complex time dynamics. After 1, 2 and 4 hours of exposure of protein solutions the effect of ELF EMF exposure inhibits the ATPase activity compared to control samples, which are not exposed to the magnetic field. By the third and fifth hours of exposure to the electromagnetic field, there is a significant increase in the ATPase activity of actomyosin. It should be noted that a similar pattern of change in enzyme activity was universal, both for the environment by Mg2+ and Ca2+, and in the absence of these ions in the buffer. This can evidence for Ca(2+)-independent ways of the infuence of electromagnetic field (EMP) on biologic objects. In our opinion, the above effects are explained by EMP influence on the dynamic properties of actomyosin solutions, which are based on the processes of spontaneous dynamic formation of structure.

  18. String theory in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.

    2003-02-01

    A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.

  19. Biological Effects of Weak Electromagnetic Field on Healthy and Infected Lime (Citrus aurantifolia) Trees with Phytoplasma

    PubMed Central

    Abdollahi, Fatemeh; Niknam, Vahid; Ghanati, Faezeh; Masroor, Faribors; Noorbakhsh, Seyyed Nasr

    2012-01-01

    Exposure to electromagnetic fields (EMF) has become an issue of concern for a great many people and is an active area of research. Phytoplasmas, also known as mycoplasma-like organisms, are wall-less prokaryotes that are pathogens of many plant species throughout the world. Effects of electromagnetic fields on the changes of lipid peroxidation, content of H2O2, proline, protein, and carbohydrates were investigated in leaves of two-year-old trees of lime (Citrus aurantifolia) infected by the Candidatus Phytoplasma aurantifoliae. The healthy and infected plants were discontinuously exposed to a 10 KHz quadratic EMF with maximum power of 9 W for 5 days, each 5 h, at 25°C. Fresh and dry weight of leaves, content of MDA, proline, and protein increased in both healthy and infected plants under electromagnetic fields, compared with those of the control plants. Electromagnetic fields decreased hydrogen peroxide and carbohydrates content in both healthy and infected plants compared to those of the controls. PMID:22649313

  20. Physiologic regulation in electromagnetic fields.

    PubMed

    Michaelson, S M

    1982-01-01

    Electromagnetic fields have been demonstrated to elicit thermoregulatory responses, neuroendocrine, neurochemical modulations, and behavioral reactions. These physiologic regulatory processes are exquisitely tuned, interrelated functions that constitute sensitive indicators of organismic responses to radiofrequency energy absorption (the radiofrequency portion of the electromagnetic spectrum includes as one part microwaves). Assessment of the integration and correlation of these functions relative to the thermal inputs and homeokinetic reactions of the individual subjected to radiofrequency energy should permit differentiation between potential hazards that might compromise the individual's ability to maintain normal physiologic function and effects that are compensated by physiologic redundancy.

  1. Physiologic regulation in electromagnetic fields

    SciTech Connect

    Michaelson, S.M.

    1982-01-01

    Electromagnetic fields have been demonstrated to elicit thermoregulatory responses, neuroendocrine, neurochemical modulations, and behavioral reactions. These physiologic regulatory processes are exquisitely tuned, interrelated functions that constitute sensitive indicators of organismic responses to radiofrequency energy absorption (the radiofrequency portion of the electromagnetic spectrum includes as one part microwaves). Assessment of the integration and correlation of these functions relative to the thermal inputs and homeokinetic reactions of the individual subjected to radiofrequency energy should permit differentiation between potential hazards that might compromise the individual's ability to maintain normal physiologic function and effects that are compensated by physiologic redundancy.

  2. Photonic electromagnetic field sensor apparatus

    NASA Astrophysics Data System (ADS)

    Hilliard, Donald P.; Mensa, Dean L.

    1993-07-01

    An electromagnetic field sensor apparatus which measures the field strength and phase of an incident electromagnetic field as well as the angle of arrival of an incident electromagnetic field is presented. The electromagnetic field sensor apparatus comprises a Luneberg lens which focuses an incoming planar electromagnetic wave entering on one side of the Luneberg lens onto a point on the opposite side of the lens. A photonic sensor is positioned on the Luneberg lens at the point upon which the electromagnetic wave is focused. A light source is located along an optical path which passes through the photonic sensor for transmitting polarized light through the sensor. The photonic sensor modulates the polarized light passing therethrough when the photonic sensor detects the incident electromagnetic wave.

  3. About the biological effects of high and extremely high frequency electromagnetic fields.

    PubMed

    Mileva, K; Georgieva, B; Radicheva, N

    2003-01-01

    This paper deals with the effects of high (microwave) and extremely high (millimetre waves, MMW) frequency electromagnetic fields on the membrane processes and ion channels, molecular complexes, excitable and other structures. Microwaves as well as millimetre waves are widely used in medical practice and in everyday life. The existence of interaction between the exogenous and endogenous electromagnetic fields with biological systems is now a subject of intense discussion. The most contentious question is the existence of a possible specific (non-thermal) effect of microwaves, unrelated to that caused by increased temperature. Although numerous data have been published on the possible non-thermal effects of the studied electromagnetic fields on different kinds of living systems, only little understanding is gained about the modes of microwave action. Here we review data, which provide evidence that non-thermal microwave effects do exist and may play a significant role. This evidence is based on research at all biological levels, from cell-free systems through cells, tissues and organs, to animal and human organisms. PMID:14570154

  4. Resource Letter BELFEF-1: Biological effects of low-frequency electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Hafemeister, David

    1996-08-01

    This Resource Letter provides a guide to the literature on the interaction of extremely low-frequency electromagnetic field (ELF/EMF) interactions with biological matter, and on the possibility that such interactions could have a harmful effect on human health. Journal articles and books are cited for the following topics: ELF/EMF theoretical interactions with biological cells, organs and organisms, magnetic dipole interactions, sensing by animals, biomedical-biophysical experiments, epidemiology, and litigation-mitigation risk issues.

  5. Bioreactor coupled with electromagnetic field generator: effects of extremely low frequency electromagnetic fields on ethanol production by Saccharomyces cerevisiae.

    PubMed

    Perez, Victor H; Reyes, Alfredo F; Justo, Oselys R; Alvarez, David C; Alegre, Ranulfo M

    2007-01-01

    The effect of extremely low frequency (ELF) magnetic fields on ethanol production by Saccharomyces cerevisiae using sugar cane molasses was studied during batch fermentation. The cellular suspension from the fermentor was externally recycled through a stainless steel tube inserted in two magnetic field generators, and consequently, the ethanol production was intensified. Two magnetic field generators were coupled to the bioreactor, which were operated conveniently in simple or combined ways. Therefore, the recycle velocity and intensity of the magnetic field varied in a range of 0.6-1.4 m s(-1) and 5-20 mT, respectively. However, under the best conditions with the magnetic field treatment (0.9-1.2 m s(-1) and 20 mT plus solenoid), the overall volumetric ethanol productivity was approximately 17% higher than in the control experiment. These results made it possible to verify the effectiveness of the dynamic magnetic treatment since the fermentations with magnetic treatment reached their final stage in less time, i.e., approximately 2 h earlier, when compared with the control experiment.

  6. Neuroendocrine mediated effects of electromagnetic-field exposure: Possible role of the pineal gland

    SciTech Connect

    Wilson, W.B.; Stevens, R.G.; Anderson, L.E. )

    1989-01-01

    Reports from recent epidemiological studies have suggested a possible association between extremely low frequently (ELF; including 50- or 60-Hz) electric- and magnetic-field exposure, and increased risk of certain cancers, depression, and miscarriage. ELF field-induced pineal gland dysfunction is a possible etiological factor in these effects. Work in our laboratory and elsewhere has shown that ELF electromagnetic-field exposure can alter the normal circadian rhythm of melatonin synthesis and release in the pineal gland. Consequences of reduced or inappropriately timed melatonin release on the endocrine, neuronal, and immune systems are discussed. Laboratory data linking ELF field exposure to changes in pineal circadian rhythms in both animal and humans are reviewed. The authors suggest that the pineal gland, in addition to being a convenient locus for measuring dyschronogenic effects of ELF field exposure, may play a central role in biological response to these fields via alterations in the melatonin signal.

  7. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  8. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  9. Electromagnetic field effects on cells of the immune system: The role of calcium signalling

    SciTech Connect

    Walleczek, J.

    1991-07-01

    During the past decade considerable evidence has accumulated demonstrating the exposures of cells of the immune system to relatively weak extremely-low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes which might be relevant to in-vivo immune activity. However, knowledge about the underlying biological mechanisms by which weak fields induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca{sup 2+} regulated activity is involved in bioactive ELF field-coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells, and then closely examines new results which suggest a role for Ca{sup 2+} in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca{sup 2+} signalling processes are involved in the mediation of field effects on the immune system. 64 refs., 2 tabs.

  10. Effects of Electromagnetic Field on the Dynamics of Bianchi Type VI0 Universe with Anisotropic Dark Energy

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Zubair, M.

    Spatially homogeneous and anisotropic Bianchi type VI0 cosmological models with cosmological constant are investigated in the presence of anisotropic dark energy. We examine the effects of electromagnetic field on the dynamics of the universe and anisotropic behavior of dark energy. The law of variation of the mean Hubble parameter is used to find exact solutions of the Einstein field equations. We find that electromagnetic field promotes anisotropic behavior of dark energy which becomes isotropic for future evolution. It is concluded that the isotropic behavior of the universe model is seen even in the presence of electromagnetic field and anisotropic fluid.

  11. The effect of the pulsatile electromagnetic field in children suffering from bronchial asthma.

    PubMed

    Sadlonova, J; Korpas, J; Salat, D; Miko, L; Kudlicka, J

    2003-01-01

    From the bibliography it is well known that pulsatile electromagnetic field has an anti-inflammatory and analgesic effect. It causes vasodilatation, myorelaxation, hyper-production of connective tissue and activation of the cell membrane. Therefore our aim was to study the possible therapeutic effect of pulsatile electromagnetic field in asthmatic children. Forty-two children participating in this study were divided in two groups. The 1st group consisting of 21 children (11 females, 10 males, aged 11.8 +/- 0.4 yr) was treated by pulsatile electromagnetic field and pharmacologically. The 2nd group served as control, consisting also of 21 children (11 females, 10 males, aged 11.7 +/- 0.3 yr) and was treated only pharmacologically. Therapeutic effect of the pulsatile electromagnetic field was assessed on the basis of pulmonary tests performed by means of a Spirometer 100 Handi (Germany). The indexes FVC, IVC, ERV, IRV, FEV1, FEV1/FVC%, MEF75,50,25, PEF, PIF and the changes of the flow-volume loop were also registered. The pulsatile electromagnetic field was applied by means of the device MTU 500H, Therapy System (Brno, Czech Republic) for 5 days, two times daily for 30 minutes (magnetic induction: 3 mT, frequency: 4 Hz as recommended by the manufacturer). The results in children of the 1st group showed an improvement of FVC of about 70 ml, IVC of about 110 ml, FEV1 of about 80 ml, MEF75 of about 30 ml, PEF of about 480 ml, PIF of about 550 ml. The increases of ERV, IRV and FEV1/FVC and decreases of MEF25,50 were statistically insignificant. The results in the 2nd group were less clear. The flow-volume loop showed a mild improvement in 14 children. This improvement in the 2nd group was less significant. The clinical status of children and their mood became better. We believe that the pulsatile electro-magnetotherapy in children suffering from asthma is effective. On the basis of our results we can recommend it as a complementary therapy. PMID:14708875

  12. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides

    NASA Astrophysics Data System (ADS)

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J.; Yarovsky, Irene

    2016-02-01

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

  13. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides.

    PubMed

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J; Yarovsky, Irene

    2016-02-28

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications. PMID:26931725

  14. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides.

    PubMed

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J; Yarovsky, Irene

    2016-02-28

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

  15. Health effects of electromagnetic field generated by lightning current pulses near down conductors

    NASA Astrophysics Data System (ADS)

    Tamus, Z. Á.; Novák, B.; Szücs, L.; Kiss, I.

    2011-06-01

    The lightning current generates a time varying magnetic field near down conductors, when lightning strikes the connected Franklin-rod. The down conductors are mounted on the wall of buildings, where residential places can be situated. It is well known that the rapidly changing magnetic fields could generate dangerous eddy currents in the human body. If the duration and the gradient of the magnetic field were high enough, the peripheral nerves are excited. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near a down conductor with the human body. The interaction model has two parts: estimation of the magnetic fields surrounding the down conductor and evaluation of health effects of rapid changing magnetic fields on the human body.

  16. Electromagnetic fields and health outcomes.

    PubMed

    Knave, B

    2001-09-01

    Over the past two decades, there has been increasing interest in the biological effects and possible health outcomes of weak, low-frequency electric and magnetic fields. Epidemiological studies on magnetic fields and cancer, reproduction and neurobehavioural reactions have been presented. More recently, neurological, degenerative and heart diseases have also been reported to be related to such electromagnetic fields. Furthermore, the increased use of mobile phones worldwide has focussed interest on the possible effects of radiofrequency fields of higher frequencies. In this paper, a summary is given on electromagnetic fields and health outcomes and what policy is appropriate--"no restriction to exposure", "prudent avoidance" or "expensive interventions"? The results of research studies have not been unambiguous; studies indicating these fields as being a health hazard have been published and so were studies indicating no risk at all. In "positive" studies, different types of effects have been reported despite the use of the same study design, e.g., in epidemiological cancer studies. There are uncertainties as to exposure characteristics, e.g., magnetic field frequency and exposure intermittence, and not much is known about possible confounding or effect-modifying factors. The few animal cancer studies reported have not given much help in risk assessment; and in spite of a large number of experimental cell studies, no plausible and understandable mechanisms have been presented by which a carcinogenic effect could be explained. Exposure to electromagnetic fields occurs everywhere: in the home, at work, in school, etc. Wherever there are electric wires, electric motors and electronic equipment, electromagnetic fields are created. This is one of the reasons why exposure assessment is difficult. For epidemiologists, the problems is not on the effect side as registers of diseases exist in many countries today. The problem is that epidemiologists do not know the relevant

  17. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier.

    PubMed

    Nittby, Henrietta; Grafström, Gustav; Eberhardt, Jacob L; Malmgren, Lars; Brun, Arne; Persson, Bertil R R; Salford, Leif G

    2008-01-01

    During the last century, mankind has introduced electricity and during the very last decades, the microwaves of the modern communication society have spread a totally new entity--the radiofrequency fields--around the world. How does this affect biology on Earth? The mammalian brain is protected by the blood-brain barrier, which prevents harmful substances from reaching the brain tissue. There is evidence that exposure to electromagnetic fields at non thermal levels disrupts this barrier. In this review, the scientific findings in this field are presented. The result is a complex picture, where some studies show effects on the blood-brain barrier, whereas others do not. Possible mechanisms for the interactions between electromagnetic fields and the living organisms are discussed. Demonstrated effects on the blood-brain barrier, as well as a series of other effects upon biology, have caused societal anxiety. Continued research is needed to come to an understanding of how these possible effects can be neutralized, or at least reduced. Furthermore, it should be kept in mind that proven effects on biology also should have positive potentials, e.g., for medical use. PMID:18568929

  18. Effects of long-term electromagnetic field exposure on spatial learning and memory in rats.

    PubMed

    Hao, Dongmei; Yang, Lei; Chen, Su; Tong, Jun; Tian, Yonghao; Su, Benhang; Wu, Shuicai; Zeng, Yanjun

    2013-02-01

    With the development of communications industry, mobile phone plays an important role in daily life. Whether or not the electromagnetic radiation emitted by mobile phone causes any adverse effects on brain function has become of a great concern. This paper investigated the effect of electromagnetic field on spatial learning and memory in rats. 32 trained Wistar rats were divided into two groups: exposure group and control group. The exposure group was exposed to 916 MHz, 10w/m2 mobile phone electromagnetic field (EMF) 6 h a day, 5 days a week, 10 weeks. The completion time, number of total errors and the neuron discharge signals were recorded while the rats were searching for food in an eight-arm radial maze at every weekend. The neuron signals of one exposed rat and one control rat in the maze were obtained by the implanted microelectrode arrays in their hippocampal regions. It can be seen that during the weeks 4-5 of the experiment, the average completion time and error rate of the exposure group were longer and larger than that of control group (p < 0.05). During the weeks 1-3 and 6-9, they were close to each other. The hippocampal neurons showed irregular firing patterns and more spikes with shorter interspike interval during the whole experiment period. It indicates that the 916 MHz EMF influence learning and memory in rats to some extent in a period during exposure, and the rats can adapt to long-term EMF exposure.

  19. What Are Electromagnetic Fields?

    MedlinePlus

    ... with distance from it. Conductors such as metal shield them very effectively. Other materials, such as building ... with distance from the source. Most building materials shield electric fields to some extent. Magnetic fields arise ...

  20. Photonic electromagnetic field sensor apparatus

    NASA Astrophysics Data System (ADS)

    Hilliard, Donald P.; Mensa, Dean L.

    1993-09-01

    An electromagnetic field sensor apparatus which measures the amplitude, phase, frequency and polarization of an incoming electromagnetic field as well as the angle of arrival of an incident electromagnetic field is introduced. A Luneberg lens focuses an incoming electromagnetic wave entering on one side of the Luneberg lens onto a point on the opposite side of the lens. A pair of photonic sensor which may be electro-optic modulators or Pockel cells are positioned on the Luneberg lens at the point upon which the incident electromagnetic wave is focused. The sensing axis of one of the electro-optic modulators is perpendicular to the sensing axis of the other electro-optic modulator. Polarized light is provided to each photonic sensor along an optical path which passes through the sensor. Each photonic sensor modulates the polarized light passing therethrough when the photonic sensor detects the incident electromagnetic wave.

  1. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells.

    PubMed

    Duan, Weixia; Liu, Chuan; Zhang, Lei; He, Mindi; Xu, Shangcheng; Chen, Chunhai; Pi, Huifeng; Gao, Peng; Zhang, Yanwen; Zhong, Min; Yu, Zhengping; Zhou, Zhou

    2015-03-01

    Extremely low-frequency electromagnetic fields (ELF-EMF) and radiofrequency electromagnetic fields (RF-EMF) have been considered to be possibly carcinogenic to humans. However, their genotoxic effects remain controversial. To make experiments controllable and results comparable, we standardized exposure conditions and explored the potential genotoxicity of 50 Hz ELF-EMF and 1800 MHz RF-EMF. A mouse spermatocyte-derived GC-2 cell line was intermittently (5 min on and 10 min off) exposed to 50 Hz ELF-EMF at an intensity of 1, 2 or 3 mT or to RF-EMF in GSM-Talk mode at the specific absorption rates (SAR) of 1, 2 or 4 W/kg. After exposure for 24 h, we found that neither ELF-EMF nor RF-EMF affected cell viability using Cell Counting Kit-8. Through the use of an alkaline comet assay and immunofluorescence against γ-H2AX foci, we found that ELF-EMF exposure resulted in a significant increase of DNA strand breaks at 3 mT, whereas RF-EMF exposure had insufficient energy to induce such effects. Using a formamidopyrimidine DNA glycosylase (FPG)-modified alkaline comet assay, we observed that RF-EMF exposure significantly induced oxidative DNA base damage at a SAR value of 4 W/kg, whereas ELF-EMF exposure did not. Our results suggest that both ELF-EMF and RF-EMF under the same experimental conditions may produce genotoxicity at relative high intensities, but they create different patterns of DNA damage. Therefore, the potential mechanisms underlying the genotoxicity of different frequency electromagnetic fields may be different.

  2. Treatment of Diabetic Foot Ulcers through Systemic Effects of Extremely Low Frequency Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Trejo-Núñez, A. D.; Pérez-Chávez, F.; García-Sánchez, C.; Serrano-Luna, G.; Cañendo-Dorantes, L.

    2008-08-01

    This study was designed to, investigate the healing effects of extremely low frequency electromagnetic fields (ELF-EMF) on diabetic foot ulcers and test two different exposure systems aimed at reducing the ELF-EMF exposure time of patients. In the first system the ELF-EMF were applied to the arm where only 3% of the total blood volume/min circulates at any given time. In the second system the ELF-EMF were applied to the thorax where more than 100% of the total blood volume/minute circulates at any given time. Twenty-six diabetic patients, with superficial neuropathic ulcers unresponsive to medical treatment were included in this preliminary report. In the first group (17 patients), the arm was exposed two hours twice a week to a extremely low frequency electromagnetic field of 0.45-0.9 mTrms, 120 Hz generated inside a solenoid coil of 10.1 cm by 20.5 cm long. In the second group the thorax of 7 patients was exposed 25 minutes twice a week to an electromagnetic field of 0.4-0.85 mTrms, 120 Hz generated in the center of a squared quasi-Helmholtz coil 52 cm by side. One patient was assigned to a placebo configuration of each exposure system with identical appearance as the active equipment but without magnetic field. Patients with deep ulcers, infected ulcers, cancer, or auto-immune disease were excluded. These preliminary results showed that the two exposure systems accelerate the healing process of neuropathic ulcers. Complete healing of the ulcer had a median duration of 90 days in both exposure systems. Therefore thorax exposure where more blood is exposed to ELF-EMF per unit of time was able to reduce 4.8 times the patient treatment time. In those patients assigned to the placebo equipment no healing effects were observed. This study will continue with a parallel, double blind placebo controlled protocol.

  3. Extremely low frequency electromagnetic fields

    SciTech Connect

    Wilson, B.W. . Chemical Sciences Dept.); Stevens, R.G. ); Anderson, L.E. . Life Sciences Center)

    1990-01-01

    The authors focus on that which seems to be the central scientific issue emerging from current ELF research in epidemiology and in the laboratory; namely, can ELF electromagnetic fields interact with biological systems in such a way as to increase cancer risk The authors examine how cancer risk might be related to two reproducible biological effects of ELF exposure: effects on the pineal gland and circadian biology, and effects on calcium homeostasis in cells. Because they are concerned with the possible biological mechanisms of carcinogenesis, epidemiological studies are only briefly reviewed.

  4. Calculation of Radiofrequency Electromagnetic Fields and Their Effects in MRI of Human Subjects

    PubMed Central

    Collins, Christopher M.; Wang, Zhangwei

    2011-01-01

    Radiofrequency magnetic fields are critical to nuclear excitation and signal reception in Magnetic Resonance Imaging (MRI). The interactions between these fields and human tissues in anatomical geometries results in a variety of effects regarding image integrity and safety of the human subject. In recent decades numerical methods of calculation have been used increasingly to understand the effects of these interactions and aid in engineering better, faster, and safer equipment and methods. As MRI techniques and technology have evolved through the years, so too have the requirements for meaningful interpretation of calculation results. Here we review the basic physics of RF electromagnetics in MRI and discuss a variety of ways RF field calculations are used in MRI in engineering and safety assurance from simple systems and sequences through advanced methods of development for the future. PMID:21381106

  5. A blitz fails. [Court case concerning health effects of electromagnetic fields

    SciTech Connect

    Barnes, E.G. )

    1993-07-01

    An insider tells how the Zuidema jury sided with SDG E...despite unprecedented media pressure. In this court case, San Diego Gas and Electric was sued by plaintiffs alleging their childs rare kidney cancer was caused by electromagnetic fields (EMF) from power lines surrounding their house. After hearing all scientific evidence available up to the time of trial, the jury deliberated less than four hours in siding with SDG E. Jurors wanted to find for plaintiff but in interviews stated plaintiff did not present compelling evidence of cancer being caused by EMF. The jurors also found no need for warnings for the effects of EMF.

  6. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater.

    PubMed

    Trueba, Alfredo; García, Sergio; Otero, Félix M; Vega, Luis M; Madariaga, Ernesto

    2015-01-01

    This article discusses the antifouling action of a continuous physical treatment process comprising the application of electromagnetic fields (EMFs) to seawater used as the refrigerant fluid in a heat exchanger-condenser to maintain the initial 'clean tube' condition. The results demonstrated that the EMFs accelerated the ionic nucleation of calcium and precipitation as calcium carbonate, which weakened the growing biofilm and reduced its adhesion capacity. Consequently, EMFs induced an erosive effect that reduced biofilm formation and fouling. This treatment allowed for the maintenance of significantly lower fouling factors in the treated tubes compared to a control group of untreated tubes, thereby leading to a higher heat transfer efficiency. PMID:25567299

  7. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater.

    PubMed

    Trueba, Alfredo; García, Sergio; Otero, Félix M; Vega, Luis M; Madariaga, Ernesto

    2015-01-01

    This article discusses the antifouling action of a continuous physical treatment process comprising the application of electromagnetic fields (EMFs) to seawater used as the refrigerant fluid in a heat exchanger-condenser to maintain the initial 'clean tube' condition. The results demonstrated that the EMFs accelerated the ionic nucleation of calcium and precipitation as calcium carbonate, which weakened the growing biofilm and reduced its adhesion capacity. Consequently, EMFs induced an erosive effect that reduced biofilm formation and fouling. This treatment allowed for the maintenance of significantly lower fouling factors in the treated tubes compared to a control group of untreated tubes, thereby leading to a higher heat transfer efficiency.

  8. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life.

  9. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life. PMID:1837859

  10. In vitro low frequency electromagnetic field effect on fast axonal transport.

    PubMed

    Zborowski, M; Atkinson, M; Lewandowski, J J; Jacobs, G; Mitchell, D; Breuer, A C; Nosé, Y

    1988-01-01

    The objective of this study was to evaluate the effects of a low frequency electromagnetic field on fast axonal transport for future neuroprosthetic applications. Changes in speeds and densities of retrograde fast organelle transport in rat sciatic nerve preparations were measured in vitro upon exposure to 15 and 50 Hz pulsed magnetic fields with peak intensities of 4.4 and 8.8 mT. Maximum current density of the induced eddy current was calculated to be about 40 microA/cm2. Video enhanced differential interference contrast microscopy was used to record axons supporting active organelle transport. Strong effects were observed in myelinated axons (cessation of transport in up to 10 min). Such effects may eventually be used as part of a neuroprosthesis to noninvasively modify or couple to various parts of the nervous system.

  11. The effect of external magnetic field on plasma acceleration in electromagnetic railgun channel

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.

    2016-03-01

    We have studied the effect of an external magnetic field on the dynamics of a free plasma piston (PP) accelerated without solid striker armature in an electromagnetic railgun channel filled with various gases (argon or helium). It is established that, as the applied magnetic field grows, the velocity of a shock wave generated by PP in the channel increases. The experimental results are compared to a theoretical model that takes into account the gas pressure force behind the shock wave and the drag force that arises when erosion mass entering the channel is partly entrained by the accelerated plasma. The results of model calculations are in satisfactory agreement with experimental data. The discrepancy somewhat increases with the applied field, but the maximum deviation still does not exceed 20%.

  12. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats.

    PubMed

    Mohammed, Haitham S; Fahmy, Heba M; Radwan, Nasr M; Elsayed, Anwar A

    2013-03-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  13. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  14. Electromagnetic field of microtubules: effects on transfer of mass particles and electrons.

    PubMed

    Pokorný, Jiří; Hašek, Jiří; Jelínek, František

    2005-12-01

    Biological polar molecules and polymer structures with energy supply (such as microtubules in the cytoskeleton) can get excited and generate an endogenous electromagnetic field with strong electrical component in their vicinity. The endogenous electrical fields through action on charges, on dipoles and multipoles, and through polarization (causing dielectrophoretic effect) exert forces and can drive charges and particles in the cell. The transport of mass particles and electrons is analyzed as a Wiener-Lévy process with inclusion of deterministic force (validity of the Bloch theorem is assumed for transport of electrons in molecular chains too). We compare transport driven by deterministic forces (together with an inseparable thermal component) with that driven thermally and evaluate the probability to reach the target. Deterministic forces can transport particles and electrons with higher probability than forces of thermal origin only. The effect of deterministic forces on directed transport is dominant. PMID:23345914

  15. Effects of high frequency electromagnetic field (EMF) emitted by mobile phones on the human motor cortex.

    PubMed

    Inomata-Terada, Satomi; Okabe, Shingo; Arai, Noritoshi; Hanajima, Ritsuko; Terao, Yasuo; Frubayashi, Toshiaki; Ugawa, Yoshikazu

    2007-10-01

    We investigated whether the pulsed high frequency electromagnetic field (EMF) emitted by a mobile phone has short term effects on the human motor cortex. We measured motor evoked potentials (MEPs) elicited by single pulse transcranial magnetic stimulation (TMS), before and after mobile phone exposure (active and sham) in 10 normal volunteers. Three sites were stimulated (motor cortex (CTX), brainstem (BST) and spinal nerve (Sp)). The short interval intracortical inhibition (SICI) of the motor cortex reflecting GABAergic interneuronal function was also studied by paired pulse TMS method. MEPs to single pulse TMS were also recorded in two patients with multiple sclerosis showing temperature dependent neurological symptoms (hot bath effect). Neither MEPs to single pulse TMS nor the SICI was affected by 30 min of EMF exposure from mobile phones or sham exposure. In two MS patients, mobile phone exposure had no effect on any parameters of MEPs even though conduction block occurred at the corticospinal tracts after taking a bath. As far as available methods are concerned, we did not detect any short-term effects of 30 min mobile phone exposure on the human motor cortical output neurons or interneurons even though we can not exclude the possibility that we failed to detect some mild effects due to a small sample size in the present study. This is the first study of MEPs after electromagnetic exposure from a mobile phone in neurological patients. PMID:17516508

  16. Effect of pulsed electromagnetic field on healing of experimental nonunion in rat tibiae.

    PubMed

    Muhsin, A U; Islam, K M; Ahmed, A M; Islam, M S; Rabbani, K S; Rahman, S M; Ahmed, S; Hossain, M

    1991-06-01

    To see the effect of Pulsed Electromagnetic Field (PEMF) on nonunited fracture healing, nonunion was induced in rat tibiae and PEMF was applied on it. Out of five different techniques utilised for inducing nonunion soft tissue interposition was found to be the most suitable and effective method of experimental induction of nonunion. Twenty eight experimental and 15 control rats were finally evaluated for the effect of PEMF applied for up to 8 weeks. After sacrifice of 8 experimental and 4 controls, 6 experimental and 3 controls, again 6 experimental and 3 controls and finally 8 experimental and 5 controls at 2, 4, 6 and 8 weeks respectively of PEMF application no significant difference as to the quality of healing was observed between the experimental and control animals. It was thus concluded that PEMF appeared to have no beneficial effect on the healing of nonunited fractures in experimental set-up.

  17. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells.

    PubMed

    Gherardini, Lisa; Ciuti, Gastone; Tognarelli, Selene; Cinti, Caterina

    2014-03-27

    There is a growing concern in the population about the effects that environmental exposure to any source of "uncontrolled" radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.

  18. Searching for the Perfect Wave: The Effect of Radiofrequency Electromagnetic Fields on Cells

    PubMed Central

    Gherardini, Lisa; Ciuti, Gastone; Tognarelli, Selene; Cinti, Caterina

    2014-01-01

    There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects. PMID:24681584

  19. Bio-effects of non-ionizing electromagnetic fields in context of cancer therapy.

    PubMed

    Saliev, Timur; Tachibana, Katsuro; Bulanin, Denis; Mikhalovsky, Sergey; Whitby, Ray D L

    2014-01-01

    Bio-effects mediated by non-ionizing electromagnetic fields (EMF) have become a hot topic of research in the last decades. This interest has been triggered by a growing public concern about the rapid expansion of telecommunication devices and possible consequences of their use on human health. Despite a feasibility study of potential negative impacts, the therapeutic advantages of EMF could be effectively harnessed for the treatment of cancer and other diseases. This review aims to examine recent findings relating to the mechanisms of action underlying the bio-effects induced by non-ionizing EMF. The potential of non-thermal and thermal effects is discussed in the context of possible applications for the induction of apoptosis, formation of reactive oxygen species, and increase of membrane permeability in malignant cells. A special emphasis has been put on the combination of EMF with magnetic nano-particles and ultrasound for cancer treatment. The review encompasses both human and animal studies.

  20. [Effects of electromagnetic field from cellular phones on selected central nervous system functions: a literature review].

    PubMed

    Bak, Marek; Zmyślony, Marek

    2010-01-01

    In the opinion of some experts, a growing emission of man-made electromagnetic fields (EMF), also known as electromagnetic is a source of continuously increasing health hazards to the general population. Due to their large number and very close proximity to the user's head, mobile phones deserve special attention. This work is intended to give a systematic review of objective studies, assessing the effects of mobile phone EMF on the functions of the central nervous system (CNS) structures. Our review shows that short exposures to mobile phone EMF, experienced by telephone users during receiving calls, do not affect the cochlear function. Effects of GSM mobile phone EMF on the conduction of neural impulses from the inner car neurons to the brainstem auditory centres have not been detected either. If Picton's principle, saying that P300 amplitude varies with the improbability of the targets and its latency varies with difficulty of discriminating the target stimulus from standard stimuli, is true, EMF changes the improbability of the targets without hindering their discrimination. Experiments with use of indirect methods do not enable unequivocal verification of EMF effects on the cognitive functions due to the CNS anatomical and functional complexity. Thus, it seems advisable to develop a model of EMF effects on the excitable brain structures at the cellular level. PMID:21452571

  1. Simple and effective monitoring of the electromagnetic field in the smart cities arena

    NASA Astrophysics Data System (ADS)

    Ares-Pena, Francisco J.; Franceschetti, Giorgio; Iodice, Antonio; Salas-Sánchez, Aarón A.

    2016-08-01

    A simple and economical method for monitoring the electromagnetic field intensity in built-up areas is presented. The method is based on the measurement of the field level over a limited number of points at street level in the city and their transmission to an operative control center, where the field values all over the city are correctly interpolated in real time. Citizens might obtain these values at their sites, via Internet, or by connecting with a dedicated call center. Numerical evaluations of the electromagnetic field intensity via the new developed model and confirming experimental results are finally presented.

  2. Self-dual electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2010-08-01

    We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.

  3. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    NASA Astrophysics Data System (ADS)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  4. Electromagnetic field in optics

    NASA Astrophysics Data System (ADS)

    Varga, Peter; Torok, Peter

    1998-09-01

    A linearly polarized plane wave traversing an optically transparent system rarely maintains its linear polarization. In this work we discuss two aspects of this phenomenon. First, we consider the effect of a high aperture lens on polarization. This case is of utmost importance in confocal and near field microscopy and, in general, focusing. Second, the role of the polarization in hologram reconstruction is discussed.

  5. [Immunotropic effects of electromagnetic fields in the range of radio- and microwave frequencies].

    PubMed

    Dabrowski, M P; Stankiewicz, W; Sobiczewska, E; Szmigielski, S

    2001-11-01

    On the grounds of reviewed literature and the results of own experiments, the authors present current views on the possible immunotropic influence of low energy electromagnetic fields, in the range of radio- and microwave frequencies. They conclude, that a more systematic and multidisciplinary investigations should be undertaken, comprising the wide spectrum of immune homeostatic tasks, including defensive, immunoregulatory and pro-regenerative capabilities of immune system exposed to rapid environmental spread of different electromagnetic emitters.

  6. The effect of low frequency pulsing electromagnetic field in treatment of patients with knee joint osteoarthritis.

    PubMed

    Pavlović, Aleksandar S; Djurasić, Ljubomir M

    2012-01-01

    Pulsing electromagnetic field represents effective rocedure in treating of diverse diseases and p pathologic conditions, especially in rheumatology, orthopaedics and traumatology. The goal of this research is the objective evaluation of the treapeutic effect of low frequency pulsing electromagnetic field (LFEMF), in comparison with the effect of the other physical procedure: interfererence currents (IFC) and the medicamentous therapy, in treating of patients with knee joint osteoarthritis. This study was made as experimental, randomized, controlled clinical trial, opened type. The examination included 60 patients (40 females and 20 males) with osteoarthritis of the knee joint. All patients were divided in three groups. The first group of 20 persons, composed of patients treated with medicamentous therapy (Diklofenak of 100 mg, 2 tablets per day). The second group consisted of 20 patients treated by LFPEMF and the third group consisted of 20 patients treated by IFC. All procedures were implemented during 10 days All of patients had also the same duration therapeutic exercise. As observing parameter was used: Lattinen test for the evaluation of the pain sensitivity, before and after therapy. For the statistical analysis of the aquired data, was used Student's t-test. After therapy the pain was considerably reduced in each group, but this effect was the most significant in the II group of the examinees, treated by LFPEMF (p< 0.001), than the effects in other groups of patients: I group (p< 0.05) and III group (p< 0.01). According to the results of this study it can be concluded that LFPEMF is very effective therapeutic procedure in treatment of patients with knee joint osteoarthritis.

  7. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems

    SciTech Connect

    Luben, R.A. )

    1991-07-01

    The vertebrate organism possesses a number of internal processes for signaling and communication between cell types. Hormones and neurotransmitters move from one cell type to another and carry chemical messages that modulate the metabolic responses of tissues to the environment. Interaction with these signaling systems is a potential mechanism by which very low-energy electromagnetic fields might produce metabolic responses in the body. Hormone and neurotransmitter receptors are specialized protein molecules that use a variety of biochemical activities to pass chemical signals from the outside of a cell across the plasma membrane to the interior of the cell. Since many low-energy electromagnetic fields have too little energy to directly traverse the membrane, it is possible that they may modify the existing signal transduction processes in cell membranes, thus producing both transduction and biochemical amplification of the effects of the field itself. As an example of the kinds of processes that may be involved in these interactions, one metabolic process in which the physiological effects of low-energy electromagnetic fields is well established is the healing of bone fractures. The process of regulation of bone turnover and healing is reviewed in the context of clinical applications of electromagnetic energy to the healing process, especially for persistent nonunion fractures. A hypothetical molecular mechanism is presented that might account for the observed effects of electromagnetic fields on bone cell metabolism in terms of the fields' interference with signal transduction events involved in the hormonal regulation of osteoblast function and differentiation. 88 refs.

  8. The effects of 30 mT electromagnetic fields on hippocampus cells of rats

    PubMed Central

    Teimori, Farzaneh; Khaki, Amir A.; Rajabzadeh, Asghar; Roshangar, Leila

    2016-01-01

    Background: Despite the use of electromagnetic waves in the treatment of some acute and chronic diseases, application of these waves in everyday life has created several problems for humans, especially the nerve system. In this study, the effects of 30mT electromagnetic fields (EMFs) on the hippocampus is investigated. Methods: Twenty-four 5-month Wistar rats weighing 150–200 g were divided into two groups. The experimental group rats were under the influence of an EMF at an intensity of 3 mT for approximately 4 hours a day (from 8 AM to 12 PM) during 10 weeks. After the hippocampus was removed, thin slides were prepared for transmission electron microscope (TEM) to study the ultrastructural tissue. Cell death detection POD kits were used to determine the apoptosis rate. Results: The results of the TEM showed that, in the hippocampus of the experimental group, in comparison to the control group, there was a substantial shift; even intracellular organelles such as the mitochondria were morphologically abnormal and uncertain. The number of apoptotic cells in the exposed group compared to the control group showed significant changes. Conclusions: Similar to numerous studies that have reported the effects of EMFs on nerves system, it was also confirmed in this lecture. Hence, the hippocampus which is important in regulating emotions, behavior, motivation, and memory functions, may be impaired by the negative impacts of EMFs. PMID:27453795

  9. The effects of radio-frequency electromagnetic fields on T cell function during development.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Ogasawara, Yuki; Wang, Jianqing; Kunugita, Naoki; Ishii, Kazuyuki

    2015-05-01

    With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF-exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed.

  10. The effects of radio-frequency electromagnetic fields on T cell function during development

    PubMed Central

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Ogasawara, Yuki; Wang, Jianqing; Kunugita, Naoki; Ishii, Kazuyuki

    2015-01-01

    With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF–exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed. PMID:25835473

  11. Effects of acute electromagnetic fields exposure on the interhemispheric homotopic functional connectivity during resting state.

    PubMed

    Lv, Bin; Shao, Qing; Chen, Zhiye; Ma, Lin; Wu, Tongning

    2015-08-01

    In this paper, we aimed to investigate the possible effects of acute radiofrequency electromagnetic fields (EMF) on the interhemispheric homotopic functional connectivity with resting state functional magnetic resonance imaging (fMRI) technique. We designed a controllable LTE-related EMF exposure environment at 2.573 GHz and performed the 30 min real/sham exposure experiments on human brain under the safety limits. The resting state fMRI signals were collected before and after EMF exposure. Then voxel-mirrored homotopic connectivity method was utilized to evaluate the acute effects of LTE EMF exposure on the homotopic functional connectivity between two human hemispheres. Based on our previous research, we further demonstrated that the 30 min short-term LTE EMF exposure would modulate the interhemispheric homotopic functional connectivity in resting state around the medial frontal gyrus and the paracentral lobule during the real exposure.

  12. Effects of electromagnetic fields emitted from W-CDMA-like mobile phones on sleep in humans.

    PubMed

    Nakatani-Enomoto, Setsu; Furubayashi, Toshiaki; Ushiyama, Akira; Groiss, Stefan Jun; Ueshima, Kazumune; Sokejima, Shigeru; Simba, Ally Y; Wake, Kanako; Watanabe, So-ichi; Nishikawa, Masami; Miyawaki, Kaori; Taki, Masao; Ugawa, Yoshikazu

    2013-12-01

    In this study, we investigated subjective and objective effects of mobile phones using a Wideband Code Division Multiple Access (W-CDMA)-like system on human sleep. Subjects were 19 volunteers. Real or sham electromagnetic field (EMF) exposures for 3 h were performed before their usual sleep time on 3 consecutive days. They were exposed to real EMF on the second or third experimental day in a double-blind design. Sleepiness and sleep insufficiency were evaluated the next morning. Polysomnograms were recorded for analyses of the sleep variables and power spectra of electroencephalograms (EEG). No significant differences were observed between the two conditions in subjective feelings. Sleep parameters including sleep stage percentages and EEG power spectra did not differ significantly between real and sham exposures. We conclude that continuous wave EMF exposure for 3 h from a W-CDMA-like system has no detectable effects on human sleep.

  13. The effect of electromagnetic fields emitted by mobile phones on human sleep.

    PubMed

    Loughran, Sarah P; Wood, Andrew W; Barton, Julie M; Croft, Rodney J; Thompson, Bruce; Stough, Con

    2005-11-28

    Previous research has suggested that exposure to radiofrequency electromagnetic fields increases electroencephalogram spectral power in non-rapid eye movement sleep. Other sleep parameters have also been affected following exposure. We examined whether aspects of sleep architecture show sensitivity to electromagnetic fields emitted by digital mobile phone handsets. Fifty participants were exposed to electromagnetic fields for 30 min prior to sleep. Results showed a decrease in rapid eye movement sleep latency and increased electroencephalogram spectral power in the 11.5-12.25 Hz frequency range during the initial part of sleep following exposure. These results are evidence that mobile phone exposure prior to sleep may promote rapid eye movement sleep and modify the sleep electroencephalogram in the first non-rapid eye movement sleep period. PMID:16272890

  14. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  15. The effect of electromagnetic fields, from two commercially available water treatment devices, on bacterial culturability.

    PubMed

    Piyadasa, Chathuri; Yeager, Thomas R; Gray, Stephen R; Stewart, Matthew B; Ridgway, Harry F; Pelekani, Con; Orbell, John D

    2016-01-01

    Commercially available pulsed-electromagnetic field (PEMF) devices are currently being marketed and employed to ostensibly manage biofouling. The reliable application and industry acceptance of such technologies require thorough scientific validation - and this is currently lacking. We have initiated proof-of-principle research in an effort to investigate whether such commercially available PEMF devices can influence the viability (culturability) of planktonic bacteria in an aqueous environment. Thus two different commercial PEMF devices were investigated via a static (i.e. non-flowing) treatment system. 'Healthy' Escherichia coli cells, as well as cultures that were physiologically compromised by silver nano-particles, were exposed to the PEMFs from both devices under controlled conditions. Although relatively minor, the observed effects were nevertheless statistically significant and consistent with the hypothesis that PEMF exposure under controlled conditions may result in a decrease in cellular viability and culturability. It has also been observed that under certain conditions bacterial growth is actually stimulated.

  16. Effect of electromagnetic field on the stability of viscoelastic fluid film flowing down an inclined plane

    NASA Astrophysics Data System (ADS)

    Haldar, Samadyuti

    2016-04-01

    The stability of thin electrically conducting viscoelastic fluid film flowing down on a non-conducting inclined plane in the presence of electromagnetic field is investigated under induction-free approximation. Surface evolution equation is derived by long-wave expansion method. The stabilizing role of Hartman number M (magnetic field) and the destabilizing role of the viscoelastic property {\\varGamma} and the electric parameter E on such fluid film are established through the linear stability analysis of the surface evolution equation. Investigation shows that at small values of Hartman number ( M), the influence of electric parameter ( E) on the viscoelastic parameter {(\\varGamma)} is insignificant, while for large values of M, E introduces more destabilizing effect at low values of {\\varGamma} than that at high values of {\\varGamma }. An interesting result also perceived from our analysis is that the stabilizing effect of Hartman number ( M) is decreasing with the increase of the values of {\\varGamma} and E, even it gives destabilizing effect after a certain high value of the electric field depending on the high value of {\\varGamma}. The weakly nonlinear study reveals that the increase of {\\varGamma} decreases the explosive and subcritical unstable zones but increases the supercritical stable zone keeping the unconditional zone almost constant.

  17. Effects of 76 Hz electromagnetic fields on forest ecosystems in northern Michigan: Tree growth

    NASA Astrophysics Data System (ADS)

    Reed, David D.; Jones, Elizabeth A.; Mroz, Glenn D.; Liechty, Hal O.; Cattelino, Peter J.; Jürgensen, Martin F.

    1993-12-01

    Since 1984, the possible effects of extremely low-frequency electromagnetic (EM) fields generated by a 76 Hz communication antenna on the growth and productivity of four deciduous and one coniferous species have been studied in the Upper Peninsula of Michigan. Results from two research sites are discussed here: one site near an antenna element and a control site located 50 km from the communication system. Growth models for individual tree diameters were developed for northern red oak ( Quercus rubra), paper birch ( Betula papyrifera), aspen ( Populus tremuloides with a few individuals of P. grandidentata), and red maple ( Acer rubrum). A growth model for individual tree height was developed for young red pine ( Pinus resinosa). Average differences between the observed and predicted growth were calculated for each growing season and then compared between the study sites and across the study periods to evaluate changes in growth patterns which could be attributed to EM field effects. For aspen and red maple, the results showed a stimulation of diameter growth at magnetic flux density levels of 1 to 7 milliGauss; height growth of red pine was increased at about the same exposure levels. There are no clear indications of an EM field effect on total annual diameter growth for either of the other two species.

  18. Electromagnetic Field Devices and Their Effects on Nociception and Peripheral Inflammatory Pain Mechanisms.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-03-01

    Context • During cell-communication processes, endogenous and exogenous signaling affects normal and pathological developmental conditions. Exogenous influences, such as extra-low-frequency (ELF) electromagnetic fields (EMFs) have been shown to affect pain and inflammation by modulating G-protein coupling receptors (GPCRs), downregulating cyclooxygenase-2 (Cox-2) activity, and downregulating inflammatory modulators, such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as the transcription factor nuclear factor kappa B (NF-κB). EMF devices could help clinicians who seek an alternative or complementary treatment for relief of patients chronic pain and disability. Objective • The research team intended to review the literature on the effects of EMFs on inflammatory pain mechanisms. Design • We used a literature search of articles published in PubMed using the following key words: low-frequency electromagnetic field therapy, inflammatory pain markers, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), opioid receptors, G-protein coupling receptors, and enzymes. Setting • The study took place at the Wake Forest School of Medicine in Winston-Salem, NC, USA. Results • The mechanistic pathway most often considered for the biological effects of EMF is the plasma membrane, across which the EMF signal induces a voltage change. Oscillating EMF exerts forces on free ions that are present on both sides of the plasma membrane and that move across the cell surface through transmembrane proteins. The ions create a forced intracellular vibration that is responsible for phenomena such as the influx of extracellular calcium (Ca2+) and the binding affinity of calmodulin (CaM), which is the primary transduction pathway to the secondary messengers, cAMP and cGMP, which have been found to influence inflammatory pain. Conclusions • An emerging body of evidence indicates the existence of a frequency

  19. Electromagnetic Field Devices and Their Effects on Nociception and Peripheral Inflammatory Pain Mechanisms.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-03-01

    Context • During cell-communication processes, endogenous and exogenous signaling affects normal and pathological developmental conditions. Exogenous influences, such as extra-low-frequency (ELF) electromagnetic fields (EMFs) have been shown to affect pain and inflammation by modulating G-protein coupling receptors (GPCRs), downregulating cyclooxygenase-2 (Cox-2) activity, and downregulating inflammatory modulators, such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as the transcription factor nuclear factor kappa B (NF-κB). EMF devices could help clinicians who seek an alternative or complementary treatment for relief of patients chronic pain and disability. Objective • The research team intended to review the literature on the effects of EMFs on inflammatory pain mechanisms. Design • We used a literature search of articles published in PubMed using the following key words: low-frequency electromagnetic field therapy, inflammatory pain markers, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), opioid receptors, G-protein coupling receptors, and enzymes. Setting • The study took place at the Wake Forest School of Medicine in Winston-Salem, NC, USA. Results • The mechanistic pathway most often considered for the biological effects of EMF is the plasma membrane, across which the EMF signal induces a voltage change. Oscillating EMF exerts forces on free ions that are present on both sides of the plasma membrane and that move across the cell surface through transmembrane proteins. The ions create a forced intracellular vibration that is responsible for phenomena such as the influx of extracellular calcium (Ca2+) and the binding affinity of calmodulin (CaM), which is the primary transduction pathway to the secondary messengers, cAMP and cGMP, which have been found to influence inflammatory pain. Conclusions • An emerging body of evidence indicates the existence of a frequency

  20. The effects of prenatal and neonatal exposure to electromagnetic fields on infant rat myocardium

    PubMed Central

    Tayefi, Hamid; Kiray, Amac; Ergur, Bekir Ugur; Bagriyanik, Husnu Alper; Pekcetin, Cetin; Fidan, Mustafa; Ozogul, Candan

    2010-01-01

    Introduction Electromagnetic fields (EMF) have adverse effects as a result of widespread use of electromagnetic energy on biological systems. The aim of this study was to investigate the effects of prenatal exposure to EMF on rat myocardium by biochemical and histopathological evaluations. Material and methods In this study, 10 pregnant Wistar rats were used. Half of the pregnant rats were exposed to EMF of 3 mT, and the other half to sham conditions during gestation. After parturition, rat pups in the 5 EMF-exposed litters from birth until postnatal day 20 were exposed to EMF of 3 mT for 4 h/day (EMF-exposed group, n = 30). Rat pups in sham litters from birth until postnatal day 20 were exposed to sham conditions (sham group, n= 20). Results In the EMF-exposed group, lipid peroxidation levels significantly increased compared to sham. Superoxide dismutase activities decreased significantly in the EMF-exposed group compared to sham. TUNEL staining showed that the number of TUNEL-positive cells increased significantly in EMF-exposed rats compared with sham. Under electron microscopy, there were mitochondrial degeneration, reduction in myofibrils, dilated sarcoplasmic reticulum and perinuclear vacuolization in EMF-exposed rats. Conclusions In conclusion, the results show that prenatal exposure to EMF causes oxidative stress, apoptosis and morphological pathology in myocardium of rat pups. The results of our study indicate a probable role of free radicals in the adverse effects of prenatal exposure to EMF. Further studies are needed to demonstrate whether the EMF exposure can induce adverse effects on the myocardium. PMID:22427754

  1. The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats.

    PubMed

    Mishima, S

    1988-03-01

    The author performed experiments in order to investigate what biological effect on the bone would be produced by long-term pulsing electromagnetic field (PEMF) systemic stimulation. In some of the mature female rats used as experimental animals, bilateral ovariectomy and right sciatic neurectomy were performed in order to make a model osteoporosis. PEMF stimulation was produced by repetitive pulse burst (RPB) waves at a positive amplitude of 25 mV, negative amplitude of 62.5 mV, burst width of 4.2 ms, pulse width of 230 microseconds and 12 Hz, with the magnetic field strength within a cage being set at 3-10 Gauss. PEMF stimulation over 6 months did not produce any effects on the physiologically aged bones. PEMF stimulation also did not produce any effects on losed cortical bone in osteoporotic hindlegs. On the other hand, an increase of bone volume and bone formation activity was observed in the cancellous bone of osteoporotic hindlegs. These findings suggested that PEMF stimulation exerted a preventive effect against bone loss of osteoporotic hindlegs. Furthermore, an observed increase in bone marrow blood flow seemed to be related with this increase of bone volume and bone formation activity.

  2. The Effects of Electromagnetic Field on the Endocrine System in Children and Adolescents.

    PubMed

    Sangün, Özlem; Dündar, Bumin; Çömlekçi, Selçuk; Büyükgebiz, Attila

    2015-12-01

    Children are exposed to various kind of non-ionizan radiation in their daily life involuntarily. The potential sensitivity of developing organism to the effects of radiofrequency (RF) signals, the higher estimated specific absorption rate (SAR) values of children and greater lifetime cumulative risk raised the scientific interest for children's vulnerability to electromagnetic fields (EMFs). In modern societies, children are being exposed to EMFs in very early ages. There are many researches in scientific literature investigating the alterations of biological parameters in living organisms after EMFs. Although the international guidelines did not report definite, convincing data about the causality, there are unignorable amount of studies indicating the increased risk of cancer, hematologic effects and cognitive impairment. Although they are less in amount; growing number of studies reveal the impacts on metabolism and endocrine function. Reproductive system and growth look like the most challenging fields. However there are also some concerns on detrimental effects of EMFs on thyroid functions, adrenal hormones, glucose homeostasis and melatonin levels. It is not easy to conduct a study investigating the effects of EMFs on a fetus or child due to ethical issues. Hence, the studies are usually performed on virtual models or animals. Although the results are conflicting and cannot be totally matched with humans; there is growing evidence to distress us about the threats of EMF on children.

  3. Effects of electromagnetic field exposure on the heart: a systematic review.

    PubMed

    Elmas, Onur

    2016-01-01

    The use of electrical devices has gradually increased throughout the last century, and scientists have suggested that electromagnetic fields (EMF) generated by such devices may have harmful effects on living creatures. This work represents a systematic review of collective scholarly literature examining the effects of EMFs on the heart. Although most works describing effects of EMF exposure have been carried out using city electric frequencies (50-60 Hz), a consensus has not been reached about whether long- or short-term exposure to 50-60 Hz EMF negatively affects the heart. Studies have indicated that EMFs produced at cell-phone frequencies cause no-effect on the heart. Differences between results of studies may be due to a compensatory response developed by the body over time. At greater EMF strengths or shorter exposures, the ability of the body to develop compensation mechanisms is reduced and the potential for heart-related effects increases. It is noteworthy that diseases of heart tissues such as myocardial ischemia can also be successfully treated using EMF. Despite the substantial volume of data that has been collected on heart-related effects of EMFs, additional studies are needed at the cellular and molecular level to fully clarify the subject. Until the effects of EMF on heart tissue are more fully explored, electronic devices generating EMFs should be approached with caution.

  4. Safety Problems of Electric and Magnetic Fields and Experimental Magnetic Fusion Facilities 4.Biolosical Effects of High-Frequency Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Fujiwara, Osamu

    With the expanding use of portable telephones, public concerns regarding potential health hazards due to the absorption of electromagnetic energy have been growing. In this article, electromagnetic waves and their resultant biological effects are reviewed. The thermal effects due to RF (radio-frequency) electromagnetic fields and basic proposals for safety standards are described in conjunction with whole-body / localized average SARs (specific absorption rates) being used as bioeffect evaluation measures. Our computed dosimetries of the human head for portable telephones are also shown.

  5. Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study

    PubMed Central

    Anbarasan, Selvam; Baraneedharan, Ulaganathan; Paul, Solomon FD; Kaur, Harpreet; Rangaswami, Subramoniam; Bhaskar, Emmanuel

    2016-01-01

    Background: Pulsed electromagnetic field (PEMF) is used to treat bone and joint disorders for over 30 years. Recent studies demonstrate a significant effect of PEMF on bone and cartilage proliferation, differentiation, synthesis of extracellular matrix (ECM) and production of growth factors. The aim of this study is to assess if PEMF of low frequency, ultralow field strength and short time exposure have beneficial effects on in-vitro cultured human chondrocytes. Materials and Methods: Primary human chondrocytes cultures were established using articular cartilage obtained from knee joint during joint replacement surgery. Post characterization, the cells were exposed to PEMF at frequencies ranging from 0.1 to 10 Hz and field intensities ranging from 0.65 to 1.95 μT for 60 min/day for 3 consecutive days to analyze the viability, ECM component synthesis, proliferation and morphology related changes post exposure. Association between exposure doses and cellular effects were analyzed with paired't’ test. Results: In-vitro PEMF exposure of 0.1 Hz frequency, 1.95 μT and duration of 60 min/day for 3 consecutive days produced the most favorable response on chondrocytes viability (P < 0.001), ECM component production (P < 0.001) and multiplication. Exposure of identical chondrocyte cultures to PEMFs of 0.65 μT field intensity at 1 Hz frequency resulted in less significant response. Exposure to 1.3 μT PEMFs at 10 Hz frequency does not show any significant effects in different analytical parameters. Conclusions: Short duration PEMF exposure may represent a new therapy for patients with Osteoarthritis (OA). PMID:26955182

  6. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system.

  7. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. PMID:26686296

  8. Effects of low intensity static electromagnetic radiofrequency fields on leiomyosarcoma and smooth muscle cell lines.

    PubMed

    Karkabounas, Spyridon; Havelas, Konstantinos; Kostoula, Olga K; Vezyraki, Patra; Avdikos, Antonios; Binolis, Jayne; Hatziavazis, George; Metsios, Apostolos; Verginadis, Ioannis; Evangelou, Angelos

    2006-01-01

    In this study we investigated the effects of low intensity static radiofrequency electromagnetic field (EMF) causing no thermal effects, on leiomyosarcoma cells (LSC), isolated from tumors of fifteen Wistar rats induced via a 3,4-benzopyrene injection. Electromagnetic resonance frequencies measurements and exposure of cells to static EMF were performed by a device called multi channel dynamic exciter 100 V1 (MCDE). The LSC were exposed to electromagnetic resonance radiofrequencies (ERF) between 10 kHz to 120 kHz, for 45 min. During a 24h period, after the exposure of the LSC to ERF, there was no inhibition of cells proliferation. In contrast, at the end of a 48 h incubation period, LSC proliferation dramatically decreased by more than 98% (P<0.001). At that time, the survived LSC were only 2% of the total cell population exposed to ERF, and under the same culture conditions showed significant decrease of proliferation. These cells were exposed once again to ERF for 45 min (totally 4 sessions of exposure, of 45 min duration each) and tested using a flow cytometer. Experiments as above were repeated five times. It was found that 45% of these double exposed to ERF, LSC (EMF cells) were apoptotic and only a small percentage 2%, underwent mitosis. In order to determinate their metastatic potential, these EMF cells were also counted and tested by an aggregometer for their ability to aggregate platelets and found to maintain this ability., since they showed no difference in platelet aggregation ability compared to the LSC not exposed to ERF (control cells). In conclusion, exposure of LSC to specific ERF, decreases their proliferation rate and induces cell apoptosis. Also, the LSC that survived after exposed to ERF, had a lower proliferation rate compared to the LSC controls (P<0.05) but did not loose their potential for metastases (platelet aggregation ability). The non-malignant SMC were not affected by the EMF exposure (P<0.4). The specific ERF generated from the MCDE

  9. Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): a systematic literature review.

    PubMed

    Hug, Kerstin; Röösli, Martin

    2012-02-01

    Pulsed electromagnetic fields (PEMF) delivered by whole-body mats are promoted in many countries for a wide range of therapeutic applications and for enhanced well-being. However, neither the therapeutic efficacy nor the potential health hazards caused by these mats have been systematically evaluated. We conducted a systematic review of trials investigating the therapeutic effects of low-frequency PEMF devices. We were interested in all health outcomes addressed so far in randomized, sham-controlled, double-blind trials. In total, 11 trials were identified. They were focused on osteoarthritis of the knee (3 trials) or the cervical spine (1), fibromyalgia (1), pain perception (2), skin ulcer healing (1), multiple sclerosis-related fatigue (2), or heart rate variability and well-being (1). The sample sizes of the trials ranged from 12 to 71 individuals. The observation period lasted 12 weeks at maximum, and the applied magnetic flux densities ranged from 3.4 to 200 µT. In some trials sporadic positive effects on health were observed. However, independent confirmation of such singular findings was lacking. We conclude that the scientific evidence for therapeutic effects of whole-body PEMF devices is insufficient. Acute adverse effects have not been reported. However, adverse effects occurring after long-term application have not been studied so far. In summary, the therapeutic use of low-frequency whole-body PEMF devices cannot be recommended without more scientific evidence from high-quality, double-blind trials.

  10. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin.

    PubMed

    Reiter, R J

    1993-04-01

    The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 mu tesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non

  11. The effect of electromagnetic field on reactive oxygen species production in human neutrophils in vitro.

    PubMed

    Poniedzialek, Barbara; Rzymski, Piotr; Nawrocka-Bogusz, Honorata; Jaroszyk, Feliks; Wiktorowicz, Krzysztof

    2013-09-01

    The present study was undertaken in order to determine the effect of low frequency electromagnetic field (EMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. We investigated how differently generated EMF and several levels of magnetic induction affect ROS production. To evaluate the level of ROS production, two fluorescent dyes were used: 2'7'-dichlorofluorscein-diacetate and dihydrorhodamine. Phorbol 12-myristate 13-acetate (PMA), known as strong stimulator of the respiratory burst, was also used. Alternating magnetic field was generated by means of Viofor JPS apparatus. Three different levels of magnetic induction have been analyzed (10, 40 and 60 μT). Fluorescence of dichlorofluorescein and 123 rhodamine was measured by flow cytometry. The experiments demonstrated that only EMF tuned to the calcium ion cyclotron resonance frequency was able to affect ROS production in neutrophils. Statistical analysis showed that this effect depended on magnetic induction value of applied EMF. Incubation in EMF inhibited cell activity slightly in unstimulated neutrophils, whereas the activity of PMA-stimulated neutrophils has increased after incubation in EMF.

  12. Effects of extremely low frequency electromagnetic fields on breeding and migrating birds

    SciTech Connect

    Hanowski, J.M.; Blake, J.G.; Niemi, G.J.; Collins, P.T. )

    1993-01-01

    We conducted this study to determine if electromagnetic (EM) fields produced by an extremely low frequency (ELF) antenna system affected either the abundance or richness of breeding and migrating bird species. We counted birds on 80-500 m transects, 40 in reference areas and 40 in treatment areas adjacent to an ELF antenna system in northern Wisconsin. Counts were done three times during the breeding season and twice during autumn migration from 1986 to 1989. We used repeated measures ANOVA (multivariate test) to determine if species abundance and numbers of species varied annually (univariate test), no treatment effects were detected for bird community parameters. Fifteen of 75 breeding bird species tested indicated significant differences between reference and treatment study areas; 10 were more abundant in treatment areas. Six of 10 species more abundant in treatment areas were species that occur along edges. Eight of 51 species showed significant treatment effects in the migration season; six were more abundant in reference study areas. Two species, the ruffed grouse (Bonasa umbellus) and white-breasted nuthatch (Sitta carolinensis) were more abundant in reference study areas in both the breeding and migration seasons. Overall, most differences detected between treatment and reference study areas could be attributed to differences in habitat (or presence of edge). It is unlikely that differences could be attributed to ELF EM fields. 49 refs., 4 figs., 1 tab.

  13. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts.

    PubMed

    Zhu, Huang; Wang, Jie; Cui, Jiefeng; Fan, Xianqun

    2016-06-01

    This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p < 0.05). This study shows that ELF-EMFs had biological effects on HFSFs and could cause abnormality in scleral collagen.

  14. Nonthermal effects of lifelong high-frequency electromagnetic field exposure on social memory performance in rats.

    PubMed

    Schneider, Janine; Stangassinger, Manfred

    2014-10-01

    We are today surrounded almost constantly by high-frequency electromagnetic fields (EMFs) from mobile communications base stations. To date, however, there has been little concern regarding nonthermal effects of EMFs on cognition. In the present study, male and female rats were subjected to continuous far-field exposure to a frequency of 900-MHz (Global System for Mobile Communications [GSM]) or 1.966-GHz (Universal Mobile Telecommunications System [UMTS]) at 0.4 W/kg. Memory performance of adult EMF-exposed and sham-exposed female rats (at 6 months of age) and male rats (at 3 and 6 months of age) was tested using a social discrimination procedure. For this procedure, a target juvenile male was introduced to the subject's home cage for 4 min (Trial 1). After 30 min, the same target animal and a novel juvenile male were simultaneously presented to the subject for 4 min (Trial 2). Differences in sniffing duration to the familiar and novel target rats during Trial 2 were used to assess memory performance. EMF-exposed females exhibited no differences in sniffing duration compared with controls. In contrast, the sniffing durations of EMF-exposed males at 3 months of age were significantly affected. At 6 months of age, GSM-, but not UMTS-, exposed male adults showed a memory performance deficit. These findings provide new insight into the nonthermal effects of long-term high-frequency EMF exposure on memory.

  15. Medical applications of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  16. Effects of pulsed electromagnetic field on differentiation of HUES-17 human embryonic stem cell line.

    PubMed

    Wu, Yi-Lin; Ma, Shi-Rong; Peng, Tao; Teng, Zeng-Hui; Liang, Xiang-Yan; Guo, Guo-Zhen; Zhang, Hai-Feng; Li, Kang-Chu

    2014-08-14

    Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC) line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF) for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP), stage-specific embryonic antigen-3 (SSEA-3), SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  17. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

    SciTech Connect

    Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.

    2009-10-15

    We derive the leading two-pion-exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  18. Effects of electromagnetic fields on the metabolism of lubricin of rat chondrocytes.

    PubMed

    Wang, Wei; Li, Wenkai; Song, Mingyu; Wei, Sheng; Liu, Chaoxu; Yang, Yong; Wu, Hua

    2016-01-01

    Electromagnetic fields (EMFs) can improve pain, stiffness and physical function in osteoarthritis (OA) patients and have been proposed for the treatment of OA. However, the precise mechanisms involved in this process are still not fully understood. In the present study, we investigated the effects of exposure for different durations with 75 Hz, 2.3 mT sinusoidal EMFs (SEMFs) on the metabolism of lubricin of rat chondrocytes cultured in vitro. Our results showed that SEMFs exposure promoted lubricin synthesis in a time-dependent manner, and the expression of transforming growth factor (TGF)-β1 was also enhanced after SEMFs treatment. The up-regulation effect of the expression of lubricin under SEMF was partly reduced by SB431542, an inhibitor of TGF-RI kinase. The Smad pathway was also investigated in our study. Smad2 synthesis was higher in EMF-exposed condition than in controls, whereas no effects were observed on inhibitory Smads (Smad6 and Smad7) production. Altogether, these data suggest that SEMF exposure can promote lubricin synthesis of rat chondrocytes in a time-dependent manner and that the TGF-β/Smads signaling pathway plays a partial role.

  19. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  20. Effects of electromagnetic fields on mental health of the staff employed in gas power plants, Shiraz, 2009.

    PubMed

    Zamanian, Z; Gharepoor, S; Dehghani, M

    2010-10-01

    The aims of this study are to assess, in a power station in Shiraz, the effects of noise and electromagnetic field on psychological mood. By the great industrial and technological improvements human beings have been exposed to different types of physical and chemical factors. Some of these factors such as electromagnetism are known as the constant components of the environment. According to the studies carried out in one of the power stations in Shiraz, psychological disorders caused by jobs are among the most important problems of the workers. This study is performed to determine the presence or absence of these psychological disorders. This cross-sectional study is performed on these groups : (1) The gas power plant staff who were in contact with electromagnetic field and nose, (2) employees who were only exposed to noise and (3) a group of staff employed in the administrative parts of the Telecommunication companies who did not have any history of being exposed to electromagnetic field and sounds. The General Health Questionnaire (GHQ) is used in this study to recognize psychosomatic disorders. Measurements indicate that range of electromagnetic field varies from 0.087 micro Tesla in the phone homes to 30 micro Tesla in power stations. The results of this study has shown that a significant number of staff which were exposed to electromagnetic fields and noise (78.2%) were suspected to have a kind of mental disorders. The results obtained from this study which shows the prevalence of mental disorders among the suspected case is higher than the results of Noorbala and colleagues study in 2006.

  1. Calculation of the surface effect in the ferromagnetic conductor with the harmonic electromagnetic field

    NASA Astrophysics Data System (ADS)

    Nosov, G. V.; Kuleshova, E. O.; Vassilyeva, Yu Z.; Elizarov, A. I.

    2016-04-01

    The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods.

  2. Comment on ``Constraints on biological effects of weak extremely-low-frequency electromagnetic fields''

    NASA Astrophysics Data System (ADS)

    Kirschvink, Joseph L.

    1992-08-01

    In a recent paper, Adair [Phys. Rev. A 43, 1039 (1991)] concludes that weak extremely-low-frequency (ELF) electromagnetic fields cannot affect biology on the cell level. However, Adair's assertion that few cells of higher organisms contain magnetite (Fe3O4) and his blanket denial of reproducible ELF effects on animals are both wrong. Large numbers of single-domain magnetite particles are present in a variety of animal tissues, including up to a hundred million per gram in human brain tissues, organized in clusters of tens to hundreds of thousand per gram. This is far more than a ``few cells.'' Similarly, a series of reproducible behavioral experiments on honeybees, Apis mellifera, have shown that they are capable of responding to weak ELF magnetic fields that are well within the bounds of Adair's criteria. A biologically plausible model of the interaction of single-domain magnetosomes with a mechanically activated transmembrane ion channel shows that ELF fields on the order of 0.1 to 1 mT are capable of perturbing the open-closed state by an energy of kT. As up to several hundred thousand such structures could fit within a eukaryotic cell, and the noise should go as the square root of the number of independent channels, much smaller ELF sensitivities at the cellular level are possible. Hence, the credibility of weak ELF magnetic effects on living systems must stand or fall mainly on the merits and reproducibility of the biological or epidemiological experiments that suggest them, rather than on dogma about physical implausibility.

  3. Experimental study of the effects of radiofrequency electromagnetic fields on animals with soft tissue wounds.

    PubMed

    Detlavs, I; Dombrovska, L; Turauska, A; Shkirmante, B; Slutskii, L

    1996-02-01

    The effect of radio frequency electromagnetic fields (RF EMF) was studied on Wistar rats with excised full-thickness dermal wounds in the interscapular region. The wounded regions of experimental animals were subjected to EMF for 30 min daily during the first 5 days after wound infliction. Control animals received no treatment. We used RF EMF with (1) frequency 53.53 GHz without modulation; (2) frequency 42.19 GHz without modulation; (3) frequency 42.19 GHz, but with a frequency modulation band 200-MHz wide. On the 7th day the animals were terminated and the granulation-fibrous tissue (GFT) developed in the wounds was subjected to complex quantitative biochemical analysis. RF EMF without frequency modulation decreased the amounts of glycoprotein macromolecules, diminishing the inflammatory exudation. In striking contrast, under the influence of RF EMF with frequency modulation, hexoses and especially sialic acid concentrations were significantly elevated (P < 0.001). This indicated intensification of exudative phenomena. As a consequence of inflammation inhibition in the treatment without frequency modulation, the total collagen accumulation was lowered. However, when frequency was modulated, the inflammatory phenomena were intensified, and pronounced accumulation of collagenous proteins was noted. Thus, our experiments confirm the effects of non-thermal EMF on the reparative-proliferative processes of animals with soft tissue wounds.

  4. The effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on rat testicular function.

    PubMed

    Lee, Hae-June; Jin, Yeung Bae; Kim, Tae-Hong; Pack, Jeong-Ki; Kim, Nam; Choi, Hyung-Do; Lee, Jae-Seon; Lee, Yun-Sil

    2012-05-01

    Wireless mobile phones and other telecommunication devices are used extensively in daily life. We therefore examined the effects of combined exposure to radiofrequency electromagnetic fields (RF-EMF) on rat testicular function, specifically with respect to sensitive processes such as spermatogenesis. Male rats were exposed to single code division multiple access (CDMA) and wideband code division multiple access (WCDMA) RF signals for 12 weeks. The RF exposure schedule comprised 45 min/day, 5 days/week for a total of 12 weeks. The whole-body average specific absorption rate (SAR) of CDMA and WCDMA was 2.0 W/kg each or 4.0 W/kg in total. We then investigated the correlates of testicular function such as sperm count in the cauda epididymis, testosterone concentration in the blood serum, malondialdehyde concentrations in the testes and epididymis, frequency of spermatogenesis stages, and appearance of apoptotic cells in the testes. We also immunoblotted for p53, bcl2, GADD45, cyclin G, and HSP70 in the testes of sham- and combined RF-exposed animals. Based on the results, we concluded that simultaneous exposure to CDMA and WCDMA RF-EMFs at 4.0 W/kg SAR did not have any observable adverse effects on rat spermatogenesis.

  5. Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines.

    PubMed

    Sul, Ah Ram; Park, Si-Nae; Suh, Hwal

    2006-12-31

    This study investigated that whether a 2 mT, 60 Hz, sinusoidal electromagnetic field (EMF) alters the structure and function of cells. This research compared the effects of EMF on four kinds of cell lines: hFOB 1.19 (fetal osteoblast), T/G HA-VSMC (aortic vascular smooth muscle cell), RPMI 7666 (B lymphoblast), and HCN-2 (cortical neuronal cell). Over 14 days, cells were exposed to EMF for 1, 3, or 6 hours per day (hrs/d). The results pointed to a cell type-specific reaction to EMF exposure. In addition, the cellular responses were dependent on duration of EMF exposure. In the present study, cell proliferation was the trait most sensitive to EMF. EMF treatment promoted growth of hFOB 1.19 and HCN-2 compared with control cells at 7 and 14 days of incubation. When the exposure time was 3 hrs/d, EMF enhanced the proliferation of RPMI 7666 but inhibited that of T/G HA- VSMC. On the other hand, the effects of EMF on cell cycle distribution, cell differentiation, and actin distribution were unclear. Furthermore, we hardly found any correlation between EMF exposure and gap junctional intercellular communication in hFOB 1.19. This study revealed that EMF might serve as a potential tool for manipulating cell proliferation.

  6. No effects of short-term exposure to mobile phone electromagnetic fields on human cognitive performance: a meta-analysis.

    PubMed

    Barth, Alfred; Ponocny, Ivo; Gnambs, Timo; Winker, Robert

    2012-02-01

    During recent years, a large number of studies on the effects of electromagnetic fields emitted by cellular mobile phones on human cognitive performance have been carried out. However, the results have been ambiguous. We carried out the current meta-analysis in order to investigate the impact of electromagnetic fields emitted by mobile phones on human cognition. Seventeen studies were included in the meta-analysis as they fulfill several requirements such as single- or double-blind experimental study design, and documentation of means and standard deviations of dependent variables. The meta-analysis was carried out as a group comparison between exposed and non-exposed subjects. No significant effects of electromagnetic fields emitted by Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) mobile phones were found. Cognitive abilities seem to be neither impaired nor facilitated. Results of the meta-analysis suggest that a substantial short-term impact of high frequency electromagnetic fields emitted by mobile phones on cognitive performance can essentially be ruled out.

  7. Effects of electromagnetic field on the dynamical instability of cylindrical collapse

    SciTech Connect

    Sharif, M.; Azam, M. E-mail: azammath@gmail.com

    2012-02-01

    The objective of this paper is to discuss the dynamical instability in the context of Newtonian and post Newtonian regimes. For this purpose, we consider non-viscous heat conducting charged isotropic fluid as a collapsing matter with cylindrical symmetry. Darmois junction conditions are formulated. The perturbation scheme is applied to investigate the influence of dissipation and electromagnetic field on the dynamical instability. We conclude that the adiabatic index Γ has smaller value for such a fluid in cylindrically symmetric than isotropic sphere.

  8. Effects of electromagnetic fields on serum lipids in workers of a power plant.

    PubMed

    Wang, Zhaopin; Wang, Lijuan; Zheng, Shuangshuang; Ding, Zheyuan; Liu, Hui; Jin, Wen; Pan, Yifeng; Chen, Zexin; Fei, Ying; Chen, Guangdi; Xu, Zhengping; Yu, Yunxian

    2016-02-01

    This study aimed to evaluate the effects of electromagnetic fields (EMF) exposure on levels of serum lipids in workers of an electric power plant. A cross-sectional study was carried out in an electric power plant in Zhejiang province, China, from August to September 2011. All participants were divided into two groups with high occupational EMF exposure and low occupational EMF exposure. The occupational EMF exposure included radiofrequency EMF and extremely low-frequency EMF. Occupational EMF exposure was associated with an increased level of low-density lipoprotein cholesterol (LDL-c; β = 0.17 mmol/L, P = 0.022). High EMF exposure group with longer employment duration, longer daily EMF exposure duration, and more mobile phone or electric fee per month had significantly higher levels of total cholesterol, LDL-c, or triglyceride than the corresponding reference group. However, significantly decreased level of high-density lipoprotein cholesterol was only observed in high EMF exposure group with more mobile phone fee per month. Similar results were also found in 544 participants with available data of serum lipids in 2010. The findings showed that chronic EMF exposure was associated with the change of serum lipid levels. EMF exposure might modulate the process of lipid metabolism.

  9. Biosomatic effects of the electromagnetic fields on view of the physiotherapy personnel health.

    PubMed

    Vesselinova, Lyubina

    2013-06-01

    The effects of electromagnetic fields (EMFs) in physiotherapy have been discussed mainly with regard to the patient's safety, while the operator's safety is neglected. This paper presents the medical assessment and specific tendencies in the health status of personnel in physical therapy wards--where the EMFs are everyday background factor. This paper summarizes the somatic part of results from the study among physiotherapy personnel from facilities with different equipment and work load by using survey card designed by us for health status screening in somatic and neurobehavioral aspects. The main specific somatic findings and complaints in investigated group include parodontosis--42%; cardiovascular disorders--41.6%; allergic conditions with skin or systemic manifestation--40.8%; photosensibilization-- 34.1%; skin diseases--31.5%; musculoskeletal disorders--30.0% and neoplasm disorders--7.5%. Keeping in mind that better part of the personnel in the physical therapy units is female, a special attention was paid to the pathology of the reproductive system; menstrual disturbances are observed in 20.0%. These findings are collected in complex for the first time in physiotherapy personnel, and when data were available from other professional groups, we found a good correlation.

  10. Effects of electromagnetic fields on serum lipids in workers of a power plant.

    PubMed

    Wang, Zhaopin; Wang, Lijuan; Zheng, Shuangshuang; Ding, Zheyuan; Liu, Hui; Jin, Wen; Pan, Yifeng; Chen, Zexin; Fei, Ying; Chen, Guangdi; Xu, Zhengping; Yu, Yunxian

    2016-02-01

    This study aimed to evaluate the effects of electromagnetic fields (EMF) exposure on levels of serum lipids in workers of an electric power plant. A cross-sectional study was carried out in an electric power plant in Zhejiang province, China, from August to September 2011. All participants were divided into two groups with high occupational EMF exposure and low occupational EMF exposure. The occupational EMF exposure included radiofrequency EMF and extremely low-frequency EMF. Occupational EMF exposure was associated with an increased level of low-density lipoprotein cholesterol (LDL-c; β = 0.17 mmol/L, P = 0.022). High EMF exposure group with longer employment duration, longer daily EMF exposure duration, and more mobile phone or electric fee per month had significantly higher levels of total cholesterol, LDL-c, or triglyceride than the corresponding reference group. However, significantly decreased level of high-density lipoprotein cholesterol was only observed in high EMF exposure group with more mobile phone fee per month. Similar results were also found in 544 participants with available data of serum lipids in 2010. The findings showed that chronic EMF exposure was associated with the change of serum lipid levels. EMF exposure might modulate the process of lipid metabolism. PMID:26423285

  11. Long term beneficial effects of weak electromagnetic fields in multiple sclerosis.

    PubMed

    Sandyk, R

    1995-11-01

    A 39 year-old severely disabled woman with a 19 year history of chronic relapsing-remitting multiple sclerosis (MS) began to experience improvement in symptoms within 24 hours after she received experimental treatment with picotesla electromagnetic fields (EMFs). Pattern reversal visual evoked potential (VEP) study obtained three weeks after the initiation of the first magnetic treatment showed a return to normal of the P100 latencies in each eye. The patient continued to receive 1-2 EMFs treatments per week and during the following 32 months she made a dramatic recovery with resolution of diplopia, blurring of vision, dysarthria, ataxia of gait, and bladder dysfunction as well as improvement in fatigue, heat tolerance, mood, sleep, libido, and cognitive functions. VEP studies, which were repeated in April of 1995 more than 2 1/2 years after the initiation of magnetic treatment, showed that P100 latencies remained normal in each eye providing objective documentation that continued application of these EMFs may sustain normal conduction in the damaged optic pathways over a long period of time. This is the first case report documenting the dramatic long term beneficial effects of treatment with picotesla range EMFs in a patient with MS.

  12. Correlates of residential wiring code used in studies of health effects of residential electromagnetic fields.

    PubMed

    Bracken, M B; Belanger, K; Hellenbrand, K; Addesso, K; Patel, S; Triche, E; Leaderer, B P

    1998-09-01

    The home wiring code is the most widely used metric for studies of residential electromagnetic field (EMF) exposure and health effects. Despite the fact that wiring code often shows stronger correlations with disease outcome than more direct EMF home assessments, little is known about potential confounders of the wiring code association. In a study carried out in southern Connecticut in 1988-1991, the authors used strict and widely used criteria to assess the wiring codes of 3,259 homes in which respondents lived. They also collected other home characteristics from the tax assessor's office, estimated traffic density around the home from state data, and interviewed each subject (2,967 mothers of reproductive age) for personal characteristics. Women who lived in very high current configuration wiring coded homes were more likely to be in manual jobs and their homes were older (built before 1949, odds ratio (OR) = 73.24, 95% confidence interval (CI) 29.53-181.65) and had lower assessed value and higher traffic densities (highest density quartile, OR = 3.99, 95% CI 1.17-13.62). Because some of these variables have themselves been associated with health outcomes, the possibility of confounding of the wiring code associations must be rigorously evaluated in future EMF research.

  13. Biologic effects of prolonged exposure to ELF electromagnetic fields in rats. 2: 50 Hz magnetic fields

    SciTech Connect

    Margonato, V.; Cerretelli, P.; Nicolini, P.; Conti, R.; Zecca, L.; Veicsteinas, Z.

    1995-12-31

    To provide possible laboratory support to health risk evaluation associated with long-term, low-intensity magnetic field exposure, 256 male albino rats and an equal number of control animals (initial age 12 weeks) were exposed 22 h/day to a 50 Hz magnetic flux density of 5 {micro}T for 32 weeks (a total of about 5,000 h). Hematology was studied from blood samples before exposure to the field and at 12 week intervals. Morphology and histology of liver, heart, mesenteric lymph nodes, and testes as well as brain neurotransmitters were assessed at the end of the exposure period. In two identical sets of experiments, no significant differences in the investigated variables were found between exposed and sham-exposed animals. It is concluded that continuous exposure to a 50 Hz magnetic field of 5 {micro}T from week 12 to week 44, which makes up {approximately}70% of the life span of the rat before sacrifice, does not cause changes in growth rate, in the morphology and histology of liver, heart, mesenteric lymph nodes, testes, and bone marrow, in hematology and hematochemistry, or in the neurotransmitters dopamine and serotonin.

  14. Effects of chronic exposure to radiofrequency electromagnetic fields on energy balance in developing rats.

    PubMed

    Pelletier, Amandine; Delanaud, Stéphane; Décima, Pauline; Thuroczy, Gyorgy; de Seze, René; Cerri, Matteo; Bach, Véronique; Libert, Jean-Pierre; Loos, Nathalie

    2013-05-01

    The effects of radiofrequency electromagnetic fields (RF-EMF) on the control of body energy balance in developing organisms have not been studied, despite the involvement of energy status in vital physiological functions. We examined the effects of chronic RF-EMF exposure (900 MHz, 1 V m(-1)) on the main functions involved in body energy homeostasis (feeding behaviour, sleep and thermoregulatory processes). Thirteen juvenile male Wistar rats were exposed to continuous RF-EMF for 5 weeks at 24 °C of air temperature (T a) and compared with 11 non-exposed animals. Hence, at the beginning of the 6th week of exposure, the functions were recorded at T a of 24 °C and then at 31 °C. We showed that the frequency of rapid eye movement sleep episodes was greater in the RF-EMF-exposed group, independently of T a (+42.1 % at 24 °C and +31.6 % at 31 °C). The other effects of RF-EMF exposure on several sleep parameters were dependent on T a. At 31 °C, RF-EMF-exposed animals had a significantly lower subcutaneous tail temperature (-1.21 °C) than controls at all sleep stages; this suggested peripheral vasoconstriction, which was confirmed in an experiment with the vasodilatator prazosin. Exposure to RF-EMF also increased daytime food intake (+0.22 g h(-1)). Most of the observed effects of RF-EMF exposure were dependent on T a. Exposure to RF-EMF appears to modify the functioning of vasomotor tone by acting peripherally through α-adrenoceptors. The elicited vasoconstriction may restrict body cooling, whereas energy intake increases. Our results show that RF-EMF exposure can induce energy-saving processes without strongly disturbing the overall sleep pattern. PMID:23143821

  15. Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix

    NASA Astrophysics Data System (ADS)

    Kaliteevski, M. A.; Gubaydullin, A. R.; Ivanov, K. A.; Mazlin, V. A.

    2016-09-01

    We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.

  16. Elf (extremely low frequency) communications system ecological monitoring program. The effects of exposing the slime mold Physarum polycephalum to electromagnetic fields

    SciTech Connect

    Goodman, E.M.; Marron, M.T.; Greenebaum, B.

    1982-11-01

    Laboratory exposure of the slime mold Physarum polycephalum to weak electromagnetic fields results in a lengthened mitotic cycle and depressed oxygen consumption. This research program has been designed to ascertain if the same physiological effects are obtained when Physarum polycephalum is exposed to electromagnetic fields in the vicinity of the Wisconsin Test Facility at Clam Lake, Wisconsin.

  17. Effect of pulsed electromagnetic field exposure on adenosine receptors in rat brain.

    PubMed

    Varani, Katia; Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Fini, Milena; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea

    2012-05-01

    Different effects of pulsed electromagnetic field (PEMF) exposure on brain tissue have been described in pre-clinical models and in clinical settings. Nevertheless, the mechanism of action and the possible interaction with membrane receptors such as adenosine receptors (ARs) has not been investigated. The present study focused on the effect of PEMFs on A1 and A2A ARs in the rat cerebral cortex and cortical neurons. Affinity and density of ARs were evaluated by means of saturation binding experiments while mRNA expression was investigated through retro-transcription polymerase chain reaction (RT-PCR). PEMF treatment of the intact rat cerebral cortex or cortical neurons at 1.5 mT mediated a transient and significant increase in A2A ARs after 4 h (2.0-fold increase) and 6 h (1.4- and 1.8-fold increase, respectively) of exposure. In addition, PEMF treatment of the rat cerebral cortex and rat cortical neurons at 3 mT upregulated A2A ARs after 2 h (2.0- and 2.2-fold increase, respectively) and 4 h (1.6- and 1.9-fold increase, respectively). The treatment of rat cortex membranes with PEMFs at 1.5 and 3 mT induced an increase in A2A AR density after 2 h (1.9- and 2.2-fold increase, respectively) and was constant at all incubation times investigated. In rat cortical neurons, mRNA levels of A1 and A2A ARs were not affected by PEMF exposure for the times and intensities used. These results suggest that PEMF treatment has different biological effects in whole organs or cells in comparison with isolated membranes.

  18. Effects of 900 MHz electromagnetic field emitted by cellular phones on electrocardiograms of guinea pigs.

    PubMed

    Meral, I; Tekintangac, Y; Demir, H

    2014-02-01

    This study was carried out to determine the effects of electromagnetic field (EMF) emitted by cellular phones (CPs) on electrocardiograms (ECGs) of guinea pigs. A total of 30 healthy guinea pigs weighing 500-800 g were used. After 1 week of adaptation period, animals were randomly divided into two groups: control group (n = 10) and EMF-exposed group (n = 20). Control guinea pigs were housed in a separate room without exposing them to EMFs of CPs. Animals in second group were exposed to 890-915 MHz EMF (217 Hz of pulse rate, 2 W of maximum peak power and 0.95 wt kg(-1) of specific absorption rate) for 12 h day(-1) (11 h 45 min stand-by and 15 min speaking mode) for 30 days. ECGs of guinea pigs in both the groups were recorded by a direct writing electrocardiograph at the beginning and 10th, 20th and 30th days of the experiment. All ECGs were standardized at 1 mV = 10 mm and with a chart speed of 50 mm sec(-1). Leads I, II, III, lead augmented vector right (aVR), lead augmented vector left (aVL) and lead augmented vector foot (aVF) were recorded. The durations and amplitudes of waves on the trace were measured in lead II. The data were expressed as mean with SEM. It was found that 12 h day(-1) EMF exposure for 30 days did not have any significant effects on ECG findings of guinea pigs. However, this issue needed to be further investigated in a variety of perspectives, such as longer duration of exposure to be able to elucidate the effects of mobile phone-induced EMFs on cardiovascular functions.

  19. Electromagnetic fields in bone repair and adaptation

    NASA Astrophysics Data System (ADS)

    McLeod, Kenneth J.; Rubin, Clinton T.; Donahue, Henry J.

    1995-01-01

    The treatment of delayed union of bone fractures has served for the past 20 years as the principal testing ground for determining whether nonionizing electromagnetic fields can have any substantial, long-term effects in clinical medicine. Recent double-blinded clinical trials have confirmed the significance of the reported effects on bone healing and have led to the suggestion that electromagnetic fields may also be useful in the treatment of other orthopedic problems such as fresh fractures, stabilization of prosthetic implants, or even the prevention or treatment of osteoporosis. However, the design of appropriate treatment regimens for these new applications would be greatly facilitated if it were understood how the biological cells within bone tissue sense these low-frequency, and remarkably low level, electromagnetic fields. Here we address the engineering and physical science aspects of this problem. We review the characteristics of clinically used electromagnetic fields and discuss which components of these fields may actually be responsible for altering the activity of the bone cells. We then consider several physical mechanisms which have been proposed to explain how the cells within the bone or fracture tissue detect this field component.

  20. Effects on auditory function of chronic exposure to electromagnetic fields from mobile phones.

    PubMed

    Bhagat, Sanjeev; Varshney, Saurabh; Bist, Sampan Singh; Goel, Deepak; Mishra, Sarita; Jha, Vivek Kumar

    2016-08-01

    The widespread use of mobile phones has given rise to apprehension regarding the possible hazardous health effects of high-frequency electromagnetic fields (EMFs) on auditory function. We conducted a study to investigate the effects of long-term (>4 yr) exposure to EMFs emitted by mobile phones on auditory function. Our study population was made up of 40 healthy medical students-31 men and 9 women, aged 20 to 30 years (mean 22.7). Of this group, 31 subjects typically held their phone to the right ear and 9 to the left ear; the non-phone-using ear served as each subject's control ear. The phone-using subjects were also split into two groups of 20 based on the duration of their daily phone use (≤60 min vs. >60 min). All subjects underwent pure-tone audiometry, speech audiometry, impedance audiometry, and brainstem evoked response audiometry (BERA), and comparisons were made between the phone-using ear and the control ear and between the shorter and longer duration of daily use. We found no statistically significant differences in high-frequency pure-tone average between the phone-using ears and the control ears (p = 0.69) or between the shorter- and longer-duration phone-using ears (p = 0.85). Moreover, statistical analysis of BERA findings revealed no significant differences between the phone-using ears and the control ears in terms of wave I-III, III-V, and I-V interpeak latencies (p = 0.59, 0.74 and 0.44, respectively). None of the subjects reported any subjective symptoms, such as headache, tinnitus, or sensations of burning or warmth behind, around, or on the phone-using ear. We conclude that the long-term exposure to EMFs from mobile phones does not affect auditory function.

  1. Effects on auditory function of chronic exposure to electromagnetic fields from mobile phones.

    PubMed

    Bhagat, Sanjeev; Varshney, Saurabh; Bist, Sampan Singh; Goel, Deepak; Mishra, Sarita; Jha, Vivek Kumar

    2016-08-01

    The widespread use of mobile phones has given rise to apprehension regarding the possible hazardous health effects of high-frequency electromagnetic fields (EMFs) on auditory function. We conducted a study to investigate the effects of long-term (>4 yr) exposure to EMFs emitted by mobile phones on auditory function. Our study population was made up of 40 healthy medical students-31 men and 9 women, aged 20 to 30 years (mean 22.7). Of this group, 31 subjects typically held their phone to the right ear and 9 to the left ear; the non-phone-using ear served as each subject's control ear. The phone-using subjects were also split into two groups of 20 based on the duration of their daily phone use (≤60 min vs. >60 min). All subjects underwent pure-tone audiometry, speech audiometry, impedance audiometry, and brainstem evoked response audiometry (BERA), and comparisons were made between the phone-using ear and the control ear and between the shorter and longer duration of daily use. We found no statistically significant differences in high-frequency pure-tone average between the phone-using ears and the control ears (p = 0.69) or between the shorter- and longer-duration phone-using ears (p = 0.85). Moreover, statistical analysis of BERA findings revealed no significant differences between the phone-using ears and the control ears in terms of wave I-III, III-V, and I-V interpeak latencies (p = 0.59, 0.74 and 0.44, respectively). None of the subjects reported any subjective symptoms, such as headache, tinnitus, or sensations of burning or warmth behind, around, or on the phone-using ear. We conclude that the long-term exposure to EMFs from mobile phones does not affect auditory function. PMID:27551848

  2. Particle modelling of low-pressure radio-frequency magnetron discharges including the effects of self-induced electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Benyoucef, D.; Yousfi, M.

    2014-08-01

    Modelling of radio-frequency (RF) magnetron discharges is performed using a particle-in-cell/Monte Carlo technique in the case of low-pressure argon gas at 4 mTorr and high external magnetic field in order to self-maintain the discharge and to generate an energetic quasi-ion beam required for cathode sputtering applications. An emphasis is made, for the first time in the literature in the case of low-pressure RF discharges, on the development of a particle model coupled with the full set of electromagnetic field equations. The aim is to analyse the effect on the RF plasma features of the plasma-induced magnetic field resulting from the coupling of the Maxwell-Ampere equation. We also analysed the effect of the electric field due to the time variation of magnetic field resulting from the coupling of the Maxwell-Faraday equation. For the present asymmetrical plasma reactor, the mean relative difference on, for instance, the ion density with and without the consideration of plasma-induced magnetic and electric fields due to the time variation of the magnetic field can reach about 2.5% in the region of the plasma bulk and about 10% in the lateral sheath. The effects of these two induced electromagnetic fields are in fact higher in the regions where the radial magnetic field generated by the external magnets belonging to the magnetron configuration is low. These non-negligible relative differences clearly show the importance of rigorously taking into account, beyond the usual Poisson's equation for the space charge electric field, the full set of electromagnetic Maxwell equations for a more accurate modelling of these low-pressure discharges, particularly when the total current density reaches a few mA cm-2.

  3. Comparative and Mixture Effect of Cynodon Dactylon, ElectroMagnetic Field and Insulin on Diabetic Mouse

    PubMed Central

    Nafisi, Saeid; Nezhady, Mohammad Ali Mohammad; Asghari, Mohammad Hossein

    2012-01-01

    Objective: New investigations are in progress to find some alternative treatments for diabetes mellitus. Herbs are some of the interesting medications in this regard. Cynodon dactylon (C.d) is a potential plant to be considered as a new medication. On the other hand, the effect of the Electromagnetic Field (EMF) on bio organisms is becoming clearer. In this study, the effect of C.d, EMF and insulin have been investigated on the diabetic mouse. Material and Methods: Diabetes was induced by a combination of ketamine (60 mg/Kg) and xylazine (10 mg/Kg) which induces a sustained hyperglycemia. Mice were divided into 12 groups: 1) control, 2) normal saline, 3 and 4) 50mg/Kg C.d, 5 and 6) 100 mg/Kg C.d, 7) insulin, 8) insulin and C.d, 9) EMF (110 KHz, 700±20 mG), 10) insulin and EMF, 11) EMF plus C.d and 12) insulin plus C.d and EMF. Blood glucose level was measured after 5 and 60 minutes in C.d administrated groups, and 5 minutes in the other groups by a glucometer set. The data were analyzed by ANOVA and different means were compared by Tukey and Bonferroni tests (p<0.05). Results: According to results, both dosages of C.d had significant lowering effect on blood glucose level. The first dose was more effective than the second, and its impact was just like insulin. The 6th, 9th and 10th groups were significant, also. However, they did not show a higher effect than insulin or C.d. The application of EMF had a significant effect compared to the second group, but it did not reduce the glucose level to the normal range. The effect of the 8th group was very impressive and the mean glucose levels in this group were lower than the control group. Conclusion: Considering the data, C.d is a good alternative medication for diabetes mellitus. PMID:25207031

  4. Effects of electromagnetic field stimulation on cellular signal transduction mechanisms: Analyses of the effects of low frequency electromagnetic fields on calcium spiking in ROS 17/2.8 cells. Final report

    SciTech Connect

    Sisken, B.F.; Sisken, J.E.

    1997-12-01

    The general goals of this work were to determine whether resting levels of cellular second messengers, especially calcium, are affected by low-level electromagnetic fields and the mechanisms that could lead to such changes. The work performed was directed at (1) verifying the report of McLeod et al (1990) that low frequency sinusoidal EMF can alter basal calcium fluctuations in cultured ROS 17/2.8 osteoblast-like cells and (2) reproducing the findings of Luben et al (1982) that pulsed electromagnetic fields can affect PTH-stimulated adenylate cyclase activity in osteoblasts. Initially a system was constructed so that cells could be exposed to sinusoidal electric fields using platinum electrodes. In this system, the electrodes were separated from the cells and culture medium by agar barriers. A series of experiments indicated that this system was subject to a significant, though little-known artifact in which a not well understood interaction between the electrodes and sodium ions in the medium or in plain salt solutions led to frequency and amplitude dependent emission of photons that are recorded by the detection system. They therefore designed and constructed an air gap reactor system that utilizes a ferromagnetic core to direct the magnetic flux generated by a sinusoidal coil. Studies on the effects of a 15 Hz pulsed electromagnetic field (PEMF) on cyclic AMP metabolism were performed on ROS 17/2.8 and MC3T3 cells.

  5. Effects of electromagnetic field exposure on conduction and concentration of voltage gated calcium channels: A Brownian dynamics study.

    PubMed

    Tekieh, Tahereh; Sasanpour, Pezhman; Rafii-Tabar, Hashem

    2016-09-01

    A three-dimensional Brownian Dynamics (BD) in combination with electrostatic calculations is employed to specifically study the effects of radiation of high frequency electromagnetic fields on the conduction and concentration profile of calcium ions inside the voltage-gated calcium channels. The electrostatic calculations are performed using COMSOL Multiphysics by considering dielectric interfaces effectively. The simulations are performed for different frequencies and intensities. The simulation results show the variations of conductance, average number of ions and the concentration profiles of ions inside the channels in response to high frequency radiation. The ionic current inside the channel increases in response to high frequency electromagnetic field radiation, and the concentration profiles show that the residency of ions in the channel decreases accordingly. PMID:27346366

  6. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression.

    PubMed

    Pall, Martin L

    2016-09-01

    Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970s to 1980s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression

  7. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression.

    PubMed

    Pall, Martin L

    2016-09-01

    Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970s to 1980s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression

  8. Effect of low frequency low energy pulsing electromagnetic fields on mice injected with cyclophosphamide

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Franceschi, C.; Cossarizza, A.; Santantonio, M.; Mandolini, G.; Torelli, G. )

    1991-03-01

    C3H mice have been used to investigate the effect of a combination of cyclophosphamide (CY) and electromagnetic fields (PEMF). Mice were injected i.p. with a single dose of 200 mg/kg body weight of CY and then exposed to PEMF 24 h per day. In an initial series of experiments immediately after CY injection mice were exposed to PEMF until sacrifice. WBC counts in the peripheral blood demonstrated a quicker decline in WBC at days 1 and 2 in mice exposed to PEMF. Groups of mice were sacrificed at days 1, 4, 6, 8, and 10 after CY injection. In mice exposed to PEMF the spleen weight was less than in controls at days 6, 8, and 10. Autoradiographic studies demonstrated that the labeling index of bone marrow smears did not significantly differ between controls and experimental mice exposed to PEMF, whereas the spleen labeling index proved to be higher among control mice versus mice exposed to PEMF at day 6, and higher among mice exposed to PEMF versus controls at day 8. In a second series of experiments mice were exposed to PEMF only over the 24 h following CY injection. We found that the spleens of mice exposed to PEMF weighed less than those of controls at days 6 and 8. The labeling index of bone marrow did evidence a slight decrease among mice exposed to PEMF at days 8 and 10 after CY injection versus control mice. The spleen labeling index proved to be lower in experimental mice exposed to PEMF than in controls at days 4, 6, and 8. Mice were then injected with CY, half were exposed to PEMF, and 24 h later bone marrow was recovered from both groups of animals. The same number of bone marrow cells was injected via the tail vein into recipient mice irradiated to 8.5 Gy.

  9. The mathematical models of electromagnetic field dynamics and heat transfer in closed electrical contacts including Thomson effect

    NASA Astrophysics Data System (ADS)

    Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat

    2016-08-01

    We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.

  10. Physiological and Molecular Genetic Effects of Time-Varying Electromagnetic Fields on Human Neuronal Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2003-01-01

    The present investigation details the development of model systems for growing two- and three-dimensional human neural progenitor cells within a culture medium facilitated by a time-varying electromagnetic field (TVEMF). The cells and culture medium are contained within a two- or three-dimensional culture vessel, and the electromagnetic field is emitted from an electrode or coil. These studies further provide methods to promote neural tissue regeneration by means of culturing the neural cells in either configuration. Grown in two dimensions, neuronal cells extended longitudinally, forming tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time-varying electrical current was conducted. In the three-dimensional aspect, exposure to TVEMF resulted in the development of three-dimensional aggregates, which emulated organized neural tissues. In both experimental configurations, the proliferation rate of the TVEMF cells was 2.5 to 4.0 times the rate of the non-waveform cells. Each of the experimental embodiments resulted in similar molecular genetic changes regarding the growth potential of the tissues as measured by gene chip analyses, which measured more than 10,000 human genes simultaneously.

  11. [Effects of low-frequency pulsed electromagnetic fields on the proliferation of chondrocytes].

    PubMed

    Indouraine, A; Petersen, J P; Pförringer, W

    2001-03-01

    Chondrocytes isolated from the human cartilage of 5 patients between the ages 23 and 56 were exposed to low frequency pulsed electromagnetic fields (9 mT; 3 Hz) for a daily period of 60 minutes on 5 consecutive days and then every 48 hours for the next 6 days (11 days in total). Cell viability was estimated using trypan blue exclusion and proliferation was estimated by counting the cells in a haemacytometer. Cell morphology was compared for control purposes by directly observing the cells under a light microscope after staining cells in a haematoxylin and eosin solution. The results were statistically analysed and compared to a control sample. Data revealed that exposing cells isolated from human cartilage to pulsed electromagnetic fields (9 mT; 3 Hz) led to a significantly higher number of cells in comparison to the control sample. Among the cells from the 5 patients, growth varied between 1.1 to 3.0 folds compared to the control sample. The difference in cell viability between the exposed cells and the control sample was, however, not significant. Some morphological variations were revealed when the cells were observed under a light microscope. The exposed cells were thinner and longer than the control cells which were large and flat. The exposed cells tended to grow in a more uniform direction while the control cells grew in all directions. These differences in morphology and growth may be related to the higher density of the exposed cells.

  12. [Health protection of workers occupationally exposed to effects of electromagnetic fields in Poland and in the European Union member states].

    PubMed

    Wagrowska-Koski, Ewa

    2003-01-01

    Electromagnetic fields, one of potentially harmful physical agents present in the work environment in Poland, are under a constant surveillance regulated by the law. Among others, the surveillance involves periodical measurements of electromagnetic field (EMF) intensities in the work environment and medical prophylactic examination of workers at the employers' expense. The introduction of new MAC values imposes extra responsibilities on occupational health services, resulting from the need to verify the number of workers exposed to EMF at frequency bands corresponding with protection zones, and the need to set an appropriate range of prophylactic examinations, taking account of the current body of knowledge of biological effects of EMF and their hazards to workers' health. The suggestions how to change the range and frequency of medical prophylactic examinations are presented. The differences in occupational health care between Poland and the European Union members states, as well as changes in legal regulations on occupational diseases are discussed.

  13. Effect of low frequency low energy pulsing electromagnetic field (PEMF) on X-ray-irradiated mice

    SciTech Connect

    Cadossi, R.; Hentz, V.R.; Kipp, J.; Eiverson, R.; Ceccherelli, G.; Zucchini, P.; Emilia, G.; Torelli, G.; Franceschi, C.; Cossarizza, A.

    1989-02-01

    C3H/Km flora-defined mice were used to investigate the effect of exposure to pulsing electromagnetic field (PEMF) after total body x-ray irradiation. Prolonged exposure to PEMF had no effect on normal nonirradiated mice. When mice irradiated with different doses of x-ray (8.5 Gy, 6.8 Gy, and 6.3 Gy) were exposed to PEMF 24 h a day, we observed a more rapid decline in white blood cells (WBC) in the peripheral blood of mice exposed to PEMF at all the x-ray dosages used. No effect of exposure to PEMF was observed on the survival of the mice irradiated with 6.3 Gy and 8.5 Gy; in mice irradiated with 6.8 Gy, 2 out of 12 survived when exposed to PEMF as compared to 10 out of 12 control mice that were irradiated only. At day 4 after irradiation autoradiographic studies performed on bone marrow and spleen of 8.5-Gy-irradiated mice showed no difference between controls and mice exposed to PEMF, whereas on 6.8-Gy mice the bone marrow labeling index was lower in mice exposed to PEMF. In mice irradiated to 6.3 Gy we observed that the recovery of WBC in the peripheral blood was slowed in mice exposed to PEMF and their body weight was significantly lower than in control mice that were irradiated only. The spleen and bone marrow of the mice irradiated to 6.3 Gy and sacrificed at days 4, 14, 20, and 25 after irradiation were analyzed by autoradiography to evaluate the labeling index. Half of the spleens from mice sacrificed at day 25 after irradiation were used to evaluate the RNA content. Autoradiography showed that in the spleen and bone marrow of control mice, there were more cells labeled with (3H)thymidine at days 4 and 14 and less at days 20 and 25 after irradiation in comparison with mice irradiated and exposed to PEMF.

  14. Effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white Leghorn chicken embryos.

    PubMed

    Lahijani, Maryam Shams; Bigdeli, Mohammad Reza; Kalantary, Sima

    2011-09-01

    There are several reports indicating linkages between exposures to 50-60 Hz electromagnetic fields and abnormalities in the early stages of chicken embryonic development. Based on our previous published research carried out at the Department of Animal Sciences, Faculty of Biological Sciences, Shahid Beheshti University, effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white leghorn hen eggs were investigated. Three hundred healthy fresh fertilized eggs (55-65 gr) were divided into three groups of experimental (n = 50), control (n = 75), and sham (n = 75). Experimental eggs (inside the coil) were exposed to 3 different intensities of 1.33, 2.66, and 7.32 mT and sham groups were located inside the same coil with no exposure, for 24 h before incubation. Control, sham, and experimental groups were all incubated in an incubator (38 ± 0.5(°)C, 60% humidity) for 14 days. 14-day old chicken embryos were removed by C-sections, and the brains of all embryos of all groups were fixed in formalin(10%), stained with H&E and TUNEL assay, for studying the histopatholog and process of apoptosis. The brains of other embryos were prepared for Scanning Electeron Microscope. Results showed electromagnetic fields have toxic effects on brain cells by increasing the number of apoptotic cells and degeneration of brains' tissues of exposed chicken embryos. These findings suggest that the electromagnetic fields induce brain damages at different levels.

  15. Visualization of circuit card electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Zwillinger, Daniel

    1995-01-01

    Circuit boards are used in nearly every electrical appliance. Most board failures cause differing currents in the circuit board traces and components. This causes the circuit board to radiate a differing electromagnetic field. Imaging this radiated field, which is equivalent to measuring the field, could be used for error detection. Using estimates of the fields radiated by a low power digital circuit board, properties of known materials, and available equipment, we determined how well the following technologies could be used to visualize circuit board electromagnetic fields (prioritized by promise): electrooptical techniques, magnetooptical techniques, piezoelectric techniques, thermal techniques, and electrodynamic force technique. We have determined that sensors using the electrooptical effect (Pockels effect) appear to be sufficiently sensitive for use in a circuit board imaging system. Sensors utilizing the magnetooptical effect may also be adequate for this purpose, when using research materials. These sensors appear to be capable of achieving direct broadband measurements. We also reviewed existing electromagnetic field sensors. Only one of the sensors (recently patented) was specifically designed for circuit board measurements.

  16. Unconventional Impacts from Unconventional Hydropower Devices: The Environmental Effects of Noise, Electromagnetic Fields, and other Stressors

    NASA Astrophysics Data System (ADS)

    Bevelhimer, M.; Cada, G. F.

    2011-12-01

    Conventional dam-based hydropower production produces a variety of environmental stressors that have been debated and confronted for decades. In-current hydrokinetic devices present some of the same or analogous stressors (e.g., changes in sediment transport and deposition, interference with animal movements and migrations, and strike by rotor blades) and some potentially new stressors (e.g., noise during operation, emission of electromagnetic fields [EMF], and toxicity of paints, lubricants, and antifouling coatings). The types of hydrokinetic devices being proposed and tested are varied, as are the locations where they could be deployed, i.e., coastal, estuarine, and big rivers. Differences in hydrology, device type, and the affected aquatic community (marine, estuarine, and riverine) will likely result in a different suite of environmental concerns for each project. Studies are underway at the U.S. Department of Energy's national laboratories to characterize the level of exposure to these stressors and to measure environmental response where possible. In this presentation we present results of studies on EMF, noise, and benthic habitat alteration relevant to hydrokinetic device operation in large rivers. In laboratory studies we tested the behavioral response of a variety of fish and invertebrate organisms to exposure to DC and AC EMF. Our findings suggest that lake sturgeon may be susceptible to EMF like that emitted from underwater cables, but most other species tested are not. Based on recordings of various underwater noise sources, we will show how the spectral density of noises created by hydrokinetic devices compares to that from other anthropogenic sources and natural sources. We will also report the results of hydroacoustic surveys that show how sediments are redistributed behind pilings like those that could be used for mounting hydrokinetic devices. The potential effects of these stressors will be discussed in the context of possible fish population

  17. Effects of electromagnetic fields produced by radiotelevision broadcasting stations on the immune system of women.

    PubMed

    Boscol, P; Di Sciascio, M B; D'Ostilio, S; Del Signore, A; Reale, M; Conti, P; Bavazzano, P; Paganelli, R; Di Gioacchino, M

    2001-06-12

    The object of this study was to investigate the immune system of 19 women with a mean age of 35 years, for at least 2 years (mean = 13 years) exposed to electromagnetic fields (ELMFs) induced by radiotelevision broadcasting stations in their residential area. In September 1999, the ELMFs (with range 500 KHz-3 GHz) in the balconies of the homes of the women were (mean +/- S.D.) 4.3 +/- 1.4 V/m. Forty-seven women of similar age, smoking habits and atopy composed the control group, with a nearby resident ELMF exposure of < 1.8 V/m. Blood lead and urinary trans-trans muconic acid (a metabolite of benzene), markers of exposure to urban traffic, were higher in the control women. The ELMF exposed group showed a statistically significant reduction of blood NK CD16+-CD56+, cytotoxic CD3(-)-CD8+, B and NK activated CD3(-)-HLA-DR+ and CD3(-)-CD25+ lymphocytes. 'In vitro' production of IL-2 and interferon-gamma (INF-gamma) by peripheral blood mononuclear cells (PBMC) of the ELMF exposed group, incubated either with or without phytohaemoagglutinin (PHA), was significantly lower; the 'in vitro' production of IL-2 was significantly correlated with blood CD16+-CD56+ lymphocytes. The stimulation index (S.I.) of blastogenesis (ratio between cell proliferation with and without PHA) of PBMC of ELMF exposed women was lower than that of the control subjects. The S.I. of blastogenesis of the ELMF exposed group (but not blood NK lymphocytes and the 'in vitro' production of IL-2 and INF-gamma by PBMC) was significantly correlated with the ELMF levels. Blood lead and urinary trans-trans muconic acid were barely correlated with immune parameters: the urinary metabolite of benzene of the control group was only correlated with CD16+-CD56+ cells indicating a slight effect of traffic on the immune system. In conclusion, this study demonstrates that high frequency ELMFs reduce cytotoxic activity in the peripheral blood of women without a dose-response effect.

  18. Therapeutic effect of pulsed electromagnetic field in conservative treatment of subacromial impingement syndrome.

    PubMed

    Aktas, Ilknur; Akgun, Kenan; Cakmak, Bahar

    2007-08-01

    Subacromial impingement syndrome (SIS) is a frequent cause of shoulder pain. Our purpose in this double-blinded, randomized, and controlled study was to demonstrate whether the pulsed electromagnetic field (PEMF) provides additional benefit when used with other conservative treatment modalities in acute phase rehabilitation program of SIS. Forty-six patients with unilateral shoulder pain who had been diagnosed as having SIS were included in this trial. The cases were randomly separated into two groups. All cases received a treatment program for 3 weeks consisting of Codman's pendulum exercises and subsequent cold pack gel application on shoulders with pain 5 times a day, restriction of daily activities that require the hands to be used over the head, and meloxicam tablet 15 mg daily. One group was given PEMF; the other group was given sham PEMF daily, 25 min per session, 5 days per week for 3 weeks. Shoulder pain during rest and activity and which causes disturbance of sleep was evaluated using a visual analogue scale, and total Constant score investigated shoulder function. Daily living activities were evaluated by shoulder disability questionnaire. Results were assessed before and after treatment. When compared with the baseline values, significant improvements in all these variables were observed at the end of the treatment in both groups (p<0.05). No significant difference between treatments was observed for any of these variables (p>0.05). There is no convincing evidence that electromagnetic therapy is of additional benefit in acute phase rehabilitation program of SIS. PMID:17086382

  19. Effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency based nonlinear frequency conversion in quantum ring

    NASA Astrophysics Data System (ADS)

    Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man

    2016-10-01

    We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.

  20. Minimizing the effects of electromagnetic pulse (EMP) on field medical equipment. Final report Jun 86-Jun 88

    SciTech Connect

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P.

    1991-06-07

    Electromagnetic Pulse (EMP) simulator testing and computer simulations show that a field commander can expect approximately 65% of his unprotected electronic medical equipment to be damaged by a single nuclear detonation as far as 2200 Km away. Ways that a field commander can minimize these effects are to: Keep wiring near the ground; keep wiring short; unplug unused equipment; run power cabling and tents in a magnetic North-South direction; avoid running power cabling in the East-West direction; and place sensitive equipment in ISO(International Organization for Standardization) shelters.

  1. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  2. The Influence of Eddy Effect of Coils on Flow and Temperature Fields of Molten Droplet in Electromagnetic Levitation Device

    NASA Astrophysics Data System (ADS)

    Feng, Lin; Shi, Wan-Yuan

    2015-08-01

    In this work, the influence of eddy effect of coils on magnetic, flow, and temperature fields in an electromagnetically levitated molten droplet was investigated by a serial of axisymmetric numerical simulations. In an electromagnetic levitation device, both metal droplet and coils are conductive materials, therefore the distributions of current density in them should be non-uniform as a result of the eddy effect. However, in previous works, the eddy effect was considered alone in metal droplet but ignored in coils usually. As the distance of coils and metal droplet is several millimetres in general, the non-uniform distribution of current density in coils actually gives important influences on calculations of magnetic, flow, and temperature fields. Here, we consider the eddy effect both in metal droplet as well as that in coils simultaneously. Lifting force, absorbed power, fluid flow, and temperature field inside a 4-mm radius molten copper droplet as a typical example are then calculated and analyzed carefully under such condition. The results show that eddy effect leads to higher magnetic force, velocity, and temperature in both levitating and melting processes than those when the eddy effect is ignored. What is more, such influence increases as the distance of droplet and coils becomes closer, which corresponds to experimental measurement. Therefore, we suggest that eddy effect of coils should be considered in numerical simulation on this topic to obtain more reliable result.

  3. The electric field effect and electromagnetic wave emission in intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Koyama, T.

    2013-04-01

    We formulate a theory for the electric field effect in intrinsic Josephson junctions (IJJs). The coupled dynamical equations for the phase differences are derived in the presence of both a bias current and an applied electric field on the basis of the capacitively-coupled IJJ model. It is shown that the current-voltage characteristics of the IJJs sensitively depend on the applied electric field. The dipole emission originating from the electric field effect is also predicted.

  4. A radio-frequency system for in vivo pilot experiments aimed at the studies on biological effects of electromagnetic fields.

    PubMed

    Ardoino, Lucia; Lopresto, Vanni; Mancini, Sergio; Marino, Carmela; Pinto, Rosanna; Lovisolo, Giorgio A

    2005-08-01

    An exposure system consisting of two long transversal electromagnetic (TEM) cells, operating at a frequency of 900 MHz, is presented and discussed. The set-up allows simultaneous exposure of a significant number of animals (up to 12 mice per cell) in a blind way to a uniform plane wave at a frequency of 900 MHz, for investigating possible biological effects of exposure to electromagnetic fields produced by wireless communication systems. A heating/refrigerating system has also been designed for maintaining comfortable environmental conditions within the TEM cells during experiments. An accurate dosimetric study has been performed both numerically and by means of direct measurements on phantoms and living mice. The results have shown that good homogeneity of exposure and adequate power efficiency, in terms of whole-body specific absorption rate (SAR) per 1 W of input power, are achievable for the biological target.

  5. Electromagnetic Meissner effect launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1991-01-01

    An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.

  6. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  7. Electromagnetic effects on planetary rings

    SciTech Connect

    Morfill, G.E.

    1983-01-01

    The role of electromagnetic effects in planetary rings is reviewed. The rings consist of a collection of solid particles with a size spectrum ranging from submicron to 10's of meters (at least in the case of Saturn's rings). Due to the interaction with the ambient plasma, and solar UV radiation, the particles carry electrical charges. Interactions of particles with the planetary electromagnetic field, both singly and collectively, are described, as well as the reactions and influence on plasma transients. The latter leads to a theory for the formation of Saturn's spokes, which is briefly reviewed.

  8. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology. PMID:27087527

  9. Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in HL-60 cells are not reproducible.

    PubMed

    Speit, Günter; Gminski, Richard; Tauber, Rudolf

    2013-08-15

    Conflicting results have been published regarding the induction of genotoxic effects by exposure to radiofrequency electromagnetic fields (RF-EMF). Various results indicating a genotoxic potential of RF-EMF were reported by the collaborative EU-funded REFLEX (Risk Evaluation of Potential Environmental Hazards From Low Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods) project. There has been a long-lasting scientific debate about the reliability of the reported results and an attempt to reproduce parts of the results obtained with human fibroblasts failed. Another part of the REFLEX study was performed in Berlin with the human lymphoblastoid cell line HL-60; genotoxic effects of RF-EMF were measured by means of the comet assay and the micronucleus test. The plausibility and reliability of these results were also questioned. In order to contribute to a clarification of the biological significance of the reported findings, a repeat study was performed, involving scientists of the original study. Comet-assay experiments and micronucleus tests were performed under the same experimental conditions that had led to genotoxic effects in the REFLEX study. Here we report that the attempts to reproduce the induction of genotoxic effects by RF-EMF in HL-60 cells failed. No genotoxic effects of RF-EMF were measured in the repeat experiments. We could not find an explanation for the conflicting results. However, the negative repeat experiments suggest that the biological significance of genotoxic effects of RF-EMF reported by the REFLEX study should be re-assessed.

  10. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  11. Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis.

    PubMed

    Blumenthal, N C; Ricci, J; Breger, L; Zychlinsky, A; Solomon, H; Chen, G G; Kuznetsov, D; Dorfman, R

    1997-01-01

    Rat tendon fibroblast (RTF) and rat bone marrow (RBM) osteoprogenitor cells were cultured and exposed to AC and/or DC magnetic fields in a triaxial Helmholtz coil in an incubator for up to 13 days. The AC fields were at 60 and 1000 Hz and up to 0.25 mT peak to peak, and the DC fields were up to 0.25 mT. At various combinations of field strengths and frequencies, AC and/or DC fields resulted in extensive detachment of preattached cells and prevented the normal attachment of cells not previously attached to substrates. In addition, the fields resulted in altered cell morphologies. When RTF and RBM cells were removed from the fields after several days of exposure, they partially reattached and assumed more normal morphologies. An additional set of experiments described in the Appendix corroborates these findings and also shows that low-frequency EMF also initiates apoptosis, i.e., programmed cell death, at the onset of cell detachment. Taken together, these results suggest that the electromagnetic fields result in significant alterations in cell metabolism and cytoskeleton structure. Further work is required to determine the relative effect of the electric and magnetic fields on these phenomena. The research has implications for understanding the role of fields in affecting bone healing in fracture nonunions, in cell detachment in cancer metastasis, and in the effect of EMF on organisms generally.

  12. Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis

    SciTech Connect

    Blumenthal, N.C.; Ricci, J.; Breger, L.; Zychlinsky, A.; Solomon, H.; Chen, G.G.; Kuznetsov, D.; Dorfman, R.

    1997-05-01

    Rat tendon fibroblast (RTF) and rat bone marrow (RBM) osteoprogenitor cells were cultured and exposed to AC and/or DC magnetic fields in a triaxial Helmholtz coil in an incubator for up to 13 days. The AC fields were at 60 and 1,000 Hz and up to 0.25 mT peak to peak, and the DC fields were up to 0.25 mT. At various combinations of field strengths and frequencies, AC and/or DC fields resulted in extensive detachment of preattached cells and prevented the normal attachment of cells not previously attached to substrates. In addition, the fields resulted in altered cell morphologies. When RTF and RBM cells were removed from the fields after several days of exposure, they partially reattached and assumed more normal morphologies. An additional set of experiments described in the Appendix corroborates these findings and also shows that low-frequency EMF also initiates apoptosis, i.e., programmed cell death, at the onset of cell detachment. Taken together, these results suggest that the electromagnetic fields result in significant alterations in cell metabolism and cytoskeleton structure. Further work is required to determine the relative effect of the electric and magnetic fields on these phenomena. The research has implications for understanding the role of fields in affecting bone healing in fracture nonunions, in cell detachment in cancer metastasis, and in the effect of EMF on organisms generally.

  13. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vitro study.

    PubMed

    Rodríguez de la Fuente, Abraham O; Alcocer-González, Juan M; Antonio Heredia-Rojas, J; Balderas-Candanosa, Isaías; Rodríguez-Flores, Laura E; Rodríguez-Padilla, Cristina; Taméz-Guerra, Reyes S

    2009-03-01

    We have evaluated the effect of 60 Hz sinusoidal magnetic fields (MF) at 8 and 8 microT on expression of the luciferase gene contained in a gene construct labelled as Electromagnetic Field-plasmid (pEMF). The vector included the hsp70 promotor containing the 3 nCTCTn sequences previously described for the induction of hsp70 expression by magnetic fields, as well as the reporter of the luciferase gene. We also replicated the study of Lin et al. [Lin H, Blank M, Rossol-Haseroth K, Goodman R. Regulating genes with electromagnetic response elements. J Cell Biochem 2001;81(1):143-48]. The pEMF plasmid was transfected into HeLa and BMK16 cell lines that were later exposed to either MF or thermal shock (TS). An increased luciferase expression was found in both the cells exposed to MF and TS compared with their control groups (P < 0.05). Furthermore, the combined effect of MF and TS was also analyzed. A synergistic effect between two factors was observed for this co-exposure condition in terms of luciferase gene expression.

  14. Effects of Extremely Low Frequency Electromagnetic Fields on Vascular Permeability of Circumventricular Organs in the Adult Rat

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Mercado, Y. K.; Cañedo-Dorantes, L.; Bañuelos-Pineda, J.; Serrano-Luna, G.; Feria-Velasco, A.

    2008-08-01

    The present work deals with the effects of extremely low frequency electromagnetic fields (ELF-EMF) on blood vessels permeability to non liposoluble substances of the circumventricular organs (CVO) of adult rats. Male Wistar adult rats were exposed to ELF-EMF and vascular permeability to colloidal carbon was investigated with the use of histological techniques. Results were compared to corresponding data from sham-exposed and control groups of animals. Exposure to ELF-EMF increased the CVO vascular permeability to colloidal carbon intravascularly injected, particularly in the subfornical organ, the median eminence, the pineal gland and the area postrema.

  15. Effects of prenatal exposure to extremely low electro-magnetic field on in vivo derived blastocysts of mice

    PubMed Central

    Bayat, Parvin-Dokht; Darabi, Mohmmad Reza; Ghanbari, Ali; Amiri, Sara; Sohouli, Pardis

    2012-01-01

    Background: Indisputable population exposure to widespread electromagnetic fields, has grown concerns over the probable health effects of these fields. Objective: The present study was aimed to examine the possible effects of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) exposure on the number and quality of mice blastocysts. Materials and Methods: In present study, 66 NMRI pregnant females divided into two treated and non-treated groups. The treated group exposed to ELF-EMF (50 Hz and 6×10-3 T). Subsequently, embryos were collected by flushing the uterine horn and Fallopian tubes on the day 3 of gestation. Number of trophoectoderm (TE) and Inner Cell Mass (ICM) cells in blastocysts were determined after differential nuclei staining using a modified method. Furthermore, number of all flushed blastocysts calculated in each group. Results: There was no significant difference in mean number of blastocysts in treated (6.64±1.34) and none treated (8.22±1.59) groups. In treated group, there were significant decreased in total cell number of blastocysts (p=0.000), number of ICM cells (p=0.000), and number of TE cells (p=0.001) whereas the ratio of ICM/TE cells increased (p=0.002). Conclusion: The data indicate that ELF-EMF is able to affect cellular composition of blastocysts, but it can't omit total volume of blastocysts. PMID:25246926

  16. Electromagnetic-field exposure and cancer.

    PubMed

    Brown, H D; Chattopadhyay, S K

    1988-05-01

    Electromagnetic fields are a ubiquitous part of man's environment. Natural sources of energy have been present, and possibly have contributed to the processes of the evolution of living forms. In very recent time, however, exploitation of the properties of the electromagnetic spectrum, has added variables in intensity, frequency, modulation frequency, and alterations in contributions of electrical and magnetic components. Biological impact has been little studied and poorly defined. Animal carcinogenesis studies and human epidemiological data indicate that exposure to nonionizing radiation can play a role in cancer causation. Numerous effects at the physiological and biochemical level have been reported; many are of such a nature that a relationship to the causation of neoplastic transformation can rationally be hypothesized. Many bioeffects of electromagnetic fields can be adequately and economically explained in terms of heat effects alone. However, observations of frequency-, pulse form or modulation-, and intensity-specificity as well as effects opposite to that known for temperature-rise, imply direct interaction of radiant energy with biomolecules. The possibility of such direct interaction has been shown in quantum mechanical models.

  17. The Effect of Extremely Low Frequency Pulsed Electromagnetic Field on In Vitro Fertilization Success Rate in N MRI Mice

    PubMed Central

    Hafizi, Leili; Sazgarnia, Ameneh; Mousavifar, Nezhat; Karimi, Mohammad; Ghorbani, Saleh; Kazemi, Mohammad Reza; Emami Meibodi, Neda; Hosseini, Golkoo; Mostafavi Toroghi, Hesam

    2014-01-01

    Objective: The effects of exposure to electromagnetic fields (EMF) on reproduction systems have been widely debated. In this study, we aimed to investigate whether low frequency EMF could ameliorate the in vitro fertilization success rate in Naval medical research institute (NMRI) Mice. Materials and Methods: In this randomized comparative animal study, ten NMRI mice were randomly divided into 2 equal groups (control and experimental). 10 IU of human chorionic gonadotropin (hCG) was injected intraperitoneally to both groups in order to stimulate ovulating, and ovums were then aspirated and kept in KSOM (modified version of sequential simplex optimization medium with a higher K+ concentration) culture medium. Metaphase II ovums were separated, and sperms obtained by "swim out" method were added to metaphase II ovums in the culture medium. The experimental group was exposed to 1.3 millitesla pulsed electromagnetic field at 4 kilohertz frequency for 5 hours. To assess the efficacy, we considered the identification of two-pronuclear zygote (2PN) under microscope as fertilizing criterion. Results: Total number of collected ovums in the control and experimental groups was 191 and 173, respectively, from which 58 (30.05%) and 52 (30.36%) ovums were collected from metaphase II, respectively. In vitro fertilization (IVF) success rate was 77% in extremely low frequency- pulsed electromagnetic field (ELFPEMF) for exposed group (experimental), whereas the rate was 68% for control group. Conclusion: Despite increased percentile of IVF success rate in exposed group, there was no statistically significant difference between 2 groups, but this hypothesis has still been stated as a question. Further studies with larger sample sizes and different EMF designs are suggested. PMID:24381855

  18. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  19. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  20. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices.

    PubMed

    Tattersall, J E; Scott, I R; Wood, S J; Nettell, J J; Bevir, M K; Wang, Z; Somasiri, N P; Chen, X

    2001-06-15

    Slices of rat hippocampus were exposed to 700 MHz continuous wave radiofrequency (RF) fields (25.2-71.0 V m(-1), 5-15 min exposure) in a stripline waveguide. At low field intensities, the predominant effect on the electrically evoked field potential in CA1 was a potentiation of the amplitude of the population spike by up to 20%, but higher intensity fields could produce either increases or decreases of up to 120 and 80%, respectively, in the amplitude of the population spike. To eliminate the possibility of RF-induced artefacts due to the metal stimulating electrode, the effect of RF exposure on spontaneous epileptiform activity induced in CA3 by 4-aminopyridine (50-100 microM) was investigated. Exposure to RF fields (50.0 V m(-1)) reduced or abolished epileptiform bursting in 36% of slices tested. The maximum field intensity used in these experiments, 71.0 V m(-1), was calculated to produce a specific absorption rate (SAR) of between 0.0016 and 0.0044 W kg(-1) in the slices. Measurements with a Luxtron fibreoptic probe confirmed that there was no detectable temperature change (+/- 0.1 degrees C) during a 15 min exposure to this field intensity. Furthermore, imposed temperature changes of up to 1 degrees C failed to mimic the effects of RF exposure. These results suggest that low-intensity RF fields can modulate the excitability of hippocampal tissue in vitro in the absence of gross thermal effects. The changes in excitability may be consistent with reported behavioural effects of RF fields.

  1. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  2. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  3. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  4. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  5. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  6. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  7. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  8. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  9. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 5. Effects of High Electric Fields on Animals

    NASA Astrophysics Data System (ADS)

    Isaka, Katsuo

    The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.

  10. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Chu, M. S.

    2002-11-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω-2≪1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX.

  11. Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics

    NASA Astrophysics Data System (ADS)

    Ji, XueBin; Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing

    2015-05-01

    Based on the transformation optics (TO) and the effective medium theory (EMT), a new illusion media with homogeneous and isotropic materials is proposed to realize the far-field high resolution effects. When two point sources with the separation distance of λ0 / 4 are covered with the illusion media (λ0 is the free-space wavelength), the corresponding far-field pattern is equivalent to the case of two point sources with the separation distance larger than λ0 / 2 in free space, leading to the far-field high resolution effects (in free space, the separation distance of λ0 / 4 is less than half-wavelength, and thus the two point sources cannot be distinguished from each other). Furthermore, such illusion media can be applied to design tunable high-directivity antenna and an angle-dependent floating carpet cloak. Full wave simulations are carried out to verify the performance of our device.

  12. Nanomechanical electric and electromagnetic field sensor

    SciTech Connect

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  13. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    PubMed

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  14. Overview on the standardization in the field of electromagnetic compatibility

    NASA Astrophysics Data System (ADS)

    Goldberg, Georges

    1989-04-01

    Standardization in the domain of electromagnetic compatibility (EMC) is discussed, with specific reference to the standards of the International Electrotechnical Commission, the Comite International Special des Perturbations Radioelectriques, and the Comite Europeen de Normalisation Electrotechnique. EMC fields considered include radiocommunications, telecommunications, biological effects, and data transmission. Standards are presented for such electromagnetic disturbances as low-frequency, high-frequency, conduction, and radiation phenomena.

  15. [Radio Frequency Electromagnetic Field Effect on the State of Na+/Ca2+ Exchange in the Isolated Rat Heart].

    PubMed

    Alabovsky, V V; Kudryshov, Yu B; Vinokurov, A A; Bogacheva, E V; Maslov, O V; Perov, S Yu

    2016-01-01

    It has been shown that a single exposure to 171 MHz electromagnetic field with 180 V/m electric field strength and 0.04 mW/kg specific absorption rate significantly alters the Na+/Ca2+ exchange in the isolated rat heart. It is assumed that enhancement of the Na+/Ca2+ exchange towards removing Ca2+ from the cardiomyocytes electromagnetic field exposure is a result of Ca2+ extraction from the sarcoplasmic reticulum and the increase of its intracellular level. PMID:27534068

  16. Effects of electromagnetic fields (EMF) on the chemiluminescence (CL) of murine peritoneal exudate cells

    SciTech Connect

    Caren, L.D. )

    1992-02-26

    Stimulated PEC generate microbicidal free oxygen radicals which are potentially mutagenic and possibly carcinogenic. The effects of combined alternating electric and magnetic fields on oxygen radical production were measured in this study. A Helmholtz coil and parallel plate electrodes were utilized to provide uniform field characteristics. Effects were studied at combined field frequencies of 60, 600, and 6,000 Hz. Thioglycollate-elicited PEC were exposed to EMF or placed in a far corner of the lab (controls). Following the addition of zymosan, luminol-enhanced CL was measured. No differences in CL were found for exposures to 60 Hz for 18 hr; 600 Hz for 10 hr; or 6,000 Hz for 0.75 hr. PEC exposed to 6,000 Hz for 11 hr showed a 25% increase in CL over control PEC. At 600 and 6,000 Hz, the temperature of the air and a dish of saline in the EMF apparatus was 26C, vs. 25C where the controls were kept. At 60 Hz, there was no temperature difference. These preliminary experiments indicate that under these conditions, EMF fields do not have a significant effect on this immune function.

  17. Effects of weak, low-frequency pulsed electromagnetic fields (BEMER type) on gene expression of human mesenchymal stem cells and chondrocytes: an in vitro study.

    PubMed

    Walther, Markus; Mayer, Florian; Kafka, Wolf; Schütze, Norbert

    2007-01-01

    In vitro effects of electromagnetic fields appear to be related to the type of electromagnetic field applied. Previously, we showed that human osteoblasts display effects of BEMER type electromagnetic field (BTEMF) on gene regulation. Here, we analyze effects of BTEMF on gene expression in human mesenchymal stem cells and chondrocytes. Primary mesenchymal stem cells from bone marrow and the chondrocyte cell line C28I2 were stimulated 5 times at 12-h intervals for 8 min each with BTEMF. RNA from treated and control cells was analyzed for gene expression using the affymetrix chip HG-U133A. A limited number of regulated gene products from both cell types mainly affect cell metabolism and cell matrix structure. There was no increased expression of cancer-related genes. RT-PCR analysis of selected transcripts partly confirmed array data. Results indicate that BTEMF in human mesenchymal stem cells and chondrocytes provide the first indications to understanding therapeutic effects achieved with BTEMF stimulation.

  18. The effect of prenatal exposure to 900-MHz electromagnetic field on the 21-old-day rat testicle.

    PubMed

    Hancı, Hatice; Odacı, Ersan; Kaya, Haydar; Aliyazıcıoğlu, Yüksel; Turan, İbrahim; Demir, Selim; Çolakoğlu, Serdar

    2013-12-01

    The aim of this study was to investigate the effect of exposure to a 900-MHz electromagnetic field (EMF) in the prenatal term on the 21-old-day rat testicle. Pregnant rats were divided into control (CG) and EMF (EMFG) groups. EMFG was exposed to 900-MHz EMF during days 13-21 of pregnancy. Newborn CG rats were obtained from the CG and newborn EMFG (NEMFG) rats from the EMFG. Testicles were extracted at postnatal day 21. Lipid peroxidation and DNA oxidation levels, apoptotic index and histopathological damage scores were compared. NEMFG rats exhibited irregularities in seminiferous tubule basal membrane and epithelium, immature germ cells in the lumen, and a decreased diameter in seminiferous tubules and thickness of epithelium. Apoptotic index, lipid peroxidation and DNA oxidation were higher in NEMFG rats than in NCG. 21-day-old rat testicles exposed to 900-MHz EMF in the prenatal term may be adversely affected, and this effect persists after birth.

  19. The two-nucleon electromagnetic charge operator in chiral effective field theory ($\\chi$EFT) up to one loop

    SciTech Connect

    S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani,S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani

    2011-08-01

    The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory ($\\chi$EFT) up to order $e\\, Q$ (or N4LO), where $Q$ denotes the low-momentum scale and $e$ is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the non-static terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the non-uniqueness associated with these off-the-energy-shell effects.

  20. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study

    PubMed Central

    Rodríguez-De la Fuente, Abraham O.; Alcocer-González, Juan M.; Heredia-Rojas, J. Antonio; Rodríguez-Padilla, Cristina; Rodríguez-Flores, Laura E.; Santoyo-Stephano, Martha A.; Castañeda-Garza, Esperanza; Taméz-Guerra, Reyes S.

    2012-01-01

    Exposure to EMFs (electromagnetic fields) results in a number of important biological changes, including modification of genetic expression. We have investigated the effect of 60 Hz sinusoidal EMFs at a magnetic flux density of 80 μT on the expression of the luciferase gene contained in a plasmid labelled as pEMF (EMF plasmid). This gene construct contains the specific sequences for the induction of hsp70 (heat-shock protein 70) expression by EMFs, as well as the reporter for the luciferase gene. The pEMF vector was electrotransferred into quadriceps muscles of BALB/c mice that were later exposed to EMFs. Increased luciferase expression was observed in mice exposed to EMFs 2 h daily for 7 days compared with controls (P<0.05). These data along with other reports in the literature suggest that EMFs can have far-reaching effects on the genome. PMID:23124775

  1. Effects of GSM-modulated 900 MHz radiofrequency electromagnetic fields on the hematopoietic potential of mouse bone marrow cells.

    PubMed

    Rosado, Maria Manuela; Nasta, Francesca; Prisco, Maria Grazia; Lovisolo, Giorgio Alfonso; Marino, Carmela; Pioli, Claudio

    2014-12-01

    Studies describing the influence of radiofrequency electromagnetic fields on bone marrow cells (BMC) often lack functional data. We examined the effects of in vivo exposure to a Global System for Mobile Communications (GSM) modulated 900 MHz RF fields on BMC using two transplantation models. X-irradiated syngeneic mice were injected with BMC from either RF-field-exposed, sham-exposed or cage control mice. Twelve weeks after transplantation, no differences in thymocyte number, frequency of subpopulations and cell proliferation were found in mice receiving BMC from either group. Also, in the spleen cell number, percentages of B/T cells, B/T-cell proliferation, and interferon γ (IFN-γ) production were similar in all groups. In parallel, a mixture of BMC from congenic sham- and RF-exposed mice were co-transplanted into lymphopenic Rag2 deficient mice. BMC from RF-exposed and sham-exposed mice displayed no advantage or disadvantage when competing for the replenishment of lymphatic organs with mature lymphocytes in Rag2 deficient mice. This model revealed that BMC from sham-exposed and RF-exposed mice were less efficient than BMC from cage control mice in repopulating the thymus, an effect likely due to restraint stress. In conclusion, our results showed no effects of in vivo exposure to GSM-modulated RF-fields on the ability of bone marrow (BM) precursors to long-term reconstitute peripheral T and B cell compartments.

  2. Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys?

    PubMed

    Calvente, Irene; Pérez-Lobato, Rocío; Núñez, María-Isabel; Ramos, Rosa; Guxens, Mònica; Villalba, Juan; Olea, Nicolás; Fernández, Mariana F

    2016-01-01

    The relationship between exposure to electromagnetic fields from non-ionizing radiation and adverse human health effects remains controversial. We aimed to explore the association of environmental radiofrequency-electromagnetic fields (RF-EMFs) exposure with neurobehavioral function of children. A subsample of 123 boys belonging to the Environment and Childhood cohort from Granada (Spain), recruited at birth from 2000 through 2002, were evaluated at the age of 9-11 years. Spot electric field measurements within the 100 kHz to 6 GHz frequency range, expressed as both root mean-square (S(RMS) and maximum power density (S(MAX)) magnitudes, were performed in the immediate surrounds of childreńs dwellings. Neurocognitive and behavioral functions were assessed with a comprehensive battery of tests. Multivariate linear and logistic regression models were used, adjusting for potential confounders. All measurements were lower than reference guideline limits, with median S(RMS) and S(MAX) values of 285.94 and 2759.68 μW/m(2), respectively. Most of the cognitive and behavioral parameters did not show any effect, but children living in higher RF exposure areas (above median S(RMS) levels) had lower scores for verbal expression/comprehension and higher scores for internalizing and total problems, and obsessive-compulsive and post-traumatic stress disorders, in comparison to those living in areas with lower exposure. These associations were stronger when S(MAX) values were considered. Although some of our results may suggest that low-level environmental RF-EMF exposure has a negative impact on cognitive and/or behavior development in children; given limitations in the study design and that the majority of neurobehavioral functioning tasks were not affected, definitive conclusions cannot be drawn.

  3. [Electromagnetic fields of mobile telephone systems--thresholds, effects and risks for cochlear implant patients and healthy people].

    PubMed

    Bischof, F; Langer, J; Begall, K

    2008-11-01

    Every day life is detectably affected by manifold natural sources of electromagnetic fields (EMF), e. g. infrared radiation, light and the terrestrial magnetic field. However, there is still uncertainty about the consequences or hazards of artificial EMF, which emerge from mobile phone or wireless network (wireless local area network [WLAN]) services, for instance. Following recommendations of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) the German Commission on Radiation Protection (SSK) defined corresponding thresholds for high frequency electromagnetic fields (HF-EMF) in 2003. By observing those thresholds HF-EMF is thought to be innocent so far. However, there is still controversial discussion about induction of cancer or neurovegetative symptoms due to inconsistent study results. Patients with cochlea implants are of particular interest within the speciality of otorhinolaryngology due to specific hazards, which arise during mobile telephone use from the distance between brain and inductive metal implants (electrode) on the one hand and the electronic system of the cochlear implant and the source of HF-EMF on the other hand. Besides many studies about the impact of HF-EMF on common welfare, there are only very few surveys (n = 6) covering the effects on patients with cochlear implants. The purpose of this paper is to overview sources, thresholds and subsequently harmful or harmless effects of HFEMF. Due to the current state of knowledge about the impact of mobile phone use on health, we assume, that HF-EMF are harmless both for healthy people and patients with cochlea implants, provided that legal thresholds are observed.

  4. Electromagnetic field parameters and instrumentation

    NASA Astrophysics Data System (ADS)

    Sheppard, A. R.; Jones, R. A.; Stell, M. E.; Adey, W. R.; Bawin, S.

    1986-07-01

    We studied the effects of the electric and magnetic components of a Loran-C type waveform on three biological systems. Neurochemical assays of brain neurotransmitter substances indicate field-related changes in the levels of norepinephrine in the hippocampus and in the number and affinities of the opiate receptors in the cortex. Behavioral data showed that rats trained in an operant conditioning task did not reliably detect any electric field strength used. Biochemical data demonstrated that the Loran-C field did not modify basal ornithine decarboxylase activity in primary bone cells.

  5. Electromagnetic field components: their measurement using linear electrooptic and magnetooptic effects.

    PubMed

    Massey, G A; Erickson, D C; Kadlec, R A

    1975-11-01

    Vector components of alternating electric and magnetic fields can be measured with excellent sensitivity and time resolution using a laser system employing Pockels effect or Faraday effect materials as field sensors. This technique offers the advantages of being passive and remote; the sensor material requires no power source and can be interrogated by a remotely located laser transmitter and receiver with no connecting wires or electrodes. This paper analyzes the sensitivity of the electrooptic and magnetooptic methods and derives new figures of merit for materials used as sensors in these applications. Experiments evaluating the temperature coefficients of sensitivity and demonstrating that sensitivities of 0.06 V/cm and 0.5 G can be achieved easily are described. PMID:20155091

  6. Effects of gamma rays, ultraviolet radiation, sunlight, microwaves and electromagnetic fields on gene expression mediated by human immunodeficiency virus promoter

    SciTech Connect

    Libertin, C.R.; Woloschak, G.E. |; Panozzo, J.; Groh, K.R.; Chang-Liu, Chin-Mei; Schreck, S.

    1994-10-01

    Previous work by our group and others has shown the modulation of human immunodeficiency virus (HIV) promoter or long terminal repeat (LTR) after exposure to neutrons and ultraviolet radiations. Using HeLa cells stably transfected with a construct containing the chloramphenicol acetyl transferase (CAT) gene, the transcription of which is mediated by the HIV-LTR, we designed experiments to examine the effects of exposure to different types of radiation (such as {gamma} rays, ultraviolet and sunlight irradiations, electromagnetic fields and microwaves) in HIV-LTR-driven expression of CAT. These results demonstrated ultraviolet-light-induced transcription from the HIV promoter, as has been shown by others. Exposure to other DNA-damaging agents such as {gamma} rays and sunlight (with limited exposures) had no significant effect on transcription mediated by HIV-LTR, suggesting that induction of HIV is not mediated by just any type of DNA damage but rather may require specific types of DNA damage. Microwaves did not cause cell killing when cells in culture were exposed in high volumes of medium, and the same cells showed no changes in expression. When microwave exposure was carried out in low volumes of medium (so that excessive heat was generated) induction of HIV-LTR transcription (as assayed by CAT activity) was evident. Electromagnetic field exposures had no effect on expression of HIV-LTR. These results demonstrate that not all types of radiation and not all DNA-damaging agents are capable of inducing HIV. We hypothesize that induction of HIV transcription may be mediated by several different signals exposure to radiation. 22 refs., 8 figs.

  7. Expanding use of pulsed electromagnetic field therapies.

    PubMed

    Markov, Marko S

    2007-01-01

    Various types of magnetic and electromagnetic fields are now in successful use in modern medicine. Electromagnetic therapy carries the promise to heal numerous health problems, even where conventional medicine has failed. Today, magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and a variety of diseases and pathologies. Millions of people worldwide have received help in treatment of the musculoskeletal system, as well as for pain relief. Pulsed electromagnetic fields are one important modality in magnetotherapy. Recent technological innovations, implementing advancements in computer technologies, offer excellent state-of-the-art therapy. PMID:17886012

  8. Relativistic diffusive motion in thermal electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2013-04-01

    We discuss relativistic dynamics in a random electromagnetic field which can be considered as a high temperature limit of the quantum electromagnetic field in a heat bath (cavity) moving with a uniform velocity w. We derive a diffusion approximation for the particle’s dynamics generalizing the diffusion of Schay and Dudley. It is shown that the Jüttner distribution is the equilibrium state of the diffusion.

  9. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  10. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  11. On Projecting Discretized Electromagnetic Fields with Unstructured Grids

    SciTech Connect

    Lee, Lie-Quan; Candel, Arno; Kabel, Andrea; Li, Zenghai; /SLAC

    2008-08-13

    A new method for projecting discretized electromagnetic fields on one unstructured grid to another grid is presented in this paper. Two examples are used for studying the errors of different projection methods. The analysis shows that the new method is very effective on balancing both the error of the electric field and that of the magnetic field (or curl of the electric field).

  12. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  13. Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems.

    PubMed

    Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun

    2014-01-01

    Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed. PMID:25259497

  14. Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems.

    PubMed

    Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun

    2014-01-01

    Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed.

  15. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  16. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields. PMID:26444190

  17. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields.

  18. Effects of mobile phone electromagnetic fields: critical evaluation of behavioral and neurophysiological studies.

    PubMed

    Kwon, Myoung Soo; Hämäläinen, Heikki

    2011-05-01

    For the last two decades, a large number of studies have investigated the effects of mobile phone radiation on the human brain and cognition using behavioral or neurophysiological measurements. This review evaluated previous findings with respect to study design and data analysis. Provocation studies found no evidence of subjective symptoms attributed to mobile phone radiation, suggesting psychological reasons for inducing such symptoms in hypersensitive people. Behavioral studies previously reported improved cognitive performance under exposure, but it was likely to have occurred by chance due to multiple comparisons. Recent behavioral studies and replication studies with more conservative statistics found no significant effects compared with original studies. Neurophysiological studies found no significant effects on cochlear and brainstem auditory processing, but only inconsistent results on spontaneous and evoked brain electrical activity. The inconsistent findings suggest possible false positives due to multiple comparisons and thus replication is needed. Other approaches such as brain hemodynamic response measurements are promising but the findings are few and not yet conclusive. Rigorous study design and data analysis considering multiple comparisons and effect size are required to reduce controversy in this important field of research.

  19. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    PubMed Central

    Haghnegahdar, A; Khosrovpanah, H; Andisheh-Tadbir, A; Mortazavi, Gh; Saeedi Moghadam, M; Mortazavi, SMJ; Zamani, A; Haghani, M; Shojaei Fard, M; Parsaei, H; Koohi, O

    2014-01-01

    Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF). Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field.  This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series) which were separated from each other by a distance equal to the radius of one coil (12.5 cm). The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator.  Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis. PMID:25505775

  20. Effect of ultraviolet B radiation and 100 Hz electromagnetic fields on proliferation and DNA synthesis of Jurkat cells.

    PubMed

    Nindl, G; Hughes, E F; Johnson, M T; Spandau, D F; Vesper, D N; Balcavage, W X

    2002-09-01

    The use of ultraviolet B light (UVB) has been proven to be highly effective for treatment of various inflammatory skin diseases, but UVB phototherapy is limited by its carcinogenic side effects. It is necessary to uncover effectors that augment UVB so that similar or improved efficacy can be obtained with lower UVB doses. We found that low frequency, low intensity electromagnetic fields (EMFs) can act as such an effector and synergistically inhibit T lymphocyte proliferation. We first characterized the effects of UVB on Jurkat cells, a model for cutaneous T lymphocytes, and determined UVB's dose dependent inhibition of cell proliferation and induction of apoptosis. Cells exposed to a sublethal UVB dose retained their sensitivity to UVB, but repetitive irradiation seemed to cause accumulation of delayed DNA damage. We then exposed cells to combinations of UVB plus EMFs and found that 100 Hz, 1 mT EMFs decrease DNA synthesis of UVB-activated Jurkat cells by 34 +/- 13% compared to UVB alone. The decrease is, however, most effective when relatively high UVB doses are employed. Since EMFs alone had only a very weak inhibitory effect (10 +/- 2%), the data suggest that EMFs augment the cell killing effects of UVB in a synergistic way. These findings could provide the basis for development of new and improved clinical phototherapy protocols.

  1. Radiofrequency electromagnetic fields have no effect on the in vivo proliferation of the 9L brain tumor.

    PubMed

    Higashikubo, R; Culbreth, V O; Spitz, D R; LaRegina, M C; Pickard, W F; Straube, W L; Moros, E G; Roti, J L

    1999-12-01

    The intracranial 9L tumor model was used to determine if exposure to a radiofrequency (RF) electromagnetic field similar to those used in cellular telephone has any effects on the growth of a central nervous system tumor. Fischer 344 rats implanted with different numbers of 9L gliosarcoma cells were exposed to 835.62 MHz frequency-modulated continuous wave (FMCW) or 847.74 MHz code division multiple access (CDMA) RF field with nominal slot-average specific absorption rates in the brain of 0.75 +/- 0.25 W/kg. The animals were exposed to the RF field for 4 h a day, 5 days a week starting 4 weeks prior to and up to 150 days after the implantation of tumor cells. Among sham-exposed animals injected with 2 to 10 viable cells (group 1), the median survival was 70 days, with 27% of the animals surviving at 150 days. The median survival length and final survival fraction for animals injected with 11 to 36 viable cells (group 2) were 52 days and 14%, respectively, while the values for those injected with 37 to 100 cells (group 3) were 45 days and 0%. The animals exposed to CDMA or FMCW had similar survival parameters, and the statistical comparison of the survival curves for each of the groups 1, 2 and 3 showed no significant differences compared to sham-exposed controls. PMID:10581537

  2. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity.

    PubMed

    Selvam, Ramasamy; Ganesan, Kalaivani; Narayana Raju, K V S; Gangadharan, Akkalayi Chandrapuram; Manohar, Bhakthavatchalam Murali; Puvanakrishnan, Rengarajulu

    2007-06-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting 1% of the population worldwide. Pulsed electromagnetic field (PEMF) has a number of well-documented physiological effects on cells and tissues including antiinflammatory effect. This study aims to explore the antiinflammatory effect of PEMF and its possible mechanism of action in amelioration of adjuvant induced arthritis (AIA). Arthritis was induced by a single intradermal injection of heat killed Mycobacterium tuberculosis at a concentration of 500 microg in 0.1 ml of paraffin oil into the right hind paw of rats. The arthritic animals showed a biphasic response regarding changes in the paw edema volume. During the chronic phase of the disease, arthritic animals showed an elevated level of lipid peroxides and depletion of antioxidant enzymes with significant radiological and histological changes. Besides, plasma membrane Ca(2+) ATPase (PMCA) activity was inhibited while intracellular Ca(2+) level as well as prostaglandin E(2) levels was noticed to be elevated in blood lymphocytes of arthritic rats. Exposure of arthritic rats to PEMF at 5 Hzx4 microT x 90 min, produced significant antiexudative effect resulting in the restoration of the altered parameters. The antiinflammatory effect could be partially mediated through the stabilizing action of PEMF on membranes as reflected by the restoration of PMCA and intracellular Ca(2+) levels in blood lymphocytes subsequently inhibiting PGE(2) biosynthesis. The results of this study indicated that PEMF could be developed as a potential therapy for RA in human beings.

  3. Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells

    PubMed Central

    Razavi, Shahnaz; Salimi, Marzieh; Shahbazi-Gahrouei, Daryoush; Karbasi, Saeed; Kermani, Saeed

    2014-01-01

    Background: Extremely low-frequency electromagnetic fields (ELF-EMF) can effect on biological systems and alters some cell functions like proliferation rate. Therefore, we aimed to attempt the evaluation effect of ELF-EMF on the growth of human adipose derived stem cells (hADSCs). Materials and Methods: ELF-EMF was generated by a system including autotransformer, multi-meter, solenoid coils, teslameter and its probe. We assessed the effect of ELF-EMF with intensity of 0.5 and 1 mT and power line frequency 50 Hz on the survival of hADSCs for 20 and 40 min/day for 7 days by MTT assay. One-way analysis of variance was used to assessment the significant differences in groups. Results: ELF-EMF has maximum effect with intensity of 1 mT for 20 min/day on proliferation of hADSCs. The survival and proliferation effect (PE) in all exposure groups were significantly higher than that in sham groups (P < 0.05) except in group of 1 mT and 40 min/day. Conclusion: Our results show that between 0.5 m and 1 mT ELF-EMF could be enhances survival and PE of hADSCs conserving the duration of exposure. PMID:24592372

  4. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12.

    PubMed

    Martirosyan, Varsik; Baghdasaryan, Naira; Ayrapetyan, Sinerik

    2013-09-01

    In the present work, the frequency-dependent effects of extremely low-frequency electromagnetic field (ELF EMF) on Escherichia coli K-12 growth have been studied. The frequency-dependent effects of ELF EMF have shown that it can either stimulate or inhibit the growth of microbes. However, the mechanism by which the ELF EMF affects the bacterial cells is not clear yet. It was suggested that the aqua medium can serve as a target through which the biological effect of ELF EMF on microbes may be realized. To check this hypothesis, the frequency-dependent effects (2, 4, 6, 8, 10 Hz, B = 0.4 mT, 30 min) of ELF EMF on the bacterial growth were studied in both cases where the microbes were in the culture media during the exposure and where culture media was preliminarily exposed to the ELF EMF before the addition of bacteria. For investigating the cell proliferation, the radioactive [(3)H]-thymidine assay was carried out. It has been shown that EMF at 4 Hz exposure has pronounced stimulation while at 8 Hz it has inhibited cell proliferation.

  5. In vivo and in vitro effects of a pulsed electromagnetic field on net calcium flux in rat calvarial bone.

    PubMed

    Spadaro, J A; Bergstrom, W H

    2002-06-01

    Although PEMF's have been found to promote fracture healing and to modulate the activity of bone cells in vitro, effects on bone metabolism are largely unexplored. A bioassay using neonatal rat calvarial bone was used to determine the early effects of a pulsing electromagnetic field (PEMF) exposure in vivo and in vitro on bone metabolic calcium exchange. Bone discs taken from whole body exposed animals (0-4 hours) show a log exposure time-dependent average increase in net Ca uptake in the 0-50% range (r2 = 0.83). This increase could be detected immediately after exposure and also after 24 hours, but not 48 hours later. Animals given whole body PEMF exposure also showed a decrease in serum calcium and did not elevate serum Ca after administration of exogenous parathyroid hormone (PTH). Bone discs from untreated rats, exposed to PEMF for 15 minutes in vitro and then assayed, showed net Ca uptake increases of a similar magnitude and also were refractory to the Ca-releasing effect of PTH. Unexposed discs responded normally to PTH by decreasing net Ca uptake. Treatment of calvarial discs with calcitonin or acetazolamide, both of which inactivate osteoclasts, made the bone refractory to further increases in Ca uptake by PEMF. These results suggest that PEMF exposure produces PTH-refractory osteoclastics and has a relatively rapid effect on increasing net bone Ca uptake, putatively due to a decrease in PTH/paracrine-mediated bone resorption. PMID:11976773

  6. Mechanisms of interaction and biological effects of extremely-low-frequency electromagnetic fields

    SciTech Connect

    Tenforde, T.S.

    1994-07-01

    Evidence is mounting, that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers. The implications of these findings for promotion of tumor growth by ELF fields are also reviewed.

  7. Effect of nonlinear radiofrequency electromagnetic fields on the emittance of bunched beams

    NASA Astrophysics Data System (ADS)

    Phadte, D. S.; Patidar, C. B.

    2013-07-01

    Gap transformations are frequently used in ion Linac codes, to efficiently describe the particle dynamics. Using similar approach, we analyze the uniformly bunched beam passing through an axis-symmetric radiofrequency (RF) cavity. The method can be used for other distributions as well using a similar six dimensional analysis. The effect of non-linear RF field in radial and axial directions in an RF cavity and the finite phase width of the bunch, on the transverse and longitudinal emittance growth have been studied. The expressions obtained have been verified for the two types of cavity cells namely the zero mode DTL and pi mode CCL type used frequently in ion linacs. The results are seen to be valid for the entire maximum phase acceptance up to 360 degrees. Simulations with the equivalent beams of non-uniform distributions namely Waterbag and Gaussian show that at synchronous phases closer to the wave crest, the results give a good approximation of emittance growth in both planes for non-uniform beams.

  8. Electromagnetic structure of A=2 and 3 nuclei in chiral effective field theory

    SciTech Connect

    M. Piarulli, L. Girlanda, L.E. Marcucci, S. Pastore, R. Schiavilla, M. Viviani

    2013-01-01

    The objectives of the present work are twofold. The first is to address and resolve some of the differences present in independent, chiral-effective-field-theory ({chi}EFT) derivations up to one loop, recently appeared in the literature, of the nuclear charge and current operators. The second objective is to provide a complete set of {chi}EFT predictions for the structure functions and tensor polarization of the deuteron, for the charge and magnetic form factors of {sup 3}He and {sup 3}H, and for the charge and magnetic radii of these few-nucleon systems. The calculations use wave functions derived from high-order chiral two- and three-nucleon potentials and Monte Carlo methods to evaluate the relevant matrix elements. Predictions based on conventional potentials in combination with {chi}EFT charge and current operators are also presented. There is excellent agreement between theory and experiment for all these observables for momentum transfers up to q {<=} 2.0--2.5 fm{sup -1}; for a subset of them, this agreement extends to momentum transfers as high as q ~ 5--6 fm{sup -1}. A complete analysis of the results is provided.

  9. Erythrocyte rouleau formation under polarized electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sebastián, José Luis; San Martín, Sagrario Muñoz; Sancho, Miguel; Miranda, José Miguel; Álvarez, Gabriel

    2005-09-01

    We study the influence of an external electromagnetic field of 1.8GHz in the formation or disaggregation of long rouleau of identical erythrocyte cells. In particular we calculate the variation of the transmembrane potential of an individual erythrocyte illuminated by the external field due to the presence of the neighboring erythrocytes in the rouleau, and compare the total electric energy of isolated cells with the total electric energy of the rouleau. We show that the polarization of the external electromagnetic field plays a fundamental role in the total energy variation of the cell system, and consequently in the formation or disaggregation of rouleau.

  10. The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells.

    PubMed

    Kaivosoja, Emilia; Sariola, Veikko; Chen, Yan; Konttinen, Yrjö T

    2015-01-01

    The hypothesis of this work was that human bone marrow-derived mesenchymal stem cells (MSCs) are regulated by pulsed electromagnetic fields (PEMFs) and by intracrine conversion of an adrenal prohormone to dihydrotestosterone. The effect of PEMF and dehydroepiandrosterone (DHEA) on viability and osteogenic differentiation of human MSCs and on the viability of osteoblastic SaOS-2 cells was evaluated. It was found that PEMF promoted the viability rate of both cell types, whereas DHEA decreased the viability rate in a concentration-dependent manner. PEMF did not have major effects on osteo-induction at this low seeding density level (3000 cells/cm(2) ). Instead, DHEA, after MSC-mediated and 5α-reductase-dependent conversion to dihydrotestosterone, clearly promoted the osteo-induction of MSCs induced with β-glyserophosphate, ascorbate and dexamethasone. Alkaline phosphatase (ALP), SMAD1, RUNX2, osteopontin (OP) and osteocalcin (OC) RNA levels were increased and alizarin red S- and hydroxyapatite-specific OsteoImage(TM) stainings disclosed a promoted mineralization process. In addition, DHEA increased OP and OC mRNA levels of non-induced MSCs. A sequential use of mitogenic PEMF early during the fracture healing, followed by later administration of DHEA with osteogenic differentiating effect, might be worth subjecting to a randomized clinical trial.

  11. Anti-proliferative effect of extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver

    PubMed Central

    2010-01-01

    Background Recently, extremely low frequency electromagnetic fields (ELF-EMF) have been studied with great interest due to their possible effects on human health. In this study, we evaluated the effect of 4.5 mT - 120 Hz ELF-EMF on the development of preneoplastic lesions in experimental hepatocarcinogenesis. Methods Male Fischer-344 rats were subjected to the modified resistant hepatocyte model and were exposed to 4.5 mT - 120 Hz ELF-EMF. The effects of the ELF-EMF on hepatocarcinogenesis, apoptosis, proliferation and cell cycle progression were evaluated by histochemical, TUNEL assay, caspase 3 levels, immunohistochemical and western blot analyses. Results The application of the ELF-EMF resulted in a decrease of more than 50% of the number and the area of γ-glutamyl transpeptidase-positive preneoplastic lesions (P = 0.01 and P = 0.03, respectively) and glutathione S-transferase placental expression (P = 0.01). The number of TUNEL-positive cells and the cleaved caspase 3 levels were unaffected; however, the proliferating cell nuclear antigen, Ki-67, and cyclin D1 expression decreased significantly (P ≤ 0.03), as compared to the sham-exposure group. Conclusion The application of 4.5 mT - 120 Hz ELF-EMF inhibits preneoplastic lesions chemically induced in the rat liver through the reduction of cell proliferation, without altering the apoptosis process. PMID:20416104

  12. Improving Functional Outcomes for Vascular Amputees Through Use of Mirror Therapy and Elimination of the Effects of Electromagnetic Fields.

    PubMed

    Houston, Helen; Dickerson, Anne E

    2016-01-01

    The objective of this pilot study was to investigate the effectiveness of combining an amputee limb cover to eliminate the effects of electromagnetic fields (i.e., pain) and a Mirror Therapy exercise program to improve functional outcomes for vascular amputees. A cross-sectional repeated-measures design was used with 14 participants with either acute amputations or surgery at least 8 to 24 months previously. The 4-week intervention included the use of an amputee limb cover and mirror therapy exercises each day. The outcome measures were activities of daily living interference (e.g., self-care, walking, car transfer, low chair transfer, sleep), and well-being (e.g., satisfaction, mood, quality of life) at three times (pre- and posttreatment and maintenance). Participants with acute amputations made significant improvements in the areas of self-care, walking, car transfer, sleep, mood, and quality of life, while the subacute participants improved significantly in sleep and satisfaction. A reduction in the time required before prosthetic fitting decreased from 12 weeks to 8 weeks for acute amputees and an improvement in wearing tolerance from 0-2 to 8-12 hours for the subacute amputees were unexpected results suggesting the combined intervention may improves the extent to which amputees can increase participation in their activities of everyday living.

  13. Improving Functional Outcomes for Vascular Amputees Through Use of Mirror Therapy and Elimination of the Effects of Electromagnetic Fields.

    PubMed

    Houston, Helen; Dickerson, Anne E

    2016-01-01

    The objective of this pilot study was to investigate the effectiveness of combining an amputee limb cover to eliminate the effects of electromagnetic fields (i.e., pain) and a Mirror Therapy exercise program to improve functional outcomes for vascular amputees. A cross-sectional repeated-measures design was used with 14 participants with either acute amputations or surgery at least 8 to 24 months previously. The 4-week intervention included the use of an amputee limb cover and mirror therapy exercises each day. The outcome measures were activities of daily living interference (e.g., self-care, walking, car transfer, low chair transfer, sleep), and well-being (e.g., satisfaction, mood, quality of life) at three times (pre- and posttreatment and maintenance). Participants with acute amputations made significant improvements in the areas of self-care, walking, car transfer, sleep, mood, and quality of life, while the subacute participants improved significantly in sleep and satisfaction. A reduction in the time required before prosthetic fitting decreased from 12 weeks to 8 weeks for acute amputees and an improvement in wearing tolerance from 0-2 to 8-12 hours for the subacute amputees were unexpected results suggesting the combined intervention may improves the extent to which amputees can increase participation in their activities of everyday living. PMID:26295593

  14. Lack of adverse effects of whole-body exposure to a mobile telecommunication electromagnetic field on the rat fetus.

    PubMed

    Takahashi, Satoru; Imai, Norio; Nabae, Kyoko; Wake, Kanako; Kawai, Hiroki; Wang, Jianqing; Watanabe, So-ichi; Kawabe, Mayumi; Fujiwara, Osamu; Ogawa, Kumiko; Tamano, Seiko; Shirai, Tomoyuki

    2010-03-01

    Abstract The recent steep increase in the number of users of cellular phones is resulting in marked increase of exposure of humans to radiofrequency electromagnetic fields (EMFs). Children are of particular concern. Our goal was to evaluate potential adverse effects of long-term whole-body exposure to EMFs simulating those from base stations for cellular phone communication. Pregnant rats were given low, high or no exposure. At the high level, the average specific absorption rate (SAR)for the dams was 0.066-0.093 W/kg. The SAR for the fetuses and the F(1) progeny was 0.068-0.146 W/kg. At the low level, the SARs were about 43% of these. The 2.14 GHz signals were applied for 20 h per day during the gestation and lactation periods. No abnormal findings were observed in either the dams or the F(1) generation exposed to the EMF or in the F(2) offspring. Parameters evaluated included growth, gestational condition and organ weights for dams and survival rates, development, growth, physical and functional development, hormonal status, memory function and reproductive ability of the F(1) offspring (at 10 weeks of age) along with embryotoxicity and teratogenicity in the F(2) rats. Thus, under our experimental conditions, whole-body exposure to 2.14 GHz for 20 h per day during gestation and lactation did not cause any adverse effects on pregnancy or the development of rats.

  15. Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Mashhoon, Bahram

    2002-03-01

    The propagation of light in the gravitational field of self-gravitating spinning bodies moving with arbitrary velocities is discussed. The gravitational field is assumed to be ``weak'' everywhere. The equations of motion of a light ray are solved in the first post-Minkowskian approximation which is linear with respect to the universal gravitational constant G. We do not restrict ourselves to the approximation of a gravitational lens so that the solution of light geodesics is applicable for arbitrary locations of the source of light and the observer. This formalism is applied for studying corrections to the Shapiro time delay in binary pulsars caused by the rotation of the pulsar and its companion. We also derive the correction to the light deflection angle caused by the rotation of gravitating bodies in the solar system (Sun, planets) or a gravitational lens. The gravitational shift of frequency due to the combined translational and rotational motions of light-ray-deflecting bodies is analyzed as well. We give a general derivation of the formula describing the relativistic rotation of the plane of polarization of electromagnetic waves (Skrotskii effect). This formula is valid for arbitrary translational and rotational motion of gravitating bodies and greatly extends the results of previous researchers. Finally, we discuss the Skrotskii effect for gravitational waves emitted by localized sources such as a binary system. The theoretical results of this paper can be applied for studying various relativistic effects in microarcsecond space astrometry and developing corresponding algorithms for data processing in space astrometric missions such as FAME, SIM, and GAIA.

  16. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects.

    PubMed

    Pall, Martin L

    2013-08-01

    The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca(2+) /calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca(2+) -mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca(2+) /calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects.

  17. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects

    PubMed Central

    Pall, Martin L

    2013-01-01

    The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca2+/calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca2+-mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca2+/calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects. PMID:23802593

  18. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  19. Bidirectional effect of electromagnetic fields on ketanserin-induced yawning in patients with multiple sclerosis: the role of melatonin.

    PubMed

    Sandyk, R

    1996-03-01

    5-HT2 receptors regulate sleep including yawning behavior. Ritanserin, a selective 5-HT2A receptor antagonist, increases the duration of slow wave in rats and humans. This effect is more pronounced during the light period when melatonin plasma levels are low; melatonin inhibits the sleep effects of ritanserin. These findings indicate that melatonin co-determines the effects of ritanserin on sleep. In a cohort of multiple sclerosis (MS) patients ketanserin, a selective 5-HT2A receptor antagonist, induces recurrent yawning particularly when administered in daytime. The frequency of yawning induced by the drug was modified by AC pulsed picotesla flux electromagnetic fields (EMFs) which affect melatonin secretion. Two MS patients are presented in whom the frequency of ketanserin-induced yawning was altered in opposite directions by these EMFs. The first patient, a 50 year old woman with a remitting-relapsing course, developed recurrent yawning and sleepiness after administration of ketanserin (10 mg, PO). Yawning was decreased dramatically during application of EMFs but was unaffected by a placebo EMFs treatment. The second patient, a 35 year old man with a chronic progressive course, manifested a single and brief yawn after administration of an equal dose of ketanserin. Yawning was increased dramatically during application of EMFs while remaining unchanged during a placebo EMFs treatment. These observations demonstrate a bidirectional effect of picotesla flux EMFs on ketanserin-induced yawning which may be related to differences in daytime melatonin plasma levels among MS patients. If validated by estimations of melatonin plasma levels in a larger cohort of patients the information derived from the effects of picotesla EMFs on ketanserin-induced yawning could be used to: (a) assess pineal melatonin functions in patients with MS; (b) indicate differences in pineal functions between male and female MS patients; and (c) indicate a relationship between plasma melatonin

  20. Lack of genotoxic effects (micronucleus induction) in human lymphocytes exposed in vitro to 900 MHz electromagnetic fields.

    PubMed

    Zeni, O; Chiavoni, A S; Sannino, A; Antolini, A; Forigo, D; Bersani, F; Scarfì, M R

    2003-08-01

    In the present study, we investigated the induction of genotoxic effects in human peripheral blood lymphocytes after exposure to electromagnetic fields used in mobile communication systems (frequency 900 MHz). For this purpose, the incidence of micronuclei was evaluated by applying the cytokinesis-block micronucleus assay. Cytotoxicity was also investigated using the cytokinesis-block proliferation index. The experiments were performed on peripheral blood from 20 healthy donors, and several conditions were tested by varying the duration of exposure, the specific absorption rate (SAR), and the signal [continuous-wave (CW) or GSM (Global System of Mobile Communication) modulated signal]. The following exposures were carried out: (1) CW intermittent exposure (SAR = 1.6 W/kg) for 6 min followed by a 3-h pause (14 on/off cycles); (2) GSM signal, intermittent exposure as described in (1); (3) GSM signal, intermittent exposure as described in (1) 24 h before stimulation with phytohemagglutinin (8 on/off cycles); (4) GSM signal, intermittent exposure (SAR = 0.2 W/kg) 1 h per day for 3 days. The SARs were estimated numerically. No statistically significant differences were detected in any case in terms of either micronucleus frequency or cell cycle kinetics.

  1. Effects of pulsed electromagnetic fields on peripheral blood circulation in people with diabetes: A randomized controlled trial.

    PubMed

    Sun, Jiahui; Kwan, Rachel Lai-Chu; Zheng, Yongping; Cheing, Gladys Lai-Ying

    2016-07-01

    Cutaneous blood flow provides nourishment that plays an essential role in maintaining skin health. We examined the effects of pulsed electromagnetic fields (PEMFs) on cutaneous circulation of dorsal feet. Twenty-two patients with diabetes mellitus (DM) and 21 healthy control subjects were randomly allocated to receive either PEMFs or sham PEMFs (0.5 mT, 12 Hz, 30 min). Blood flow velocity and diameter of the small vein were examined by using ultrasound biomicroscopy; also, microcirculation at skin over the base of the 1st metatarsal bone (Flux1) and distal 1st phalange (Flux2) was measured by laser Doppler flowmetry before and after intervention. Results indicated that PEMFs produced significantly greater changes in blood flow velocity of the smallest observable vein than did sham PEMFs (both P < 0.05) in both types of subjects. However, no significant difference was found in changes of vein diameter, nor in Flux1 and Flux2, between PEMFs and sham PEMFs groups in subjects with or without DM. We hypothesized that PEMFs would increase blood flow velocity of the smallest observable vein in people with or without DM. Bioelectromagnetics. 37:290-297, 2016. © 2016 Wiley Periodicals, Inc.

  2. Neuroprotective effects of lotus seedpod procyanidins on extremely low frequency electromagnetic field-induced neurotoxicity in primary cultured hippocampal neurons.

    PubMed

    Yin, Chunchun; Luo, Xiaoping; Duan, Yuqing; Duan, Wenyi; Zhang, Haihui; He, Yuanqing; Sun, Guibo; Sun, Xiaobo

    2016-08-01

    The present study investigated the protective effects of lotus seedpod procyanidins (LSPCs) on extremely low frequency electromagnetic field (ELF-EMF)-induced neurotoxicity in primary cultured rat hippocampal neurons and the underlying molecular mechanism. The results of MTT, morphological observation, superoxide dismutase (SOD) and malondialdehyde (MDA) assays showed that compared with control, incubating neurons under ELF-EMF exposure significantly decreased cell viability and increased the number of apoptotic cells, whereas LSPCs evidently protected the hippocampal neurons against ELF-EMF-induced cell damage. Moreover, a certain concentration of LSPCs inhibited the elevation of intracellular reactive oxygen species (ROS) and Ca(2+) level, as well as prevented the disruption of mitochondrial membrane potential induced by ELF-EMF exposure. In addition, supplementation with LSPCs could alleviate DNA damage, block cell cycle arrest at S phase, and inhibit apoptosis and necrosis of hippocampal neurons under ELF-EMF exposure. Further study demonstrated that LSPCs up-regulated the activations of Bcl-2, Bcl-xl proteins and suppressed the expressions of Bad, Bax proteins caused by ELF-EMF exposure. In conclusion, these findings revealed that LSPCs protected against ELF-EMF-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptotic pathway. PMID:27470406

  3. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats.

    PubMed

    Jin, Yeung Bae; Choi, Hyung-Do; Kim, Byung Chan; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil

    2013-05-01

    Despite more than a decade of research on the endocrine system, there have been no published studies about the effects of concurrent exposure of radiofrequency electromagnetic fields (RF-EMF) on this system. The present study investigated the several parameters of the endocrine system including melatonin, thyroid stimulating hormone, stress hormone and sex hormone after code division multiple access (CDMA, 849 MHz) and wideband code division multiple access (WCDMA, 1.95 GHz) signals for simultaneous exposure in rats. Sprague-Dawley rats were exposed to RF-EMF signals for 45 min/day, 5 days/week for up to 8 weeks. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg (total 4.0 W/kg). At 4 and 8 weeks after the experiment began, each experimental group's 40 rats (male 20, female 20) were autopsied. Exposure for 8 weeks to simultaneous CDMA and WCDMA RF did not affect serum levels in rats of melatonin, thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxin (T4), adrenocorticotropic hormone (ACTH) and sex hormones (testosterone and estrogen) as assessed by the ELISA method.

  4. Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: the effect on human mesenchymal stem cell osteogenic differentiation.

    PubMed

    Ledda, Mario; D'Emilia, Enrico; Giuliani, Livio; Marchese, Rodolfo; Foletti, Alberto; Grimaldi, Settimio; Lisi, Antonella

    2015-02-01

    In vivo control of osteoblast differentiation is an important process needed to maintain the continuous supply of mature osteoblast cells for growth, repair, and remodeling of bones. The regulation of this process has also an important and significant impact on the clinical strategies and future applications of cell therapy. In this article, we studied the effect of nonpulsed sinusoidal electromagnetic field radiation tuned at calcium-ion cyclotron frequency of 50 Hz exposure treatment for bone differentiation of human mesenchymal stem cells (hMSCs) alone or in synergy with dexamethasone, their canonical chemical differentiation agent. Five days of continuous exposure to calcium-ion cyclotron resonance affect hMSC proliferation, morphology, and cytoskeletal actin reorganization. By quantitative real-time polymerase chain reaction, we also observed an increase of osteoblast differentiation marker expression such as Runx2, alkaline phosphatase (ALP), osteocalcin (OC), and osteopontin (OPN) together with the osteoprotegerin mRNA modulation. Moreover, in these cells, the increase of the protein expression of OPN and ALP was also demonstrated. These results demonstrate bone commitment of hMSCs through a noninvasive and biocompatible differentiating physical agent treatment and highlight possible applications in new regenerative medicine protocols. PMID:25087470

  5. Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Dong, Yong; Jiang, Li; Tang, Zhongyi; Lu, Yiping; Li, Tingju

    2015-11-01

    The bulk AlCrFeNiMo0.2 high-entropy alloy was successfully prepared by vacuum medium frequency induction melting. The effects of electromagnetic field on microstructure and properties were investigated. The alloy possessed a mixed structure of B2 and BCC, and the phase types were not changed by the electromagnetic field treatment. The microstructure exhibited typical lamellar eutectic cell and rod eutectic cell structures. These eutectic cell structures were constituted by the AlNi-type intermetallic compound and the FeCr-type solid solution. With the increase of electromagnetic field intensity, the hardness increases, while the compressive fracture strength and fracture strain of the alloy first increases and then decreases. The alloy with 15 mT electromagnetic field has the largest fracture strength 2282.3 MPa, yield strength 1160.5 MPa, and fracture strain 0.29. The alloy shows typical ferromagnetic behavior, and the homogenized lamellar eutectic cell microstructure significantly decreased the specific saturation magnetizations.

  6. A Challenging Issue in the Etiology of Speech Problems: The Effect of Maternal Exposure to Electromagnetic Fields on Speech Problems in the Offspring

    PubMed Central

    Zarei, S.; Mortazavi, S. M. J.; Mehdizadeh, A. R.; Jalalipour, M.; Borzou, S.; Taeb, S.; Haghani, M.; Mortazavi, S. A. R.; Shojaei-fard, M. B.; Nematollahi, S.; Alighanbari, N.; Jarideh, S.

    2015-01-01

    Background Nowadays, mothers are continuously exposed to different sources of electromagnetic fields before and even during pregnancy.  It has recently been shown that exposure to mobile phone radiation during pregnancy may lead to adverse effects on the brain development in offspring and cause hyperactivity. Researchers have shown that behavioral problems in laboratory animals which have a similar appearance to ADHD are caused by intrauterine exposure to mobile phones. Objective The purpose of this study was to investigate whether the maternal exposure to different sources of electromagnetic fields affect on the rate and severity of speech problems in their offspring. Methods In this study, mothers of 35 healthy 3-5 year old children (control group) and 77 children and diagnosed with speech problems who had been referred to a speech treatment center in Shiraz, Iran were interviewed. These mothers were asked whether they had exposure to different sources of electromagnetic fields such as mobile phones, mobile base stations, Wi-Fi, cordless phones, laptops and power lines. Results We found a significant association between either the call time (P=0.002) or history of mobile phone use (months used) and speech problems in the offspring (P=0.003). However, other exposures had no effect on the occurrence of speech problems. To the best of our knowledge, this is the first study to investigate a possible association between maternal exposure to electromagnetic field and speech problems in the offspring. Although a major limitation in our study is the relatively small sample size, this study indicates that the maternal exposure to common sources of electromagnetic fields such as mobile phones can affect the occurrence of speech problems in the offspring. PMID:26396971

  7. A Natural Electromagnetic Fields Effect on Healthy Volunteers During Long-Term Experiment with Isolation

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yury I.; Mikhailov, Valery M.; Ushakov, Boris B.

    2008-06-01

    There were investigated four healthy volunteers at the age of 37, 40, 41 and 48 during the baseline 240-d isolation period starting from July 3, 1999 in the frame of SFINCSS-99 - "SIMULATION OF FLIGHT OF INTERNATIONAL CREW ON SPACE STATION". Before a starting of experiment with long-term isolation were carried out measurements of magnetic properties of module and sleeping places. With the regularity of 3 times a week each subject made records of no less then 3 video episodes with the total length of one minute minimum at the same time between 1 and 2 p.m. Applying vital non-invasive computer capillaroscopy of nailbed has allowed quantitatively estimating a capillary blood velocity (CBV). The microcirculation parameters obtained during experiment were compared to local indexes of geomagnetic activity. About 1500 episodes were recorded on laser disks and analyzed. Parameters of microcirculation were compared with other physiological parameters monitored in the experiment. CBV investigation during the most intensive magnetic storm for the period of isolation (A-index- 44) show, that CBV at all volunteers was considerably slowed down. The greatest delay of blood flow velocity revealed at the subject which the factor of shielding of a constant magnetic field at the level of the sleeping berth has made 2,0. CBV at the subject has made 498 ± 46 μm/s with (- 65,8 % from base line). Least delay of a CBV is revealed at the subject which the factor of shielding of a constant magnetic field at the level of the sleeping berth has made 3, 15 (-12 % from base line).

  8. Effect of Lycopersicon esculentum extract on apoptosis in the rat cerebellum, following prenatal and postnatal exposure to an electromagnetic field.

    PubMed

    Köktürk, Sibel; Yardimoglu, Melda; Celikozlu, Saadet D; Dolanbay, Elif Gelenli; Cimbiz, Ali

    2013-07-01

    The expansion of mobile phone technology has raised concerns regarding the effect of 900-MHz electromagnetic field (EMF) exposure on the central nervous system. At present, the developing human brain is regularly exposed to mobile telephones, pre- and postnatally. Several studies have demonstrated the acute effects of EMF exposure during pre- or postnatal periods; however, the chronic effects of EMF exposure are less understood. Thus, the aim of the present study was to determine the chronic effects of EMF on the pre- and postnatal rat cerebellum. The control group was maintained in the same conditions as the experimental groups, without the exposure to EMF. In the EMF1 group, the rats were exposed to EMF during pre- and postnatal periods (until postnatal day 80). In the EMF2 group, the rats were also exposed to EMF pre- and postnatally; in addition, however, they were provided with a daily oral supplementation of Lycopersicon esculentum extract (∼2 g/kg). The number of caspase-3-labeled Purkinje neurons and granule cells present in the rats in the control and experimental groups were then counted. The neurodegenerative changes were studied using cresyl violet staining, and these changes were evaluated. In comparison with the control animals, the EMF1 group demonstrated a significant increase in the number of caspase-3-labeled Purkinje neurons and granule cells present in the cerebellum (P<0.001). However, in comparison with the EMF1 group, the EMF2 group exhibited significantly fewer caspase-3-labeled Purkinje neurons and granule cells in the cerebellum. In the EMF1 group, the Purkinje neurons were revealed to have undergone dark neuron degenerative changes. However, the presence of dark Purkinje neurons was reduced in the EMF2 group, compared with the EMF1 group. The results indicated that apoptosis and neurodegeneration in rats exposed to EMF during pre- and postnatal periods may be reduced with Lycopersicon esculentum extract therapy. PMID:23935717

  9. Generalized electromagnetic fields in a chiral medium

    NASA Astrophysics Data System (ADS)

    Bisht, P. S.; Singh, Jivan; Negi, O. P. S.

    2007-09-01

    The time-dependent Dirac-Maxwell's equations in the presence of electric and magnetic sources are reformulated in a chiral medium, and the solutions for the classical problem are obtained in a unique, simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in the chiral medium has also been discussed in a compact, simple and consistent manner.

  10. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Hattori, Kenji; Kunugita, Naoki; Wang, Jianqing; Ishii, Kazuyuki

    2016-01-01

    We investigated the thermal effects of radiofrequency electromagnetic fields (RF-EMFs) on the variation in core temperature and gene expression of some stress markers in rats. Sprague-Dawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum. PMID:27665775

  11. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Hattori, Kenji; Kunugita, Naoki; Wang, Jianqing; Ishii, Kazuyuki

    2016-01-01

    We investigated the thermal effects of radiofrequency electromagnetic fields (RF-EMFs) on the variation in core temperature and gene expression of some stress markers in rats. Sprague-Dawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum.

  12. Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate.

    PubMed

    Huber, Reto; Schuderer, Jürgen; Graf, Thomas; Jütz, Kathrin; Borbély, Alexander A; Kuster, Niels; Achermann, Peter

    2003-05-01

    In two previous studies we demonstrated that radiofrequency electromagnetic fields (RF EMF) similar to those emitted by digital radiotelephone handsets affect brain physiology of healthy young subjects exposed to RF EMF (900 MHz; spatial peak specific absorption rate [SAR] 1 W/kg) either during sleep or during the waking period preceding sleep. In the first experiment, subjects were exposed intermittently during an 8 h nighttime sleep episode and in the second experiment, unilaterally for 30 min prior to a 3 h daytime sleep episode. Here we report an extended analysis of the two studies as well as the detailed dosimetry of the brain areas, including the assessment of the exposure variability and uncertainties. The latter enabled a more in depth analysis and discussion of the findings. Compared to the control condition with sham exposure, spectral power of the non-rapid eye movement sleep electroencephalogram (EEG) was initially increased in the 9-14 Hz range in both experiments. No topographical differences with respect to the effect of RF EMF exposure were observed in the two experiments. Even unilateral exposure during waking induced a similar effect in both hemispheres. Exposure during sleep reduced waking after sleep onset and affected heart rate variability. Exposure prior to sleep reduced heart rate during waking and stage 1 sleep. The lack of asymmetries in the effects on sleep EEG, independent of bi- or unilateral exposure of the cortex, may indicate involvement of subcortical bilateral projections to the cortex in the generation of brain function changes, especially since the exposure of the thalamus was similar in both experiments (approx. 0.1 W/kg).

  13. LEM—electromagnetic fields measurement laboratory

    NASA Astrophysics Data System (ADS)

    Annino, A.; Falciglia, F.; Musumeci, F.; Oliveri, M.; Privitera, G.; Triglia, A.

    2000-04-01

    The widespread presence of electromagnetic waves and the relative problems regarding them have favored the constitution of the LEM at the DMFCI in Catania University, where competence has been developing in this sector for about 10 years. Full operativeness has been reached as far as the electromagnetic field measurements in anthropized environments are concerned. Other research will be undertaken as soon as further funds are available. Some problems connected with the perfecting of measurements instruments and the results of emission measurements of cellular telephones are presented.

  14. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  15. Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat.

    PubMed

    Komaki, Alireza; Khalili, Afshin; Salehi, Iraj; Shahidi, Siamak; Sarihi, Abdolrahman

    2014-05-20

    Modern lifestyle exposes nearly all humans to electromagnetic fields, particularly to extremely low frequency electromagnetic fields (ELF-EMFs). Prolonged exposure to ELF-EMFs induces persistent changes in neuronal activity. However, the modulation of synaptic efficiency by ELF-EMFs in vivo is still unclear. In the present study, we investigated whether ELF-EMFs can change induction of long-term potentiation (LTP) and paired-pulse ratio (PPR) in the rat hippocampal area. Twenty-nine adult male Wistar rats were divided into 3 groups (ELF-EMF exposed, sham and control groups). The ELF-EMF group was exposed to a magnetic field for 90 consecutive days (2h/day). ELF-EMFs were produced by a circular coil (50Hz, 100 micro Tesla). The sham-exposed controls were placed in an identical chamber with no electromagnetic field. After this period, rats were deeply anesthetized with urethane (2.0mg/kg) and then a bipolar stimulating and recording electrode was implanted into the perforant pathway (PP) and dentate gyrus (DG), respectively. LTP in hippocampal area was induced by high-frequency stimulation (HFS). Prolonged exposure to ELF-EMFs increased LTP induction. There was a significant difference in the slope of EPSP and amplitude of PS between the ELF-EMF group and other groups. In conclusion, our data suggest that exposure to ELF-EMFs produces a marked change in the synaptic plasticity generated in synapses of the PP-DG. No significant difference in PPR of ELF-EMF group before and after HFS suggests a postsynaptic expression site of LTP.

  16. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  17. Electromagnetic wave scattering by an external field

    NASA Astrophysics Data System (ADS)

    Sannikov, S. S.

    1995-08-01

    The quantum electrodynamics of bilocal fields is used to calculate the triangular Feynman diagrams describing the elastic scattering of a classical electromagnetic wave by an external Coulomb field. The total contribution of the diagrams is nonzero because of the violation of both the Furry theorem (CP or T symmetries) and the Ward identities. The cross section for this scattering process is found for low and high energies. A comparison with Compton scattering and Euler—Heisenberg scattering is given.

  18. Protective effect of procyanidins extracted from the lotus seedpod on immune function injury induced by extremely low frequency electromagnetic field.

    PubMed

    Zhang, Haihui; Cheng, Yanxiang; Luo, Xiaoping; Duan, Yuqing

    2016-08-01

    This study aimed to evaluate the protective effect of Lotus seedpod procyanidins (LSPCs) from extremely low frequency electromagnetic field (ELF-EMF) exposure (50Hz, 8mT, 28 days) and their protective mechanism against radiation damage. The results showed that LSPCs increased the organ index of mice and made the damaged blood-producing function and cytokine(INF-γ, TNF-α, IL-2, IL-6 and IL-10 in spleen) levels by ELF-EMF-irradiation recovered to normal appearance. And experimental results proved that dosing LSPCs inhibit more stagnation of splenocytes in G0/G1 phase caused by ELF-EMF, thus the spleen cells from G0/G1 phase to S phase shift, restore normal cell metabolism, promote the splenocytes proliferation, reduced the apoptosis of spleen cells, effective protect the damage induced by the ELF-EMF radiation. In addition, LSPCs prevented the decline of DNA content caused by ELF-EMF. Western blot determinated the levels of apoptosis genes including Bcl-2, Bax, Bcl-cl, Caspase-3 and Caspase-9. The results revealed that a significant suppression in Bcl-2 expression and increase in Bax, Caspase-3 and Caspase-9 expression in splenic cells in ELF-EMF group. However, LSPCs restored these changes. Taking these results together, it may be summarized that LSPCs could protect hematopoietic tissues and the immune system from ELF-EMF. And it may be hypothesized that ELF-EMF-induced apoptosis in splenocytes might occur via triggers the trans-activation of Bax and activates caspases-3 and -9, which then cleaves the death substrates, leading to apoptosis in splenocytes of mice treated with ELF-EMF. PMID:27470374

  19. Effects of extremely low frequency electromagnetic field (50 Hz) on pentylenetetrazol-induced seizures in mice.

    PubMed

    Fadakar, Kaveh; Saba, Valiallah; Farzampour, Shahrokh

    2013-06-01

    The electromagnetic fields (EMF) have various behavioral and biological effects on human body. There are growing concerns about the consequences of exposure to EMF. However, some studies have shown beneficial effects of these waves on human. In this paper, we study the effect of acute, sub acute and long-term exposure to 50 Hz, 0.1 mT magnetic fields (MF) on the seizure induction threshold in mice. 64 mice are used and divided into four groups. Eight mice in any group were selected to be exposed to MF for specific duration and the others were used as a control group. The duration of the applied exposures was as follows: (1) 1 day (acute), (2) 3 days (sub acute), (3) 2 weeks (sub acute), (4) 1 month (long term). The mice were exposed 2 h for a day. After exposure, the pentylentetrazol (PTZ) is injected to the mice to induce seizure and the needed dose for the seizure induction threshold is measured. In the acute exposure, the threshold to induce seizure in the exposed and sham-exposed groups was 44.25 and 46.5 mg, respectively, while the difference was not significant (p value = 0.5). In the sub acute exposure (3 days), the mean amount of drug to induce seizure was 47.38 mg in the exposed and 43.88 mg in the sham-exposed groups, however, the difference was not significant (p value = 0.3). The results were 52.38 and 46.75 mg after 2 weeks of exposure which were not significantly different either (p value = 0.2). After 1 month of exposure to MF, the threshold for the induction of seizure was significantly increased (p value < 0.05). The mean dosage to induce seizure in the exposed and control group was 54.3 and 45.75 mg, respectively. However, considering the p value, the difference in the seizure induction threshold between the exposed and sham-exposed groups after acute and sub acute exposure was not significant, analyzing the effects of acute, sub acute and long-term exposures totally indicates that increasing the exposure time increases the

  20. Consideration of the effects of intense tissue heating on the RF electromagnetic fields during MRI: simulations for MRgFUS in the hip.

    PubMed

    Xin, Sherman Xuegang; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M

    2015-01-01

    Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, [absolute value]B(1)(+)[absolute value] and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.

  1. Consideration of the effects of intense tissue heating on the RF electromagnetic fields during MRI: simulations for MRgFUS in the hip

    NASA Astrophysics Data System (ADS)

    Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.

    2015-01-01

    Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.

  2. Radiofrequency Electromagnetic Field Map of Timisoara

    NASA Astrophysics Data System (ADS)

    Stefu, N.; Solyom, I.; Arama, A.

    2015-12-01

    There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.

  3. Combined effects of flow-induced shear stress and electromagnetic field on neural differentiation of mesenchymal stem cells.

    PubMed

    Mascotte-Cruz, Juan Uriel; Ríos, Amelia; Escalante, Bruno

    2016-01-01

    Differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into neural phenotype has been induced by either flow-induced shear stress (FSS) or electromagnetic fields (EMF). However, procedures are still expensive and time consuming. In the present work, induction for 1 h with the combination of both forces showed the presence of the neural precursor nestin as early as 9 h in culture after treatment and this result lasted for the following 6 d. In conclusion, the use of a combination of FSS and EMF for a short-time renders in neurite-like cells, although further investigation is required to analyze cell functionality.

  4. Using medaka embryos as a model system to study biological effects of the electromagnetic fields on development and behavior.

    PubMed

    Lee, Wenjau; Yang, Kun-Lin

    2014-10-01

    The electromagnetic fields (EMFs) of anthropogenic origin are ubiquitous in our environments. The health hazard of extremely low frequency and radiofrequency EMFs has been investigated for decades, but evidence remains inconclusive, and animal studies are urgently needed to resolve the controversies regarding developmental toxicity of EMFs. Furthermore, as undersea cables and technological devices are increasingly used, the lack of information regarding the health risk of EMFs to aquatic organisms needs to be addressed. Medaka embryos (Oryzias latipes) have been a useful tool to study developmental toxicity in vivo due to their optical transparency. Here we explored the feasibility of using medaka embryos as a model system to study biological effects of EMFs on development. We also used a white preference test to investigate behavioral consequences of the EMF developmental toxicity. Newly fertilized embryos were randomly assigned to four groups that were exposed to an EMF with 3.2kHz at the intensity of 0.12, 15, 25, or 60µT. The group exposed to the background 0.12µT served as the control. The embryos were exposed continually until hatch. They were observed daily, and the images were recorded for analysis of several developmental endpoints. Four days after hatching, the hatchlings were tested with the white preference test for their anxiety-like behavior. The results showed that embryos exposed to all three levels of the EMF developed significantly faster. The endpoints affected included the number of somites, eye width and length, eye pigmentation density, midbrain width, head growth, and the day to hatch. In addition, the group exposed to the EMF at 60µT exhibited significantly higher levels of anxiety-like behavior than the other groups did. In conclusion, the EMF tested in this study accelerated embryonic development and heightened anxiety-like behavior. Our results also demonstrate that the medaka embryo is a sensitive and cost-efficient in vivo model

  5. Effects of weak, low-frequency pulsed electromagnetic fields (BEMER type) on gene expression of human mesenchymal stem cells and chondrocytes: an in vitro study.

    PubMed

    Walther, Markus; Mayer, Florian; Kafka, Wolf; Schütze, Norbert

    2007-01-01

    In vitro effects of electromagnetic fields appear to be related to the type of electromagnetic field applied. Previously, we showed that human osteoblasts display effects of BEMER type electromagnetic field (BTEMF) on gene regulation. Here, we analyze effects of BTEMF on gene expression in human mesenchymal stem cells and chondrocytes. Primary mesenchymal stem cells from bone marrow and the chondrocyte cell line C28I2 were stimulated 5 times at 12-h intervals for 8 min each with BTEMF. RNA from treated and control cells was analyzed for gene expression using the affymetrix chip HG-U133A. A limited number of regulated gene products from both cell types mainly affect cell metabolism and cell matrix structure. There was no increased expression of cancer-related genes. RT-PCR analysis of selected transcripts partly confirmed array data. Results indicate that BTEMF in human mesenchymal stem cells and chondrocytes provide the first indications to understanding therapeutic effects achieved with BTEMF stimulation. PMID:17886005

  6. Effect of Static Magnetic Field on Recalescence and Surface Velocity Field in Electromagnetically Levitated Molten CuCo Droplet in Undercooled State

    NASA Astrophysics Data System (ADS)

    Kitahara, Tsubasa; Tanada, Koki; Ueno, Shoya; Sugioka, Ken-ichi; Kubo, Masaki; Tsukada, Takao; Uchikoshi, Masahito; Fukuyama, Hiroyuki

    2015-12-01

    The recalescence events of phase-separated Co-rich phases in undercooled molten CuCo droplets electromagnetically levitated under various static magnetic fields were observed directly using a high-speed camera, and also the surface velocities on the levitated droplets were measured by tracing the trajectories of the phase-separated Co-rich phases as tracer particles. In addition, numerical simulations of melt convection in a spherical electromagnetically levitated CuCo droplet exposed to a static magnetic field were performed assuming laminar flow. We observed the emergence of many intermittent bright spots due to recalescence on the entire surface of the levitated droplet, and the frequency of the bright spots decreased markedly as the static magnetic field increased, with no bright spots observed at fields larger than 1.5 T. Also, the Reynolds numbers were evaluated from the measured and calculated velocities in the droplet for various static magnetic fields and compared with the critical Reynolds number of approximately 600, at which the laminar-turbulent transition of a magnetohydrodynamic (MHD) flow in an electromagnetically levitated droplet occurs, as proposed by Hyers et al. The above results clearly revealed that the marked change in the phase separation structures in undercooled molten CuCo droplets at approximately 1.5 T is due to a convective transition from turbulent flow to laminar flow in the levitated droplets, as speculated in our previous work.

  7. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation

    PubMed Central

    Ross, Christina L.; Siriwardane, Mevan; Almeida-Porada, Graça; Porada, Christopher D.; Brink, Peter; Christ, George J.; Harrison, Benjamin S.

    2015-01-01

    Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are a population of progenitor cells that contain a subset of skeletal stem cells (hSSCs), able to recreate cartilage, bone, stroma that supports hematopoiesis and marrow adipocytes. As such, they have become an important resource in developing strategies for regenerative medicine and tissue engineering due to their self-renewal and differentiation capabilities. The differentiation of SSCs/BMSCs is dependent on exposure to biophysical and biochemical stimuli that favor early and rapid activation of the in vivo tissue repair process. Exposure to exogenous stimuli such as an electromagnetic field (EMF) can promote differentiation of SSCs/BMSCs via ion dynamics and small signaling molecules. The plasma membrane is often considered to be the main target for EMF signals and most results point to an effect on the rate of ion or ligand binding due to a receptor site acting as a modulator of signaling cascades. Ion fluxes are closely involved in differentiation control as stem cells move and grow in specific directions to form tissues and organs. EMF affects numerous biological functions such as gene expression, cell fate, and cell differentiation, but will only induce these effects within a certain range of low frequencies as well as low amplitudes. EMF has been reported to be effective in the enhancement of osteogenesis and chondrogenesis of hSSCs/BMSCs with no documented negative effects. Studies show specific EMF frequencies enhance hSSC/BMSC adherence, proliferation, differentiation, and viability, all of which play a key role in the use of hSSCs/BMSCs for tissue engineering. While many EMF studies report significant enhancement of the differentiation process, results differ depending on the experimental and environmental conditions. Here we review how specific EMF parameters (frequency, intensity, and time of exposure) significantly regulate hSSC/BMSC differentiation in

  8. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation.

    PubMed

    Ross, Christina L; Siriwardane, Mevan; Almeida-Porada, Graça; Porada, Christopher D; Brink, Peter; Christ, George J; Harrison, Benjamin S

    2015-07-01

    Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are a population of progenitor cells that contain a subset of skeletal stem cells (hSSCs), able to recreate cartilage, bone, stroma that supports hematopoiesis and marrow adipocytes. As such, they have become an important resource in developing strategies for regenerative medicine and tissue engineering due to their self-renewal and differentiation capabilities. The differentiation of SSCs/BMSCs is dependent on exposure to biophysical and biochemical stimuli that favor early and rapid activation of the in vivo tissue repair process. Exposure to exogenous stimuli such as an electromagnetic field (EMF) can promote differentiation of SSCs/BMSCs via ion dynamics and small signaling molecules. The plasma membrane is often considered to be the main target for EMF signals and most results point to an effect on the rate of ion or ligand binding due to a receptor site acting as a modulator of signaling cascades. Ion fluxes are closely involved in differentiation control as stem cells move and grow in specific directions to form tissues and organs. EMF affects numerous biological functions such as gene expression, cell fate, and cell differentiation, but will only induce these effects within a certain range of low frequencies as well as low amplitudes. EMF has been reported to be effective in the enhancement of osteogenesis and chondrogenesis of hSSCs/BMSCs with no documented negative effects. Studies show specific EMF frequencies enhance hSSC/BMSC adherence, proliferation, differentiation, and viability, all of which play a key role in the use of hSSCs/BMSCs for tissue engineering. While many EMF studies report significant enhancement of the differentiation process, results differ depending on the experimental and environmental conditions. Here we review how specific EMF parameters (frequency, intensity, and time of exposure) significantly regulate hSSC/BMSC differentiation in

  9. Integral equations for the electromagnetic field in dielectrics

    NASA Astrophysics Data System (ADS)

    Mostowski, Jan; Załuska-Kotur, Magdalena A.

    2016-09-01

    We study static the electric field and electromagnetic waves in dielectric media. In contrast to the standard approach, we use, formulate and solve integral equations for the field. We discuss the case of an electrostatic field of a point charge placed inside a dielectric; the integral equation approach allows us to find and interpret the dielectric constant in terms of molecular polarizability. Next we discuss propagation of electromagnetic waves using the same integral equation approach. We derive the dispersion relation and find the reflection and transmission coefficients at the boundary between the vacuum and the dielectric. The present approach supplements the standard approach based on macroscopic Maxwell equations and contributes to better a understanding of some electromagnetic effects.

  10. Electromagnetic instabilities attributed to a cross-field ion drift

    NASA Technical Reports Server (NTRS)

    Chang, C. L.; Wong, H. K.; Wu, C. S.

    1990-01-01

    Instabilities due to a cross-field ion flow are reexamined by including the electromagnetic response of the ions, which has been ignored in existing discussions. It is found that this effect can lead to significant enhancement of the growth rate. Among the new results, a purely growing, electromagnetic unstable mode with a wave vector k parallel to the ambient magnetic field is found. The plasma configuration under consideration is similar to that used in the discussion of the well-known modified-two-stream instability. This instability has a growth rate faster than the ion cyclotron frequency, and is not susceptible to high-plasma-beta stabilization.

  11. Induced electromagnetic field by seismic waves in Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Gao, Yongxin; Chen, Xiaofei; Hu, Hengshan; Wen, Jian; Tang, Ji; Fang, Guoqing

    2014-07-01

    Studied in this article are the properties of the electromagnetic (EM) fields generated by an earthquake due to the motional induction effect, which arises from the motion of the conducting crust across the Earth's magnetic field. By solving the governing equations that couple the elastodynamic equations with Maxwell equations, we derive the seismoelectromagnetic wavefields excited by a single-point force and a double-couple source in a full space. Two types of EM disturbances can be generated, i.e., the coseismic EM field accompanying the seismic wave and the independently propagating EM wave which arrives much earlier than the seismic wave. Simulation of an Mw6.1 earthquake shows that at a receiving location where the seismic acceleration is on the order of 0.1 m/s2, the coseismic electric and magnetic fields are on the orders of 1 μV/m and 0.1 nT, respectively, agreeing with the EM data observed in 2008 Mw6.1 Qingchuan earthquake, China, and indicating that the motional induction effect is effective enough to generate observable EM signal. We also simulated the EM signals observed by Haines et al. which were called the Lorentz fields and cannot be explained by the electrokinetic effect. The result shows that the EM wave generated by a horizontal force can explain the data well, suggesting that the motional induction effect is responsible for the Lorentz fields. The motional induction effect is compared with the electrokinetic effect, showing the overall conclusion that the former dominates the mechanoelectric conversion under low-frequency and high-conductivity conditions while the latter dominates under high-frequency and low-conductivity conditions.

  12. Effects of 100-μT extremely low frequency electromagnetic fields exposure on hematograms and blood chemistry in rats

    PubMed Central

    Lai, Jinsheng; Zhang, Yemao; Zhang, Jiangong; Liu, Xingfa; Ruan, Guoran; Chaugai, Sandip; Tang, Jiarong; Wang, Hong; Chen, Chen; Wang, Dao Wen

    2016-01-01

    The aim of this study was to test whether extremely low frequency electromagnetic fields (ELF EMFs) affect health or not. Here, we constructed a 100-μT/50 Hz electromagnetic field atmosphere. A total of 128 rats were randomly assigned into two groups: the ELF EMF group and the sham group. The ELF EMF group was exposed to 100-μT/50-Hz ELF EMF for 20 h per day for three months; at the same time the other group was exposed to a sham device without ELF EMF. During the three months, the weight was recorded every 2 weeks, and the water intake and food intake of the animals were recorded weekly. The hematologic parameters were detected before and after the exposure, whereas blood chemistry analysis was performed every 4 weeks. The general condition of the exposed rats was not affected by ELF EMF. Compared with the sham group, the hematograms were not significantly altered in the ELF EMF group. Similarly, the blood chemistry (including lipid profile, blood glucose, liver function and renal function of rats) from the ELF EMF group showed no difference compared with rats from the control group during the three months exposure. The present study indicated that short-term exposure of 100-μT/50-Hz ELF EMF may not affect hematograms and blood chemistry in rats. PMID:26404558

  13. Effects of 100-μT extremely low frequency electromagnetic fields exposure on hematograms and blood chemistry in rats.

    PubMed

    Lai, Jinsheng; Zhang, Yemao; Zhang, Jiangong; Liu, Xingfa; Ruan, Guoran; Chaugai, Sandip; Tang, Jiarong; Wang, Hong; Chen, Chen; Wang, Dao Wen

    2016-01-01

    The aim of this study was to test whether extremely low frequency electromagnetic fields (ELF EMFs) affect health or not. Here, we constructed a 100-μT/50 Hz electromagnetic field atmosphere. A total of 128 rats were randomly assigned into two groups: the ELF EMF group and the sham group. The ELF EMF group was exposed to 100-μT/50-Hz ELF EMF for 20 h per day for three months; at the same time the other group was exposed to a sham device without ELF EMF. During the three months, the weight was recorded every 2 weeks, and the water intake and food intake of the animals were recorded weekly. The hematologic parameters were detected before and after the exposure, whereas blood chemistry analysis was performed every 4 weeks. The general condition of the exposed rats was not affected by ELF EMF. Compared with the sham group, the hematograms were not significantly altered in the ELF EMF group. Similarly, the blood chemistry (including lipid profile, blood glucose, liver function and renal function of rats) from the ELF EMF group showed no difference compared with rats from the control group during the three months exposure. The present study indicated that short-term exposure of 100-μT/50-Hz ELF EMF may not affect hematograms and blood chemistry in rats.

  14. Modeling the effect of adverse environmental conditions and clothing on temperature rise in a human body exposed to radio frequency electromagnetic fields.

    PubMed

    Moore, Stephen M; McIntosh, Robert L; Iskra, Steve; Wood, Andrew W

    2015-02-01

    This study considers the computationally determined thermal profile of a fully clothed, finely discretized, heterogeneous human body model, subject to the maximum allowable reference level for a 1-GHz radio frequency electromagnetic field for a worker, and also subject to adverse environmental conditions, including high humidity and high ambient temperature. An initial observation is that while electromagnetic fields at the occupational safety limit will contribute an additional thermal load to the tissues, and subsequently, cause an elevated temperature, the magnitude of this effect is far outweighed by that due to the conditions including the ambient temperature, relative humidity, and the type of clothing worn. It is envisaged that the computational modeling approach outlined in this paper will be suitably modified in future studies to evaluate the thermal response of a body at elevated metabolic rates, and for different body shapes and sizes including children and pregnant women.

  15. [Safety and electromagnetic compatibility in sanitary field].

    PubMed

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  16. Bioelectromagnetic effects of the electromagnetic pulse (EMP)

    SciTech Connect

    Patrick, E.L.; Vault, W.L.

    1990-03-01

    The public has expressed concern about the biological effects and hazards of non-ionizing electromagnetic fields produced by the electro-magnetic pulse (EMP) simulators that simulate the EMP emanating from a high-altitude nuclear explosion. This paper provides a summary of the bioelectromagnetic effects literature up through the present, describes current occupational standards for workers exposed to the EMP environment, and discusses the use of medical surveillance as it relates to the potential human health hazards associated with exposure to the EMP environment.

  17. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells.

    PubMed

    Zhang, Yang; Ding, Jun; Duan, Wei

    2006-01-01

    The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 approximately 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.

  18. Hamiltonian dynamics of the parametrized electromagnetic field

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-06-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  19. On electromagnetic field problems in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  20. Bianchi class B spacetimes with electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kei

    2012-02-01

    We carry out a thorough analysis on a class of cosmological space-times which admit three spacelike Killing vectors of Bianchi class B and contain electromagnetic fields. Using dynamical system analysis, we show that a family of electro-vacuum plane-wave solutions of the Einstein-Maxwell equations is the stable attractor for expanding universes. Phase dynamics are investigated in detail for particular symmetric models. We integrate the system exactly for some special cases to confirm the qualitative features. Some of the obtained solutions have not been presented previously to the best of our knowledge. Finally, based on those analyses, we discuss the relation between those homogeneous models and perturbations of open Friedmann-Lemaitre-Robertson-Walker universes. We argue that the electro-vacuum plane-wave modes correspond to a certain long-wavelength limit of electromagnetic perturbations.

  1. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  2. A physically motivated quantization of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bennett, Robert; Barlow, Thomas M.; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field.

  3. Beta decay and other processes in strong electromagnetic fields

    SciTech Connect

    Akhmedov, E. Kh.

    2011-09-15

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear {beta} decay as an example, we study the weak- and strong-field limits, as well as the field-induced {beta} decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear {beta} decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total {beta}-decay rates are unobservably small.

  4. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Gies, Holger; Reuter, Maria; Zepf, Matt

    2015-10-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  5. Radiation (absorbing) boundary conditions for electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bevensee, R. M.; Pennock, S. T.

    1987-01-01

    An important problem in finite difference or finite element computation of the electromagnetic field obeying the space-time Maxwell equations with self-consistent sources is that of truncating the outer numerical boundaries properly to avoid spurious numerical reflection. Methods for extrapolating properly the fields just beyond a numerical boundary in free space have been treated by a number of workers. This report avoids plane wave assumptions and derives boundary conditions more directly related to the source distribution within the region. The Panofsky-Phillips' relations, which enable one to extrapolate conveniently the vector field components parallel and perpendicular to a radial from the coordinate origin chosen near the center of the charge-current distribution are used to describe the space-time fields.

  6. Electromagnetic fields on a quantum scale. I.

    PubMed

    Grimes, Dale M; Grimes, Craig A

    2002-10-01

    This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.

  7. A. A. Ukhtomskii's dominance principle of brain activity in the perception of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kholodov, Yu. A.

    1994-01-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a “placebo” or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  8. A. A. Ukhtomskii`s dominance principle of brain activity in the perception of electromagnetic fields

    SciTech Connect

    Kholodov, Yu.A.

    1994-07-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a {open_quotes}placebo{close_quotes} or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  9. Biomarkers of induced electromagnetic field and cancer.

    PubMed

    Behari, J; Paulraj, R

    2007-01-01

    The present article delineates the epidemiological and experimental studies of electromagnetic field which affects various tissues of human body. These affects lead to cell proliferation, which may lead to cancer formation. Certain biomarkers have been identified which are one way or the other responsible for tumor promotion or co-promotion. These are (i) melatonin, a hormone secreted by pineal gland, (ii) Ca2+, which is essential in the regulation of the resting membrane potential and in the sequence of events in synaptic excitation and neurotransmitter, release are affected by electromagnetic field, (iii) ornithine decarboxylase (ODC), a rate-limiting enzyme in the biosynthesis of polyamines, considered as a useful biological marker; over expression of ODC can cause cell transformation and enhancement of tumor promotion. (iv) protein kinase is an enzyme, which transfers phosphate groups from ATP to hydroxyl groups in the amino acid chains of acceptor proteins, and (v) Na+-K+ ATPase, which transports sodium and potassium ions across the membrane has a critical role in living cells. The various possible mechanisms depending upon non equilibrium thermodynamics, co-operativism, stochastic and resonance are discussed as possible models of signal transduction in cytosol, thereby controlling the transcription phenomena. Finally a mechanism comprising the extremely low frequency and radio frequency (RF)/microwave (MW) modulated field is compared.

  10. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    PubMed

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  11. Translation operator for finite dmensional electromagnetic fields

    SciTech Connect

    Howard, A.Q. Jr.

    1981-04-01

    Computation of electromagnetic fields in particular applications is usually accompanied by the adhoc assumption that the field contains a finite number of degrees of freedom. Herein, this assumption is made at the outset. It is shown that if an annular region between two closed surfaces contains no sources or sinks and is isotropic, lossless and homogeneous, a unique translation operator can be defined algebraically. Conservation of energy defines the translation operator T to within an arbitrary unitary transformation. The conditions of causality, unitarity and energy conservation are shown to uniquely determine T. Both scalar and vector fields are treated. In both of these cases, frequency and time domain transforms are computed. The transform T is compared with the analagous one as derived from the time domain Stratton-Chu Formulation. The application to a radiation condition boundary constraint on finite difference and finite element computations is discussed.

  12. Laser photon merging in an electromagnetic field inhomogeneity

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Shaisultanov, Rashid

    2014-08-01

    We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.

  13. [Theoretical and Experimental Dosimetry in Evaluation of Biological Effects of Electromagnetic Field for Portable Radio Transmitters. Report 2. Homogeneous Human Head Phantom].

    PubMed

    Perov, S Yu; Bogacheva, E V

    2015-01-01

    Results of theoretical (numerical) and experimental electromagnetic field dosimetry for homogeneous human head phantoms are considered. The simulation and measurement results are shown. This paper presents the results of Specific Absorption Rate (SAR) evaluation in the "special anthropomorphic model" of human head, when a source of electromagnetic radio frequency field is placed in front of the face. The minimal difference is shown between measurements and simulation results in Head Simulating Liquid, which makes it possible to conduct further brain tissue simulations. The investigations show that the type of electromagnetic field source and phantom form play an important part for SAR distribution. PMID:26601543

  14. [Theoretical and Experimental Dosimetry in Evaluation of Biological Effects of Electromagnetic Field for Portable Radio Transmitters. Report 2. Homogeneous Human Head Phantom].

    PubMed

    Perov, S Yu; Bogacheva, E V

    2015-01-01

    Results of theoretical (numerical) and experimental electromagnetic field dosimetry for homogeneous human head phantoms are considered. The simulation and measurement results are shown. This paper presents the results of Specific Absorption Rate (SAR) evaluation in the "special anthropomorphic model" of human head, when a source of electromagnetic radio frequency field is placed in front of the face. The minimal difference is shown between measurements and simulation results in Head Simulating Liquid, which makes it possible to conduct further brain tissue simulations. The investigations show that the type of electromagnetic field source and phantom form play an important part for SAR distribution.

  15. COMAR technical information statement: expert reviews on potential health effects of radiofrequency electromagnetic fields and comments on the bioinitiative report.

    PubMed

    2009-10-01

    The Committee on Man and Radiation (COMAR) is a technical committee of the Engineering in Medicine and Biology Society (EMBS) of the Institute of Electrical and Electronics Engineers (IEEE). Its primary area of interest is biological effects of non-ionizing electromagnetic radiation, including radiofrequency (RF) energy. The public interest in possible health effects attributed to RF energy, such as emitted by mobile phones, wireless telephone base stations, TV and radio broadcasting facilities, Wi-Fi systems and many other sources, has been accompanied by commentary in the media that varies considerably in reliability and usefulness for their audience. The focus of this COMAR Technical Information Statement is to identify quality sources of scientific information on potential health risks from exposure to RF energy. This Statement provides readers with references to expert reports and other reliable sources of information about this topic, most of which are available on the Internet. This report summarizes the conclusions from several major reports and comments on the markedly different conclusions in the BioInitiative Report (abbreviated BIR below). Since appearing on the Internet in August 2007, the BIR has received much media attention but, more recently, has been criticized by several health organizations (see Section titled "Views of health agencies about BIR"). COMAR concludes that the weight of scientific evidence in the RF bioeffects literature does not support the safety limits recommended by the BioInitiative group. For this reason, COMAR recommends that public health officials continue to base their policies on RF safety limits recommended by established and sanctioned international organizations such as the Institute of Electrical and Electronics Engineers International Committee on Electromagnetic Safety and the International Commission on Non-Ionizing Radiation Protection, which is formally related to the World Health Organization.

  16. Controversies related to electromagnetic field exposure on peripheral nerves.

    PubMed

    Say, Ferhat; Altunkaynak, Berrin Zuhal; Coşkun, Sina; Deniz, Ömür Gülsüm; Yıldız, Çağrı; Altun, Gamze; Kaplan, Arife Ahsen; Kaya, Sefa Ersan; Pişkin, Ahmet

    2016-09-01

    Electromagnetic field (EMF) is a pervasive environmental presence in modern society. In recent years, mobile phone usage has increased rapidly throughout the world. As mobile phones are generally held close to the head while talking, studies have mostly focused on the central and peripheral nervous system. There is a need for further research to ascertain the real effect of EMF exposure on the nervous system. Several studies have clearly demonstrated that EMF emitted by cell phones could affect the systems of the body as well as functions. However, the adverse effects of EMF emitted by mobile phones on the peripheral nerves are still controversial. Therefore, this review summarizes current knowledge on the possible positive or negative effects of electromagnetic field on peripheral nerves.

  17. Controversies related to electromagnetic field exposure on peripheral nerves.

    PubMed

    Say, Ferhat; Altunkaynak, Berrin Zuhal; Coşkun, Sina; Deniz, Ömür Gülsüm; Yıldız, Çağrı; Altun, Gamze; Kaplan, Arife Ahsen; Kaya, Sefa Ersan; Pişkin, Ahmet

    2016-09-01

    Electromagnetic field (EMF) is a pervasive environmental presence in modern society. In recent years, mobile phone usage has increased rapidly throughout the world. As mobile phones are generally held close to the head while talking, studies have mostly focused on the central and peripheral nervous system. There is a need for further research to ascertain the real effect of EMF exposure on the nervous system. Several studies have clearly demonstrated that EMF emitted by cell phones could affect the systems of the body as well as functions. However, the adverse effects of EMF emitted by mobile phones on the peripheral nerves are still controversial. Therefore, this review summarizes current knowledge on the possible positive or negative effects of electromagnetic field on peripheral nerves. PMID:26718608

  18. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state.

    PubMed

    Baek, Soonbong; Quan, Xiaoyuan; Kim, Soochan; Lengner, Christopher; Park, Jung-Keug; Kim, Jongpil

    2014-10-28

    Life on Earth is constantly exposed to natural electromagnetic fields (EMFs), and it is generally accepted that EMFs may exert a variety of effects on biological systems. Particularly, extremely low-frequency electromagnetic fields (EL-EMFs) affect biological processes such as cell development and differentiation; however, the fundamental mechanisms by which EMFs influence these processes remain unclear. Here we show that EMF exposure induces epigenetic changes that promote efficient somatic cell reprogramming to pluripotency. These epigenetic changes resulted from EMF-induced activation of the histone lysine methyltransferase Mll2. Remarkably, an EMF-free system that eliminates Earth's naturally occurring magnetic field abrogates these epigenetic changes, resulting in a failure to undergo reprogramming. Therefore, our results reveal that EMF directly regulates dynamic epigenetic changes through Mll2, providing an efficient tool for epigenetic reprogramming including the acquisition of pluripotency. PMID:25248035

  19. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  20. Plant Responses to High Frequency Electromagnetic Fields.

    PubMed

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  1. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  2. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  3. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  4. Effects of electromagnetic radiation (bright light, extremely low-frequency magnetic fields, infrared radiation) on the circadian rhythm of melatonin synthesis, rectal temperature, and heart rate.

    PubMed

    Griefahn, Barbara; Künemund, Christa; Blaszkewicz, Meinolf; Lerchl, Alexander; Degen, Gisela H

    2002-10-01

    Electromagnetic spectra reduce melatonin production and delay the nadirs of rectal temperature and heart rate. Seven healthy men (16-22 yrs) completed 4 permuted sessions. The control session consisted of a 24-hours bedrest at < 30 lux, 18 degrees C, and < 50 dBA. In the experimental sessions, either light (1500 lux), magnetic field (16.7 Hz, 0.2 mT), or infrared radiation (65 degrees C) was applied from 5 pm to 1 am. Salivary melatonin level was determined hourly, rectal temperature and heart rate were continuously recorded. Melatonin synthesis was completely suppressed by light but resumed thereafter. The nadirs of rectal temperature and heart rate were delayed. The magnetic field had no effect. Infrared radiation elevated rectal temperature and heart rate. Only bright light affected the circadian rhythms of melatonin synthesis, rectal temperature, and heart rate, however, differently thus causing a dissociation, which might enhance the adverse effects of shiftwork in the long run.

  5. Truesdell invariance in relativistic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Walwadkar, B. B.; Virkar, K. V.

    1984-01-01

    The Truesdell derivative of a contravariant tensor fieldX ab is defined with respect to a null congruencel a analogous to the Truesdell stress rate in classical continuum mechanics. The dynamical consequences of the Truesdell invariance with respect to a timelike vectoru a of the stress-energy tensor characterizing a charged perfect fluid with null conductivity are the conservation of pressure (p), charged density (e) an expansion-free flow, constancy of the Maxwell scalars, and vanishing spin coefficientsα+¯β = ¯σ - λ = τ = 0 (assuming freedom conditionsk = λ = ɛ ψ + ¯γ = 0). The electromagnetic energy momentum tensor for the special subcases of Ruse-Synge classification for typesA andB are described in terms of the spin coefficients introduced by Newman-Penrose.

  6. [Medical and biologic research of electromagnetic fields in radiofrequencies range. Results and prospects].

    PubMed

    Kaliada, T V; Vishnevskiĭ, A M; Gorodetskiĭ, B N; Plekhanov, V P; Kuznetsov, A V

    2014-01-01

    The authors present research findings on the problem of technology-related electromagnetic fields as an occupational risk factor of workers health disturbances, and on the issue of prevention measures development against this adverse physical factor effects. Prospects for further research development in the field of electromagnetic safety are discussed.

  7. Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results

    SciTech Connect

    Davis, M.S.

    1996-05-01

    In an attempt to replicate the findings of Smith et al., seeds of Raphanus sativus L. (radish), Sinapsis alba L. (mustard), and Hordeum vulgare L. (barley) were grown for between 9 and 21 days in continuous electromagnetic fields (EMFs) at ion-cyclotron resonance conditions for stimulation of Ca{sup 2+} (B{sub H} = 78.3 {micro}T, B{sub HAC} = 40 {micro}T peak-peak at 60 Hz, B{sub v} = 0). On harvesting, radish showed results similar to those of Smith et al. Dry stem weight and plant height were both significantly greater (Mann-Whitney tests, Ps < 0.05) in EMF-exposed plants than in control plants in each EMF experiment. Wet root weight was significantly greater in EMF-exposed plants in two out of three experiments, as were dry leaf weight, dry whole weight, and stem diameter. Dry root weight, wet leaf weight, and wet whole weight were significantly greater in EMF-exposed plants in one of three experiments. All significant differences indicated an increase in weight or size in the EMF-exposed plants. In each of the sham experiments, no differences between exposed and control plants were evident. Mustard plants failed to respond to the EMFs in any of the plant parameters measured. In one experiment, barley similarly failed to respond; but in another showed significantly greater wet root weight and significantly smaller stem diameter and dry seed weight at the end of the experiment in exposed plants compared to control plants. Although these results give no clue about the underlying bioelectromagnetic mechanism, they demonstrate that, at least for one EMF-sensitive biosystem, results can be independently replicated in another laboratory. Such replication is crucial in establishing the validity of bioelectromagnetic science.

  8. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2015-12-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  9. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2016-09-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  10. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  11. Mortality in workers exposed to electromagnetic fields

    SciTech Connect

    Milham, S. Jr.

    1985-10-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia (International Classification of Diseases (ICD), seventh revision 204) and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic.

  12. Electromagnetic polarizabilities: Lattice QCD in background fields

    SciTech Connect

    W. Detmold, B.C. Tiburzi, A. Walker-Loud

    2012-04-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.

  13. Electromagnetic Effects in SDF Explosions

    SciTech Connect

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise

  14. Effects of Electromagnetic Field Over a Human Body, Sar Simulation with and Without Nanotextile in the Frequency Range 0.9-1.8GHZ

    NASA Astrophysics Data System (ADS)

    Tomovski, Boyan; Gräbner, Frank; Hungsberg, Axel; Kallmeyer, Christian; Linsel, Mario

    2011-11-01

    Within only the last decade, usage of mobile phones and many other electronic devices with high speed wireless RF connection is rapidly increasing. Modern life requires reliable, quick and high-quality information connections, which explains the widely spreading craze for electronic mobile devices of various types. The vast technological advances we are witnessing in electronics, electro-optics, and computer science have profoundly affected our everyday lives. Meanwhile, safety concerns regarding the biological effects of electromagnetic (EM) radiation have been raised, in particular at a low level of exposure which we everyday experience. A variety of waves and signals have to be considered such as different sine waves, digital signals used in radio, television, mobile phone systems and other information transfer systems. The field around us has become rather complicated and the "air space is getting more and more dense with RF. The establishing of safety recommendations, law norms and rules augmented by adequate measurements is very important and requires quite an expertise. But as many scientific researches suggest, what we are currently witnessing is very likely to generate a great public danger and a bad influence over the human body. There are many health organisations warning the public for possible development of cancer, mental and physical disorders etc [7, 8]. These suggestions are quite serious and should not be neglected by the official bodies and the test laboratories. In the following work, the effects of electromagnetic field over a virtual model of a human head have been simulated in the frequency range from 900 MHz to 1800 MHz (commonly created in the real life by mobile GSM system) with the help of the program MEFiSTo 2D Classic [1]. The created virtual models using the 2D simulation & computation software proved that the use of new high tech nanotextile materials for shielding layers around the human body can reduce the effects of EM fields

  15. Effects of exposure to electromagnetic fields emitted by GSM 900 and WCDMA mobile phones on cognitive function in young male subjects.

    PubMed

    Sauter, Cornelia; Dorn, Hans; Bahr, Achim; Hansen, Marie-Luise; Peter, Anita; Bajbouj, Malek; Danker-Hopfe, Heidi

    2011-04-01

    Results of studies on the possible effects of electromagnetic fields emitted by mobile phones on cognitive functions are contradictory, therefore, possible effects of long-term (7 h 15 min) electromagnetic field (EMF) exposure to handset-like signals of Global System for Mobile Communications (GSM) 900 and Wideband Code-Division Multiple Access (WCDMA) on attention and working memory were studied. The sample comprised 30 healthy male subjects (mean ± SD: 25.3 ± 2.6 years), who were tested on nine study days in which they were exposed to three exposure conditions (sham, GSM 900 and WCDMA) in a randomly assigned and balanced order. All tests were presented twice (morning and afternoon) on each study day within a fixed timeframe. Univariate comparisons revealed significant changes when subjects were exposed to GSM 900 compared to sham, only in the vigilance test. In the WCDMA exposure condition, one parameter in the vigilance and one in the test on divided attention were altered compared to sham. Performance in the selective attention test and the n-back task was not affected by GSM 900 or WCDMA exposure. Time-of-day effects were evident for the tests on divided and selective attention, as well as for working memory. After correction for multiple testing, only time-of-day effects remained significant in two tests, resulting in faster reactions in the afternoon trials. The results of the present study do not provide any evidence of an EMF effect on human cognition, but they underline the necessity to control for time of day.

  16. Time-Domain Computation Of Electromagnetic Fields In MMICs

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  17. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  18. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  19. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  20. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  1. Effects of Three-Dimensional Electromagnetic Structures on Resistive-Wall-Mode Stability of Reversed Field Pinches

    SciTech Connect

    Villone, F.

    2008-06-27

    In this Letter, the linear stability of the resistive wall modes (RWMs) in toroidal geometry for a reversed field pinch (RFP) plasma is studied. Three computational models are used: the cylindrical code ETAW, the toroidal MHD code MARS-F, and the CarMa code, able to take fully into account the effects of a three-dimensional conducting structure which mimics the real shell geometry of a reversed field pinch experimental device. The computed mode growth rates generally agree with experimental data. The toroidal effects and the three-dimensional features of the shell, like gaps, allow a novel interpretation of the RWM spectrum in RFP's and remove its degeneracy. This shows the importance of making accurate modeling of conductors for the RWM predictions also in future devices such as ITER.

  2. Safety Problems of Electric and Magnetic Fields and Experimental Magnetic Fusion Facilities 3.Biological Effects of Low-Frequency Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Miyakoshi, Junji

    The possible health hazard of exposure to low-frequency magnetic fields has become an issue of considerable public concern. Although many epidemiological studies have done, the results are inconsistent to explain an association between exposure to the magnetic fields in the environment and apparent cancer. In in vitro studies, the existence of the effects of the magnetic fields at low flux density has also been contradictory in various reports. This paper reviews studies on cellular and molecular effects of low-frequency magnetic fields.

  3. Protective Effect of 10-Hz, 1-mT Electromagnetic Field Exposure Against Hypoxia/Reoxygenation Injury in HK-2 Cells.

    PubMed

    Lim, Soonho; Kim, Soo-Chan; Kim, Jae Young

    2015-03-01

    We investigated the protective effects of electromagnetic field (EMF) on the survival of the human renal proximal tubular cell line, HK-2, using an in vitro hypoxia/reoxygenation (H/R) injury model. The survival rate of cells cultured under H/R condition declined significantly, while the intracellular reactive oxygen species (ROS) levels markedly increased. The 10 Hz/1 mT EMF exposure reversed the H/R induced reduction in cell survival and induction of intracellular ROS. Our results suggest that 10 Hz/1 mT EMF exposure could inhibit H/R-induced cell death of HK-2 via suppression of intracellular ROS production and that this treatment might be clinically useful for the amelioration of renal ischemia/reperfusion injury.

  4. Electromigration occurences and its effects on metallic surfaces submitted to high electromagnetic field: A novel approach to breakdown in accelerators

    NASA Astrophysics Data System (ADS)

    Antoine, C. Z.; Peauger, F.; Le Pimpec, F.

    2011-02-01

    The application of a high electrical field on metallic surfaces leads to the well described phenomena of breakdown. In the classical scenario, explosive electron emission (EEE), breakdown (BD) originates from an emitting site (surface protrusion): the current at the apex vaporizes the emitting tip and the emitting current triggers a plasma in the vapor close to the surface. The plasma in turn melts the emitting site and makes it (hopefully) disappear. The conditioning process consists of "burning" the emitting sites one after another and numerous observations exhibit surfaces covered with molten craters that more or less overlap. In the case of radiofrequency (RF) applied fields, the effects of fatigue are also considered due to the cyclic nature of the applied stress. Nevertheless when dealing with RF cavities for accelerators, where increasingly fields are now sought, one can legitimately wonder if other physical phenomena should also be taken into account. In particular, we believe that electromigration, especially at surfaces or grain boundaries cannot be neglected anymore at high field (i.e. 50-100 MV/m). Many publications in the domain of liquid metal emission sources show that very stable and strong emission sources, either ions or electrons, build up on metallic surfaces submitted to electrical fields through a mechanism that is slightly different from the usual localized breakdown evoked in accelerators. This mechanism involves the combination of electromigration and collective motion of surface atoms. In the case of emission source, this effect is sought after and has been extensively studied, whereas in our case it is very detrimental to the possibility of reaching high fields. The recent results obtained on 30 GHz Compact Linear Collider (CLIC) accelerating structures, altogether with the data exposed hereafter have led us to propose a complementary scenario, which could explain early melting of large areas of the surface. In this paper we will

  5. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  6. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  7. Effect of the radiation reaction in classical regimes of interaction of ultra-strong electromagnetic fields with plasmas

    NASA Astrophysics Data System (ADS)

    Capdessus, R.; d'Humières, E.; Tikhonchuk, V. T.

    2013-05-01

    Radiation energy losses of electrons in ultra-intense laser fields constitute a process of major importance when considering laser-matter interaction at intensities of the order of and above 1022 W/cm2. Radiation losses can strongly modify the electron (and ion) dynamics, and are associated with intense and directional emission of high energy photons. Accounting for such effects is therefore necessary for modeling of, electron and ion acceleration and creation of secondary photon on the forthcoming ultra-high power laser facilities. To account for radiation losses in the particle-in-cell code PICLS, we have introduced the radiation friction force using a renormalized Lorentz-Abraham-Dirac model.10 Here, we present a study of the effect of radiation friction on the electron and photon energy distribution in a semi-infinite and overdense plasma. A possibillity to create a collisonless shock using an ultra intense laser field, in the context of laboratory astrophysics is discussed. The influence of the radiation reaction on the plasma dynamics is demonstrated.

  8. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    NASA Astrophysics Data System (ADS)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  9. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  10. Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.

    2010-10-01

    There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.

  11. Bray-Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Stanisavljev, Dragomir R.; Velikić, Zoran; Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C.

    2014-09-01

    Oscillatory Bray-Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60-110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  12. The non-ionizing electromagnetic field: Derivation of valid biological exposure metrics from Maxwell's equations of electromagnetism

    NASA Astrophysics Data System (ADS)

    Lundquist, Marjorie

    2003-03-01

    Standards for protecting health from exposure to non-ionizing electromagnetic radiation treat the power density (magnitude of Poynting vector) as the biological exposure metric. For a static electric or magnetic field, the presumed metric is field strength. Scientifically valid expressions for such exposure metrics have been derived theoretically [1]. Three regimes exist for which different expressions are obtained: high frequencies (where electric and magnetic fields are tightly coupled), low frequencies (where these fields are separable), and static fields (where time derivatives are zero). Unexpected results are obtained: * There are two exposure metrics: one for thermal, another for athermal effects. * In general, these two metrics are different. Only for a plane wave is the same metric (power density) valid for both effects. * Exposure metrics used today for static fields are invalid! These findings also apply in the ionizing portion of the electromagnetic spectrum. [1] Wireless Phones and Health II: State of the Science. G. Carlo, ed. NY: Kluwer Academic Publishers, 2000; Chapter 4.

  13. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect

    Bashir, M. F.; Smolyakov, A. I.; Elfimov, A. G.; Melnikov, A. V.; Murtaza, G.

    2014-08-15

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m = 1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure β{sub e}, the safety factor q, and the temperature ratio τ on GAM dispersion are analyzed.

  14. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

    DOE PAGES

    Coello Pérez, Eduardo A.; Papenbrock, Thomas F.

    2015-07-27

    In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 02+ band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less

  15. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E 2 transitions in deformed nuclei

    NASA Astrophysics Data System (ADS)

    Coello Pérez, E. A.; Papenbrock, T.

    2015-07-01

    We present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoretical uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. We also study the faint interband transitions within the effective theory and focus on the E 2 transitions from the 02+ band (the "β band") to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.

  16. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

    SciTech Connect

    Coello Pérez, Eduardo A.; Papenbrock, Thomas F.

    2015-07-27

    In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoretical uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 02+ band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.

  17. Electromagnetic fields and the induction of DNA strand breaks.

    PubMed

    Ruiz-Gómez, Miguel J; Martínez-Morillo, Manuel

    2009-01-01

    The International Agency for Research on Cancer (IARC) has classified the extremely low-frequency (ELF) electromagnetic fields (EMF) as "possible carcinogenic" based on the reported effects. The purpose of this work is to review and compare the recent findings related to the induction of DNA strand breaks (DNA-SB) by magnetic field (MF) exposure. We found 29 studies (genotoxic and epigenetic) about the induction of DNA-SB by MF. 50% showed effect of MF and 50% showed no DNA-SB. Nevertheless, considering only genotoxic or only epigenetic studies, 37.5% and 69.2% found induction of DNA-SB by MF, respectively. In relation to these data it seems that MF could act as a co-inductor of DNA damage rather than as a genotoxic agent per se. Nevertheless, the published results, in some cases conflicting with negative findings, do not facilitate to obtain a common consensus about MF effects and biophysical interaction mechanisms.

  18. Impact of Low Frequency Electromagnetic Field Exposure on the Candida Albicans

    NASA Astrophysics Data System (ADS)

    Malíková, Ivona; Janoušek, Ladislav; Fantova, Vladyslava; Jíra, Jaroslav; Kříha, Vítĕzslav

    2015-03-01

    Effect of low frequency electromagnetic field on growth of selected microorganism is studied in the article. The diploid fungus that grows both as yeast and filamentous cell was chosen for this research. The theory of ion parametric resonance was taken as the base for studying the influence of electromagnetic field on biological structures. We tested the hypothesis, whether it is possible to observe the change in growth properties of Candida albicans with an AC electromagnetic field tuned to resonance with calcium ions cyclotron frequency.

  19. Probing the electromagnetic field distribution within a metallic nanodisk.

    PubMed

    Meneses-Rodríguez, David; Ferreiro-Vila, Elías; Prieto, Patricia; Anguita, José; González, María U; García-Martín, José M; Cebollada, Alfonso; García-Martín, Antonio; Armelles, Gaspar

    2011-12-01

    A Co nanolayer is used as a local probe to evaluate the vertical inhomogeneous distribution of the electromagnetic (EM) field within a resonant metallic nanodisk. Taking advantage of the direct relation between the magneto-optical activity and the electromagnetic field intensity in the Co layer, it is shown that the nonuniform EM distribution within the nanodisk under plasmon resonant conditions has maximum values close to the upper and lower flat faces, and a minimum value in the middle.

  20. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    PubMed

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P < 0.01 level. Accelerated healing was also observed under the influence of the pulsed electromagnetic field (P < 0.05). In the group of animals exposed to LLLT, the healing of the skin defect was faster than in the control group. The statistical significance was at the P < 0.05 level. Different types of electromagnetic fields have a promoting effect on the wound healing process.

  1. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  2. The effect of Non- ionizing electromagnetic field with a frequency of 50 Hz in Rat ovary: A transmission electron microscopy study

    PubMed Central

    Khaki, Amir Afshin; Khaki, Arash; Ahmadi, Seyed Shahin

    2016-01-01

    Background: Recently, there are increasing concerns and interests about the potential effects of Electromagnetic Field (EMF) on both human and animal health. Objective: The goal of this study was to evaluate the harmful effects of 50 Hz non-ionizing EMF on rat oocytes. Materials and Methods: In this experimental study 30 rats were randomly taken from laboratory animals and their ags and weights were determined. These 3 month's old rats were randomly divided into 3 groups. The control group consisted of 10 rats without receiving any treatment and kept under normal conditions. Experimental group 1 (10 rats) received EMF for 8 weeks (3 weeks intrauterine +5 weeks after births) and experimental group 2 (10 rats) received EMF for 13 weeks (3 weeks intrauterine +10 weeks after birth). After removing the ovaries and isolating follicles, granulosa cells were fixed in glutaraldehyde and osmium tetroxide. Electron microscopy was used to investigate the traumatic effects of EMF on follicles. Results: In control group nucleus membrane and mitochondria in follicle’s cytoplasm seemed normal in appearance. Theca layer of primary follicles in experimental group was separated clearly, zona layer demonstrated trot with irregular thickness and ovarian stroma seemed isolated with dilated vessels showing infiltration. Conclusion: According to the results of this study, it can be concluded that EMF has harmful effects on the ovarian follicles. PMID:27200427

  3. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  4. Synergistic effect of EMF-BEMER-type pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma.

    PubMed

    Říhová, Blanka; Etrych, Tomáš; Šírová, Milada; Tomala, Jakub; Ulbrich, Karel; Kovář, Marek

    2011-12-01

    We have investigated the effects of low-frequency pulsed electromagnetic field (LF-EMF) produced by BEMER device on experimental mouse T-cell lymphoma EL4 growing on conventional and/or athymic (nude) mice. Exposure to EMF-BEMER slowed down the growth of tumor mass and prolonged the survival of experimental animals. The effect was more pronounced in immuno-compromised nude mice compared to conventional ones. Acceleration of tumor growth was never observed. No measurable levels of Hsp 70 or increased levels of specific anti-EL4 antibodies were detected in the serum taken from experimental mice before and at different intervals during the experiment, i.e. before solid tumor appeared, at the time of its aggressive growth, and at the terminal stage of the disease. A significant synergizing antitumor effect was seen when EL4 tumor-bearing mice were simultaneously exposed to EMF-BEMER and treated with suboptimal dose of synthetic HPMA copolymer-based doxorubicin, DOX(HYD)-HPMA. Such a combination may be especially useful for heavily treated patients suffering from advanced tumor and requiring additional aggressive chemotherapy which, however, at that time could represent almost life-threatening way of medication.

  5. Synergistic effect of EMF-BEMER-type pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma.

    PubMed

    Říhová, Blanka; Etrych, Tomáš; Šírová, Milada; Tomala, Jakub; Ulbrich, Karel; Kovář, Marek

    2011-12-01

    We have investigated the effects of low-frequency pulsed electromagnetic field (LF-EMF) produced by BEMER device on experimental mouse T-cell lymphoma EL4 growing on conventional and/or athymic (nude) mice. Exposure to EMF-BEMER slowed down the growth of tumor mass and prolonged the survival of experimental animals. The effect was more pronounced in immuno-compromised nude mice compared to conventional ones. Acceleration of tumor growth was never observed. No measurable levels of Hsp 70 or increased levels of specific anti-EL4 antibodies were detected in the serum taken from experimental mice before and at different intervals during the experiment, i.e. before solid tumor appeared, at the time of its aggressive growth, and at the terminal stage of the disease. A significant synergizing antitumor effect was seen when EL4 tumor-bearing mice were simultaneously exposed to EMF-BEMER and treated with suboptimal dose of synthetic HPMA copolymer-based doxorubicin, DOX(HYD)-HPMA. Such a combination may be especially useful for heavily treated patients suffering from advanced tumor and requiring additional aggressive chemotherapy which, however, at that time could represent almost life-threatening way of medication. PMID:21981636

  6. Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports.

    PubMed

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  7. Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields: A Content Analysis of British Newspaper Reports

    PubMed Central

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  8. The effects of high magnetic field on the morphology and microwave electromagnetic properties of MnO{sub 2} powder

    SciTech Connect

    Jia Zhang; Duan Yuping; Li Shuqing; Li Xiaogang; Liu Shunhua

    2010-07-15

    MnO{sub 2} with a sea urchin-like ball chain shape was first synthesized in a high magnetic field via a simple chemical process, and a mechanism for the formation of this grain shape was discussed. The as-synthesized samples were characterized by XRD, SEM, TEM, and vector network analysis. The dielectric constant and the loss tangent clearly decreased under a magnetic field. The magnetic loss tangent and the imaginary part of the magnetic permeability increased substantially. Furthermore, the theoretically calculated values of reflection loss showed that the absorption peaks shifted to a higher frequency with increases in the magnetic field strength. - Graphical abstract: MnO{sub 2} with a sea urchin-like ball chain shape is first synthesized in a high magnetic field via a simple hydrothermal route.

  9. Comments about the electromagnetic field in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    McLerran, L.; Skokov, V.

    2014-09-01

    In this article we discuss the properties of electromagnetic fields in heavy-ion collisions and consequences for observables. We address quantitatively the issue of the magnetic field lifetime in a collision including the electric and chiral magnetic conductivities. We show that for reasonable parameters, the magnetic field created by spectators in a collision is not modified by the presence of matter.

  10. Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat

    PubMed Central

    Torres-Duran, Patricia V; Ferreira-Hermosillo, Aldo; Juarez-Oropeza, Marco A; Elias-Viñas, David; Verdugo-Diaz, Leticia

    2007-01-01

    Backgound The effects of extremely low-frequency electromagnetic fields (ELF-EMF) on the blood serum and liver lipid concentrations of male Wistar rats were assessed. Methods Animals were exposed to a single stimulation (2 h) of ELF-EMF (60 Hz, 2.4 mT) or sham-stimulated and thereafter sacrificed at different times (24, 48 or 96 h after beginning the exposure). Results Blood lipids showed, at 48 h stimulated animals, a significant increase of cholesterol associated to high density lipoproteins (HDL-C) than those observed at any other studied time. Free fatty acid serum presented at 24 h significant increases in comparison with control group. The other serum lipids, triacylglycerols and total cholesterol did not show differences between groups, at any time evaluated. No statistical differences were shown on total lipids of the liver but total cholesterol was elevated at 24 h with a significant decrease at 96 h (p = 0.026). The ELF-EMF stimulation increased the liver content of lipoperoxides at 24 h. Conclusion Single exposures to ELF-EMF increases the serum values of HDL-C, the liver content of lipoperoxides and decreases total cholesterol of the liver. The mechanisms for the effects of ELF-EMF on lipid metabolism are not well understand yet, but could be associated to the nitric oxide synthase EMF-stimulation. PMID:18021407

  11. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord.

    PubMed

    Cho, Hyunjin; Choi, Yun-Kyong; Lee, Dong Heon; Park, Hee Jung; Seo, Young-Kwon; Jung, Hyun; Kim, Soo-Chan; Kim, Sung-Min; Park, Jung-Keug

    2013-01-01

    Transplanting mesenchymal stem cells into injured lesions is currently under study as a therapeutic approach for spinal cord injury. In this study, the effects of a pulsed electromagnetic field (PEMF) on injured rat spinal cord were investigated in magnetic nanoparticle (MNP)-incorporated human bone marrow-derived mesenchymal stem cells (hBM-MSCs). A histological analysis revealed significant differences in MNP-incorporated cell distribution near the injured site under the PEMF in comparison with that in the control group. We confirmed that MNP-incorporated cells were widely distributed in the lesions under PEMF. The results suggest that MNP-incorporated hBM-MSCs were guided by the PEMF near the injured site, and that PEMF exposure for 8 H per day over 4 weeks promoted behavioral recovery in spinal cord injured rats. The results show that rats with MNP-incorporated hBM-MSCs under a PEMF were more effective on the Basso, Beattie, and Bresnahan behavioral test and suggest that the PEMF enhanced the action of transplanted cells for recovery of the injured lesion.

  12. The Effect of Electromagnetic Field Treatment on Recovery from Ischemic Stroke in a Rat Stroke Model: Clinical, Imaging, and Pathological Findings

    PubMed Central

    Segal, Y.; Segal, L.; Blumenfeld-Katzir, T.; Sasson, E.; Poliansky, V.; Loeb, E.; Levy, A.; Alter, A.; Bregman, N.

    2016-01-01

    Stroke is a leading cause of death and disability. Effects of stroke include significant deficits in sensory-motor skills and cognitive abilities. At present, there are limited effective interventions for postacute stroke patients. In this preliminary research we studied a new noninvasive, very low intensity, low frequency, electromagnetic field treatment (VLIFE), targeting a neural network, on an in vivo stroke rat model. Eighteen rats were divided into three groups: sham (M1) and two treatment groups which were exposed to VLIFE treatment for 4 weeks, one using theta waves (M2) and another using beta waves (M3); all groups were followed up for an additional month. Results indicate that the M2 and M3 treated groups showed recovery of sensorimotor functional deficits, as demonstrated by Modified Neurological Severity Score and forelimb placement tests. Brain MRI imaging results show a decrease in perilesional edema and lateral ventricle widening in the treated groups. Fiber tracts' imaging, following VLIFE treatment, showed a higher white matter integrity compared to control. Histological findings support neural regeneration processes. Our data suggest that VLIFE treatment, targeting a specific functional neural network by frequency rather than location, promotes neuronal plasticity after stroke and, as a result, improves clinical recovery. Further studies will investigate the full potential of the treatment. PMID:26949561

  13. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  14. Electromagnetic waves in optical fibres in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Burdanova, M. G.

    2016-03-01

    A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion-polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field.

  15. Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines

    PubMed Central

    Ju, Huixiang; Cui, Yubao; Chen, Zhiqiang; Fu, Qinping; Sun, Mingzhong; Zhou, Ying

    2016-01-01

    Magnetic Fe3O4 nanoparticles (MNPs) have shown promise as drug carriers for treating lung and liver tumors in vivo. However, little is known about the combined delivery of these MNPs with a second approach, extremely low frequency electro-magnetic field (ELFF) exposure, which has been shown to have value for in vitro treatment of tumor cells. Here, ELFF and MNPs were combined to treat healthy (HL-7702) and cancerous (Bel-7402, HepG2) hepatic cells lines to explore the potential therapeutic effects, bio-mechanisms, and potential toxicity of a combined drug-free treatment in vitro. Flow cytometry for anti-AFP (alpha fetal protein) antibody, which coated the MNPs, indicated that the combined treatment induced Bel-7402 and HepG2 hepatoma cells lines into early apoptosis, without significant effects on healthy hepatic cells. This effect appeared to be mediated through cellular membrane ion metabolism. The presence of AFP-loaded MNPs strengthened the effects of ELFF on tumor cells, inducing a higher frequency of early apoptosis, while having minimal toxic effects on healthy HL-7702 cells. Western blotting revealed that the apoptosis-triggering BCL proteins were up regulated in hepatoma cells compared to healthy cells. Flow cytometry and patch-clamp studies revealed that this resulted from a higher MNP uptake ratio and greater cellular membrane ion exchange current in tumor cells compared to HL-7702 cells. Further, patch-clamp results showed that combining MNPs with ELFF treatment induces cells into early apoptosis through an ion metabolism disturbance in cells, similar to ELFF treatment. In brief, the combination of ELFF and MNPs had beneficial effects on tumor cells without significant toxicity on healthy cells, and these effects were associated with cellular MNP uptake. PMID:27186307

  16. Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines.

    PubMed

    Ju, Huixiang; Cui, Yubao; Chen, Zhiqiang; Fu, Qinping; Sun, Mingzhong; Zhou, Ying

    2016-01-01

    Magnetic Fe3O4 nanoparticles (MNPs) have shown promise as drug carriers for treating lung and liver tumors in vivo. However, little is known about the combined delivery of these MNPs with a second approach, extremely low frequency electro-magnetic field (ELFF) exposure, which has been shown to have value for in vitro treatment of tumor cells. Here, ELFF and MNPs were combined to treat healthy (HL-7702) and cancerous (Bel-7402, HepG2) hepatic cells lines to explore the potential therapeutic effects, bio-mechanisms, and potential toxicity of a combined drug-free treatment in vitro. Flow cytometry for anti-AFP (alpha fetal protein) antibody, which coated the MNPs, indicated that the combined treatment induced Bel-7402 and HepG2 hepatoma cells lines into early apoptosis, without significant effects on healthy hepatic cells. This effect appeared to be mediated through cellular membrane ion metabolism. The presence of AFP-loaded MNPs strengthened the effects of ELFF on tumor cells, inducing a higher frequency of early apoptosis, while having minimal toxic effects on healthy HL-7702 cells. Western blotting revealed that the apoptosis-triggering BCL proteins were up regulated in hepatoma cells compared to healthy cells. Flow cytometry and patch-clamp studies revealed that this resulted from a higher MNP uptake ratio and greater cellular membrane ion exchange current in tumor cells compared to HL-7702 cells. Further, patch-clamp results showed that combining MNPs with ELFF treatment induces cells into early apoptosis through an ion metabolism disturbance in cells, similar to ELFF treatment. In brief, the combination of ELFF and MNPs had beneficial effects on tumor cells without significant toxicity on healthy cells, and these effects were associated with cellular MNP uptake. PMID:27186307

  17. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    NASA Astrophysics Data System (ADS)

    Arnaut, L. R.

    2007-07-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It\\hato and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases. A summary of selected results in this paper appeared in [1].

  18. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    PubMed Central

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  19. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  20. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study.

    PubMed

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  1. Electromagnetic field limits set by the V-Curve.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  2. Extremely low frequency electromagnetic fields and cancer: The epidemiologic evidence

    SciTech Connect

    Bates, M.N. )

    1991-11-01

    This paper reviews the epidemiologic evidence that low frequency electromagnetic fields generated by alternating current may be cause of cancer. Studies examining residential exposures of children and adults and studies of electrical and electronics workers are reviewed. Using conventional epidemiologic criteria for inferring causal associations, including strength and consistency of the relationship, biological plausibility, and the possibility of bias as an explanation, it is concluded that the evidence is strongly suggestive that such radiation is carcinogenic. The evidence is strongest for brain and central nervous system cancers in electrical workers and children. Weaker evidence supports an association with leukemia in electrical workers. Some evidence also exists for an association with melanoma in electrical workers. Failure to find consistent evidence of a link between residential exposures and adult cancers may be attributable to exposure misclassification. Studies so far have used imperfect surrogates for any true biologically effective magnetic field exposure. The resulting exposure misclassification has produced relative risk estimates that understate any true risk.

  3. The role of electromagnetic fields in neurological disorders.

    PubMed

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue.

  4. The role of electromagnetic fields in neurological disorders.

    PubMed

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue. PMID:27083321

  5. Extremely low frequency electromagnetic fields prevent chemotherapy induced myelotoxicity.

    PubMed

    Rossi, Edoardo; Corsetti, Maria Teresa; Sukkar, Samir; Poggi, Claudio

    2007-01-01

    Side effects of chemo-radiotherapy reduce the quality and also the survivability of patients. The consequent fatigue and infections, related to myelodepression, act to reduce the dose-intensity of the protocol. Late side effects of chemo-radiotherapy include secondary tumours, acute myeloid leukemias and cardiotoxicity. Side effects of chemotherapy are related to oxidative stress produced by the treatment. Oxidative stress also reduces the efficacy of the treatment. Antioxidative treatment with natural (dietetic) or chemical agents has been reported to reduce the toxicity of chemo-radiotherapy and improve the efficacy of treatment. We here report our experience with SEQEX, an electromedical device that generates Extremely Low Frequency ElectroMagnetic Fields (ELF-EMF) to produce endogenic cyclotronic ionic resonance, to reduce myelotoxicity consequent to ABVD protocol in patients with Hodgkin's lymphoma.

  6. Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect

    Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

    2013-05-20

    Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

  7. Assessment of intermittent UMTS electromagnetic field effects on blood circulation in the human auditory region using a near-infrared system.

    PubMed

    Spichtig, Sonja; Scholkmann, Felix; Chin, Lydia; Lehmann, Hugo; Wolf, Martin

    2012-01-01

    The aim of the present study was to assess the potential effects of intermittent Universal Mobile Telecommunications System electromagnetic fields (UMTS-EMF) on blood circulation in the human head (auditory region) using near-infrared spectroscopy (NIRS) on two different timescales: short-term (effects occurring within 80 s) and medium-term (effects occurring within 80 s to 30 min). For the first time, we measured potential immediate effects of UMTS-EMF in real-time without any interference during exposure. Three different exposures (sham, 0.18 W/kg, and 1.8 W/kg) were applied in a controlled, randomized, crossover, and double-blind paradigm on 16 healthy volunteers. In addition to oxy-, deoxy-, and total haemoglobin concentrations ([O(2) Hb], [HHb], and [tHb], respectively), the heart rate (HR), subjective well-being, tiredness, and counting speed were recorded. During exposure to 0.18 W/kg, we found a significant short-term increase in Δ[O(2) Hb] and Δ[tHb], which is small (≈17%) compared to a functional brain activation. A significant decrease in the medium-term response of Δ[HHb] at 0.18 and 1.8 W/kg exposures was detected, which is in the range of physiological fluctuations. The medium-term ΔHR was significantly higher (+1.84 bpm) at 1.8 W/kg than for sham exposure. The other parameters showed no significant effects. Our results suggest that intermittent exposure to UMTS-EMF has small short- and medium-term effects on cerebral blood circulation and HR.

  8. Suppression and control of leakage field in electromagnetic helical microwiggler

    SciTech Connect

    Ohigashi, N.; Tsunawaki, Y.; Imasaki, K.

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  9. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  10. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway

    PubMed Central

    Jiang, Yuan; Gou, Hui; Wang, Sanrong; Zhu, Jiang; Tian, Si; Yu, Lehua

    2016-01-01

    Pulsed electromagnetic field (PEMF) has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP), but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD) level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation. PMID:26941827

  11. Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality.

    PubMed

    Odacı, E; Hancı, H; Yuluğ, E; Türedi, S; Aliyazıcıoğlu, Y; Kaya, H; Çolakoğlu, S

    2016-01-01

    We investigated the effects of exposure in utero to a 900 megahertz (MHz) electromagnetic field (EMF) on 60-day-old rat testis and epididymis. Pregnant rats were divided into control (CG; no treatment) and EMF (EMFG) groups. The EMFG was exposed to 900 MHz EMF for 1 h each day during days 13 - 21 of pregnancy. Newborn rats were either newborn CG (NCG) or newborn EMF groups (NEMFG). On postnatal day 60, a testis and epididymis were removed from each animal. Epididymal semen quality, and lipid and DNA oxidation levels, apoptotic index and histopathological damage to the testis were compared. We found a higher apoptotic index, greater DNA oxidation levels and lower sperm motility and vitality in the NEMFG compared to controls. Immature germ cells in the seminiferous tubule lumen, and altered seminiferous tubule epithelium and seminiferous tubule structure also were observed in hematoxylin and eosin stained sections of NEMFG testis. Nuclear changes that indicated apoptosis were identified in TUNEL stained sections and large numbers of apoptotic cells were observed in most of the seminiferous tubule epithelium in the NEMFG. Sixty-day-old rat testes exposed to 900 MHz EMF exhibited altered sperm quality and biochemical characteristics.

  12. Quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be with meson-exchange currents derived from chiral effective field theory

    SciTech Connect

    Pastore, S.; Wiringa, Robert B.; Pieper, Steven C.; Schiavilla, Rocco

    2014-08-01

    We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.

  13. [Methods of dosimetry in evaluation of electromagnetic fields' biological action].

    PubMed

    Rubtsova, N B; Perov, S Iu

    2012-01-01

    Theoretical and experimental dosimetry can be used for adequate evaluation of the effects of radiofrequency electromagnetic fields. In view of the tough electromagnetic environment in aircraft, pilots' safety is of particular topicality. The dosimetric evaluation is made from the quantitative characteristics of the EMF interaction with bio-objects depending on EM energy absorption in a unit of tissue volume or mass calculated as a specific absorbed rate (SAR) and measured in W/kg. Theoretical dosimetry employs a number of computational methods to determine EM energy, as well as the augmented method of boundary conditions, iterative augmented method of boundary conditions, moments method, generalized multipolar method, finite-element method, time domain finite-difference method, and hybrid methods combining several decision plans modeling the design philosophy of navigation, radiolocation and human systems. Because of difficulties with the experimental SAR estimate, theoretical dosimetry is regarded as the first step in analysis of the in-aircraft conditions of exposure and possible bio-effects.

  14. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-08-01

    Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications. PMID:26595908

  15. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Deckert, D.-A.; Merkl, F.

    2016-08-01

    The Shale-Stinespring Theorem (J Math Mech 14:315-322, 1965) together with Ruijsenaar's criterion (J Math Phys 18(4):720-737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential {A_μ} are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general {A_μ}, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of {A_μ} w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  16. Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity

    NASA Astrophysics Data System (ADS)

    Jacquot, Jean Francois; le Bail, Jean-Luc; Bardet, Michel; Tabony, James

    2010-11-01

    There is interest as to whether the electromagnetic fields used in mobile radiotelephony might affect biological processes. Other weak fields such as gravity intervene in a number of physical and biological processes. Under appropriate in vitro conditions, the macroscopic self-organization of microtubules, a major cellular component, is triggered by gravity. We wished to investigate whether self-organization might also be affected by radiotelephone electromagnetic fields. Detecting a possible effect requires removing the obscuring effects triggered by gravity. A simple manner of doing this is by rotating the sample about the horizontal. However, if the external field does not also rotate with the sample, its possible effect might also be averaged down by rotation. Here, we describe an apparatus in which both the sample and an applied radiofrequency electromagnetic field (1.8 GHz) are stationary with respect to one another while undergoing horizontal rotation. The electromagnetic field profile within the apparatus has been measured and the apparatus tested by reproducing the in vitro behavior of microtubule preparations under conditions of weightlessness. Specific adsorption rates of electromagnetic energy within a sample are measured from the initial temperature rise the incident field causes. The apparatus can be readily adapted to expose samples to various other external fields and factors under conditions of weightlessness.

  17. Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity.

    PubMed

    Jacquot, Jean Francois; le Bail, Jean-Luc; Bardet, Michel; Tabony, James

    2010-11-01

    There is interest as to whether the electromagnetic fields used in mobile radiotelephony might affect biological processes. Other weak fields such as gravity intervene in a number of physical and biological processes. Under appropriate in vitro conditions, the macroscopic self-organization of microtubules, a major cellular component, is triggered by gravity. We wished to investigate whether self-organization might also be affected by radiotelephone electromagnetic fields. Detecting a possible effect requires removing the obscuring effects triggered by gravity. A simple manner of doing this is by rotating the sample about the horizontal. However, if the external field does not also rotate with the sample, its possible effect might also be averaged down by rotation. Here, we describe an apparatus in which both the sample and an applied radiofrequency electromagnetic field (1.8 GHz) are stationary with respect to one another while undergoing horizontal rotation. The electromagnetic field profile within the apparatus has been measured and the apparatus tested by reproducing the in vitro behavior of microtubule preparations under conditions of weightlessness. Specific adsorption rates of electromagnetic energy within a sample are measured from the initial temperature rise the incident field causes. The apparatus can be readily adapted to expose samples to various other external fields and factors under conditions of weightlessness.

  18. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  19. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge.

    PubMed

    Lewczuk, Bogdan; Redlarski, Grzegorz; Zak, Arkadiusz; Ziółkowska, Natalia; Przybylska-Gornowicz, Barbara; Krawczuk, Marek

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms-two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.

  20. Erratum to: Electromigration occurences and its effects on metallic surfaces submitted to high electromagnetic field: A novel approach to breakdown in accelerators

    NASA Astrophysics Data System (ADS)

    Antoine, C. Z.; Peauger, F.; Le Pimpec, F.

    2012-04-01

    We regret to inform you that the: Electromigration occurences and its effects on metallic surfaces submitted to high electromagnetic field: A novel approach to breakdown in accelerators which is found in the issue 665C (pp 54-69) is an incorrect version. The correct version is the following: The application of a high electrical field on metallic surfaces leads to the well described phenomena of breakdown. In the classical scenario, explosive electron emission (EEE), breakdown (BD) originates from an emitting site (surface protrusion): the current at the apex vaporizes the emitting tip and the emitting current triggers a plasma in the vapor close to the surface. The plasma in turn melts the emitting site and makes it (hopefully) disappear. The conditioning process consists of "burning" the emitting sites one after another and numerous observations exhibit surfaces covered with molten craters that more or less overlap. In the case of radiofrequency (RF) applied fields, the effects of fatigue are also considered due to the cyclic nature of the applied stress. Nevertheless when dealing with RF cavities for accelerators, where higher fields are now sought, one can legitimately wonder if other physical phenomena should also be taken into account. In particular, we believe that electromigration, especially at surfaces or grain boundaries cannot be neglected anymore at high field (i.e. 50-100 MV/m). Many publications in the domain of liquid metal emission sources show that very stable and strong emission sources, either ions or electrons, build up on metallic surfaces submitted to electrical fields through a mechanism that is slightly different from the usual localized breakdown evoked in accelerators. This mechanism involves the combination of electromigration and collective motion of surface atoms. In the case of emission source, this effect is sought after and has been extensively studied, whereas in our case it is very detrimental to the possibility of reaching high

  1. On guided versus deflected fields in controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  2. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions

    PubMed Central

    Kang, Kyung Shin; Hong, Jung Min; Kang, Jo A; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2013-01-01

    Many studies have reported that an electromagnetic field can promote osteogenic differentiation of mesenchymal stem cells. However, experimental results have differed depending on the experimental and environmental conditions. Optimization of electromagnetic field conditions in a single, identified system can compensate for these differences. Here we demonstrated that specific electromagnetic field conditions (that is, frequency and magnetic flux density) significantly regulate osteogenic differentiation of adipose-derived stem cells (ASCs) in vitro. Before inducing osteogenic differentiation, we determined ASC stemness and confirmed that the electromagnetic field was uniform at the solenoid coil center. Then, we selected positive (30/45 Hz, 1 mT) and negative (7.5 Hz, 1 mT) osteogenic differentiation conditions by quantifying alkaline phosphate (ALP) mRNA expression. Osteogenic marker (for example, runt-related transcription factor 2) expression was higher in the 30/45 Hz condition and lower in the 7.5 Hz condition as compared with the nonstimulated group. Both positive and negative regulation of ALP activity and mineralized nodule formation supported these responses. Our data indicate that the effects of the electromagnetic fields on osteogenic differentiation differ depending on the electromagnetic field conditions. This study provides a framework for future work on controlling stem cell differentiation. PMID:23306704

  3. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions.

    PubMed

    Kang, Kyung Shin; Hong, Jung Min; Kang, Jo A; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2013-01-18

    Many studies have reported that an electromagnetic field can promote osteogenic differentiation of mesenchymal stem cells. However, experimental results have differed depending on the experimental and environmental conditions. Optimization of electromagnetic field conditions in a single, identified system can compensate for these differences. Here we demonstrated that specific electromagnetic field conditions (that is, frequency and magnetic flux density) significantly regulate osteogenic differentiation of adipose-derived stem cells (ASCs) in vitro. Before inducing osteogenic differentiation, we determined ASC stemness and confirmed that the electromagnetic field was uniform at the solenoid coil center. Then, we selected positive (30/45 Hz, 1 mT) and negative (7.5 Hz, 1 mT) osteogenic differentiation conditions by quantifying alkaline phosphate (ALP) mRNA expression. Osteogenic marker (for example, runt-related transcription factor 2) expression was higher in the 30/45 Hz condition and lower in the 7.5 Hz condition as compared with the nonstimulated group. Both positive and negative regulation of ALP activity and mineralized nodule formation supported these responses. Our data indicate that the effects of the electromagnetic fields on osteogenic differentiation differ depending on the electromagnetic field conditions. This study provides a framework for future work on controlling stem cell differentiation.

  4. [Constant low-frequency electrical and electromagnetic fields (biological action and hygienic evaluation)].

    PubMed

    Davydov, B I; Karpov, V N

    1982-01-01

    The literature data are used to analyze the hygienic situation when man is exposed to constant electrical and low frequency electromagnetic radiations. The spectral characteristics and intensities of electrical fields near and on the surface of the Earth generated by natural sources of electromagnetic radiations (electrical quasi-static fields, atmospheric electricity, thunderstorm charges, electromagnetic radiation emitted by the sun and galaxies) are given. They can be employed to determine man's adaptive capabilities to the frequencies described during acute and chronic irradiation. The mechanisms of biological effects of the exposures are discussed. The methods for calculating the safety levels based on the USSR radiation safety standards and the "competing frequencies" procedure proposed can be applied to the design of electrotechnical devices and evaluation of integral hazard of constant electrical and electromagnetic fields of low frequencies.

  5. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Saveliev, Andrey; Sigl, Günter; Vachaspati, Tanmay

    2016-10-01

    We determine the effect of intergalactic magnetic fields on the distribution of high-energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called "Large Sphere Observer" method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q -statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S -statistics. Both methods provide a quantitative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B ≳10-15 G and magnetic coherence lengths Lc≳100 Mpc . We show that the S -statistics has a better performance than the Q -statistics when assessing magnetic helicity from the simulated halos.

  6. Setting prudent public health policy for electromagnetic field exposures.

    PubMed

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future. PMID:18763539

  7. Setting prudent public health policy for electromagnetic field exposures.

    PubMed

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future.

  8. The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure.

    PubMed

    Duan, Yuqing; Wang, Zhigao; Zhang, Haihui; He, Yuanqing; Lu, Rongzhu; Zhang, Rui; Sun, Guibo; Sun, Xiaobo

    2013-08-01

    The present study investigated the effects of lotus seedpod procyanidins (LSPCs) administered by oral gavage on the cognitive deficits and oxidative damage of mice at extremely low frequency electromagnetic field (ELF-EMF) exposure (50 Hz, 8 mT, 28 days). The results showed that 90 mg kg⁻¹ LSPCs treatment significantly increased body weight compared with the ELF-EMF group at ELF-EMF exposure and effectively maintained liver index, thymus index, kidney index and spleen index close to normal. A water maze test indicated that learning and memory abilities of the ELF-EMF group deteriorated significantly with ELF-EMF exposure when compared with the control group, but the ELF-EMF + LSPCs90 group had remarkably improved learning and memory abilities compared with the ELF-EMF group. Malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO) and nitric oxide synthase (NOS) mostly exhibited significant increases, while the activities of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) decreased significantly under ELF-EMF exposure in the ELF-EMF group. LSPCs (especially 60, 90 mg kg⁻¹) administration decreased MDA, ROS, NO content and lowered NOS activity in LSPCs treatment groups. Furthermore, LSPCs (60, 90 mg kg⁻¹) treatment significantly augmented GPx, CAT, SOD activity in the hippocampus and serum. Pathological observation showed that number of pyramidal cells of the CA1 and CA3 regions of the hippocampus of the LSPCs treatment groups was significantly greater than the ELF-EMF group. All the data suggested that the LSPCs can effectively prevent learning and memory damage and oxidative damage caused by the ELF-EMF, most likely through the ability of LSPCs to scavenge oxygen free radicals and to stimulate antioxidant enzyme activity.

  9. Electromagnetic field and human health: Revisiting the issue

    SciTech Connect

    Harunuzzaman, M.; Iyyuni, G.

    1995-12-31

    In spite of major research efforts across the globe since this publication`s last article on the subject, the relationship between extremely low-frequency (ELF) electromagnetic fields (EMFs) and human health continues to elude scientists. However, there have been methodological refinements and sharpening of focus in investigating the link between specific health conditions and exposure to EMFs. Recently published scientific studies generally express more confidence in their findings, and more clearly identify limitations to interpreting the findings. However, a definitive answer to the EMF-health effects puzzle is yet to be found. As before, public utility commissions (PUCs) and other public agencies cannot find any clear helpful guidance on how to address the pertinent public health issue.

  10. Near-field thermal electromagnetic transport: An overview

    NASA Astrophysics Data System (ADS)

    Edalatpour, Sheila; DeSutter, John; Francoeur, Mathieu

    2016-07-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added to Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres with size comparable to the wavelength, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. A transient analysis shows that despite a non-uniform spatial distribution of power absorbed, the sphere temperature remains spatially uniform at any instant due to the fact that the thermal resistance by conduction is much smaller than the resistance by radiation. The formalism proposed in this paper is general, and could be used as a starting point for adapting solution methods employed in traditional electromagnetic scattering problems to near-field thermal electromagnetic transport.

  11. No Effects of Acute Exposure to Wi-Fi Electromagnetic Fields on Spontaneous EEG Activity and Psychomotor Vigilance in Healthy Human Volunteers.

    PubMed

    Zentai, Norbert; Csathó, Árpád; Trunk, Attila; Fiocchi, Serena; Parazzini, Marta; Ravazzani, Paolo; Thuróczy, György; Hernádi, István

    2015-12-01

    Mobile equipment use of wireless fidelity (Wi-Fi) signal modulation has increased exponentially in the past few decades. However, there is inconclusive scientific evidence concerning the potential risks associated with the energy deposition in the brain from Wi-Fi and whether Wi-Fi electromagnetism interacts with cognitive function. In this study we investigated possible neurocognitive effects caused by Wi-Fi exposure. First, we constructed a Wi-Fi exposure system from commercial parts. Dosimetry was first assessed by free space radiofrequency field measurements. The experimental exposure system was then modeled based on real geometry and physical characteristics. Specific absorption rate (SAR) calculations were performed using a whole-body, realistic human voxel model with values corresponding to conventional everyday Wi-Fi exposure (peak SAR10g level was 99.22 mW/kg with 1 W output power and 100% duty cycle). Then, in two provocation experiments involving healthy human volunteers we tested for two hypotheses: 1. Whether a 60 min long 2.4 GHz Wi-Fi exposure affects the spectral power of spontaneous awake electroencephalographic (sEEG) activity (N = 25); and 2. Whether similar Wi-Fi exposure modulates the sustained attention measured by reaction time in a computerized psychomotor vigilance test (PVT) (N = 19). EEG data were recorded at midline electrode sites while volunteers watched a silent documentary. In the PVT task, button press reaction time was recorded. No measurable effects of acute Wi-Fi exposure were found on spectral power of sEEG or reaction time in the psychomotor vigilance test. These results indicate that a single, 60 min Wi-Fi exposure does not alter human oscillatory brain function or objective measures of sustained attention. PMID:26600173

  12. No Effects of Acute Exposure to Wi-Fi Electromagnetic Fields on Spontaneous EEG Activity and Psychomotor Vigilance in Healthy Human Volunteers.

    PubMed

    Zentai, Norbert; Csathó, Árpád; Trunk, Attila; Fiocchi, Serena; Parazzini, Marta; Ravazzani, Paolo; Thuróczy, György; Hernádi, István

    2015-12-01

    Mobile equipment use of wireless fidelity (Wi-Fi) signal modulation has increased exponentially in the past few decades. However, there is inconclusive scientific evidence concerning the potential risks associated with the energy deposition in the brain from Wi-Fi and whether Wi-Fi electromagnetism interacts with cognitive function. In this study we investigated possible neurocognitive effects caused by Wi-Fi exposure. First, we constructed a Wi-Fi exposure system from commercial parts. Dosimetry was first assessed by free space radiofrequency field measurements. The experimental exposure system was then modeled based on real geometry and physical characteristics. Specific absorption rate (SAR) calculations were performed using a whole-body, realistic human voxel model with values corresponding to conventional everyday Wi-Fi exposure (peak SAR10g level was 99.22 mW/kg with 1 W output power and 100% duty cycle). Then, in two provocation experiments involving healthy human volunteers we tested for two hypotheses: 1. Whether a 60 min long 2.4 GHz Wi-Fi exposure affects the spectral power of spontaneous awake electroencephalographic (sEEG) activity (N = 25); and 2. Whether similar Wi-Fi exposure modulates the sustained attention measured by reaction time in a computerized psychomotor vigilance test (PVT) (N = 19). EEG data were recorded at midline electrode sites while volunteers watched a silent documentary. In the PVT task, button press reaction time was recorded. No measurable effects of acute Wi-Fi exposure were found on spectral power of sEEG or reaction time in the psychomotor vigilance test. These results indicate that a single, 60 min Wi-Fi exposure does not alter human oscillatory brain function or objective measures of sustained attention.

  13. Effect of Pulsed Electromagnetic Field Therapy on Prostate Volume and Vascularity in the Treatment of Benign Prostatic Hyperplasia: A Pilot Study in a Canine Model

    PubMed Central

    Leoci, Raffaella; Aiudi, Giulio; Silvestre, Fabio; Lissner, Elaine; Lacalandra, Giovanni Michele

    2014-01-01

    BACKGROUND Benign prostatic hyperplasia (BPH) is a result of urogenital aging. Recent studies suggest that an age-related impairment of the blood supply to the lower urinary tract plays a role in the development of BPH and thus may be a contributing factor in the pathogenesis of BPH. The canine prostate is a model for understanding abnormal growth of the human prostate gland. We studied the efficacy of pulsed electromagnetic field therapy (PEMF) in dogs to modify prostate blood flow and evaluated its effect on BPH. METHODS PEMF (5 min, twice a day for 3 weeks) was performed on 20 dogs affected by BPH. Prostatic volume, Doppler assessment by ultrasonography, libido, semen quality, testosterone levels, and seminal plasma volume, composition and pH were evaluated before and after treatment. RESULTS The 3 weeks of PEMF produced a significant reduction in prostatic volume (average 57%) without any interference with semen quality, testosterone levels or libido. Doppler parameters showed a reduction of peripheral resistances and a progressive reduction throughout the trial of the systolic peak velocity, end-diastolic velocity, mean velocity, mean, and peak gradient of the blood flow in the dorsal branch of the prostatic artery. The pulsatility index and the resistance index did not vary significantly over time. CONCLUSIONS The efficacy of PEMF on BPH in dogs, with no side effects, suggests the suitability of this treatment in humans and supports the hypothesis that impairment of blood supply to the lower urinary tract may be a causative factor in the development of BPH. Prostate 74:1132–1141, 2014. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc. PMID:24913937

  14. Effect of exposure to 1,800 MHz electromagnetic fields on heat shock proteins and glial cells in the brain of developing rats.

    PubMed

    Watilliaux, Aurélie; Edeline, Jean-Marc; Lévêque, Philippe; Jay, Thérèse M; Mallat, Michel

    2011-08-01

    The increasing use of mobile phones by children raise issues about the effects of electromagnetic fields (EMF) on the immature Central Nervous System (CNS). In the present study, we quantified cell stress and glial responses in the brain of developing rats one day after a single exposure of 2 h to a GSM 1,800 MHz signal at a brain average Specific Absorption Rate (SAR) in the range of 1.7 to 2.5 W/kg. Young rats, exposed to EMF on postnatal days (P) 5 (n = 6), 15 (n = 5) or 35 (n = 6), were compared to pseudo-exposed littermate rats (n = 6 at all ages). We used western blotting to detect heat shock proteins (HSPs) and cytoskeleton- or neurotransmission-related proteins in the developing astroglia. The GSM signal had no significant effect on the abundance of HSP60, HSC70 or HSP90, of serine racemase, glutamate transporters including GLT1 and GLAST, or of glial fibrillary acid protein (GFAP) in either total or soluble tissue extracts. Imunohistochemical detection of CD68 antigen in brain sections from pseudo-exposed and exposed animals did not reveal any differences in the morphology or distribution of microglial cells. These results provide no evidence for acute cell stress or glial reactions indicative of early neural cell damage, in developing brains exposed to 1,800 MHz signals in the range of SAR used in our study.

  15. The effects of long-term exposure to a 2450 MHz electromagnetic field on growth and pubertal development in female Wistar rats.

    PubMed

    Sangun, Ozlem; Dundar, Bumin; Darici, Hakan; Comlekci, Selcuk; Doguc, Duygu Kumbul; Celik, Suheyla

    2015-03-01

    The aim of this study was to investigate the effects of a 2450 MHz electromagnetic field (EMF) (wireless internet frequency) on the growth and development of female Wistar rats. The study was conducted on three groups of rats. The prenatal and postnatal groups were exposed to EMF 1 h/day beginning from intrauterine and postnatal periods, respectively. The third group was the sham-exposed group. Growth, nutrition and vaginal opening (VO) were regularly monitored. Serum and tissue specimens were collected at puberty. Histological examinations, total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) measurements in ovary and brain tissues and also immunohistochemical staining of the hypothalamus were performed besides the determination of serum FSH, LH, E2 and IGF-1 values. Birth masses of the groups were similar (p > 0.05). Mass gain per day was significantly lower and the puberty was significantly later in the prenatal group. Brain and ovary TOS and OSI values in the prenatal group were significantly increased (p < 0.05) compared to the control group. Serum LH levels of the prenatal and postnatal groups were increased, although serum FSH, and E2 values did not differ among the groups (p > 0.05). Histological examinations of the specimens revealed no statistically significant difference between the groups (p > 0.05). Exposure to 2450 MHz EMF, particularly in the prenatal period, resulted in postnatal growth restriction and delayed puberty in female Wistar rats. Increased TOS and OSI values in the brain and ovary tissues can be interpreted as a sign of chronic stress induced by EMF. This is the first longitudinal study which investigates the effects of EMF induced by wireless internet on pubertal development beside growth.

  16. Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells.

    PubMed

    An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong

    2015-01-01

    Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn't change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein.

  17. [The present state of knowledge concerning the effect of electromagnetic fields of 50/60 Hz on the circulatory system and the autonomic nervous system].

    PubMed

    Indulski, J A; Bortkiewicz, A; Zmyślony, M

    1997-01-01

    Diseases of the circulatory system together with neoplastic diseases are recognised as the major health problem in the contemporary world. Their origin and aggravation may be related to the exposure to electromagnetic fields (EMFs) since theoretically, disorders in the functioning of the circulatory system are most likely due to electric impulses generated in it by external magnetic fields. The nervous system, including its autonomic part which regulates, among others, the functioning of the circulatory system, because of its electric nature is another system which may be disturbed by EMFs. From the 1960s, biological studies on the effects of power-line frequency EMFs have been carried out in many countries. In view of the applied study model, four main directions of these studies can be identified: in vitro and in vivo animal experiments, experimental studies on humans, clinical and epidemiological studies. Experimental studies on animals and humans have yielded ambiguous and very often contradictory results. Some of them indicate that EMF contributes to slowing down the cardiac rhythm and the stroke volume of the left ventricle, other results suggest their acceleration, and still other show no differences. The results of clinical studies performed in many countries in different groups of workers exposed to power-line frequency EMFs have not produced the evidence for drawing unequivocal conclusions. Again some studies reveal that those exposed show disorders in neurovegetative and blood pressure regulations (hypotension or hypertension) as well as in cardiac rhythm (bradycardia or tachycardia). Other studies do not confirm harmful effect of EMF on the circulatory system. Therefore, it is not feasible to find out, on the basis of these studies, whether and how chronic exposure to power-line frequency EMFs influences the functioning of the circulatory system, the more so as ECG standard recording has been to date the only diagnostic method, and according to the

  18. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  19. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  20. Short-term evaluation of electromagnetic field pretreatment of adipose-derived stem cells to improve bone healing.

    PubMed

    Kang, Kyung Shin; Hong, Jung Min; Seol, Young-Joon; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2015-10-01

    An electromagnetic field is an effective stimulation tool because it promotes bone defect healing, albeit in an unknown way. Although electromagnetic fields are used for treatment after surgery, many patients prefer cell-based tissue regeneration procedures that do not require daily treatments. This study addressed the effects of an electromagnetic field on adipose-derived stem cells (ASCs) to investigate the feasibility of pretreatment to accelerate bone regeneration. After identifying a uniform electromagnetic field inside a solenoid coil, we observed that a 45 Hz electromagnetic field induced osteogenic marker expression via bone morphogenetic protein, transforming growth factor β, and Wnt signalling pathways based on microarray analyses. This electromagnetic field increased osteogenic gene expression, alkaline phosphate activity and nodule formation in vitro within 2 weeks, indicating that this pretreatment may provide osteogenic potential to ASCs on three-dimensional (3D) ceramic scaffolds. This pretreatment effect of an electromagnetic field resulted in significantly better bone regeneration in a mouse calvarial defect model over 4 weeks compared to that in the untreated group. This short-term evaluation showed that the electromagnetic field pretreatment may be a future therapeutic option for bone defect treatment.

  1. Electromagnetic shielding effectiveness of composite material

    NASA Astrophysics Data System (ADS)

    Serna, Patrick J.; Liechty, Gary H.

    1999-01-01

    The purpose of this paper is to present an engineering study of the electromagnetic shielding effectiveness of composite materials used in space applications. The objective of the study is to identify and quantify the important electrical characteristics of composite materials proposed as substitutes for conventional metal-based structural elements of spacecraft. Current design practices utilized by various developers of spacecraft, particularly those with survivability and endurability requirements, employ variations of design constraints which rely on quantifiable and testable control of electromagnetic topology. These design practices are based on extensive knowledge and experience gained through analyses and tests of configurations on metallic structures and metal-enclosed electronics boxes. The purpose of this study is to determine, analytically and experimentally, the relevant electromagnetic characteristics of selected classes of composite material being recommended for inclusion in designs of new spacecraft systems. This study surveyed existing electromagnetic databases to determine known electrical characteristics of various advanced composite materials proposed as substitutes for spacecraft metal-based structures and enclosure materials. Particular attention was focused on determining the utility of this data in quantifying the electromagnetic shielding effectiveness through nominal bulk properties such as resistivity/conductivity and electrical connectivity through bonds/joints. For a select set of composite material, an experimental approach to evaluate the important electromagnetic characteristics of sample configurations was used. Primary material focus of this study is on carbon/epoxy, graphite/epoxy, and carbon/cyanate ester materials.

  2. Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electronphotonic Imaging.

    PubMed

    Bhargav, Hemant; Srinivasan, T M; Varambally, S; Gangadhar, B N; Koka, Prasad

    2015-01-01

    The mobile phones (MP) are low power radio devices which work on electromagnetic fields (EMFs), in the frequency range of 900-1800 MHz. Exposure to MPEMFs may affect brain physiology and lead to various health hazards including brain tumors. Earlier studies with positron emission tomography (PET) have found alterations in cerebral blood flow (CBF) after acute exposure to MPEMFs. It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemia and tumors, including brain tumors such as gliomas. Both significant misbalance in DSB repair and severe stress response have been triggered by MPEMFs and EMFs from cell towers. It has been shown that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells. This may be important for cancer risk assessment and indicates that stem cells are the most relevant cellular model for validating safe mobile communication signals. Recently developed technology for recording the human bio-electromagnetic (BEM) field using Electron photonic Imaging (EPI) or Gas Discharge Visualisation (GDV) technique provides useful information about the human BEM. Studies have recorded acute effects of Mobile Phone Electromagnetic Fields (MPEMFs) using EPI and found quantifiable effects on human BEM field. Present manuscript reviews evidences of altered brain physiology and stem cell functioning due to mobile phone/cell tower radiations, its association with increased cancer risk and explores early diagnostic value of EPI imaging in detecting EMF induced changes on human BEM.

  3. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  4. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  5. Electromagnetic and thermal analysis for lipid bilayer membranes exposed to RF fields.

    PubMed

    Eibert, T F; Alaydrus, M; Wilczewski, F; Hansen, V W

    1999-08-01

    Experiments with pulsed radio frequency fields have shown influence on the low-frequency behavior of lipid bilayer membranes. In this paper, we present an electromagnetic and thermal analysis of the used exposure device to clarify whether the observed effects have a thermal cause and to determine the fields at the lipid bilayer. In order to model the very thin lipid bilayer (about 5 nm) accurately, the electromagnetic analysis is broken into several steps employing the finite difference time domain technique and a finite element/boundary element hybrid approach. Based on the obtained power loss due to the electromagnetic fields, the temperature change is calculated using the finite element method for the solution of the heat conduction equation. Both, the electromagnetic and the thermal analysis are performed for a variety of material parameters of the exposure device. The electromagnetic analysis shows that the exposure device is capable of producing voltages on the order of 1 mV across the lipid bilayer. The combined electromagnetic and thermal calculations reveal that the temperature oscillations due to the pulsed radio frequency fields are too small to directly influence the low-frequency behavior of the lipid bilayer.

  6. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  7. Higher-dimensional Vaidya metric with an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Bhui, B.; Banerjee, A.

    1990-09-01

    An exterior solution is obtained for a charged radiating sphere in higher dimensions. The solution reduces to an earlier one obtained by Krori and Barua [J. Phys. A 7, 2125 (1974)] when the space-time dimension is four, and to one obtained by Iyer and Vishveshwara [J. Phys. 32, 749 (1989)] when the electromagnetic field is switched off.

  8. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  9. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  10. Spectrally isomorphic Dirac systems: Graphene in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Jakubský, Vít

    2015-02-01

    We construct the new one-dimensional Dirac Hamiltonians that are spectrally isomorphic (not isospectral) with the known exactly solvable models. Explicit formulas for their spectra and eigenstates are provided. The operators are utilized for the description of Dirac fermions in graphene in the presence of an inhomogeneous electromagnetic field. We discuss explicit, physically relevant, examples of spectrally isomorphic systems with both nonperiodic and periodic electromagnetic barriers. In the latter case, spectrally isomorphic two- and three-gap systems associated with the Ablowitz-Kaup-Newell-Segur hierarchy are considered.

  11. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis. PMID:26444202

  12. Electromagnetic hydrophone with tomographic system for absolute velocity field mapping

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Gilles, Bruno; Chapelon, Jean-Yves; Lafon, Cyril

    2012-06-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  13. On the longitudinal polarization of non-paraxial electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Martínez-Herrero, R.; Mejías, P. M.; Manjavacas, A.

    2010-05-01

    Within the framework of the angular plane-wave spectrum of the electromagnetic field, the general form is given for the freely-propagating beams, exact solution of the Maxwell equations, that closely approach (in an algebraic sense) to a purely-longitudinal vectorial distribution at some transverse plane. In the rotationally symmetric case, such a field is written as the combination of radial and longitudinal components, whose propagation can be analysed independently. Several illustrative examples are also considered.

  14. Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field.

    PubMed

    Gros, J-B; Kuhl, U; Legrand, O; Mortessagne, F

    2016-03-01

    The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response. PMID:27078293

  15. [Influence of Low-Frequency Electromagnetic Field on DNA Molecules in Water Solutions].

    PubMed

    Tekutskaya, E E; Barishev, M G; Ilchenko, G P

    2015-01-01

    It is shown that the amplicons of hepatitis virus DNA (hepatitis B virus, hepatitis C virus) are capable of inducing radiation after an exposure to electromagnetic fields in the frequency range from 3 to 30 Hz and the field strength, 24-40 A/m, registered by means of a chemiluminescence method. The most effect of the electromagnetic field on water solutions of the amplicons of hepatitis virus DNA occurs at the frequency of 9 Hz, the change in the hydration shell of DNA amplicons is observed. It is suggested that the change in the hydration shell of DNA amplicons exposed to the low-frequency electromagnetic field leads to restoration of hydrogen bonding, stitchings formation and DNA repair as a whole. PMID:26841502

  16. Electromagnetic fields and potentials generated by massless charged particles

    NASA Astrophysics Data System (ADS)

    Azzurli, Francesco; Lechner, Kurt

    2014-10-01

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard-Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string.

  17. Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry.

    PubMed

    Kibis, O V; Slepyan, G Ya; Maksimenko, S A; Hoffmann, A

    2009-01-16

    We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable. PMID:19257272

  18. Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry.

    PubMed

    Kibis, O V; Slepyan, G Ya; Maksimenko, S A; Hoffmann, A

    2009-01-16

    We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable.

  19. Electromagnetic fields and the blood-brain barrier.

    PubMed

    Stam, Rianne

    2010-10-01

    The mammalian blood-brain barrier (BBB) consists of endothelial cells, linked by tight junctions, and the adjoining pericytes and extracellular matrix. It helps maintain a highly stable extracellular environment necessary for accurate synaptic transmission and protects nervous tissue from injury. An increase in its normally low permeability for hydrophilic and charged molecules could potentially be detrimental. Methods to assess the permeability of the BBB include histological staining for marker molecules in brain sections and measurement of the concentration of marker molecules in blood and brain tissue. Their advantages and disadvantages are discussed. Exposure to levels of radiofrequency electromagnetic fields (EMF) that increase brain temperature by more than 1°C can reversibly increase the permeability of the BBB for macromolecules. The balance of experimental evidence does not support an effect of 'non-thermal' radiofrequency fields with microwave and mobile phone frequencies on BBB permeability. Evidence for an effect of the EMF generated by magnetic resonance imaging on permeability is conflicting and conclusions are hampered by potential confounders and simultaneous exposure to different types and frequencies of EMF. The literature on effects of low frequency EMF, which do not cause tissue heating, is sparse and does not yet permit any conclusions on permeability changes. Studies on the potential effect of EMF exposure on permeability of the BBB in humans are virtually absent. Future permeability studies should focus on low frequency effects and effects in humans. Care should be taken to avoid the methodological limitations of earlier studies and to determine the pathophysiological relevance of any changes found.

  20. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  1. Electromagnetic biaxial vector scanner using radial magnetic field.

    PubMed

    Han, Aleum; Cho, Ah Ran; Ju, Suna; Ahn, Si-Hong; Bu, Jong-Uk; Ji, Chang-Hyeon

    2016-07-11

    We present an electromagnetic biaxial vector-graphic scanning micromirror. In contrast to conventional electromagnetic actuators using linear magnetic field, proposed device utilizes a radial magnetic field and uniquely designed current paths to enable the 2 degree-of-freedom scanning motion. As the radial field is generated by concentrically assembled magnets placed under the scanner die, large driving torque can be generated without the aid of hermetic packaging and relatively small device volume can be achieved. Mechanical half scan angle of 6.43° and 4.20° have been achieved at DC current of 250mA and 350mA for horizontal and vertical scans, respectively. Forced actuation along both scan axes has been realized by feedback control. PMID:27410851

  2. Error sources affecting thermocouple thermometry in RF electromagnetic fields.

    PubMed

    Chakraborty, D P; Brezovich, I A

    1982-03-01

    Thermocouple thermometry errors in radiofrequency (typically 13, 56 MHZ) electromagnetic fields such as are encountered in hyperthermia are described. RF currents capacitatively or inductively coupled into the thermocouple-detector circuit produce errors which are a combination of interference, i.e., 'pick-up' error, and genuine rf induced temperature changes at the junction of the thermocouple. The former can be eliminated by adequate filtering and shielding; the latter is due to (a) junction current heating in which the generally unequal resistances of the thermocouple wires cause a net current flow from the higher to the lower resistance wire across the junction, (b) heating in the surrounding resistive material (tissue in hyperthermia), and (c) eddy current heating of the thermocouple wires in the oscillating magnetic field. Low frequency theories are used to estimate these errors under given operating conditions and relevant experiments demonstrating these effects and precautions necessary to minimize the errors are described. It is shown that at 13.56 MHz and voltage levels below 100 V rms these errors do not exceed 0.1 degrees C if the precautions are observed and thermocouples with adequate insulation (e.g., Bailey IT-18) are used. Results of this study are being currently used in our clinical work with good success.

  3. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field.

    PubMed

    Wen, Chih-Yung; Yeh, Cheng-Peng; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2009-12-01

    This paper presents a novel simple micromixer based on stable water suspensions of magnetic nanoparticles (i.e. ferrofluids). The micromixer chip is built using standard microfabrication and simple soft lithography, and the design can be incorporated as a subsystem into any chemical microreactor or a miniaturized biological sensor. An electromagnet driven by an AC power source is used to induce transient interactive flows between a ferrofluid and Rhodamine B. The alternative magnetic field causes the ferrofluid to expand significantly and uniformly toward Rhodamine B, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which have not been observed by other active mixing methods utilizing only magnetic force, increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The miscible fingering instabilities are observed and applied in the microfluidics for the first time. This work is carried with a view to developing functionalized ferrofluids that can be used as sensitive pathogen detectors and the present experimental results demonstrate that the proposed micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is higher than 29.2 Oe and frequency ranges from 45 to 300 Hz. PMID:19921677

  4. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    SciTech Connect

    Yu, Haining; Du, Jiulin

    2014-11-15

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.

  5. [Problems of hygienic standardization of electromagnetic fields produced by teletransmitting objects].

    PubMed

    Karachev, I I

    1989-10-01

    Maximum allowable electromagnetic field levels produced by teletransmitting stations and differentiated by frequency have been described. The prospects of further studies on the improvement of hygienic standardization of electromagnetic fields have been set forth.

  6. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  7. No effects of power line frequency extremely low frequency electromagnetic field exposure on selected neurobehavior tests of workers inspecting transformers and distribution line stations versus controls.

    PubMed

    Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang

    2014-03-01

    We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study. PMID:24379132

  8. [Early and Delayed Effects of Radio Frequency Electromagnetic Fields on the Reproductive Function and Functional Status of the Offspring of Experimental Animals].

    PubMed

    Shibkova, D Z; Shilkova, T V; Ovchinnikova, A V

    2015-01-01

    The aim of our experimental research was to study the impact of radio frequency electromagnetic fields (RF EMF) on the reproductive function of male and female mice of CBA in 2 models of exposure, as well as on the morphofunctional state of progeny of irradiated animals. It was found that RF EMF under conditions of repeated short-term exposures (within 5 days for 10 minutes at PES 1.2 mW/cm2) affects the course of pregnancy in female mice, the number of litters, fertility and preservation of offspring, morphometric characteristics of the offspring of experimental animals at different models of irradiation (exposure of animals to RF EMF prior to mating and during pregnancy). PMID:26863782

  9. [Early and Delayed Effects of Radio Frequency Electromagnetic Fields on the Reproductive Function and Functional Status of the Offspring of Experimental Animals].

    PubMed

    Shibkova, D Z; Shilkova, T V; Ovchinnikova, A V

    2015-01-01

    The aim of our experimental research was to study the impact of radio frequency electromagnetic fields (RF EMF) on the reproductive function of male and female mice of CBA in 2 models of exposure, as well as on the morphofunctional state of progeny of irradiated animals. It was found that RF EMF under conditions of repeated short-term exposures (within 5 days for 10 minutes at PES 1.2 mW/cm2) affects the course of pregnancy in female mice, the number of litters, fertility and preservation of offspring, morphometric characteristics of the offspring of experimental animals at different models of irradiation (exposure of animals to RF EMF prior to mating and during pregnancy).

  10. [Improvement of light-cured indirect inlays durability by means of electromagnetic field].

    PubMed

    Nidzel'skiĭ, M Ia; Korotetskaia-Zinkevich, V L

    2014-01-01

    The main strength characteristics of light-cured resins used for replacement of dental hard tissues defects are destructive stress by compression, microhardness, resistance to abrasion, impact and water absorption. The study focuses on some strength features of composite materials for inlays processed by electromagnetic field. Four sample series of light cured resin (Charisma, Heraus Kulzer, Germany) were used to assess strength features changes in various curing methods: 10 control samples were polymerized by conventional light-curing device, while 30 were additionally processed by electromagnetic field of various intensity (60, 80 and 100 Oe, 10 samples for each group). The obtained results confirm the positive effects of electromagnetic field on strength features of light-cured resins which improves the quality of inlays.

  11. Separation of particles, suspended in a conducting liquid, with the help of an alternating electromagnetic field

    SciTech Connect

    Korovin, V.M.

    1986-01-01

    The author studies MHD flow at low Reynolds numbers past a spherical particle with conductivity ..cap alpha../sub 1/ greater than or equal to0, moving in a viscous fluid at rest with conductivity ..cap alpha../sub 2/ not = ..cap alpha../sub 1/, filling the interior space of a long solenoid fed by an alternating current. It is shown that aside from the electromagnetic force calculated from the analog of Archimedes' principle, and from the Lorentz force arising from the interaction of eddy currents flowing in th particle with the magnetic field, the particle is also subjected to an electromagnetic propulsive force. A formula relating the local characteristics of the electromagnetic field with the velocity of the particle put into motion by the field but neglecting inertial effects is obtained.

  12. Drift effects on electromagnetic geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Sgalla, R. J. F.

    2015-02-01

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ˜ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λr ˜ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs).

  13. Drift effects on electromagnetic geodesic acoustic modes

    SciTech Connect

    Sgalla, R. J. F.

    2015-02-15

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ∼ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λ{sub r} ∼ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs)

  14. Microstructure and Mechanical Properties of Al-8 pct Si Alloy Prepared by Direct Chill Casting Under Electromagnetic and Ultrasonic Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Yubo; Jie, Jinchuan; Wu, Li; Fu, Ying; Li, Mu; Lu, Yiping; Li, Tingju

    2014-04-01

    The intermediate frequency electromagnetic field and power ultrasonic field were applied during the direct chill (DC) casting process of Al-8 pct Si alloy. The effects of different physical fields on the solidification microstructure and mechanical properties were studied. The results show that compared to the conventional casting without any treatments, refined microstructures and improved mechanical properties can be obtained when the electromagnetic or ultrasonic field is applied individually. For the case of compound fields, the electromagnetic field can increase the ultrasonic treated region, while the ultrasonic field can enhance the refinement effect of electromagnetic field. Owing to the advantages of both electromagnetic and ultrasonic fields, the microstructure obtained under the compound fields is fine and uniform, leading to a remarkable enhancement of mechanical properties. The interaction mechanism between intermediate frequency electromagnetic field and power ultrasonic field was discussed. The present study may be useful for grain refinement and improvement of mechanical properties of alloys during the DC casting process which is now widely used in industry.

  15. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  16. Modeling microwave electromagnetic field absorption in muscle tissues

    NASA Astrophysics Data System (ADS)

    Felbacq, D.; Clerjon, S.; Damez, J. L.; Zolla, F.

    2002-07-01

    Absorption of electromagnetic energy in human tissues is an important issue with respect to the safety of low-level exposure. Simulation is a way to a better understanding of electromagnetic dosimetry. This letter presents a comparison between results obtained from a numerical simulation and experimental data of absorbed energy by a muscle. Simulation was done using a bidimensional double-scale homogenization scheme leading to the effective permittivity tensor. Experimental measurements were performed at 10 GHz on bovine muscle, 30 hours after slaughter, thanks to the open-ended rectangular waveguide method. Results show a good agreement between measurements and simulated data.

  17. Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect

    Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

    2012-05-01

    This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not

  18. Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field

    NASA Astrophysics Data System (ADS)

    Abanov, Alexander G.; Gromov, Andrey

    2014-07-01

    We compute electromagnetic, gravitational, and mixed linear response functions of two-dimensional free fermions in an external quantizing magnetic field at an integer filling factor. The results are presented in the form of the effective action and as an expansion of currents and stresses in wave vectors and frequencies of the probing electromagnetic and metric fields. In addition to the well-studied U (1) Chern-Simons and Wen-Zee terms we find a gravitational Chern-Simons term that controls the correction to the Hall viscosity due to the background curvature. We relate the coefficient in front of the term with the chiral central charge.

  19. Pentoxifylline and electromagnetic field improved bone fracture healing in rats

    PubMed Central

    Atalay, Yusuf; Gunes, Nedim; Guner, Mehmet Dervis; Akpolat, Veysi; Celik, Mustafa Salih; Guner, Rezzan

    2015-01-01

    Background The aim of this study was to evaluate the effects of a phosphodiesterase inhibitor pentoxifylline (PTX), electromagnetic fields (EMFs), and a mixture of both materials on bone fracture healing in a rat model. Materials and methods Eighty male Wistar rats were randomly divided into four groups: Group A, femur fracture model with no treatment; Group B, femur fracture model treated with PTX 50 mg/kg/day intraperitoneal injection; Group C, femur fracture model treated with EMF 1.5±0.2 Mt/50 Hz/6 hours/day; and Group D, femur fracture model treated with PTX 50 mg/kg/day intraperitoneal injection and EMF 1.5±0.2 Mt/50 Hz/6 hours/day. Results Bone fracture healing was significantly better in Group B and Group C compared to Group A (P<0.05), but Group D did not show better bone fracture healing than Group A (P>0.05). Conclusion It can be concluded that both a specific EMF and PTX had a positive effect on bone fracture healing but when used in combination, may not be beneficial. PMID:26388687

  20. Studies of exposure of rabbits to electromagnetic pulsed fields

    SciTech Connect

    Cleary, S.F.; Nickless, F.; Liu, L.M.; Hoffman, R.

    1980-01-01

    Dutch rabbits were acutely exposed to electromagnetic pulsed (EMP) fields (pulse duration 0.4 mus, field strengths of 1--2 kV/cm and pulse repetition rates in the range of 10 to 38 Hz) for periods of up to two hours. The dependent variables investigated were pentobarbital-induced sleeping time and serum chemistry (including serum triglycerides, creatine phosphokinase (CPK) isoenzymes, and sodium and potassium). Core temperature measured immediately pre-exposure and postexposure revealed no exposure-related alterations. Over the range of field strengths and pulse durations investigated no consistent, statistically significant alterations were found in the end-points investigated.

  1. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  2. Possible action mechanism of the electromagnetic fields in the liver cancer development: A mathematical proposal

    SciTech Connect

    Jiménez-García, Mónica Noemí; Godina-Nava, Juan José

    2012-02-08

    Currently it is known that electromagnetic field exposure can induce biological changes, although the precise effects and action mechanism of the interaction between the electromagnetic field and biological systems are not well understood. In this work we propose a possible action mechanism, concerning the effect that the extremely low frequency electromagnetic field exposure has on the early stage of liver cancer development. The model is developed studying the phenomena called oxidative stress that it appears after it is applied a carcinogenic agent used to induce hepatic cancer chemically in an experimental animal model. This physical-chemical process involves the movement of magnetic field dependent free charged particles, called free radicals. We will consider the use of the radical pairs theory as a framework, in which we will describe the spin density operator evolution by implementing the stochastic Liouville equation with hyperfine interaction. This describes how the selectivity of the interaction between spin states of the free radicals with the applied electromagnetic field, influences the development of pre-neoplastic lesions in the liver. AIP Publishing is retracting this article due to the substantial use of content in the Results and Conclusions section without proper citation of a previously published paper in Chemical Physics Letters 361 (2012) 219-225. This article is retracted from the scientific record with effect from 15 October 2015.

  3. Electromagnetic fields and cancer: the cost of doing nothing.

    PubMed

    Carpenter, David O

    2010-01-01

    Everyone is exposed to electromagnetic fields (EMFs) from electricity (extremely low frequency, ELF), communication frequencies, and wireless devices (radiofrequency, RF). Concern of health hazards from EMFs has increased as the use of cell phones and other wireless devices has grown in all segments of society, especially among children. While there has been strong evidence for an association between leukemia and residential or occupational exposure to ELF EMFs for many years, the standards in existence are not sufficiently stringent to protect from an increased risk of cancer. For RF EMFs, standards are set at levels designed to avoid tissue heating, in spite of convincing evidence of adverse biological effects at intensities too low to cause significant heating. Recent studies demonstrate elevations in rates of brain cancer and acoustic neuroma only on the side of the head where individuals used their cell phone. Individuals who begin exposure at younger ages are more vulnerable. These data indicate that the existing standards for radiofrequency exposure are not adequate. While there are many unanswered questions, the cost of doing nothing will result in an increasing number of people, many of them young, developing cancer. PMID:20429163

  4. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].

    PubMed

    Guibelalde del Castillo, E

    2013-12-01

    The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields.

  5. Skyrmions coupled to the electromagnetic field via the gauged Wess-Zumino term

    SciTech Connect

    Ohtani, Munehisa; Ohta, Koichi

    2004-11-01

    In soliton models expressed in terms of the nonlinear chiral field, the electric current has an anomalous gauge-field contribution as the baryon current does. We study the spin polarized Skyrmions coupled with the electromagnetic field via the gauged Wess-Zumino term and calculate configurations of the Skyrmion and the gauge field with boundary conditions to ensure the physical charge number for baryons. Although the electromagnetic field via the gauged Wess-Zumino term affects physical quantities in small amounts, we find that the magnetic field forms a dipole structure owing to a circular electric current around the spin-quantization axis of the soliton. This is understood on an analogy with the Meissner effect in the super conductor. The electric-charge distributions turn out to have characteristic structures depending on the total charge, which suggests the intrinsic deformation of baryons due to orbital motions of the constituents.

  6. Enhanced responsiveness to parathyroid hormone and induction of functional differentiation of cultured rabbit costal chondrocytes by a pulsed electromagnetic field.

    PubMed

    Hiraki, Y; Endo, N; Takigawa, M; Asada, A; Takahashi, H; Suzuki, F

    1987-10-22

    Pulsed electromagnetic fields promote healing of delayed united and ununited fractures by triggering a series of events in fibrocartilage. We examined the effects of a pulsed electromagnetic field (recurrent bursts, 15.4 Hz, of shorter pulses of an average of 2 gauss) on rabbit costal chondrocytes in culture. A pulsed electromagnetic field slightly reduced the intracellular cyclic adenosine 3',5'-monophosphate (cAMP) level in the culture. However, it significantly enhanced cAMP accumulation in response to parathyroid hormone (PTH) to 140% of that induced by PTH in its absence, while it did not affect cAMP accumulation in response to prostaglandin E1 or prostaglandin I2. The effect on cAMP accumulation in response to PTH became evident after exposure of the cultures to the pulsed electromagnetic field for 48 h, and was dependent upon the field strength. cAMP accumulation in response to PTH is followed by induction of ornithine decarboxylase, a good marker of differentiated chondrocytes, after PTH treatment for 4 h. Consistent with the enhanced cAMP accumulation, ornithine decarboxylase activity induced by PTH was also increased by the pulsed electromagnetic field to 170% of that in cells not exposed to a pulsed electromagnetic field. Furthermore, stimulation of glycosaminoglycan synthesis, a differentiated phenotype, in response to PTH was significantly enhanced by a pulsed electromagnetic field. Thus, a pulsed electromagnetic field enhanced a series of events in rabbit costal chondrocytes in response to PTH. These findings show that exposure of chondrocytes to a pulsed electromagnetic field resulted in functional differentiation of the cells.

  7. Mechanism for action of electromagnetic fields on cells.

    PubMed

    Panagopoulos, Dimitris J; Karabarbounis, Andreas; Margaritis, Lukas H

    2002-10-18

    A biophysical model for the action of oscillating electric fields on cells, presented by us before [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640], is extended now to include oscillating magnetic fields as well, extended to include the most active biological conditions, and also to explain why pulsed electromagnetic fields can be more active biologically than continuous ones. According to the present theory, the low frequency fields are the most bioactive ones. The basic mechanism is the forced-vibration of all the free ions on the surface of a cell's plasma membrane, caused by an external oscillating field. We have shown that this coherent vibration of electric charge is able to irregularly gate electrosensitive channels on the plasma membrane and thus cause disruption of the cell's electrochemical balance and function [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640]. It seems that this simple idea can be easily extended now and looks very likely to be able to give a realistic basis for the explanation of a wide range of electromagnetic field bioeffects.

  8. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185961

  9. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  10. Electro-Magnetic Fields and Plasma in the Cosmos

    SciTech Connect

    Scott, Donald E.

    2006-03-21

    It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories.

  11. The Interaction of Electromagnetic Fields with Simulated Biostructures.

    NASA Astrophysics Data System (ADS)

    Li, Shuchen

    In this thesis we analyze integral equation formulations of electromagnetic scattering problems, show their relation to Maxwell equation formulations of scattering problems, and use them to predict via computer computation the response of simulated biological structures to electromagnetic radiation. Chapter I provides an overview of the problem. In the second chapter we describe scattering bodies and ambient electromagnetic fields and associated subgroups of the real orthogonal group for which one can greatly reduce the computational complexity of an electromagnetic interaction problem using symmetry groups. The results of computer calculations implementing the theory are provided. In Chapter III we show that every solution in a prescribed function space of the integral equation is a solution of Maxwell's equations, and satisfies the standard regularity conditions and the Silver-Muller radiation conditions. The methods of proof require Sobolev embedding theorems and addition theorem representations of dyadic Green's functions. We then show that in the same function space there is only one solution of the Maxwell equation formulation of the problem. This uses a novel energy relation for electromagnetic interactions which could perhaps be applied to other transmission problems. In chapter IV we investigate by computer calculation the potential ability of the blood to remove heat from irradiated tissue. The thermal response of models of cylinders of muscle equivalent material to normally incident transverse -magnetic or transverse-electric plane waves is predicted by computer calculation. These calculations are carried out when the scattering body is a solid cylinder of muscle equivalent material and when the scattering body is a two layer structure consisting on an inner column of blood at normal body temperature electromagnetically coupled to a surrounding layer of muscle equivalent material. Appendix A contains a listing of the computer programs developed as a part

  12. Microfabricated sensors for the measurement of electromagnetic fields in biological tissues

    NASA Astrophysics Data System (ADS)

    Monberg, James; Henning, Albert K.

    1995-09-01

    Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.

  13. Electromagnetic field properties in the vicinity of a massive wormhole

    SciTech Connect

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  14. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices. PMID:27607498

  15. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  16. On extreme field limits in high power laser matter interactions: radiation dominant regimes in high intensity electromagnetic wave interaction with electrons

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Zhidkov, Alexei G.; Kato, Yoshiaki; Korn, Georg

    2013-05-01

    We discuss the key important regimes of electromagnetic field interaction with charged particles. Main attention is paid to the nonlinear Thomson/Compton scattering regime with the radiation friction and quantum electrodynamics effects taken into account. This process opens a channel of high efficiency electromagnetic energy conversion into hard electromagnetic radiation in the form of ultra short high power gamma ray flashes.

  17. Master equation for an oscillator coupled to the electromagnetic field

    SciTech Connect

    Ford, G.W. |; Lewis, J.T.; OConnell, R.F. |

    1996-12-01

    The macroscopic description of a quantum oscillator with linear passive dissipation is formulated in terms of a master equation for the reduced density matrix. The procedure used is based on the asymptotic methods of nonlinear dynamics, which enables one to obtain an expression for the general term in the weak coupling expansion. For the special example of a charged oscillator interacting with the electromagnetic field, an explicit form of the master equation through third order in this expansion is obtained. This form differs from that generally obtained using the rotating wave approximation in that there is no electromagnetic (Lamb) shift and that an explicit expression is given for the decay rate. Copyright {copyright} 1996 Academic Press, Inc.

  18. Exposure to electromagnetic fields from laptop use of "laptop" computers.

    PubMed

    Bellieni, C V; Pinto, I; Bogi, A; Zoppetti, N; Andreuccetti, D; Buonocore, G

    2012-01-01

    Portable computers are often used at tight contact with the body and therefore are called "laptop." The authors measured electromagnetic fields (EMFs) laptop computers produce and estimated the induced currents in the body, to assess the safety of laptop computers. The authors evaluated 5 commonly used laptop of different brands. They measured EMF exposure produced and, using validated computerized models, the authors exploited the data of one of the laptop computers (LTCs) to estimate the magnetic flux exposure of the user and of the fetus in the womb, when the laptop is used at close contact with the woman's womb. In the LTCs analyzed, EMF values (range 1.8-6 μT) are within International Commission on Non-Ionizing Radiation (NIR) Protection (ICNIRP) guidelines, but are considerably higher than the values recommended by 2 recent guidelines for computer monitors magnetic field emissions, MPR II (Swedish Board for Technical Accreditation) and TCO (Swedish Confederation of Professional Employees), and those considered risky for tumor development. When close to the body, the laptop induces currents that are within 34.2% to 49.8% ICNIRP recommendations, but not negligible, to the adult's body and to the fetus (in pregnant women). On the contrary, the power supply induces strong intracorporal electric current densities in the fetus and in the adult subject, which are respectively 182-263% and 71-483% higher than ICNIRP 98 basic restriction recommended to prevent adverse health effects. Laptop is paradoxically an improper site for the use of a LTC, which consequently should be renamed to not induce customers towards an improper use.

  19. METHODOLOGICAL NOTES: Force on matter in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Makarov, Vyacheslav P.; Rukhadze, Anri A.

    2009-09-01

    This article, in essence, is a continuation of the work by V L Ginzburg and V A Ugarov (Usp. Fiz. Nauk 118 175 (1976) [Sov. Phys. Usp. 19 94 (1976)]). It is shown that the results given in § 75 of the book Electrodynamics of Continuous Media by L D Landau and E M Lifshitz (Moscow: Nauka, 1982, in Russian) and in § 105 of the book Fundamentals of the Theory of Electricity by I E Tamm (Moscow: Nauka, 1989, in Russian) unambiguously follow only from the Maxwell equations of macroscopic electrodynamics, the corresponding constitutive equations, and the equations of motion of a substance (the hydrodynamic equations). These results are as follows: (1) the force acting on a unit volume of a motionless substance is given by the sum of the Helmholtz force and the Abraham force; (2) the momentum density of an electromagnetic field is the Umov-Poynting vector divided by c2, and (3) the stress tensor related to the field coincides in its form with the sum of the stress tensor of the electrostatic field and the stress tensor of the magnetostatic field. Thus, it is proved that the symmetric form of the Abraham tensor stands for the energy-momentum tensor of an electromagnetic field in a motionless medium.

  20. Cardiac torsion and electromagnetic fields: the cardiac bioinformation hypothesis.

    PubMed

    Burleson, Katharine O; Schwartz, Gary E

    2005-01-01

    Although in physiology the heart is often referred to as a simple piston pump, there are in fact two additional features that are integral to cardiac physiology and function. First, the heart as it contracts in systole, also rotates and produces torsion due to the structure of the myocardium. Second, the heart produces a significant electromagnetic field with each contraction due to the coordinated depolarization of myocytes producing a current flow. Unlike the electrocardiogram, the magnetic field is not limited to volume conduction and extends outside the body. The therapeutic potential for interaction of this cardioelectromagnetic field both within and outside the body is largely unexplored. It is our hypothesis that the heart functions as a generator of bioinformation that is central to normative functioning of body. The source of this bioinformation is based on: (1) vortex blood flow in the left ventricle; (2) a cardiac electromagnetic field and both; (3) heart sounds; and (4) pulse pressure which produce frequency and amplitude information. Thus, there is a multidimensional role for the heart in physiology and biopsychosocial dynamics. Recognition of these cardiac properties may result in significant implications for new therapies for cardiovascular disease based on increasing cardiac energy efficiency (coherence) and bioinformation from the cardioelectromagnetic field. Research studies to test this hypothesis are suggested.

  1. [The effects of pulsed electromagnetic fields on the induction of rat bone marrow mesenchymal stem cells to differentiate into cardiomyocytes-like cells in vitro].

    PubMed

    Feng, Xian; He, Xueling; Li, Kai; Wu, Wenchao; Liu, Xiaojing; Li, Liang

    2011-08-01

    The aim of this study is to investigate the effects of pulsed electromagnetic fields (PEMFs) on the induction of rat bone marrow mesenchymal stem cells (rBMSCs) to differentiate into cardiomyocytes-like cells in vitro. rBMSCs were randomly divided into PEMFs groups, 5-Azacytidine (5-Aza) groups and control groups. PEMFs groups were exposed to 50 Hz, 1 mT PEMFs for 30 min every day, lasting for 10 d, 15 d and 20 d, respectively. 5-Aza groups were induced by 10 micromol/L 5-Aza for 1 day, then the medium was changed to complete medium without 5-Aza. And control groups were only cultured with complete medium, rBMSCs growth status and morphological features were observed by inverted phase microscope every day. The mRNA expressions of cardiac troponin T (TNNT2) and alpha-actinin (ACTN2) were determined by Real-Time PCR. The results showed that rBMSCs were spindle, polygon or fusiform in control groups. The cells gradually got longer and grew close together after being stimulated by PEMFs and 5-Aza, and with the extension of induction time, the tendency became obvious. At 20th day after PEMFs or 5-Aza treatment, rBMSCs gathered like a long chain, got much longer obviously at the high magnification, and some of them even fused with their neighbors. Compared with control groups, the levels of TNNT2 mRNA expression in 5-Aza groups were 19.40 fold (P < 0.01), 21.02 fold (P < 0.01) and 2.38 fold at 10 d, 15 d, 20 d and the levels of ACTN2 mRNA expression in 5-Aza groups were 6.64 fold (P < 0.01), 6.67 fold (P < 0.01) and 0.76 fold at 10 d, 15 d, 20 d. However, the levels of TNNT2 mRNA expression in PEMFs groups were 15.78 fold (P < 0.01), 6.73 fold (P < 0.05) and 2.73 fold (P < 0.01) of control groups at 10 d, 15 d, 20 d and the levels of ACTN2 mRNA expression in PEMFs groups were 4.93 fold (P < 0.01), 1.89 fold and 0.64 fold, respectively. Compared with 5-Aza groups, the levels of TNNT2 mRNA expression in PEMFs groups were 0.81 fold, 0.32 fold (P < 0.01) and 1.15 fold at 10

  2. Electromagnetic effects on dynamics of high-beta filamentary structures

    DOE PAGES

    Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; Krasheninnikov, Sergei I.

    2015-01-12

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation,more » it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.« less

  3. Electromagnetic effects on dynamics of high-beta filamentary structures

    SciTech Connect

    Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; Krasheninnikov, Sergei I.

    2015-01-12

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.

  4. The cavity electromagnetic field within the polarizable continuum model of solvation

    NASA Astrophysics Data System (ADS)

    Pipolo, Silvio; Corni, Stefano; Cammi, Roberto

    2014-04-01

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  5. The cavity electromagnetic field within the polarizable continuum model of solvation.

    PubMed

    Pipolo, Silvio; Corni, Stefano; Cammi, Roberto

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles. PMID:24784260

  6. The cavity electromagnetic field within the polarizable continuum model of solvation

    SciTech Connect

    Pipolo, Silvio; Corni, Stefano; Cammi, Roberto

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  7. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  8. Wavelength mismatch effect in electromagnetically induced absorption

    NASA Astrophysics Data System (ADS)

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-07-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch-near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers.

  9. Human disease resulting from exposure to electromagnetic fields.

    PubMed

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.

  10. Human disease resulting from exposure to electromagnetic fields.

    PubMed

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed. PMID:24280284

  11. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  12. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGES

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; et al

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  13. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  14. Electromagnetic effects on dynamics of high-beta filamentary structures

    SciTech Connect

    Lee, Wonjae; Krasheninnikov, Sergei I.; Umansky, Maxim V.; Angus, J. R.

    2015-01-15

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner scrape-off layer (SOL) region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and BOUT++ simulations, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave instability when resistivity drops below a certain value. The blobs temperature decreases in the course of its motion through the SOL and so the blob can switch from the electromagnetic to the electrostatic regime where resistive drift waves become important again.

  15. Effectiveness of an Innovative Pulsed Electromagnetic Fields Stimulation in Healing of Untreatable Skin Ulcers in the Frail Elderly: Two Case Reports

    PubMed Central

    Guerriero, Fabio; Botarelli, Emanuele; Mele, Gianni; Polo, Lorenzo; Zoncu, Daniele; Renati, Paolo; Sgarlata, Carmelo; Rollone, Marco; Ricevuti, Giovannoi; Maurizi, Niccolò; Francis, Matthew; Rondanelli, Mariangela; Perna, Simone; Guido, Davide; Mannu, Piero

    2015-01-01

    Introduction. Recalcitrant skin ulcers are a major burden in elderly patients. Specifically, chronic wounds result in significant morbidity and mortality and have a profound economic impact. Pulsed electromagnetic fields (PEMFs) have proved to be a promising therapy for wound healing. Here we describe the first reported case of an innovative PEMF therapy, Emysimmetric Bilateral Stimulation (EBS), used to successfully treat refractory skin ulcers in two elderly and fragile patients. Case Presentation. Two elderly patients developed multiple chronic skin ulcerations. Despite appropriate treatment, the ulcers showed little improvement and the risk of amputation was high. Both patients underwent daily EBS therapy and standard dressing. After few weeks of treatment, major improvements were observed and all ulcers had healed. Conclusion. In patients with refractory ulceration, EBS therapy may be of real benefit in terms of faster healing. This case supports the supportive role for PEMFs in the treatment of skin ulceration in diabetes and is suggestive of a potential benefit of EBS in this clinical condition. PMID:26634159

  16. Anomalous lepton moment in a non-Abelian gauge model in an intense electromagnetic field

    NASA Astrophysics Data System (ADS)

    Obukhov, I. A.; Peres-Fernandes, V. K.; Rodionov, V. N.; Khalilov, V. R.

    1983-01-01

    The effect of an external electromagnetic field on the magnitude of the anomalous magnetic moment (AMM) of a lepton in the Weinberg model (1967) is investigated using the method of analytic continuation, previously applied to problems in quantum electrodynamics with an external field. The behavior of the AMM is studied as a function of the value of the dynamic parameter X=poH/mHo.

  17. Interaction of extremely-low-frequency electromagnetic fields with living systems

    SciTech Connect

    Tenforde, T.S.

    1991-11-01

    The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.

  18. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  19. Why arguments based on photon energy may be highly misleading for power line frequency electromagnetic fields.

    PubMed

    Vistnes, A I; Gjötterud, K

    2001-04-01

    When evaluating possible mechanisms by which low frequency electromagnetic fields may have a biological effect, arguments based on photon energy have often been used in a misleading way. For visible light the concept of photons has proved to be very useful in explaining experimental findings. However, the concept of photons cannot be used without major modifications in describing phenomena related to near field problems at power frequency (50 or 60 Hz) electric and magnetic fields. For this regime, the photon description is very complex. A very high number of highly coherent photons must be used in a quantum electrodynamic description of low frequency electromagnetic field phenomena. Thus, one-photon interaction descriptions must be replaced by multiple-photon interaction formalism. However, at low frequencies, a classical electromagnetic field description is far more useful than quantum electrodynamics. There is in principle no difference in how much energy an electron can pick up from a low frequency electric field as compared to from a high frequency photon. Thus, the total gain in energy is not limited to the energy carried by a single photon, which is E = hv, where h is Planck's constant and (v) is the frequency of the radiation. However, the time scale of the primary event in a mechanism of action is very different for ionizing radiation compared to power line frequency fields. The advice is to consider the time scale given by the inverse of the frequency of the fields, rather than photon energy, when one use physics as a guidance in evaluating possible mechanisms for biological effects from low frequency electromagnetic fields.

  20. Model simulations of possible electromagnetic induction effects at Magsat activities

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1982-01-01

    Model simulations are used in a consideration of whether terrestrial induced-current magnetic field effects are significant for near-earth satellite observation, and the nature of the effect at satellite altitudes of lateral differences in the gross conductivity structure of the earth. It is shown that induction in a spherical earth by distant magnetospheric sources can contribute magnetic field fluctuations at Magsat orbit altitudes which are 30-40% of external field amplitudes. It is found that, when phenomenon dimensions are small by comparison with the earth's radius, the earth may be approximated by a plane, horizontal half-space by which electromagnetic energy is reflected with nearly 100% efficiency from the surface. This implies that while the total horizontal field is twice the source field when the source is above the satellite, it is reduced to values smaller than the source field when the source is below the satellite and tends to enhance gross electrical discontinuity signatures in the lithosphere.