Science.gov

Sample records for electromagnetic field measurements

  1. LEM—electromagnetic fields measurement laboratory

    NASA Astrophysics Data System (ADS)

    Annino, A.; Falciglia, F.; Musumeci, F.; Oliveri, M.; Privitera, G.; Triglia, A.

    2000-04-01

    The widespread presence of electromagnetic waves and the relative problems regarding them have favored the constitution of the LEM at the DMFCI in Catania University, where competence has been developing in this sector for about 10 years. Full operativeness has been reached as far as the electromagnetic field measurements in anthropized environments are concerned. Other research will be undertaken as soon as further funds are available. Some problems connected with the perfecting of measurements instruments and the results of emission measurements of cellular telephones are presented.

  2. Evaluation of uncertainty in the measurement of environmental electromagnetic fields.

    PubMed

    Vulević, B; Osmokrović, P

    2010-09-01

    With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty.

  3. MESA: a new configuration for measuring electromagnetic field fluctuations.

    PubMed

    Harte, T M; Black, D L; Hollinshead, M T

    1999-11-01

    This paper describes how the multi-energy sensor array has been refitted to meet the needs of measuring geomagnetic and other types of electromagnetic phenomena in an environment. This portable laptop computer system was designed to measure the interaction of multiple frequencies with the psychological and physiological processes that underlie human exposure to electromagnetic fields across the spectra. New sensors and analytical software have been implemented in the new configuration.

  4. Transducer measures temperature differentials in presence of strong electromagnetic fields

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of temperature rise of cooling water under pressure and in strong electromagnetic fields is accomplished by a transducer using a magnetically shielded thermocouple arrangement. The thermocouple junctions are immersed in oil to isolate them from electric currents in the water.

  5. Adaptive framework for uncertainty analysis in electromagnetic field measurements.

    PubMed

    Prieto, Javier; Alonso, Alonso A; de la Rosa, Ramón; Carrera, Albano

    2015-04-01

    Misinterpretation of uncertainty in the measurement of the electromagnetic field (EMF) strength may lead to an underestimation of exposure risk or an overestimation of required measurements. The Guide to the Expression of Uncertainty in Measurement (GUM) has internationally been adopted as a de facto standard for uncertainty assessment. However, analyses under such an approach commonly assume unrealistic static models or neglect relevant prior information, resulting in non-robust uncertainties. This study proposes a principled and systematic framework for uncertainty analysis that fuses information from current measurements and prior knowledge. Such a framework dynamically adapts to data by exploiting a likelihood function based on kernel mixtures and incorporates flexible choices of prior information by applying importance sampling. The validity of the proposed techniques is assessed from measurements performed with a broadband radiation meter and an isotropic field probe. The developed framework significantly outperforms GUM approach, achieving a reduction of 28% in measurement uncertainty. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    PubMed

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m(2) (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Electromagnetic Near Field Measurements of Two Critical Assemblies

    SciTech Connect

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  8. Effects of Electromagnetic Fields on Automated Blood Cell Measurements.

    PubMed

    Vagdatli, Eleni; Konstandinidou, Vasiliki; Adrianakis, Nikolaos; Tsikopoulos, Ioannis; Tsikopoulos, Alexios; Mitsopoulou, Kyriaki

    2014-08-01

    The aim of this study is to investigate whether the electromagnetic fields associated with mobile phones and/or laptops interfere with blood cell counts of hematology analyzers. Random blood samples were analyzed on an Aperture Impedance hematology analyzer. The analysis was performed in four ways: (A) without the presence of any mobile phone or portable computer in use, (B) with mobile phones in use (B1: one mobile, B4: four mobiles), (C) with portable computers (laptops) in use (C1: one laptop, C3: three laptops), and (D) with four mobile phones and three laptops in use simultaneously. The results obtained demonstrated a statistically significant decrease in neutrophil, erythrocyte, and platelet count and an increase in lymphocyte count, mean corpuscular volume, and red blood cell distribution width, notably in the B4 group. Despite this statistical significance, in clinical practice, only the red blood cell reduction could be taken into account, as the mean difference between the A and B4 group was 60,000 cells/µL. In group D, the analyzer gave odd results after 11 measurements and finally stopped working. The combined and multiple use of mobile phones and computers affects the function of hematology analyzers, leading to false results. Consequently, the use of such electronic devices must be avoided.

  9. Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects.

    PubMed

    Röösli, Martin; Frei, Patrizia; Mohler, Evelyn; Braun-Fahrländer, Charlotte; Bürgi, Alfred; Fröhlich, Jürg; Neubauer, Georg; Theis, Gaston; Egger, Matthias

    2008-09-01

    Exposimeters are increasingly applied in bioelectromagnetic research to determine personal radiofrequency electromagnetic field (RF-EMF) exposure. The main advantages of exposimeter measurements are their convenient handling for study participants and the large amount of personal exposure data, which can be obtained for several RF-EMF sources. However, the large proportion of measurements below the detection limit is a challenge for data analysis. With the robust ROS (regression on order statistics) method, summary statistics can be calculated by fitting an assumed distribution to the observed data. We used a preliminary sample of 109 weekly exposimeter measurements from the QUALIFEX study to compare summary statistics computed by robust ROS with a naïve approach, where values below the detection limit were replaced by the value of the detection limit. For the total RF-EMF exposure, differences between the naïve approach and the robust ROS were moderate for the 90th percentile and the arithmetic mean. However, exposure contributions from minor RF-EMF sources were considerably overestimated with the naïve approach. This results in an underestimation of the exposure range in the population, which may bias the evaluation of potential exposure-response associations. We conclude from our analyses that summary statistics of exposimeter data calculated by robust ROS are more reliable and more informative than estimates based on a naïve approach. Nevertheless, estimates of source-specific medians or even lower percentiles depend on the assumed data distribution and should be considered with caution.

  10. What Are Electromagnetic Fields?

    MedlinePlus

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  11. Novel electromagnetic field probes with ultrasonic transmission lines for field measurements with minimum interaction

    NASA Astrophysics Data System (ADS)

    Dürr, W.; Oppelt, R.

    1990-02-01

    Electromagnetic field probes are described which use ultrasonic transmission lines for signal transmission from a small electric or magnetic measuring dipole to the data processing unit. These transmission lines are made of nonmetallic material with low permittivity and permeability so that its interaction with the field to be measured is minimum. In particular, there is no evidence of energy leakage via surface or sheath waves, which normally cause problems when usual metallic connecting cables are used. This is especially important when measuring near fields of antennas or fields in resonators with high Q factors. Wide-band operation was achieved by amplitude modulating the field to be measured at a low frequency. The purpose of this modulation is to create a low-frequency (kHz) signal which can be transmitted via an ultrasonic line, designed to resonate at this low frequency. The radio frequency (rf) itself can extend over a broad range since the ultrasonic line does not transmit this frequency directly. Since the ultrasonic line is operated at a low frequency, its design and manufacture including ultrasonic transducers are essentially simple, even for field probes working in the gigahertz range. The design of the transmission line and of the measuring dipoles with demodulation circuitry are described. The probe performance is discussed for a magnetic field probe used for field measurements in resonant antennas for magnetic resonance imaging in the frequency range up to about 200 MHz. A typical field measurement result is presented for this application.

  12. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  13. A spaceborne receiver for measuring electromagnetic field intensity

    NASA Technical Reports Server (NTRS)

    Reich, B. W.; Van Dusen, M. R.; Habib, E. J.

    1973-01-01

    Description of a very accurately controlled receiver for monitoring the electromagnetic radiations in both existing and projected space communication bands. Based on analysis of the existing and projected space communication bands, 108 to 174 MHz, 240 to 478 MHz, and 1535 to 1665 MHz were covered. The receiver achieves accurate control via a digitally tuned synthesizer and a wide range of digital control including frequency band coverage and gain control selection. Digital memory was provided to store 16 separate digital command instructions which can be programmed via a command data link. The receiver provides for transmission to the ground of both a predetection signal and signals in digital format, which in turn, were provided by sampling and analog-to-digital conversions.

  14. Microfabricated sensors for the measurement of electromagnetic fields in biological tissues

    NASA Astrophysics Data System (ADS)

    Monberg, James; Henning, Albert K.

    1995-09-01

    Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.

  15. Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis

    NASA Astrophysics Data System (ADS)

    Kulak, Andrzej; Kubisz, Jerzy; Klucjasz, Slawomir; Michalec, Adam; Mlynarczyk, Janusz; Nieckarz, Zenon; Ostrowski, Michal; Zieba, Stanislaw

    2014-06-01

    We present the Hylaty geophysical station, a high-sensitivity and low-noise facility for extremely low frequency (ELF, 0.03-300 Hz) electromagnetic field measurements, which enables a variety of geophysical and climatological research related to atmospheric, ionospheric, magnetospheric, and space weather physics. The first systematic observations of ELF electromagnetic fields at the Jagiellonian University were undertaken in 1994. At the beginning the measurements were carried out sporadically, during expeditions to sparsely populated areas of the Bieszczady Mountains in the southeast of Poland. In 2004, an automatic Hylaty ELF station was built there, in a very low electromagnetic noise environment, which enabled continuous recording of the magnetic field components of the ELF electromagnetic field in the frequency range below 60 Hz. In 2013, after 8 years of successful operation, the station was upgraded by extending its frequency range up to 300 Hz. In this paper we show the station's technical setup, and how it has changed over the years. We discuss the design of ELF equipment, including antennas, receivers, the time control circuit, and power supply, as well as antenna and receiver calibration. We also discuss the methodology we developed for observations of the Schumann resonance and wideband observations of ELF field pulses. We provide examples of various kinds of signals recorded at the station.

  16. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  17. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  18. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.

    PubMed

    Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S

    2013-04-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.

  19. Challenges and Opportunities For Space Plasma Physics in the Use of Electromagnetic Fields Measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Angelopoulos, V.

    2013-12-01

    This presentation will review recent progress and future challenges in the use of electromagnetic fields measurements for understanding space plasma phenomena. A summary of the performance of the instrumentation on the recently launched Van Allen Probes and the upcoming NASA MMS mission will describe the state-of-the-art in many of these measurements techniques. There will also be speculation on areas of possible future instrument development that will enhance new space missions.

  20. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  1. Measurement and analysis of electromagnetic fields from trams, trains and hybrid cars.

    PubMed

    Halgamuge, Malka N; Abeyrathne, Chathurika D; Mendis, Priyan

    2010-10-01

    Electricity is used substantially and sources of electric and magnetic fields are, unavoidably, everywhere. The transportation system is a source of these fields, to which a large proportion of the population is exposed. Hence, investigation of the effects of long-term exposure of the general public to low-frequency electromagnetic fields caused by the transportation system is critically important. In this study, measurements of electric and magnetic fields emitted from Australian trams, trains and hybrid cars were investigated. These measurements were carried out under different conditions, locations, and are summarised in this article. A few of the measured electric and magnetic field strengths were significantly lower than those found in prior studies. These results seem to be compatible with the evidence of the laboratory studies on the biological effects that are found in the literature, although they are far lower than international levels, such as those set up in the International Commission on Non-Ionising Radiation Protection guidelines.

  2. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  3. An interlaboratory comparison programme on radio frequency electromagnetic field measurements: the second round of the scheme.

    PubMed

    Nicolopoulou, E P; Ztoupis, I N; Karabetsos, E; Gonos, I F; Stathopulos, I A

    2015-04-01

    The second round of an interlaboratory comparison scheme on radio frequency electromagnetic field measurements has been conducted in order to evaluate the overall performance of laboratories that perform measurements in the vicinity of mobile phone base stations and broadcast antenna facilities. The participants recorded the electric field strength produced by two high frequency signal generators inside an anechoic chamber in three measurement scenarios with the antennas transmitting each time different signals at the FM, VHF, UHF and GSM frequency bands. In each measurement scenario, the participants also used their measurements in order to calculate the relative exposure ratios. The results were evaluated in each test level calculating performance statistics (z-scores and En numbers). Subsequently, possible sources of errors for each participating laboratory were discussed, and the overall evaluation of their performances was determined by using an aggregated performance statistic. A comparison between the two rounds proves the necessity of the scheme.

  4. Magnetic field estimation in measurement dead domain for dry calibration of electromagnetic flowmeter

    NASA Astrophysics Data System (ADS)

    Hu, L.; Shen, H. M.; Lee, K. M.; Fu, X.

    2012-08-01

    Advances in computing technology enable dry calibration of large-diameter electromagnetic (EM) flowmeters at low cost, which has been recognized as an effective alternative to traditional flow rigs. Dry calibration requiring no actual liquid in the measuring pipe utilizes the magnetic field distribution reconstructed from measured boundary conditions to determine the sensitivity of the EM flowmeter. However, because sensors have finite sizes, and the fact that inner linings of the measuring pipe deform due to mechanical stresses, a measurement dead domain (MDD) exists between the measured boundary surface and the pipe wall. As the MDD is often close to the magnetic exciting unit, neglecting it results in significant errors in dry calibration. This paper offers a practical method combining iterative optimization and reconstruction to estimate the magnetic field in the MDD from the field data on the measured boundary surface. The method has been validated on an off-the-shelf industrial EM flowmeter by comparing the estimated field in the MDD with experimental measurements. It has been demonstrated that accurately accounting for the immeasurable field in the MDD eliminates more than two-thirds of the dry calibration errors. The estimation method illustrated here can also be extended to measure other physical fields which obey similar governing equations.

  5. Measurement of radiated electromagnetic field levels before and after a changeover to energy-efficient lighting.

    PubMed

    Kerr, L N; Boivin, W S; Boyd, S M; Coletta, J N

    2001-01-01

    An energy-efficient lighting retrofit at the Food and Drug Administration (FDA) Winchester Engineering and Analytical Center (WEAC) presented the opportunity to measure the electromagnetic (EM) environments in several rooms before and after changing the fluorescent lighting systems and to compare the changes in EM fields with the proposed standard EM immunity levels. Three rooms, representing the types of work areas in the laboratory, were selected and measured before and after the lighting changeover. Electric and magnetic field measurements were taken in the extremely low frequency (ELF), very low frequency (VLF), and radio frequency (RF) ranges of the EM spectrum. In 2 rooms, ELF electric fields were reduced and VLF and RF electric fields were increased as a result of the changeover to high-frequency fixtures. A third room received low-frequency, energy-efficient fixtures during this changeover, and this change resulted in only a slight increase of the ELF electric fields. The ELF magnetic fields were greatly reduced in 2 but only slightly reduced in the third room. No significant change was seen in VLF or RF magnetic fields for any of these rooms. Some field-strength measurements exceeded the proposed immunity levels recommended in the draft International Electrotechnical Commission standard IEC 60601-1-2 (rev. 2). The data show that increasing the separation distance from the fluorescent light fixtures greatly reduces the field-strength levels, limiting the potential for EM interference.

  6. Mitigation measures of electromagnetic field exposure in the vicinity of high frequency welders.

    PubMed

    Zubrzak, Bartłomiej; Bieńkowski, Pawel; Cała, Pawel

    2017-09-20

    Presented information about the welding process and equipment, focusing on the emission of electromagnetic field (EMF) with levels significant in terms of the labor safety regulations in force in Poland - the ordinances of the Minister of Family, Labour and Social Policy that came into force on June 27, 2016 and June 29, 2016 - emerged due to harmonization with EU directive 2013/35/EU of 26 June 2013 of the European Parliament and the Council. They presented methods of determination of the EMF distribution in the welding machine surroundings and analyzed the background knowledge from the available literature. The subject of the analysis included popular high frequency welders widely used in the industry. Electromagnetic field measurements were performed in the welder operating place (in situ) during machine normal operations, using measurement methods accordant with labor safety regulations in force in Poland and according to the same guidelines, the EMF distributions and parameters having been described. They presented various scenarios of particular, real examples of excessive exposure to EMF in the dielectric welder surroundings and showed solutions, ranging from simple and costless and ending on dedicated electromagnetic shielding systems, which allowed to reduce EMF exposure in some cases of more than 80% (protection zone ranges) or eliminate dangerous zone presence. It has shown that in the dielectric welders surrounding, significant EMF strength levels may be the result of errors or omissions which often occur during development, installation, operation or modification of welding machines. It has allowed to present the measures that may significantly reduce the exposure to EMF of workers in the welder surroundings. The role of accredited laboratories in helping in such cases was underlined. Med Pr 2017;68(6).

  7. Limits of the measurability of the local quantum electromagnetic-field amplitude

    NASA Astrophysics Data System (ADS)

    Compagno, G.; Persico, F.

    1998-03-01

    The precision with which the amplitude of the free electromagnetic field can be measured locally in QED is evaluated by analyzing a well-known gedanken experiment originally proposed by Bohr and Rosenfeld (BR). The analysis is performed by applying standard theoretical techniques familiar in quantum optics. The main result obtained for the precision is significantly different from the generally accepted Bohr-Rosenfeld result. This leads to questioning the widely accepted notion of the compensating field, fostered by these authors. A misconception at the origin of this notion is pointed out by a careful investigation of the self-force acting on the apparatus designed to measure the field. The correct expression for this self-force is found to be at variance with that proposed by Bohr and Rosenfeld and generally accepted. It is argued that, as a consequence of this new expression and in contrast with the generally accepted view, no compensating force of nonelectromagnetic nature is required in order to perform measurements of the quantum field amplitude with any desired accuracy. It is shown that the only limitations to the precision of the measurement, in the BR gedanken experiment, arise from the time-energy uncertainty principle, as well as from the finite dimensions of the measuring apparatus.

  8. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg

    2017-06-01

    We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.

  9. Long term variations measurement of electromagnetic field exposures in Alcalá de Henares (Spain).

    PubMed

    Sánchez-Montero, R; Alén-Cordero, C; López-Espí, P L; Rigelsford, J M; Aguilera-Benavente, F; Alpuente-Hermosilla, J

    2017-11-15

    Electromagnetic radiowave exposure is a major concern in most countries due to possible adverse health effects. Over the last 10years, many technological changes (digital television, mobile technologies, wireless networks…) have led to variations in the electromagnetic field (EMF) levels. A large number of studies devoted to the analysis of EMF levels with personal dosimeters or computer models of the exposure of mobile stations have been conducted. However, the study of the exposure values, taking into account all the existing sources, and their evolution in a wide area, using measurements, has rarely been performed. In this paper, we provide a comparison of the EMF exposure levels for the city of Alcalá de Henares (Spain) over a ten-year period using a broadband isotropic probe in the range from 100kHz to 3GHz. A statistical and spatial analysis of the measurements and their variations are also presented for the study of the global and local variations. The measured values in the period from 2006 to 2015 were ranging from 0.02 to 2.05V/m. Our global results show a moderate increase from 2006 to 2010 and they are almost invariant from 2010 to 2015. Although the whole dataset does not have relevant statistical difference, we have found marked local differences. In the city areas where the population density has remained unaltered, we have measured lower exposure levels. Conversely, new urban and industrial developments have demanded new resources, which have potentially contributed to the observed increase in the measured electric field levels within these areas. Copyright © 2017. Published by Elsevier B.V.

  10. Measuring the polarization of electromagnetic fields using Rabi-rate measurements with spatial resolution: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Koepsell, J.; Thiele, T.; Deiglmayr, J.; Wallraff, A.; Merkt, F.

    2017-05-01

    When internal states of atoms are manipulated using coherent optical or radio-frequency (rf) radiation, it is essential to know the polarization of the radiation with respect to the quantization axis of the atom. We first present a measurement of the two-dimensional spatial distribution of the electric-field amplitude of a linearly polarized pulsed rf electric field at ˜25.6 GHz and its angle with respect to a static electric field. The measurements exploit coherent population transfer between the 35 s and 35 p Rydberg states of helium atoms in a pulsed supersonic beam. Based on this experimental result, we develop a general framework in the form of a set of equations relating the five independent polarization parameters of a coherently oscillating field in a fixed laboratory frame to Rabi rates of transitions between a ground and three excited states of an atom with arbitrary quantization axis. We then explain how these equations can be used to fully characterize the polarization in a minimum of five Rabi-rate measurements by rotation of an external bias field, or, knowing the polarization of the driving field, to determine the orientation of the static field using two measurements. The presented technique is not limited to Rydberg atoms and rf fields but can also be applied to characterize optical fields. The technique has the potential for sensing the spatiotemporal properties of electromagnetic fields, e.g., in metrology devices or in hybrid experiments involving atoms close to surfaces.

  11. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  12. [Evaluation of reports on environmental measurements of electromagnetic fields generated by high voltage transmission lines and substations].

    PubMed

    Szuba, Marek

    2007-01-01

    This paper presents some situations, in which measurements of electromagnetic fields generated by transmission lines and substations should be performed. The range of measurements may differ, but maximum values of electric and magnetic fields and flux density must be identified in all situations. The area with electric field exceeding 1 kV/m should be identified as well. The author also presents basic requirements to be met by the measurement technique. These requirements are specified according to the national standard. Special attention should be paid to the identification of the spatial distribution of electric field and flux density generated in the vicinity of high voltage transmission lines. To verify the measurement results, it is necessary to calculate the distribution of both aforesaid field components. For environmental protection purposes, it is also proposed that the report should include measurements of electromagnetic fields of 50 Hz along with calculated results presented in tables and diagrams.

  13. LONG-TERM ELECTROMAGNETIC FIELD MEASUREMENT AND ASSESSMENT FOR A SHOPPING MALL.

    PubMed

    Engiz, Begum Korunur; Kurnaz, Cetin

    2017-07-01

    As a result of the dense deployment of wireless devices and base stations, measuring and evaluating the electromagnetic (EM) exposure levels they emit have become important to human health especially if they exceed the limits defined in the standards. Base stations, Wi-Fi equipment and other electronic devices are used heavily, especially in densely crowded places like shopping centers. In this study, electric field strength (E) measurements were conducted at one of the largest shopping malls in Turkey. Broadband E measurements were performed using PMM 8053 EM field strength meter for 24 h a day for the duration of one week while frequency selective measurements were carried out with SRM-3006 EM field strength meter. It is concluded from the measurements that the mean measured total E in the band between 100 kHz and 3 GHz is 0.59 V/m while the maximum E is 7.88 V/m, which are both below the limit determined by International Commission on Non-Ionizing Radiation Protection. Evolutions show that E can increase by up to 55% during the daytime. Analyses demonstrate that 71.3% of total E is caused by UMTS2100, 16.3% is produced by GSM900, 6.2% by LTE, 3.5% by Wi-Fi, and 2.7% is generated by devices that use the remaining frequency bands. Based on the detailed statistical analysis of long-term E measurement results, it can be concluded that the measured E levels are not in normal distribution and that they are statistically different with respect to days. Furthermore, distribution of E can be best modeled with the non-parametric approach. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    PubMed Central

    2010-01-01

    Background The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas. PMID:20487532

  15. [Analysis of methods for measurement and assessment of occupational exposure to electromagnetic fields in dielectric heating].

    PubMed

    Aniołczyk, Halina; Mamrot, Paweł; Mariańska, Magda

    2012-01-01

    High-frequency (HF) welders are the most common devices that make use of dielectric heating. They are a source of high-intensity electromagnetic fields (EMFs). Manual operation of those welders makes that the limbs are exposed to EMFs of extremely high intensity, far in excess of the currently admissible values. The aim of this study was to update knowledge of actual exposure of HF welder operators to EMF and to optimize the procedure of exposure assessment. Measurements of the EMF intensity in the vicinity of 10 dielectric welders at work posts of 12 operators were performed. EMF measurements were made using the reference method, extended by auxiliary measurement points to measure induced currents I(L) in the limbs. Induced current measurements were performed in 20 operators tending the same HF welder. the highest values of the electric (E) and magnetic (H) fields measured at work posts were for whole body: E, up to 350 V/m, and H, up to 1.00 A/m; and for limbs: E, up to 600 V/m and H, up to 3.30 A/m. The W exposure indicator in the primary vertical measurement points was almost as high as 60. I(L) values measured at the wrist exceeded 64 mA and were individual-operator-dependent. EMF exposure of 25% of HF welder operators exceeded the national admissible values and after taking into account the operators' hands, this figure rose to 50%. The measured value of I(L), representing a measure of internal exposure to EMF, should serve as the main criterion in deciding whether working conditions are admissible.

  16. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  17. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  18. Measuring electromagnetic fields (EMF) around wind turbines in Canada: is there a human health concern?

    PubMed Central

    2014-01-01

    Background The past five years has seen considerable expansion of wind power generation in Ontario, Canada. Most recently worries about exposure to electromagnetic fields (EMF) from wind turbines, and associated electrical transmission, has been raised at public meetings and legal proceedings. These fears have not been based on any actual measurements of EMF exposure surrounding existing projects but appear to follow from worries from internet sources and misunderstanding of the science. Methods The study was carried out at the Kingsbridge 1 Wind Farm located near Goderich, Ontario, Canada. Magnetic field measurements were collected in the proximity of 15 Vestas 1.8 MW wind turbines, two substations, various buried and overhead collector and transmission lines, and nearby homes. Data were collected during three operational scenarios to characterize potential EMF exposure: ‘high wind’ (generating power), ‘low wind’ (drawing power from the grid, but not generating power) and ‘shut off’ (neither drawing, nor generating power). Results Background levels of EMF (0.2 to 0.3 mG) were established by measuring magnetic fields around the wind turbines under the ‘shut off’ scenario. Magnetic field levels detected at the base of the turbines under both the ‘high wind’ and ‘low wind’ conditions were low (mean = 0.9 mG; n = 11) and rapidly diminished with distance, becoming indistinguishable from background within 2 m of the base. Magnetic fields measured 1 m above buried collector lines were also within background (≤ 0.3 mG). Beneath overhead 27.5 kV and 500 kV transmission lines, magnetic field levels of up to 16.5 and 46 mG, respectively, were recorded. These levels also diminished rapidly with distance. None of these sources appeared to influence magnetic field levels at nearby homes located as close as just over 500 m from turbines, where measurements immediately outside of the homes were ≤ 0.4 mG. Conclusions The results suggest that there is

  19. Measuring electromagnetic fields (EMF) around wind turbines in Canada: is there a human health concern?

    PubMed

    McCallum, Lindsay C; Whitfield Aslund, Melissa L; Knopper, Loren D; Ferguson, Glenn M; Ollson, Christopher A

    2014-02-15

    The past five years has seen considerable expansion of wind power generation in Ontario, Canada. Most recently worries about exposure to electromagnetic fields (EMF) from wind turbines, and associated electrical transmission, has been raised at public meetings and legal proceedings. These fears have not been based on any actual measurements of EMF exposure surrounding existing projects but appear to follow from worries from internet sources and misunderstanding of the science. The study was carried out at the Kingsbridge 1 Wind Farm located near Goderich, Ontario, Canada. Magnetic field measurements were collected in the proximity of 15 Vestas 1.8 MW wind turbines, two substations, various buried and overhead collector and transmission lines, and nearby homes. Data were collected during three operational scenarios to characterize potential EMF exposure: 'high wind' (generating power), 'low wind' (drawing power from the grid, but not generating power) and 'shut off' (neither drawing, nor generating power). Background levels of EMF (0.2 to 0.3 mG) were established by measuring magnetic fields around the wind turbines under the 'shut off' scenario. Magnetic field levels detected at the base of the turbines under both the 'high wind' and 'low wind' conditions were low (mean = 0.9 mG; n = 11) and rapidly diminished with distance, becoming indistinguishable from background within 2 m of the base. Magnetic fields measured 1 m above buried collector lines were also within background (≤ 0.3 mG). Beneath overhead 27.5 kV and 500 kV transmission lines, magnetic field levels of up to 16.5 and 46 mG, respectively, were recorded. These levels also diminished rapidly with distance. None of these sources appeared to influence magnetic field levels at nearby homes located as close as just over 500 m from turbines, where measurements immediately outside of the homes were ≤ 0.4 mG. The results suggest that there is nothing unique to wind farms with respect to EMF exposure; in

  20. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  1. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    NASA Astrophysics Data System (ADS)

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile

  2. ELECTROMAGNETIC FIELD MEASUREMENT OF FUNDAMENTAL AND HIGHER-ORDER MODES FOR 7-CELL CAVITY OF PETRA-II

    SciTech Connect

    Kawashima, Y.; Blednykh, A.; Cupolo, J.; Davidsaver, M.; Holub, B.; Ma, H.; Oliva, J.; Rose, J.; Sikora, R.; Yeddulla, M.

    2011-03-28

    The booster synchrotron for NSLS-II will include a 7-cell PETRA cavity, which was manufactured for the PETRA-II project at DESY. The cavity fundamental frequency operates at 500 MHz. In order to verify the impedances of the fundamental and higher-order modes (HOM), which were calculated by computer code, we measured the magnitude of the electromagnetic field of the fundamental acceleration mode and HOM using the bead-pull method. To keep the cavity body temperature constant, we used a chiller system to supply cooling water at 20 degrees C. The bead-pull measurement was automated with a computer. We encountered some issues during the measurement process due to the difficulty in measuring the electromagnetic field magnitude in a multi-cell cavity. We describe the method and apparatus for the field measurement, and the obtained results.

  3. Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields.

    PubMed

    Bolte, John F B; van der Zande, Gerard; Kamer, Jos

    2011-12-01

    In the past 5 years radiofrequency personal exposure meters have been used to characterize the exposure during daily activities. We found from calibration tests for the 12 frequency bands of the EME Spy 121 exposimeter in a Gigahertz Transverse Electromagnetic cell and an Open Area Test Site, that these measurements tend to underestimate the actual exposure. Therefore, a maximum frequency-dependent correction factor of 1.1-1.6 should be applied to the electric field. This correction factor consists of three multipliers correcting for calibration, elevation arrival angle, and influence of the body. The calibration correction factor should be determined per exposimeter, as the maximum range of response between exposimeters in a frequency band is 2.4 dB. Since the range of response for different elevation angles could reach 10.2 dB, a strict protocol for wearing the exposimeter during fieldwork should be followed to be able to compare and combine measurements made by different persons in the same microenvironments. Because the influence of the body depends on the azimuth angle of arrival, it may lead to an over- or underestimation. Thus, the body correction factor is an average over the angles and should only be applied in activities involving movement through the full 360° range of random angles of arrival.

  4. Interference of 16.7-Hz electromagnetic fields on measured electrocardiogram.

    PubMed

    Schlimp, Christoph J; Breiteneder, Martin; Seifert, Johannes; Lederer, Wolfgang

    2007-07-01

    The extent of electromagnetic interference (EMI) from 16.7-Hz alternate current power lines in the human surface electrocardiogram (ECG) was evaluated. Results showed a direct linear correlation between mean EMI and magnetic induction of 5.8-21 microT on a railroad platform (electric field: 270 V/m). EMI inside a railroad car (10 microT, 0 V/m) was comparable to the electromagnetic field at the platform. Inside a voltage transformer substation (0 microT, 2000 V/m) EMI occurred only when the ECG device was closer to the power line than the test person. Magnetic induction caused 16.7-Hz EMI to a degree that proper diagnosis of ECG-rhythms was rendered impossible.

  5. Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures.

    PubMed

    Bhatt, Chhavi Raj; Redmayne, Mary; Abramson, Michael J; Benke, Geza

    2016-03-01

    Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations.

  6. Measuring electromagnetic properties of superconductors in high and localized rf magnetic field

    NASA Astrophysics Data System (ADS)

    Tai, Tamin

    possible nonlinear mechanism from switching events between the Meissner state and the mixed state. These models of extrinsic nonlinearity are studied in Chapter 6. The high transition temperature and low surface resistance of MgB2 attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB2 at high RF fields is still open to question. Hence, in Chapter 7, two-gap high quality MgB2 films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location to investigate its RF properties. The third harmonic measurement on MgB2 films shows different nonlinear mechanisms compared to the bulk Nb measurement [3] . We conclude that the nonlinear response for the high quality MgB2 films at temperature less than Tc shows the nonlinearity from the moving vortices and from the following possible mechanisms: First, an intrinsic nonlinearity from the proximity-induced second Tc. Second, the intrinsic nonlinearity arising from Josephson coupling between the sigma and pi bands of the two gap nature of MgB2. Third: The potential nonlinearity from the reported superconducting nodal gap properties. Finally the future plan to raster scan on the SRF candidate materials is proposed to relate the nonlinear electromagnetic images to the physical defects on the superconductor surface. These efforts can finally feed back to the cavity processing techniques and suggest new thoughts for alternate surface processing treatment in the future. [1] T. Tai, et al., IEEE Trans. Appl. Supercond. 21, 2615, (2011). [2] T. Tai et al., IEEE Trans. Appl. Supercond. 23, 7100104, (2013). [3] T. Tai et al., Phys. Rev. ST Accel. Beams 15, 122002, (2012).

  7. [Measurement and study report as a part of the control system for human safety and health protection against electromagnetic fields and electromagnetic radiation (0 Hz-300 GHz)].

    PubMed

    Aniołczyk, Halina

    2007-01-01

    The National Control System for safety and health protection against electromagnetic fields (EMF) and electromagnetic radiation (EMR) (0 Hz-300 GHz) is constantly analyzed in view of Directive 2004/40/EC. Reports on the effects of investments (at the designing stage or at the stage of looking for their localization) on the environment and measurement and study reports on the objects already existing or being put into operation are important elements of this system. These documents should meet both national and European Union's legislation requirements. The overriding goal of the control system is safety and health protection of humans against electromagnetic fields in the environment and in occupational settings. The author pays a particular attention to provisions made in directives issued by relevant ministers and to Polish standards, which should be documented in measurement and study reports published by the accredited laboratories and relating to the problems of human safety and health protection. Similar requirements are valid for the Reports. Therefore, along with measurement outcomes, the reports should include data on the EMF exposure classification at work-posts and the assessment of occupational risk resulting from EMF exposure or at least thorough data facilitating such a classification.

  8. Electromagnetic Fields and Cancer

    MedlinePlus

    ... are in the ionizing radiation part of the electromagnetic spectrum and can damage DNA or cells directly. Low- ... in the non-ionizing radiation part of the electromagnetic spectrum and are not known to damage DNA or ...

  9. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  10. Measurement of the Stochastic Electromagnetic Field Coupling to an Unshielded Twisted Pair Cable with a Matched Termination

    NASA Astrophysics Data System (ADS)

    Magdowski, Mathias; Henning, Gerald; Vick, Ralf

    2016-05-01

    The coupling of stochastic electromagnetic fields into an unshielded twisted double-wire transmission line has been measured in a reverberation chamber. One end of the line features a matched load resistance and is therefore anechoic. With this chosen configuration, the influence of the pitch distance onto the frequency-dependent coupling can be clearly exposed. The measurement results confirm an existing simulation model that is based on transmission line theory and the plane wave integral representation.

  11. Variation in cancer risk estimates for exposure to powerline frequency electromagnetic fields: a meta-analysis comparing EMF measurement methods.

    PubMed

    Miller, M A; Murphy, J R; Miller, T I; Ruttenber, A J

    1995-04-01

    We used meta-analysis to synthesize the findings from eleven case-control studies on cancer risks in humans exposed to 50-60 Hertz powerline electromagnetic fields (EMFs). Pooled estimates of risk are derived for different EMF measurement methods and types of cancer. EMF measurement methods are classified as: wiring configuration codes, distance to power distribution equipment, spot measurements of magnetic fields, and calculated indices based on distance to power distribution equipment and historic load data. Pooled odds ratios depicting the risk of cancer by each measurement type are presented for all cancers combined, leukemia for all age groups and childhood leukemia. The wire code measurement technique was associated with a significantly increased risk for all three cancer types, while spot measures consistently showed non-significant odds ratios. Distance measures and the calculated indices produced risk estimates which were significant only for leukemia.

  12. Variation in cancer risk estimates for exposure to powerline frequency electromagnetic fields: A meta-analysis comparing EMF measurement methods

    SciTech Connect

    Miller, M.A.; Murphy, J.R.; MIller, T. I; Ruttenber, A.J.

    1995-04-01

    We used meta-analysis to synthesize the findings from eleven case-control studies on cancer risks in humans exposed to 50-60 Hertz powerline electromagnetic fields (EMFs). Pooled estimates of risk are derived for different EMF measurement methods and types of cancer. EMF measurement methods are classified as: wiring configuration codes, distance to power distribution equipment, spot measurements of magnetic fields, and calculated indices based on distance to power distribution equipment and historic load data. Pooled odds ratios depicting the risk of cancer by each measurement type are presented for all cancers combined, leukemia for all age groups and childhood leukemia. The wire code measurement technique was associated with a significantly increased risk for all three cancer types, while spot measures consistently showed non-significant odds ratios. Distance measures and the calculated indices produced risk estimates which were significant only for leukemia. 24 refs., 6 tabs.

  13. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  14. Nonlinear electromagnetic fields and symmetries

    NASA Astrophysics Data System (ADS)

    Barjašić, Irena; Gulin, Luka; Smolić, Ivica

    2017-06-01

    We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.

  15. Electromagnetic Field Effects in Explosives

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Whitley, V. H.; Lee, R. J.

    2009-12-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: enhancement of performance; and control of initiation and growth of reaction. Two series of experiments were performed to determine the effects of 1-T magnetic fields on explosive initiation and growth in the modified gap test and on the propagation of explosively generated plasma into air. The results have implications for the control of reactions in explosives and for the use of electromagnetic particle velocity gauges.

  16. ELF Communications System Ecological Monitoring Program: Electromagnetic Field Measurements and Engineering Support-1992.

    DTIC Science & Technology

    1993-07-01

    alternate polarity with a frequency equal to that of their source current. Of secondary interest is the earth’s static (non-alternating) magnetic field, which...field, which is considered of secondary importance for this study. 3.3.2 Measurement Conditions--Michigan Construction of the NRTF-Republic began in...electric field described by Equation 8, a secondary 3 electric field may be set up in the air as a by-product of the electric field in the earth. In these

  17. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  18. Modeling and measurement of electromagnetic fields near Loran-C and Omega stations. Final report

    SciTech Connect

    Gailey, P.C.

    1987-06-15

    For the past few years, there has been a concern about radiation-emitting devices and adverse nonthermal health effects. The Coast Guard, as a user of some of those devices, shares this concern and has taken steps to protect its personnel. One important step is the recently completed Loran/Omega Radiation Study. Accordingly, additional studies are planned for Coast Guard cutters/boats. There are other electromagnetic radiation sources in the Coast Guard that should be identified for similar risk assessment. Commandant (G-CSP) initiated and monitored the study for Commandant (G-N) and in coordination with Commandant (G-T). Of primary concern to the program manager was the lack of radiation-exposure and field-intensity data necessary to answer health-risk questions and to assess the potential operational impact of several proposed Environmental Protection Agency (EPA) radiation-exposure standards. The study included a representative sample of Loran units and both Omega units; exposure profiles at other Loran stations were developed by modeling and are included.

  19. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  20. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  1. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    SciTech Connect

    Keersmaekers, Lissa; Keustermans, William De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-28

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  2. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    NASA Astrophysics Data System (ADS)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  3. A large-scale measurement of electromagnetic fields near GSM base stations in Guangxi, China for risk communication.

    PubMed

    Wu, Tongning; Shao, Qing; Yang, Lei; Qi, Dianyuan; Lin, Jun; Lin, Xiaojun; Yu, Zongying

    2013-06-01

    Radiofrequency (RF) electromagnetic field (EMF) exposure from wireless telecommunication base station antennae can lead to debates, conflicts or litigations among the adjacent residents if inappropriately managed. This paper presents a measurement campaign for the GSM band EMF exposure in the vicinity of 827 base station sites (totally 6207 measurement points) in Guangxi, China. Measurement specifications are designed for risk communication with the residents who previously complained of over-exposure. The EMF power densities with the global positioning system coordinate at each measured point were recorded. Compliance with the International Commission on Non-Ionizing Radiation Protection guidelines and Chinese environmental EMF safety standards was studied. The results show that the GSM band EMF level near the base stations is very low. The measurement results and the EMF risk communication procedures positively influence public perception of the RF EMF exposure from the base stations and promote the exchange of EMF exposure-related knowledge.

  4. ELF Communications System Ecological Monitoring Program: Electromagnetic Field Measurements and Engineering Support--1989

    DTIC Science & Technology

    1990-10-01

    1985. It also allowed measurements to be taken with the NRTF-Clam Lake operating both at its secondary frequency of 44 Hz and at its primary frequency...EM fields affect vertebrate metabolism , nor which aspects of 3 exposure (i.e., intensity, duration, or both) could be important. The unmitigated 60 Hz...nominally on the same order of magnitude as the 76 Hz field values at the treatment sites during 150 ampere operation. Prior to 1990 metabolic studies

  5. Electromagnetic field radiation model for lightning strokes to tall structures

    SciTech Connect

    Motoyama, H.; Janischewskyj, W.; Hussein, A.M.; Chisholm, W.A.; Chang, J.S.; Rusan, R.

    1996-07-01

    This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.

  6. Exposure to electromagnetic fields from smart utility meters in GB; part I) laboratory measurements.

    PubMed

    Peyman, Azadeh; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Maslanyj, Myron; Mann, Simon

    2017-05-01

    Laboratory measurements of electric fields have been carried out around examples of smart meter devices used in Great Britain. The aim was to quantify exposure of people to radiofrequency signals emitted from smart meter devices operating at 2.4 GHz, and then to compare this with international (ICNIRP) health-related guidelines and with exposures from other telecommunication sources such as mobile phones and Wi-Fi devices. The angular distribution of the electric fields from a sample of 39 smart meter devices was measured in a controlled laboratory environment. The angular direction where the power density was greatest was identified and the equivalent isotropically radiated power was determined in the same direction. Finally, measurements were carried out as a function of distance at the angles where maximum field strengths were recorded around each device. The maximum equivalent power density measured during transmission around smart meter devices at 0.5 m and beyond was 15 mWm(-2) , with an estimation of maximum duty factor of only 1%. One outlier device had a maximum power density of 91 mWm(-2) . All power density measurements reported in this study were well below the 10 W m(-2) ICNIRP reference level for the general public. Bioelectromagnetics. 2017;38:280-294. © 2017 Crown copyright. BIOELECTROMAGNETICS © 2017 Wiley Periodicals, Inc.

  7. What does Earth's electromagnetic field from ground and space measurements tell us about conductivity of the mantle?

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander; Morschhauser, Achim; Kuvshinov, Alexey

    2017-04-01

    This contribution presents an overview of new models of Earth's mantle conductivity that have been derived using new methodologies and data from magnetic observatories and satellite missions such as CHAMP and Swarm. The electrical conductivity of the mantle provides a wealth of information on composition and temperature of the mantle material at depths. Lateral and vertical variations of this physical property allow us to constrain rheological and dynamic states of the tectonic processes in the subsurface. Electromagnetic (EM) induction methods is the only tool that can be used to study electrical conductivity at depth. They exploit natural electromagnetic field variations to derive frequency-dependent responses that are used to conduct Earth sounding. These variations originate from electric current systems in magnetosphere, ionosphere and even oceans. Over the last 17 years, almost continuous operation of low-orbit satellites measuring Earth's magnetic field, installation of new magnetic observatories in remote locations as well as substantial improvements in processing and modeling have enabled us to study mantle electrical conductivity using a variety of EM methods either globally or/and at different locations on Earth.

  8. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma

    SciTech Connect

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-15

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  9. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma.

    PubMed

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-01

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  10. [Measurement and assessment of electromagnetic fields near radiophones in line with provisions of European Directive 2013/35/EU and Polish labour law].

    PubMed

    Gryz, Krzysztof; Zradziński, Patryk; Karpowicz, Jolanta; Leszko, Wiesław

    2013-01-01

    The activities of rescue and uniformed services require the use of wireless communication devices, such as portable radiophones. Assessment of workers' exposure to electromagnetic fields emitted by radiophones is important in view of occupational safety and health (OSH), legislation requirements and reports on possible adverse health effects in users of devices emitting radiofrequency electromagnetic field. In this study 50 portable radiophones of conventional and trunked communication systems were investigated. The assessment of electromagnetic hazards to users involved unperturbed electromagnetic field measurements near radiophones' antennas. The electric field strength corresponding to the occupational exposure level (fields of so-called safety zones established by OSH legislation in Poland) was measured at a distance of 45-65 cm from the portable radiophones antennas of conventional system and 75-95 cm from antennas of trunked system radiophones, depending on their type and mode of work. The assessment was based on the averaged results of series of measurements. The electric field strength exceeding action levels defined by Directive 2013/35/EU was found up to 15 cm from radiophone antennas of conventional system and up to 10 cm from the antennas of trunked system radiophones. Taking into account the range of safety zones and the use of portable radiophones near the body, their users should be classified into the group of workers occupationally exposed to electromagnetic fields. Electromagnetic field measurement results and typical conditions of using portable radiophones justify the need for additional assessment of electromagnetic hazards--the analysis of compliance with relevant exposure limit values provided by Directive 2013/35/EU.

  11. String theory in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.

    2003-02-01

    A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.

  12. Controlling the Electromagnetic Field Confinement with Metamaterials

    PubMed Central

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-01-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained. PMID:27886230

  13. Controlling the Electromagnetic Field Confinement with Metamaterials

    NASA Astrophysics Data System (ADS)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  14. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  15. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  16. ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program: Measurements of ELF Electromagnetic Fields for Site Selection and Characterization - 1983.

    DTIC Science & Technology

    1985-01-01

    the slime mold ( Physarum polycephalum ) study. A cumulative total of six test and control sites has been identified for the slime mold study since the...electromagnetic field exposure effects on the respiration and mitosis of the slime mold, Physarum polycephalum . The electric and magnetic fields in the...the field and information presented in the University of Wisconsin-Parkside report on the effects of exposing the slime mold Physarum polycephalum to

  17. Population exposure to electromagnetic fields generated by radio base stations: evaluation of the urban background by using provisional model and instrumental measurements.

    PubMed

    Anglesio, L; Benedetto, A; Bonino, A; Colla, D; Martire, F; Saudino Fusette, S; d'Amore, G

    2001-01-01

    Electromagnetic radiation, which is used by broadcasting and mobile telephone systems to transmit information, permeates the city environment. In order to properly evaluate population exposure to electromagnetic fields, knowledge of their intensity and spectral components is necessary. In this study the results of radiofrequency field monitoring carried out in Torino, a large town located in the north-west of Italy are shown: the variation of the electromagnetic field strength is evaluated as a function of the height from the ground, the location in the urban area and the frequency. separating the contributions of the different sources (broadcasting antennas and radio base stations for mobile phones). Furthermore, the contribution of the radio base stations is theoretically evaluated, adding the emissions off all installations situated in Torino and examining the field strength maps calculated, considering the orography, for different heights. The theoretical values are also compared with those measured in the frequency range of mobile telephony emissions.

  18. Normal Spectral Emissivity Measurement of Molten Cu-Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ueno, Shoya; Nakamura, Yuki; Sugioka, Ken-Ichi; Kubo, Masaki; Tsukada, Takao; Uchikoshi, Masahito; Fukuyama, Hiroyuki

    2017-02-01

    The normal spectral emissivity of molten Cu-Co alloy with different compositions was measured in the wavelength range of 780 nm to 920 nm and in the temperature range of 1430 K to 1770 K including the undercooled condition by an electromagnetic levitator superimposed with a static magnetic field. The emissivity was determined as the ratio of the radiance from a levitated molten Cu-Co droplet measured by a spectrometer to the radiance from a blackbody calculated by Planck's law at a given temperature, where a static magnetic field of 2.5 T to 4.5 T was applied to the levitated droplet to suppress the surface oscillation and translational motion of the sample. We found little temperature dependence of the normal spectral emissivity of molten Cu-Co alloy. Concerning the composition dependence, the emissivity decreased markedly above 80 at%Cu and reached that of pure Cu, although its dependence was low between 20 at%Cu and 80 at%Cu. In addition, this composition dependence of the emissivity of molten Cu-Co alloy can be explained well by the Drude free-electron model.

  19. [Combined biological effect of electromagnetic fields and chemical substances (toxic)].

    PubMed

    Kamedula, M; Kamedula, T

    1996-01-01

    The authors present results of own measurements and examinations as well as the literature data on the occurrence and effect of direct, low and high frequency electromagnetic fields and chemicals. In real working conditions and in experimental conditions, the following relations can be observed: 1) concomitant occurrence of electromagnetic fields and chemicals, e.g. processes of electrolysis, inductive and dielectric heating; 2) experimental studies of combined effect of electromagnetic fields and chemicals on e.g. cancer development: 3) drug effect modified by electromagnetic fields; 4) effect of chemicals produced in materials under the influence of electromagnetic fields. There are only a few publications on medical examinations of workers exposed simultaneously to electromagnetic fields and chemicals. However, even in those reported studies, an attempt to distinguish changes in the health state due to electromagnetic fields, and due to chemicals has field. The studies of the effect of electromagnetic fields which modify the effect of carcinogenic substances have not yielded unequivocal results. Electromagnetic fields may modify significantly the effect of some psychotropic and hormonal drugs. Under the influence of pyrolisis, induced by thermal effect of electromagnetic fields, toxic substances or substances with harmful biological effect may occur in some materials.

  20. Lessons learnt on biases and uncertainties in personal exposure measurement surveys of radiofrequency electromagnetic fields with exposimeters.

    PubMed

    Bolte, John F B

    2016-09-01

    Personal exposure measurements of radio frequency electromagnetic fields are important for epidemiological studies and developing prediction models. Minimizing biases and uncertainties and handling spatial and temporal variability are important aspects of these measurements. This paper reviews the lessons learnt from testing the different types of exposimeters and from personal exposure measurement surveys performed between 2005 and 2015. Applying them will improve the comparability and ranking of exposure levels for different microenvironments, activities or (groups of) people, such that epidemiological studies are better capable of finding potential weak correlations with health effects. Over 20 papers have been published on how to prevent biases and minimize uncertainties due to: mechanical errors; design of hardware and software filters; anisotropy; and influence of the body. A number of biases can be corrected for by determining multiplicative correction factors. In addition a good protocol on how to wear the exposimeter, a sufficiently small sampling interval and sufficiently long measurement duration will minimize biases. Corrections to biases are possible for: non-detects through detection limit, erroneous manufacturer calibration and temporal drift. Corrections not deemed necessary, because no significant biases have been observed, are: linearity in response and resolution. Corrections difficult to perform after measurements are for: modulation/duty cycle sensitivity; out of band response aka cross talk; temperature and humidity sensitivity. Corrections not possible to perform after measurements are for: multiple signals detection in one band; flatness of response within a frequency band; anisotropy to waves of different elevation angle. An analysis of 20 microenvironmental surveys showed that early studies using exposimeters with logarithmic detectors, overestimated exposure to signals with bursts, such as in uplink signals from mobile phones and Wi

  1. ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program: Electromagnetic Field Measurements and Engineering Support--1986.

    DTIC Science & Technology

    1987-09-01

    displacement points are just one point along a long route in which the animals reside momentarily. A possible future weir net site (site 5T7-1) was also...care, nes- tling growth and maturation, fecundity, homing, activity patterns, embryolog- ical development, and metabolic physiology. The electric and...microflora (fungi and streptomycetes ) populations. The electric and magnetic fields in the earth are considered important EM factors influencing soil biota

  2. Extremely low frequency electromagnetic fields

    SciTech Connect

    Wilson, B.W. . Chemical Sciences Dept.); Stevens, R.G. ); Anderson, L.E. . Life Sciences Center)

    1990-01-01

    The authors focus on that which seems to be the central scientific issue emerging from current ELF research in epidemiology and in the laboratory; namely, can ELF electromagnetic fields interact with biological systems in such a way as to increase cancer risk The authors examine how cancer risk might be related to two reproducible biological effects of ELF exposure: effects on the pineal gland and circadian biology, and effects on calcium homeostasis in cells. Because they are concerned with the possible biological mechanisms of carcinogenesis, epidemiological studies are only briefly reviewed.

  3. 78 FR 33633 - Human Exposure to Radiofrequency Electromagnetic Fields

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... to Radiofrequency Electromagnetic Fields; Reassessment of Exposure to Radiofrequency Electromagnetic..., and 95 Human Exposure to Radiofrequency Electromagnetic Fields AGENCY: Federal Communications... electromagnetic fields. More specifically, the Commission clarifies evaluation procedures and references...

  4. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.

    PubMed

    Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo

    2014-12-01

    With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Measured Electromagnetic Fields at ELF Communications Program Ecological Study Plots: Slime Mold Studies in the Chequamegon National Forest, Wisconsin.

    DTIC Science & Technology

    1983-02-01

    NOTES 19 KEY WORDS (Coritinue on reverse side if necosary ad Identify by block ri.amber) Extremely Low Frequency (ELF) Physarum Polycephalum ...electromagnetic fields at locations selected by investigators for study- ing ELF effects on the slime mold, physarum polycephalum ,are reported...Forest selected for study of the effects of long tern exposure of slime mold ( physarum polycephalum ) to the U.S. Navy ELF Communications system. The slime

  6. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  7. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  8. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms

    SciTech Connect

    Simons, Matt T.; Gordon, Joshua A.; Holloway, Christopher L.; Anderson, David A.; Miller, Stephanie A.; Raithel, Georg

    2016-04-25

    In this work, we demonstrate an approach for improved sensitivity in weak radio frequency (RF) electric-field strength measurements using Rydberg electromagnetically induced transparency (EIT) in an atomic vapor. This is accomplished by varying the RF frequency around a resonant atomic transition and extrapolating the weak on-resonant field strength from the resulting off-resonant Autler-Townes (AT) splittings. This measurement remains directly traceable to SI compared to previous techniques, precluding any knowledge of experimental parameters such as optical beam powers as is the case when using the curvature of the EIT line shape to measure weak fields. We use this approach to measure weak RF fields at 182 GHz and 208 GHz demonstrating improvement greater than a factor of 2 in the measurement sensitivity compared to on-resonant AT splitting RF electric field measurements.

  9. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  10. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Giovangrandi, Laurent (Inventor); Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  11. Electromagnetic fields and infant incubators.

    PubMed

    Bearer, C F

    1994-01-01

    Two models of infant incubators were studied to determine the strength of the magnetic field generated by the heater and fan motors. Measurements were taken at intervals along the center line of the incubator. The results show that fields greater than 100 milligauss and 25 milligauss were measured in the C-86 and C-100 model Isolettes, respectively.

  12. [Safety and electromagnetic compatibility in sanitary field].

    PubMed

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  13. Operation Sun Beam, Shots Little Feller II and Small Boy. Project Officer's report - Project 7. 16. Airborne E-field radiation measurements of electromagnetic-pulse phenomena

    SciTech Connect

    Butler, K.L.

    1985-09-01

    Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.

  14. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  15. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  16. Local measure of the electromagnetic field in magnetic resonance coils: How do simulations help to disentangle the contributions of the electric and magnetic fields?

    PubMed

    Dillmann, Baudouin; Dubois, Luc; Paleczny, Erick; Trébosc, Julien; Amoureux, Jean-Paul; Pourpoint, Frédérique; Lafon, Olivier

    The development of probes for Nuclear Magnetic Resonance (NMR) spectroscopy of metabolites, biomolecules or materials requires the accurate determination of the radio-frequency (RF) magnetic field strength, B1, at the position of the sample since this RF-field strength is related to the signal sensitivity and the excitation bandwidth. The Ball Shift (BS) technique is a commonly employed test bench method to measure the B1 value. Nevertheless, the influence of the RF electric field, E1, on BS is often overlooked. Herein, we derive, from Maxwell equations, an analytical expression of the BS, which shows the contribution of both the electric and magnetic energies to the BS value. This equation shows that the BS allows quantifying the B1 field strength only in regions where the electric energy is small with respect to the magnetic one. The numerical simulations of electromagnetic (EM) field and energy prove that this condition is fulfilled at 100.5MHz inside the electrically balanced coil of a double-resonance (1)H/X 4mm Magic Angle Spinning (MAS) probe since for that circuit, the center of the coil is an antinode for the B1 standing wave and a node for the E1 one. We also show that the simulated BS values agree well with the experimental ones. Conversely, NMR experiments show that the contribution of the electric energy to BS becomes significant when the X channel of this probe is connected to a frequency splitter. In that case, the use of BS method to estimate the B1 value is compromised.

  17. Medical applications of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  18. Optimization methods in control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Angell, Thomas S.; Kleinman, Ralph E.

    1991-05-01

    This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.

  19. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  20. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  1. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  2. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  3. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  4. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  5. [Measurements of electromagnetic fields and evaluation of occupational exposure: PN-T-06580:2002 requirements and principles adopted in the European Union].

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2003-01-01

    Under the process of developing a uniform system of protection against excessive exposure to electromagnetic fields, Polish metrological standards have been amended as an inherent complement of the modified decree on maximum admissible strength (MAS) values, issued by the Minister of Labour and Social Policy. Two parts of standard PN-T-06580:2002 were established by the Chairman of the Polish Committee for Standardisation in 2002. Of the whole range of frequencies covered by legal regulations, it laid down the principles of evaluation of occupational exposure to electromagnetic fields and radiation, providing precise definitions and rules for estimation actual dose and exposure factor in each case of exposure in real conditions. The standards also precise conditions, in which simplified principles of occupational exposure measurement and evaluation can be applied. Currently in the European countries, there are no general standards concerning methods of measuring and evaluating occupational exposure to 0-300 GHz electromagnetic fields. The provisions of numerous European (EN) and international (IEC) standards of a much narrower scope of application are similar to those formulated in standard PN-T-06580:2002.

  6. Pulsed thrust measurements using electromagnetic calibration techniques

    SciTech Connect

    Tang Haibin; Shi Chenbo; Zhang Xin'ai; Zhang Zun; Cheng Jiao

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.

  7. The measurement of heats of solution of high melting metallic systems in an electromagnetic levitation field. Ph.D. Thesis - Tech. Univ. Berlin - 1979

    NASA Technical Reports Server (NTRS)

    Frohberg, M. G.; Betz, G.

    1982-01-01

    A method was tested for measuring the enthalpies of mixing of liquid metallic alloying systems, involving the combination of two samples in the electromagnetic field of an induction coil. The heat of solution is calculated from the pyrometrically measured temperature effect, the heat capacity of the alloy, and the heat content of the added sample. The usefulness of the method was tested experimentally with iron-copper and niobium-silicon systems. This method should be especially applicable to high-melting alloys, for which conventional measurements have failed.

  8. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  9. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields.

  10. Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Simons, Matt T.; Gordon, Joshua A.; Holloway, Christopher L.

    2016-09-01

    We demonstrate simultaneous electromagnetically-induced transparency (EIT) with cesium (Cs) and rubidium (Rb) Rydberg atoms in the same vapor cell with coincident (overlapping) optical fields. Each atomic system can detect radio frequency (RF) electric (E) field strengths through the modification of the EIT signal (Autler-Townes (AT) splitting), which leads to a direct International System of Unit traceable RF E-field measurement. We show that these two systems can detect the same RF E-field strength simultaneously, which provides a direct in situ comparison of Rb and Cs RF measurements in Rydberg atoms. In effect, this allows us to perform two measurements of the same E-field strength, providing a relative comparison of the dipole moments of the two atomic species. This gives two measurements that help rule out systematic effects and uncertainties in this E-field metrology approach, which are important when establishing an international measurement standard for an E-field strength, and is a necessary step for this method to be accepted as a standard calibration technique. We use this approach to measure E-fields at 9.2 GHz, 11.6 GHz, and 13.4 GHz, which correspond to three different atomic states (different principal atomic numbers and angular momentums) for the two atom species.

  11. Interpreting marine controlled source electromagnetic field behaviour with streamlines

    NASA Astrophysics Data System (ADS)

    Pethick, A. M.; Harris, B. D.

    2013-10-01

    Streamlines represent particle motion within a vector field as a single line structure and have been used in many areas of geophysics. We extend the concept of streamlines to interactive three dimensional representations of the coupled vector fields generated during marine controlled source electromagnetic surveys. These vector fields have measurable amplitudes throughout many hundreds of cubic kilometres. Electromagnetic streamline representation makes electromagnetic interactions within complex geo-electrical setting comprehensible. We develop an interface to rapidly compute and interactively visualise the electric and magnetic fields as streamlines for 3D marine controlled source electromagnetic surveys. Several examples highlighting how interactive use has value in marine controlled source electromagnetic survey design, interpretation and teaching are provided. The first videos of electric, magnetic and Poynting vector field streamlines are provided along with the first published example of the airwave represented as streamlines. We demonstrate that the electric field airwave is a circulating vortex moving down and out from the air-water interface towards the ocean floor. The use of interactive streamlines is not limited to marine controlled source electromagnetic methods. Streamlines provides a high level visualisation tool for interpreting the electric and magnetic field behaviour generated by a wide range of electromagnetic survey configurations for complex 3D geo-electrical settings.

  12. [Problems with implementation of Polish standards on admissible electromagnetic field levels by the State Sanitary Inspectorate and of the measuring teams].

    PubMed

    Grobelna, Grazyna

    2003-01-01

    Amendments to Polish standards on electromagnetic fields (EMF) have made it necessary to modify the methods and procedures to be employed by the sanitary services responsible for monitoring occupational risks. To ensure a correct functioning of the State Sanitary Inspectorate and of the teams involved in measurements, it seems essential: to adjust other relevant regulations; to develop a method of classifying devices according to the emitted EMF; to provide uniform procedures to be followed in institutions if the measurements required by the regulations are not feasible; and to assemble a database on the determined levels of EMF emitted by various devices--especially those at frequency bands not yet monitored.

  13. Transient electromagnetic fields near large earthing systems

    SciTech Connect

    Grcev, L.D.; Menter, F.E.

    1996-05-01

    Electromagnetic compatibility studies require knowledge of transient voltages that may be developed near earthing systems during lightning discharge, since such voltages may be coupled to sensitive electronic circuits. For such purpose accurate evaluation of transient electric field near to and/or at the surface of the grounding conductors is necessary. In this paper, a procedure for computation of transient fields near large earthing systems, as a response to a typical lightning current impulse, based on computational methodology developed in the field of antennas, is presented. Computed results are favorably compared with published measurement results. The model is applied to check the common assumption that the soil ionization can be neglected in case of large earthing systems. Presented results show that the soil ionization threshold is met and exceeded during typical lightning discharge in a large earthing system.

  14. A method of measuring dynamic strain under electromagnetic forming conditions.

    PubMed

    Chen, Jinling; Xi, Xuekui; Wang, Sijun; Lu, Jun; Guo, Chenglong; Wang, Wenquan; Liu, Enke; Wang, Wenhong; Liu, Lin; Wu, Guangheng

    2016-04-01

    Dynamic strain measurement is rather important for the characterization of mechanical behaviors in electromagnetic forming process, but it has been hindered by high strain rate and serious electromagnetic interference for years. In this work, a simple and effective strain measuring technique for physical and mechanical behavior studies in the electromagnetic forming process has been developed. High resolution (∼5 ppm) of strain curves of a budging aluminum tube in pulsed electromagnetic field has been successfully measured using this technique. The measured strain rate is about 10(5) s(-1), which depends on the discharging conditions, nearly one order of magnitude of higher than that under conventional split Hopkins pressure bar loading conditions (∼10(4) s(-1)). It has been found that the dynamic fracture toughness of an aluminum alloy is significantly enhanced during the electromagnetic forming, which explains why the formability is much larger under electromagnetic forging conditions in comparison with conventional forging processes.

  15. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  16. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  17. Test report for photonic sensors used in electric-field measurement of simulated electromagnetic pulses. Final report, 28-30 Aug 90

    SciTech Connect

    Blocksom, R.; Bucholz, R.

    1991-01-01

    This report documents the results of tests to record and analyze the characteristic response of three photonic Electric field, E-field sensors to simulated Electromagnetic Pulse (EMP), compared to that of a reference metallic sensor. Work was performed under Naval Research Laboratory (NRL) contract N00014-89-C-2033, sponsored by Naval Air Systems Command (NAVAIR). Tasks included: (1) selection of candidate sensors capable of measuring the E-field content (intensity and frequency spectrum) of simulated EMP phenomena generated by the Horizontally Polarized Dipole (HPD) EMP simulator at the Naval Air Test Center (NATC), Patuxent River, MD; (2) liaison with sensor designers, NATC personnel, and others as necessary to delineate test requirements and constraints; (3) development of a sensor test plan; (4) sensor tests in the HPD EMP simulation; (5) analysis of the test data; and (6) generation of the Test Report. The activities discussed herein were performed during the period of March 1990-January 1991. Since 1985, the Naval Research Laboratory (NRL) and ARC Professional Services Group Defense Systems Division (ARC) have conducted an RD effort to produce a prototype fiber optic sensor system for application to EMP field measurement. The work was sponsored under Fleet Aircraft Assessment for Navy Testing and Analysis for EMP Limitation (FAANTAEL) project managed by NAVAIR Electromagnetic Environmental Effects (E3) Branch, AIR-5161.

  18. ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program: Measurements of ELF Electromagnetic Fields for Site Selection and Characterization-1984.

    DTIC Science & Technology

    1985-06-01

    ELF EM field measurements at a total of four test and control sites for the slime mold ( Physarum polycephalum ) study. A cumulative total of seven test...mitosis of the slime mold, Physarum polycephalum . The electric and magnetic fields in the earth are considered important EM factors influencing soil

  19. Measurement of Electromagnetic Properties of Lightning with 10 Nanosecond Resolution

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Oneill, J. P.; Moore, C. B.; Hall, D. L.

    1980-01-01

    Electromagnetic data recorded from lightning strikes are presented. The data analysis reveals general characteristics of fast electromagnetic fields measured at the ground including rise times, amplitudes, and time patterns. A look at the electromagnetic structure of lightning shows that the shortest rise times in the vicinity of 30 ns are associated with leader leader streamers. Lightning location is based on electromagnetic field characteristics and is compared to a nearby sky camera. The fields from both leaders and return strokes were measured and are discussed. The data were obtained during 1978 and 1979 from lightning strikes occuring within 5 kilometers of an underground metal instrumentation room located on South Baldy peak near Langmuir Laboratory, New Mexico. The computer controlled instrumentation consisted of sensors previously used for measuring the nuclear electromagnetic pulse (EMP) and analog-digital recorders with 10 ns sampling, 256 levels of resolution, and 2 kilobytes of internal memory.

  20. Measurement of spatial and temporal evolution of electromagnetic fields in a 100 MHz plasma source using B dot and double dipole probes

    SciTech Connect

    Lane, Barton Campbell, Colin; Sawada, Ikuo; Ventzek, Peter L. G.

    2016-05-15

    Very high frequency plasma sources are often accompanied by plasma density nonuniformities associated with a standing-wave effect. Electron density measurements using a plasma absorption probe show density nonuniformities that can be larger than predicted by a standing wave model. These structures have been associated with harmonics of the electric fields in the plasma. The authors present the first time and phase-resolved measurements of the spatial structure of the electromagnetic waves in a 100 MHz plasma source using argon at 40 mTorr employing a B dot probe. The authors show that the harmonic structure is related to a current reversal and subsequent circulation that appears when the sheath collapses during the radio frequency cycle. The circulation is driven by inward traveling waves that are electromagnetic in nature, not plasma waves traveling at the electron thermal velocity. Double dipole probe measurements were used to validate the B dot probe electric field measurements derived from the time derivative of Β{sub θ} which is derived from the B dot probe signal.

  1. [Norms and standards for radiofrequency electromagnetic fields in Latin America: guidelines for exposure limits and measurement protocols].

    PubMed

    Skvarca, Jorge; Aguirre, Aníbal

    2006-01-01

    New technologies that use electromagnetic fields (EMF) have proved greatly beneficial to humankind. EMF are used in a variety of ways in the transmission of electrical energy and in telecommunications, industry, and medicine. However, some studies have shown that EMF could be detrimental to one's health, having found an association between exposure to EMF on the one hand, and the incidence of some types of cancer as well as behavioral changes on the other. Although so far there is no concrete proof that exposure to low-intensity EMF is hazardous, researchers continue to study the issue in an attempt to reach a consensus opinion and to establish safety standards. While developing and establishing such norms and standards have traditionally been the responsibility of international specialized agencies, national health authorities should take an active part in this process. Currently the Pan American Health Organization is promoting scientific research, often in the form of epidemiologic studies, in order to propose uniform norms and standards. Some Latin American countries, including Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Mexico, Peru, and Venezuela, have already enacted incomplete or partial legislation based on recommended international standards. This article describes the norms established in Latin America and the particular approach taken by each country.

  2. Program For Displaying Computed Electromagnetic Fields

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.

    1995-01-01

    EM-ANIMATE computer program specialized visualization displays and animates output data on near fields and surface currents computed by electromagnetic-field program - in particular MOM3D (LAR-15074). Program based on windows and contains user-friendly, graphical interface for setting viewing options, selecting cases, manipulating files, and like. Written in FORTRAN 77. EM-ANIMATE also available as part of package, COS-10048, includes MOM3D, IRIS program computing near-field and surface-current solutions of electromagnetic-field equations.

  3. Measurements of electromagnetic fields radiated from communication equipment and of environmental electromagnetic noise: impact on the use of communication equipment within the hospital.

    PubMed

    Adler, D; Margulies, L; Mahler, Y; Israeli, A

    1998-01-01

    The increasing use of all types of cellular telephones requires the formulation of new standards to ensure the immunity of electronic medical equipment to electromagnetic radiation. It will be many years before all hospital medical equipment conforms to new and higher standards. Until that time, the medical, security, maintenance, and other staff will need to be ever vigilant regarding restrictions on the use of wireless equipment within the hospital, to prevent potential danger to the lives of the patients. A comprehensive hospital policy must be formulated to reduce risks to patients from equipment susceptible to electromagnetic interference (EMI). Such an aim should address the following needs: To devise a uniform policy for the instruction of hospital staff, visitors, and patients, thereby reducing confusion regarding the use of cellular telephones, beepers, and portable transceivers. To implement a policy that avoids unwarranted restrictions but does not ignore statistical evidence regarding potential EMI problems. To allow comparison, with other clinical facilities, of the benefits derived from such a policy.

  4. Characterizing and Designing Localized Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Borzdov, Georgy N.

    2004-11-01

    An approach to characterizing and designing localized electromagnetic fields in complex media and free space, based on the use of differentiable manifolds, differentiable mappings, and the rotation group, is discussed. Families of exact time-harmonic solutions to Maxwell's equations -- standing waves defined by spherical harmonics, and localized fields defined by the rotation group -- are presented.

  5. Differential form representation of stochastic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  6. The electromagnetic field equations for moving media

    NASA Astrophysics Data System (ADS)

    Ivezić, T.

    2017-05-01

    In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F (x) and ℳ(x) are presented and then these equations are written with the 4D vectors E(x), B(x), P (x) and M(x). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime

  7. Hypothesis on how to measure electromagnetic hypersensitivity.

    PubMed

    Tuengler, Andreas; von Klitzing, Lebrecht

    2013-09-01

    Electromagnetic hypersensitivity (EHS) is an ill-defined term to describe the fact that people who experience health symptoms in the vicinity of electromagnetic fields (EMFs) regard them as causal for their complaints. Up to now most scientists assume a psychological cause for the suffering of electromagnetic hypersensitive individuals. This paper addresses reasons why most provocation studies could not find any association between EMF exposure and EHS and presents a hypothesis on diagnosis and differentiation of this condition. Simultaneous recordings of heart rate variability, microcirculation and electric skin potentials are used for classification of EHS. Thus, it could be possible to distinguish "genuine" electromagnetic hypersensitive individuals from those who suffer from other conditions.

  8. Electromagnetic fields in bone repair and adaptation

    NASA Astrophysics Data System (ADS)

    McLeod, Kenneth J.; Rubin, Clinton T.; Donahue, Henry J.

    1995-01-01

    The treatment of delayed union of bone fractures has served for the past 20 years as the principal testing ground for determining whether nonionizing electromagnetic fields can have any substantial, long-term effects in clinical medicine. Recent double-blinded clinical trials have confirmed the significance of the reported effects on bone healing and have led to the suggestion that electromagnetic fields may also be useful in the treatment of other orthopedic problems such as fresh fractures, stabilization of prosthetic implants, or even the prevention or treatment of osteoporosis. However, the design of appropriate treatment regimens for these new applications would be greatly facilitated if it were understood how the biological cells within bone tissue sense these low-frequency, and remarkably low level, electromagnetic fields. Here we address the engineering and physical science aspects of this problem. We review the characteristics of clinically used electromagnetic fields and discuss which components of these fields may actually be responsible for altering the activity of the bone cells. We then consider several physical mechanisms which have been proposed to explain how the cells within the bone or fracture tissue detect this field component.

  9. Electromagnetically induced transparency in modulated laser fields

    NASA Astrophysics Data System (ADS)

    Jiao, Yuechun; Yang, Zhiwei; Zhang, Hao; Zhang, Linjie; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2017-02-01

    We study electromagnetically induced transparency (EIT) in a room-temperature cesium vapor cell using wavelength-modulated probe laser light. In the utilized cascade level scheme, the probe laser drives the lower transition 6S {}1/2(F = 4) → 6P {}3/2 (F’ = 5), while the coupling laser drives the Rydberg transition 6P {}3/2 → 57S {}1/2. The probe laser has a fixed average frequency and is modulated at a frequency of a few kHz, with a variable modulation amplitude in the range of tens of MHz. The probe transmission is measured as a function of the detuning of the coupling laser from the Rydberg resonance. The first-harmonic demodulated EIT signal has two peaks that are, in the case of large modulation amplitude, separated by the peak-to-peak modulation amplitude of the probe laser times a scaling factor {λ }{{p}}/{λ }{{c}}, where {λ }{{p}} and {λ }{{c}} are the probe- and coupling-laser wavelengths. The scaling factor is due to Doppler shifts in the EIT geometry. Second-harmonic demodulated EIT signals, obtained with small modulation amplitudes, yield spectral lines that are much narrower than corresponding lines in the modulation-free EIT spectra. The resultant spectroscopic resolution enhancement is conducive to improved measurements of radio-frequency (RF) fields based on Rydberg-atom EIT, an approach in which the response of Rydberg atoms to RF fields is exploited to characterize RF fields. Here, we employ wavelength modulation spectroscopy to reduce the uncertainty of atom-based frequency and field measurement of an RF field in the VHF radio band.

  10. Electromagnetic field interactions with biological systems

    SciTech Connect

    Frey, A.H. )

    1993-02-01

    This is a report on Symposia organized by the International Society for Bioelectricity and presented at the 1992 FASEB Meeting. The presentations summarized here were intended to provide a sampling of new and fruitful lines of research. The theme topics for the Symposia were cancer, neural function, cell signaling, pineal gland function, and immune system interactions. Living organisms are complex electrochemical systems that evolved over billions of years in a world with a relatively simple weak magnetic field and with few electromagnetic energy emitters. As is characteristic of living organisms, they interacted with and adapted to this environment of electric and magnetic fields. In recent years there has been a massive introduction of equipment that emits electromagnetic fields in an enormous range of new frequencies, modulations, and intensities. As living organisms have only recently found themselves immersed in this new and virtually ubiquitous environment, they have not had the opportunity to adapt to it. This gives biologists the opportunity to use these electromagnetic fields as probes to study the functioning of living systems. This is a significant opportunity, as new approaches to studying living systems so often provide the means to make great leaps in science. In recent years, a diversity of biologists have carried out experiments using electromagnetic fields to study the function of living cells and systems. This approach is now becoming quite fruitful and is yielding data that are advancing our knowledge in diverse areas of biology. 25 refs., 6 figs., 3 tabs.

  11. International comparison of the properties of NdFeB permanent magnets measured using an electromagnet and a pulsed field magnetometer

    NASA Astrophysics Data System (ADS)

    Hall, Michael

    2013-08-01

    An IEC TC 68 comparison on the measurement of the magnetic properties of permanent magnets was completed in 2011. Measurements were performed on 6 NdFeB magnets with intrinsic coercivities ranging from 1000 to 2600 kA/m by 8 institutes based in China, Japan, Italy, Belgium, Germany and the UK. Many versions of a Pulsed Field Magnetometer (PFM) that can determine the full BH curve in as little as 100 ms have been developed during the last 2 decades. By comparing measurements made using an internationally accepted electromagnet method and pulsed methods, the influence of the dynamic effects of the latter could be investigated and established. For the quantities remanence, B r , magnetic flux density coercivity, H cB and energy product, BH max the measurements agree within the combined uncertainties. For the intrinsic coercivity, H cJ , the dependence of the measurement of this quantity on the speed at which the magnetic field is reversed was found to be significant with the largest changes in value occurring as a DC measurement condition is approached.

  12. Photon Propagation in Slowly Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Karbstein, F.

    2017-03-01

    Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  13. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  14. Method and apparatus for measuring electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  15. Electromagnetic field parameters and instrumentation

    NASA Astrophysics Data System (ADS)

    Sheppard, A. R.; Jones, R. A.; Stell, M. E.; Adey, W. R.; Bawin, S.

    1986-07-01

    We studied the effects of the electric and magnetic components of a Loran-C type waveform on three biological systems. Neurochemical assays of brain neurotransmitter substances indicate field-related changes in the levels of norepinephrine in the hippocampus and in the number and affinities of the opiate receptors in the cortex. Behavioral data showed that rats trained in an operant conditioning task did not reliably detect any electric field strength used. Biochemical data demonstrated that the Loran-C field did not modify basal ornithine decarboxylase activity in primary bone cells.

  16. ELF (extremely low frequency) Communication System ecological monitoring program: electromagnetic-field measurements and engineering support - 1987. Technical report, 1982-1987

    SciTech Connect

    Haradem, D.P.; Gauger, J.R.; Zapotosky, J.E.

    1988-08-01

    A long-term program for studying possible effects from the operation of the Navy's ELF Communications System is being conducted on biota and ecosystems components in northwestern Wisconsin and the Upper Peninsula of Michigan. Sixteen general types of organisms from three major ecosystems in the ELF system area are being examined. Formulation of an ELF Ecological Monitoring Program was completed in early 1982 by the Department of the Navy, and studies were initiated in late summer of the same year. Beginning in 1983 and continuing during 1984, major activities of the program consisted of characterization of critical aspects of each study, collection of data to validate assumptions made in proposals, and selection of study sites. From 1985 through 1987, activities centered on the operation of full-scale studies. This report documents electromagnetic (EM) field measurements at investigator-selected study sites from 1982 through 1987. Other engineering support activities are also described.

  17. ELF (extremely low frequency) communications system ecological monitoring program: Electromagnetic field measurements and engineering support -- 1988. Technical report, 1982-1988

    SciTech Connect

    Haradem, D.P.; Gauger, J.R.; Zapotosky, J.E.

    1989-05-01

    A long-term program for studying possible effects from the operation of the Navy's ELF Communications System is being conducted on biota and ecosystems components in northwestern Wisconsin and the Upper Peninsula of Michigan. Sixteen general types of organisms from three major ecosystems in the ELF system area are being examined. Formulation of an ELF Ecological Monitoring Program was completed in early 1982 by the Department of the Navy, and studies were initiated in late summer of the same year. Beginning in 1983 and continuing during 1984, major activities of the program consisted of characterization of critical aspects of each study, collection of data to validate assumptions made in proposals, and selection of study sites. From 1985 through 1988, activities centered on the operation of full-scale studies. This report documents electromagnetic (EM) field measurements at investigator selected study sites from 1982 through 1988. Other engineering support activities are also described.

  18. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  19. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  20. A measurement system for aircraft/weapon electromagnetic compatibility

    SciTech Connect

    Mounteer, T.D.; Scott, L.D.; Stevenson, L.E.

    1991-01-01

    An electromagnetic measurement system (EMMS) was designed and constructed to provide essential data relating to electromagnetic compatibility (EMC) of modern weapons carried on military aircraft. This system measures the equivalent plane wave electric and magnetic fields impinging on a weapon's exterior surface arising from electromagnetic radiators on board host or nearby aircraft. To relate practical sensor responses to specified equivalent plane wave EMC field levels, a modern weapon shape was used as the primary sensor element which responds with a simple dipole antenna response at the lower frequencies and is instrumented with local skin current sensors. At higher frequencies, the locally induced currents can be related to the incident fields by simple scattering theory. Finally, an error analysis that catalogs all measurement path elements was performed to provide an error bound on the equivalent free electric field measurements reported by the EMMS. 6 refs., 9 figs.

  1. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  2. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  3. Coherent polarization driven by external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Ganciu, M.

    2010-11-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  4. Repeated Electromagnetic Induction Measurements for Mapping Soil Moisture at the Field Scale: Comparison with Data from a Wireless Soil Moisture Monitoring Network

    NASA Astrophysics Data System (ADS)

    Dietrich, P.; Martini, E.; Werban, U.; Zacharias, S.; Pohle, M.; Wollschlaeger, U.

    2015-12-01

    Electromagnetic induction (EMI) measurements offer great potential for field-scale mapping of various soil properties and states such as texture, organic carbon content or soil moisture (θ). Limitations to the use of EMI for estimating any of these properties exist, due to the ambiguous relationship between the measured apparent electrical conductivity (ECa) and the soil properties of interest. To further investigate the potential of EMI for field-scale mapping of θ, we conducted repeated EMI surveys during different hydrological states on a hillslope site where soil properties and θ dynamics were known in detail from a wireless soil moisture monitoring network. Repeated EMI measurements offered the potential to reveal the limits of applicability of the method. For the investigated site we found that i) ECa showed small temporal variations, whereas the range of soil moisture was very large; ii) temporal changes in spatial patterns of ECa differed from temporal changes in spatial patterns of soil moisture; and iii) the ECa-θ relationship varied with time, independent of both the moisture state (dry, intermediate or wet) and the hydrological regime (drying, stable or wetting). This suggests that, at the investigated site, θ has little influence on ECa. Because ECa and θ are predominantly controlled by the same factors and their relative importance changes over time, the ambiguous ECa-θ relationship changes over time, limiting the use of EMI for estimating θ.

  5. Electromagnetic field of a linear antenna

    NASA Astrophysics Data System (ADS)

    Derby, Norman; Olbert, Stanislaw

    2008-11-01

    Animated computer simulations of the electric field of a radiating antenna can capture the attention of students in introductory electromagnetism courses and stimulate active discussions. The simulations raise questions not usually addressed in textbooks. In certain cases, some of the field lines appear to move toward the antenna, the speed of the field lines can change as they move, and the field lines exhibit strange behavior (circling or splitting) at certain points. Because their fields can be expressed in terms of elementary functions, animations of point dipole antennas are common, but animations showing the fields of antennas with more realistic lengths are not as common because analytical expressions for these fields are not as well known. We show that it is possible to derive analytical expressions in terms of elementary functions for the electromagnetic field of linear antennas of finite length. We draw attention to an open-source method for displaying the fine details within the field patterns and then give a general discussion of singular points and their motions, derive expressions for their location and phase velocity, and apply these results to some of the phenomena that are visible in visualizations of the fields of various antennas.

  6. A novel transient electromagnetic measuring system

    NASA Astrophysics Data System (ADS)

    Fu, Zhihong; Sun, Rui; Luo, Qiang; Chen, Qingli; Ma, Jing

    2006-11-01

    Transient electromagnetic measuring system, a kind of geophysics detecting devices, still have some technological problems unsolved in high current steep pulse transmitting, high precision synchronous control, large dynamic range signal gathering, etc., This paper proposes a novel transient electromagnetic measuring system(WTEM) with some technological improvements, including: (1) applying PocketPC and Bluetooth wireless technology in receivers to improve the system performance and reduces the receivers scale; (2) constructing a steep pulse transmitting circuit to output high current pulse with high linearity falling edge, short shut-off time and fast rising edge, finally improving the surficial resolving power; (3) proposing a GPS synchronous controller with high synchronous precision, in which TCXO working with GPS corporately, recovering the short-time invalidation of GPS module. In the project of detecting the oil pipeline corrosion, indoor and field tests have been done to WTEM system. The results indicate that WTEM possesses fine performances, short withdrawing time from saturation status, high synchronous precision and short turn-off time of transmitting current, etc..

  7. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  8. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor.

    PubMed

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-08-18

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures.

  9. A Source-based Measurement Database for Occupational Exposure Assessment of Electromagnetic Fields in the INTEROCC Study: A Literature Review Approach

    PubMed Central

    Vila, Javier; Bowman, Joseph D.; Richardson, Lesley; Kincl, Laurel; Conover, Dave L.; McLean, Dave; Mann, Simon; Vecchia, Paolo; van Tongeren, Martie; Cardis, Elisabeth

    2016-01-01

    Introduction: To date, occupational exposure assessment of electromagnetic fields (EMF) has relied on occupation-based measurements and exposure estimates. However, misclassification due to between-worker variability remains an unsolved challenge. A source-based approach, supported by detailed subject data on determinants of exposure, may allow for a more individualized exposure assessment. Detailed information on the use of occupational sources of exposure to EMF was collected as part of the INTERPHONE-INTEROCC study. To support a source-based exposure assessment effort within this study, this work aimed to construct a measurement database for the occupational sources of EMF exposure identified, assembling available measurements from the scientific literature. Methods: First, a comprehensive literature search was performed for published and unpublished documents containing exposure measurements for the EMF sources identified, a priori as well as from answers of study subjects. Then, the measurements identified were assessed for quality and relevance to the study objectives. Finally, the measurements selected and complementary information were compiled into an Occupational Exposure Measurement Database (OEMD). Results: Currently, the OEMD contains 1624 sets of measurements (>3000 entries) for 285 sources of EMF exposure, organized by frequency band (0 Hz to 300 GHz) and dosimetry type. Ninety-five documents were selected from the literature (almost 35% of them are unpublished technical reports), containing measurements which were considered informative and valid for our purpose. Measurement data and complementary information collected from these documents came from 16 different countries and cover the time period between 1974 and 2013. Conclusion: We have constructed a database with measurements and complementary information for the most common sources of exposure to EMF in the workplace, based on the responses to the INTERPHONE-INTEROCC study questionnaire. This

  10. Basic Discoveries in Electromagnetic Field Visualization

    NASA Astrophysics Data System (ADS)

    Shindo, Daisuke

    2014-01-01

    Basic discoveries in the electromagnetic field visualization are presented, mentioning the late Dr. A. Tonomura's significant achievements in this field. First, the discovery of the electron biprism interferences by G. Möllenstedt and his colleagues was noted. Having studied Möllenstedt's interference experiments, A. Tonomura and his colleagues have extended the electron holography system to clearly prove the physical reality of vector potentials, the so-called Aharonov-Bohm effect. They also succeeded in observing the dynamic motions of magnetic flux quanta (fluxons) in a superconducting Nb film. In a joint research with A. Tonomura, we succeeded in visualizing a fluxon pinned by an insulating particle in a high-Tc Y-Ba-Cu-O superconductor by combining electron holography and scanning ion microscopy. As the study of a scalar potential, the visualization of the orbits of electron-induced secondary electrons around positively charged biological specimens was noted. Finally, although the electromagnetic field analysis using electron holography on the basis of Maxwell's equations seems to be promising, it is pointed out that there have been some controversies on the interpretation and treatment of electromagnetic field.

  11. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  12. EXTRAPOLATION TECHNIQUES EVALUATING 24 HOURS OF AVERAGE ELECTROMAGNETIC FIELD EMITTED BY RADIO BASE STATION INSTALLATIONS: SPECTRUM ANALYZER MEASUREMENTS OF LTE AND UMTS SIGNALS.

    PubMed

    Mossetti, Stefano; de Bartolo, Daniela; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina; Nava, Elisa

    2016-12-01

    International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures.

  13. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  14. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  15. On electromagnetic field problems in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  16. A New Theory of the Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  17. Measurement system design of an imaging electromagnetic flow meter

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y.; Lucas, G.; Leeungculsatien, T.; Zhang, T.

    2012-03-01

    Electromagnetic flow meters based on the principles of Faraday's laws of induction have been used successfully in many industries. In order to achieve velocity profile measurements in single phase and multiphase flows with non-uniform velocity profiles, a novel Imaging Electromagnetic Flow meter (IEF) has been developed which is described in this paper. The novel electromagnetic flow meter uses a microcontroller as the processing core to achieve the function of driving the uniform magnetic field, acquiring voltage signals with electronic system, matrix inversion calculation and result display. The work undertaken in the paper demonstrates that an imaging electromagnetic flow meter for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller.

  18. Magneto-chiral dichroism measurements using a pulsed electromagnet

    NASA Astrophysics Data System (ADS)

    Hattori, Shingo; Yamamoto, Yusuke; Miyatake, Tomohiro; Ishii, Kazuyuki

    2017-04-01

    A system for measuring magneto-chiral dichroism (MChD) under strong magnetic fields using a pulsed electromagnet was constructed. We succeeded in observing a relatively intense MChD signal for chiral J-aggregates of a zinc chlorin at 5 T using this measurement system. This study will be useful for observing weak MChD signals of various organic molecules.

  19. Dynamic viscoelasticity measurement under alternative torque using electromagnetically spinning method with quadruple electromagnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yusuke; Hirano, Taichi; Sakai, Keiji

    2017-07-01

    In this study, we developed a novel type of rheological measurement system. Here, a spherical probe is driven to rotate periodically by applying torques using quadruple electromagnets in a noncontact manner. Moreover, this system is an enhancement of our electromagnetically spinning (EMS) viscometer, which is widely used for measuring rheological flow curves in various industrial fields. The quadruple EMS method provides the frequency spectrum of viscoelasticity, in addition to shear viscosity, in a steady flow by switching the operation modes of the driving torque. We show the results obtained for Newtonian fluids and viscoelastic materials and demonstrate the validity of the system.

  20. Dynamic viscoelasticity measurement under alternative torque using electromagnetically spinning method with quadruple electromagnets.

    PubMed

    Matsuura, Yusuke; Hirano, Taichi; Sakai, Keiji

    2017-07-01

    In this study, we developed a novel type of rheological measurement system. Here, a spherical probe is driven to rotate periodically by applying torques using quadruple electromagnets in a noncontact manner. Moreover, this system is an enhancement of our electromagnetically spinning (EMS) viscometer, which is widely used for measuring rheological flow curves in various industrial fields. The quadruple EMS method provides the frequency spectrum of viscoelasticity, in addition to shear viscosity, in a steady flow by switching the operation modes of the driving torque. We show the results obtained for Newtonian fluids and viscoelastic materials and demonstrate the validity of the system.

  1. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor

    PubMed Central

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-01-01

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172

  2. Self field electromagnetism and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  3. Measurement of electromagnetic pollution in Sinop

    NASA Astrophysics Data System (ADS)

    Karabulut, Abdulkerim; Polat, Bükeyhan

    2017-04-01

    In this study, electromagnetic pollution at the 50-3500 MHz. band of frequency spectrum was investigated in central of Sinop. Measurement was conducted at coordinate information determined by GPS 10 different checkpoints about 30 times including 15 nights and 15 days for every checkpoints. According to the results of measurement; electromagnetic pollution is not higher than determined value limit by ICTA in the central of Sinop. Measurement data was removed computer and avarage values was determined. Obtained data was demonstrated on google map and graphs with different color at rate of electronic pollution. International and national limit values compared with obtained values and to make data and resource is presented.

  4. Assessment of exposure to electromagnetic fields from wireless computer networks (wi-fi) in schools; results of laboratory measurements.

    PubMed

    Peyman, A; Khalid, M; Calderon, C; Addison, D; Mee, T; Maslanyj, M; Mann, S

    2011-06-01

    Laboratory measurements have been carried out with examples of Wi-Fi devices used in UK schools to evaluate the radiofrequency power densities around them and the total emitted powers. Unlike previous studies, a 20 MHz bandwidth signal analyzer was used, enabling the whole Wi-Fi signal to be captured and monitored. The radiation patterns of the laptops had certain similarities, including a minimum toward the torso of the user and two maxima symmetrically opposed across a vertical plane bisecting the screen and keyboard. The maxima would have resulted from separate antennas mounted behind the top left and right corners of the laptop screens. The patterns for access points were more symmetrical with generally higher power densities at a given distance. The spherically-integrated radiated power (IRP) ranged from 5 to 17 mW for 15 laptops in the 2.45 GHz band and from 1 to 16 mW for eight laptops in the 5 GHz band. For practical reasons and because access points are generally wall-mounted with beams directed into the rooms, their powers were integrated over a hemisphere. These ranged from 3 to 28 mW for 12 access points at 2.4 GHz and from 3 to 29 mW for six access points at 5 GHz. In addition to the spherical measurements of IRP, power densities were measured at distances of 0.5 m and greater from the devices, and consistent with the low radiated powers, these were all much lower than the ICNIRP reference level.

  5. Contactless electrical conductivity measurement of electromagnetically levitated metallic melts

    SciTech Connect

    Richardsen, T.; Lohoefer, G.

    1999-07-01

    The electrical conductivity {sigma} of metallic liquids is of obvious importance to many liquid metal processing operations, because it controls the melt flow under the influence of electromagnetic fields, e.g. during casting processes, or in crystal growth furnaces. A facility for noninvasive measurements of the electrical conductivity of liquid metals above and below the melting temperature is presented. It combines the containerless positioning method of electromagnetic levitation with the contactless technique of inductive conductivity measurement. Contrary to the conventional measurement method, the sample is freely suspended within the measuring field and, thus, has no exactly predefined shape. This made a new theoretical basis necessary with implications on the measurement and levitation fields. Furthermore, the problem of the mutual inductive interactions between the levitation and the measuring coils had to be solved.

  6. Giant field enhancement in electromagnetic Helmholtz nanoantenna

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Greffet, Jean-Jacques; Pelouard, Jean-Luc; Haïdar, Riad; Pardo, Fabrice

    2014-11-01

    Inspired by the acoustic Helmholtz resonator, we propose a slit-box electromagnetic nanoantenna able to concentrate the energy of an incident beam into surfaces a thousand times smaller than with a classical lens. This design produces a giant electric field enhancement throughout the slit. The intensity enhancement reaches 104 in the visible range up to 108 in the THz range even with focused beams, thanks to an omnidirectional reception. These properties could target applications requiring extreme light concentration, such as surface-enhanced infrared absorption, nonlinear optics, and biophotonics.

  7. Biomarkers of induced electromagnetic field and cancer.

    PubMed

    Behari, J; Paulraj, R

    2007-01-01

    The present article delineates the epidemiological and experimental studies of electromagnetic field which affects various tissues of human body. These affects lead to cell proliferation, which may lead to cancer formation. Certain biomarkers have been identified which are one way or the other responsible for tumor promotion or co-promotion. These are (i) melatonin, a hormone secreted by pineal gland, (ii) Ca2+, which is essential in the regulation of the resting membrane potential and in the sequence of events in synaptic excitation and neurotransmitter, release are affected by electromagnetic field, (iii) ornithine decarboxylase (ODC), a rate-limiting enzyme in the biosynthesis of polyamines, considered as a useful biological marker; over expression of ODC can cause cell transformation and enhancement of tumor promotion. (iv) protein kinase is an enzyme, which transfers phosphate groups from ATP to hydroxyl groups in the amino acid chains of acceptor proteins, and (v) Na+-K+ ATPase, which transports sodium and potassium ions across the membrane has a critical role in living cells. The various possible mechanisms depending upon non equilibrium thermodynamics, co-operativism, stochastic and resonance are discussed as possible models of signal transduction in cytosol, thereby controlling the transcription phenomena. Finally a mechanism comprising the extremely low frequency and radio frequency (RF)/microwave (MW) modulated field is compared.

  8. Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Torre, Charles; Krongos, Dionisios

    2016-03-01

    The classical Rainich conditions are a system of geometric conditions, expressed purely in terms of the spacetime metric, which are necessary and sufficient for the metric to define a solution to the Einstein-Maxwell equations with a non-null electromagnetic field. We obtain analogous ``geometrization'' conditions for other matter sources. Specifically, we find geometric conditions which are necessary and sufficient for a metric to define a solution to the Einstein equations with a perfect fluid source, and to define a solution to the Einstein-scalar field equations. These conditions work in any dimension, allow for a cosmological constant, and allow for an arbitrary self-interaction potential in the scalar field case. We also generalize the classical Rainich conditions to include a cosmological constant and we obtain geometrization conditions which are applicable to the case of null electromagnetic fields. This work was supported in part by Grant No. OCI-1148331 from the National Science Foundation.

  9. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    SciTech Connect

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  10. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  11. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  12. Super strong electromagnetic fields and their applications

    SciTech Connect

    Bulanov, Sergei V.

    2007-07-11

    The progress in the ultra-intense laser technologies continues to open up new fields of physics. The laser accelerator development enters a new matured stage at which it becomes possible to manipulate in a controllable way the parameters of accelerated charged particle beams. In the electron acceleration the particle injection by breaking wake waves left by the laser pulse in underdense plasmas or by interacting two laser pulses results in the quasi-mono-energetic beam production. When the ions are accelerated during the laser-matter interaction the tailored multi-layer foil targets provide conditions for the high quality proton beam generation. When the laser pulse radiation pressure is dominant, the laser energy is transformed efficiently into the energy of fast ions. Ultrahigh intense electromagnetic fields can be generated due to the laser pulse compression, carrier frequency upshifting, and focusing by a counterpropagating breaking plasma wave, relativistic flying mirrors.

  13. Electromagnetic fields with vanishing scalar invariants

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-06-01

    We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.

  14. Electromagnetic field patterning or crystal light

    NASA Astrophysics Data System (ADS)

    Słupski, Piotr; Wymysłowski, Artur; Czarczyński, Wojciech

    2016-12-01

    Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1, 2 and fluid flow for semiconductor devices.3, 4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. PACS 42.50.Pq, 31.30.J-, 03.70.+k, 11.10.-z, 67.10.Hk

  15. On Acceptable Exposures to Short Pulses of Electromagnetic Fields

    DTIC Science & Technology

    2015-09-01

    NAWCWD TP 8791 On Acceptable Exposures to Short Pulses of Electromagnetic Fields by Francis X. Canning, PhD Physics...prepared in response to a request to study the effects of exposure to short pulses of electromagnetic fields. The author is a physicist at the Naval... Exposures to Short Pulses of Electromagnetic Fields (U) 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S

  16. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  17. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  18. Properties of electromagnetic field focusing probe.

    PubMed

    Yamanashi, W S; Yassa, N A; Hill, D L; Patil, A A; Lester, P D

    1988-11-01

    The electromagnetic field focusing (EFF) apparatus consists of a radio frequency generator, solenoidal coil, and a hand-held or catheter probe. Applications such as aneurysm treatment, angioplasty, and neurosurgery in various models have been reported. The probe is operated in the near field (within one wavelength of an electromagnetic field source) of a coil inducing eddy currents in biological tissues, producing maximal convergence of the induced current at the probe tip. The probe produces very high temperatures depending on the wattage selected for the given radio frequency of output power. The high temperature can be used in cutting, cauterizing, or vaporizing. The EFF probe is comparable to different types of lasers and to bipolar and monopolar cautery. The EFF probe can be used with catheters or endoscopes. Objectives of this study were to determine what the thermal properties of the EFF probe are and how instrument parameters can be varied to obtain different temperatures in the tissue near the probe tip. In this study an F2 catheter was used as an insulated sheath and the tip of the guide wire was used as the probe tip. Different powers, wave forms, coil-to-probe distances, and probe-tip lengths were tested on a phantom that simulates tissue electrical properties. Some of the experiments were conducted under normal saline to simulate treatment of tissue with body fluids such as blood vessels or brain tissue under normal physiologic conditions. It is concluded that the EFF probe has the advantages of easy manipulation, relative safety, cost effectiveness, and a high degree of spatial control.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Acoustic effect of an electromagnetic pulsed UHF field

    SciTech Connect

    Kapyrin, Yu.V.; Moiseev, V.I.; Petrenko, V.V.

    1988-06-01

    During the course of studies on the Fakel linear accelerator it was found that the metal structures of the electrodynamic components of the accelerator are subjected to ultrasonic vibrations, the intensity and spectral composition of which depend on the operating regimes of its high-frequency system and on the conditions of resonance energy exchange between the electromagnetic field and the particle beam. From the results of calculations and measurements, the authors of this paper propose, without ruling out the contribution of other sources, that the ultrasonic signals observed in the irises and regular square waveguides of an accelerator can be attributed to the A ponderomotive effect of powerful pulses of the high-frequency electromagnetic field.

  20. Reconstruction of velocity fields in electromagnetic flow tomography

    PubMed Central

    Lehtikangas, Ossi; Karhunen, Kimmo

    2016-01-01

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185961

  1. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  2. Recovering an electromagnetic obstacle by a few phaseless backscattering measurements

    NASA Astrophysics Data System (ADS)

    Li, Jingzhi; Liu, Hongyu; Wang, Yuliang

    2017-03-01

    We consider the electromagnetic scattering from a convex polyhedral PEC or PMC obstacle due to a time-harmonic incident plane wave. It is shown that the modulus of the far-field pattern in the backscattering aperture possesses a certain local maximum behavior. Using the local maximum indicating phenomena, one can determine the exterior unit normal directions, as well as the face areas, of the front faces of the obstacle. Then we propose a recovery scheme of reconstructing the obstacle by phaseless backscattering measurements. This work significantly extends our recent study in Li and Liu (2014 preprint) from two dimensions and acoustic scattering to the more challenging three dimensions and electromagnetic scattering.

  3. Visualizing electromagnetic fields in metals by MRI

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Chandrika Sefcikova; Shellikeri, Annadanesh; Chandrashekar, S.; Taylor, Erika A.; Taylor, Deanne M.

    2017-02-01

    Based upon Maxwell's equations, it has long been established that oscillating electromagnetic (EM) fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI) utilizes radiofrequency (r.f.) EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels) of identical size (=Δ x Δ y Δ z ). By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels) from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI) results that discriminate different faces (surfaces) of a metal block according to their distinct nuclear magnetic resonance (NMR) chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.

  4. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2016-09-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  5. Mortality in workers exposed to electromagnetic fields.

    PubMed Central

    Milham, S

    1985-01-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia [International Classification of Diseases (ICD), seventh revision 204] and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic. PMID:4085433

  6. Mortality in workers exposed to electromagnetic fields

    SciTech Connect

    Milham, S. Jr.

    1985-10-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia (International Classification of Diseases (ICD), seventh revision 204) and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic.

  7. Electromagnetic polarizabilities: Lattice QCD in background fields

    SciTech Connect

    W. Detmold, B.C. Tiburzi, A. Walker-Loud

    2012-04-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.

  8. Electromagnetic fields and male breast cancer.

    PubMed

    Tynes, T

    1993-01-01

    The aetiology of male breast cancer is still considered to be rather unclear. Epidemiological studies have recently shown an excess risk of male breast cancer in "electrical workers" with potential exposure to electromagnetic (EM) fields. Interest on the possible association between pineal function and breast cancer has come into focus. The pineal hormone melatonin has been shown to reduce the incidence of experimentally-induced breast cancer in rats, the hormone is oncostatic and cytotoxic to breast, ovarian, and bladder cancer cell lines in vitro. Treatment of cancer patients with orally administered melatonin has been tried. Pineal function in humans is suppressed by light-at-night (LAN). Animal studies have shown that exposure to 60-Hz electric fields may also suppress the nocturnal rise in pineal melatonin production in adult rats. Breast cancer is the leading cause of cancer death among women in industrialised world. No good explanation has so far been provided for the increased incidence of this site during the last decades, although changes in fertility factors have had some effect. If new epidemiological and experimental data give support to the hypothesis that exposure to LAN and EM fields may increase breast cancer risk, this may have regulatory and political consequences for future use of electric power.

  9. Electromagnetic induction moisture measurement system acceptance test plan

    SciTech Connect

    Vargo, G.F., Westinghouse Hanford

    1996-08-01

    The purpose of this acceptance test plan (ATP) is to verify that the mechanical, electrical and software features of the ElectroMagnetic Induction (EMI) probe are operating as designed,and that the unit is ready for field service. The accepted EMI and Surface Moisture Measurement Systems (SMMS) will be used primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement of organic and ferrocyanide watch list tanks.

  10. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    NASA Astrophysics Data System (ADS)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.

  11. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  12. Electromagnetic field at finite temperature: A first order approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; Pimentel, B. M.; Valverde, J. S.

    2006-10-01

    In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  13. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  14. Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Tiemsin, Pacita I.; Bussell, Kerri; Dudley, Kenneth L.

    1995-01-01

    The capability to measure the dielectric properties of various materials has been developed in the Electromagnetic Properties Measurement Laboratory (EPML) of the Electromagnetics Research Branch (ERB). Two measurement techniques which have been implemented in the EPML to characterize materials are the dielectric probe and waveguide techniques. Several materials, including some for which the dielectric properties are well known, have been measured in an attempt to establish the capabilities of the EPML in determining dielectric properties. Brief descriptions of the two techniques are presented in this report, along with representative results obtained during these measurements.

  15. Fluxes of electromagnetic field energy in HTSC transformers

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2016-12-01

    The transfer of electric power in an HTSC electromagnetic system is considered using the Poynting vector. An analysis of the process of transfer of electromagnetic field energy in HTSC transformers with and without an iron core is given. It is shown that the power of an HTSC transformer increases when its magnetic core is made from amorphous electrical steel. Schemes of HTSC transformers with a localized magnetic field are given with cylindrical and disk symmetrical interleaved windings providing the cost-saving process of transfer of large electromagnetic energy at a high degree of its uniformity and improve the factor of nonuniformity of electromagnetic flux density.

  16. Effects of Bluetooth device electromagnetic field on hearing: pilot study.

    PubMed

    Balachandran, R; Prepageran, N; Prepagaran, N; Rahmat, O; Zulkiflee, A B; Hufaida, K S

    2012-04-01

    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation. To evaluate potential changes in hearing function as a consequence of using Bluetooth devices, by assessing changes in pure tone audiography and distortion production otoacoustic emissions. Prospective study. Thirty adult volunteers were exposed to a Bluetooth headset device (1) on 'standby' setting for 6 hours and (2) at full power for 10 minutes. Post-exposure hearing was evaluated using pure tone audiography and distortion production otoacoustic emission testing. There were no statistically significant changes in hearing, as measured above, following either exposure type. Exposure to the electromagnetic field emitted by a Bluetooth headset, as described above, did not decrease hearing thresholds or alter distortion product otoacoustic emissions.

  17. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  18. Personal radiofrequency electromagnetic field measurements in The Netherlands: exposure level and variability for everyday activities, times of day and types of area.

    PubMed

    Bolte, John F B; Eikelboom, Tessa

    2012-11-01

    Knowledge of the exposure to radiofrequency electromagnetic fields is necessary for epidemiological studies on possible health effects. The main goal of this study is to determine the exposure level and spatial and temporal variances during 39 everyday activities in 12 frequency bands used in mobile telecommunication and broadcasting. Therefore, 24 h measurements were gathered from 98 volunteers living in or near Amsterdam and Purmerend, The Netherlands. They carried an activity diary to be kept to the minute, a GPS logger sampling at an interval of 1 s, and an EME Spy exposimeter with a detection limit of 0.0066 mW/m(2) sampling at an interval of 10s in 12 frequency bands. The mean exposure over 24 h, excluding own mobile phone use, was 0.180 mW/m(2). During daytime exposure was about the same, but during night it was about half, and in the evening it was about twice as high. The main contribution to environmental exposure (calling by participant not included) is from calling with mobile phones (37.5%), from cordless DECT phones and their docking stations (31.7%), and from the base stations (12.7%). The exposure to mobile phone base stations increases with the percentage of urban ground use, which is an indication for high people density. In agreement, the highest mean exposure relates to the activities with high people density, such as travelling by public transport, visiting social events, pubs or shopping malls. Exposure at home depends mainly on exposure from people calling in the neighbourhood of the participant and thus on the number of persons in a household. In addition just the possession of DECT docking stations leads to exposure as most models transmit continuously in stand-by. Also wireless internet routers continuously transmit in the WiFi band. Though the highest exposure peaks in the WiFi band, up to 0.265 W/m(2), come from stray radiation of microwave ovens. The mean total exposure largely depends on phone calls of a high exposure level and short

  19. Electromagnetic field occupational exposure: non-thermal vs. thermal effects.

    PubMed

    Israel, M; Zaryabova, V; Ivanova, M

    2013-06-01

    There are a variety of definitions for "non-thermal effects" included in different international standards. They start by the simple description that they are "effects of electromagnetic energy on a body that are not heat-related effects", passing through the very general definition related to low-level effects: "biological effects ascribed to exposure to low-level electric, magnetic and electromagnetic fields, i.e. at or below the corresponding dosimetric reference levels in the frequency range covered in this standard (0 Hz-300 GHz)", and going to the concrete definition of "the stimulation of muscles, nerves, or sensory organs, vertigo or phosfenes". Here, we discuss what kind of effect does the non-thermal one has on human body and give data of measurements in different occupations with low-frequency sources of electromagnetic field such as electric power distribution systems, transformers, MRI systems and : video display units (VDUs), whereas thermal effects should not be expected. In some of these workplaces, values above the exposure limits could be found, nevertheless that they are in the term "non-thermal effects" on human body. Examples are workplaces in MRI, also in some power plants. Here, we will not comment on non-thermal effects as a result of RF or microwave exposure because there are not proven evidence about the existance of such effects and mechanisms for them are not clear.

  20. [The electromagnetic fields of cellular phones and the health of children and of teenagers (the situation requiring to take an urgent measure)].

    PubMed

    Grigor'ev, Iu G

    2005-01-01

    The problem of the influence of electromagnetic fields (EMF) of cellular phones (CP) on the health of children and teenagers is considered in this article. The results of the researchs indicate the increased sensitivity of the children and of the teenagers to this kind of radiation. Direct indicators of electromagnetic influence can be infringement of sleep, decrease of the memory, fatigue, breach of a blood-brain barrier permeability, changes in nervous cells of a brain. As the remote consequences the development of tumors of a brain and acoustic nerve are predicted. However all these results require the realization of independent repeated researches. WHO (World Health Organization) recommends to use "Precautionary principle" with the purposes of decreasing of the risk. Russian National Committee of Non-Ionizing Radiation Protection recommended to limit the use of CP by children and teenagers under 16 years old (2002, February 2004). The corresponding recommendations were included into SunPin H2.1.8/2.2.4.1190-03/(2003).

  1. Possibility of sounding Earth by using electromagnetic field of sea current

    NASA Astrophysics Data System (ADS)

    Smagin, V. P.; Fonarev, G. A.; Savchenko, V. N.

    1985-06-01

    The possibilities of determining the conductivity of bottom rocks by measuring different combinations of components of the electromagnetic field of a current on the ocean floor are analyzed. It is shown that the sea current induces an electromagnetic field in the geomagnetic field. Then a formula is derived for the magnetic component B. After determining B it is possible to find the electric field in sea water and in rocks beneath the ocean layer. The parameter epsilon is introduced which makes it possible to ascertain the vertical gradient of the magnetic field in bottom rocks; a function is derived which characterizes the magnetic field in the bottom rocks. Formulas are derived which can be used in estimating the width of a current by an electromagnetic method. It is shown, therefore, that with electromagnetic sounding in the fields of sea currents it is possible to make a simple interpretation of the experimental data within the framework of an exponential model of ocean floor conductivity.

  2. 78 FR 33654 - Reassessment of Exposure to Radiofrequency Electromagnetic Fields Limits and Policies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Electromagnetic Fields Limits and Policies AGENCY: Federal Communications Commission. ACTION: Proposed rule... electromagnetic fields. The Commission's further proposals reflect an effort to provide more efficient, practical... RF electromagnetic fields. The Commission underscores that in conducting this review it will...

  3. Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: comparison with data from a wireless soil moisture monitoring network

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Werban, Ulrike; Zacharias, Steffen; Pohle, Marco; Dietrich, Peter; Wollschläger, Ute

    2016-04-01

    Electromagnetic induction (EMI) methods are widely used for soil mapping, as they allow fast and relatively low-cost surveys of soil apparent electrical conductivity (ECa) at various scales. Soil ECa is well known to be influenced by both the volumetric content and the electrical conductivity (EC) of soil water, as well as by soil temperature and by the volume of the solid particles and their EC. Among other applications, EMI has become widely used to determine soil water content or to study hydrological processes within the field of hydrogeophysics. Although the use of non-invasive EMI for imaging soil spatial properties is very attractive, the dependence of ECa on several properties and states challenges any interpretation with respect to individual soil properties or states such as θ. The major aim of this study was to further investigate the potential of repeated EMI measurements to map soil moisture at the hillslope scale, with particular focus on the temporal variability of the spatial patterns of ECa and soil moisture, respectively, and on the stability of the ECa-soil moisture relationship over time. To this end, we compared time series of EMI measurements with high-resolution soil moisture data for a non-intensively managed hillslope area in the Schäfertal catchment (Central Germany) for which the spatial distribution of soil properties and soil water dynamics were known in detail. Soil water and temperature dynamics were observed in 40 soil profiles at hourly resolution during 14 months using a wireless monitoring network. During this period of time, ECa was mapped on seven occasions using an EM38-DD device. For the investigated site, ECa showed small temporal variations (ranging between 0 and 24 mS/m) whereas the temporal range of soil moisture was very large (from very dry to soil saturation). Furthermore, temporal changes of the spatial pattern of ECa differed from temporal changes of the spatial pattern of soil moisture. The ECa-soil moisture

  4. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  5. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  6. An experiment to study strong electromagnetic fields at RHIC

    SciTech Connect

    Fatyga, M. ); Norbury, J.W. . Dept. of Physics)

    1990-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e{sup +}e{sup {minus}} pairs in the elastic scattering of two heavy ions at RHIC. A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  7. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-08-01

    Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications.

  8. The van Cittert-Zernike theorem for electromagnetic fields.

    PubMed

    Ostrovsky, Andrey S; Martínez-Niconoff, Gabriel; Martínez-Vara, Patricia; Olvera-Santamaría, Miguel A

    2009-02-02

    The van Cittert-Zernike theorem, well known for the scalar optical fields, is generalized for the case of vector electromagnetic fields. The deduced theorem shows that the degree of coherence of the electromagnetic field produced by the completely incoherent vector source increases on propagation whereas the degree of polarization remains unchanged. The possible application of the deduced theorem is illustrated by an example of optical simulation of partially coherent and partially polarized secondary source with the controlled statistical properties.

  9. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  10. Pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia.

    PubMed

    Elgohary, Hany M; Tantawy, Sayed A

    2017-08-01

    [Purpose] To investigate the effect of pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia. [Subjects and Methods] Sixty male patients aged 55-65 years with benign prostatic hyperplasia were invited to participate in this study. Patients were randomly assigned to Group A (n=20; patients who received pulsed electromagnetic field in addition to pelvic floor and aerobic exercises), Group B (n=20; patients who received pulsed electromagnetic field), and Group C (n=20; patients who received placebo electromagnetic field). The assessments included post-void residual urine, urine flow rate, prostate specific antigen, white blood cells count, and International Prostate Symptom Score were weighed, before and after a 4-week intervention. [Results] There were significant differences in Group A and B in all parameters. Group C showed non-significant differences in all measured variables except for International Prostate Symptom Score. Among groups, all parameters showed highly significant differences in favor of Group A. There were non-significant differences between Group A and B and significant difference between Groups A and C and between Groups B and C. [Conclusion] The present study demonstrated that electromagnetic field had a significant impact on the treatment of benign prostatic hyperplasia. Accordingly, electromagnetic field can be utilized alone or in combination with other physiotherapy modalities. Moreover, clinicians should have the capacity to perceive the advantages accomplished using extra treatment alternatives. Electromagnetic field is a safe, noninvasive method and can be used for the treatment of benign prostatic hyperplasia.

  11. Electromagnetic field tapering using all-dielectric gradient index materials

    PubMed Central

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  12. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-28

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  13. Electromagnetic field tapering using all-dielectric gradient index materials

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  14. [Electromagnetic fields in melting divisions of nickel production].

    PubMed

    Nikitina, V N; Liashko, G G; Nikanov, A N; Nikitina, N Iu

    2004-01-01

    The authors evaluated electromagnetic situation in melting divisions, on transformer substation. Studies covered alternating electric and magnetic fields of industrial frequencies and direct magnetic fields in fire mode of nickel production on workplaces during working shifts. Results proved that induction of the magnetic fields varies widely. Magnetic fields influence is accidental and remains additional factor affecting human body.

  15. [Computational radiofrequency electromagnetic field dosimetry in evaluation of biological effects].

    PubMed

    Perov, S Iu; Kudryashov, Iu B; Rubtsova, N B

    2012-01-01

    Given growing computational resources, radiofrequency electromagnetic field dosimetry is becoming more vital in the study of biological effects of non-ionizing electromagnetic radiation. The study analyzes numerical methods which are used in theoretical dosimetry to assess the exposure level and specific absorption rate distribution. The advances of theoretical dosimetry are shown. Advantages and disadvantages of different methods are analyzed in respect to electromagnetic field biological effects. The finite-difference time-domain method was implemented in detail; also evaluated were possible uncertainties of complex biological structure simulation for bioelectromagnetic investigations.

  16. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  17. [Pulsed electromagnetic fields (PEMF)--results in evidence based medicine].

    PubMed

    Pieber, Karin; Schuhfried, Othmar; Fialka-Moser, Veronika

    2007-01-01

    Therapy with electromagnetic fields has a very old tradition in medicine. The indications are widespread, whereas little is known about the effects. Controlled randomizied studies with positive results for pulsed electromagnetic fields (PEMF) are available for osteotomies, the healing of skin wounds, and osteoarthritis. Comparison of the studies is difficult because of the different doses applied and intervals of therapy. Therefore recommendations regarding an optimal dosis and interval are, depending on the disease, quite variable.

  18. Analyzing Exposures to Electromagnetic Fields in an Intensive Care Unit

    PubMed Central

    Gökmen, Necati; Erdem, Sabri; Toker, Kadir Atilla; Öçmen, Elvan; Gökmen, Başak Ilgım; Özkurt, Ahmet

    2016-01-01

    Objective In this study, we conducted a numerical analysis of exposure to electromagnetic fields (EMFs) in a hospital’s intensive care unit that is one of the most crucial one in terms of hazardous areas among all service units. This is a new study for measuring exposure to EMFs in an intensive care unit as well as other healthcare services in Turkey. Methods We measured the EMFs in the intensive care unit with a SRM-3006 (selective radiation metre), which was used for measurement of the absolute and the limit values of high frequency EMFs. The measurement points were chosen to represent the highest levels of exposure to which a person might be subjected. We obtained a dataset that included 5929 observations, with 96 extreme values, through measuring the magnetic field in terms of V/m. Results The measurements show the frequency varies from 47 MHz to 2.5 GHz as 17 frequency ranges at the measurement point as well. According to these findings, the referenced maximum safety limit was not exceeded. However, it was also found that mobile telecommunication was the most critical cause of magnetic fields. Conclusion Further studies need to be performed with different frequency antennas to assess the EMFs in intensive care units. PMID:27909603

  19. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  20. Electromagnetic exposure compliance estimation using narrowband directional measurements.

    PubMed

    Stratakis, D; Miaoudakis, A; Xenos, T; Zacharopoulos, V

    2008-01-01

    The increased number of everyday applications that rely on wireless communication has drawn an attention to several concerns on the adverse health effects that prolonged or even short time exposure might have on humans. International organisations and countries have adopted guides and legislation for the public safety. They include reference levels (RLs) regarding field strength electromagnetic quantities. To check for RLs compliance in an environment with multiple transmitters of various types, analytical simulation models may be implemented provided that all the necessary information are available. Since this is not generally the case in the most practical situations, on-site measurements have to be performed. The necessary equipment for measurements of this type usually includes broadband field metres suitable to measure the field strength over the whole bandwidth of the field sensor used. These types of measurements have several drawbacks; to begin with, given that RLs are frequency depended, compliance evaluation can be misleading since no information is available regarding the measured spectrum distribution. Furthermore, in a multi-transmitter environment there is no way of distinguishing the contribution of a specific source to the overall field measured. Of course, this problem can be resolved using narrowband directional receiver antennas, yet there is always the need for a priori knowledge of the polarisation of the incident electromagnetic wave. In this work, the use of measurement schemes of this type is addressed. A method independent to the polarisation of the incident wave is proposed and a way to evaluate a single source contribution to the total field in a multi-transmitter environment and the polarisation of the measured incident wave is presented.

  1. Biological effects of prolonged exposure to ELF electromagnetic fields in rats: III. 50 Hz electromagnetic fields.

    PubMed

    Zecca, L; Mantegazza, C; Margonato, V; Cerretelli, P; Caniatti, M; Piva, F; Dondi, D; Hagino, N

    1998-01-01

    Groups of adult male Sprague Dawley rats (64 rats each) were exposed for 8 months to electromagnetic fields (EMF) of two different field strength combinations: 5microT - 1kV/m and 100microT - 5kV/m. A third group was sham exposed. Field exposure was 8 hrs/day for 5 days/week. Blood samples were collected for hematology determinations before the onset of exposure and at 12 week intervals. At sacrifice, liver, heart, mesenteric lymph nodes, bone marrow, and testes were collected for morphology and histology assessments, while the pineal gland and brain were collected for biochemical determinations. At both field strength combinations, no pathological changes were observed in animal growth rate, in morphology and histology of the collected tissue specimens (liver, heart, mesenteric lymph nodes, testes, bone marrow), and in serum chemistry. An increase in norepinephrine levels occurred in the pineal gland of rats exposed to the higher field strength. The major changes in the brain involved the opioid system in frontal cortex, parietal cortex, and hippocampus. From the present findings it may be hypothesized that EMF may cause alteration of some brain functions.

  2. Weak scattering of scalar and electromagnetic random fields

    NASA Astrophysics Data System (ADS)

    Tong, Zhisong

    This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum

  3. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  4. Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Werban, Ulrike; Zacharias, Steffen; Pohle, Marco; Dietrich, Peter; Wollschläger, Ute

    2017-01-01

    Electromagnetic induction (EMI) measurements are widely used for soil mapping, as they allow fast and relatively low-cost surveys of soil apparent electrical conductivity (ECa). Although the use of non-invasive EMI for imaging spatial soil properties is very attractive, the dependence of ECa on several factors challenges any interpretation with respect to individual soil properties or states such as soil moisture (θ). The major aim of this study was to further investigate the potential of repeated EMI measurements to map θ, with particular focus on the temporal variability of the spatial patterns of ECa and θ. To this end, we compared repeated EMI measurements with high-resolution θ data from a wireless soil moisture and soil temperature monitoring network for an extensively managed hillslope area for which soil properties and θ dynamics are known. For the investigated site, (i) ECa showed small temporal variations whereas θ varied from very dry to almost saturation, (ii) temporal changes of the spatial pattern of ECa differed from those of the spatial pattern of θ, and (iii) the ECa-θ relationship varied with time. Results suggest that (i) depending upon site characteristics, stable soil properties can be the major control of ECa measured with EMI, and (ii) for soils with low clay content, the influence of θ on ECa may be confounded by changes of the electrical conductivity of the soil solution. Further, this study discusses the complex interplay between factors controlling ECa and θ, and the use of EMI-based ECa data with respect to hydrological applications.

  5. Measurement of radiofrequency fields

    SciTech Connect

    Leonowich, J.A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs.

  6. [The influence of electromagnetic fields on flora and fauna].

    PubMed

    Rochalska, Małgorzata

    2009-01-01

    This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.

  7. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  8. Basic Materials for Electromagnetic Field Standards

    DTIC Science & Technology

    2003-03-04

    choliner- gic processes // Labor Hygiene and Biological Effects of electromagnetic waves of ra- diofrequencies. Proceedings of 3rd All-Union Symposium...Microwave on Blood asparthate Amine transferase Enzymatic System. J. Radiation biology and ecol - ogy (Russian academy of sciences) 2001. Vol. 41. No.1...under Increased Temperature. J. Radiation biology and ecol - ogy (Russian academy of sciences) 2002. Vol. 42. No.1, pp. 191–193. 13. T.P. Semenova

  9. Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity.

    PubMed

    Jacquot, Jean Francois; le Bail, Jean-Luc; Bardet, Michel; Tabony, James

    2010-11-01

    There is interest as to whether the electromagnetic fields used in mobile radiotelephony might affect biological processes. Other weak fields such as gravity intervene in a number of physical and biological processes. Under appropriate in vitro conditions, the macroscopic self-organization of microtubules, a major cellular component, is triggered by gravity. We wished to investigate whether self-organization might also be affected by radiotelephone electromagnetic fields. Detecting a possible effect requires removing the obscuring effects triggered by gravity. A simple manner of doing this is by rotating the sample about the horizontal. However, if the external field does not also rotate with the sample, its possible effect might also be averaged down by rotation. Here, we describe an apparatus in which both the sample and an applied radiofrequency electromagnetic field (1.8 GHz) are stationary with respect to one another while undergoing horizontal rotation. The electromagnetic field profile within the apparatus has been measured and the apparatus tested by reproducing the in vitro behavior of microtubule preparations under conditions of weightlessness. Specific adsorption rates of electromagnetic energy within a sample are measured from the initial temperature rise the incident field causes. The apparatus can be readily adapted to expose samples to various other external fields and factors under conditions of weightlessness.

  10. Suppression and control of leakage field in electromagnetic helical microwiggler

    SciTech Connect

    Ohigashi, N.; Tsunawaki, Y.; Imasaki, K.

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  11. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  12. Electromagnetic Fields Produced by Inclined Return Stroke Channel

    NASA Astrophysics Data System (ADS)

    Nemamcha, Abdelmalek; Houabes, Mourad

    2014-05-01

    In this paper further theoretical investigations to understand and elucidate recently raised questions on the characteristics of lightning return-strokes curried out. Using Antenna Theory (AT) model, which is extended to take into account the channel inclination, the electromagnetic fields expressions for vertical dipole are completed, and an inclined channel is properly modeled, vertical electric and azimuthally magnetic fields are computed at different distances (close, intermediate and far distance ranges). The computations show that amplitudes and wave forms of the electromagnetic fields at close and intermediate lightning environment are considerably affected by the channel inclination.

  13. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    PubMed

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  14. Simple and effective monitoring of the electromagnetic field in the smart cities arena

    NASA Astrophysics Data System (ADS)

    Ares-Pena, Francisco J.; Franceschetti, Giorgio; Iodice, Antonio; Salas-Sánchez, Aarón A.

    2016-08-01

    A simple and economical method for monitoring the electromagnetic field intensity in built-up areas is presented. The method is based on the measurement of the field level over a limited number of points at street level in the city and their transmission to an operative control center, where the field values all over the city are correctly interpolated in real time. Citizens might obtain these values at their sites, via Internet, or by connecting with a dedicated call center. Numerical evaluations of the electromagnetic field intensity via the new developed model and confirming experimental results are finally presented.

  15. [Methods of dosimetry in evaluation of electromagnetic fields' biological action].

    PubMed

    Rubtsova, N B; Perov, S Iu

    2012-01-01

    Theoretical and experimental dosimetry can be used for adequate evaluation of the effects of radiofrequency electromagnetic fields. In view of the tough electromagnetic environment in aircraft, pilots' safety is of particular topicality. The dosimetric evaluation is made from the quantitative characteristics of the EMF interaction with bio-objects depending on EM energy absorption in a unit of tissue volume or mass calculated as a specific absorbed rate (SAR) and measured in W/kg. Theoretical dosimetry employs a number of computational methods to determine EM energy, as well as the augmented method of boundary conditions, iterative augmented method of boundary conditions, moments method, generalized multipolar method, finite-element method, time domain finite-difference method, and hybrid methods combining several decision plans modeling the design philosophy of navigation, radiolocation and human systems. Because of difficulties with the experimental SAR estimate, theoretical dosimetry is regarded as the first step in analysis of the in-aircraft conditions of exposure and possible bio-effects.

  16. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  17. Measurement of electromagnetic pulse emitted during rapid intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Beard, Matthew C.; Turner, Gordon M.; Schmuttenmaer, Charles A.

    2001-03-01

    We have measured the electromagnetic radiation emitted during intramolecular electron transfer using a method does not rely on secondary processes.^1 The motion of the electrons themselves generates the measured signal (as understood by Maxwell's equations). If the electron transfer occurs on a timescale of 0.1 to 10 picoseconds, the emitted radiation will fall in the THz or far-infrared region of the spectrum (1 THz = 33.33 wavenumbers), which is the region covered by our detector. We photoexcite a sample of partially oriented molecules and measure the emitted waveform. The polarity of the emitted field determines the direction of charge transfer unambiguously, and the shape of the field encodes the dynamics of the charge transfer -- a slower transfer rate produces a broader temporal pulse. Future work will extend this method to systems that are difficult to study by traditional means. 1. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, J. Am. Chem. Soc. 122, 11541 (2000).

  18. Electromagnetic Measurements in an Active Oilfield Environment

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Weiss, C. J.

    2015-12-01

    An important issue in oilfield development pertains to mapping and monitoring of the fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring and analysis have been used for this purpose for several decades, there remain several ambiguities and uncertainties with this approach. We are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a petroleum reservoir by injecting an electrically conductive contrast agent into an open fracture. The fracture is subsequently illuminated by a strong EM field radiated by a large engineered antenna. Specifically, a grounded electric current source is applied directly to the steel casing of the borehole, either at/near the wellhead or at a deep downhole point. Transient multicomponent EM signals (both electric and magnetic) scattered by the conductivity contrast are then recorded by a surface receiver array. We are presently utilizing advanced 3D numerical modeling algorithms to accurately simulate fracture responses, both before and after insertion of the conductive contrast agent. Model results compare favorably with EM field data recently acquired in a Permian Basin oilfield. However, extraction of the very-low-amplitude fracture signatures from noisy data requires effective noise suppression strategies such as long stacking times, rejection of outliers, and careful treatment of natural magnetotelluric fields. Dealing with the ever-present "episodic EM noise" typical in an active oilfield environment (associated with drilling, pumping, machinery, traffic, etc.) constitutes an ongoing problem. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Electromagnetic field strength levels surrounding electronic article surveillance (EAS) systems.

    PubMed

    Harris, C; Boivin, W; Boyd, S; Coletta, J; Kerr, L; Kempa, K; Aronow, S

    2000-01-01

    Electronic article surveillance (EAS) is used in many applications throughout the world to prevent theft. EAS systems produce electromagnetic (EM) energy around exits to create an EM interrogation zone through which protected items must pass before leaving the establishment. Specially designed EAS tags are attached to these items and must either be deactivated or removed prior to passing through the EAS EM interrogation zone to prevent the alarm from sounding. Recent reports in the scientific literature have noted the possibility that EM energy transmitted by EAS systems may interfere with the proper operation of sensitive electronic medical devices. The Food and Drug Administration has the regulatory responsibility to ensure the safety and effectiveness of medical devices. Because of the possibility of electromagnetic interference (EMI) between EAS systems and electronic medical devices, in situ measurements of the electric and magnetic fields were made around various types of EAS systems. Field strength levels were measured around four types of EAS systems: audio frequency magnetic, pulsed magnetic resonant, radio frequency, and microwave. Field strengths from these EAS systems varied with magnetic fields as high as 1073.6 Am(-1) (in close proximity to the audio frequency magnetic EAS system towers), and electric fields up to 23.8 Vm(-1) (in close proximity to the microwave EAS system towers). Medical devices are only required to withstand 3 Vm(-1) by the International Electrotechnical Commission's current medical device standards. The modulation scheme of the signal transmitted by some types of EAS systems (especially the pulsed magnetic resonant) has been shown to be more likely to cause EMI with electronic medical devices. This study complements other work in the field by attaching specific characteristics to EAS transmitted EM energy. The quantitative data could be used to relate medical device EMI with specific field strength levels and signal waveforms

  20. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  1. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  2. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Deckert, D.-A.; Merkl, F.

    2016-08-01

    The Shale-Stinespring Theorem (J Math Mech 14:315-322, 1965) together with Ruijsenaar's criterion (J Math Phys 18(4):720-737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential {A_μ} are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general {A_μ}, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of {A_μ} w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  3. Annals of conflicting results: looking back on electromagnetic field research.

    PubMed

    Schoen, D

    1996-11-15

    Few environmental health issues are as contentious as the question of whether exposure to electromagnetic fields (EMFs) from power lines increases cancer risk. Among the many actors in this controversy, epidemiologists have played the leading role in raising the question and motivating research. Epidemiologic studies of the effects of exposure to power-line EMFs include the investigation by Dr. Gilles Thériault and colleagues into incidence rates of cancer among electric-utility workers in Quebec, Ontario and France. With the development of personal dosimeters to measure exposure to electric, magnetic and pulsed EMFs, occupational studies in the 1990s have made an important methodologic advance. But, as Thériault explains, improvements in assessing exposure have not yet translated into clear and consistent findings.

  4. Human exposure to radiofrequency electromagnetic fields. Final rule.

    PubMed

    2013-06-04

    This document resolves several issues regarding compliance with the Federal Communications Commission's (FCC's) regulations for conducting environmental reviews under the National Environmental Policy Act (NEPA) as they relate to the guidelines for human exposure to RF electromagnetic fields. More specifically, the Commission clarifies evaluation procedures and references to determine compliance with its limits, including specific absorption rate (SAR) as a primary metric for compliance, consideration of the pinna (outer ear) as an extremity, and measurement of medical implant exposure. The Commission also elaborates on mitigation procedures to ensure compliances with its limits, including labeling and other requirements for occupational exposure classification, clarification of compliance responsibility at multiple transmitter sites, and labeling of fixed consumer transmitters.

  5. Environmental impact of the use of radiofrequency electromagnetic fields in physiotherapeutic treatment.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2014-01-01

    Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.

  6. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    PubMed

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  7. The effect of pulsed electromagnetic field therapy on food sensitivity.

    PubMed

    Monro, Jean A; Puri, Basant K

    2015-01-01

    Owing to the involvement of the immune system in the etiology of food sensitivity, and because pulsed electromagnetic field therapy is associated with beneficial immunologic changes, it was hypothesized that pulsed electromagnetic fields may have a beneficial effect on food sensitivity. A small pilot study was carried out in patients suffering from food sensitivity, with the antigen leukocyte antibody test being employed to index the degree of food sensitivity in terms of the number of foods to which each patient reacted. It was found that a 1-week course of pulsed electromagnetic field therapy, consisting of one hour's treatment per day, resulted in a reduction in the mean number of reactive foods of 10.75 (p < 0.05). On the basis of these results, a larger study is warranted.

  8. Quantum processes in short and intensive electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki

    2016-05-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

  9. Electromagnetic Propulsion System for Spacecraft using Geomagnetic fields and Superconductors

    NASA Astrophysics Data System (ADS)

    Dadhich, Anang

    This thesis concentrates on developing an innovative method to generate thrust force for spacecraft in localized geomagnetic fields by various electromagnetic systems. The proposed electromagnetic propulsion system is an electromagnet, like normal or superconducting solenoid, having its own magnetic field which interacts with the planet's magnetic field to produce a reaction thrust force. The practicality of the system is checked by performing simulations in order the find the varying radius, velocity, and acceleration changes. The advantages, challenges, various optimization techniques, and viability of such a propulsion system in present day and future are discussed. The propulsion system such developed is comparable to modern MPD Thrusters and electric engines, and has various applications like spacecraft propulsion, orbit transfer and stationkeeping.

  10. The electromagnetic bio-field: clinical experiments and interferences

    PubMed Central

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-01-01

    Introduction: One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. Material and methods: The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. Results: The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. Conclusions: The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express. PMID:22802878

  11. The electromagnetic bio-field: clinical experiments and interferences.

    PubMed

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  12. On electromagnetic fields and their applications in the early universe

    NASA Astrophysics Data System (ADS)

    Ahonen, Jarkko Tapani

    1998-07-01

    The field equations of the electromagnetic field, combined with models of the early universe, make it possible to study electromagnetic phenomena at the early stages of the universe. Electromagnetic fields provide us with a tool to estimate electrical conductivity and transport coefficients (heat conductivity and viscosity) in the primordial plasma of the hot early universe. Electrical conductivity plays an important role, for example, in the dissipation of the axion field (a weakly interacting dark matter candidate) and in the creation and dissipation of the primordial magnetic field. On the other hand, heat conductivity and shear viscosity are important, for example, in connection with primordial density perturbations, i.e., galaxy formation, early phase transitions, and primordial magnetic fields. First, in paper I, we derived the equations of motion for the axion field coupled with an electromagnetic field. It was found that energy from the axion field can be transferred to the electromagnetic field. Therefore the damping of the axion field depends on electrical conductivity but that the electromagnetic dissipation cannot, however, significantly damp the axion field. In paper II we developed the tools with which to estimate electrical conductivity in the primordial plasma. We used the Boltzmann collision equation to study how a beam of charged particles will be scattered in the early hot universe. We integrated the collision integral numerically by a simple Monte Carlo integration routine. We discovered that the charged leptons give the largest contribution to the electrical conductivity; the quark contribution was found to be negligible. In Paper III, we estimated with an Abelian Higgs model what kind of a primordial magnetic field can be created in first order phase transition bubble collisions. Assuming that the Abelian model reflects the properties of the full electroweak case, we found that the seed field created is of the right order of magnitude in order

  13. Kinetic theory of plasma equilibrium in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Gorbunov, L. M.; Gradov, O. M.; Ziunder, D.; Ramazashvili, R. R.

    1981-04-01

    The present study examines the equilibrium of a direct-current-carrying plasma in an electromagnetic field under the assumption that the particles escaping from the plasma have a Maxwellian distribution. It is shown that an equilibrium state is possible only in the case of a definite relationship between the amplitude of the incident wave and the concentration of escaping particles. Attention is given to spatial variations of the electromagnetic field, and of the plasma density and flow velocity. The application of these effects in microwave devices is discussed.

  14. Near-field thermal electromagnetic transport: An overview

    NASA Astrophysics Data System (ADS)

    Edalatpour, Sheila; DeSutter, John; Francoeur, Mathieu

    2016-07-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added to Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres with size comparable to the wavelength, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. A transient analysis shows that despite a non-uniform spatial distribution of power absorbed, the sphere temperature remains spatially uniform at any instant due to the fact that the thermal resistance by conduction is much smaller than the resistance by radiation. The formalism proposed in this paper is general, and could be used as a starting point for adapting solution methods employed in traditional electromagnetic scattering problems to near-field thermal electromagnetic transport.

  15. Observations for Sharp Changes of Ionospheric Ion Concentration and Electromagnetic Field Measurements at Altitude 900 km on Equatorial Latitudes by INTERKOSMOS - Bulgaria-1300 Satellite Data

    NASA Astrophysics Data System (ADS)

    Gdalevich, G. L.; Bankov, N.; Chapkanov, S.; Todorieva, L.

    Three-axis stabilization of the satellite orientation ensured success for convenient measurements both of electric and magnetic field vectors. X axis was directed along the satellite orbital velocity vector. Z axis was directed upwards, perpendicular to the Earth's surface. Fast flows of electrons and ions were measured in the directions along both +z and -z axes and also perpendicular to z axis. Ionospheric ion concentration meters registered sharp changes of the plasma density. Taking into account the totality meter set data we can conclude that the physical phenomena observed in these measurements are caused by damping both of electrostatic oscillations and plasma vortices. Also it is shown that large-scale irregularity rise and disintegration into small-scale irregular structures can be connected with magnetospheric and ionospheric sources.

  16. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  17. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  18. Optimal control of electromagnetic field using metallic nanoclusters

    NASA Astrophysics Data System (ADS)

    Grigorenko, Ilya; Haas, Stephan; Balatsky, Alexander; Levi, A. F. J.

    2008-04-01

    The dielectric properties of metallic nanoclusters in the presence of an applied electromagnetic field are investigated using the non-local linear response theory. In the quantum limit we find a nontrivial dependence of the induced field and charge distributions on the spatial separation between the clusters and on the frequency of the driving field. Using a genetic algorithm, these quantum functionalities are exploited to custom-design sub-wavelength lenses with a frequency-controlled switching capability.

  19. Representative electromagnetic field intensities near the Clam Lake, Wisconsin and Republic, Michigan ELF (Extremely Low Frequency) facilities

    NASA Astrophysics Data System (ADS)

    1984-01-01

    Extremely low frequency electromagnetic fields produced by ELF antennas and commercial power lines at Clam Lake, WI, and by commercial power lines at Republic, MI, have been measured at residences, businesses and forest recreational areas for the continuing assessment of the Navy's ELF Communications Program. The ELF fields from existing antennas at Clam Lake, and from power lines in both states are low. Introducing ELF antenna fields at Republic, MI in several years will not significantly change the electromagnetic environment there. The existing field intensities are interpreted and compared with independent expert, judgment, professional standards-setting and judicial and administrative law opinions regarding safe exposure of the public to ELF electromagnetic fields.

  20. Measurement and control systems for an imaging electromagnetic flow metre.

    PubMed

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller.

  1. Deformation methods in modelling of the inner magnetospheric electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Toivanen, P. K.

    2007-12-01

    Various deformation methods have been widely used in animation image processing. In common terms, they are mathematical presentations of deformations of an image drawn on an elastic material under stretching or compression of the material. Such a method has also been used in modelling of the magnetospheric magnetic fields, and recently been generalized to include also the electric fields. In this presentations, the theory of the deformation method and an application in a form of a new global magnetospheric electromagnetic field model are previewed. The main focus of the presentation is on the inner magnetospheric current systems and associated electromagnetic fields during quiet and disturbed periods. Finally, a short look at the modern deformation methods in image processing is taken. These methods include the Free Form Deformations and Moving Least Squares Deformations, and their future applications in magnetospheric field modelling are discussed.

  2. Ionization of atoms in strong low-frequency electromagnetic field

    SciTech Connect

    Krainov, V. P.

    2010-08-15

    The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.

  3. Electromagnetic time reversal focusing of near field waves in metamaterials

    NASA Astrophysics Data System (ADS)

    Chabalko, Matthew J.; Sample, Alanson P.

    2016-12-01

    Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

  4. Relativistic Particle in Electromagnetic Fields with a Generalized Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    Merad, M.; Zeroual, F.; Falek, M.

    2012-05-01

    In this paper, we propose to solve the relativistic Klein-Gordon and Dirac equations subjected to the action of a uniform electromagnetic field with a generalized uncertainty principle in the momentum space. In both cases, the energy eigenvalues and their corresponding eigenfunctions are obtained. The limit case is then deduced for a small parameter of deformation.

  5. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  6. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  7. Electromagnetic Field in Lyra Manifold: A First Order Approach

    NASA Astrophysics Data System (ADS)

    Casana, R.; de Melo, C. A. M.; Pimentel, B. M.

    2005-12-01

    We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.

  8. Oscillator strength sum rules with an external electromagnetic field

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Sabin, John R.; Öhrn, Yngve; Oddershede, J.

    1998-04-01

    We demonstrate that the Bethe, and therefore the Thomas-Reiche-Kuhn, sum rule is unaffected by the presence of an applied external electromagnetic field in the exact case. We use the consequence that the first-order perturbation contribution must also vanish to derive a necessary condition for the completeness of computational one-electron basis sets.

  9. Does three-dimensional electromagnetic field inherit the spacetime symmetries?

    NASA Astrophysics Data System (ADS)

    Cvitan, M.; Dominis Prester, P.; Smolić, I.

    2016-04-01

    We prove that the electromagnetic field in a (1+2)-dimensional spacetime necessarily inherits the symmetries of the spacetime metric in a large class of generalized Einstein-Maxwell theories. The Lagrangians of the studied theories have general diff-covariant gravitational part and include both the gravitational and the gauge Chern-Simons terms.

  10. Effects of pulsed electromagnetic fields on benign prostate hyperplasia.

    PubMed

    Giannakopoulos, Xenophon K; Giotis, Christos; Karkabounas, Spyridon Ch; Verginadis, Ioannis I; Simos, Yannis V; Peschos, Dimitrios; Evangelou, Angelos M

    2011-12-01

    Benign prostate hyperplasia (BPH) has been treated with various types of electromagnetic radiation methods such as transurethral needle ablation (TUNA), interstitial laser therapy (ILC), holmium laser resection (HoLRP). In the present study, the effects of a noninvasive method based on the exposure of patients with BPH to a pulsative EM Field at radiofrequencies have been investigated. Twenty patients with BPH, aging 68-78 years old (y.o), were enrolled in the study. Patients were randomly divided into two groups: the treatment group (10 patients, 74.0 ± 5.7 y.o) treated with the α-blocker Alfusosin, 10 mg/24 h for at least 4 weeks, and the electromagnetic group (10 patients, 73.7 ± 6.3 y.o) exposed for 2 weeks in a very short wave duration, pulsed electromagnetic field at radiofrequencies generated by an ion magnetic inductor, for 30 min daily, 5 consecutive days per week. Patients of both groups were evaluated before and after drug and EMF treatment by values of total PSA and prostatic PSA fraction, acid phosphate, U/S estimation of prostate volume and urine residue, urodynamic estimation of urine flow rate, and International Prostate Symptom Score (IPSS). There was a statistically significant decrease before and after treatment of IPSS (P < 0.02), U/S prostate volume (P < 0.05), and urine residue (P < 0.05), as well as of mean urine flow rate (P < 0.05) in patients of the electromagnetic group, in contrast to the treatment group who had only improved IPSS (P < 0.05). There was also a significant improvement in clinical symptoms in patients of the electromagnetic group. Follow-up of the patients of this group for one year revealed that results obtained by EMFs treatment are still remaining. Pulsed electromagnetic field at radiofrequencies may benefit patients with benign prostate hyperplasia treated by a non-invasive method.

  11. QED effective action in magnetic field backgrounds and electromagnetic duality

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    2011-09-01

    In the in-out formalism we advance a method of the inverse scattering matrix for calculating effective actions in pure magnetic field backgrounds. The one-loop effective actions are found in a localized magnetic field of Sauter type and approximately in a general magnetic field by applying the uniform semiclassical approximation. The effective actions exhibit the electromagnetic duality between a constant electric field and a constant magnetic field and between E(x)=Esech2(x/L) and B(x)=Bsech2(x/L).

  12. [Clinical monitoring in areas of exposure to radiofrequency electromagnetic fields].

    PubMed

    Suvorov, I M

    2013-01-01

    Clinical syndromes induced by high intensity radiofrequency electromagnetic field chronic exposure are described. Persons injured by occupational exposure have been observed central nervous system changes in diencephalic syndrome form, cardio-vascular system changes revealed in atherosclerosis, isch(a)emic heart disease and coronary insufficiency rapid progressive expansion. General public living in territory of radar station exposure zone different functional disorders have been identified: vegetative dystonia (asthenovegetative syndrome), thrombocytopenia, decrease of blood coagulation index, and thyroid gland function changes. Observed diseases clinical variability may be determined by electromagnetic exposure characteristics.

  13. Mars Exploration Using ELF Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, J.; Kulak, A.; Zietara, K.

    2015-12-01

    We present a methodology and instrumentation allowing for an investigation of the major environmental aspects of Mars, such as the structure of the planetary subsurface, and the presence of electrical discharges in the atmosphere. The methodology is based on the propagation of extremely low frequency (ELF) electromagnetic (EM) waves (3Hz-3kHz). These weakly attenuated waves, once generated by electrical discharges, propagate around a planet in a waveguide made of two electrically conductive spheres: the ground and the ionosphere. They are also capable of producing global EM resonances called Schumann resonances (SR). When an ELF wave is propagating from its source to a receiver, the environmental properties, such as: electrical conductivity of the waveguide boundaries, influence its propagation parameters. Using an analytical approach, we can estimate the structure of the planetary subsurface or the lower ionosphere layers on the basis of the measured parameters. As there is no liquid water at the Martian surface, the Martian low-conductivity ground enables deep ELF penetration into the planetary subsurface. As a result, the presented technique can be used as a tool to detect groundwater reservoirs located even several kilometers below the surface. On the basis of presently available date on the Martian subsurface, and theories of electrical properties of rocks, ice and water, we have developed probable Martian subsurface models with and without aquifers. The obtained results indicate that if aquifers are present beneath the Martian surface, the SR frequencies, the SR amplitudes, and the ELF phase velocities will be higher by about 12%, 37%, and 9%, respectively, as compare to the situation, in which there is solely a dry basaltic ground. As the presented phenomenon is of the global nature, one measuring station, located at the planetary surface, is enough to perform some basic research. The proposed lightweight measuring equipment, consisting of a low-power ELF

  14. [ASSESSMENT OF OCCUPATIONAL EXPOSURE TO RADIO FREQUENCY ELECTROMAGNETIC FIELDS].

    PubMed

    Aniołczyk, Halina; Mariańska, Magda; Mamrot, Paweł

    2015-01-01

    European Union Directive 2013/35/UE provides for the implementation of EU regulations into national legislation. Our aim is to assess actual health hazards from radiofrequency eldctromagnetic field (RF EMF) (range: 100 kHz - 300 GHz) and indicate workplaces with the highest risk to employee health. Data from measurements of RF EMF performed by the Laboratory of Electromagnetic Hazards in Nofer Institute of Occupational Medicine (Łódź, Poland) were analyzed. The analysis covered the results of electric field intensity (E) for over 450 selected items. The ranges of protection zones and the extent to which maximum admissible intensity (MAI) values were also analyzed. The determinations and'measurements of EMF in the work environment met the requirements of Polish Standard, while Polish regulations on the MAI values were used as the criterion for the assessment of the exposure. The highest values of E field intensity at workplaces were measured for: electrosurgery, to 400 V/m, and short-wave diathermy units, to 220 V/m, dielectric welders to 240 V/m, within the FM radio antenna systems, to 180 V/m. The widest protection zones were noted for prototype research instruments, short-wave diathermy units, and dielectric welders. The most excessive (up to 12-fold MAI) values were recorded for dielectric welders, short-wave diathermy units (up to 11-fold) and microwave diathermy units (up to 8-fold). Our results have confirmed the high RF EMF values for physiotherapists, operators of dielectric welders, and mast maintenance workers in radio com munication facilities (especially radio and TV broadcasting stations).

  15. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Fang, Guang-You; Ji, Yi-Cai

    2015-04-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. Supported in part by China Postdoctoral Science Foundation under Grant No. 201M550839, and in part by the Key Research Program of the Chinese Academy of Sciences under Grant No. KGZD-EW-603

  16. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  17. Spectral degree of coherence of a random three-dimensional electromagnetic field.

    PubMed

    Korotkova, Olga; Wolf, Emil

    2004-12-01

    The complex spectral degree of coherence of a general random, statistically stationary electromagnetic field is introduced in a manner similar to the way it is defined for a beamlike field, namely, by means of Young's interference experiment. Both its modulus and its phase are measurable. We illustrate the definition by applying it to blackbody radiation emerging from a cavity. The results are of particular interest for near-field optics.

  18. [Metrology of pulse modulated electromagnetic fields with diode-type meters].

    PubMed

    Kubacki, Roman; Kieliszek, Jarosław; Sobiech, Jaromir; Puta, Robert

    2007-01-01

    Electromagnetic field meters used for occupational and general public health protection are commonly calibrated in the continuous wave conditions, but a large number of medical devices, mobile base station antennas and radars generate pulse modulated fields. The results of an analysis of additional errors of pulse fields measurements by diode-type meters (EMR 200/300, PMM and MEH) are presented in this paper.

  19. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  20. Momentum of the electromagnetic field in transparent dielectric media

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2007-09-01

    We present arguments in favor of the proposition that the momentum of light inside a transparent dielectric medium is the arithmetic average of the Minkowski and Abraham momenta. Using the Lorentz transformation of the fields (and of the coordinates) from a stationary to a moving reference frame, we show the consistent transformation of electromagnetic energy and momentum between the two frames. We also examine the momentum of static (i.e., time-independent) electromagnetic fields, and show that the close connection that exists between the Poynting vector and the momentum density extends all the way across the frequency spectrum to this zero-frequency limit. In the specific example presented in this paper, the static field inside a non-absorbing dielectric material turns out to have the Minkowski momentum.

  1. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    PubMed

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  2. Effect of extremely low frequency electromagnetic fields on bacterial membrane.

    PubMed

    Oncul, Sule; Cuce, Esra M; Aksu, Burak; Inhan Garip, Ayse

    2016-01-01

    The effect of extremely low frequency electromagnetic fields (ELF-EMF) on bacteria has attracted attention due to its potential for beneficial uses. This research aimed to determine the effect of ELF-EMF on bacterial membrane namely the membrane potential, surface potential, hydrophobicity, respiratory activity and growth. Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were subjected to ELF-EMF, 50 Hz, 1 mT for 2 h. Membrane potential was determined by fluorescence spectroscopy with or without EDTA (Ethylenediaminetetraacetic acid) with DisC3(5) (3,3-dipropylthiacarbocyanine iodide), zeta potential measurements were performed by electrophoretic mobility, hydrophobicity of the membrane was measured with MATH (Microbial Adhesion to Hydrocarbons) test, respiratory activity was determined with CTC (5-Cyano-2,3-ditolyl tetrazolium chloride), colony forming unit (CFU) and DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) was used for growth determinations. ELF-EMF caused changes in physicochemical properties of both Gram-positive and Gram-negative bacteria. Hyperpolarization was seen in S. aureus and EDTA-treated E. coli. Surface potential showed a positive shift in S. aureus contrariwise to the negative shift seen in EDTA-untreated E. coli. Respiratory activity increased in both bacteria. A slight decrease in growth was observed. These results show that ELF-EMF affects the crucial physicochemical processes in both Gram-positive and Gram-negative bacteria which need further research.

  3. Association between electromagnetic field exposure and abortion in pregnant women living in Tehran

    PubMed Central

    Abad, Masoumeh; Malekafzali, Hossein; Simbar, Masoumeh; Seyed Mosaavi, Hassan; Merghati Khoei, Effat

    2016-01-01

    Background: Health-related quality of life is affected by electromagnetic field exposure in each person everyday life. However, this is extremely controversial issue. Objective: Investigation of the associations between electromagnetic field exposure and miscarriage among women of Tehran. Materials and Methods: In this longitudinal study, 462 pregnant women with gestational age <12 wks from seven main regions of Tehran city in Iran with similar social and cultural status were participated. Women were interviewed face-to face to collect data. Reproductive information was collected using medical file recorded in those hospitals the subjects had delivery. The measuring device measured electromagnetic waves, Narda safety test solutions with valid calibration date at the entrance door of their houses. Results: A significant likelihood of miscarriage in women who exposed to significant level of electromagnetic wave. However, this association was not confirmed by Wald test. Conclusion: This study may not provide strong or consistent evidence that electromagnetic field exposure is associated or cause miscarriage. This issue may be due to small sample size in this study. PMID:27326421

  4. [Risk of electromagnetic fields in electric power stations and substations of a petrochemical plant].

    PubMed

    Castagnoli, A; Fabri, G; Romeo, A

    2003-01-01

    Authors evaluate electromagnetic field exposure in the low-frequency range (5-30,000 Hz) in electric power stations and substations of petroleum processing plant. According to the measured values and the reference exposure limits considered, they conclude that operators should be exposed without adverse effects.

  5. [Development of innovative methods of electromagnetic field evaluation for portable radio-station].

    PubMed

    Rubtsova, N B; Perov, S Iu; Bogacheva, E V; Kuster, N

    2013-01-01

    The results of portable radio-station "Radiy-301" electromagnetic fields (EMF) emission measurement and specific absorption rate data evaluation has shown that workers' exposure EMF levels may elevate hygienic norms and hereupon can be health risk factor. Possible way of portable radio-station EMF dosimetry enhancement by means of domestic and international approaches harmonization is considered.

  6. Controlling Electromagnetic Field by Graded Meta-materials

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Metamaterials , i.e. artificial materials with electromagnetic properties not readily available in nature, have become a major research topic in both scientific and engineering communities. Being different from conventional materials, metamaterials possess peculiar electromagnetic properties, e.g. negative refractive index, depending on their structures. In particular, metamaterials form a basis for achieving cloaking device that makes an object invisible or transparency to the probing electromagnetic wave. This topic has significant impact on various fields ranging from optics, medicine, biology to nanotechnology. Several cloaking techniques have been proposed by different research groups, namely, anomalous localized resonance, transformation optics, and scattering cancellation, etc. Each of them has its own advantages and disadvantages. For instance, the limitation in working frequency is a primary disadvantage of them. This thesis is concentrated on controlling electromagnetic field by graded metamaterials, i.e, metamaterials with graded structures, with the objective to realize the broadband electromagnetic transparency by extending the working frequency. Regarding the limitations of existing cloaking techniques, we propose the graded model based on the scattering cancellation technique, because it does not rely on resonant phenomena, and is fairly robust to relatively high variations of the shape and electromagnetic properties of the cloaked object. We modify the original Mie theory and Rayleigh scattering theory to deal with the graded metamaterial structures, and calculate the scattering cross section of graded isotropic and anisotropic spherical structures, an alytically and numerically. For the graded isotropic spherical structure, we achieve the exact analytic expressions for both full-wave and Rayleigh scattering cross sections, within our modified Mie theory and Rayleigh scattering theory. The numerical studies on the scattering cross sections clearly

  7. Consequences of Coupled Electromagnetic-Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Smalley, Larry

    2002-01-01

    In the late 1980s there was a flurry of activities involving the newly discovered high Tc superconductors in the development of new devices such as more efficient current transmission, transformers, generators, and motors. One such developmental project by Podkletnov in 1992 noted some small, anomalous gravitational behaviors. A following unpublished paper by Podkletnov 1995 provided data with larger effects using a larger (approx. 25 cm) superconducting disk. Unfortunately this disk was extremely fragile and was broken beyond repair. To date, these experiments have not been successfully repeated because of the difficulties of producing stable, durable (and fired) superconducting disks. This problem with firing these disks has been solved by Li. What remains is to install the disk in "motor", at superconducting temperatures in the presence of appropriately tailored magnetic fields.

  8. Designing localized electromagnetic fields in a source-free space.

    PubMed

    Borzdov, George N

    2002-06-01

    An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space--localized fields defined by the rotation group--are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated.

  9. A prediction model for personal radio frequency electromagnetic field exposure.

    PubMed

    Frei, Patrizia; Mohler, Evelyn; Bürgi, Alfred; Fröhlich, Jürg; Neubauer, Georg; Braun-Fahrländer, Charlotte; Röösli, Martin

    2009-12-15

    Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.

  10. Radiotelephone with reduced electromagnetic field in human head

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    The quarter-wave monopole base driven over a circular ground plane with a finite radius has applications in over-the-horizon radar and on surveillance aircraft. A new use, for which the analysis is given in this paper, is as an over-the-head-mounted antenna for cellular telephones. With this design, the electromagnetic field in the head and the associated specific absorption rate of electromagnetic energy are greatly reduced when compared with the conventional hand-held transceiver. A complete analysis is carried out of the electromagnetic field on the surface of the head and throughout its interior when the head is modeled as a cylinder with the electrical properties of the brain enclosed in a wall with the thickness and electrical properties of the skull. Graphs and tables are provided that give the field in the air on the surface of the head and in the skull and brain. The far field is also determined. The results are compared with those obtained with the hand-held radiotelephone (King, 1995).

  11. Recent fracture induced electromagnetic field measurements revealing an Earth system in second order phase transition before the occurrence of significant earthquakes

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Antonopoulos, George; Nomicos, Constantinos; Eftaxias, Konstantinos

    2015-04-01

    A crucial feature observed in the study of fracture induced electromagnetic emissions (EMEs) is the asynchronous appearance of MHz and kHz AE-EM precursors: the MHz EMEs precede the kHz ones: the strong avalanche-like kHz emissions are launched in the tail of pre-fracture emissions. Herein, we focus on the systematically observed precursory MHz EME. We show that both, the MHz EMEs recorded prior to recent significant earthquakes that occurred in Greece and the associated seismic activities came to critical condition a few days before the main shock occurrence. The analyses were performed my means of two independent statistical method, namely, the method of critical fluctuation and the natural time method, both revealing critical features. This results indicates the existence of a strong connection of the MHz EME with the corresponding earthquake preparation process. Accumulated laboratory, theoretical and numerical evidence supports the hypothesis that the MHz EME is emitted during the fracture of process of heterogeneous medium surrounding the family of strong entities (asperities) distributed along the fault sustaining the system. The kHz EME is attributed to the family of asperities themselves.

  12. The Felix experiments: measurements of electromagnetic effects

    SciTech Connect

    Turner, L.R.; Evans, K.; Gunderson, G.R.; Kim, S.; Knott, M.J.; McGhee, D.G.; Praey, W.F.; Wehrle, R.B.

    1985-07-01

    Three major series of experiments have been conducted with the FELIX facility at ANL. Experiments on the coupling between eddy currents and angular displacements of loops and plates in crossed constant and changing magnetic fields demonstrated that the coupling effects reduced the peak currents and deflections. These experiments were carried out by a team of investigators from Princeton Plasma Physics Laboratory (PPPL) and ANL and are reported elsewhere. Experiments measuring eddy current effects in flat plates provided data to validate 2-D and 3-D eddy current computer codes. Experiments measuring eddy current effects in hollow cylinders with different ratios of thickness to diameter explored the limitations of using 2-D codes to model 3-D geometries. The plate and cylinder experiments are described in detail.

  13. FELIX experiments: measurements of electromagnetic effects

    SciTech Connect

    Turner, L.R.; Evans, K. Jr.; Gunderson, G.R.; Kim, S.; Knott, M.J.; McGhee, D.G.; Praeg, W.F.; Wehrle, R.B.

    1985-01-01

    Three major series of experiments have been conducted with the FELIX facility at ANL. Experiments on the coupling between eddy currents and angular displacements of loops and plates in crossed constant and changing magnetic fields demonstrated that the coupling effects reduced the peak currents and deflections. These experiments were carried out by a team of investigators from Princeton Plasma Physics Laboratory (PPPL) and ANL and are reported elsewhere. Experiments measuring eddy current effects in flat plates provided data to validate 2-D and 3-D eddy current computer codes. Experiments measuring eddy current effects in hollow cylinders with different ratios of thickness to diameter explored the limitations of using 2-D codes to model 3-D geometries. The plate and cylinder experiments are described in detail.

  14. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements

    USGS Publications Warehouse

    Clemo, T.; Barrash, W.; Reboulet, E.C.; Johnson, T.C.; Leven, C.

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. ?? 2009 National Ground Water Association.

  15. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  16. [New mechanisms of biological effects of electromagnetic fields].

    PubMed

    Buchachenko, A L; Kuznetsov, D A; Berdinskiĭ, V L

    2006-01-01

    The production of ATP in mitochondria depends on the magnesium nuclear spin and magnetic moment of a Mg2+ ion in creatine kinase and ATPase. This suggests that enzymatic synthesis of ATP is an ion-radical process and thus depends on the external magnetic field (magnetobiology originates from this fact) and microwave fields, which control the spin states of ion-radical pairs and affect the ATP synthesis. The chemical mechanism of ATP synthesis and the origin of biological effects of electromagnetic (microwave) fields are discussed.

  17. Invariant superoscillatory electromagnetic fields in 3D-space

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Papazoglou, D. G.; Tzortzakis, S.

    2017-01-01

    We derive exact solutions of Maxwell’s equations based on superoscillatory superpositions of vectorial Bessel beams. These novel beams are diffraction-free and can support subwavelength features in their transverse electromagnetic fields, without the presence of any evanescent waves. These features can be propagated into the far field. Approximate solutions in closed form are also derived based on asymptotic expansions of Bessel functions for simple prescribed subwavelength patterns. The superoscillatory characteristics of both electric, magnetic field components (transverse and longitudinal), and the Poynting vector, as well as, the effect of nonparaxiality are systematically investigated.

  18. Plasma, magnetic, and electromagnetic measurements at nonmagnetic bodies

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.

    1993-01-01

    The need to explore the magnetospheres of the Earth and the giant planets is widely recognized and is an integral part of our planetary exploration program. The equal need to explore the plasma, magnetic, and electromagnetic environments of the nonmagnetic bodies is not so widely appreciated. The previous, albeit incomplete, magnetic and electric field measurements at Venus, Mars, and comets have proven critical to our understanding of their atmospheres and ionospheres in areas ranging from planetary lightning to solar wind scavenging and accretion. In the cases of Venus and Mars, the ionospheres can provide communication paths over the horizon for low-altitude probes and landers, but we know little about their lower boundaries. The expected varying magnetic fields below these planetary ionospheres penetrates the planetary crusts and can be used to sound the electrical conductivity and the thermal profiles of the interiors. However, we have no knowledge of the levels of such fields, let alone their morphology. Finally, we note that the absence of an atmosphere and an ionosphere does not make an object any less interesting for the purposes of electromagnetic exploration. Even weak remanent magnetism such as that found on the Moon during the Apollo program provides insight into the present and past states of planetary interiors. We have very intriguing data from our space probes during times of both close and distant passages of asteroids that suggest they may have coherent magnetization. If true, this observation will put important constraints on how the asteroids formed and have evolved. Our planetary exploration program must exploit its full range of exploration tools if it is to characterize the bodies of the solar system thoroughly. We should especially take advantage of those techniques that are proven and require low mass, low power, and low telemetry rates to undertake.

  19. [Investigation of occupational exposure to power frequency electromagnetic fields in workers of power grid].

    PubMed

    Chen, Qing-song; Yang, Xiao-ying; Li, Run-qin; Zhu, Bao-yu; Zhang, Xiao; Gao, Yang; Huang, Han-lin; Li, Tao

    2012-08-01

    To measure and assess the levels of occupational exposure to power frequency electromagnetic fields in workers of power grid. PMM8053 electromagnetic fields measuring system with EHP-50 probe was used to measure the levels of electromagnetic fields at working place. Personal dosimeters (EMDEX LITE) were utilized to measure the individual exposure levels of power frequency magnetic field. The results were evaluated with the limitation criteria of GBZ2.2 and ICNIRP. In the 500 kV ultra high voltage substation, the intensity at 90% measure points of power electric field was more than 5 kV/m. The magnetic field intensity in the areas nearby reactors and capacitors was often higher than 100 µT, even several hundreds µT. The mean daily exposure levels of workers in power grid were between 0.04 and 5.0 µT, and the exposure levels of 70% workers were higher than 0.4 µT. In the areas of ultra high voltage and nearby the reactors and capacitors are the key control points for occupational health in power grid. There is acute health risk of workers exposed to high accumulative exposure levels.

  20. Effects of noise and electromagnetic fields on reproductive outcomes.

    PubMed Central

    Meyer, R E; Aldrich, T E; Easterly, C E

    1989-01-01

    Much public health research has been directed to studies of cancer risks due to chemical agents. Recently, increasing attention has been given to adverse reproductive outcomes as another, shorter-term biologic indicator of public health impact. Further, several low-level ubiquitous physical agents have been implicated recently as possibly affecting human health. These physical factors (noise and electromagnetic fields) represent difficult topics for research with epidemiologic study methods. This paper provides a brief review of the published data related to the risk of adverse reproductive outcomes and exposure to noise or electromagnetic fields. The discussion includes ideas for possible biologic mechanisms, considerations for exposure assessment, and suggestions for epidemiologic research. PMID:2667980

  1. Soft hairs on isolated horizon implanted by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mao, Pujian; Wu, Xiaoning; Zhang, Hongbao

    2017-03-01

    Inspired by the recent proposal of soft hair on black holes in Hawking et al (2016 Phys. Rev. Lett. 116 231301), we have shown that an isolated horizon carries soft hairs implanted by electromagnetic fields. The solution space and the asymptotic symmetries of Einstein–Maxwell theory have been worked out explicitly near the isolated horizon. The conserved current has been computed and an infinite number of near horizon charges have been introduced from the electromagnetic fields associated with the asymptotic U(1) symmetry near the horizon, which indicates the fact that the isolated horizon carries a large amount of soft electric hairs. The soft electric hairs, i.e. asymptotic U(1) charges, are shown to be equivalent to the electric multipole moments of isolated horizons. It is further argued that the isolated horizon supertranslation is from the ambiguity of its foliation and an analogue of memory effect on horizon can be expected.

  2. Asseleration of ions in turbulent electromagnetic field during dipolarization events

    NASA Astrophysics Data System (ADS)

    Zhukova, Elena; Popov, Victor

    2017-04-01

    In spite of the long time interest for the acceleration of hight energetic ions in the Earth's magnetotail, considerable uncertainty remains as to the quantitative influence of different acceleration mechanism and their modifications. Both theoretical and numerical studies predict a hardening of the energy spectra of the particles wandering into the current sheet. Such energetic ion fluxes in the near-Earth tail were usually observed during magnetic dipolarizations or presence of turbulent electromagnetic field in the central region of current sheet that can effectively interact with the charged particles and energize them. The results demonstrate particle acceleration by separate two mechanisms and by their joint action. Both acceleration mechanisms lead to the formation of powered tails in proton distribution functions. Generally acceleration on magnetic dipolarization can be more effective in comparison with turbulent electromagnetic field.

  3. Exposure to electromagnetic fields from laptop use of "laptop" computers.

    PubMed

    Bellieni, C V; Pinto, I; Bogi, A; Zoppetti, N; Andreuccetti, D; Buonocore, G

    2012-01-01

    Portable computers are often used at tight contact with the body and therefore are called "laptop." The authors measured electromagnetic fields (EMFs) laptop computers produce and estimated the induced currents in the body, to assess the safety of laptop computers. The authors evaluated 5 commonly used laptop of different brands. They measured EMF exposure produced and, using validated computerized models, the authors exploited the data of one of the laptop computers (LTCs) to estimate the magnetic flux exposure of the user and of the fetus in the womb, when the laptop is used at close contact with the woman's womb. In the LTCs analyzed, EMF values (range 1.8-6 μT) are within International Commission on Non-Ionizing Radiation (NIR) Protection (ICNIRP) guidelines, but are considerably higher than the values recommended by 2 recent guidelines for computer monitors magnetic field emissions, MPR II (Swedish Board for Technical Accreditation) and TCO (Swedish Confederation of Professional Employees), and those considered risky for tumor development. When close to the body, the laptop induces currents that are within 34.2% to 49.8% ICNIRP recommendations, but not negligible, to the adult's body and to the fetus (in pregnant women). On the contrary, the power supply induces strong intracorporal electric current densities in the fetus and in the adult subject, which are respectively 182-263% and 71-483% higher than ICNIRP 98 basic restriction recommended to prevent adverse health effects. Laptop is paradoxically an improper site for the use of a LTC, which consequently should be renamed to not induce customers towards an improper use.

  4. Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing

    PubMed Central

    García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario

    2017-01-01

    Electromagnetic radiation is energy that interacts with matter. The interaction process is of great importance to the sensing applications that characterize material media. Parameters like constant dielectric represent matter characteristics and they are identified using emission, interaction and reception of electromagnetic radiation in adapted environmental conditions. How the electromagnetic wave responds when it interacts with the material media depends on the range of frequency used and the medium parameters. Different disciplines use this interaction and provides non-intrusive applications with clear benefits, remote sensing, earth sciences (geology, atmosphere, hydrosphere), biological or medical disciplines use this interaction and provides non-intrusive applications with clear benefits. Electromagnetic waves are transmitted and analyzed in the receiver to determine the interaction produced. In this work a method based in differential measurement technique is proposed as a novel way of detecting and characterizing electromagnetic matter characteristics using sensors based on a microstrip patch. The experimental results, based on simulations, show that it is possible to obtain benefits from the behavior of the wave-medium interaction using differential measurement on reception of electromagnetic waves at different frequencies or environmental conditions. Differential method introduce advantages in measure processes and promote new sensors development. A new microstrip sensor that uses differential time measures is proposed to show the possibilities of this method. PMID:28718804

  5. Electromagnetic Differential Measuring Method: Application in Microstrip Sensors Developing.

    PubMed

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario

    2017-07-18

    Electromagnetic radiation is energy that interacts with matter. The interaction process is of great importance to the sensing applications that characterize material media. Parameters like constant dielectric represent matter characteristics and they are identified using emission, interaction and reception of electromagnetic radiation in adapted environmental conditions. How the electromagnetic wave responds when it interacts with the material media depends on the range of frequency used and the medium parameters. Different disciplines use this interaction and provides non-intrusive applications with clear benefits, remote sensing, earth sciences (geology, atmosphere, hydrosphere), biological or medical disciplines use this interaction and provides non-intrusive applications with clear benefits. Electromagnetic waves are transmitted and analyzed in the receiver to determine the interaction produced. In this work a method based in differential measurement technique is proposed as a novel way of detecting and characterizing electromagnetic matter characteristics using sensors based on a microstrip patch. The experimental results, based on simulations, show that it is possible to obtain benefits from the behavior of the wave-medium interaction using differential measurement on reception of electromagnetic waves at different frequencies or environmental conditions. Differential method introduce advantages in measure processes and promote new sensors development. A new microstrip sensor that uses differential time measures is proposed to show the possibilities of this method.

  6. Exposure of salivary gland cells to low-frequency electromagnetic fields alters polypeptide synthesis.

    PubMed Central

    Goodman, R; Henderson, A S

    1988-01-01

    This study demonstrates that exposure of cells to extremely low-frequency electromagnetic fields can cause measurable changes in protein synthesis. Sciara coprophila salivary gland cells were exposed to five low-frequency (1.5-72 Hz) electromagnetic signals: three signals (1.5, 15, and 72 Hz) produced pulsed asymmetric electromagnetic fields and two signals (60 and 72 Hz) were sinusoidal. Subsequent analyses of two-dimensional gels showed that cell exposure to either type of low-frequency electromagnetic field resulted in both qualitative and quantitative changes in patterns of protein synthesis. Thus, signals producing diverse waveform characteristics induced previously undetectable polypeptides, some of which were signal specific and augmented or suppressed other polypeptides as compared with nonexposed cells. The pattern of polypeptide synthesis differed from that seen with heat shock: only five polypeptides in cells exposed to electromagnetic signals overlap those polypeptides exposed to heat shock, and the suppression of protein synthesis characteristic of heat shock does not occur. Images PMID:3375247

  7. Immunorehabilitating effect of ultrahigh frequency electromagnetic fields in immunocompromised animals.

    PubMed

    Pershin, S B; Bobkova, A S; Derevnina, N A; Sidorov, V D

    2013-06-01

    We observed immunorehabilitation effects of ultrahigh frequency electromagnetic fields (microwaves) in immunocompromised animals. It was shown that microwave irradiation of the thyroid gland area could abolish actinomycin D- and colchicine-induced immunosuppression and did not affect immunosuppression caused by 5-fluorouracil. These findings suggest that changes in the hormonal profile of the organism during microwave exposure can stimulate the processes of transcription and mitotic activity of lymphoid cells.

  8. Systemic Effects of Electromagnetic Fields in Patients with Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Cañedo-Dorantes, L.; Valle, L.; Uruchurtu, E.; Medel, A.; García-Mayen, F.; Serrano-Luna, G.

    2003-09-01

    Healing of acute myocardial infarction (AMI) is associated with inflammatory response, which promotes healing and scar formation. Activation of a local inflammatory response in patients with sequel of AMI could have an important role to enhance angiogenesis and regeneration of hibernating myocardial tissue. Chronic arterial leg ulcers have a similar etiology, and healing has been promoted by exposure to extremely low frequency electromagnetic fields (ELF). We report the evolution of three AMI patients with sequel of AMI that were exposed to ELF.

  9. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  10. Reconstruction of lightning currents and return stroke model parameters using remote electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Popov, M.; He, S.; Thottappillil, R.

    2000-01-01

    Estimating parameters of a lightning return stroke model and the current at the base of the lightning channel from measurements of remote electromagnetic fields is an important practical problem. In the present paper we apply a genetic algorithm (a global optimization technique) to the above problem. Firstly, we use the genetic algorithm to reconstruct the return stroke model parameters using the channel-base current and the remote electromagnetic field measured simultaneously. The channel-base current is used to calculate the electric field at the measurement point. The difference between the calculated and the measured fields is minimized using the genetic algorithm, which finds the optimal solution for the return stroke parameters. The transmission line and Diendorfer-Uman return stroke models are used in the illustrations. Secondly, we develop a method to reconstruct the return stroke model parameters and channel-base current from electric or magnetic fields measured at two different distances, one of which is a far-field and the other is a near field. The Diendorfer-Uman model is used in the reconstruction. Thirdly, we develop a method to reconstruct the return stroke model parameters and channel-base current from two magnetic fields at two different distances, one of which is an intermediate field and the other is a near field. For doing the above with the Diendorfer-Uman model we derive an explicit inversion formula using both the induction and the radiation terms of the magnetic field.

  11. Electromagnetic field interacting with a semi-infinite plasma.

    PubMed

    Apostol, M; Vaman, G

    2009-07-01

    Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma by using a general, unifying procedure based on the equation of motion of the polarization and the electromagnetic potentials. Known results are reproduced in a much more direct manner, and new ones are derived. The approach consists of representing the charge disturbances by a displacement field in the positions of the moving particles (electrons). The propagation of an electromagnetic wave in this plasma is treated by using the retarded electromagnetic potentials. The resulting integral equations are solved, and the reflected and refracted fields are computed, as well as the reflection coefficient. Generalized Fresnel relations are thereby obtained for any incidence angle and polarization. Bulk and surface plasmon-polariton modes are identified. As is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

  12. Offshore windmills and the effects of electromagnetic fields on fish.

    PubMed

    Ohman, Marcus C; Sigray, Peter; Westerberg, Håkan

    2007-12-01

    With the large scale developments of offshore windpower the number of underwater electric cables is increasing with various technologies applied. A wind farm is associated with different types of cables used for intraturbine, array-to-transformer, and transformer-to-shore transmissions. As the electric currents in submarine cables induce electromagnetic fields there is a concern of how they may influence fishes. Studies have shown that there are fish species that are magneto-sensitive using geomagnetic field information for the purpose of orientation. This implies that if the geomagnetic field is locally altered it could influence spatial patterns in fish. There are also physiological aspects to consider, especially for species that are less inclined to move as the exposure could be persistent in a particular area. Even though studies have shown that magnetic fields could affect fish, there is at present limited evidence that fish are influenced by the electromagnetic fields that underwater cables from windmills generate. Studies on European eel in the Baltic Sea have indicated some minor effects. In this article we give an overview on the type of submarine cables that are used for electric transmissions in the sea. We also describe the character of the magnetic fields they induce. The effects of magnetic fields on fish are reviewed and how this may relate to the cables used for offshore wind power is discussed.

  13. Electromagnetic fields in medicine - The state of art.

    PubMed

    Pasek, Jarosław; Pasek, Tomasz; Sieroń-Stołtny, Karolina; Cieślar, Grzegorz; Sieroń, Aleksander

    2016-01-01

    Intense development of methods belonging to physical medicine has been noted recently. There are treatment methods, which in many cases lead to reduction treatment time and positively influence on quality of life treatment patients. The present physical medicine systematically extends their therapeutic possibilities. This above applies to illnesses and injuries of locomotor system, diseases affecting of soft tissues, as well as chronic wounds. The evidence on this are the results of basic and clinical examinations relating the practical use of electromagnetic fields in medicine. In this work the authors introduced the procedure using the current knowledge relating to physical characteristic and biological effects of the magnetic fields. In the work the following methods were used: static magnetic fields, spatial magnetic fields, the variable magnetic fields both with laser therapy (magnetolaserotherapy) and variable magnetic fields both with light optical non-laser (magnetoledtherapy) talked.

  14. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: a comparative study.

    PubMed

    Corallo, Claudio; Volpi, Nila; Franci, Daniela; Vannoni, Daniela; Leoncini, Roberto; Landi, Giacomo; Guarna, Massimo; Montella, Antonio; Albanese, Antonietta; Battisti, Emilio; Fioravanti, Antonella; Nuti, Ranuccio; Giordano, Nicola

    2013-06-01

    Osteoarthritis (OA) is the most common joint disease, characterized by matrix degradation and changes in chondrocyte morphology and metabolism. Literature reported that electromagnetic fields (EMFs) can produce benefits in OA patients, even if EMFs mechanism of action is debated. Human osteoarthritic chondrocytes isolated from femoral heads were cultured in vitro in bidimensional (2-D) flasks and in three-dimensional (3-D) alginate beads to mimic closely cartilage environment in vivo. Cells were exposed 30 min/day for 2 weeks to extremely low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic field (TAMMEF) with variable frequencies, intensities, and waveforms. Cell viability was measured at days 7 and 14, while healthy-cell density, heavily vacuolized (hv) cell density, and cluster density were measured by light microscopy only for 3-D cultures after treatments. Cell morphology was observed for 2-D and 3-D cultures by transmission electron microscopy (TEM). Chondrocyte exposure to TAMMEF enhances cell viability at days 7 and 14 compared to ELF. Light microscopy analysis showed that TAMMEF enhances healthy-cell density, reduces hv-cell density and clustering, compared to ELF. Furthermore, TEM analysis showed different morphology for 2-D (fibroblast-like) and 3-D (rounded shape) cultures, confirming light microscopy results. In conclusion, EMFs are effective and safe for OA chondrocytes. TAMMEF can positively interfere with OA chondrocytes representing an innovative non-pharmacological approach to treat OA.

  15. Epilepsy and electromagnetic fields: effects of simulated atmospherics and 100-Hz magnetic fields on audiogenic seizure in rats

    NASA Astrophysics Data System (ADS)

    Juutilainen, J.; Björk, E.; Saali, K.

    1988-03-01

    In order to study the possible association between epileptic seizures and natural electromagnetic fields, 32 female audiogenic seizure (AGS)-susceptible rats were exposed to simulated 10 kHz and 28 kHz atmospherics and to a sinusoidally oscillating magnetic field with a frequency of 100 Hz and field strength of 1 A/m. After the electromagnetic exposure, seizures were induced in the rats with a sound stimulus. The severity of the seizure was determined on an ordinal scale, the audiogenic response score (ARS). The time from the beginning of the sound stimulus to the onset of the seizure (seizure latency) and the duration of the convulsion was measured. No differences from the control experiments were found in the experiments with simulated atmospherics, but the 100 Hz magnetic field increased the seizure latency by about 13% ( P<0.02). The results do not support the hypothesis that natural atmospheric electromagnetic signals could affect the onset of epileptic seizures, but they suggest that AGS-susceptible rats may be a useful model for studying the biological effects of electromagnetic fields.

  16. The Electromagnetic Fields Under, On and Up Earth Surface As Precursor of Local Earthquake

    NASA Astrophysics Data System (ADS)

    Chterev Mavrodiev, Strachimir

    The analysis of accurasy measured Earth magnetic field gives a signal for near future near enîugh and strong enough eartquake. The correlation wit the tide gravitational potential derivatives permits to predict the day of the earthquake. It is formulated a Programm for electromagnetic field monitoring under on and up Earth surface and data analysis for investigation of possibilities for predicting the time, place, Magnitude and destractive power of future earthquake in Balkan and Black Sea region.

  17. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.

    PubMed

    Jun, Xu; Luming, Li; Hongwei, Hao

    2009-01-01

    With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.

  18. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  19. Electromagnetic field properties in the vicinity of a massive wormhole

    SciTech Connect

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  20. Electromagnetic field redistribution in hybridized plasmonic particle-film system

    NASA Astrophysics Data System (ADS)

    Fang, Yurui; Huang, Yingzhou

    2013-04-01

    Combining simulation and experiment, we demonstrate that a metal nanoparticle dimer on a gold film substrate can confine more energy in the particle/film gap because of the hybridization of the dimer resonant lever and the continuous state of the film. The hybridization may even make the electric field enhancement in the dimer/film gap stronger than in the gap between particles. The resonant peak can be tuned by varying the size of the particles and the film thickness. This electromagnetic field redistribution has tremendous applications in sensor, photocatalysis and solar cell, etc., especially considering ultrasensitive detection of tracing molecule on substrates.

  1. Electromagnetic Field Quantization in Time-Dependent Linear Media

    SciTech Connect

    Pedrosa, I. A.; Rosas, Alexandre

    2009-07-03

    We present a quantization scheme for the electromagnetic field in time-dependent homogeneous nondispersive conducting and nonconducting linear media without sources. Using the Coulomb gauge, we demonstrate this quantization can be mapped into a damped (attenuated) time-dependent quantum harmonic oscillator. Remarkably, we find that the time dependence of the permittivity, for epsilon>0, gives rise to an attenuation of the radiation field. Afterwards, we obtain the exact wave functions for this problem and consider an exponential time accretion of the permittivity as a particular case.

  2. On a remarkable electromagnetic field in the Einstein Universe

    NASA Astrophysics Data System (ADS)

    Kopiński, Jarosław; Natário, José

    2017-06-01

    We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.

  3. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  4. Noise induced calcium oscillations in a cell exposed to electromagnetic fields.

    PubMed

    Zhang, Yuhong; Zhao, Yongli; Chen, Yafei; Yuan, Changqing; Zhan, Yong

    2015-01-01

    The effects of noise on the calcium oscillations in a cell exposed to electromagnetic fields are described by a dynamic model. Noise is a very important factor to be considered in the dynamic research on the calcium oscillations in a cell exposed to electromagnetic fields. Some meaningful results have been obtained here based on the discussion. The results show that the pattern of intracellular calcium oscillations exposure to electromagnetic fields can be influenced by noise. Furthermore, the intracellular calcium oscillations exposure to electromagnetic fields can also be induced by noise. And the work has also studied the relationships between the voltage sensitive calcium channel's open probability and electromagnetic field. The result can provide new insights into constructive roles and potential applications of selecting appropriate electromagnetic field frequency during the research of biological effect of electromagnetic field.

  5. Plasma effects in electromagnetic field interaction with biological tissue

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  6. Work and energy for particles in electromagnetic field

    NASA Astrophysics Data System (ADS)

    Babajanyan, S. G.

    2017-07-01

    Defining the energy and work for particles interacting with electromagnetic field (EMF) is an open problem, because—due to the gauge-freedom—there exist various non-equivalent possibilities. It is argued that a consistent definition can be provided via the Lorenz gauge. To this end, I work out a system of two electromagnetically coupled classical particles. One of them is much heavier and models the source of work. The definition of energy in the Lorenz gauge is causal and consistent, because it leads to an approximate conservation law due to which the work done by the heavy particle (source of work) can be defined either via the kinetic energy of the heavy particle, or via the full time-dependent energy (kinetic + potential in the Lorenz gauge) of the light particle.

  7. Radiofrequency-electromagnetic field exposures in kindergarten children.

    PubMed

    Bhatt, Chhavi Raj; Redmayne, Mary; Billah, Baki; Abramson, Michael J; Benke, Geza

    2017-09-01

    The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.

  8. Biological effects from electromagnetic field exposure and public exposure standards.

    PubMed

    Hardell, Lennart; Sage, Cindy

    2008-02-01

    During recent years there has been increasing public concern on potential health risks from power-frequency fields (extremely low frequency electromagnetic fields; ELF) and from radiofrequency/microwave radiation emissions (RF) from wireless communications. Non-thermal (low-intensity) biological effects have not been considered for regulation of microwave exposure, although numerous scientific reports indicate such effects. The BioInitiative Report is based on an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity electromagnetic fields (EMFs) exposure. Health endpoints reported to be associated with ELF and/or RF include childhood leukaemia, brain tumours, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, breast cancer, miscarriage and some cardiovascular effects. The BioInitiative Report concluded that a reasonable suspicion of risk exists based on clear evidence of bioeffects at environmentally relevant levels, which, with prolonged exposures may reasonably be presumed to result in health impacts. Regarding ELF a new lower public safety limit for habitable space adjacent to all new or upgraded power lines and for all other new constructions should be applied. A new lower limit should also be used for existing habitable space for children and/or women who are pregnant. A precautionary limit should be adopted for outdoor, cumulative RF exposure and for cumulative indoor RF fields with considerably lower limits than existing guidelines, see the BioInitiative Report. The current guidelines for the US and European microwave exposure from mobile phones, for the brain are 1.6 W/Kg and 2 W/Kg, respectively. Since use of mobile phones is associated with an increased risk for brain tumour after 10 years, a new biologically based guideline is warranted. Other health impacts associated with exposure to

  9. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  10. Effects of electromagnetic fields on fecundity in the chicken.

    PubMed

    Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A

    1975-02-28

    Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good

  11. The assessment of electromagnetic field radiation exposure for mobile phone users.

    PubMed

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas

    2014-12-01

    During recent years, the widespread use of mobile phones has resulted in increased human ex- posure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.

  12. [Problems of harmonization of sanitary regulations of the electromagnetic fields of mobile radio communication equipment].

    PubMed

    Pal'tsev, Iu P; Pokhodzeĭ, L V; Rubtsova, N B; Bogacheva, E V

    2013-01-01

    In the article there are presented data on the probable adverse effects of electromagnetic fields generated by means of mobile cellulary radio communication equipment, a comparative analysis of hygienic rating and methods of measurement of their parameters in Russia and abroad has been performed, and the ways of harmonizing hygienic rules have been outlined, the necessity of further research to risk assessment of the use of cellular radio communication devices by population and preventive measures have been substantiated.

  13. [Levels of the electromagnetic field in the vicinity of therapeutic devices using radiofrequency and microwaves].

    PubMed

    Scandurra, G

    1989-01-01

    The paper presents the results of an analysis made on the electromagnetic field levels around RF and MW equipment used for medical purposes to achieve induced thermogenesis in body areas affected by disease. An irradiation diagram was constructed for some of the most widely used devices in clinical practice and measurements were made on RF devices to identify the influence of obstacles in determining electric field levels, such as accessories or persons present in the working environment. Electric field and power density levels were checked, as can be measured at a distance of 100 cm at identical selected power during a typical "lumbar-dorsal spine" treatment using different types of RF and MW devices, to identify the different degree of electromagnetic pollution that each of the devices causes.

  14. Electromagnetic field of a charge traveling into an anisotropic medium.

    PubMed

    Galyamin, Sergey N; Tyukhtin, Andrey V

    2011-11-01

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called "plasma trace" is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  15. Electromagnetic field of a charge traveling into an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Galyamin, Sergey N.; Tyukhtin, Andrey V.

    2011-11-01

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called “plasma trace” is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  16. Electromagnetic field of a charge traveling into an anisotropic medium

    SciTech Connect

    Galyamin, Sergey N.; Tyukhtin, Andrey V.

    2011-11-15

    We analyze the electromagnetic field generated by a point charge intersecting the interface between vacuum and a nonmagnetic anisotropic medium with a plasma-type dispersion of the dielectric permittivity tensor. After penetrating the medium, the charge moves along its main axis. The total field is presented as a sum of a self-field (i.e., a charge field in a corresponding unbounded medium) and a scattered field associated with the boundary influence. We show that the self-field in the considered anisotropic medium is divided into a quasistatic field and a wave field (the so-called 'plasma trace' is absent in the case under consideration). Under certain conditions, the Vavilov-Cherenkov radiation generated in the medium is reversed (i.e., the energy flux density vector forms an obtuse angle with the direction of the charge motion). Accordingly, so-called reversed Cherenkov-transition radiation (RCTR) can be generated. We analytically and numerically investigate both the scattered field and the total one, and we show that RCTR exists in the vacuum region if the charge velocity exceeds a certain threshold value associated with total internal reflection. Computations of the Fourier harmonics of the field as well as the total field itself demonstrate that RCTR in vacuum can be a dominant effect. Some properties of RCTR can be useful for diagnostics of particle bunches and determination of medium characteristics.

  17. Assessing the value of multi-receiver low-frequency electromagnetic-induction (EMI) measurement for assessing variation in soil moisture content in field experiments with winter wheat (Triticum aestivum)

    NASA Astrophysics Data System (ADS)

    Shanahan, Peter; Binley, Andrew; Dodd, Ian; Whalley, Richard; Watts, Chris; Ashton, Rhys; Ober, Eric

    2014-05-01

    In large plant breeding field trials with multiple genotypes, measuring soil water status (an indicator of crop water uptake) by conventional techniques (e.g. core extraction and penetration resistance) is limited by the cost and effort needed to achieve sufficient replication to apply robust statistical analysis. Geophysical methods may provide a more cost-effective means of more assessing valuable information about soil water status for such studies. We present here results from a field experiment using geophysical techniques for remote mapping of soil water content on sandy loam and silt loam soils in spring/summer 2013 in the UK. The aim of the study was to assess electromagnetic-induction (EMI) conductivity measurements for sensitivity to variations in shallow soil electrical properties and the spatial and temporal mapping of soil water. The CMD Mini-Explorer (GF Instruments) operates with three receiver coils at fixed distances from a transmitter coil (0.32 m, 0.71 m, 1.2 m). Measurement of magnetic field quadrature in horizontal coplanar (HC) and vertical coplanar (VC) of the three receiver coils provides six depths of investigation for the given coil spacing cumulative sensitivities. At the two field sites the instrument was applied to measuring apparent electrical conductivity (ECa) below 7.0 x 1.8 m plots consisting of 23 rain fed winter wheat cultivars and bare soil fallow control plots. These plots were sown in March 2013 and organised into a randomised block design. Electrical resistivity tomography (ERT) surveys along 15 m transects were also conducted at the two sites in order to compare EMI measured ECa. Our results show that progressive soil drying at both sites due to crop uptake significantly decreased (p<0.05) soil ECa. The difference in soil ECa as a result of water uptake between cultivars was found to be significant (p<0.05) from one of the coil configurations (coil spacing 1.8m in HC mode), and only at the silty loam site (no significant

  18. Measurement of ultrasonic nonlinear parameter by using electromagnetic acoustic transducer

    NASA Astrophysics Data System (ADS)

    Cai, Zhichao; Liu, Suzhen; Zhang, Chuang

    2017-02-01

    The nonlinear ultrasonic technology is generally known as an effective method for the microcrack detection. However, most of the previous experimental studies were limited by a contact nonlinearity method. Since measurement by the contact method is affected by the coupling conditions, additional nonlinear coefficient are lead into the measurement. This research presents a novel technique for nonlinear ultrasonic wave measurements that uses a non-contact electromagnetic ultrasonic transducer (EMAT). And for a better understanding and a more in-depth analysis of the macroscopic nonlinear behavior of microcrack, the developed FEM modeling approach was built to simulate microcrack induced nonlinearities manifested in electromagnetic ultrasonic waves and validated experimentally. This study has yielded a quantitative characterization strategy for microcrack using EMAT, facilitating deployment of structural health monitoring by noncontact electromagnetic nondestructive testing.

  19. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  20. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGES

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; ...

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  1. Human disease resulting from exposure to electromagnetic fields.

    PubMed

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.

  2. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  3. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  4. A review on Electromagnetic fields (EMFs) and the reproductive system

    PubMed Central

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-01-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted. PMID:27648194

  5. A review on Electromagnetic fields (EMFs) and the reproductive system.

    PubMed

    Asghari, Ali; Khaki, Amir Afshin; Rajabzadeh, Asghar; Khaki, Arash

    2016-07-01

    Environmental factors, such as electromagnetic waves, induce biological and genetic effects. One of the most important physiological systems involved with electromagnetic fields (EMFs) is the genital system. This paper reviews the effects of EMFs on human reproductive organs, female animals, fetus development and the importance of two types of natural antioxidants, i.e., vitamin E and fennel. The studies presented in this review referred to the effects of different exposures to EMFs on the reproductive system, and we tried to show the role of natural antioxidants in reducing the effects of the exposures. Many studies have been done on the effects of ionizing and non-ionizing electromagnetic waves on the cell line of spermatogenesis, sexual hormones, and the structure of the testes. Also, about the hormonal cycle, folliculogenesis and female infertility related to EMF have been given more consideration. In particular, attention is directed to pregnant women due to the importance of their fetuses. However, in addition to the studies conducted on animals, further epidemiological research should be conducted.

  6. Undulator Field Integral Measurements

    SciTech Connect

    Wolf, Zachary

    2010-12-07

    The LCLS undulator field integrals must be very small so that the beam trajectory slope and offset stay within tolerance. In order to make accurate measurements of the small field integrals, a long coil will be used. This note describes the design of the coil measurement system.

  7. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    SciTech Connect

    Sharapova, P R; Tikhonova, O V

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  8. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    NASA Astrophysics Data System (ADS)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  9. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  10. Above-threshold ionization in two electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bardfield, Rina Shoshana

    1997-11-01

    Above-threshold ionization (ATI) is a process in which a target atom absorbs more than the minimum number of photons from an applied electromagnetic field than are required for ionization, and is characterized by several peaks in the photoelectron spectrum which are separated from each other by the energy of a single photon (Agostini et al. 1979). The experiments of interest in this work involve ATI at microwave frequencies (Gallagher 1988, Gallagher and Scholz 1989), where the frequency of the field is too low to be able to see individual peaks in the spectrum. What is seen is that, in the presence of a weak assisting field, a very large number of microwave photons are absorbed. This problem cannot be treated using standard methods, due both to the intensity of the microwave field and to the large numbers of photons absorbed. The focus of this work is on the development of new analytical techniques to examine the interaction of an atomic system with two simultaneous electromagnetic fields. Specifically, the work focuses on above-threshold ionization in combined microwave and laser fields, where the microwave field is a very strong, very low frequency field, so that standard techniques, such as perturbation theory, do not apply. The work is based on two theoretical methods especially designed for use in intense field problems. These are the Strong Field Approximation (SFA) (Reiss 1980, 1992, 1996), which describes the ionization of an atom by an intense field in which the detached electron remains free in the field after ionization occurs, and the Momentum Translation Approximation (MTA) (Reiss 1970a, 1970b, 1989), which describes the dressing of a bound atomic state by a strong field in which the field can alter the state of the electron without necessarily causing transitions. The laser field, which is much weaker, is treated by traditional techniques. The theory is developed in general terms using S-matrix methods, with particular cases being modeled using

  11. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  12. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  13. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields.

    PubMed

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards.

  14. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  15. Electromagnetic generation of sound in metals in a magnetic field

    NASA Astrophysics Data System (ADS)

    Aronov, I. E.; Fal'ko, V. L.

    1992-11-01

    A wide range of phenomena of the electromagnetic generation of sound in metals in a magnetic field is reviewed. All phenomena of mutual conversion of waves and of sound generation are due to the interaction of conduction electrons with phonons. A wide variety of resonance effects in a magnetic field determines numerous mechanisms for direct sound generation by an external microwave. The basic equations and boundary conditions for the problem of electron-phonon interaction in metals are presented in the quasiclassical approximation. In the low-temperature region under the conditions of the anomalous skin effect the wave conversion is caused, besides by inductive interaction, also by electron-phonon interaction via the deformation potential. The major conversion mechanism of an electromagnetic wave into sound results in various resonance effects in a magnetic field in conditions of strong spatial dispersion. We present an exact solution of the problem for an alkali metal in a magnetic field normal to the surface. We analyze the asymptotic approximations related with the skin-effect anomaly, the coupling of electromagnetic and acoustic waves in metals, and the role of surface scattering. We study the effect of resonance renormalization of electron-phonon interaction in metals with a complex dispersion law, which results in a partial compensation of resonance singularities and appears in Doppler-shifted cyclotron resonances. The doppleron-phonon resonance and its polarization effects are investigated. The electromagnetic generation of sound in metals in a magnetic field parallel to the surface is due to the additional mechanism of selecting “effective” electrons, where resonance effects are observed. We study geometric and cyclotron resonances, and the resonance coupling of a sound wave with a cyclotron wave. The amplitude and phase of the generated sound depend on the character of electron scattering on the metal boundary because in specular scattering a group of

  16. Rayleigh-Taylor-Induced Electromagnetic Fields in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Manuel, Mario J.-E.

    Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic fields are predicted to affect fluid behavior during the core-collapse of supernovae through generation of fields due to hydrodynamic instabilities. In the coronae of stars, self-generated magnetic fields lead to filamentary structure in the hot plasma. Recent experiments by Gregori et al. investigated sources of protogalactic magnetic fields generated by laser-produced shock waves. In inertial confinement fusion experiments, self-generated electromagnetic fields can also play a role and have recently become of great interest to the community. Present day laser facilities provide a unique opportunity to study spontaneous field-generation in these extreme environments under controlled conditions. Instability-induced electromagnetic fields were investigated using a novel monoenergetic-proton radiography system. Fusion protons generated by an 'exploding-pusher' implosion were used to probe laser-irradiated plastic foils with various preimposed surface perturbations. Imaging protons are sensitive to electromagnetic fields and density modulations in the plasma through the Lorentz force and Coulomb collisions, respectively. Corresponding x-ray radiographs of these targets provided mass density distributions and Coulomb effects on protons were assessed using a Monte Carlo code written using the Geant4 framework. Proton fluence distributions were recorded on CR-39 detectors and Fourier analyzed to infer path-integrated field strengths. Rayleigh-Taylor (RT) growth of preimposed surface perturbations generated magnetic fields by the RT-induced Biermann battery and were measured for the first time. Good data were obtained during linear growth and when compared to ideal calculations, demonstrated that field diffusion near the source played an important role

  17. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers.

    PubMed

    Semenenko, Mykola O; Babichuk, Ivan S; Kyriienko, Oleksandr; Bodnar, Ivan V; Caballero, Raquel; Leon, Maximo

    2017-12-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  18. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  19. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers

    NASA Astrophysics Data System (ADS)

    Semenenko, Mykola O.; Babichuk, Ivan S.; Kyriienko, Oleksandr; Bodnar, Ivan V.; Caballero, Raquel; Leon, Maximo

    2017-06-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  20. Phenomenological local field enhancement factor distributions around electromagnetic hot spots

    NASA Astrophysics Data System (ADS)

    Le Ru, E. C.; Etchegoin, P. G.

    2009-05-01

    We propose a general phenomenological description of the enhancement factor distribution for surface-enhanced Raman scattering (SERS) and other related phenomena exploiting large local field enhancements at hot spots. This description extends naturally the particular case of a single (fixed) hot spot, and it is expected to be "universal" for many classes of common SERS substrates containing a collection of electromagnetic hot spots with varying geometrical parameters. We further justify it from calculations with generalized Mie theory. The description studied here provides a useful starting point for a qualitative (and semiquantitative) understanding of experimental data and, in particular, the analysis of the statistics of single-molecule SERS events.

  1. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  2. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  3. Risk assessment of electromagnetic fields exposure with metallic orthopedic implants: a cadaveric study.

    PubMed

    Crouzier, D; Selek, L; Martz, B-A; Dabouis, V; Arnaud, R; Debouzy, J-C

    2012-02-01

    Metallic materials are well known to strongly interact with electromagnetic fields. While biological effects of such field have been extensively studied, only few works dealt with the interactions of electromagnetic waves with passive metallic device implanted in biological system. Hence only several numerical and phantom simulation studies were focusing on this aspect, whereas no in situ anatomic experiment has been previously performed. In this study the effect of electromagnetic waves on eight different orthopaedic medical devices (six plates from 55 to 318mm length, a total knee and a total hip prosthesis) were explored on six human cadavers. To mimic a random environmental exposure resulting from the most common frequencies band used in domestic environment and medical applications (TV and radio broadcasting, cell phone communication, MRI, diathermy treatment), a multifrequency generator emitting in VHF, UHF, GSM and GCS frequency bands was used. The different medical devices were exposed to an electromagnetic field at 50W/m(2) and 100W/m(2). After 6min exposure, the temperature was measured on three points close to each medical device, and the induced currents were estimated. No significant temperature increase (<0.2°C) was finally detected; beside, a slight induced tension (up to 1.1V) was recorded but would appear too low to induce any biological side effect. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Conserved currents for electromagnetic fields in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Grant, Alexander; Flanagan, Eanna

    2017-01-01

    For any classical linear Lagrangian field theory, the symplectic product provides a conserved current that is bilinear on the space of solutions. Given a linear mapping from the space of solutions into itself, a ``symmetry operator'', one can therefore generate quadratic conserved currents for any linear classical field theory. We apply this procedure to the case of electromagnetism on a Kerr background, showing that this procedure can generate the conserved currents given by Andersson, Bäckdahl, and Blue, as well as two new conserved currents. These currents reduce to the sum of (positive powers of) the Carter constants of the photons in the geometric optics limit, and generalize the current for scalar fields discovered by Carter. We furthermore show that the fluxes of these new currents through null infinity and the horizon are finite.

  5. Time dependent electromagnetic fields and 4-dimensional Stokes' theorem

    NASA Astrophysics Data System (ADS)

    Andosca, Ryan; Singleton, Douglas

    2016-11-01

    Stokes' theorem is central to many aspects of physics—electromagnetism, the Aharonov-Bohm effect, and Wilson loops to name a few. However, the pedagogical examples and research work almost exclusively focus on situations where the fields are time-independent so that one need only deal with purely spatial line integrals (e.g., ∮ A . d x ) and purely spatial area integrals (e.g., ∫ ( ∇ × A ) . d a = ∫ B . d a ). Here, we address this gap by giving some explicit examples of how Stokes' theorem plays out with time-dependent fields in a full 4-dimensional spacetime context. We also discuss some unusual features of Stokes' theorem with time-dependent fields related to gauge transformations and non-simply connected topology.

  6. Measurement of the environmental broadband electromagnetic waves in a mid-size European city.

    PubMed

    Fernández-García, R; Gil, I

    2017-10-01

    In this paper, the level of exposure to broadband radiofrequency electromagnetic field in a mid-size European city was evaluated in accordance with the International Commission on Non-ionizing Radiation Protection guidelines from 1998. With the aim to analyse all the potential electromagnetic waves present in the city up to 18GHz, a total of 271 locations distributed along Terrassa (Spain) have been measured. To show the results in an easy-to-interpret way by the citizen, the results have been represented in a set of raster maps. The measurement results obtained showed that the electromagnetic wave measured in all broadband frequency range along the city is much lower than the safety level according to the international regulations for both public and occupational sectors. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  8. Robust multiscale field-only formulation of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission

  9. Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity.

    PubMed

    Heynick, Louis N; Johnston, Sheila A; Mason, Patrick A

    2003-01-01

    We present critiques of epidemiologic studies and experimental investigations, published mostly in peer-reviewed journals, on cancer and related effects from exposure to nonionizing electromagnetic fields in the nominal frequency range of 3 kHz to 300 GHz of interest to Subcommittee 4 (SC4) of the International Committee on Electromagnetic Safety (ICES). The major topics discussed are presented under the headings Epidemiologic and Other Findings on Human Exposure, Mammals Exposed In Vivo, Mammalian Live Tissues and Cell Preparations Exposed In Vitro, and Mutagenesis and Genotoxicity in Microorganisms and Fruit Flies. Under each major topic, we present minireviews of papers on various specific endpoints investigated. The section on Epidemiologic and Other Findings on Human Exposure is divided into two subsections, the first on possible carcinogenic effects of exposure from emitters not in physical contact with the populations studied, for example, transmitting antennas and other devices. Discussed in the second subsection are studies of postulated carcinogenic effects from use of mobile phones, with prominence given to brain tumors from use of cellular and cordless telephones in direct physical contact with an ear of each subject. In both subsections, some investigations yielded positive findings, others had negative findings, including papers directed toward experimentally verifying positive findings, and both were reported in a few instances. Further research on various important aspects may resolve such differences. Overall, however, the preponderance of published epidemiologic and experimental findings do not support the supposition that in vivo or in vitro exposures to such fields are carcinogenic.

  10. Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.

    2010-10-01

    There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.

  11. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  12. Electromagnetic dissipation during asymmetric reconnection with a moderate guide field

    NASA Astrophysics Data System (ADS)

    Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali

    2017-04-01

    We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.

  13. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    PubMed Central

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-01-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482

  14. Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields.

    PubMed

    D'Elia, Massimo; Mariti, Marco; Negro, Francesco

    2013-02-22

    We investigate two flavor quantum chromodynamics (QCD) in the presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective θ term to first order in E[over →] · B[over →]. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, and then exploit the analytic continuation. Our results are relevant to a description of the effective pseudoscalar quantum electrodynamics-QCD interactions.

  15. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  16. The dielectric response to the magnetic field of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light-matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  17. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  18. Electromagnetic field limits set by the V-Curve.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  19. Photon merging and splitting in electromagnetic field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Seegert, Nico

    2016-04-01

    We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.

  20. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  1. Geometric entropy and edge modes of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Wall, Aron C.

    2016-11-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  2. Near-field electromagnetic theory for thin solar cells.

    PubMed

    Niv, A; Gharghi, M; Gladden, C; Miller, O D; Zhang, X

    2012-09-28

    Current methods for evaluating solar cell efficiencies cannot be applied to low-dimensional structures where phenomena from the realm of near-field optics prevail. We present a theoretical approach to analyze solar cell performance by allowing rigorous electromagnetic calculations of the emission rate using the fluctuation-dissipation theorem. Our approach shows the direct quantification of the voltage, current, and efficiency of low-dimensional solar cells. This approach is demonstrated by calculating the voltage and the efficiency of a GaAs slab solar cell for thicknesses from several microns down to a few nanometers. This example highlights the ability of the proposed approach to capture the role of optical near-field effects in solar cell performance.

  3. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  4. Interaction of extremely-low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1991-07-01

    At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs.

  5. Relativistic particle acceleration by obliquely propagating electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Villalón, Elena; Burke, William J.

    1987-12-01

    The relativistic equations of motion are analyzed for charged particles in a magnetized plasma and externally imposed electromagnetic fields (ω, k), which have wave vectors k that are at arbitrary angles. The particle energy is obtained from a set of nonlinear differential equations, as a function of time, initial conditions, and cyclotron harmonic numbers. For a given cyclotron resonance, the energy oscillates in time within the limits of a potential well; stochastic acceleration occurs if the widths of different Hamiltonian potentials overlap. The net energy gain for a given harmonic increase with the angle of propagation, and decreases as the magnitude of the wave magnetic field increases. Potential applications of these results to the acceleration of ionsopheric electrons are presented.

  6. Electromagnetic fields and the induction of DNA strand breaks.

    PubMed

    Ruiz-Gómez, Miguel J; Martínez-Morillo, Manuel

    2009-01-01

    The International Agency for Research on Cancer (IARC) has classified the extremely low-frequency (ELF) electromagnetic fields (EMF) as "possible carcinogenic" based on the reported effects. The purpose of this work is to review and compare the recent findings related to the induction of DNA strand breaks (DNA-SB) by magnetic field (MF) exposure. We found 29 studies (genotoxic and epigenetic) about the induction of DNA-SB by MF. 50% showed effect of MF and 50% showed no DNA-SB. Nevertheless, considering only genotoxic or only epigenetic studies, 37.5% and 69.2% found induction of DNA-SB by MF, respectively. In relation to these data it seems that MF could act as a co-inductor of DNA damage rather than as a genotoxic agent per se. Nevertheless, the published results, in some cases conflicting with negative findings, do not facilitate to obtain a common consensus about MF effects and biophysical interaction mechanisms.

  7. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  8. [In the consumers' interest: precautionary principles for protection against electromagnetic fields].

    PubMed

    Dehos, A; Weiss, W

    2002-12-01

    The considerable increase in using mobile communication which will increase when new technologies, such as UMTS, are introduced has resulted in further public interest concerning the possible health risks from electromagnetic fields of cellular phone networks. In view of evaluating the scientific state-of-the art, it has been shown that based on the available scientific results, the individual risk in view of proved health consequences is considered low. There are, however, indications of biological effects of high-frequency electromagnetic fields, even at intensities below the currently applied limit values or recommendations for limit values. Although the health relevance of these effects is still unclear, they give reason to precautionary measures with the object to minimise possible health risks which might affect a large number of persons. The precautionary measures recommended by the Federal Office for Radiation Protection include three principles: 1. Exposure of the general public to electromagnetic fields should be as low as possible. This applies for both the fixed parts of cellular phone networks and for mobile phones. 2. The population should be informed of risks in an objective and comprehensive way and be involved in the decisions on the construction and operation of cellular phone networks. 3. Scientific uncertainties should be reduced by means of well-directed research programmes. These precautionary measures and the significance of limit values are explained below.

  9. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  10. Electromagnetic probe technique for fluid flow measurements

    NASA Astrophysics Data System (ADS)

    Arndt, G. D.; Carl, J. R.

    1994-02-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  11. Assessment of the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields

    DTIC Science & Technology

    2003-06-01

    the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S) Dr... Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields (EMFs) (From 1 June 2002 to 31 May 2003 for 12 months) Nikolai Konstantinovich Chemeris...International Science and Technology Center (ISTC), Moscow. 2 ISTC 2350 Assessment of the Genotoxic Effects of High Peak-Power Pulsed Electromagnetic Fields

  12. A. A. Ukhtomskii's dominance principle of brain activity in the perception of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kholodov, Yu. A.

    1994-01-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a “placebo” or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  13. A. A. Ukhtomskii`s dominance principle of brain activity in the perception of electromagnetic fields

    SciTech Connect

    Kholodov, Yu.A.

    1994-07-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a {open_quotes}placebo{close_quotes} or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  14. Cell membrane thermal gradients induced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Deminsky, Maxim; Bogdan Neculaes, V.; Chashihin, V.; Knizhnik, Andrey; Potapkin, Boris

    2013-06-01

    While electromagnetic fields induce structural changes in cell membranes, particularly electroporation, much remains to be understood about membrane level temperature gradients. For instance, microwaves induce cell membrane temperature gradients (∇T) and bioeffects with little bulk temperature change. Recent calculations suggest that nanosecond pulsed electric fields (nsPEFs) may also induce such gradients that may additionally impact the electroporation threshold. Here, we analytically and numerically calculate the induced ∇T as a function of pulse duration and pulse repetition rate. We relate ∇T to the thermally induced cell membrane electric field (Em) by assuming the membrane behaves as a thermoelectric such that Em ˜ ∇T. Focusing initially on applying nsPEFs to a uniform membrane, we show that reducing pulse duration and increasing pulse repetition rate (or using higher frequency for alternating current (AC) fields) maximizes the magnitude and duration of ∇T and, concomitantly, Em. The maximum ∇T initially occurs at the interface between the cell membrane and extracellular fluid before becoming uniform across the membrane, potentially enabling initial molecular penetration and subsequent transport across the membrane. These results, which are equally applicable to AC fields, motivate further studies to elucidate thermoelectric behavior in a model membrane system and the coupling of the Em induced by ∇T with that created directly by the applied field.

  15. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers.

    PubMed

    Bendix, Poul M; Reihani, S Nader S; Oddershede, Lene B

    2010-04-27

    Absorption of electromagnetic irradiation results in significant heating of metallic nanoparticles, an effect which can be advantageously used in biomedical contexts. Also, metallic nanoparticles are presently finding widespread use as handles, contacts, or markers in nanometer scale systems, and for these purposes it is essential that the temperature increase associated with electromagnetic irradiation is not harmful to the environment. Regardless of whether the heating of metallic nanoparticles is desired or not, it is crucial for nanobio assays to know the exact temperature increase associated with electromagnetic irradiation of metallic nanoparticles. We performed direct measurements of the temperature surrounding single gold nanoparticles optically trapped on a lipid bilayer, a biologically relevant matrix. The lipid bilayer had incorporated fluorescent molecules which have a preference for either fluid or gel phases. The heating associated with electromagnetic radiation was measured by visualizing the melted footprint around the irradiated particle. The effect was measured for individual gold nanoparticles of a variety of sizes and for a variety of laser powers. The temperatures were highly dependent on particle size and laser power, with surface temperature increments ranging from a few to hundreds of degrees Celsius. Our results show that by a careful choice of gold nanoparticle size and strength of irradiating electromagnetic field, one can control the exact particle temperature. The method is easily applicable to any type of nanoparticle for which the photothermal effect is sought to be quantified.

  16. Quantum and classical statistics of the electromagnetic zero-point field

    NASA Astrophysics Data System (ADS)

    Ibison, Michael; Haisch, Bernhard

    1996-10-01

    A classical electromagnetic zero-point field (ZPF) analog of the vacuum of quantum field theory has formed the basis for theoretical investigations in the discipline known as random or stochastic electrodynamics (SED). In SED the statistical character of quantum measurements is imitated by the introduction of a stochastic classical background electromagnetic field. Random electromagnetic fluctuations are assumed to provide perturbations which can mimic certain quantum phenomena while retaining a purely classical basis, e.g., the Casimir force, the van der Waals force, the Lamb shift, spontaneous emission, the rms radius of a quantum-mechanical harmonic oscillator, and the radius of the Bohr atom. This classical ZPF is represented as a homogeneous, isotropic ensemble of plane electromagnetic waves whose amplitude is exactly equivalent to an excitation energy of hν/2 of the corresponding quantized harmonic oscillator, this being the state of zero excitation of such an oscillator. There is thus no randomness in the classical electric-field amplitudes: Randomness is introduced entirely in the phases of the waves, which are normally distributed. Averaging over the random phases is assumed to be equivalent to taking the ground-state expectation values of the corresponding quantum operator. We demonstrate that this is not precisely correct by examining the statistics of the classical ZPF in contrast to that of the electromagnetic quantum vacuum. Starting with a general technique for the calculation of classical probability distributions for quantum state operators, we derive the distribution for the individual modes of the electric-field amplitude in the ground state as predicted by quantum field theory. We carry out the same calculation for the classical ZPF analog, and show that the distributions are only in approximate agreement, diverging as the density of k states decreases. We then introduce an alternative classical ZPF with a different stochastic character, and

  17. Effects of Pulse Electromagnetic Field on Corrosion Resistance of Al-5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wang, B.; Tang, L. D.; Qi, J. G.; Wang, J. Z.

    2013-03-01

    It was investigated that corrosion resistance of Al-5 % Cu alloy was influenced by pulse electromagnetic field (PEMF). The morphologies were observed by scanning election microscopy (SEM). The corrosion behaviors were investigated by potentiodynamic polarization tests and immersion tests. The results indicated that corrosion resistance of samples could be increased by using pulse electromagnetic field, moreover, the optimum parameter of pulse electromagnetic field in this experiment was showed as follows: 500 V, 3 Hz, 30 s. Decreasing the quantity of eutectic in grain boundaries and refining the grains were main causations for increasing corrosion resistance of Al-5 % Cu alloy with pulse electromagnetic field.

  18. Measuring Intrinsic Curvature of Space with Electromagnetism

    NASA Astrophysics Data System (ADS)

    Mabin, Mason; Becker, Maria; Batelaan, Herman

    2016-10-01

    The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface, the 2-sphere, is curved. The behavior of an electric field, placed on a spherical surface, is shown to be related to the intrinsic Gaussian curvature. This approach allows students to gain some understanding of Einstein's theory of general relativity, which relates the curvature of spacetime to the presence of mass and energy. Additionally, an opportunity is provided to investigate the dimensionality of Gauss's law.

  19. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    SciTech Connect

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-11-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  20. Quantum diffusion of electromagnetic fields of ultrarelativistic spin-half particles

    NASA Astrophysics Data System (ADS)

    Peroutka, Balthazar; Tuchin, Kirill

    2017-10-01

    We compute electromagnetic fields created by a relativistic charged spin-half particle in empty space at distances comparable to the particle Compton wavelength. The particle is described as a wave packet evolving according to the Dirac equation. It produces the electromagnetic field that is essentially different from the Coulomb field due to the quantum diffusion effect.

  1. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.

    PubMed

    Ishida, Kai; Fujioka, Tomomi; Endo, Tetsuo; Hosokawa, Ren; Fujisaki, Tetsushi; Yoshino, Ryoji; Hirose, Minoru

    2016-03-01

    Establishment of electromagnetic compatibility is important in use of electronic medical equipment in hospitals. To evaluate the electromagnetic environment, the electric field intensity induced by electromagnetic radiation in broadcasting spectra coming from outside the hospital was measured in a new hospital building before any patients visited the hospital and 6 months after the opening of the hospital. Various incoming radio waves were detected on the upper floors, with no significant difference in measured levels before and after opening of the hospital. There were no cellphone terminal signals before the hospital opened, but these signals were strongly detected at 6 months thereafter. Cellphone base stations signals were strongly detected on the upper floors, but there were no signals at most locations in the basement and in the center of the building on the lower floors. A maximum electrical intensity of 0.28 V/m from cellphone base stations (2.1 GHz) was detected at the south end of the 2nd floor before the hospital opened. This value is lower than the EMC marginal value for general electronic medical equipment specified in IEC 60601-1-2 (3 V/m). Therefore, electromagnetic interference with electronic medical equipment is unlikely in this situation. However, cellphone terminal signals were frequently detected in non-base station signal areas. This is a concern, and understanding signal strength from cellphone base stations at a hospital is important for promotion of greater safety.

  2. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Saveliev, Andrey; Sigl, Günter; Vachaspati, Tanmay

    2016-10-01

    We determine the effect of intergalactic magnetic fields on the distribution of high-energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called "Large Sphere Observer" method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q -statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S -statistics. Both methods provide a quantitative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B ≳10-15 G and magnetic coherence lengths Lc≳100 Mpc . We show that the S -statistics has a better performance than the Q -statistics when assessing magnetic helicity from the simulated halos.

  3. Setting prudent public health policy for electromagnetic field exposures.

    PubMed

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future.

  4. Electromagnetic Form Factors of Hadrons in Quantum Field Theories

    SciTech Connect

    Dominguez, C. A.

    2008-10-13

    In this talk, recent results are presented of calculations of electromagnetic form factors of hadrons in the framework of two quantum field theories (QFT), (a) Dual-Large N{sub c} QCD (Dual-QCD{sub {infinity}}) for the pion, proton, and {delta}(1236), and (b) the Kroll-Lee-Zumino (KLZ) fully renormalizable Abelian QFT for the pion form factor. Both theories provide a QFT platform to improve on naive (tree-level) Vector Meson Dominance (VMD). Dual-QCD{sub {infinity}} provides a tree-level improvement by incorporating an infinite number of zero-width resonances, which can be subsequently shifted from the real axis to account for the time-like behaviour of the form factors. The renormalizable KLZ model provides a QFT improvement of VMD in the framework of perturbation theory. Due to the relative mildness of the {rho}{pi}{pi} coupling, and the size of loop suppression factors, the perturbative expansion is well defined in spite of this being a strong coupling theory. Both approaches lead to considerable improvements of VMD predictions for electromagnetic form factors, in excellent agreement with data.

  5. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz-6 GHz).

    PubMed

    Gajšek, Peter; Ravazzani, Paolo; Wiart, Joe; Grellier, James; Samaras, Theodoros; Thuróczy, György

    2015-01-01

    Average levels of exposure to radiofrequency (RF) electromagnetic fields (EMFs) of the general public in Europe are difficult to summarize, as exposure levels have been reported differently in those studies in which they have been measured, and a large proportion of reported measurements were very low, sometimes falling below detection limits of the equipment used. The goal of this paper is to present an overview of the scientific literature on RF EMF exposure in Europe and to characterize exposure within the European population. A comparative analysis of the results of spot or long-term RF EMF measurements in the EU indicated that mean electric field strengths were between 0.08 V/m and 1.8 V/m. The overwhelming majority of measured mean electric field strengths were <1 V/m. It is estimated that <1% were above 6 V/m and <0.1% were above 20 V/m. No exposure levels exceeding European Council recommendations were identified in these surveys. Most population exposures from signals of radio and television broadcast towers were observed to be weak because these transmitters are usually far away from exposed individuals and are spatially sparsely distributed. On the other hand, the contribution made to RF exposure from wireless telecommunications technology is continuously increasing and its contribution was above 60% of the total exposure. According to the European exposure assessment studies identified, three population exposure categories (intermittent variable partial body exposure, intermittent variable low-level whole-body (WB) exposure and continuous low-level WB exposure) were recognized by the authors as informative for possible future risk assessment.

  6. Non-invasive temperature measurement by using phase changes in electromagnetic waves in a cavity resonator.

    PubMed

    Ishihara, Yasutoshi; Ohwada, Hiroshi

    2011-01-01

    To improve the efficacy of hyperthermia treatment, a novel method of non-invasive measurement of changes in body temperature is proposed. The proposed method is based on phase changes with temperature in electromagnetic waves in a heating applicator and the temperature dependence of the dielectric constant. An image of the temperature change inside a body is reconstructed by applying a computed tomography algorithm. This method can be combined easily with a heating applicator based on a cavity resonator and can be used to treat cancer effectively while non-invasively monitoring the heating effect. In this paper the phase change distributions of electromagnetic waves with temperature changes are measured experimentally, and the accuracy of reconstruction is discussed. The phase change distribution is reconstructed by using a prototype system with a rectangular aluminum cavity resonator that can be rotated 360° around an axis of rotation. To make measurements without disturbing the electromagnetic field distribution, an optical electric field sensor is used. The phase change distribution is reconstructed from 4-projection data by using a simple back-projection algorithm. The paper demonstrates that the phase change distribution can be reconstructed. The difference between phase changes obtained experimentally and by numerical analysis is about 20% and is related mainly to the limited signal detection sensitivity of electromagnetic waves. A temperature change inside an object can be reconstructed from the measured phase changes in a cavity resonator.

  7. Accuracy of electromagnetic tracking with a prototype field generator in an interventional OR setting

    SciTech Connect

    Boe, Lars Eirik; Leira, Haakon Olav; Tangen, Geir Arne; Hofstad, Erlend Fagertun; Amundsen, Tore; Langoe, Thomas

    2012-01-15

    Purpose: The authors have studied the accuracy and robustness of a prototype electromagnetic window field generator (WFG) in an interventional radiology suite with a robotic C-arm. The overall purpose is the development of guidance systems combining real-time imaging with tracking of flexible instruments for bronchoscopy, laparoscopic ultrasound, endoluminal surgery, endovascular therapy, and spinal surgery. Methods: The WFG has a torus shape, which facilitates x-ray imaging through its centre. The authors compared the performance of the WFG to that of a standard field generator (SFG) under the influence of the C-arm. Both accuracy and robustness measurements were performed with the C-arm in different positions and poses. Results: The system was deemed robust for both field generators, but the accuracy was notably influenced as the C-arm was moved into the electromagnetic field. The SFG provided a smaller root-mean-square position error but was more influenced by the C-arm than the WFG. The WFG also produced smaller maximum and variance of the error. Conclusions: Electromagnetic (EM) tracking with the new WFG during C-arm based fluoroscopy guidance seems to be a step forward, and with a correction scheme implemented it should be feasible.

  8. Finite-difference electromagnetic deposition/thermoregulatory model: comparison between theory and measurements

    SciTech Connect

    Spiegel, R.J.; Fatmi, M.B.; Ward, T.R.

    1987-01-01

    The rate of the electromagnetic energy deposition and the resultant thermoregulatory response of a block model of a squirrel monkey exposed to plane-wave fields at 350 MHz were calculated using a finite-difference procedure. Noninvasive temperature measurements in live squirrel monkeys under similar exposure conditions were obtained using Vitek probes. Calculations exhibit reasonable correlation with the measured data, especially for the rise in colonic temperature.

  9. Custom modular electromagnetic induction system for shallow electrical conductivity measurements

    NASA Astrophysics Data System (ADS)

    Mester, Achim; Zimmermann, Egon; Tan, Xihe; von Hebel, Christian; van der Kruk, Jan; van Waasen, Stefan

    2017-04-01

    Electromagnetic induction (EMI) is a contactless measurement method that offers fast and easy investigations of the shallow electrical conductivity, e.g. on the field-scale. Available frequency domain EMI systems offer multiple fixed transmitter-receiver (Tx-Rx) pairs with Tx-Rx separations between 0.3 and 4.0 m and investigation depths of up to six meters. Here, we present our custom EMI system that consists of modular sensor units that can either be transmitters or receivers, and a backpack containing the data acquisition system. The prototype system is optimized for frequencies between 5 and 30 kHz and Tx-Rx separations between 0.4 and 2.0 m. Each Tx and Rx signal is digitized separately and stored on a notebook computer. The soil conductivity information is determined after the measurements with advanced digital processing of the data using optimized correction and calibration procedures. The system stores the raw data throughout the entire procedure, which offers many advantages: (1) comprehensive accuracy and error analysis as well as the reproducibility of corrections and calibration procedures; (2) easy customizability of the number of Tx-/Rx-units and their arrangement and frequencies; (3) signals from simultaneously working transmitters can be separated within the received data using orthogonal signals, resulting in additional Tx-Rx pairs and maximized soil information; and (4) later improvements in the post-processing algorithms can be applied to old data sets. Exemplary, here we present an innovative setup with two transmitters and five receivers using orthogonal signals yielding ten Tx-Rx pairs. Note that orthogonal signals enable for redundant Tx-Rx pairs that are useful for verification of the transmitter signals and for data stacking. In contrast to commercial systems, only adjustments in the post-processing were necessary to realize such measurement configurations with flexibly combined Tx and Rx modules. The presented system reaches an accuracy of

  10. Measurement of electromagnetic tracking error in a navigated breast surgery setup

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor

    2016-03-01

    PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.

  11. Using strong electromagnetic fields to control x-ray processes.

    SciTech Connect

    Young, L.; Buth, C.; Dunford, R. W.; Ho, P.; Kanter, E. P.; Kraessig, B.; Peterson, E. R.; Rohringer, N.; Santra, R.; Southworth, S. H.

    2010-06-01

    Exploration of a new ultrafast-ultrasmall frontier in atomic and molecular physics has begun. Not only is is possible to control outer-shell electron dynamics with intense ultrafast optical lasers, but now control of inner-shell processes has become possible by combining intense infrared/optical lasers with tunable sources of X-ray radiation. This marriage of strong-field laser and X-ray physics has led to the discovery of methods to control reversibly resonant X-ray absorption in atoms and molecules on ultrafast timescales. Using a strong optical dressing field, resonant X-ray absorption in atoms can be markedly suppressed, yielding an example of electromagnetically induced transparency for x rays. Resonant X-ray absorption can also be controlled in molecules using strong non-resonant, polarized laser fields to align the framework of a molecule, and therefore its unoccupied molecular orbitals to which resonant absorption occurs. At higher laser intensities, ultrafast field ionization produces an irreversible change in X-ray absorption. Finally, the advent of X-ray free electron lasers enables first exploration of non-linear X-ray processes.

  12. [Effects of radiofrequency electromagnetic fields on mammalian spermatogenesis].

    PubMed

    Susa, Martina; Pavicić, Ivan

    2007-12-01

    This article reviews studies about the effects of radiofrequency electromagnetic (RF EM) fields on male reproductive system and reproductive health in mammals. According to current data, there are almost 4 million active mobile phone lines in Croatia while this number has risen to 2 billion in the world. Increased use of mobile technology raises scientific and public concern about possible hazardous effects of RF fields on human health. The effects of radiofrequencies on reproductive health and consequences for the offspring are still mainly unknown. A number of in vivo and in vitro studies indicated that RF fields could interact with charged intracellular macromolecular structures. Results of several laboratory studies on animal models showed how the RF fields could affect the mammalian reproductive system and sperm cells. Inasmuch as, in normal physiological conditions spermatogenesis is a balanced process of division, maturation and storage of cells, it is particularly vulnerable to the chemical and physical environmental stimuli. Especially sensitive could be the cytoskeleton, composed of charged proteins; actin, intermedial filaments and microtubules. Cytoskeleton is a functional and structural part of the cell that has important role in the sperm motility, and is actively involved in the morphologic changes that occur during mammalian spermiogenesis.

  13. Equations of a moving mirror and the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Octavio Castaños, Luis; Weder, Ricardo

    2015-06-01

    We consider a system composed of a mobile slab and the electromagnetic field. We assume that the slab is made of a material that has the following properties when it is at rest: it is linear, isotropic, non-magnetizable, and ohmic with zero free charge density. Using instantaneous Lorentz transformations, we deduce the set of self-consistent equations governing the dynamics of the system and we obtain approximate equations to first order in the velocity and the acceleration of the slab. As a consequence of the motion of the slab, the field must satisfy a wave equation with damping and slowly varying coefficients plus terms that are small when the time-scale of the evolution of the mirror is much larger than that of the field. Also, the motion of the slab and its interaction with the field introduce two effects in the slab’s equation of motion. The first one is a position- and time-dependent mass related to the effective mass taken in phenomenological treatments of this type of systems. The second one is a velocity-dependent force that can give rise to friction and that is related to the much sought cooling of mechanical objects.

  14. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  15. Coherent electromagnetic field imaging through Fourier transform heterodyne

    SciTech Connect

    Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Goeller, R.M.; Cafferty, M.; Briles, S.D.; Galbraith, A.E. |; Grubler, A.C. |

    1998-12-31

    The authors present a detection process capable of directly imaging the transverse amplitude, phase, and if desired, Doppler shift of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned RADAR/LIDAR systems, Fourier Transform Heterodyne (FTH) incorporates transverse spatial encoding of the local oscillator for image capture. Appropriate selection of spatial encoding functions, or basis set, allows image retrieval by way of classic Fourier manipulations. Of practical interest: (1) imaging is accomplished on a single element detector requiring no additional scanning or moving components, and (2) a wide variety of appropriate spatial encoding functions exist that may be adaptively configured in real-time for applications requiring optimal detection. In this paper, they introduce the underlying principles governing FTH imaging, followed by demonstration of concept via a simple experimental setup based on a HeNe laser and a 69 element spatial phase modulator.

  16. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  17. Electromagnetic field-induced stimulation of Bruton's tyrosine kinase.

    PubMed

    Kristupaitis, D; Dibirdik, I; Vassilev, A; Mahajan, S; Kurosaki, T; Chu, A; Tuel-Ahlgren, L; Tuong, D; Pond, D; Luben, R; Uckun, F M

    1998-05-15

    Here we present evidence that exposure of DT40 lymphoma B-cells to low energy electromagnetic fields (EMF) results in activation of phospholipase C-gamma 2 (PLC-gamma2), leading to increased inositol phospholipid turnover. PLC-gamma2 activation in EMF-stimulated cells is mediated by stimulation of the Bruton's tyrosine kinase (BTK), a member of the Src-related TEC family of protein tyrosine kinases, which acts downstream of LYN kinase and upstream of PLC-gamma2. B-cells rendered BTK-deficient by targeted disruption of the btk gene did not show enhanced PLC-gamma2 activation in response to EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) human btk gene into BTK-deficient B-cells restored their EMF responsiveness. Thus, BTK exerts a pivotal and mandatory function in initiation of EMF-induced signaling cascades in B-cells.

  18. Electromagnetic field energy density in homogeneous negative index materials.

    PubMed

    Shivanand; Webb, Kevin J

    2012-05-07

    An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials.

  19. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. )

    1993-04-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  20. Paternal occupational exposure to electromagnetic fields and neuroblastoma in offspring

    SciTech Connect

    Wilkins, J.R. 3d.; Hundley, V.D. )

    1990-06-01

    Investigators in Texas have reported an association between paternal employment in jobs linked with exposure to electromagnetic fields and risk of neuroblastoma in offspring. In an attempt to replicate this finding, the authors conducted a case-control study in Ohio. A total of 101 incident cases of neuroblastoma were identified through the Columbus (Ohio) Children's Hospital Tumor Registry. All cases were born sometime during the period 1942-1967. From a statewide roster of birth certificates, four controls were selected for each case, with individual matching on the case's year of birth, race, and sex, and the mother's county of residence at the time of the (index) child's birth. Multiple definitions were employed to infer the potential for paternal occupational exposure to electromagnetic fields from the industry/occupation statements on the birth certificates. Case-control comparisons revealed adjusted odds ratios ranging in magnitude from 0.5 to 1.9. For two of the exposure definitions employed--both of which are similar to one used by the Texas investigators--the corresponding odds ratios were modestly elevated (odds ratios = 1.6 and 1.9). Notably, the magnitude of these odds ratios is not inconsistent with the Texas findings, where the exposure definition referred to yielded an odds ratio of 2.1. Because the point estimates in this study are imprecise, and because the biologic plausibility of the association is uncertain, the results reported here must be interpreted cautiously. However, the apparent consistency between two independent studies suggests that future evaluation of the association is warranted.

  1. Proteomics of human primary osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF EMFs) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF).

    PubMed

    Corallo, Claudio; Battisti, Emilio; Albanese, Antonietta; Vannoni, Daniela; Leoncini, Roberto; Landi, Giacomo; Gagliardi, Assunta; Landi, Claudia; Carta, Serafino; Nuti, Ranuccio; Giordano, Nicola

    2014-01-01

    Osteoarthritis (OA) is the most frequent joint disease, characterized by degradation of extracellular matrix and alterations in chondrocyte metabolism. Some authors reported that electromagnetic fields (EMFs) can positively interfere with patients affected by OA, even though the nature of the interaction is still debated. Human primary osteoarthritic chondrocytes isolated from the femoral heads of OA-patients undergoing to total hip replacement, were cultured in vitro and exposed 30 min/day for two weeks to extremely-low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF) with variable frequencies, intensities and waveforms. Sham-exposed (S.E.) cells served as control group. Cell viability was measured at days 2, 7 and 14. After two weeks, cell lysates were processed using a proteomic approach. Chondrocyte exposed to ELF and TAMMEF system demonstrated different viability compared to untreated chondrocytes (S.E.). Proteome analysis of 2D-Electrophoresis and protein identification by mass spectrometry showed different expression of proteins derived from nucleus, cytoplasm and organelles. Function analysis of the identified proteins showed changes in related-proteins metabolism (glyceraldeyde-3-phosphate-dehydrogenase), stress response (Mn-superoxide-dismutase, heat-shock proteins), cytoskeletal regulation (actin), proteinase inhibition (cystatin-B) and inflammation regulatory functions (S100-A10, S100-A11) among the experimental groups (ELF, TAMMEF and S.E.). In conclusion, EMFs do not cause damage to chondrocytes, besides stimulate safely OA-chondrocytes and are responsible of different protein expression among the three groups. Furthermore, protein analysis of OA-chondrocytes treated with ELF and the new TAMMEF systems could be useful to clarify the pathogenetic mechanisms of OA by identifying biomarkers of the disease.

  2. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  3. Neuroendocrine mediated effects of electromagnetic-field exposure: Possible role of the pineal gland

    SciTech Connect

    Wilson, W.B.; Stevens, R.G.; Anderson, L.E. )

    1989-01-01

    Reports from recent epidemiological studies have suggested a possible association between extremely low frequently (ELF; including 50- or 60-Hz) electric- and magnetic-field exposure, and increased risk of certain cancers, depression, and miscarriage. ELF field-induced pineal gland dysfunction is a possible etiological factor in these effects. Work in our laboratory and elsewhere has shown that ELF electromagnetic-field exposure can alter the normal circadian rhythm of melatonin synthesis and release in the pineal gland. Consequences of reduced or inappropriately timed melatonin release on the endocrine, neuronal, and immune systems are discussed. Laboratory data linking ELF field exposure to changes in pineal circadian rhythms in both animal and humans are reviewed. The authors suggest that the pineal gland, in addition to being a convenient locus for measuring dyschronogenic effects of ELF field exposure, may play a central role in biological response to these fields via alterations in the melatonin signal.

  4. Electro-optic fiber sensor for amplitude and phase detection of radio frequency electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kramer, Axel; Müller, Peter; Lott, Urs; Kuster, Niels; Bomholt, Fin

    2006-08-01

    We present a miniature fiber-optic electromagnetic field (EMF) sensor that is capable of simultaneously detecting the amplitude and phase of an EMF in the range of 0.1-6 GHz. We focus on magnetic field measurements, since the H-field is more significant in our target applications due its direct relation to the current. The sensor is based on an open optical platform to which various antennas can be attached and contains a radio-frequency amplifier for signal conditioning and a vertical-cavity surface-emitting laser as an electro-optic converter. The millimeter size and the full electrical isolation of the sensor allow EMF detection with minimal disturbance. We have characterized the sensor in the near field of a λ/2 dipole, a rectangular waveguide, and a microstrip line, and we explain the experimental results with a simple theoretical model confirming the mapped near-field distribution of the investigated field source.

  5. Electro-optic fiber sensor for amplitude and phase detection of radio frequency electromagnetic fields.

    PubMed

    Kramer, Axel; Müller, Peter; Lott, Urs; Kuster, Niels; Bomholt, Fin

    2006-08-15

    We present a miniature fiber-optic electromagnetic field (EMF) sensor that is capable of simultaneously detecting the amplitude and phase of an EMF in the range of 0.1-6 GHz. We focus on magnetic field measurements, since the H-field is more significant in our target applications due its direct relation to the current. The sensor is based on an open optical platform to which various antennas can be attached and contains a radio-frequency amplifier for signal conditioning and a vertical-cavity surface-emitting laser as an electro-optic converter. The millimeter size and the full electrical isolation of the sensor allow EMF detection with minimal disturbance. We have characterized the sensor in the near field of a lambda/2 dipole, a rectangular waveguide, and a microstrip line, and we explain the experimental results with a simple theoretical model confirming the mapped near-field distribution of the investigated field source.

  6. Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI.

    PubMed

    Lother, Steffen; Schiff, Steven J; Neuberger, Thomas; Jakob, Peter M; Fidler, Florian

    2016-08-01

    In this work, a prototype of an effective electromagnet with a field-of-view (FoV) of 140 mm for neonatal head imaging is presented. The efficient implementation succeeded by exploiting the use of steel plates as a housing system. We achieved a compromise between large sample volumes, high homogeneity, high B0 field, low power consumption, light weight, simple fabrication, and conserved mobility without the necessity of a dedicated water cooling system. The entire magnetic resonance imaging (MRI) system (electromagnet, gradient system, transmit/receive coil, control system) is introduced and its unique features discussed. Furthermore, simulations using a numerical optimization algorithm for magnet and gradient system are presented. Functionality and quality of this low-field scanner operating at 23 mT (generated with 500 W) is illustrated using spin-echo imaging (in-plane resolution 1.6 mm × 1.6 mm, slice thickness 5 mm, and signal-to-noise ratio (SNR) of 23 with a acquisition time of 29 min). B0 field-mapping measurements are presented to characterize the homogeneity of the magnet, and the B0 field limitations of 80 mT of the system are fully discussed. The cryogen-free system presented here demonstrates that this electromagnet with a ferromagnetic housing can be optimized for MRI with an enhanced and homogeneous magnetic field. It offers an alternative to prepolarized MRI designs in both readout field strength and power use. There are multiple indications for the clinical medical application of such low-field devices.

  7. Analysis of Omni-directivity Error of Electromagnetic Field Probe using Isotropic Antenna

    NASA Astrophysics Data System (ADS)

    Hartansky, Rene

    2016-12-01

    This manuscript analyzes the omni-directivity error of an electromagnetic field (EM) probe and its dependence on frequency. The global directional characteristic of a whole EM probe consists of three independent directional characteristics of EM sensors - one for each coordinate. The shape of particular directional characteristics is frequency dependent and so is the shape of the whole EM probe's global directional characteristic. This results in systematic error induced in the measurement of EM fields. This manuscript also contains quantitative formulation of such errors caused by the shape change of directional characteristics for different types of sensors depending on frequency and their mutual arrangement.

  8. Software Tools for Measuring and Calculating Electromagnetic Shielding Effectiveness

    DTIC Science & Technology

    2005-09-01

    ARMY RSRCH LAB ATTN AMSRD- ARL -CI-OK-T TECHL PUB (2 COPIES) ATTN AMSRD- ARL -CI-OK-TL TECHL LIB (2 COPIES) ATTN AMSRD- ARL -D J M MILLER ATTN...Software Tools for Measuring and Calculating Electromagnetic Shielding Effectiveness by Neal Tesny ARL -TR-3645 September 2005...report when it is no longer needed. Do not return it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL -TR-3645 September

  9. Do the standard expressions for the electromagnetic field momentum need any modifications?

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-10-01

    We investigate here the question raised in the literature about the correct expression for the electromagnetic field momentum, especially when static or stationary fields are involved. For this, we examine a couple of simple but intriguing cases. First, we consider a system configuration in which electromagnetic field momentum is present even though the system is stationary. We trace the electromagnetic momentum to be present in the form of a continuous transport of electromagnetic energy from one part of the system to another, without causing any net change in the energy of the system. In a second case, we show that the electromagnetic momentum is zero irrespective of whether the charged system is static or in motion, even though the electromagnetic energy is present throughout. We demonstrate that the conventional formulation of electromagnetic field momentum describes the systems consistently without any real contradictions. Here, we also make exposition of a curiosity where electromagnetic energy decreases when the charged system gains velocity. Then we discuss the more general question that has been raised: Are the conventional formulas for energy-momentum of electromagnetic fields valid for all cases? Specifically, in the case of so-called "bound fields," do we need to change to some modified definitions? We show that in all cases it is only the conventional formulas that lead to results consistent with the rest of physics, including the special theory of relativity, and that any proposed modifications are thus superfluous.

  10. Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion.

    PubMed Central

    Adey, W R

    1990-01-01

    Studies of environmental electromagnetic (EM) field interactions in tissues have contributed to a new understanding of both normal growth and the biology of cancer in cell growth. From cancer research comes a floodtide of new knowledge about the disruption of communication by cancer-promoting chemicals with an onset of unregulated growth. Bioelectromagnetic research reveals clear evidence of joint actions at cell membranes of chemical cancer promoters and environmental electromagnetic fields. The union of these two disciplines has resulted in the first major new approach to tumor formation in 75 years, directing attention to dysfunctions in inward and outward streams of signals at cell membranes, rather than to damage DNA in cell nuclei, and to synergic actions of chemical pollutants and environmental electromagnetic fields. We are witnesses and, in great measure, participants in one of the great revolutions in the history of biology. In little more than a century, we have moved from organs, to tissues, to cells, and finally to the molecules that are the elegant fabric of living tissues. Today, we stand at a new frontier. It may be more difficult to comprehend, but it is far more significant; for it is at the atomic level, rather than the molecular, that physical, rather than chemical, processes appear to shape the flow of signals that are at the essence of living matter. To pursue these problems in the environment and in the laboratory, our needs for further research with appropriate budgets are great.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2205491

  11. Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion.

    PubMed

    Adey, W R

    1990-06-01

    Studies of environmental electromagnetic (EM) field interactions in tissues have contributed to a new understanding of both normal growth and the biology of cancer in cell growth. From cancer research comes a floodtide of new knowledge about the disruption of communication by cancer-promoting chemicals with an onset of unregulated growth. Bioelectromagnetic research reveals clear evidence of joint actions at cell membranes of chemical cancer promoters and environmental electromagnetic fields. The union of these two disciplines has resulted in the first major new approach to tumor formation in 75 years, directing attention to dysfunctions in inward and outward streams of signals at cell membranes, rather than to damage DNA in cell nuclei, and to synergic actions of chemical pollutants and environmental electromagnetic fields. We are witnesses and, in great measure, participants in one of the great revolutions in the history of biology. In little more than a century, we have moved from organs, to tissues, to cells, and finally to the molecules that are the elegant fabric of living tissues. Today, we stand at a new frontier. It may be more difficult to comprehend, but it is far more significant; for it is at the atomic level, rather than the molecular, that physical, rather than chemical, processes appear to shape the flow of signals that are at the essence of living matter. To pursue these problems in the environment and in the laboratory, our needs for further research with appropriate budgets are great.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. DEMONSTRATION PLAN FIELD MEASUREMENT ...

    EPA Pesticide Factsheets

    The demonstration of innovative field measurement devices for total petroleum hydrocarbons (TPH) in soil is being conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Hueneme, California. The primary purpose of the demonstration is to evaluate innovative field measurement devices for TPH in soil based on their performance and cost as compared to a conventional, off-site laboratory analytical method. The seven field measurement devices listed below will be demonstrated. CHEMetrics, Inc.'s, RemediAidTm Total Petroleum Hydrocarbon Starter Kit Wilks Enterprise, Inc.'s, Infracal' TOG/TPH Analyzer, Models CVH and HATR-T Horiba Instruments, Incorporated's, OCMA-350 Oil Content Analyzer Dexsil' Corporation's PetroFLAGTm Hydrocarbon Test Kit for Soil Environmental Systems Corporation's Synchronous Scanning Luminoscope siteLAB@ Corporation's Analytical Test Kit UVF-3 I OOA Strategic Diagnostics, Inc.'s, EnSys Petro Test System This demonstration plan describes the procedures that will be used to verify the performance and cost of each field measurement device. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to document each device's performance and cost. A separate innovative technology verification report (ITVR) will be prepared for each device. The ITVRs will present the demonstratio

  13. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  14. Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?

    PubMed Central

    Nicholls, Barry; Racey, Paul A.

    2007-01-01

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629

  15. Bats avoid radar installations: could electromagnetic fields deter bats from colliding with wind turbines?

    PubMed

    Nicholls, Barry; Racey, Paul A

    2007-03-14

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200-400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia.

  16. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue

    PubMed Central

    Kjeldsen, Henrik D.; Kaiser, Marcus; Whittington, Miles A.

    2015-01-01

    Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the

  17. Singularities in the Transverse Fields of Electromagnetic Waves. II. Observations on the Electric Field

    NASA Astrophysics Data System (ADS)

    Hajnal, J. V.

    1987-12-01

    Electromagnetic waves propagating in free space contain three kinds of singularities called C lines, S surfaces and disclinations. The paper describes observations of these singularities in two different monochromatic microwave fields. The observations confirm all the theoretically predicted properties of the singularities that could be tested. As expected, the singularities were found to be prominent structural features of the fields and in consequence to provide an economical means of characterizing their structure. A notable result is the observation of both right-hand and left-hand C lines in a field that is nominally uniformly left-hand circularly polarized. This is in agreement with the previous assertion that, in general, electromagnetic wavefields contain both right-hand and left-hand polarized regions.

  18. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.

    2016-06-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  19. The use of the rotating electromagnetic field for hardening treatment of details

    NASA Astrophysics Data System (ADS)

    Lebedev, V. A.; Kochubey, A. A.; Kiricheck, A. V.

    2017-02-01

    The article discusses energy aspects of details’ hardening with convective flows of freely moving indenters under the conditions of the rotating electromagnetic field. Results of theoretical studies of the kinetics of the movement of the ferromagnetic indenters are presented and the energy model of the state of the rotating magnetic liquefied layer is proposed, formed under the influence of the rotating electromagnetic field.

  20. Spontaneous topological transitions of electromagnetic fields in spatially inhomogeneous C P -odd domains

    NASA Astrophysics Data System (ADS)

    Tuchin, Kirill

    2016-12-01

    Metastable C P -odd domains of the hot QCD matter are coupled to QED via the chiral anomaly. The topology of electromagnetic field in these domains is characterized by magnetic helicity. It is argued, using the Maxwell-Chern-Simons model, that spatial inhomogeneity of the domains induces spontaneous transitions of electromagnetic field between the opposite magnetic helicity states.

  1. Application of an induced field sensor for assessment of electromagnetic exposure from compact fluorescent lamps.

    PubMed

    Nadakuduti, Jagadish; Douglas, Mark; Capstick, Myles; Kühn, Sven; Kuster, Niels

    2012-02-01

    The development of scientifically sound instrumentation, methods, and procedures for the electromagnetic exposure assessment of compact fluorescent lamps (CFLs) is investigated. The incident and induced fields from 11 CFLs have been measured in the 10 kHz-1 MHz range, and they are compared with the levels for incandescent and light emitting diode (LED) bulbs. Commercially available equipment was used to measure the incident fields, while a novel sensor was built to assess the induced fields in humans. Incident electric field levels significantly exceed the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels at close distances for some sources, while the induced fields are within the ICNIRP basic restrictions. This demonstrates the importance of assessing the induced fields rather than the incident fields for these sources. Maximum current densities for CFLs are comparable to the limits (in the range of 9% to 56%), demonstrating the need for measurements to establish compliance. For the frequency range investigated, the induced fields were found to be considerably higher for CFLs than for incandescent light bulbs, while the exposure from the two LED bulbs was low. The proposed instrumentation and methods offer several advantages over an existing measurement standard, and the measurement uncertainty is significantly better than the assessment of electric and magnetic fields at close distances. Copyright © 2011 Wiley Periodicals, Inc.

  2. Measurement of the π0 electromagnetic transition form factor slope

    NASA Astrophysics Data System (ADS)

    Lazzeroni, C.; Lurkin, N.; Romano, A.; Blazek, T.; Koval, M.; Ceccucci, A.; Danielsson, H.; Falaleev, V.; Gatignon, L.; Goy Lopez, S.; Hallgren, B.; Maier, A.; Peters, A.; Piccini, M.; Riedler, P.; Frabetti, P. L.; Gersabeck, E.; Kekelidze, V.; Madigozhin, D.; Misheva, M.; Molokanova, N.; Movchan, S.; Potrebenikov, Yu.; Shkarovskiy, S.; Zinchenko, A.; Rubin, P.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Fiorini, M.; Gianoli, A.; Norton, A.; Petrucci, F.; Savrié, M.; Wahl, H.; Bizzeti, A.; Bucci, F.; Iacopini, E.; Lenti, M.; Veltri, M.; Antonelli, A.; Moulson, M.; Raggi, M.; Spadaro, T.; Eppard, K.; Hita-Hochgesand, M.; Kleinknecht, K.; Renk, B.; Wanke, R.; Winhart, A.; Winston, R.; Bolotov, V.; Duk, V.; Gushchin, E.; Ambrosino, F.; Di Filippo, D.; Massarotti, P.; Napolitano, M.; Palladino, V.; Saracino, G.; Anzivino, G.; Imbergamo, E.; Piandani, R.; Sergi, A.; Cenci, P.; Pepe, M.; Costantini, F.; Doble, N.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Balev, S.; Collazuol, G.; DiLella, L.; Gallorini, S.; Goudzovski, E.; Lamanna, G.; Mannelli, I.; Ruggiero, G.; Cerri, C.; Fantechi, R.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Semenov, V.; Yushchenko, O.; D'Agostini, G.; Leonardi, E.; Serra, M.; Valente, P.; Fucci, A.; Salamon, A.; Bloch-Devaux, B.; Peyaud, B.; Engelfried, J.; Coward, D.; Kozhuharov, V.; Litov, L.; Arcidiacono, R.; Bifani, S.; Biino, C.; Dellacasa, G.; Marchetto, F.; Numao, T.; Retière, F.

    2017-05-01

    The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the π0 electromagnetic transition form factor slope parameter from 1.11 ×106 fully reconstructed K± →π± πD0, πD0 →e+e- γ events is reported. The measured value a = (3.68 ± 0.57) ×10-2 is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

  3. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  4. Electromagnetic field optimisation procedure for the microwave oven

    NASA Astrophysics Data System (ADS)

    Xiaowei, G.; Lin, M.; Yiqin, S.

    2010-03-01

    This article introduces one method for optimising a microwave oven using microwave CAD technology. The precision model of a microwave oven cavity is created by high-frequency electromagnetic simulation software, and the electric characteristic parameter of the materials are set in the cavity so the simulation model is very close to a practical oven cavity. A new experimental set-up consisting of a multimode microwave cavity, a dielectric parametric test system, a vector network analyser, a microwave power source (magnetron) and a thermo-graphic camera has been built and tested. Comparing the simulation result with the experimental measures (phase polar and power loss), their total properties are consistent. It is proved that the method presented here is practical and useful. So optimisation of the oven design is easily done by modifying the cavity model.

  5. Distortion of Induced Magnetic Fields on the Nightside of the Moon and Implications for Electromagnetic Sounding

    NASA Astrophysics Data System (ADS)

    Fuqua, H.; Fatemi, S.; Delory, G. T.; Poppe, A. R.; De Pater, I.; Grimm, R. E.

    2015-12-01

    Nightside Time Domain Electromagnetic Sounding was performed during the Apollo era using transient discontinuities within the Interplanetary Magnetic Field (IMF) occurring when the Lunar Surface Magnetometer was well within the wake cavity. This analysis assumes that induced fields, generated by conducting layers within the interior of the Moon, respond as an undisturbed spherically symmetric dipole in vacuum. In actuality, the magnetohydrodynamic plasma environment interacts with the induced field. On the dayside, the induced field is confined to the surface by the dynamic pressure of the solar wind. On the nightside, Apollo era theories predicted the induced field would expand into the diamagnetic wake cavity. We present the first hybrid model studying the interaction of the wake fields with an induced dipole field at the Moon. Contrary to the assumptions during the Apollo soundings, we have found that the nightside dipole fields at the Moon are not confined within the wake cavity. The induced fields penetrate out of the rarefraction regions of the wake boundary. Furthermore, within the deep wake, near-vacuum region, distortion of the induced dipole fields due to the interaction with the wake varies between a few percent to more than 15% at the surface depending on the magnitude of the induced field, the geometry of the upstream fields, and the upstream plasma parameters. Thus, our results indicate that under cer tain conditions the assumption of a vacuum dipolar response is reasonable. For the application of this method, a two point measurement is required with altitudes below approximately 400km. Future Electromagnetic Sounding of the interior structure of the Moon with ARTEMIS will provide further insights into the lunar interior structure. These results are applicable to any airless body with a conducting interior, interacting directly with the solar wind in the absence of a parent body magnetic field.

  6. Localization from near-source quasi-static electromagnetic fields

    SciTech Connect

    Mosher, John Compton

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  7. Exposure to electromagnetic fields and suicide among electric utility workers: a nested case-control study

    PubMed Central

    van Wijngaarden, E.; Savitz, D.; Kleckner, R.; Cai, J.; Loomis, D.

    2000-01-01

    OBJECTIVES—This nested case-control study examines mortality from suicide in relation to estimated exposure to extremely low frequency electromagnetic fields (EMFs) in a cohort of 138 905 male electric utility workers.
METHODS—Case-control sampling included 536 deaths from suicide and 5348 eligible controls. Exposure was classified based on work in the most common jobs with increased exposure to magnetic fields and indices of cumulative exposure to magnetic fields based on a measurement survey.
RESULTS—Suicide mortality was increased relative to work in exposed jobs and with indices of exposure to magnetic fields. Increased odds ratios (ORs) were found for years of employment as an electrician (OR 2.18; 95% confidence interval (95% CI) 1.25 to 3.80) or lineman (OR 1.59; 95% CI 1.18 to 2.14), whereas a decreased OR was found for power plant operators (OR 0.67; 95% CI 0.33 to 1.40). A dose response gradient with exposure to magnetic fields was found for exposure in the previous year, with a mortality OR of 1.70 (95% CI 1.00 to 2.90) in the highest exposure category. Stronger associations, with ORs in the range of 2.12-3.62, were found for men <50 years of age.
CONCLUSION—These data provide evidence for an association between occupational electromagnetic fields and suicide that warrants further evaluation. A plausible mechanism related to melatonin and depression provides a direction for additional laboratory research as well as epidemiological evaluation.


Keywords: electromagnetic fields; suicide; nested case-control PMID:10810112

  8. Idiopathic environmental intolerance attributed to electromagnetic fields (formerly 'electromagnetic hypersensitivity'): An updated systematic review of provocation studies.

    PubMed

    Rubin, G James; Nieto-Hernandez, Rosa; Wessely, Simon

    2010-01-01

    Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF; formerly 'electromagetic hypersensitivity') is a medically unexplained illness in which subjective symptoms are reported following exposure to electrical devices. In an earlier systematic review, we reported data from 31 blind provocation studies which had exposed IEI-EMF volunteers to active or sham electromagnetic fields and assessed whether volunteers could detect these fields or whether they reported worse symptoms when exposed to them. In this article, we report an update to that review. An extensive literature search identified 15 new experiments. Including studies reported in our earlier review, 46 blind or double-blind provocation studies in all, involving 1175 IEI-EMF volunteers, have tested whether exposure to electromagnetic fields is responsible for triggering symptoms in IEI-EMF. No robust evidence could be found to support this theory. However, the studies included in the review did support the role of the nocebo effect in triggering acute symptoms in IEI-EMF sufferers. Despite the conviction of IEI-EMF sufferers that their symptoms are triggered by exposure to electromagnetic fields, repeated experiments have been unable to replicate this phenomenon under controlled conditions. A narrow focus by clinicians or policy makers on bioelectromagnetic mechanisms is therefore, unlikely to help IEI-EMF patients in the long-term.

  9. Ionospheric plasma density irregularities measured by stimulated electromagnetic emission

    NASA Astrophysics Data System (ADS)

    Norin, L.; Grach, S. M.; Leyser, T. B.; Thidé, B.; Sergeev, E. N.; Berlin, M.

    2008-09-01

    It is well known that ionospheric plasma turbulence can be conveniently generated by controlled injection of powerful high-frequency radio beams from the ground. Irradiation of the ionosphere with such radio waves leads to the formation of plasma density structures, striations, and the generation of secondary electromagnetic radiation, a phenomenon known as stimulated electromagnetic emission (SEE). In this paper we present experimental results of the dependence of SEE on decreasing excitation levels of the striations. In the experiments the frequency of the injected radio beam was varied near the fifth harmonic of the local ionospheric electron gyro frequency. We use the SEE measurements to obtain transverse length scales of the striations involved in the generation of the SEE. Our results show that different spectral features of the SEE display different temporal dynamics, suggesting that they are related to striations with different transverse length scales (1 ≲ l⊥ ≲ 25 m).

  10. Three-dimensional electromagnetic breathers in carbon nanotubes with the field inhomogeneity along their axes

    NASA Astrophysics Data System (ADS)

    Zhukov, Alexander V.; Bouffanais, Roland; Fedorov, Eduard G.; Belonenko, Mikhail B.

    2013-10-01

    We study the propagation of extremely short electromagnetic three-dimensional bipolar pulses in an array of semiconductor carbon nanotubes. The heterogeneity of the pulse field along the axis of the nanotubes is accounted for the first time. The evolution of the electromagnetic field and the charge density of the sample are described by Maxwell's equations supplemented by the continuity equation. Our analysis reveals for the first time the possibility of propagation of three-dimensional electromagnetic breathers in CNTs arrays. Specifically, we found that the propagation of short electromagnetic pulse induces a redistribution of the electron density in the sample.

  11. Computer modeling of electromagnetic fields and fluid flows for edge containment in continuous casting

    SciTech Connect

    Chang, F.C.; Hull, J.R.; Wang, Y.H.; Blazek, K.E.

    1996-02-01

    A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy- current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared well with measurements obtained from a static test.

  12. [Theoretical and Experimental Dosimetry in Evaluation of Biological Effects of Electromagnetic Field for Portable Radio Transmitters. Report 2. Homogeneous Human Head Phantom].

    PubMed

    Perov, S Yu; Bogacheva, E V

    2015-01-01

    Results of theoretical (numerical) and experimental electromagnetic field dosimetry for homogeneous human head phantoms are considered. The simulation and measurement results are shown. This paper presents the results of Specific Absorption Rate (SAR) evaluation in the "special anthropomorphic model" of human head, when a source of electromagnetic radio frequency field is placed in front of the face. The minimal difference is shown between measurements and simulation results in Head Simulating Liquid, which makes it possible to conduct further brain tissue simulations. The investigations show that the type of electromagnetic field source and phantom form play an important part for SAR distribution.

  13. Electromagnetic fluid drift turbulence in static ergodic magnetic fields

    SciTech Connect

    Reiser, D.; Scott, B.

    2005-12-15

    Numerical simulations of three-dimensional nonlinear electromagnetic fluid drift turbulence in a tokamak plasma with externally applied stochastic magnetic-field perturbations are presented. The contributions to the radial particle transport due to nonlinearities arising from ExB advection and magnetic flutter are investigated for perturbation fields of varying strengths in the cases of low and high collisionalities. The perturbation strength is varied to study the physics for Chirikov parameters above 1. In all the cases considered a significant increase of ExB transport is found. A static contribution in the density and velocity perturbations contributes significantly to the total radial ExB transport. For low collisionality, the external perturbation leads to enhanced density and velocity fluctuations over a broad range in the toroidal wave-number spectrum, resulting in an enhanced turbulent flux. For high collisionality, the density fluctuations stay roughly the same and the velocity fluctuations are increased in an intermediate range of the toroidal wave number spectrum, separated from the maximum of the density fluctuations, thus leaving the turbulent flux almost unchanged.

  14. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  15. Electromagnetic cascades and the depletion of intense fields

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Seipt, Daniel; Heinzl, Thomas; Marklund, Mattias; Ji, Qing; Steinke, Sven; Schroeder, Carl; Esarey, Eric; Leemans, Wim P.

    2016-10-01

    The interaction of electrons, positrons, and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution. Moreover the multi-photon nature of Compton and Breit-Wheeler processes implies the absorption of a significant number of photons. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to a significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. The relevance of these results to the proposed BELLA-i beamline at BELLA center at LBNL is discussed. We acknowledge support from the Office of Science of the US DOE under Contract No. DE-AC02-05CH11231.

  16. Error sources affecting thermocouple thermometry in RF electromagnetic fields.

    PubMed

    Chakraborty, D P; Brezovich, I A

    1982-03-01

    Thermocouple thermometry errors in radiofrequency (typically 13, 56 MHZ) electromagnetic fields such as are encountered in hyperthermia are described. RF currents capacitatively or inductively coupled into the thermocouple-detector circuit produce errors which are a combination of interference, i.e., 'pick-up' error, and genuine rf induced temperature changes at the junction of the thermocouple. The former can be eliminated by adequate filtering and shielding; the latter is due to (a) junction current heating in which the generally unequal resistances of the thermocouple wires cause a net current flow from the higher to the lower resistance wire across the junction, (b) heating in the surrounding resistive material (tissue in hyperthermia), and (c) eddy current heating of the thermocouple wires in the oscillating magnetic field. Low frequency theories are used to estimate these errors under given operating conditions and relevant experiments demonstrating these effects and precautions necessary to minimize the errors are described. It is shown that at 13.56 MHz and voltage levels below 100 V rms these errors do not exceed 0.1 degrees C if the precautions are observed and thermocouples with adequate insulation (e.g., Bailey IT-18) are used. Results of this study are being currently used in our clinical work with good success.

  17. Electromagnetic fluid drift turbulence in static ergodic magnetic fields

    NASA Astrophysics Data System (ADS)

    Reiser, D.; Scott, B.

    2005-12-01

    Numerical simulations of three-dimensional nonlinear electromagnetic fluid drift turbulence in a tokamak plasma with externally applied stochastic magnetic-field perturbations are presented. The contributions to the radial particle transport due to nonlinearities arising from E ×B advection and magnetic flutter are investigated for perturbation fields of varying strengths in the cases of low and high collisionalities. The perturbation strength is varied to study the physics for Chirikov parameters above 1. In all the cases considered a significant increase of E ×B transport is found. A static contribution in the density and velocity perturbations contributes significantly to the total radial E ×B transport. For low collisionality, the external perturbation leads to enhanced density and velocity fluctuations over a broad range in the toroidal wave-number spectrum, resulting in an enhanced turbulent flux. For high collisionality, the density fluctuations stay roughly the same and the velocity fluctuations are increased in an intermediate range of the toroidal wave number spectrum, separated from the maximum of the density fluctuations, thus leaving the turbulent flux almost unchanged.

  18. Convective heat transfer in engine coolers influenced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karcher, C.; Kühndel, J.

    2017-08-01

    In engine coolers of off-highway vehicles, convective heat transfer at the coolant side limits both efficiency and performance density of the apparatus. Here, due to restrictions in construction and design, backwater areas and stagnation regions cannot be avoided. Those unwanted changes in flow characteristics are mainly triggered by flow deflections and sudden cross-sectional expansions. In application, mixtures of water and glysantine are used as appropriate coolants. Such coolants typically show an electrical conductivity of a few S/m. Coolant flow and convective heat transfer can then be controlled using Lorentz forces. These body forces are generated within the conducting fluid by the interactions of an electrical current density and a localized magnetic field, both of which are externally superimposed. In future application, this could be achieved by inserting electrodes in the cooler wall and a corresponding arrangement of permanent magnets. In this paper we perform numerical simulations of such magnetohydrodynamic flow in three model geometries that frequently appear in engine cooling applications: Carnot-Borda diffusor, 90° bend, and 180° bend. The simulations are carried out using the software package ANSYS Fluent. The present study demonstrates that, depending on the electromagnetic interaction parameter and the specific geometric arrangement of electrodes and magnetic field, Lorentz forces are suitable to break up eddy waters and separation zones and thus significantly increase convective heat transfer in these areas. Furthermore, the results show that hydraulic pressure losses can be reduced due to the pumping action of the Lorentz forces.

  19. Extremely low frequency electromagnetic fields and cancer: the epidemiologic evidence.

    PubMed Central

    Bates, M N

    1991-01-01

    This paper reviews the epidemiologic evidence that low frequency electromagnetic fields generated by alternating current may be a cause of cancer. Studies examining residential exposures of children and adults and studies of electrical and electronics workers are reviewed. Using conventional epidemiologic criteria for inferring causal associations, including strength and consistency of the relationship, biological plausibility, and the possibility of bias as an explanation, it is concluded that the evidence is strongly suggestive that such radiation is carcinogenic. The evidence is strongest for brain and central nervous system cancers in electrical workers and children. Weaker evidence supports an association with leukemia in electrical workers. Some evidence also exists for an association with melanoma in electrical workers. Failure to find consistent evidence of a link between residential exposures and adult cancers may be attributable to exposure misclassification. Studies so far have used imperfect surrogates for any true biologically effective magnetic field exposure. The resulting exposure misclassification has produced relative risk estimates that understate any true risk. PMID:1821368

  20. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  1. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  2. A statistical assessment of ambient electromagnetic field using body-worn multiaxial sensors

    NASA Astrophysics Data System (ADS)

    Roblin, Christophe

    2015-11-01

    The electromagnetic field exposure of the population due to wireless communications originates from both down-link and up-link emissions. Although the main contribution comes generally from the latter (e.g., higher by three to five orders of magnitude for the 2G), the former must be considered as well, because they are continual, and as contributions can be competitive for some cases (e.g., in femtocells). Sensor and exposimeter networks (NW) can be deployed by the operators themselves (to enrich feedback information from their own NW) or by independent external stakeholders such as regulatory agencies or local authorities. When sensors are directly worn by a user, body proximity effects - notably the masking effect - can introduce significant errors in the ambient field measurement. A methodology of the statistical assessment of this harmful effect is proposed in this article. It is mainly based on electromagnetic simulations (and partly on measurements) of a triaxial sensor - composed of three orthogonal wideband probes devoted to the evaluation of the field components - placed at different positions of a set of whole body phantoms. The main original contribution of the proposed approach is that both the isolated sensor calibration procedure and the assessment of the measurement errors are based on statistical analyses accounting for the propagation environment. The quantitative results are obtained using statistical channel models for polarimetric and non-polarimetric measurements in various propagation scenarios. Some quantitative results examples are presented. Eventually, preliminary corrections schemes are proposed.

  3. Heavy rain field measurements

    NASA Technical Reports Server (NTRS)

    Melson, ED

    1991-01-01

    A weight-measuring rain gauge was developed to collect rain data and configured to operate at a high sample rate (one sample pre second). Instead of averaging the rain rate in minutes, hours, and sometime days as normally performed, the rain data collected are examined in seconds. The results of six field sites are compiled. Rain rate levels, duration of downpours, and frequency of heavy rainfall events are presented.

  4. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields.

    PubMed

    Obermeier, Andreas; Matl, Florian Dominik; Friess, Wolfgang; Stemberger, Axel

    2009-05-01

    Magnetic field therapy is an established technique in the treatment of pseudarthrosis. In cases of osteomylitis, palliation is also observed. This study focuses on the impact of different electric and electromagnetic fields on the growth of Staphylococcus aureus by in vitro technologies. Cultures of Staphylococcus aureus in fluid and gel-like medium were exposed to a low-frequency electromagnetic field, an electromagnetic field combined with an additional electric field, a sinusoidal electric field and a static electric field. In gel-like medium no significant difference between colony-forming units of exposed samples and non-exposed references was detected. In contrast, Staphylococcus aureus concentrations in fluid medium could clearly be reduced under the influence of the four different applied fields within 24 h of experiment. The strongest effects were observed for the direct current electric field which could decrease CFU/ml of 37%, and the low-frequency electromagnetic field with additional induced electric alternating field with a decrease of Staphylococci concentration by 36%. The effects of the electromagnetic treatment on Staphylococci within fluid medium are significantly higher than in gel-like medium. The application of low-frequency electromagnetic fields corroborates clinical situations of bone infections during magnetic field therapy. Copyright 2009 Wiley-Liss, Inc.

  5. Effects of Pulsed Electromagnetic Fields on Breast Cancer Cell Line MCF 7 Using Absorption Spectroscopy.

    PubMed

    Alcantara, Dominic Z; Soliman, Ian Jerry S; Pobre, Romeric F; Naguib, Raouf N G

    2017-07-01

    We present an analysis of the effects of pulsed electromagnetic fields (PEMF) with 3.3 MHz carrier frequency and modulated by audio resonant frequencies on the MCF-7 breast cancer cell line in vitro using absorption spectroscopy. This involves a fluorescence dye called PrestoBlue™ Cell Viability Reagent and a spectrophotometry to test the viability of MCF-7 breast cancer cells under different PEMF treatment conditions in terms of the cell absorption values. The DNA molecule of the MCF-7 breast cancer cells has an electric dipole property that renders it sensitive and reactive to applied electromagnetic fields. Resonant frequencies derived from four genes mutated in MCF-7 breast cancer cells [rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR), peroxisome proliferator-activated receptor (PPARG), Nijmegen breakage syndrome 1 (NBN) and checkpoint kinase 2 (CHEK2)] were applied in generating square pulsed electromagnetic waves. Effects were monitored through measurement of absorption of the samples with PrestoBlue™, and the significance of the treatment was determined using the t-test. There was a significant effect on MCF-7 cells after treatment with PEMF at the resonant frequencies of the following genes for specific durations of exposure: RICTOR for 10 min, PPARG for 10 min, NBN for 15 min, and CHEK2 for 5 min. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    NASA Astrophysics Data System (ADS)

    Jeong, Woo Chul; Wi, Hun; Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-08-01

    Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR)-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  7. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  8. Investigation of electromagnetic induction retrievals of sea ice thickness using models and measurements

    NASA Astrophysics Data System (ADS)

    Samluk, Jesse Paul

    Using sea ice as a test material, this dissertation explores how electromagnetic responses interact with low-induction-number composite materials as a function of instrument footprint size and shape. This research combines several interdisciplinary topics including electrical engineering, materials science in composites, signal processing, and the geophysics of sea ice itself. Specifically, this work explores the development of new best practices that address consistency issues with electromagnetic induction instruments used on sea ice that employ electrical conductivity as a material property measurement. It does so by using two methods: modeling and measurements. For modeling, a three-dimensional, full-physics, heterogeneous model is used to investigate the electromagnetic field response of several sea ice cases. These cases include changing the material makeup of the sea ice, as well as using different transmitter locations and orientations, with the focus being how instrument footprint varies in each simulated case. For measurements, a co-calibration routine, among two physically different EM induction instruments in terms of instrument footprint, is developed and analyzed. Since these types of instruments are commonly used to measure conductivity in sea ice environments, historical calibration routines are only valid for one instrument at a time. The developed method presented herein provides a statistical solution for the material conductivities of both sea ice and seawater, as well as a solution for the actual ice thickness. These solutions are all based on field measurements made on sea ice during a data collection event held in Barrow, Alaska, in March 2013.

  9. Electromagnetic Near-Field Computations for a Broadcast Monopole Using Numerical Electromagnetics Code (NEC).

    DTIC Science & Technology

    1983-09-01

    Electromagnetic Near-FEjeid Computazions for a Broadcast Mono~ole using ’Vimerical El.ectromagnetics Code (NEC) by David Duerr T-homson Li’~enntCommander... Poggio of Lawrence Livermore Laboratory, January 1981. 3. Schelkuncff, S.A. and Friis, H.T., Antennas Theory -and ?ractice, Wiley, 1952. 4. Jordan...Virginia 22314 2. Library, Code 0142 2 Naval Postgraduate School Monterey, California 93943 3. LCDR David D. Thomson (Code 33n9)2Naval Weapons Center

  10. Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation.

    PubMed

    Vijver, Martina G; Bolte, John F B; Evans, Tracy R; Tamis, Wil L M; Peijnenburg, Willie J G M; Musters, C J M; de Snoo, Geert R

    2014-01-01

    Organisms are exposed to electromagnetic fields from the introduction of wireless networks that send information all over the world. In this study we examined the impact of exposure to the fields from mobile phone base stations (GSM 900 MHz) on the reproductive capacity of small, virgin, invertebrates. A field experiment was performed exposing four different invertebrate species at different distances from a radiofrequency electromagnetic fields (RF EMF) transmitter for a 48-h period. The control groups were isolated from EMF exposure by use of Faraday cages. The response variables as measured in the laboratory were fecundity and number of offspring. Results showed that distance was not an adequate proxy to explain dose-response regressions. No significant impact of the exposure matrices, measures of central tendency and temporal variability of EMF, on reproductive endpoints was found. Finding no impact on reproductive capacity does not fully exclude the existence of EMF impact, since mechanistically models hypothesizing non-thermal-induced biological effects from RF exposure are still to be developed. The exposure to RF EMF is ubiquitous and is still increasing rapidly over large areas. We plea for more attention toward the possible impacts of EMF on biodiversity.

  11. Evaluation of RF electromagnetic field exposure levels from cellular base stations in Korea.

    PubMed

    Kim, Byung Chan; Park, Seong-Ook

    2010-09-01

    This article presents the measurement results of human exposure to CDMA800 and CDMA1800 signals at locations in Korea where the general public has expressed concern. Measurements were performed at 50 locations across the country to compare the electromagnetic field levels with the general public exposure compliance limits. At each site, the distances between the nearest single or co-located base station and measurement positions were within a range of approximately 32-422 m. The measured exposure levels were very low compared with the international standard and the Korean human protection notice. The highest field level was 1.5 V/m, which corresponds to 0.15% of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines for human exposure. 2010 Wiley-Liss, Inc.

  12. Electromagnetic Radiation System (EMRS) for Susceptibility Testing.

    DTIC Science & Technology

    ELECTROMAGNETIC COMPATIBILITY, *ELECTROMAGNETIC SUSCEPTIBILITY, COMMUNICATION EQUIPMENT, ELECTRONIC EQUIPMENT, ELECTROMAGNETIC RADIATION , ANTENNAS, ELECTROMAGNETIC INTERFERENCE, RADAR SIGNALS, RADIO SIGNALS, FIELD INTENSITY.

  13. Consequences of rotating off-centred dipolar electromagnetic field in vacuum around Pulsars

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Pétri, J.

    2016-12-01

    Studying the electromagnetic field of pulsars is one of the key themes in neutron star physics. While most of the works assume a standard central dipolar electromagnetic field model, recently some efforts had been made in explaining how inclusion of higher field components produces drastic consequences in our understanding of these objects. We put forward the effects of a unique recently presented approach in which the magnetic axis is shifted off from the centre. It is found that the rotating off-centred dipolar electromagnetic field itself reveals the presence of the higher components within. The consequences of this approach on the shape of the polar caps and the emission diagrams are discussed.

  14. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Luo, Fei; Hou, Tianyong; Zhang, Zehua; Xie, Zhao; Wu, Xuehui; Xu, Jianzhong

    2012-04-01

    The purpose of this study was to evaluate the effect of different frequencies of pulsed electromagnetic fields on the osteogenic differentiation of human mesenchymal stem cells. Third-generation human mesenchymal stem cells were irradiated with different frequencies of pulsed electromagnetic fields, including 5, 25, 50, 75, 100, and 150 Hz, with a field intensity of 1.1 mT, for 30 minutes per day for 21 days. Changes in human mesenchymal stem cell morphology were observed using phase contrast microscopy. Alkaline phosphatase activity and osteocalcin expression were also determined to evaluate human mesenchymal stem cell osteogenic differentiation.Different effects were observed on human mesenchymal stem cell osteoblast induction following exposure to different pulsed electromagnetic field frequencies. Levels of human mesenchymal stem cell differentiation increased when the pulsed electromagnetic field frequency was increased from 5 hz to 50 hz, but the effect was weaker when the pulsed electromagnetic field frequency was increased from 50 Hz to 150 hz. The most significant effect on human mesenchymal stem cell differentiation was observed at of 50 hz.The results of the current study show that pulsed electromagnetic field frequency is an important factor with regard to the induction of human mesenchymal stem cell differentiation. Furthermore, a pulsed electromagnetic field frequency of 50 Hz was the most effective at inducing human mesenchymal stem cell osteoblast differentiation in vitro.

  15. [A 3D FEM model for calculation of electromagnetic fields in transmagnetic stimulation].

    PubMed

    Seilwinder, J; Kammer, T; Andrä, W; Bellemann, M E

    2002-01-01

    We developed a realistic finite elements method (FEM) model of the brain for the calculation of electromagnetic fields in transcranial magnetic stimulation (TMS). A focal butterfly stimulation coil was X-rayed, parameterized, and modeled. The magnetic field components of the TMS coil were calculated and compared for validation to pointwise measurements of the magnetic fields with a Hall sensor. We found a mean deviation of 7.4% at an axial distance of 20 mm to the coil. A 3D brain model with the biological tissues of white and gray matter, bone, and cerebrospinal fluid was developed. At a current sweep of 1000 A in 120 microseconds, the maximum induced current density in gray matter was 177 mA/m2 and the strongest electric field gradient covered an area of 40 mm x 53 mm.

  16. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis.

    PubMed

    Zhu, Siyi; He, Hongchen; Zhang, Chi; Wang, Haiming; Gao, Chengfei; Yu, Xijie; He, Chengqi

    2017-09-01

    Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Electromagnetic fields in neonatal incubators: the reasons for an alert.

    PubMed

    Bellieni, Carlo Valerio; Nardi, Valentina; Buonocore, Giuseppe; Di Fabio, Sandra; Pinto, Iole; Verrotti, Alberto

    2017-10-08

    Neonatal incubators are important tools for sick newborns in the first few days of life. Nevertheless, their electric engine, often very close to the newborn's body, emits electromagnetic fields (EMF) to which newborns are exposed. Aim of this paper is to review the available literature on EMF exposure in incubators, and the effects of such exposures on newborns that have been investigated. We carried out a systematic review of studies about EMF emissions produced by incubators, using Medline and Embase databases from 1993 to 2017. We retrieved 15 papers that described the EMF exposure in incubators and their biological effects on babies. EMF levels in incubators appear to be between 2 and 100 mG, depending on the distance of the mattress from the electric engine. In some cases they exceed this range. These values interfere with melatonin production or with vagal tone. Even caregivers are exposed to high EMF, above 200 mG, when working at close contact with the incubators. EMF have been described as potentially hazardous for human health, and values reported in this review are an alert to prevent babies' and caregivers' exposure when close to the incubators. A precautionary approach should be adopted in future incubator design, to prevent high exposures of newborns in incubators and of caregivers as well.

  18. The role of electromagnetic fields in neurological disorders.

    PubMed

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  20. Effect of electromagnetic field exposure on the reproductive system

    PubMed Central

    Park, Chan Jin

    2012-01-01

    The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and [Ca2+]i may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels. PMID:22563544

  1. Two-slit diffraction with highly charged particles: Niels Bohr's consistency argument that the electromagnetic field must be quantized

    PubMed Central

    Baym, Gordon; Ozawa, Tomoki

    2009-01-01

    We analyze Niels Bohr's proposed two-slit interference experiment with highly charged particles which argues that the consistency of elementary quantum mechanics requires that the electromagnetic field must be quantized. In the experiment a particle's path through the slits is determined by measuring the Coulomb field that it produces at large distances; under these conditions the interference pattern must be suppressed. The key is that, as the particle's trajectory is bent in diffraction by the slits, it must radiate and the radiation must carry away phase information. Thus, the radiation field must be a quantized dynamical degree of freedom. However, if one similarly tries to determine the path of a massive particle through an inferometer by measuring the Newtonian gravitational potential the particle produces, the interference pattern would have to be finer than the Planck length and thus indiscernible. Unlike for the electromagnetic field, Bohr's argument does not imply that the gravitational field must be quantized. PMID:19218440

  2. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    PubMed

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P < 0.01 level. Accelerated healing was also observed under the influence of the pulsed electromagnetic field (P < 0.05). In the group of animals exposed to LLLT, the healing of the skin defect was faster than in the control group. The statistical significance was at the P < 0.05 level. Different types of electromagnetic fields have a promoting effect on the wound healing process.

  3. Occupational exposure to electromagnetic fields and acute leukaemia: analysis of a case-control study

    PubMed Central

    Willett, E; McKinney, P; Fear, N; Cartwright, R; Roman, E

    2003-01-01

    Aims: To investigate whether the risk of acute leukaemia among adults is associated with occupational exposure to electromagnetic fields. Methods: Probable occupational exposure to electromagnetic fields at higher than typical residential levels was investigated among 764 patients diagnosed with acute leukaemia during 1991–96 and 1510 sex and age matched controls. A job exposure matrix was applied to the self reported employment histories to determine whether or not a subject was exposed to electromagnetic fields. Risks were assessed using conditional logistic regression for a matched analysis. Results: Study subjects considered probably ever exposed to electromagnetic fields at work were not at increased risk of acute leukaemia compared to those considered never exposed. Generally, no associations were observed on stratification by sex, leukaemia subtype, number of years since exposure stopped, or occupation; there was no evidence of a dose-response effect using increasing number of years exposed. However, relative to women considered never exposed, a significant excess of acute lymphoblastic leukaemia was observed among women probably exposed to electromagnetic fields at work that remained increased irrespective of time prior to diagnosis or job ever held. Conclusion: This large population based case-control study found little evidence to support an association between occupational exposure to electromagnetic fields and acute leukaemia. While an excess of acute lymphoblastic leukaemia among women was observed, it is unlikely that occupational exposure to electromagnetic fields was responsible, given that increased risks remained during periods when exposure above background levels was improbable. PMID:12883018

  4. The regenerative effects of electromagnetic field on spinal cord injury.

    PubMed

    Ross, Christina L; Syed, Ishaq; Smith, Thomas L; Harrison, Benjamin S

    2017-01-01

    Traumatic spinal cord injury (SCI) is typically the result of direct mechanical impact to the spine, leading to fracture and/or dislocation of the vertebrae along with damage to the surrounding soft tissues. Injury to the spinal cord results in disruption of axonal transmission of signals. This primary trauma causes secondary injuries that produce immunological responses such as neuroinflammation, which perpetuates neurodegeneration and cytotoxicity within the injured spinal cord. To date there is no FDA-approved pharmacological agent to prevent the development of secondary SCI and induce regenerative processes aimed at healing the spinal cord and restoring neurological function. An alternative method to electrically activate spinal circuits is the application of a noninvasive electromagnetic field (EMF) over intact vertebrae. The EMF method of modulating molecular signaling of inflammatory cells emitted in the extra-low frequency range of <100 Hz, and field strengths of <5 mT, has been reported to decrease inflammatory markers in macrophages, and increase endogenous mesenchymal stem cell (MSC) proliferation and differentiation rates. EMF has been reported to promote osteogenesis by improving the effects of osteogenic media, and increasing the proliferation of osteoblasts, while inhibiting osteoclast formation and increasing bone matrix in vitro. EMF has also been shown to increase chondrogenic markers and collagen and induce neural differentiation, while increasing cell viability by over 50%. As advances are made in stem cell technologies, stabilizing the cell line after differentiation is crucial to SCI repair. Once cell-seeded scaffolds are implanted, EMF may be applied outside the wound for potential continued adjunct treatment during recovery.

  5. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Pulsed electromagnetic field: an organic compatible method to promote plant growth and yield in two corn types.

    PubMed

    Bilalis, Dimitrios J; Katsenios, Nikolaos; Efthimiadou, Aspasia; Karkanis, Anestis

    2012-12-01

    Pre-sowing treatment of pulsed electromagnetic fields was used in corn seeds, in both indoor and outdoor conditions, in order to investigate the effect on plant growth and yield. The results of this research showed that pulsed electromagnetic fields can enhance plant characteristics, both under controlled environmental conditions and uncontrolled field conditions. The two varieties responded differently in the duration of magnetic field. Seeds were treated for 0, 15, 30, and 45 min with pulsed electromagnetic field (MF-0, MF-15, MF-30, and MF-45). Common corn variety performed better results in MF-30 treatment, while sweet corn variety performed better in MF-45 treatment. Magnetic field improved germination percentage, vigor, chlorophyll content, leaf area, plant fresh and dry weight, and finally yields. In the very interesting measurement of yield, seeds that have been exposed to magnetic field for 30 and 45 min have been found to perform the best results with no statistical differences among them. Another interesting finding was in root dry weight measurements, where magnetic field has a negative impact in MF-30 treatment in both hybrids, however without affecting other measurements. Enhancements on plant characteristics with economic impact on producer's income could be the future of a modern, organic, and sustainable agriculture.

  7. Observations on electromagnetic bias in radar altimeter sea surface measurements

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Jackson, Frederick C.; Uliana, Enzo A.; Swift, Robert N.

    1989-01-01

    Because the relative radar cross section of the sea surface increases below mean sea level and decreases above it, the range measurements of satellite radar altimeters are biased toward the wave troughs. Published and unpublished direct measurements of this electromagnetic (EM) bias are examined as well as the predictions of theoretical developments. The EM bias is predominantly a function of the radar frequency used, averaging 1.2 percent of the wave height of Ka band and 3.3 percent of the wave height at X band. The airborne measurements present a consistent picture of the variation of the relative radar cross section as a function of deviation from mean sea level. A technique to measure EM bias at the Ku and C band operating frequencies of the Topex satellite altimeter is described.

  8. Effects of Extremely Low Frequency Electromagnetic Fields on Growth and Differentiation of ’Physarum polycephalum’

    DTIC Science & Technology

    1975-04-01

    AD-AO10 187 EFFECTS OF EXTREMELY LOW FREQUENCY ELECTRO- MAGNETIC FIELDS ON GROWTH AND DIFFERENTIATION OF ’ PHYSARUM POLYCEPHALUM ’ E. M. Guodman, et al...LExtremely Low Prequency Electromagnetic Fields on Growth and Differentiation of Physarum polycephalum Technical Report Phase I (Continuous Wave) by...that weak, alternating electromagnetic fields (60 or 75 Hz, 2.0 G, 0.7 V/n) affect the cell cycle of Physarum polycephalum by increasing the interval

  9. Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields: A Content Analysis of British Newspaper Reports

    PubMed Central

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  10. Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports.

    PubMed

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  11. [Effects of electromagnetic fields emitted by cellular phone on auditory and vestibular labyrinth].

    PubMed

    Sievert, U; Eggert, S; Goltz, S; Pau, H W

    2007-04-01

    It is the subject of this study to investigate the biological effect of the HF radiation produced by the Global System for Mobile Communications-( GSM)-mobile phone on the inner ear with its sensors of the vestibular and auditive systems. Thermographic investigations made on various model materials and on the human temporal bone should show whether mobile phone does induce any increases of temperature which would lead to a relevant stimulus for the auditive and vestibular system or not. We carried out video-nystagmographic recordings of 13 subjects, brainstem electric response audiometry of 24 ears, and recordings of distorsion products of otoacoustic emissions of 20 ears. All tests were made with and without a mobile phone in use. The data was then analyzed for variation patterns in the functional parameters of the hearing and balance system that are subject to the (non)existence of electromagnetic radiation from the mobile phone. The thermographic investigations suggest that the mobile phone does not induce any increases of temperature which would lead to a relevant stimulus for the auditive and vestibular system. Video-nystagmographic recordings under field effect do not furnish any indication of vestibular reactions generated by field effects. Compared with the recording without field, the brainstem electric response audiometry under field effect did not reveal any changes of the parameters investigated, i. e. absolute latency of the peaks I, III, V and the interpeak latency between the peaks I and V. The distorsion products of otoacoustic emissions do not indicate, comparing the three measuring situations, i. e. before field effect, pulsed field and continuous field, any possible impacts of the HF field on the spectrum or levels of emissions for none of the probands. The investigations made show that the electromagnetic fields generated in using the mobile phone do not have an effect on the inner ear and auditive system to the colliculus inferior in the

  12. Measurements of electromagnetic bias at Ku and C bands

    NASA Technical Reports Server (NTRS)

    Arnold, D. V.; Melville, W. K.; Stewart, R. H.; Kong, J. A.; Keller, W. C.; Lamarre, E.

    1995-01-01

    The electromagnetic (EM) bias epsilon is an error present in radar altimetry of the ocean surface due to nonuniform reflection with surface displacement. The electromagnetic bias is defined as the difference in height between the mean reflecting surface and the mean sea surface. A knowledge of the electromagnetic bias is required for reducing errors in mean sea level measurements by satellite radar altimeters. Direct measurements of the EM bias at 14 GHz (Ku band) and 5 GHz (C band) were made from an oil production platform in the Gulf of Mexico over a 6-month period during 1989 and 1990. A total of 1280 hours of usable data was collected. During the experiment the significant wave height (SWH) varied from 0.6 to 3.2 m; the wind speed at 25 m above the surface varied from 0.1 to 14.3 m/s; the Ku band bias varied from -1.0 to -13.8 cm, or from -1.6% to -5.3% of the SWH; and the C band bias varied from -0.4 to -19.9 cm, or from -0.6% to -6.3% of the SWH. The biases has mean values of -3.7% and -3.6% of SWH with standard deviations of the variability about the mean of 0.7% and 1.0% of the SWH for Ku and C bands, respectively. We found a nonlinear relationship between dimensionless bias (bias/SWH) and wind speed at both low and high wind speeds. For wind speeds less than 3-4 m/s but less than 10 m/s, both biases were found to increase linearly with wind speed. For wind speeds greater than 11-12 m/s, the C band bias reaches a maximum. The Ku band bias reaches a maximum and then begins to decrease for wind speeds greater than 9-10 m/s.

  13. Entanglement control in a superconducting qubit system by an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Xu, J. B.

    2011-08-01

    By making use of the dynamical algebraic method we investigate a quantum system consisting of superconducting qubits interacting with data buses, where the qubits are driven by time-dependent electromagnetic field and obtain an explicit expression of time evolution operator. Furthermore, we explore the entanglement dynamics and the influence of the time-dependent electromagnetic field and the initial state on the entanglement sudden death and birth for the system. It is shown that the entanglement between the qubit and bus as well as the entanglement sudden death and birth can be controlled by the time-dependent electromagnetic field.

  14. More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime

    SciTech Connect

    Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.

    2009-11-15

    In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.

  15. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    SciTech Connect

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  16. Dynamic model for electromagnetic field and heating patterns in loaded cylindrical cavities

    SciTech Connect

    Tian, Y.L.; Black, W.M.; Sa`adaldin, H.S.; Ahmad, I.; Silberglitt, R.

    1995-07-01

    An analytical solution for the electromagnetic fields in a cylindrical cavity, partially filled with a cylindrical dielectric has been recently reported. A program based on this solution has been developed and combined with the authors` previous program for heat transfer analysis. The new software has been used to simulate the dynamic temperature profiles of microwave heating and to investigate the role of electromagnetic field in heating uniformity and stability. The effects of cavity mode, cavity dimension, the dielectric properties of loads on electromagnetic field and heating patterns can be predicted using this software.

  17. Investigation of brain potentials in sleeping humans exposed to the electromagnetic field of mobile phones.

    PubMed

    Lebedeva, N N; Sulimov, A V; Sulimova, O P; Korotkovskaya, T I; Gailus, T

    2001-01-01

    An investigation was made of 8-hour EEG tracings of sleeping humans exposed to the electromagnetic field of a GSM-standard mobile phone. To analyze the EEG-patterns, manual scoring, nonlinear dynamics, and spectral analysis were employed. It was found that, when human beings were exposed to the electromagnetic field of a cellular phone, their cerebral cortex biopotentials revealed an increase in the alpha-range power density as compared to the placebo experiment. It was also found that the dimension of EEG correlation dynamics and the relation of sleep stages changed under the influence of the electromagnetic field of a mobile phone.

  18. Operator of pair electron-ion collisions in alternating electromagnetic fields

    SciTech Connect

    Balakin, A. A.

    2008-12-15

    Collisions of electrons with ions in the presence of an alternating electromagnetic field are considered. Based on the first principles (the Liouville equations for N particles), a general expression for the collisional operator in the approximation of pair collisions at an arbitrary scattering potential, including that depending periodically on time, is derived. The problem of collisions in plasma in the presence of an electromagnetic field can be reduced to this case by introducing drift coordinates. It is shown that the method of test particles can be applied to the problem of particle collisions in an alternating electromagnetic field.

  19. Impact of Low Frequency Electromagnetic Field Exposure on the Candida Albicans

    NASA Astrophysics Data System (ADS)

    Malíková, Ivona; Janoušek, Ladislav; Fantova, Vladyslava; Jíra, Jaroslav; Kříha, Vítĕzslav

    2015-03-01

    Effect of low frequency electromagnetic field on growth of selected microorganism is studied in the article. The diploid fungus that grows both as yeast and filamentous cell was chosen for this research. The theory of ion parametric resonance was taken as the base for studying the influence of electromagnetic field on biological structures. We tested the hypothesis, whether it is possible to observe the change in growth properties of Candida albicans with an AC electromagnetic field tuned to resonance with calcium ions cyclotron frequency.

  20. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.